
AD-A210 312

Shared Memory vs. Message Passing Architectures:

D TIC An Application Based Study

ELECTE Margaret Martonosi and Anoop Gupta ,i
JUL 18 1989 (Draft: Nov 9. 1988. 7:30 pm)JUL 1 8 1989 Computer Systems Laborato..-S D V D Stanford University. CA 9430,5.,

Abstract
---- The diminishing differences between the hardware structure of shared memory and mes-

sage passing parallel computers mandate a new evaluation of the tradeoffs these architectures
impose on the development and performance of applications. In a message passing computer.
some message traffic is used to perform interprocessor updates which maintain consistency
between the various processors' data. l * nsider this traffic to be analogous to global bus

..I traffic needed in a shared memory computer for hardware cache consistency. Using Locu,
Route. a global router for standard cells. as a case study. we investigate the level of traffic

:D required to maintain consistency of data with each of the two architectures. By explicitly

avarying the frequency of interprocessor updates. the level of traffic in the message passing
o0 .2 approach can be reduced to as little as 19[of the traffic in the shared memory approach

M V while still obtaining solution quality within 10, of the quality given by the shared memory
o version. We show that exploiting locality, in the way wires to be routed are assigned to
~processors. can further lower this message traffic by as much as 6T((. However. the degree

to which locality can be exploited may be limited by the opposing requirement that the
0application be load balanced. as well as by limited locality in the data set.

- - -" , ,j A A'' *-

1 Introduction

In recent years. there has been much debate about the relative merits of shared memory and
message passing parallel architectures. The previously large distinctions between the two ap-
proaches. however, are now diminishing. The main drawbacks of the early message passing
computers. such as the NCUBE/ten [il] were the high network latency and the large message
reception overhead. These characteristics forced programmers to exploit only large grain par-
allelism. With the development of new message passing computers. such as the Ametek Series
2010 and the .Message Driven Processor [3.9]. things are rapidly changing. Using specialized
routing chips and the technique of wormhole routing [6]. the network latencies have been re-

r-4 duced by 2-3 orders of magnitude. Similarly. using dedicated hardware to copy messages to

and from the network and using innovative memory mapping techniques [10.18]. the message
reception overhead has been cut down by 1-2 orders of magnitude. These reductions enable
current machines to exploit parallelism at a fairly fine grain. Furthermore. it is now possible to 0%
approximate aspects of the shared-memory model. since sending a message to a remote processor co

requesting an update of some global data is no longer an unreasonably long operation. C)
rN)

On the other hand. we see that efforts to scale shared memory machines led them to resemble
message passing computers in several ways. Traditional shared memory architectures used a o
shared global bus to memory [5) and could only accommodate a limited number of processors

0before the global bus connecting processors and memory became saturated. Because of the
limited scalability of these architectures. designers of shared memory machines are now turning
to architectures using processor clusters with directory- based cache coherence schemes between
the clusters [19.1]. hierarchical architectures with more than one level of shared buses such as
the Encore UltraMax [13.4]. or architectures with multistage processor int tioi jetwork , ,

.... , .

%7 7oF .."

like the BBN Butterfly 112) and IBM RP3 [16]. In directory based approaches. consistency
operations between dusters are performed on a point-to-point basis. with invalidations going
only to the clusters that need them. Also. the latency of non-local communication can be as
much as an order of magnitude larger than that of a local access in all of these machines. These
two characteristics, point to point communication and high non-local reference latency. increase
the cost of non-local traffic in a shared memory approach. and force the programmer of these
shared memory machines to consider more carefully the effect of locality.

Whlle the gap between the two architectures is narrowing, there are still fundamental differ-
ences between the two which force tradeoffs between the two architectures. The shared memory
architecture considered in this paper has a single global address space with hardware to guar-
antee the consistency of data in the processor caches. In this case, cache coherence protocols
enforce consistency of data [2]. In the message passing architectures, each processor has a sep-
arate address space, and exchanges of information occur by sending messages on the network.
One type of message passed on the network is for updating distributed data held by all the
processors to periodically make it consistent with the other processors' data. This message traf-
fic for updates in the message passing case is analogous to the cache coherence traffic used in
the shared memory case. In the message passing case. this traffic is explicitly controlled by the
application programmer. who docides when and how to perform updates between processors. In
the shared memory case, the traffic is implicitly controlled by the cache consistency hardware.
which relieves the programmer from the process of maintaining data consistency.

In many cases. however, the level of consistency enforced by the shared memory computer
may be more than is needed by a particular application. In such cases the message passing com-
puter may be superior, because it allows the application programmer to control the degree of
consistency explicitly. In this paper. we explore several such tradeoffs between shared-memory
and message passing architectures using the LocusRoute [17] application as a case study. (Lo-
cusRoute is a commercial quality routing program for standard cells and is now being widely
used at Stanford for parallel processing studies.) Our results comparing network traffic show
that the message passing version of the program generates only 17 of the traffic that the shared
memory version does. while the degradation in the quality of the routing is less than 10'7. An-
other issue this paper addresses is the sensitivity of the network traffic to the exploitation of
locality in the data set. In our study. we exploit locality by assigning wires which are physically
close to each other in the circuit. to the same processor. Specifically. we show that message
passing architectures can reduce their network traffic by more than .50% by exploiting locality.
while also improving solution quality. The effect on shared memory architectures. while not so
large. is also significant. Some other issues regarding exploiting of locality and execution time
are also discussed.

The rest of the paper is structured as follows. The next section gives information about
the LocusRoute application and the simulation tools used to collect data for the architectural
comparison. Section 3 describes the changes made to the original shared memory LocusRoute
to convert it to a message passing style. Section 4 presents our results on network traffic for j
the two architectures under varying assumptions, and Section 5 shows the reduction of network
traffic made possible by exploiting locality. Section 6 presents conclusions based on this data.
and suggests further areas to explore.

COP Availability Codes

" c D/ist Avail andfo,

2

iil~l l .- ... ,, :-: " - , , .~,qlpls-,.,, Sq

Chop 4

Whmm I

himWd Ca Pamui C$ ---

Figure 1: Standard cell placement and corresponding cowt array.

