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Cyclic1 redundancy check codes (or CRC codes) have become the standard means for insuring the
integrity- of messages that have been transmitted over a noisy co~mmunications channel. Thec
sole purpose of these codes is to detect transmission errors (in contrast to error correction
codes (or ECC codes) which attempt to correct transmissions in errors). Sometimes both CRC
and ECC codes are utillized and in that case the burden is on the CRC c.,de to detect errors
that were not correctly decaded by the ECC code.

Unfortunately, even the very best CRC codes cannot detect all trauismission errors. The
probability of CRC failure is called the probability of undetected error. The thrust: of this
study was concernedI with finding an efficient method o'f calculating this probability of
undetected error and then to use this method to find goud (or even the best) CRC codes.
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L9. A new algorithm was implemented to find good choices for the ge,,erator polynomial
of CRC codes, that is, generator poiynomials for which the probability of
undetected error was Less than a given bound for all shortened block lengths anid
fur all vilues of the binary symmetric channel error rate.

Results are given for generator polynomials corresponding to 8, 16, 24 and 32
parity bits. All possible generator polynomial corresponding to %8 and l6 parity
bits and some of the generator polynomials corresponding to 24 and 32 parity bits
were tested.
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i. INTRODUCTION

Cyclic redundancy check codes (or CRC codes) have become the standard means for insuring
the integrity of messages that have been transmitted over a noisy communications channel.
The sole purpose of these codes is to ki.gi transmission errors (in contrast to error
correction codes (or ECC codes) which attempt to correct transmissions in errors).
Sometimes both CRC and ECC codes are utilized and in that case the burden is on the CRC
code to detect errors that were not correctly decoded by the ECC code.

Unfortunately even the very best CRC codes cannot detect all transmission errors. In
particular, all that we as communication engineers can insist upon is that the ptrobabiljitX that
a CRC code fails in its attempt to detect transmission errors is less than some prescribed
value. The probability of CRC failure is called the probability of undetected error and is
denoted by the symbol Pud" The thrust of this study was concerned with finding an efficient
method of calculating this probability of undetected error and then to use this method to find
good (or even the best) CRC codes.

It should be emphasized that the value of the probability of undetected error depends upon
the statistical model one assume for the errors. Here we have assumed a random error
model where the probability of error on every binary digit is e (o < e < 1/2) and the errors on
different binary digits are statistically independent of one another. This model, called a binary
symmetric channel (or BSC) was assumed since

(a) it is a model that describes some commonly used modulation/channel/detection
schemes, such as BPSK or QPSK modulation in an additive white Gaussian
noise channel with an optimum receiver,

(b) correlated errors can always be converted to independent errors by interleaving
at a sufficient depth, and

(c) channel models for correlated errors describe some specific type of correlation
and are not general enough to describe the general class of non-random errors.

It should be realized that there are many situations where CRC codes are expected to detect
errors which are no= random in nature. One such example is when a CRC code is used to
detect errors that were miscorrected by an ECC code. (The ECC decoder will produce burst
errors). As stated above, one manner for treating this problem is to interleave to a sufficient
depth so that the errors within a CRC block are statistically independent. If interleaving is
not used, however, the results of this study cannot be directly applied.

Although any code can be utilized as an error detection code, a particular class of cyclic (or
shortened cyclic) codes called CRC codes, have become the de facto (or true) standards.
These codes are binary codes with generator polynomials of the form g(x) = (x+l) p(x)
where p(x) is a primitive irreducible polynomial of degree (r - 1). Thus g(x) has degree r
where r is the number of parity bits per block.

Three of these codes have become international standards [II.
These codes are

CRC-12 p(x) = X11 + x2 + I

CRC-16 p(x) = x15 + x + I

CRC-CCITT p(x) = x15 + x14+ X13 + x 12 + X4 + x3 + x2 + x +

I "_ " "-
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The natural block length of a CRC code with r parity bits and generator polynomial

g(x) = (x+W) p(x)

is 2r-I - 1. Thus the CRC- 12 code has natural block length 2047 and the CRC-16 and CRC-
CCITi" codes have natural block length 32,767.

Often the natural block length is longer than the desired block length of the code. This is not
a problem since any code can be "shortened" to any block length smaller than tlhe natural
block length. If one desires to shorten a code by "x" digits one artificially sets (the first) "x"
information digits to zero and then omits these "x" digits in transmission or storage. These
"x" digits can then be inserted without error at the receiver. Certainly the error correction
capability of the shortened code is as least as good as that of the original unshortened code.
In particularly, shortening a code in the manner described above cannot decrease the
tninimuin distance of the code and even can increase this minimum distance. Surprisingly. the
same statement cannot be made with regard to the probability of undetected error for the
code. In particular, it has been found that for a fixed channel bit error probability, the
probability of undetected error for a shortened CRC code can be worse than (that is, greater
than) the probability of undetected error for the unshortened code.

This surprising resul; is the motivation for this study. Let Pud(n.p) be the probability of
undetected error for a CRC code with (shortened or unshortened) block length n and channel
(random) bit error probability p. It is easy to show that the probability of undetected error for
an unshortened CRC code (with generator polynomial g(x) - (x+l) p(x), degree rg(x) =,
and natural block length n - 2- I - 1) is given as

Pud (2r-l- 1,p)= 2-f t Bi(I!- 2p)i - (l-p)n.O

i=0
where

I i=0; i = 2r- - I
Bi= 2r- -1 i=2f-2-1; i=2r-2

0 otherwise

and n = 2- 1 - 1.

It is easily verified that

Pad(2f-l- l,p)<2-'

for all values of the channel bit error probability p in the range 0 < p < 1/2. It should be noted
that this result holds for ajll CRC codes at their natural block length irrespective of the choice
of the primitive polynomial p(x). In particular, we find that for some choices of p(x), Pud(n,P)
will be less than 2-f for all shortened block lengths and for all p in the range 0 • p < 1/2 while
for other choices of p(x), Pud(nP) can be inuc. qreater than 2-r for some choices of the
shortened block length and for some values of the chit. ,nel bit error probability p.

One purpose of this study was to find good choices for the generator polynomial of CRC
codes, that is, generator polynomials for which Pud(n,p) was less than 2-r for all shortened
block lengths and for all values of p. in the next section we describe and give a mathematical

-2-
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justification for an algorithm for finding good CRC polynomials. We also describe fast
ver-ions of this algorithm and give the computer code for the "speed-up" versions of this
algorithm. We then give the results of applying this algorithm to generator polynomials
corresponding to 8, 16, 24 and 32 parity bits. All possible gencrator polynomial corresponding
to 8 and 16 parity bits and some of the generator polynomials corresponding to 24 and 32
parity bits were tested. Also results for an incomplete nanning of the algorithm were
compared with results for a full running of the algorithm. Also, a hardware tester for
polynomial of higher degree is described. The report ends with a set of conclusions.

O1
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II. CALCULATING THE PROBABILITY OF UNDETECTED ERROR FOR
SHORTENED CRC CODES

An unshortened cyclic code C of block length mi may be defined in terms of a generator
polynomial g(x), or equivalently in terms of its parity.check polynomial, h(x). The two
polynomials are related by the equation

g(x )h (X) = xn - I (.

For binary cyclic codes, the coefficients of the polynomials are either 0 or I, and coefficient
addition is performed imodulo 2. We can therefore equate coefficient subtraction and addition.
and replace (1) with the equivalent relation

8(x)h(x) f xn + 1. (2)

Let the degree if the generator polynomial, deglg(x)I = r. Let k = n - r.

We can therefore give two equivalent definitions for vectors which are in the code. A vector
of n bits, (co, c1  . c,.,), is a code vector if and only if the code polynomial

n-I

i-o

is the generator polynomial multiplied by a polynomial of degree (k - 1) or less [21. That is,

c(x) = g(x) a(x) where degla(x)I : k - 1. (3)

Equivalently, c(x) is a code polynomial if and only if

c(x) h(x)- 0 modulo(x" + ili (4)
since

c(x) h(x)= ,kx)g(x) h(x)= a(x)(xn + l) O modulo(xn + 1).

Since there are a total of k arbitrary coefficients in a(x), the code takes k arbitrary bits of
information and appends r = n - k bits of redundancy, is referred to as an (n,k) code, and has
2k code words.

The dual code, D, of the cyclic code, C. is defined by swapping the roles of g(x) and h(x).
That is, the dual code, D, has generator polynomial h(x). Since the degree of h(x),

dcd~h(x)] = k, 05)

and the block length remains unchanged, the dual code, D, is an (n,r) code, and has 2r code
words.

For any (n,m) binary linear code C, the probability of undetected block error. Pud. is given in
terms of the random bit error probability. p, by

I ---- - ' - ".4.
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II

.,u. A , pi i- pr -
l ,--I ( pf(6)

where Aj is the number of code words with exactly i ones in tile code C 131. The numbers
(Ai}I are referred to as the weight enumerators of" the code C. Let Di be the number of code
words with exactly i ones in the dual code. D. of the code C.

