
PURDUE UNIVERSITY
DTIC

S F-LECTEJUL141989 "

CENTER FOR STATISTICAL
DECISION SCIENCES AND

DEPARTMENT OF STATISTICS

, DL4 1tjQON TA7tMEW A
APDlOv~d tot pub~ic yelecEg4

Dbibu~tioin Uiiawgted



EMPIRICAL BAYES SELECTION
FOR THE HIGHEST PROBABILITY OF

SUCCESS IN NEGATIVE BINOMIAL DISTRIBUTIONS

by
TaChen Liang DTIC

Department of Mathematics
Wayne State University EL ECT E

Detroit, MI 48202 JUL 1 4 1989
Technical Report #89-18C SD T E

(Cop-

)SPCCTI) /.

Accesion For

NTIS CRA&I
U1lC TAB C1
Unanno,iriced

JustifhC'tiOn

By ....
Distribution

Avijibility Codes

Department of Statistics AVail arvd I or
Purdue University Dist Special

June 1989

This research was supported in part by the Office of Naval Research Contract N00014-
88-K-0170 and NSF Grants DMS-8606964, DMS-8702620 at Purdue University.

DdLBMON STAT- M4EF A
Approved for public re&'-',,e.

Ditib to I r Ii mit



EMPIRICAL BAYES SELECTION FOR THE HIGHEST
PROBABILITY OF SUCCESS IN NEGATIVE BINOMIAL DISTRIBUTIONS

by

TaChen Liang
Department of Mathematics

Wayne State University
Detroit, MI 48202

ABSTRACT

We study the problem of selecting the highest probability of success from among
several negative binomial distributions via the nonparametric empirical Bayes approach.
A monotone selection rule is proposed on basis of monotone empirical Bayes estimators
of the negative binomial success probabilities which are obtained by using the antitonic
and isotonic regression methods. The asymptotic optimality property of the proposed
empirical Baye-s selection rule is also established.

Key Words and Phrases: Asymptotically optimal; empirical Bayes; monotone estimator;
monotone selection rule; isotonic and antitonic regression.



1. INTRODUCTION

In many situations, an experimenter is often confronted with choosing a model which

is the best in some sense among those under study. For example, consider k different

competing drugs for a certain ailment. One would like to select the best among them in

the sense that it has the highest probability of success (cure of the ailment). This kind of

selection problem occurs in many fields, such as medicine, engineering, and sociology. The

reader is referred to Gupta and Panchapakesan (1979) for further discussions on goals and

procedures for this selection problem.

Now, consider a situation in which one will be repeatedly dealing with the same selec-

tion problem independently. In such instances, it is reasonable to formulate the component

problem in the sequence as a Bayes decision problem with respect to an unknown prior

distribution on the parameter space. One then uses the accumulated observations to im-

prove the decision rule at each stage. This is the empirical Bayes approach of Robbins

(1956,1964). During the last thirty years, empirical Bayes methods have been studied

extensively. Many such empirical Bayes rules have been shown to be asymptotically op-

timal in the sense that the risk for the nth component decision problem converges to the

minimum Bayes risk which would have been obtained if the prior distribution was known

and the Bayes rule with respect to this prior distribution was used.

Empirical Bayes rules have been derived for subset selection goals by Deely (1965).

Recently, Gupta and Liang (1986,1988a,1988b) have studied empirical Bayes rules for

selecting binomial and negative binomial populations better than a standard or a control

and for selecting the best among several binomial populations. They have assumed that
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the form of the prior distributions are completely unknown. Hence, those approaches

are referred to as nonparametric empirical Bayes. Gupta and Liang (1989a,1989b) have

also studied some other empirical Bayes selection rules, in which they assumed that the

form of the prior distribution is known but the distributions depend on certain unknown

hyperparameters. Such approach is therefore referred to as parametric empirical Bayes.