2 Applications, Tools and Methodology

To understand the architectural comparisons being made. one must understand the application
the data is based on. and the tools used to make the measurements. Our starting point was
the version of LocusRoute written for a shared memory machine,. This code was converted.
as described in Section 3. to a message passing style. Because there was no message passing
computer available to run the code. we used CBs. a simulator for parallel message passing
machines. With cas. detailed statistics on execution time and network behavior are readily
available. To make network traffic comparisons between the message passing version and the
shared memory version. another program. also described below, was written to estimate the
amount of bus traffic required by the shared memory approach.

2.1 LocusRoute

LocusRoute [17] is an industrial quality router for N*LS1 standard cells developed by Jonathan
Rose at Stanford University. LocusRoute routes the wires of a given standard cell placement.
while attempting to minimize the overall circuit area. To do this. it maintains a global data
structure known as the Cost Array. The vertical dimension of the array is the number of
routing channels in the circuit. and the horizontal dimension of the array is the number of
routing grids. The Cost Array keeps a record of the number of wires running through each
sector of the circuit. Each wire is routed along the path with the minimal sum of the cost array
entries. Figure I shows a standard cell circuit and one of its wires. with the corresponding Cost
Array. The highlighted portions of the cost array will be incremented if this route is chosen.

In addition to producing the routed circuit. LocusRoute also computes a measure of the
solution's quality. Quality, also referred to in this paper as the circuit height. is computed as
follows. For each channel. the number of wires using the channel will vary across the width
of the circuit. The number of routing tracks required by the channel is the maximum number
of wires running through the channel at any point. The circuit height is the total number of
routing tracks required for all channels.

The Cost Array is the central data structure for the LocusRoute application, and it accounts
for almost all of the shared data references made by LocusRoute. Therefore. studying the
reference patterns to the cost array will Provide an excellent approximation to the application~s
memory reference behavior as a whole. Examining the references to the cost array for one wire.
we see that LocusRoute starts with a series of reads to explore possible routes for the wire.

3

LocusRoute reads every location of the cost array along the paths being considered. This is
followed by a smaller stream of writes. as the cost array is updated along the final path of
the wire. This basic sequence of reads and writes occurs for each wire. with several processors
routing wires in parallel. Performing several iterations of routing improves the final solution
quality. but. before rerouting a wire for an iteration after the first one. the processor must -rip
up the old routing of the wire by decrementing the cost array" locations in its path. These rip
up operations are the second type of writes performed on the cost array.

Consistency of the cost array is an important issue in this paper. and one with serious im-
plications on the amount of traffic, so it is important to understand how. and to what extent.
consistency is maintained in the shared memory version of-LocusRoutu. To avoid the perfor-
mance bottleneck a lock would impose, accesses to the cost array are not locked. This implies
that simultaneous operations on the same element of the cost array may result in one of the
operations being lost. As previously stated. LocusRoute is a optimization problem, and can
tolerate a certain amount of inconsistency. With the number of processors the shared memory
version currently uses (up to 16). the probability of simulataneous writes is very low. and exper-
iments indicate that the quality is not degraded. Except for this. consistency in the cost array
is maintained at the hardware level. by the cache coherency hardware.

When running the experiments, two benchmark circuits were used. The first circuit. bnrE
has 420 wires. a size of 10 channels by 341 routing grids, and represents an actual standard
cell circuit developed at Bell-Northern Research Ltd. The second circuit. MDC. has 573 wires
with a size of 12 channels by 386 routing grids, and was designed at the University of Toronto
Microelectronic Development Centre.

2.2 CBS: A Message Passing Architecture Simulator

Execution of LocusRoute on a message passing computer was simulated using a program called
CBS. CBS [1.5] is a C++ program written by Andreas Nowatzyk at Carnegie Mellon University
which simulates the behavior of a k-ary n-dimensional hypercube machine (with a total of k"
processors). For the experiments described here. CBs simulated a machine with deterministic
wormhole routing using the E-cube routing algorithm [14.21]. and with the dimension n. always
equal to two (mesh interconnection). The use of wormhole routing minimizes the effect of
the distance between destination and source. making the assignment of processes to processing
elements less critical. Research by Dally [7.8] indicates that low-dimensional networks have
greater channel bandwidth. and better hot-spot throughput than do high-dimensional networks.
These two features give the simulated machine low-latency, high-bandwidth communication
performance which makes it competitive with the shared memory machine.

CBS uses a detailed simulation model to produce its network statistics. CBS simulates the
behavior of the processor interconnection network at the level of individual flow control units (in
this case. single bytes) flowing between processors. There are unidirectional channels connecting
a processor to its North and East neighbors. This means that a packet must travel all the way
around the network to talk to its West neighbor. The network performance is specified with
two parameters: f-delay and c-delay. Tdelay is the time required for I byte to travel one hop
on the network. and c.delay, the time required for the entire packet to be copied down from
the processor node to the message network. or up from the message network to the destination
processor node. Assuming no delays due to contention. the total time required for a packet of
length L to travel D hops on the network is 2 c-dela + t.delal(D + L). To simulate the execution
time of the node processors, a delay statement is provided which blocks the running processor
for the number of time units specified. Timings obtained from the Encore microsecond clock

4

were used as arguments for the delay statement.

For the purpose of concreteness. we chose to set the performance parameters to model the
behavior of tie Ametek Series 2010 Message Passing Multicomputer [18.10]. A packet of length
L travelling D hops on the Ametek requires CopyTime + HopTime(2D + L). CopyTime is the
time required to copy the message from the network to the node processor's address space. which
depends on the message length. This can be performed at about 50MB/s. Assuming an average
message length of 200 bytes. we chose CopyTime to equal 4000 ns. so c.delay was set to half
of that. or 2000 ns. ' HopTime for the Ametek is defined as the time it takes for one byte
of a packet to advance one hop. assuming that the route has already been established. This
is stated to be .50 ns. (Establishing the route is slower, so the head of a packet requires two
HopTimes to advance one hop.) To make the Ametek packet latency equation conform to the
CBS form. we factored out the 2 to get: CopyTime + 2RopTime(D + L/2). Now we can set
t.delay equal to 2HopTime or 100 ns. When the simulation is run. the number of bytes in a
packet is always cut in half. so that the L/2 term in the Ametek equation matches the-L term
in the cBs equation. klso. since the Ametek 2010"s processing elements are about five times
faster than the Multimaxs processing elements. we divide the times obtained on the Encore
processing elements by a factor of five before using them as arguments to the delay statement.