By use of the MacWilliam's Identities 141, we can express Pu in tenns of the (l3}). That is,

Pud = 2-r B(Io - 2o -(o - pr.

i 1o (7)

Since we desire error detection codes with high code rates. k is generally much larger than r
for practical error detection codes, and it is therefore much easier to determine the weight
distribution of the 2r code words in the dual code.

CRC codes are specialized cyclic codes where the generator polynomial has the fomi

Ax)=(x + l)p(x) (8)

where p(x) is a primitive irreducible polynomial of degree r -- I. Unshortened CRC codes
have block lengths n, where n = 2(r - I). -. The dual of a CRC code must then have a
generator of the forml

VN=-x0 + Igd) (x + lx) " (9)

Let

h(x) = p(x), mid g(x) = n+ I
p(x) (10)

bu the parity check and generator polynomials, respectively, of the dual of another code. C 2.
Since

gx) = (x 4- I) g1(x), ( I)

any code word in the dual of the code C2.defined by 12(x) and g2(x), must be in ltie dual of
the CRC code by (3). We obtain the code words in the dual of the unshortcncd CRC code by
first obtaining all code words in the dual of C2.

One way to generate the code words of a given cyclic code is through the use of a linear
feedback shift register (LFSR), whose feedback is wired according to the coefficients of the
parity-check polynomial for that code (5). See Figure I. An arbitrary code word is produced
by initially loading the LFSR with a set of information digits, and then the n-tuple produced at
its output when shifting the register is a code word. Since the output of the register is
determined recursively front the initial loading of the register, the 2r - I code words in the
dual of C, are produced by considering all possible initial (r - )-tuple loadings of thle shift
register.

_3.
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We make use of the fact that the parity check polynomial for C, is a primitive irreducible
polynomial. Sequences produced by LFSRs whose feedback is determined by a primitive U
irreducible polynomial are known as m-scquences. and their usefulness in n variety of
communications applications is well known. Certain properties of lu-sequenccs have been
established in the literaturel6}171. In particular, we note tlat a shift register, wired according
to a primitive polynomial p(x) of degree r - I and initialized with some non-zero value,
prIluces a sequence with period 2(r -1) I 161171. Let

r-t

p(x).-.) p, x)
j • n (12)

he the primitive irrcdcible polynomial in question, and let the shift register be loaded with
initial contents (s. - 2, st - ... . so). Each time the shift register is clocked, it outputs mi,
the current value of x,) and updates the shirt register contents according to the current value of
x0 by the equations

I X-2 M xo2Pr- I,

ix,=X1. 'D pi1 I i<r-2, (13)

where the ( indicates addition modulo 2. The output of the LFSR. being periodic. then,
satisfies

mi -=m ' '1 - for all i. (14)

If the initial contents of the shift register are all zero, then the shift register will produce the
all zero code word. With any non-zero initial contents, the shift register produces a code
word which is one cycle of the periodic output of the shift register. All cyclic shifts of the non-
zero code word produced must be in the code by (4). Since this code. word is one cycle of a
sequence whose period is equal to the length of the code word, these distinct cyclic shifts
account for 2(1 - I I of the code words. Along with the all zero code word, this accounts for
all 2( - 1)code words corresponding to all 2(r - 1) possible initial loadings of the shift
register. We may then consider the :ode words produced to be those that one would observe
by looking through a windotw, that is, a shift register without feedback, of width equal to the
number of digits in a cotdeword filled with the output of a LFSR. See Figure 2. We note that
the number of ones in this window is the Hartmming weight of a given code word in the dual of
the code C2 . By counting the code words of various weights, we can calculate the probability
of undetected error for the dual of the code C2 using (6) or the code C2 using (7). Let

wi = the number of code words of weight i in the dual of the code C,. (15)

We note that all noil-zero code words in the dual of the unshortened code C2 must have the
same weight, and by appealing to properties of rn-sequences 161, we know that this weight is
equal to

-- I. (16)

We now seek to enumerate the other code words in the dual of the tunshortenedt CRC code.
We consider the all one code word,

I0
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n-I

i=0 (17)

Since
n-I

h(x)d(x)=p(x)(x + 1) x1=p(x)(x-+l)=O modulo(xf+:),
i=O

d(x), the all one code wofd, is in the dual of the CRC code. Since the dual of the CRC code is
linear, the modulo 2 component sum of any two code words must also be a code word. When
summing the all one code word with the code words in the dual of the unshortened code C 2.
we complement the binary digits, creating code words of weight

(2r- 1 - 0)-(2r-2- 1)=2r-2 (18)

which must be distinct from the code words in the dual of the unshortened code C 2. We have
therefore accounted for all 2r code words in the dual of the unshortened CRC code.

If we let

bi = the number of code words of weight i in the dual of the CRC code, (19)

then

bi = %V;w + ..1 , (20)

where n is the block length of the code.

Since all unshortened CRC codes have the same weight structure regardless of the choice of
the primitive irreducible polynomial of degree r - 1, they all perform identically with respect to
their error detection capability. For unshortened CRC codes,

Vud~p)= 2-j1 +(I -2p)2r-l'-+(12-1 -lkl -2p)2r-2"l1+12f-I -1Il -2p r-2 2)- (I -p?2r-1-1

(21)

I
which monotonically increases for 0•< p • • Pud may then be bounded by

P4.½)= 2-r-(2)! "2r-!-< 2-f.22
22' (22)

However, the choice of primitive polynomial can be critical for shortened CRC codes. For
some shortened CRC codes, Pud does not monotonically increase- for 0 5 p 5 1/2 but rather
displays peaks which can be several orders of magnitude larger than Pud(l1/2). See, for
example, Figure 11.

Shortening a code by x bits may be thought of as using x less bits of information by setting x
Sof the information bits all equal to zero and using the same amount of redundancy. The

-7- 
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shortened code can be thought of conceptually as noiselessly transmitting x all zero bits and
the noisy transmitted message, and decoding as before after reinsertion of the deleted all
zero bits. The code then becomes an (n - x, k - x) code.

In the dual of the shortened code CRC, the roles of information and redundancy are
interchanged.
The dual code still has

(n--x) -(k-x)=n-k=r

bits of information, but only k - x bits of redundancy. The shortened dual code may be thought
of conceptually as having truncated redundancy bits. By conceptually aligning the shortened
dual's truncated redundancy with the shortened code's all zero bits, orthogonality of the
shortened code and its shortened dual is preserved.

As before, we can generate the code words in the dual of the shortened code C 2 using a
LFSR as in Figure 1 by loading it with all possible combinations of r - I information bits, only
now outputting n - x total bits. We therefore observe all code words through an appropriately
down-sized window as in Figure 2.

As before, we obtain the weight distribution of the dual of the shortened CRC code from the
dual of the shortened code C 2. The shortened all one code word of (17) is added to all code
words of the dual of the shortened code C2, and equations (19) and (20) still hold for the
shortened block length. However, the weight structure of the dual codes is now irregular, and
depends htavily on the choice of primitive polynomial. We therefore painstakingly produce all
code words in the dual of the shortened code C 2. counting the number of code words of
various weights produced. We may recursively account for all the code words in the dual of
the shortened code C 2 as follows.

1. Initially, we have not seen any code words of any weight, so we set wi = 0 for all
i.

2. We account for the all zero code word by setting wo = 1.

3. We produce a code word by filling a window of length equal to the block length
with the output of a linear feedback shift register LFSRI, counting the number of
ones as they are inserted into the window.

4. 2r- I - I times, we

a. account for the weight i of the current code word seen by incrementing wi, and

b. produce a new code word by shifting the registers of Figure 2, keeping track
of its weight by noting the number of ones entering and exiting the window.

We can easily keep track of the input and output of ones from the window. The output of
LFSR1 enters the window. If we note the initial state of LFSR1 before producing the first
code word, then a second linear feedback shift register, LFSR2, initialized in the same way,
will produce the sequence which is output from the window. See Figure 3. Since the weight
enumeration of the dual of the shortened code C 2 is the time consuming part of the evaluation
of a given CRC code, we have concentrated on optimizing the algorithm which produces the
Wi.

-8-
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r-2

Switch pi is closed if the comn onding coefficient in P(x) =. p pi xi is non-ze.
i-=0

Figure 1. Linear Feedback Shift Register (LFSR) for Operation Modulo P(x).

ILFSR IIWindowI
I I -id block length, n I-]

*~~L All l1.

Tw;re A-.. Code Word Viewer for Dual of Code C 2.

LFSRI I Window LFSR2 I
I

Loýentrance FF exit 1

I

Initialize both LFSRs with the same non-zero contents and shift LFSRI the block length, n,
tunes. From then on, the outputs given by shifting LFSR1 and LFSR2 simultaneously gives
the input and output of the window. . -pectively.

Figure 3. Code Weight Viewor for Dual of Code C2.