In this paper, we are concerned with the problem of selecting the highest probabil-

ity of success among several negative binomial distributions through the nonparametric

empirical Bayes approach. The selection rule is based on monotone empirical Bayes es-

timators of the negative binomial success probabilities. The framework of the empirical

Bayes selection problem is formulated in Section 2. Using the isotonic regression method,

monotone empirical Bayes estimators as well as a monotone empirical Bayes selection rule

are proposed in Section 3. Finally, the asymptotic optimality property of the proposed

empirical Bayes selection rule is studied in Section 4.

2. FORMULATION OF THE EMPIRICAL BAYES APPROACH

Consider k(_> 2) independent negative binomial populations 7r,... , irk. For each

i = 1,..., k, let pi denote the probability of success for each trial in 7ri and let X, denote

the number of successes before attaining the rth failure in 7ri. We assume that for each

i = 1,... ,k, the trials in 7'i are mutually independent. Thus, conditional on pi, Xilpi has

a negative binomial distribution with probability function f1 (xlpj), where

fi(zjp) = ( +7 -1)PziP) = ,, 21x'-- r pf (1 - pi)', x = 0, 1,2, .... (2.1)

k
Let f(_lE = f Ifi (xip,,), where x - (n,... ,zk) and p - (pt,...,p,). For each p, let

i= 1



P[ij -< ... < Pjk] denote the ordered values of the parameters p,... ,pk. It is assumed

that the exact pairing between the ordered and the unordered parameters is unknown. A

population 7ri with pi = P~kJ is referred to as a best population. Our goal is to derive

empirical Bayes rules to select the best population. The empirical Bayes framework of the

selection problem is formulated as follows.

Let fl = {p = (Pl,...,Pk)ilp E (0,1), i = 1,...,k} be the parameter space and

k
let G(p) = f" Gi(p) be the prior distribution over fl, where G,(.) are unknown for all

i = 1,... , k. Note that under this model, pi's are assumed to be independently distributed.

Let A = {iji = 1,...,k} be the action space. When action i is taken, it means that

population ri is selected as the best population. For the parameter p and the action i, the

loss function L(p, i) is defined as:

L(p, i) = P[k - Pis (2.2)

the difference between the best and the selected population.

Let X be the sample space generated by X = (X1... , Xk). A selection rule d =

(dl,..., dk) is defined to be a mapping from the sample space X to [0, 1 1 k such that for

each observation : = (zi,... ,zk), the function d(x) = (d (_),...,dk(X)) satisfies that

k
0 < di(z) _< 1 for all i = 1,... ,k, and di(j) = 1. Note that di(j) is the probability of

selecting population ri as the best population when I is observed. Let D be the set of all

selection rules defined previously. For each d E D, let r(G, d) denote the associated Bayes

risk. Then, r(G) = inf r(G, d) is the minimum Bayes risk among the class D, and a rule,
dED

say dG, is called a Bayes selection rule if r(G, dG) = r(G).
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Based on the preceding statistical model, the Bayes risk associated with the selection

rule d is:
k

(G, d) = JZZ L(E,,)did,()f(p)d(p)
EXt1 (2.3)

= C - di d(_1) pi(xi f_
zEX Li=1

where

f(s) = rI fAzi),
i=1

1 1

f(zi) = f f 1(zxjp)dG,(p) = ('+'-") f p'(1 - p)rdG,(p) =a(x)hj(xj),
0 0

1 (2.4)
a(x,) = (z7-1), hi(xi) = f p1 ( - p)rdG,(p),

0

Pi (xi) = h1 (x + 1)/h,(x) (note that 0 < po(z) < 1), and

C = E f p[klf(-I_)dG(p).
.EX nl

Note that C is a constant which is independent of the selection rule d. Thus, from

(2.3), Bayes selection rules can be obtained as follows.

For each z E X, let

A(m) = {iIpi(z ) = max pi(zj)}. (2.5)

Any selection rule d = (dj,...,dk) such that 1 d-(z) = 1 is always a Bayes rule. Thus,

a randomized Bayes rule is dG = (d1G,..., dkG) where

d IA(_) -1  if i E A(_),d ) o otherwise,

and IAI denotes the cardinality of the set A.
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Since the prior distribution G is unknown, it is not possible to apply the Bayes rules

for the selection problem at hand. In this case, we use the empirical Bayes approach. It is

assumed that past observations from each of the k populations are available.