2.3 Shared Memory Traffic Evaluation

While for the message passing implementation. the network traffic is directly given by CBS. there
is no simple way of estimating traffic for the shared memory implementation. In order to make
comparisons of the traffic required for message passing and shared memory approaches. we need
a method for measuring the traffic generated by LocusRoute on a shared memory machine.
Although we have the capability to directly trace all memory references [20.22'. these direct
methods require a large amount of memory. which limits the portion of the program that can be
traced to about 1 wire per processor. As will be described in Section 3. updates in the message
passing approach can occur at time intervals greater than the total time being monitored by these
detailed trace methods. making traffic comparison difficult. Instead we have chosen to modify
the shared memory version of LocusRoute to record information about the memory reference
stream over the whole execution time and use this information to estimate total traffic.

Before explaining the traffic estimating program. we will first explain in detail the type of
machine to be simulated. This work considers a shared memory multiprocessor with a single
global bus that all processors use to access memory. Each processor has a private cache memory.
and consistency is maintained by dedicated cache coherence hardware using a Write Back with
Invalidate scheme. The traffic being measured in the shared memory version is the traffic on
the shared global bus. 2

With the above machine model in mind, we now describe a method for estimating the
bus traffic. The uniprocessor version of LocusRoute is modified to record memory reference
information. Data is printed to a trace file whenever one of four types of events occurs. The
four event types are described below:

1. Wire event: Whenever routing of a new wire is begun. the time and wire name are
recorded as a wire event in the trace file.

IC.delay is a parameter set at the time the simulator is compiled. Therefore. one cannot compute c.delay
dynamically.

'Our traffic estimating program can simulate non-bus-oriented architectures as well. but since we are only
considering 16 processing elements. we present data only for the bus-based scheme.

2. Iteration event: When a new iteration is begun. the time at which it was begun is
recorded as an iteration event in the trace file. These first two events are needed by the
traffic evaluator for interleaving the execution among several processors.

3. Read event: LocusRoute is structured so that a processor reads data from the cost array
when it evaluates possible routes for a wire segment. For each route considered. a processor
reads all the locations of the cost array along the path of the route. At the beginning of
each of these read sequences, a read event is recorded in the trace file. with the time. and
the locations affected by the reads.

4. Write event: A processor writes data at two times: (i) at the end of exploring alternative
routes. and (ii) when it does a rip-up before starting to explore routes. Both of these are
recorded as write events in the trace file along with the time at which they are begun. and
the locations affected by the writes.

All events are assumed to be atomic: one time is recorded in the trace file at the beginning
of the read or write sequence. and all reads or writes associated with that event are assumed to
occur at that time.

The trace file described above records the relevant memory access information about a
uniprocessor run of LocusRoute. The events recorded in the trace file give enough informa-
tion to interleave execution among more processors. so that multiprocessor traffic data can be
estimated using the steps described here. First. the simulator decides on an assignment of wires
to processors. using one of the heuristics from Section 3. At this point, each event in the trace
is associated with a certain wire. and each wire has now been assigned to a processor. so all the
events are now associated with the processor executing them. Events for each processor can be
interleaved using the times recorded in the trace file. To simulate the traffic, events are pulled off
the interleaved event queue and handled in order. The cache coherence protocol implemented
is Write Back with Invalidate Scheme [2]. The first write to any cache line results in a bus
operation which causes all other caches to invalidate that line if it is present. Subsequent reads
or writes by that processor do not result in any bus traffic. A read or write by another processor
to that cache line causes that processor to become the owner. and forces the previous owner to
invalidate the line from its cache.

Like any such measurement system. ours has its inaccuracies, which we will list here. First.
the system simulates infinite caches. Lines are only written back to memory for coherency
reasons. never simply for replacement. Because the data structure we are studying is smaller
than most multiprocessor caches (about 8000 bytes). this is not a major flaw. Second. we assume
that read and write events, which are conglomerations of several read or writes, occur atomically.
In actual execution. these operations occur as sequences of operations in tight (single instruction)
loops. The atomic assumption only leads to inaccuracy when a read event and a write event, or
two write events, that should be occurring simultaneously become serialized by the simulator. If
these events were occurring in the same area of the cost array. then their simultaneous execution
would lead to multiple invalidations and refetches. If they are serialized, at most one invalidation
and refetch will occur. This will cause the simulator to slightly underestimate the total traffic.
This is not a major effect. because write operations are relatively infrequent, so simultaneous
reads and writes to the same cache line are highly improbable. Both of the inaccuracies tend to
slightly underestimate the total traffic so that the numbers given in Section .5 may be considered
lower bounds on the actual traffic.

6

Crd Poulan of Cost Array

Unowrod Pordon of Cost Array

Figure 2: Division of the cost array among processors.

3 Implementing LocusRoute for a Message Passing Machine

Finally. before we go on to discuss the results. we need to specify how we mapped LocusRoute to
a message passing architecture. Because the message passing machine has distributed memory.
implementing LocusRoute required changes in the distribution and updating of information
between processors. To reduce message traffic on the network. a static method of assigning
wires to processors was used. rather than allowing processors to send requests out when they
need a wire. These changes are described below.

3.1 Distribution of Data Structures

The most important data structure in the program. as previously stated. is the Cost Array. In
the shared memory version. all processors have access to a single copy of the cost array. The
message passing architecture forces the programmer to decide how the cost array should be
handled in a machine with distributed memory. We chose to divide the cost array into sections.
with each processor being the owner of one section. Each processor is. however. allowed to
have a view of the whole cost array. The portion that is owned by that processor will be as
consistent as possible. while the other portions of the cost array are less consistent. but still
usable. ,onsider. for example. a four processor case. Figure 2 shows each processor's cost array.
with the portion that it owns highlighted. Although. the unowned portions of each processor's
cost array may not be accurate. the processor is still allowed to make use of them. Thus. if there
are 4 processors. the bottom left processing element will own the bottom left fourth of the cost
array. but it will also have a copy of the rest of the cost array which it can use. In all future
discussion. the processor which owns a certain region of the cost array will be called the owner
processor for that region. and the region itself will be called the owned region.