-9-
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III. PROGRAM FOR DETERMINING WEIGHT DISTRIBUTION AND
ELIMINATING IMPROPER CRCS

This section describes a computer program that was written to aid in the evaluation of CRCs
generated from various primitive polynomials. Most of the computer code that was written is
in the C programming language. C is a relatively fast language that incorporates many of the
useful bit operators needed in the computation of weight enumerators. Included at the end of
this section is a listing of C code which calculates the weight enumerators, evaluates the
probability of undetected errDr, Pud(P), formula (7) given in the section II, and eliminates
those CRCs which exhibit a value of Pud(P) greater than P4d(0/ 2 ). CRCs which exhibit a
value of Pd(p) for p < 1/2 gr.ater than Pud( 1/2) are called improper. In the next section, we
provide 68000 assembler code for the critical loop which calculates the weight enumerators.

To streamline operation of the program with a minimum of user intervention, we designed this
program to read a file of primitive polynomials, test CRCs based on them at a variety of
consecutive block lengths, and write an output file of polynomials which were proper at the
block lengths considered. The program prompts the user for the mintimum probability of bit
error to be considered, the number of values of the probability of bit error to be considered per
decade, and the range of block lengths to be considered. The program uses log scaling of the
probability of bit error, multiplying the current probability of bit error by a constant to get the
next probability of bit error.

The program allocates memory to hold the wi of the previous section. The polynomials under
consideration are assumed to reside in a file called "polys" in the current directory. The main
loop of the program reads the next polynomial in the file and processes it, and continues in
this fashion until the end of the file is reached.

A polynomial is processed by first assuming that it has not been rejected, and assigning it to
the variable "prim__poly". The degree of the polynomial is determined with the help of another
variable called "poly". The weight enumerators of CRCs based on the polynomial are
produced at each block length starting at the minimum block length and (7) is evaluated at all
values of bit error probability considered, until either the polynomial is rejected or the
maximum block length has been completed.

In producing the weight enumerators, it is convenient to represent the contents of the LFSR
of Figure 1 of the previous section within the variable "shift0", with x0 being the least
significant bit, and the feedback in the variable "poly", with p, being the least significant bit.
We note that the feedback is given by the primitive polynomial shifted one position toward
the least significant bit, with the least significant bit discarded.

The wi enumeration begins by initializing wi = 0 for all 0 < i < n and w0 = 1. To get the
weight of the first code word, produced by the LFSR shiftO initialized with the value poly, we
count the number of ones output by the LFSR in the first n shifts, where n is the block length.
To test whether the output of the LFSR is a one and therefore if there is any feedback, we
test to see if the least significant bit of shiftO is a one. If so, the weight is incremented and
the next contents of the LFSR are obtained by shifting it one position and bit-wise XORing in
the feedback, poly. If the least significant bit of shiftO is not a one, there is no feedback and
no contribution to the weight, and the next contents of the LFSR are obtained by shifting it
one position. We note that the initial value given to shift0 is the contents that it would
contain after having the previous contents equal to 1. After producing the weight of the first
code word, we increment the number wi corresponding to this weight.

-0o-
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To produce the weights of the remainder of the code words, we now shift both LFSRs, shiftO
and shifti, for 2f- I- 2 iterations. Shiftl is initialized with the same value, poly, that shiftO
was originally initialized with, and its output represents bits exiting the window of Figure 3 of
the previous section. The output of shiftO represents the input to the window. Whenever
shiftO outputs a one, we increment the weight of the window, and whenever shiftl outputs a
one, we decrement the weight of the window. After both LFSRs have shifted, we increment
the number wi corresponding to the weight of the current code word in the window. When the
contents of shiftl equal 1, it has completed the desired number of iterations, a total of its
sequence period - 1.

After completing the weight enumeration, we calculate Pud(P) using formula (7) of the
previous section for each value of p from p = 1/2 down to the minimum value and compare
Pud(P) to 1.0001 * Pud(1/2 ). If the CRC is improper, we print an appropriate message to the
output file "stderr", and reject the polynomial. If the CRC is proper at all block lengths and
values of p considered, we write it to the output file "stdout".

When evaluating formula (7), the first term is a polynomial in the variable (1-2p). We
evaluate this polynomial in n multiplications and additions using Homer's rule [8].

0
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I.IA (LISTING) C PROGRAM FOR ELIMINATING IMPROPER POLYNOMIALS

#include <stdio.h>
#include <math.h>
#include <nmaloc.h>

unsigned int *w; /* jack's w

main()(
register int shiftOshiftl; /* begin and end of window */
register unsigned int poly; /* fast polynomial holders */
unsigned int ones; /* counter of ones in window *1
int prim-poly; /* primitive read from file */
int poly-deg; /* degree of primitive, TBD */
int nperdecade; /* num of points to plot per decade */
double pe; /* prob bit error */
double pmin,pmax; /* min and max prob of bit error */
double logscale; I* 10 A 1/nperdecade *1
double pcalc; /* 1.0- 2.0 * pe */
double pud; /* block prob of undetected error
double bsum; /* holds sum of Bi * ((1-2p) AA i) */
int n; /* block length */
int min-block,max-block; /* range of block lengths considered */
int reject;,
imt i;
double blkpudmax;

FILE *polyp,*fopen(;
void * malloco;
double powO;
double logoexpo;

pmax = (double ) 0.5;

fprintf(stdenr,"enter minimum probability of bit error Pe:");
fscanf(stdin,"%lf",&pmin);
fprintf(stderr,"enter points to consider per decade:");
fscanf(stdin,"%d",&nperdecade);
fprintf(stderr,"enter minimum size block:");
fscanf(stdin,"%d",&minrblock);
fprintf(stderr,"enter maximum size block:");
fscanf(stdin,"%d",&max-block);
logscale = pow((double ) 10.0, ((double) 1.0 / (double) nperdecade));
fprintf(stderr,"logscale = %.6e\n",logscale);

fprintf(stdout,"Surviving polynomials for block size = %d to %dcn",min-blockmaxiblock);

if ((w = (int *) malloc((maxblock+l) * sizeof(int ))) = NULL)(
fprintf(stderr,"sony, couldn't malloc the wN");
exit(1);
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if ((polyp = fopen("polys","r")) == (FILE *) 0)

fprintf(stderr,"sorry, error opening polynomials file~n");
exit(2);}

while (fscanf(polyp,"%o",&prim-poly) != EOF){
reject = 0;
poly = prim-poly;

/* determine degree of polynomial */
for (poly-deg = -1; poly != 0; poly >>=I, poly-deg++);
fprintf(stderr,"polynonial %o degree %dfn",prim-poly,poly-deg);

poly = prim_poly>>1;

for (n = minblock; !reject && n <= max_block; n++){
blkpudmax = pow((double)2.0, (double) (-polyjdeg- 1));
blkpudmax -- pow((double) 0.5, (double ) n);

w[0] = 1;
for (i = 1; i <= n; i++)

w(i] = 0O
/* count ones in initial pipeline */
for (i--O, shiftO = poly, ones = 0, i<n ; i++)

if (shiftO & 1)
{
shiftO >>= 1;
shiftO A= poly;
ones++;
)

else shiftO >>=I;}
w[ones]++;
/* nin shiftO and shiftl for all but one of the in sequence *1
/* shiftO's output enters pipeline */
/* shift I's output exits pipeline *1
for (shiftl = poly; shifti - 1; ){

if (shiftO & 1)
(
shiftO >>= 1;
shiftO A_ poly;
ones++;)

else shiftO >>=I;
if (shift I & 1)

{
shiftl >>-=;
shift I A poly;
ones--;

i || ~-13-.I



else shiftl >>=I;
w[onesJ++4;

fprintf(stderr,"%dcn",n);
for (pe =pmax; PC >= pmin ; pc 1 logscale)

pcalc = 1.0 - (2.0) * pe;
/* calculate B sum via Homcers rule ~
bsum = (double ) (w[0J + win]); /* ie, Bn ~
for (i = n- 1; i >= 0; i--)

I
bsum *= pcalc;
bsum += ((double ) (w[iJ + w[ri-iJ));

/* calculate pud1
pud = bsumn / pow(2.0, (double) (poly-.deg+ 1));
pud -= pow( 1.0 - pe, (double ) n);
if ((pud (> I .Oe- 13) && (pud > 1.00001 *blkpuclmit))

fprintf(stderr,"rejected %o at blocklength = %d PC = %.6e pud = %.6e\n',prim-poly,n,pe~pud);
fprintf(stderrbounder for pud =%.6e\n",blkpudmax);,
reject =1

if (pud < 1.Oe-13 11 reject) break;

if (n==max..block+1)
fprintf(stdout,"%o\nm ',prim-poly);

fclose(polyp);
free(w);
fprintf(stderr,"alI done~n");

-14-
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IV. ASSEMBLER CODE FOR CRITICAL SUBROUTINE

In this section, we describe code written in the Motorola 68000 microprocessor assembler
language which improved execution time of the most time consuming part of the algorithm by
a factor of 2. The assembler code is on the next page of this section. The time consuming
part is the calculation of the wi of section I11. We optimized the instruction branching and the
shifting of the LFSRs more than is possible in the C programming language.

We desired fast shifting of the LFSRs. In the C programming language, we must first test
the least significant bit of a LFSR before shifting to determine the output and feedback
operation. In assembler code, we can immediately shift the register and simultaneously
perform an implicit test on its least significant bit, since a microprocessor condition code is
set if the least significant bit was a one. Therefore, we follow the shift with a conditional
branch and the code to perform had the bit been a one.