For each i = 1,...,k, let (X 13,Pj), j = 1,...,n, be independent random vectors

associated with population iri, where Pij stands for the random probability of success for

each trial in 7ri at stage j, and Xq stands for the number of successes before attaining

the rth failure in 7ri at stage j. It is assumed that Pij has prior distribution Gi for all

j = 1,2,.... Conditional on Pij = pij, Xij 1pij has a negative binomial probability function

fi(zijlpi) given in (2.1). It should be noted that Xj is observable but Pij is not. Let

the jth stage observations be denoted by Xj. That is, X = (X 1 ,... , Xk). From the

assumptions, X,... are mutually independent and identically distributed. We also

let X,+ 1 = X = (X 1 ,... , Xk) denote the observation at the current stage.

From (2.5) and (2.6), a natural empirical Bayes selection rule can be defined as follows:

For each i = 1,...,k, and n = 1,2,..., based on the past data Xil,...,Xi,, and the present

observation Xi = zi, let poi,( (z) = i ; Xi, , Xi.) be an empirical Bayes estimator

of Poi(x). Then, by letting

= {ij 1j(xj) = max p (2.7)

an empirical Bayes selection rule dn(z) = (dn(.x),... ,dk(x)) is defined as below.

di (z {A 1 if i E , 2.8)
.0 otherwise.

Note that the past data (X1,... ,X,) is implicitly contained in the subscript n.
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For such an empirical Bayes selection rule d,,, let r(G, d,) be the corresponding overall

Bayes risk. That is,

k

r(G, d,) -E _ (Ei)d,, (.)fC(_1p)dG(p )
x (2-9)

where the expectation E is taken with respect to (X.,... ,Xn). Since r(G) is the minimum

Bayes risk, r(G, d) - r(G) 0 for all n. Thus, the nonnegative difference r(G, d,) - r(G)

is used as a measure of the optimality of the empirical Bayes selection rule d,.

Definition 2.1. A sequence of empirical Bayes selection rules {d,}'_ 1 is said to be asymp-

totically optimal relative to the (unknown) prior distribution G if r(G, d,) - r(G) - 0 as

n, --+ oo.

In the following, we seek a sequence of asymptotically optimal empirical Bayes selec-

tion rules for the selection problem under study.

3. THE PROPOSED EMPIRICAL BAYES SELECTION RULE

Before we go further to construct empirical Bayes rules for the selection problem at

hand, we first investigate some properties related to the Bayes selection rule dG defined in

(2.6).

Definition 3.1. A selection rule d = (dl,... ,dk) is said to be monotone if for each i =

1,... , k, dj(z) is increasing in zi while all other variables zj are fixed, and decreasing in

zj, for each j 5 i while all other variables are fixed.

Note that for each i = 1,...,k, Vi(z 1 ) = hi(z + 1)/h(z,). Straight computations

7



show that oi(xi) is an increasing function of xi. Thus, from (2.5) and (2.6), one can see

that the Bayes selection rule dG is a monotone selection rule. Also, note that p,(z,) is the

posterior mean of Pi given Xi = xi, and it is the Bayes estimator of P given Xi = x, for

squared error loss. Under the squared error loss, the problem of estimating the probability

of success in a negative binomial distribution is a monotone estimation problem. By

Theorem 8.7 of Berger (1985), for a monotone estimation problem, the class of monotone

estimators form an essential complete class. Also, for the present selection problem, under

the loss function given in (2.2), the problem is a monotone decision problem. Again, from

Berger (1985), the class of monotone selection rules is essentially complete. Now, one can

see that if the empirical Bayes estimators pin(zi), i = 1,...,k, are monotone, then the

empirical Bayes selection rule given through (2.7) and (2.8) is also monotone. From these

considerations, it is reasonable to desire that the concerned estimators {pin(xi)} possess

the above-mentioned monotonicity property.