3.2 Maintaining Cost Array Consistency

No circuit is perfectly local, that is. wires assigned to one processing element will extend into
regions owned by other processing elements. Consequently. using the scheme discussed above
cost array updates between processors are needed. Many different methods of performing these
updates are possible: one can experiment with the frequency of updates. as well as how the
updates are initiated. The update frequency was allowed to vary. with updates occurring at
time intervals on the order of the time it takes to route one wire. The decision of which update

strategy to use depends heavily on the underlying computer architecture. We have considered
two main types of updates. and variations on these. The two types of updates considered are
sender initiated updates. and receiver initiated updates, as well as a mixture of these two.

With sender initiated updates. the processor which determines that an update is necessary
is the one to send out the data. With receiver initiated updates. the processor which determines
that an update is necessary sends a request packet to another processor, and the destination
processor then sends back the requested update data. The architectural dependencies in these
schemes should be clear. For receiver initiated updates to be useful. the latency of the network
as well as the message reception time. must be low, so that the requesting processor spends a
minimal amount of time idle. waiting for the requested data. On the other hand. our results
shown in Section 4 indicate that sender initiated updates tend to send out more bytes than
receiver initiated, and therefore place a greater premium on high network bandwidth.

3.3 Wire Assignment

One advantage of the shared memory architecture is that the wires to be routed can be eas-
ily allocated to processors dynamically. using a distributed loop. 3 In the message passing
architecture. dynamic wire allocation requires message transactions on the network. In our im-
plementation. processors only retrieve messages queued for them at the end of each wire routed.
Assuming that the processor receiving the task requests is also routing wires. the potential wait
for a wire task is large. because in this case. a processor may have to wait for an entire wire to
be routed before the wire assignment processor even receives the message. With this in mind.
a static method of wire assignment was used. Because of the division of cost array into owned
regions. the algorithm benefits from a method of wire assignment that attempts to assign wires
to the processor that owns the region they run through. We use a very simple heuristic devel-
oped to achieve this goal. WVe assign wires to the owner processor of the lower leftmost pin of
the wire.

To control the amount of locality exploited, a parameter ThrfsholdCost is provided. If a
wire's -cost-. a function of its length. is less than the threshold. it will be assigned using the
heuristic described above. Otherwise. it is held in a pool of unassigned wires. and is assigned
to a processor at the end of the wire assignment phase. The processor it is assigned to is the
processor whose total wire cost is the current minimum. With this method. a high value of
ThresholdCost results in a wire assignment that is based primarily on locality, while a low value
of ThresholdCost results in a wire assignment that is based mostly on load balancing.

4 Traffic in Shared Memory and Message Passing Architec-
tures

In this section. we present results on the traffic generated by shared memory and message passing
architectures. We think this is a useful measure because in both architectures overly high network
traffic results in a performance penalty. For example. since the message passing architecture
forces the cost array to be distributed across the processors. periodic update messages are needed
to keep the Processors' views of the cost array consistent. There is computational overhead
associated with sending and receiving these messages, so one would like to update as infrequently

3 Associated with a distributed loop is a locked index variable. To get the next wire to be routed. a processor
obtains the lock. reads and increments the index of the next wire to be routed. and release., the lock.

R

as possible. Similarly. in the shared memory architecture. hardware cache consistency protocols
cause extra global bus traffic due to cache line invalidations and any subsequent refetches that
may be needed. These operations cause the processor to stall, and also represent a performance
overhead. Although the degree to which network traffic translates to performance overhead
will be different for the two architectures. we contend that a comparison of the network traffic
between the two architectures is itself useful.

This section will show that traffic for the shared memory architecture is a strong function
of the cache line size. while traffic in the message passing architecture is explicitly controlled by
the programmer. This explicit control allows the traffic to be reduced by more than two orders
of magnitude compared to the shared memory traffic, and the program still gives comparable
solution quality.

4.1 Traffic in the Shared Memory Architecture

Here we consider traffic'in the shared memory approach. Traffic in the shared memory approach
is made up of 3 parts. First, the processor's very first access to a location always results in a
miss. and brings the line into the cache. Second. the first write to a clean location causes a
word write on the shared bus. The other processors see this write and invalidate that cache line
if it is in their cache. Third. once a line has been invalidated by a cache. it may need the line
again. This leads to refetches of data from memory. Traffic in the shared memory architecture
is. clearly, a function of the cache coherence protocol used. and the line size of the cache. For
all the results given here. the coherence protocol used was a Write Back with Invalidate scheme
[2]. The line size of the cache was allowed to vary.

Increases in the cache line size can have the effect of either increasing or decreasing traffic.
There are two factors which will increase traffic with increasing line size. First. with an increased
line size. data items that will never be used are more likely to be brought into the cache. This
will increase the traffic on the bus. Second. increasing the line size means there will be more
data in the cache (under the infinite cache assumption) and this means that processors are more
likely to interfere with each other. With more data in the caches. processors are more likely to
force invalidations in other caches. These invalidations, as well as the subsequent refetches. also
cause the traffic to increase. On the other hand. it is possible for a longer cache line to cause
a traffic decrease as well. If there are several shared data items stored relatively close to each
other. then a single invalidation of a long cache line could cause them to all be invalidated in one
operation. This can save bytes over the case of several individual invalidations, and cause the
traffic to decrease. Because this last situation happens infrequently, its effect is minor compared
to the first two. Thus. we expect that increasing the cache line size will lead to an increase in
the number of bytes transferred.

Table 1 shows the shared memory bus traffic as a function of the cache line size. As predicted.
the data clearly shows that the traffic increases significantly as the line size increases. For
example. in the MDC circuit. a cache line size of 4 bytes causes the total traffic to be 932.976
bytes while a larger cache line size of 32 bytes causes the traffic to increase sharply to 5,840.280.
more than five times as much.

Solution quality and execution time are not available for the wire assignments shown in
Table 1 because the actual shared memory implementation uses a dynamic wire assignment.
The simulator does not actually route wires, so it cannot output solution quality or execution
time values. However, for comparison with the message passing figures presented later in the
paper. the shared memory version of LocusRoute running on an Encore Multimax with 16

9

Table 1: Traffic as a function of cache line size in shared memory version.