We also incorporate the initial zeroing of the wi in the loop which produces the first code
word. Since we count out a number equal to the block length in producing the first code word,
it is natural to clear wi as i is being counted. The initialization loop is displayed as a flow
chart in Figure 4 of this section.

In Figure 5, we display a flow chart for the loop which enumerates all the wi for i > 0. We
improve the execution speed of the w address calculation by maintaining an address counter
which increments or decrements by the number of bytes in the long integers used to represent
the wi.

At the beginning of the subroutine, we assume that to the global variable -poly contains the
value of the feedback of the LFSRs, as in the previous section, and that the global variable _n
contains the current block length under consideration.
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IV.1 (LISTING) 68000 ASSEMBLER SUBRCUTINE FOR DETERMINING WEIGHT
ENUMERATORS

public jfind-w
_findw:

link a6,#.15
movem.l .16,-(sp)

lfsrl oqur d7
lfsr2 equr d6
nnuones equr (15
fdbkr equr d4
blkcnt equr a3

move.l #O.blkcnt
move.I blkcnt.numones
move.I _poly.fdbkr put feedback in register
move.1 fdbkrlfstl ; set lfsrl initially to second of sequence
move.[ fdbkr.lfsr2 ; set lfsr2 initially to second of sequence
move. .waO :put address of w in a0

nexti:
movc.l blkcnt,dO : move block count to 40
asl.l #2,dO ; multiply by 4 to get long's address offset
clr.l (aO,dO.l) ; clear offset address
Isr.I #llfsrl shift first LFSR
bcc addloi ; if no carry, we're done
eor.O fdbkr.'Ifsrl ; othcrwisc, add in the feedback
addq.l 4,numones ; and add one to the number of ones in window

addtoi:
addq.I #iblkcnt ; increment the block count
cmp.l _nblkcnt : check to see if window is done
bcs nexti ; if not, go around again
move.I _.w,aO ;put address of w in aO
move.I #1.(aO) ; the all 7cro word conveniently goes here

wincrem:
addi.I #l,(aOd5.1) : increment wtaddressJ
cmp.l #l,lfsr2 ; check if done when lfsr2 = I
beq frudone : if so we're completely done here
Isr.l #1,1fsrl ; in each iteration we enter window with output of lfsrl
bcc shift2nd ; if no output, go shift LFSR2
cor.I fdbkrlfsrl ; cse add in feedback.
addq.I #4,numones ; one enters window

shift2nd:
Isr.1 #1.lfsr2 ; shift of LFSR2
bce wincrem ; if done update count
cor.1 fdbkrlfsr2 ; otherwise add feedback,
subq.l #4,numones ; one leaves window
bra wincrem ; so enumerate unchanged count

findone:
movem.1 (sp)+.. 16
unlk a6
rts

.15 equ 0

.16 reg d41d5/d6/d7/a3
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Initialize Enumeration - Polyreg <- (Primpoly >> 1)
LFSRI <- LFSR2 <- polymg
i <- nurnones <- 0

Wtil <- 0
LFSRI <- (LFSRI >> 1)

NO LFSR I overflow? YES

LFSR I <- LFSR I (P polyreg
numones <- numones + I

i <- i +I

NO i < block length ? Y"

wtol <- I initialization Complete

address <- location of w[nutnonesl

Figure 4. Initialization Loop of Assembler Subroutine Flowchart



Initialization Complete_ intcrement cotet pone to0

YES, Enumreration Complete

[ LFSR2 <- (LFS2»

Figur 5. ain Opvseberf Sbotn lowcharYE0
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V. SAMPLING THE WEIGhlT DISTRIBUTION

As the number of CRC bits becomes large, tile nutuber of code words in the dual code. the
number of potential polynomials, and the number of shortencd block lengths all become large,
prohibiting timely analysis of all the various possibilities. In this section, we Investigate the
possibility of extrapolating the performance of a given shortened CRC code by sampling the
weight distribution of a subset of the code words. For CRCs with very many parity bits, this
may be the only reasonable alternative until some closed form weight distribution formula
becomes available. Unfortunately, our method seemed to give poor predictions of the code
performance, even with relatively large sample sizes.

We note that because

bi o wi + Wn -i

the (bi) are symmetric about i = n/2. that is

bi = bn-,.

Therefore the true mean weight and any sample mean weight found by our method equals n/2.
We sample a subset of the code words and hope to learn more about their weight
distribution's higher order statistics. We conjecture that a distinguishing characteristic of
improper CRCs lies in tile "tail" of the distribution of the weights, and therefore we seek to
compare the distribution of the tail of the weights to other known probability distributions.

As shown in tlhe Figures of section IX on 24 bit CRCs. different primitive degree 23
polynomials can lead to differences oln the order of 8 decades in error detection performance at
critical block lengths and probabilities of bit error. Our sampling tests were perforned on the
23 bit polynomials discussed in section IX, where we have plotted their performance. There
are a total of 16,777,216 code words in each of the codes considered. Wc tried samples of
20,000 code words and could find no credible information supplied in the samples which would
help to characterize tile polynomials. We therefore increased our sample size to 2,000,000
code words, and still seemed to make poor predictions of the tail of the weight distribution.

We had hoped that the observed subset of code words would have roughly the same weight
distribution as the complete set of code words. If so, we could take the observed number of
code words of a given weight in the subset and multiply by a constant ratio to find the
corresponding weight enumerator in the complete set.

The following charts compare the worst performing (40000041) and best performing
(40435651) polynomials observed and true weight distributions at block length n = 32, where
they showed dramatic differences in perfornance. We note that even with the unrealistically
large percentage of total code words sampled, the tails of the distribution were represented
inaccurately. In particular, we note that the samples displayed here tended to under estimate
the number of code words of low weight in the worst code, and over estimate the number of
code words of low weight in the best code. In Tables 1. we display similar charts for the
other polynomials at block length n = 32, in order of their errot detection perfonnance, from
worst to best. In Tables 2, we display charts for the worst and best polynomial at block
length n = 1024. We note that our large sample failed to find virtually all of the code words of
the lowest hundred weights for the worst code at block length n = 1024.

We also considered modelling the weight distribution as some known probability distribution,
using higher order observed statistics such as sample variance as parameters to predict the
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distribution of the complete set. However, we found wide variations in the sample variances
that we observed that did not correspond to performance measure. Table 3 compares the
observed and true variance of the 24 bit CRCs at bloe,.k length it 32.

polynomial = 40000041
block length = 32

wcight. i bi sampled bi ratio

1 9 0
2 47 0
3 199 14 14.214286
4 718 44 16.318182
5 2241 247 9.072874
6 6293 744 8.458333
7 16495 2028 8.133629
8 41624 4761 8.742701
9 102189 11611 8.801051
10 236583 28279 8.366031
1 I 491619 59323 8.287157
12 887378 106157 8.359110
13 1379029 164485 8.383920
14 1858325 221242 8.399513
15 2202523 263142 8.370093
16 2326670 275848 8.434609

polynomial 40435651
block length = 32 0

wei ht, i bi sampled bi ratio

2 1 0
3 25 1 25.000000
4 122 19 6.421053
5 761 92 8.271739
6 3603 515 6.996117
7 13146 1757 7.482072
8 40992 5.343 7.672094
9 109850 13415 8.188595
10 252225 30603 8.241839
I1 503127 60515 8.314087
12 881190 105912 8.320020
13 1358135 162523 8.356571
14 1843371 216773 8.503693
Is 2209260 262025 8.431486
16 2345598 281016 8.346849
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Table 1. Sampled Weight Distributions for 24 Bit CRCs at Block Length n = 32

Weight = i Bi Sampled Bi Ratio (BiSampled Bi)

polynomial = 40404041 2 31 0
3 19 0
4 424 46 9.217391
5 575 58 9.913793
6 6349 833 7.621849
7 12146 1651 7.356753
8 47756 5859 8.150879
9 110274 12947 8.517340
10 243679 28869 8.440854
11 506553 60946 8.311505
12 851672 102356 8.320685
13 1358229 162058 8.381129
14 1849141 218780 8.452057
15 2206508 262636 8.401392
16 2390502 285924 8.360620

polynomial = 40000063 1 9 0
2 38 0
3 118 16 7.375000
4 377 56 6.732143
5 1296 164 7.902439
6 4286 455 9.419780
7 13285 1654 8.032044
8 38734 4630 8.365875
9 103651 12243 8.466144
10 245858 29491 8.336713
11 505668 59811 8.454431
12 896375 106366 8.427270
13 1376086 163966 8.392508
14 1847994 220876 8.366658
15 2194191 261953 8.376277
16 2321282 276640 8.390985

polynomial =50000241 1 5 5 1.000000
2 19 9 2.111111
3 65 13 5.000000
4 241 29 8.310345
5 939 121 7.760331
6 3709 462 8.028139
7 13143 1602 8.204120
8 40222 4729 8.505392
9 107645 12603 8.541220
10 250391 29820 8.396747
11 504537 59851 8.429884
12 886271 105534 8.397967
13 1363515 162719 8.379568
14 1844057 219930 8.384745
15 2204455 263178 8.376289
16 2338786 278792 8.389000
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Weight =i Bi Sampled Bi Ratio (B.ISampled Bi)