For each i =1,...,k, let Ni, = max(Xil,...,Xi) - 1. For each x = 0,1,2,..., let

fin(X) = EI{.(Xii), (3.1)
j=1

where 1A denotes the indicator function oi the set A. Let

hi,(x) = fin(z)/a(x). (3.2)

It is intuitive to use hi,(x) as an estimator of hi(x). However, note that hi(x) is nonin-

creasing in z; while hin(z) may not possess the nonincreasing property. Thus, we consider

a smoothed version of hin(z). Note that hin(z) = 0 ifxz> Ni,+i. Thus, let {h(,zx)}.=

be the antitonic regression of , + with equal weights, and let h(y) = 0 for all

y> Ni + 1. Thus, h!,(z) is nonincreasing in z.
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For z = 0,1,...,Nt, let

Pi(x) = h* (x + i)/h' (x). (3.3)

Since pi,(x) may not possess the nondecreasing property as pi(z) does, we consider

a smoothed version of Pin(x) as follows. Let {i,(x)}.o be the isotonic regression

of {voi,(x)}N_ with random weights {h! (X)}N_%. For y > Nin, we define Po*(y) =

(Nin). Therefore v! (z) is nondecreasing in z. Note that 0 < o (z) _ 1 for all

z = 0, 1,2, ... We use Vo ,(z) to estimate po(x) and propose an empirical Bayes selection

rule d = (d,,.. ., d;) as follows.

For each x (zl,... , Z) E X, let

A.(.)= {iWIon(xi) = Max Po~n(Xj) }  (3.4)

and for each i = 1,...,k, let

d! { IA;f )l-' if i E A,(z),i 1 0 otherwise. (3.5)

Since o*,(xi) is nondecreasing in xi for each i = 1,...,k, we see that d*(.Z) is a

monotone empirical Bayes selection rule.

Remark 3.1. For each y = 0,1,2,..., let Hin(y) = hi-(z), H (Y) = h x(z), and
z=O z=O

Hi (y) = h (x). Also, for each y = 0,1,... ,Ni, let 'Fn(Y) = E r,.(x)h! (x), and

V y
(Y)= , p .(x)h!.(x). Then, by the definition of P,.(x), Oi(.Y) = E h.(x + 1) =

Z=O z=O

H ,t(y + 1) - HB,=(0) for 0 < y < Nin. Also, from Barlow, et al. (1972), and by noting the

fact that hi,(y) = h!,(y) = 0 for all y > Ni, + 1, we have the following results:

H*,(y) > Hin(y) for all y =0, 1,2,... (3.6)
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sup IH*.(y) - H, (y) _ sup IH,.(y) - Hi (y)l. (3.7)

IQ:,n(y) 4 'ki,(y) for all y = 0,1,... (3.8)

Remark 3.2. From Puri and Singh (1988), we have

n,(O)= mai ['Pi,(y)/H,,,(Y)]. (3.9)
o< y<N.,

('Pi () -y) (x - 1))/(H,(y) - H x- 1))], x= 1,,..., ,N . (3.10)

From (3.8), (3.9) and (3.10) we obtain

,(x) min [m (Vin'(y) - 'Q ,n(x- 1))/(Hn(y) - H.n(x - 1)))-- z<y<Ni."

(3.11)
= min [(H* (y + 1) - Hin(x))/(H* (y) - H ,*(x - 1))]=<V_<Ni,, n n

for each z = 0, 1,..., Nin, where Hi*, (- 1) 0.

Remark 3.3. Analogous to Puri and Singh (1988), we can obtain an alternative form of

P,(x) as follows.

,N,) = ,max /Z(r)) I h* (r)] (3.12)

O~ ~ Oy:5N Pi Z(or)h~r'r=y r=y

1 r~y r---z+l =y

for x = 0, 1,..., Ni, - 1, and

n ZE! <(r)h!,(r), for x=0,1,...,N,,. (3.14)

Thus, we can obtain

P!g~ (z) maxPi(r)h* (r) - 1: in(r)h' (r))/~ h!' (r
n max ,,,,'- NE, in / )]i .

I r= r=z+ = (3.15)

= max I(Hi',,(x + 1) - Hi.',(y)) / (H'(z) - HIt; (y- 1))]
O<Y:10
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for each x = 0, 1,..., N,,.