Circuit Cache Line Size Bytes Transferred
bnrE 4 769.788

8 1.306.1.52
16 2.429.764
32 4.712.540

MDC 4 932.976
8 1.596.940

16 3.043.941

32 5.840.280

processors can route the bnrE circuit in a time of 5.59 seconds with a height of 136. For MDC.
the solution quality is 144 in a time of 5.78 seconds.

4.2 Traffic in the Message Passing Architecture

.Now that we have presented data from the shared memory architecture. we move on to the
data from the message passing architecture. comparing the two as we go. Traffic in the message
passing approach is determined by the programmer, subject to the constraint of acceptable
solution quality. The programmer controls the size of messages. as well as their frequency. The
results given in Table 2 show the traffic required by the message passing approach with varying
update strategies. All the results given are for 16 processors. Because of the explicit tradeoffs
in the message passing approach between network traffic. solution quality, and execution time.
one cannot discuss the amount of network traffic required without also discussing the update
strategies used and the resulting solution quality and execution time. Table 2 shows data for
three different update strategies (discussed in Section 3.2). Recall that. in a sender initiated
strategy. it is the sender of the update that determines when the update should be sent. In the
receiver initiated strategy. the processor wishing to receive an update sends a request to another
processor. who then returns the data. The third strategy is a mixture of the other two. In this
third mixed approach. sender initiated updates occur with the same frequency as in the purely
sender initiated strateg", and receiver initiated updates occur with the same frequency as in the
purely receiver initiated approach.

4.2.1 Network Traffic

There are two points to be made about the message passing network traffic. First. there is a
large difference between bytes transferred for sender initiated and receiver initiated. Intuitively.
one would expect the receiver initiated approach to be more efficient in terms of network traffic.
because data is only sent when it is specifically requested. In contrast. in the sender initiated
approach. data is sent periodically, regardless of whether the destination processor is routing
wires in that area and needs that data or not. Consequently, one would expect a larger number
of bytes to be necessary to get the same quality as receiver initiated. The data. shown in Table
2 bears out this intuition. Receiver initiated transfers use anywhere from 44% to 71% fewer
bytes than sender initiated to produce similar quality results. Because sending and receiving

10

-; m * wdq.i .

Table 2: Traffic in the message passing version.

Update Circuit Execution Bytes

I Circuit method Height Time Transferred]
bnrE Sender Initiated 145 1.603 M156468
barE Receiver Initiated 1.50 1.210 87572
bnrE Mixed 1 46 1.519 24.5270IDC Sender Initiated 1.50 2.171 236304
MIDC Receiver Initiated 1.56 1.635 85646
MDC Mixed 1.3 2.208 324914

messages has a computational overhead, the savings in network traffic translate to time savings
as well. For all the trials given in Table 2. the receiver initiated method is about 20' faster
than the corresponding run using the sender initiated method.

The second point to note about the network traffic on the message passing architecture is
that. even with the less efficient sender initiated method. the message passing network traffic is
more than an order of magnitude less than that for shared memory. The huge difference may.
at first glance. be surprising. but it can be explained by two factors. First. the updates being
performed in the message passing version occur. at most. once per wire. In the data shown in
Table 2. they occur approximately every two wires. Second. these updates can be thought of as
constituting a very loose form of coherence protocol. There are several differences between this
protocol and the strict one implemented on the shared memory system. Because updates occur
no more frequently than once per wire. the write performed at the wire rip up stage is handled
at the same time as the write performed at the wire routing stage. Because much of the wire*s
path will remain the same after rerouting. these two writes will often cancel each other. and
many of the locations will not need to be updated at all. " This removes many of the write
operations. a significant accomplishment since writes are the cause for over .Q0X of the bytes
transferred in the shared memory version.

4.2.2 Solution Quality

A discussion of network traffic in the message passing approach is incomplete without also
discussing the solution quality and execution time required. The first point we note is that the
solution quality. that is the height of the circuit. has degraded slightly from the quality given
by the shared memory version. but is still acceptable. Recall that the solution quality for the
shared memory approach was 136 for bnrE and 144 for MDC.

Some quality degradation can be expected in the message passing approach. because less
information is available to each processor as it is routing. For example. the cache coherence
hardware on the shared memory machine guarantees a perfectly consistent view for all processors
at all times. The only inconsistency in the shared memory approach comes from not locking the
cost array. and as previously explained, this has no noticeable effect on the quality. By contrast.
in the message passing approach. updates occur only after the processors have each routed

'in the message pasing implementation, a delta array is maintained which records changes made to the cost
array. If no changes are made to a location. or the changes cancel each other. updates for that location need not
be sent.

11

one or more wires. This leads to a much larger level of inconsistency in the processors* cost
arrays. In the worst case. the solution quality in the message passing approach has degraded
by l01A from the shared memory solution quality. LocusRoute is intended to be used with
a standard cell placement program, so that once the placement program has decided on a
placement, LocusRoute performs the routing for that placement. LocusRoute returns the circuit
height as a measure of that particular placement quality. Thus. in this situation, slight declines
in the quality of the routing can be tolerated. However, if LocusRoute is used to produce
the final routing for a circuit that is to be mass produced, this increased area could become
quite significant. For these cases. this characteristic of the message passing implementation of
LocusRoute could make it undesirable.

Section 5 will discuss how the quality of the solution can be improved somewhat by exploiting
locality in the wires. However. another obvious war to improve the solution quality is by
increasing the frequency of updates. The best combination of execution time and solution
quality obtained for bnrE was a solution quality of 136 with an execution time of 1.7 seconds
and 843.542 bytes transferred. Note that the quality of this run equals the quality givei by the
shared memory version. The bytes transferred. while much larger than any of those in Table 2 is
still about a factor of two less than those measured for the shared memory version. Results such
as this indicate the robustness of the LocusRoute algorithm to inconsistencies in the cost array.
For LocusRoute. and cther applications like it. hardware cache consistency seems to impose a
large cost on the execution of the program, without giving compensating benefits.