polynomial = 40010061 1 2 0
2 14 0
3 46 0
4 204 19 10.736842
5 806 114 7.070175
6 3202 402 7.965174
7 12554 1542 8.141375
8 40788 4582 8.901790
9 110550 12818 8.624590
10 254886 30687 8.305993
11 505210 60211 8.390660
12 878196 104756 8.383253
13 1352434 161143 8.392757
14 1841098 218790 8.414909
15 2212702 264280 8.372567
16 2351830 281314 8.360160

polynomial = 40006341 1 3 0
2 9 0
3 26 7 3.714286
4 146 23 6.347826
5 832 94 8.851064
6 3483 384 9.070313
7 12735 1356 9.391593
8 40752 4540 8.976211
9 110025 13105 8.395651
10 253305 29983 8.448287
11 505484 60124 8.407358
12 881422 104546 8.430949
13 1352954 160245 8.443034
14 1838307 218754 8.403535
15 2212245 265185 8.342270
16 2353758 283310 8.308065

polynomial =40220151 2 7 0
3 24 0
4 130 28 4.642857
5 824 119 6.924370
6 3501 389 9.000000
7 13008 1600 8.130000
8 41088 5311 7.736396
9 109136 13489 8.090741
10 252367 30357 8.313305
11 506632 60451 8.380870
12 881502 104344 8.448037
13 1352360 161444 8.376651
14 1841277 218556 8.424738
15 2212320 263211 8.405120
16 2348862 281404 8.346939
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Weight = i Bi Sampled Bi Ratio (Bi/Sampled Bi)

polynomial= 41224445 2 3 0
3 28 0
4 131 3 43.666667
5 796 62 12.838710
6 3573 388 9.208763
7 12952 1538 8.421326
8 40898 4928 8.299107
9 109976 13331 8.249644
10 252431 29911 8.439404
11 503972 59599 8.456048
12 881997 105479 8.361826
13 1356196 161509 8.397031
14 1840121 219918 8.367305
15 2210384 263114 8.400860
16 2350298 280442 8.380692

polynomial - 40405463 2 9 0
3 10 0
4 129 17 7.588235
5 778 99 7.858586
6 3567 455 7.839560
7 13156 1507 8.729927
8 41086 4713 8.717590
9 109540 13044 8.397731
10 251645 30186 8.336480
11 504982 60590 8.334412
12 882287 105141 8.391465
13 1354390 161634 8.379363
14 1842955 219919 8.380154
15 2211448 263101 8.405320
16 2345250 279190 8.400193

polynomial =40103271 2 6 0
3 14 0
4 121 8 15.125000
5 774 93 8.322581
6 3574 413 8.653753
7 13332 1619 8.234713
8 40926 4875 8.395077
9 109108 12963 8.416879
10 252410 29694 8.500370
11 504362 59445 8.484515
12 881975 105440 8.364710
13 1357058 162036 8.375040
14 1840138 219690 8.376066
15 2209656 263612 8.382228
16 2350306 280226 8.387180

0
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Table 2. Sampled Weight Distributions for 24 Bit CRCs at Block Length n = 1024

Weight = i Bi Sampled Bi Ratio (BjSampled Bi)

polynomial = 40000041 335 5 0
336 23 0
337 17 0
338 24 0
339 14 0
340 11 0
341 13 0
342 23 0
343 22 0
344 19 0
345 20 0
346 8 0
347 5 0
348 9 0
349 13 0
350 6 0
351 8 0
352 7 0
353 4 0
354 7 0
355 12 0
356 6 0
357 6 0
358 12 0
359 8 0
360 5 0
361 7 0
362 4 0
363 7 0
364 14 0
365 7 0
366 15 0
367 34 0
368 35 0
369 31 0
370 30 0
371 39 0
372 20 0
373 29 0
374 25 0
375 14 0
376 5 0
377 7 0
378 3 0
379 3 0
380 6 0
381 4 0
392 9 0
383 18 0
384 24 0
385 S 0
386 4 0
387 4 0
388 3 0
389 4 0
390 14 0
391 9 0
392 7 0
393 6 0
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Weight = i Bi Sampled Bi Ratio (BiSampled B1)

polynomial = 40000041 394 8 0
395 3 0
396 2 0
397 21 0
398 16 0
399 6 0
400 3 0
401 6 0
402 6 0
403 5 0
404 10 0
405 14 0
406 24 0
407 32 0
408 47 0
409 46 0
410 53 0
411 51 0
412 84 0
413 90 0
414 97 0
415 98 0
416 143 0
417 190 0
418 186 0
419 145 0
420 165 0
421 ISO 0
422 183 0
423 251 0
424 316 0
425 311 0
426 332 0
427 326 0
428 347 0
429 375 0
430 364 0
431 408 0
432 503 0
433 514 0
434 498 2 249.000000
435 548 17 32.235294
436 567 10 56.700000
437 650 8 81.250000
438 689 15 45.933333
439 741 31 23.903226
440 787 34 23.147059
441 903 51 17.705882
442 926 28 33.071429
443 1062 51 20.823529
444 1222 76 16.078947
445 1366 109 12.532110
446 1522 121 12.578512
447 1548 127 12.188976
448 1596 112 14.250000
449 1649 141 11.695035
450 1977 177 11.169492
451 2166 208 10.413462
452 2306 192 12.010417
453 2377 181 13.132597
454 2364 178 13.280899
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Weight = i Bi Sampled Bi Ratio (BlSampled B1)

polynomial = 40000041 455 2642 170 15.541176
456 2707 195 13.882051
457 2929 260 11.265385
458 3239 340 9.526471
459 3604 405 8.898765
460 3888 447 8.697987
461 4519 561 8.055258
462 4901 585 8.377778
463 5664 627 9.033493
464 6124 653 9.378254
465 6886 667 10.323838
466 7673 809 9.484549
467 8845 973 9.090442
468 9665 1060 9.117925
469 10913 1271 8.586153
470 12350 1478 8.355886
471 13223 1458 9.069273
472 14280 1512 9.444444
473 15859 1795 8.835097
474 17878 2169 8.242508
475 21010 2618 8.025210
476 24427 3169 7.708110
477 27631 3565 7.750631
478 31546 3881 8.128317
479 35932 4356 8.248852
480 41384 4838 8.553948
481 46773 5395 8.669694
482 54250 6001 9.040160
483 61639 7058 8.733211
484 70219 7983 8.796067
485 81368 9638 8.442415
486 93432 11558 8.083752
487 106779 13213 8.081359
488 121354 14963 8.110272
489 136433 16966 8.041554
490 152584 18870 8.086063
491 168140 20965 8.020033
492 185471 23025 8.055201
493 202442 25336 7.990290
494 220183 27422 8.029429
495 237707 29508 8.055680
496 256835 31222 8.226091
497 274892 33545 8.194724
498 292629 36481 8.021408
499 311050 38306 8.120138
500 326600 39762 8.213873
501 344840 41364 8.336718
502 360291 42596 8.458329
503 371886 44376 8.380341
504 384627 45530 8.447771
505 398836 47277 8.436153
506 407794 48032 8.490048
507 416347 48932 8.508686
508 422590 49351 8.562947
509 425809 49440 C.612642
510 429997 49307 8.720810
511 433246 49787 8.701990
512 435328 50122 8.685368
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Weight = i Bi Sampled B3  Ratio (BjSampled Bi)

polynomial = 40435651 446 2 0
447 3 0
448 9 3 3.000000
449 42 19 2.210526
450 98 47 2.085106
451 168 60 2.800000
452 198 39 5.076923
453 349 39 8.948718
454 440 46 9.565217
455 528 53 9.962264
456 809 56 14.446429
457 992 88 11.272727
458 1145 127 9.015748
459 1416 147 9.632653
460 1900 201 9.452736
461 2285 264 8.655303
462 2851 264 10.799242
463 3606 398 9.060302
464 4419 510 8.664706
465 5356 589 9.093379
466 6485 654 9.915902
467 7890 903 8.737542
468 9775 1199 8.152627
469 11678 1434 8.143654
470 13643 1794 7.604794
471 15899 2086 7.621764
472 18580 2258 8.228521
473 21610 2685 8.048417
474 25001 3144 7.951972
475 28624 3537 8.092734
476 33089 4097 8.076397
477 37711 4452 8.470575
478 43851 5322 8.239572
479 50211 6381 7.868829
480 56689 7279 7.788020
481 64526 8463 7.624483
482 73592 9733 7.561081
483 82756 10670 7.755951
484 92279 11460 8.052269
485 103536 12922 8.012382
486 112560 14057 8.007398
487 123787 15282 8.100183
488 135715 16700 8.126647
489 150118 18543 8.095670
490 164676 20180 8.160357
491 178776 22022 8.118064
492 192944 23804 8.105528
493 209033 25506 8.195444
494 224106 27419 8.173383
495 238930 29136 8.200508
496 253153 30880 8.197960
497 267167 32223 8.291190
498 283347 34514 8.209625
499 299062 36358 8.225480
500 317179 38524 8.233283
501 331770 39890 8.317122
502 344763 41180 8.372098
503 355956 41854 8.504707
504 367040 42898 8.556110
505 377846 44339 8.521753
506 387904 45567 8.512827
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Weight = i Bi Sampled Bi Ratio (Bi/Sampled Bi)

polynomial = 40435651 507 396527 46034 8.613785
508 402684 46210 8.714218
509 408547 46369 8.810779
510 412688 46336 8.906423
511 417599 47157 8.855504
512 421378 47192 8.929013
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* Table 3. Variance of Sample Weight Distributions for 24 Bit CRCs

at Block Length n = 32

Sample Variances

Sample Size = 20000 Sample Size = 2000000 ALL

Polynomial
40000041 15.335 15.958 16.0
40404041 15.005 16.074 16.0
40000063 16.583 15.973 16.0
50000241 18.394 15.972 16.0
40010061 15.981 15.957 16.0
40006341 15.903 15.869 16.0
40220151 16.366 16.104 16.0
41224445 15.151 15.981 16.0
40405463 16.068 16.008 16.0
40103271 16.415 15.950 16.0
40435651 15.202 16.216 16.0
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VI. HARDWARE TESTER FOR CRC CODES