4.2.3 Execution Time

Now. we turn to the execution time. Execution time for the message passing version of Lo-
cusRoute depends heavily on the wire assignment strategy for two reasons. If the wires are
not assigned in a way that will balance the load on the processors. execution time will suffer
greatly. This is discussed in Section 5.3.2. On the other hand. if the wire assignment does
not exploit locality well. more update packets will need to be sent to get the same quality, and
the extra processing time spent sending and receiving messages will show up in the final exe-
cution time of the run. In general. the execution tiraes given in Table 2 are much faster than
those for the shared memory runs. However. recall that CBS is simulating processors which are
five times faster than the processors used when timing the shared memory version. A rough
comparison can be obtained by multiplying the execution times of the message passing version
by five. The fastest execution time obtained overall is 0.97 seconds for the receiver initiated
scheme. Multiplying by five. the execution time becomes 4.85 seconds which is still 137 faster
than the execution time from the shared memory case. The quality obtained in the message
passing run being considered was only 7% worse than the shared memory quality. Note that
simple multiplication by a factor of five when comparing the execution times favors the shared
memory architecture. This is because if the processors in the shared memory machine really
were five times faster, there would be more contention on the bus. and the overall performance
would not improve by a factor of five.

5 Effect of Locality

The previous section compared the network traffic required by LocusRoute in the shared memory
and message passing architectures. Here we examine the effectiveness of exploiting locality to
reduce this traffic in both architectures. Locality. here. is a measure of how often a processor is

12

routing wires within its owned region or regions close by. (A quantitative measure is described
in Section 5.3.1.) Both architectures benefit differently from exploiting locality. Message passing
architectures benefit from locality because the need for message traffic to produce a certain level
of solution quality is reduced. This is because improving the locality of the wires routed by each
processor means that each processor will have a better view of the part of the cost array it is
routing in. and fewer updates will be needed. Shared memory architectures benefit from locality
through better cache behavior. Specifically. shared memory architectures benefit because of two
factors-better spatial locality. and less interference between processors causing cache coherence
traffic.

In the past, locality has not played a major part in the design of shared memory parallel
programs. In a traditional global bus shared memory computer, all memory is equally acces-
sible to all processors. However. as hierarchical approaches are used to scale shared memory
multicomputers. this is no longer true. The current trend towards hierarchical shared memory
machines. in which a local reference can be more than an order of magnitude faster than a non-
local reference implies that locality must become an important part of future program 'design.
In this section we present data that indicates that implementations taking advantage of locality
can reduce the total network traffic by as much as 67%.

5.1 Effect of Locality in the Shared Memory Architecture

In this subsection. we study the effects of locality on the interconnection network traffic generated
by a shared-memory architecture. Table 3 shows the amount of network traffic generated as a
function of differing amounts of locality exploited in the application. The extreme non-local
case is taken to be the round robin wire assignment to processors. and the extreme local case
(ThresholdCost = infinity) is taken to be the one where each wire is assigned to the processor
whose owned region contains its lower left pin. We also consider two cases with intermediate
locality.

Table 3: Effect of locality in shared memory version.

Allocation f Total Wires Held for Bytes Reduction from
Circuit strategy Wires round robin asmt. Transferred round robin ()

bnrE round robin 420 420 1.306.152
ThresholdCost = 30 209 1.299.580 0..3

ThresholdCost - 1000 25 1.275.492 2.3

ThresholdCost = inf 0 1.219.576 6.6

MDC round robin 573 '573 1.596.940
ThresholdCost = 30 263 1.608.520 -0.7

ThresholdCost = 1000 38 1.593.104 0.2
ThresholdCost = inf 0 1..516.468 5.0

For bnrE with 8 byte cache lines, total global bus traffic can be reduced 6.6% by taking
advantage of locality in the assignment of wires. It is clear that locality is not producing the
significant benefit we had expected. The reason for this is that cache lines contain too many
cost array entries. Since each cost array entry is one byte. a cache line holds eight cost array

13

entries. This means that for each byte acce&ed. seven of its neighbors are brought in U well.
The increase in traffic brought about by interference between the caches maintaining coherence
is almost as big as the decrease in traffic due to locality. To check this theory. we increase the
size of the cost array entries to 4 byte integers, so an 8 byte cache line will hold only two of
them. In this case. the total traffic for a round robin wire assignment is higher- up to 1.799.984
bytes. but the percent gain from exploiting locality is higher as well. For 4 byte array entries
with an 8 byte cache line. changing to the infinite ThresholdCost wire assignment reduces the
traffic b. 15.6%. The reason for this bigger reduction is the following. With a cache line that
holds more array entries, the probability of interference between processors causing invalidations
is higher. Intuitively with these 1 byte cache entries, it is harder for a processor to be active
in only a small section of the cost array. because every time an array entry is accessed, eight
entries are fetched into the cache. If each processor has many "extra" entries in its cache. the
cache coherence traffic will reduce the benefit possible from exploiting locality. Obviously. we
are not concluding that all variables be made as large as possible. so that they interfere less
with each other. Rather. the conclusion is that care must be used when allocating memory for
write-shared data items. The notion. stemming from uniprocessor caches. that dense data will
display better locality, and therefore better caching behavior, is no longer true when speaking of
multiprocessor cache coherent systems. In multiprocessor cache coherent systems. the benefits
of data density must be traded off with the penalty of increased coherency traffic.

5.2 Effect of Locality in the Message Passing Approach

Having examined the traffic in She shared memory case. we move to the message passing case.
where the effect of locality is much more significant. Data in Table 4 shows the effect of various
wire assignment strategies on the quality of the routed circuit. the execution time. and the
number of bytes transferred.

One can see that in general. wire assignments which do not take advantage of locality, such
as round robin, result in poorer solution quality than those that do. such as assignments made
with infinite ThresholdCost. The average quality improvement due to locality over the cases
shown in Table 4 is about 4%. While small. this improvement is quite significant. because the
results given are all quite close to optimal anyway, so even a small percentage improvement is
difficult to achieve. This data indicates that it is best to have a single processor route the wires
in one area. because that processor will have more accurate information about the cost array in
that area.

Having seen that exploiting locality improves the solution quality, the next question is. what
is the effect of locality on the number of bytes transferred? This depends heavily on the type of
update strategy used. In the sender initiated scheme, updates are sent out for any owned region
in the sender's array that has changed. so the only reduction in traffic will be due to changes
being made in fewer and smaller regions of the cost array. The change in bytes transferred
for sender initiated updates from a round robin assignment to a local assignment with infinite
ThresholdCost is 11.4%. The receiver initiated scheme will be more sensitive to locality, because
in this strategy, low locality results in frequent interprocessor data requests. A processor only
requests an update if it has routed in a certain owned region a specific number of times. If.
by exploiting locality, we reduce the frequency with which update requests need to be made.
we can dramatically reduce the message traffic. The data bears out this prediction. with a
traffic reduction of more than a factor of two in both circuits, when going from a round robin
assignment policy to a local one. Because the mixed strategy is made up partly of receiver
initiated requests. which are highly sensitive to locality and partly of sender initiated requests.

14

Table 4: Effect of locality in the message passing version.

Update Wire Circuit Exec. Bytes Reduc. from
Circuit method Assignment Height Time Transferred rnd-rbn (9)

bnrE Sender Initiated round robin 14.5 1.603 1.56468 -
Thr.Cost = 30 1.38 1.467 149-562 4.4
Thr.Cost = 1000 139 1.647 141206 9.8
Thr.Cost = inf 135 -.5.073 138636 11.4

bnrE Receiver Initiated round robin 150 1.210 87572
Thr.Cost = 30 145 0.970 76334 12.8
Thr.Cost = 1000 139 1.217 51582 41.1
Thr.Cost = inf 140 4.043 39858 54.5

bnrE Mixed round robin 146 1.519 24.5270
Thr.Cost = 30 141 1.411 218.568 10.9
Thr.Cost = 1000 142 1.601 179372 26.9
ThrCost = inf 140 4.864 169992 30.7

MDC Sender Initiated round robin 1.50 2.171 236304-
Thr.Cost = 30 149 1.789 231310 2.1
Thr.Cost = 1000 147 1.909 225912 4.4
Thr.Cost = inf 148 5.323 223004 5.6

MDC Receiver Initiated round robin 1.56 1.63.5 8.5646 -

Thr.Cost = 30 1.55 1.203 70236 18.0
Thr.Cost = 1000 153 1.192 50308 41.3
Thr.Cost = inf 152 4.479 28132 67.2

MDC Mixed round robin 153 2.208 324914 -
Thr.Cost = 30 158 1.707 291428 10.3
Thr.Cost = 1000 150 1.850 249578 23.2
Thr.Cost = inf 150 .5.429 23604 27.1

which are not very sensitive to locality, the reduction in network traffic is between the two other
cases. The benefit gained by exploiting locality in the mixed sender/receiver case is larger than
in sender initiated, and smaller than in receiver initiated.

Of course, locality also has an effect on the execution time of the application. As one improves
the locality of the application, fewer update messages are needed. and the time the processors
spend sending and receiving messages is reduced. This has a direct effect on the execution time.
Unfortunately, there is another opposing effect as well. If all wires are assigned to processors
strictly on the basis of locality, it is likely that the resulting wire assignment will not be load
balanced. This effect will be discussed in Section 5.3.2.

5.3 Limitations on Exploiting Locality

The previous subsections have shown that exploiting locality to reduce execution time and
increase quality clearly has some benefit. Unfortunately. there are several factors which limit
the amount to be gained by taking advantage of locality in a problem. First. the standard cell

15

circuits themselves have only a limited amount of locality. If the sires to be routed are long
enough to pass through the owned regions of several processors, there is an unavoidable amount
of interprocessor communication that will take place to perform the necessary updates. Further.
as the number of processors increases, the region size will decrease. and the locality will decrease
as well. Second. fully exploiting the locality that does exist can often interfere with the load
balancing of the processors. If there are many wires within a single processor's region, then
considering locality alone, that processor should route them all. However, this may cause that
processor to have a disproportionate amount of work. resulting in a load imbalance and poor
performance. These two issues are treated in the sections below.

5.3.1 Limited Circuit Locality

To determine an upper bound on the degree to which LocusRoute can take advantage of locality.
we developed a measure of the amount of locality in the standard cell circuits being used. Using
this measure. we found that the degree to which locality can be exploited is, in part. linited by
the circuits themselves. This section will first describe the method of measuring circuit locality.
and then analyse the results for the two benchmark circuits.

The measure is computed in the following steps. First. wires are assigned to processors
using one of the methods already described. Next. for each processor. the program computes
the number of wire segments to be routed in each region of the cost array. and the distance in
hops from the region where the segment lies to the processor performing the routing. Locality is
considered ta be the average distance between the routing processor and the processor that owns
a region. weighted by the number of wire segments routed at this distance. Thus. a low number
means good locality. For example. a locality measure of 0 indicates that all segments were
routed by the region owner. giving perfect locality. Increases in the locality measure indicate
that the average segment is being routed at a distance further from the owner. Note that when
a wire assignment with infinite ThresholdCost is used for this calculation. one end of the wire is
guaranteed to be in the owned region of the processor doing the routing. In this case. the degree
of locality is mainly a measure of the length of the wire. compared to the size of the individual
cost array regions because it measures how many hops the other end of the wire is from the
lower left end. which is certainly in the region of the routing processor.

Computing the locality for the two test circuits. using several wire allocation strategies.
gave the results shown in Table 5. These results are computed assuming 16 processors. The
results indicate that the amount of locality to be exploited in these circuits is limited. For the
bnrE circuit. using a round robin assignment. the average segment gets routed by a processor
1.96 hops away from the processor that owns the region the segment lies in. When the wire
assignment method is changed to one with ThresholdCost equal to infinity, the average segment
is routed by a processor only 1.24 hops away. As the number of processors is increased, the
locality in the circuit will decrease because the size of each owned region, formed by splitting
the cost array into equal chunks. will decrease. This limited locality in the circuits indicates that
the message passing approach may require substantially more message trafc with very large
numbers of processors than it currently does. and that the solution quality will be degraded as
well.

5.3.2 Tradeoff between Locality and Load Balancing

The requirement that a parallel program be load balanced is also a limitation on the benefit
possible from methods which exploit locality. To some extent. a circuit with good locality will

16

Table .5: Circuit locality.