The sampling results of the previous section convince us that to properly evaluate a given
CRC code we have to enumerate the weights of all code words. In order to reasonably
evaluate a larger number of 32 bit and larger CRCs at a variety of moderate block lengths, we
estimate that we must increase our weight enumeration capability by at least a factor of ten.
We therefore sought a cost effective alternative to the purchase of ten times the computers
and associated labor hours involved.

In this section, we informally propose specialized hardware that would efficiently determine
the weight enumerators of a CRC code at moderate block lengths. We intend to formalize
this proposal for a Phase Two continuation of the project.

The optimized assembler code of section IV gives us a good estimate of the number of
machine cycles required by a particular general purpose microprocessor to produce the weight
enumerators. The main loop requires approximately 25 machine cycles per iteration (68030,
cache case). By producing specialized hardware that would require only I machine cycle per
iteration, we should be able to gain a factor of 25 in execution time. for the same cycle
frequency. Additionally, if we produce hardware in a faster logic family than CMOS, such as
ECL, there should be additional gains to be made.

Figure 6 is a block diagram of the contemplated hardware. We envision a personal computer
as the interface between the user and the specialized weight enumerator circuitry. A
controller card in the PC would enable it to download the parameters of the code to be
analyzed to the specialized hardware, which would be implemented in ECL. The
programmable shift registers would play the role of lfsrl and Ifsr2 in the assembly code. Two
counters would be employed to count out the n bits of the first code word and accumulate its m
weight. The main loop of the algorithm would involve shifting both registers, producing the V
next weight, and updating a weight enumerator in RAM once per cycle. A relatively simple
state machine whose modes of operation are shown in Figure 7 would control the weight
enumeration without intervention from the controller. When the weight enumeration is
complete, the ECL circuitry would alert the controller to collect the weight enumerators and
issue the parameters of the next code. While the weight enumeration of the next code
proceeds, the personal computer would be free to (comparatively slowly) evaluate the error
detection capability of the given code.
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AO •Workstation

Programmable linear
feedback shift registers

LFSRI,LPSR2

- Up Counter

UCTR

Up/down Counter

S~UDCTR

RAM
Swith incremnenter

Figure 6. Contemplated Hardware
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Variable Initialization:
Controller resets up counter (UCTR),
loads comunon feedback of registers (FDBK)
and initial state of registers (LFSR I, LFSR2),
loads up/down counter (UDCTR) with block length.

Hardware Initialization:
while UDCTR is non-zero

UDCTR counts down
LFSRI shifts
output of LFSRI enables UCTR count
RAM(UDCTR! = 0

load UDCTR with UCTR output

Main loop:
while LFSR2 * I

shift LFSR I,LFSR2
increntent RAM[UDCTRJI
UDCTR holds, cnts up, or cnts down

IController uploads RAM contents i
Figure 7. Hardware Modes of Operation
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VIi. EVALUATION OF S Brr CRCS

We used Peterson and Weldon [51 as a reference which supplies all primitive irreduciblepolynomials of degree . 16. With CRCs of the form (x + 1) p(x), a given primitive irreduciblepolynomial p(x) and its (primitive irreducible) reciprocal polynomial perform identically aserror detection codes. We therefore test and list, as in 15), only one of any pair of apolynomial and its reciprocal. We list the polynomials, as in [51, using octal notation. For
example, the notation

3525

in octal is converted to binary

011 101010 101

and represents the polynomial

p(x)=xIO+x 9 +x8+x6+x4+x2+ I.

The reciprocal polynomial is 2527.

8 bit CRCs based on the nine primitive irreducible polynomials in [51 were tested at all blocklengths from n = 9 to n = 127. At each block length, the probability of undetected error wasevaluated for twenty logarithmically spaced values in each decade for p. from p = 10-6 to p =1/2. Any polynomials found to be improper at any of these values was rejected.
Degree 7 polynomials p(x) which produce proper 8 bit CRCs of the form (x + I) p(x) over the
range of all block lengths considered are

211 235 325 313 345,

and their reciproca! polynomials.
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VIII. EVALUATION OF 16 BIT CRCS

As in section VII, we started with an exhaustive list of nearly 1000 primitive polynomials of
degree 15 from Peterson and Weldon. 16 bit CRCs based on the primitive irreducible
polynoomials in 151 were tested at all block lengths from in = 17 to n = 32767. At cacti block
length, the probability of unde-tected error wias evaluated for twenty logarithmically spaced
values in each decade for p. from p = 10-" to p = 1/2. Any polynomials found to be improper at
any of these values was rejected.

Degree 15 polynomials p(x) which produce proper 16 bit CRCs of the fomi (x + I) p(x) over
the range of all block lengths considered are

103451 112611 115155 102561 134531 142305 103145
112273 114273 123023 160521 132367 156333 127143
151043 153143 172213 105213 120447 117511 115141
165033 110427 131211 160511 153731 144275 134447
132103 165355 150243 141655 124243 147321 150225
115307 157241 166541 102513 113255 133571 112407
165113 135751 101661 113373 141151 130305 121355
134325 124647 113645 156635 150633 146025 111423
132127 135267 146727 154545 133553 171131 112365
175515 132507 102615 105713 134241 115523 164447
115537 125471 106251 106611 102471 162455 162153
133113 161205 132357 137061 112347 165535 146753
155303 141115 144425 141231 143271 120463 110435
126155 141445 126711 107645 163365 164155 110405
104111 123735 135443 162315 146155 121641 131667
152351 145433 134435 116631 154515 171115 110255
125537 154507 155027 105143 164313 121327 124335
154155 142751 121553 121305 170325 135565 155725
162241 101551 146705 117243 134205 161465 144713
171125 133011 165565 127071 127457 165303 105415
144225 101515 166267 117131 144151 150327 163123
106633 116645 104427 115271 142457 156321 175651
116675 111243 163273 102265 112553 167331 164561
105071 154233 166113 115667 122123 164453 155335
114231 106445 133257 110165 163555 105237 130635
134165 115373 166653 144467 135523 131367 143227
111267 165633 130745 131623,

and their reciprocals.

We note that most polynomials were rejected at relatively short block lengths (< a = 250),
and that only one polynomial was rejected in the range 1000 < n 5 2000. No polynomials
which survived to a = 2000 were later rejected. We also note that neither of the standard 16
bit CRCs, CRC-16 generated from 100003 nor CRC-CCI1T generated from 170037, is proper
at all block lengths.

In Figures 8, 9. and 10 we plot the error detection perfornance of 16 bit CRCs based on four
of the primitive polynomials from the chart at block lengths 256. 1024, and 4096, respectively.
The perfornance of all four codes was nearly identical.
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In all the graphs, we reference a given plot with the notation "xxxx"-"yyy", where xxxx is the
octal representation of the primitive polynomial p(x) used to produce a CRC of the form (x +
1) p(x), and yyy is the block length n under consideration.

16 Bit CRCs at Block Length = 256

10 -4

10f

10
10--- 121641-256

10 -- ,J -...-- 165535-256S10 - 1.- 123735-256
:-'D--- 124647-256
10 -I1?

'10 -14
't 10 -1!

10 -It

I0 -I ... ,•' . .. ........ • -.......

1-00 - 104 Ii-
"Probability of Bit Error

Figure 8. Probability of undetected block error vs. probability of bit error for 16 bit
CRCs at block length u = 256.
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10 -4 16 Bit CRCs at Block Length = 1024

10

10 -S~

• 10 -~

10-1
lO . 121641-1024

O-12 -U-- 165535-1024
- --12 123735-1024

10 -12 124647-1024
S10 -14
'•10 -1•

10 -1f
0 -1 ( . ... " _4 1 .. 1 1 -. -1

Probability of Bit Error

Figure 9. Probability of undetected block error vs. probability of bit error for 16 bit
CRCs at block length n = 1024.
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16 Bit CRCs at Block Length = 4096
S10 -4

10 -

. 10 _ij

10 4~

:D 10--1.- 12467-4096
t - " 123735-4096

A,10 - 165535-4096
- 121641-4096

10 -14

10 -Ifl. . .,, .. .

Probability of Bit Error

Figure 10. Probability of undetected block error vs. probability of bit error for 16 bit
CRCs at block length n = 4096.

- 7-



IQUALCOMM. Inc. Final Technical Report for the Research in Mathematics and Computer Science

IX. EVALUATION OF 24 BIT CRCS

As in section VIII, we started with the list of primitive polynomials of degree 23 from
Peterson and Weldon. The list contains a total of 11 polynomials. 24 bit CRCs based on the
primitive irreducible polynomials in [51 were tested at all block lengths from n = 25 to n =
4000. At each block length, the probability of undetected error was evaluated for twenty
logarithmically spaced values in each decade for p, from p = 10-6 to p = 1/2.

We were immediately able to reject all but one of the polynomials as improper at short block
lengths, as is demonstrated in Figure 11. The remaining polynomial, generated from
40435651, was tested extensively, since we propose this polynomial to generate a new
standard CRC-24Q. The polynomial was tested at all blocks lengths up to 4000, and at block
lengths 4096, 8192, 16384, and 32767. The polynomial displayed a very slight rise in Pnd(p)
that was less than 0.1% above the value of Pud(l/ 2 ) at a few block lengths, which we find to
be very minor and unworthy of rejection.

In Figures 11 through 14, we have plotted the probability of undetected error versus the
probability of bit error for all 24 bit CRCs generated from the polynomials of [51, at block
lengths 32, 256, 1024, and 4096, respectively. We note that in the first two figures, the
dramatic difference in error detection performance of shortened CRCs is depicted. We also
note that it is insufficient to predict the performance of a given shortened CRC by sampling its
performance at a given block length, such as 4096, where all the polynomials appear to
perform nearly identically.

In Figure 15, we have plotted the performance of the new proposed standard CRC-24Q, at a
variety of blocklengths up to 32,767. We note its nearly uniform performance over this range
with respect to propriety.
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10 24 Bit CRCs at Block Length =32
10-4
10 -5

- 10-6

W10 -7

- 10-8

• 10-9

=•10 -10

.1 l -12

S0-13.

1010 -14,

10 -15.

1 -3 1c -11CO

Probability of Bit Error

40000041-32
40404041-32

--- 40000063-32
•--4--- 50000241-32

- 40010061-32
40008341-32

--- 40220151-32
--- 41224445-32
-- 40405463-32
- - 40103271-32
-- 40435651-32

Figure 11. Probability of undetected block error vs. probability of bit error for 24 bit
CRCs at block length n = 32.
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24 Bit CRCs at Block Length = 256

10 .

10 -

'10-11

0

LI 10 -,

10 -1
to1 -14

"'10 "'1 -1 ' 0 -

Probability of Bit Error

-a-- 40000041-256
.-- 40404041-256
-=- 40000063-256
-.- 50000241-256

40010061-256
40006341-256

"-- - 40220151-256
a--- 41224445-256
- - 40405463-256
- - 40103271-256
-- 40435651-256

Figure 12. Probability of undetected block error vs. probability of bit error for 24 bit
CRCs at block length n = 256.
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10 .6 24 Bit CRCs at Block Length = 1024

6)107

10 -7

S~40000041-1024
10 -8 40404041-1024

"• = 40000063-1024
e- -" 50000241-1024
t,. -- 40010061-10240•, 40006341.1024

.10-•J 40220151-1024
10-- 41224445-1024

.• 40405463-1024
S~40103271.1024

40435651-1024

10 -10 . .LC 41 -3 'C -2lC-

Probability of Bit Error

Figure 13. Probability of undetected block error vs. probability of bit error for 24 bit
CRCs at block length n = 1024.
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24 Bit CRCs at Block Length = 4096
10-1

0r

Iii 10"8

.• 10-0

10 -10 - 40000041-4096S! "- 40404041-4006

-U 40000063-4096
10 -11 -,-- 50000241-4096

-- 40010061-4096
- - 40006341-4096

10 -12 40220151-4006
-4--- 41224445-4096

-U 40405463-4096
10 13- 40103271-4096

- -- 40435651-4096

10 C1 -5 1C-4 "'C -3 1IC -2

Probability of Bit Error

Figure 14. Probability of undetected block error vs. probability of bit error for 24 bit
CRCs at block length n = 4096.
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Performance of CRC - 24 Q at Various Block Lengths

10 -7

S10 '8

I 10 -9

•.4

10-10

10' l.11.

S10 -12.

10

lC -0 1C .5 lC -4 1(C -3 lC -2I- C

Probability of Bit Error

- - 40435651-32767
- - 40435651.16384

- - 40435651-8192
- - 40435651-4096
-U-- 40435651.2048
-0-- 40435651-1024

- - 40435651-512
-I.- 40435651 -256
--- 40435651-128
--- 40435651-64
- - 40435651-32

Figure 15. Probability of undetected Mock error vs. probability of bit error for
CRC-24Q at various block lengths.
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X. EVALUATION OF 32 BIT CRCS

As in section IX, we tested 32 bit CRCs generated from the degree 31 primitive irreducible
polynomials listed in Peterson and Weldon [5]. The list contains a total of 11 polynonials.
However, because of time limitations we were not able to test these 32 bit CRCs extensively
at a large number of block lengths. At each block length that we did test at, the probability of
undetected error was evaluated for twenty logarithmically spaced values in each decade for p,
fron p = 1046 to p = 1/2.

We were able to reject all but one of the polynomials as being significantly improper at some
block length tested. The lone survivor is the 32 bit CRC, CRC-32Q generated from the
primitive polynomial 2006014023 .

In Figure 16, we plot the error detection performance of 32 bit CRCs generated from the 11
polynomials considered at block length 1024. In Figures 17, 18, we plot the performance of
32 bit CRCs generated from the best three of these polynomials, which is indistinguishable in
Figure 16, at block lengths 256 and 4096, respectively.
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S10 " 32 Bit CRCs at Block Length - 1024

S10 "'
t o-Ic

to4

10-S

10 -IC

10 -11

1o -14,

10 "110 to- 0--, 10

Probability of Bit Error

-6-- 20000000011-1024
20000000017-1024

-- 21042104211-1024
20000020411-1024

-- 21042107357-1024
-- 20010010017-1024
A 20004100071-1024

- - 20005000251-1024
- - 20060140231-1024

-- 202020402177-1024
- - 20000200435-1024

Figure 16. Probability of undetected block error vs. probability of bit error for 32 bit
CRCs at block length n = 1024.
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The Best 32 Bit CRCs Tested at Block Length = 256
10 . . . ..

10-1

-e-- 20202040217-256

-.--- 20060140231-256
10"1410 //14 20000200435-256

10

10 -M.
10:"•- lO -1 1 00

Probability of Bit Error

Figure 17. Probability of undetected block error vs. probability of bit error for 32 bit
CRCs at block length n = 256.
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hllie Best 32 Bit CRCs Tested at Block Length = 4096
10 -5

10-1(

'Z 1. -14. 20202040217-4096
S>. 20060140231-4096

"Z 10 "--6 20000200435-4096

10.

toi0I I0"
Probability of Bit Error

Figure 18. Probability of undetected block error vs. probability of bit error for 32 bit
CRCs at block length n = 4096.
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XI. CONCLUSION

In this report, we summarize the results of a Phase I study of the error detection capability of
shortened CRC codes of the form (x + l)p(x), where p(x) is a primitive irreducible
polynomial. The evaluation algorithm used and its optimization in software is explained in
detail.

We conclude that, for moderate redundancy CRCs, it is reasonable to distinguish those CRCs
which will guarantee a certain degree of error detection capability in the presence of random
bit errors at all shortened block lengths from those CRCs which exhibit antomalies in their
error detection pcrformance at shortened block lengths using our algorithm. In section VIII,
we give an exhaustive list of 16 bit CRCs which are proper at all shortened block lengths.

As the number of redundant bits increases, it becomes more difficult to completely evaluate
all choices of primitive polynomials at all block lengths. We have demonstrated, however,
that it is feasible to examine specific polynomials, eliminate improper CRCs, and find CRCs
whicih perform well at a wide variety of block lengths. Specifically, in section IX we
recommend as a potential new standard a 24 bit CRC, CRC-24Q, which has been extensively
tested.

We also report on some unfavorable results which seem to indicate that it is not possible to
make accurate projection of the error detection performance of shortened CRC codes based on
a small sample of their code words.

Finally, we give an infonnal proposal for an improved shortened CRC code evaluator, which,
would enable us to more thoroughly examine CRCs with a large number of redundant bits,
based on building specialized hardware.
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become a sizable company with unique expertise and leadersiiip in digital signal processing
equipment for military and government satellite communication. The company has grown at
the same rate since being acquired by M/A-COM Inc. in 1980, expanding into commercial
telecommunication equipment, terrestrial as well as satellite, and video scrambling business
areas. Dr. Viterbi was Executive Vice President of LINKABIT from 1974 to 1982. In 1982,
when Dr. Jacobs became Executive Vice President of M/A-COM, he took over as President
of W/A-COM LINKABIT, Inc. From 1984 to 1985, he whs appointed Chief Scientist and
Senior Vice President of MWA-COM, Inc.