Allocation Total Wires Held for Measure of

Circuit strategy Wires Round.robin asmt. Locality
bnrE round robin 420 420 1.96

ThresholdCost = 30 209 1.77
ThresholdCost = 1000 25 1.30
ThreshoidCost --inf 01.24

MDC round robin 573 .573 2.0.51
ThresholdCost = 30 263 1.58

ThresholdCost = 1000 38 1.04
ThresholdCost = inf 0 0.991

require fewer updates. and therefore, less time to execute. However, the effect of a load imbalance
can outweigh the subtle effect of the difference in update time. Therefore. in terms of execution
time. the optimal point is neither a fully load balanced circuit, where the update time becomes
significant. nor a fully local circuit, where the load imbalances become significant. but rather a
point between the two.

The data from Table 4 shows this quite clearly, with the optimal execution time in almost
every case being the ThresholdCost = 30 wire assignment. The most obvious example of the
negative effect of locality on load balancing is exhibited in the move from the point with infinite
ThresholdCost to the point with ThresholdCost equal to 1000. For example in the MDC circuit.
this change in the way the last 38 wires are assigned gives as much as a 73% execution time
reduction. However. wire assignments which use the most locality generally give the best solution
quality. When processors route in localized regions. each has a fairly consistent view of the area
it is routing in. Ultimately. this is a more effective way to produce good solution quality than
nonlocalized routing with periodic updates.

6 Conclusions

The goals of this research were to re-evaluate the tradeoffs between shared memory and message
passing architectures in light of the new features becoming prevalent in the two architectures.
Specifically. we studied the level of traffic required by each approach to maintain consistency.
and the effect of exploiting locality on this traffic. Although this study provides data from a
single application, we feel that it is representative of a class of applications which do not require
the strict consistency enforced by hardware cache coherence schemes.

We show that implementing the LocusRoute application on a message passing machine can
result in a dramatic decrease in the amount of interconnection network traffic. with only a
small negztive effect on the solution quality. This is especially impressive because LocusRoute
has been touted as an excellent application for a shared memory architecture. However, this
dramatic improvement did have a cost. The explicit control afforded. and in fact required. by
the message passing architecture requires significantly larger programming effort. The decisions
of how to partition the cost array among the processors. how to initiate updates. how frequently
updates should occur. and how to assign wires to processors. all involve complex tradeoffs and

17

much programming.

We further show that exploiting locality in the message passing case can have a positive
effect on all three of the factors studied in this paper: solution quality, network traffic. and to a
lesser extent. execution time. What, then. is the cost of exploiting it? The answer. once again, is
that exploiting locality currently requires more programmer effort than using a simpler method
which does not exploit it.

In this paper. we also studied the shared memory approach. examining the traffic necessary
to maintain cache consistency. We found that the bus traffic in a shared memory architecture
can be as much as two- orders of magnitude larger than the network traffic in a shared memory
approach. In an absolute sense. however, the amount of traffic is not excessive. Far this reason,
in applications where the improved solution quality given by the shared memory implementation
is important. it appears to be the correct choice. Perhaps the most compelling benefit, however,
of the shared memory architecture is the easy and natural programming environment it provides.
The hardware cache coherence enforced enables programs to be developed and debugged more
quickly and easily.

We also presented data indicating that traditional bus-based shared memory machines are
not extremely sensitive to exploiting locality. In the LocusRoute application, this is in part due
to the difficulty of singling out the array elements needed by each processor. In general. even
in the most local wire assignment method. interference between processors is still a problem.
Sharing of cost array information leads to a large number of invalidations and refetches. However.
future machines relying on hierarchies to scale the total number of processors. are expected to
be more sensitive to locality. As these architectures become available, more research will be
needed to automatically detect and exploit locality in parallel programs.

7 Acknowledgements

We would like to thank Jonathan Rose for his patience in explaining the LocusRoute appli-
cation to us. and Andreas Nowatzyk for his prompt. helpful replies to questions about CBS.

Margaret 'Martonosi is supported by a fellowship from the National Science Foundation. Anoop
Gupta is supported by DARPA contract N00014-87-K-0824 and by a faculty award from Digital
Equipment Corporation.

18

References

[1] Anant Agarwal. Richard Simoni. John Hennessy. and Mark Horowitz.
Scalable Directory Schemes for Cache Coherence.
In Proc. 15th Annual International Symposium on Computer Architecture. June 1988.

[2] James Archibald and Jean-Loup Baer.
Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation Model.
ACM Trnsactions on Computer Systems 4(4):273-298, November 1986.

[3] William C. Athas and Charles L. Seitz.
Multicomputers: Message-Passing Concurrent Computers.
IEEE Computer, 21(8):9-24, August 1988.

[4] David Cheriton. Anoop Gupta. Patrick Boyle, and Hendrik Goosen.
The VMP Multiprocessor: Initial Experience, Refinements. and Performance Evaluation.
In Proc. Fifteenth Annual Symposium on Computer Architecture. 1988.

[5] Encore Computer Corp.*
Alultimax Technical Summary.
1986.

[6] W. J. Dally and C. L. Seitz.
Deadlock-Free Message Routing in Multiprocessor Interconnection Networks.
IEEE Trans. Computers. 36(5):547-553. May 1987.

[7] William J. Dally.
A 'LSI Architecture for Concurrent Data Structures.
Kluwer Publishers. 1987.

[8] William J. Dally.
Wire Efficient VLSI Multiprocessor Communication Networks.
In Stanford Conference on Advanced Research in VLSI. pages 391-415. 1987.

[9] William J. Dally. Linda Chao. et al.
Architecture of a Message-Driven Processor.
In Proc. 14th Annual International Symposium on Computer .4rchitecture. June 1987.

[10] Ametek Computer Research Division.
Serics 2010 System General Description Issue 3.
1955.

[11] J.P. Hayes et al.
A Microprocessor-based Hypercube Supercomputer.
IEEE Micro. 6(5):6-17. October 1986.

[12] BBN Laboratories Inc.
Butterfly Parallel Processor Ot' rriew.
1986.
BBN Report No. 6148.

[13] Andrew W. Wilson Jr.
Hierarchical Cache/Bus Architecture for Shared Memory Multiprocessors.
In Proc. 14th Annual International Symposium on Computer Architectum, pages 244-251.

June 1987.

[14] C. R. Lang Jr.
The Extension of Object-Oriented Languages to a Homogeneous. Concurrent Architecture.

19