-50-



a

"a. |QUALCOMM. Inc. Final Technical Re or thResearch n Mathematics and ompr Sence

. On July 1, 1985, Dr. Viterbi became founder aid Vice Chairman and Chief Technical Officer of
QUALCOMM, Inc.

Dr. Viterbi is a member of the U.S. National Academy of Engineering and a Fellow of IEEE.
He is past Chairman of the Visiting Committee for the Electrical Engineering Department of
Technion. Israel Institute of Technology, and he is presently a member of the MIT
Corporation Visiting Committee for Electrical Engineering and Computer Science. He is also
past Chairman of the U.S. Commission on Signal Processing of the International Radio
Scientific Union (URSI) and a past member of the Army Science Board. He has long been
active in IEEE, having served two terms of the Board of Governors of the Information Theory
Group, chairing the Board in 1970 and he served as its Transactions Associate Editor for a
term. He has been invited as a Distinguished Lecturer by the University of Illinois
Coordinated Sciences Laboratory and he has been honored as the 1986 Outstanding
Engineering Graduate by the University of Southern California School of Engineering. In spite
of his corporate administrative duties, he has managed to remain technically current, having
recently proposed new spread spectrum processing techniques ior jam resistant
communications and for digital cellular radio.

Professional Credits:

1-33. List available upon request.
34. "Spread Spectrum Communications - Myths and Realities," IEEE Communications

Magazine, pp. 11-18, May, 1979.
35. "Interleaving and Coding for Satellite Channels Perturbed by Pulsed RFI," (with I.

Bar-David and J.P. Odenwalder), ICC '80 Conference Record, Volume 1, pp. 4.2.1-
4.2.6, Seattle, Washington, June 16-18, 1980.

36. "Multiple Access Communication Using Coded Pulse Interval Modulation," (with I.
Gurantz, S. Gardner and E. Zbik), NTC '80 Proceedings, Houston, Texas, pp. 14.4.1-
14.4.5, December, 1980.

37. "Coding and Interleaving for Correcting Burst and Random Errors in Recording
Media", Proceedings of Digital Audio Conference, Rye, N.Y., June 3-6, 1982.

38. "A Robust Ratio-Threshold Technique to Mitigate Tone and Partial Band Jamming in
Coded MFSK Systems," Proceedings of IEEE Conference on Military
Communication, MILCOM '82, Boston, Massachusetts, October 17-20, 1982.

39. "Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst
Digital Transmission," (with Audrey M. Viterbi), IEEE Transactions on Information
Theory, Vol. IT-29, No. 4, July 1983.

40. "Robust Decoding of Jammed MFSK/FH Modulation" (with T. Schonhoff and M.
Mulligan), IEEE Conference of Military Communication, MILCOM '84, Los Angeles,
California, September 1984.

41. "When Not to Spread Spectrum - A Sequel" IEEE Communications Magazine, Vol
23, No. 4, pp 12-17, April 1985.

42. "Robust Decoding of Jammed Frequency Hopped Modulation" in Recent Advances in
Communication and Control Theory, Edited by R.E. Kalman, et. al., Optimization
Software, Inc., New York, 1987.
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Books:

1. Digital Communications with Space Applications, (co-author with S.W. Golomb, L.D.
Baumert, M.F. Easterling, and J.J. Stiffler), Prentice-Hall, 1964.

2. Principles of Coherent Communication, McGraw-Hill, 1966.
3. Advances in Communication Systems, Vol. 4 (editor), Academic Press, 1975.
4. Principles of Digital Communication and Coding, (with J.K. Omura), McGraw-Hill,

1979.

JACK K. WOLF

ENGINEERING ASSOCIATE

Education:

Jack Keil Wolf is a chaired professor in the Center for Magnetic Recording Research at the
University of California, San Diego, La Jolla, California. He received his B.S.E.E. degree from
the University of Pennsylvania in 1956, and his M.S.E., M.A., and Ph.D. degrees from
Princeton in 1957, 1958, and 1960, respectively.

Experience:

Dr. Wolf was a member of the EE Department at New York University from 1963 to 1965,
and the Polytechnic Institute of Brooklyn from 1965 to 1973. He was chairman of the
Department of Electrical and Computer Engineering at the University of Massachusetts, from
1973 to 1975 and was Professor there from 1973 to 1984. Since 1985 he has been a Professor
of Electrical and Computer Engineering and a member of the Center for Magnetic Recording
Research at the University of California, San Diego. During the 1968-1969 academic year, he
was a member of the Mathematics Research Center at Bell Laboratories. From 1971 to 1972
he was an NSF Senior Postdoctoral Fellow at the University of Hawaii. From 1979 to 1980
he was a Guggenheim Fellow at the University of California at San Diego and the LINKABIT
Corporation. His research interests are in information theory, coding theory, communications
systems, computer networks and magnetic recording.

Dr. Wolf is a fellow of the IEEE. He wps co recipient of the 1975 IEEE Information Theory
Group Paper Award for the paper "Noiseless Coding of Correlated Information Sources"
(coauthored with D. Slepian). He was cochairman of the 1969 IEEE International Symposium
on Information Theory. He served on the Board of Governors of the IEEE Informatiom Theory
Group from 1970 to 1976 and from 1980 to 1986. Dr. Wolf was president of the IEEE
Information Theory Group in 1974. He was International Chairman of Commission C of URSI
from 1980 to 1983.

Dr. Wolf began a part-time association with QUALCOMM, Inc. in October 1986. His
expertise in coding and networks has been applied to a variety of programs. These include
the synthesis and subsequent analysis of the ARNS (Adaptive Receive Node Scheduling)
protocol for the MSS program, the development of a new algorithm for optimally separating
the tracks of multiple targets in a radar system with very high false alarm rate, and the
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development of trellis coded modulation systems for a variety of applications including Class
IV partial response channels.

Publications:

1-111 List available on request.

112. "Combined Error Correction/Modulation Codes", (with P. Lee), 1987 Intermag
Conference Digest (to be published in iEEE Trans. on Magnetics).

113. "On the Performance Evaluations of Trellis Codes" (with E. Zehavi), IEEE Trans on
Information Theory, Vol. IT-33, March 1987.

114. "Multi-Group Random Access System" (with M. Rodriquez and R. Rao), IEEE
INFOCOM '87 Conference Record, April 1987.

115. "A Robust Collision Resolution Algorithm for the Random Access System with a
Noisy Channel" (with K. Ho and R. Rao), IEEE INFOCOM '87 Conference Record,
April 1987.

116. "On Runlength Codes" (with E. Zehavi). Accepted for publication in IEEE Trans. on
Information Theory, 1988.

117. "A Class of Binary Burst Error-Correcting Quasi-Cyclic Codes" (with W. Zhang).
Accepted for publication in IEEE Trans. on Information Theory, 1988.

118. "On Saving Decoder States for Some Trellis Codes and Partial Response Channels"
(with E. Zehavi). Accepted for publication in IEEE Trans. on Communications,
Februay, 1988.

119. "Signalling with Special Run-Length Constraints for a Digital Recording Channel"
(with C. French and G. Dixon), Accepted for publication in IEEE Trans on Magnetics,
1988.

120. "Collision Resolution Algorithms for a Time-Constrained Multi-Access Channel"
(with S. Panivar, P. Towsely and A. Armoni), Proceedings of the Twenty-Fifth Annual
Conference on Communication, Control and Computing, September 1987.

121. "Trellis Decoding and Applications to Multi-Target Tracking" (with A.M. Viterbi and
G. Dixon), SPIE's Symposium on Innovative Science and Technology, Los Angeles,
CA, January 1988.

LYLE J. FREDRICKSON

ENGINEER

Education:

Lyle J. Fredrickson received the MSEE degree in Electrical and Computer Engineering from
the University of California, San Diego in 1988. He received the BA degree in Mathematics
from the University of California, Berkeley in 1980. He will receive the Ph.D. degree in June
1989.

Experience:

Mr. Fredrickson was an Associate Engineer at Cyclotomics, Inc. from January 1985 to
August 1986. He supervised all aspects of production of stock units and development

I . . ... 5 3.



IQUALCOMM. Inc. Final Technical Report for the Reseach= in Madmatcso and tomp Sciene-
0

systems for digital forward error correction, using Reed-Solomon codes. He designed and
produced CMOS versions of model 888 encoders and decoder.

Prior to that, from August 1984 to December 1984, Mr. Fredrickson worked at Codex

Corporation on telephone interfaces using digital signal processors.

Papers Presented:

"Coding Using Multiple Block (d,k) Codes," International Conference on Communications
(ICC '89), Boston, MA, June 1989.

"Error Detecting Multiple Block (d,k) Codes," Intermag '89, Washington, DC, March 1989.
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