4. ASYMPTOTIC OPTIMALITY

In this section, we investigate the asymptotic optimality property of the sequence of

empirical Bayes selection rules {d*} defined previously.

For 1 < i < j < k, and each zi = 0,1,2..., let A1j(z) = {xjIpj(xj) > pj(zi)} and

Bi,(xz) = {xzijj(xj) < pCi(x)}. Let

fm rin A1j(x,) if A13 (z1 #.,
100 if A1i(xi) =4.,

max B~i(xi) if B,j(x) # 4,
m 3 (x,) ={ -1 if B1j(xi) = 4.

Note that, by the nondecreasing property of Vj(xj), mii(xi) _ Mij(xi) and mij(x) <

Mij(zi) if Aij(xi) # 4.. Let

r~i(n) = E E W(xi) - Pjixj)IP{P.Cxi) _ v!,(x f
Zi=O 

z"= O

+ E E [i(x) - P (xi)]P{ s(x) > Pj,&(x)}fi(xi)fj(x )

: =0 :--M~i (z0)

-ii (x-i) 00

where E = 0 if m1i(z) = -1 and E - o if Mij(x) = 0.
zi =0 zi =Mii (z)

From (2.5) and (2.9), a straightforward computation leads to that

0 < r(G,d;,) - r(C)
k-1 k

< Z E ,,(n).
t=1 j=i+1

Thus, in order to investigate the asymptotic behavior of the difference r(G, dn) - r(G), it

suffices to consider the case where k = 2. We claim that

Therem4.1 r12(n) --+ 0 as n - oo.



Theorem 4.1 implies that the sequence of empirical Bayes selection rules {d } is

asymptotically optimal. In the rest of this section, we are going to prove Theorem 4.1.

The following lemmas are useful in presenting a concise proof of Theorem 4.1.

Lemma 4.1 Let {am} be a sequence of real numbers and {bm} be a sequence of positive

numbers such that bm :5 1 and bm is nonincreasing in m. Then, for each positive constant

C,

n1 n

sup I E ambml : (>)c implies that sup 11: > (>)c.
n>1 m=1 n>l m=l

Since this lemma is trivial, the proof is omitted here. The following is a consequent

result of Lemma 4.1.

Corollary 4.1 For each i = 1,...,k, and z = 0,1,2..., let F,(z) = f,(z), F.(z) =
z=O

z

Z f,(Z). Then, for fixed positive constant c,
z=O

SUp Hin(z) - H >(z)I (>)c implies that sup IFin(z) - F(z)I > (>)c.
z>O z>O

Proof: There is a direct result of Lemma 4.1 by noting that hi,,(z) - h.(z) = (fi,(x) -
fd~x)la~), herellaz) =(.+ -1-

f t ())/a(z), where 1/a() = < 1 and which is decreasing in x.

Lemma4.2. For each fixed z 0,1,2..., and 0 < t < pi (x), let

Qj(ytx, t) = [-H(y+ 1)+H(zx)]+[H(y)-H(x-1)][(oi(x)-t for all y = x,x+1, ... Then,

Qi(yjz,t) is nonincreasing in y and therefore, maxQi(ylz,t) = Q(xlz,t) = -thi(z) < 0.
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Proof: Qjdyjx,t) -Qj(y + lx,t)

= [Hi(y + 2) - Hj(y -1 1)] - [Hi(y) - Hi(y + i)][ oi(x) - t

= h1(y + 2) - h1 (y + 1)[ pj(x) - t]

= hi(Y + i)[voi(y + 1) - vi(x) + t]

> hi(y + 1)t

> 0

where the first inequality is due to the fact that y ! x and thus pi(y + 1) : pi (x). There-

fore, pi (yfz, t) is nonincreasing in y for all y ! x, and hence max Qj(ylx, t) Qj (xx, t)=
v~z

-th1 (x) < 0.

Lemmra 4.3. For each x 0,1,2,..., and 0 < t < 1 - i(x), let

Ri(ylx, t) =[-H 1 (z +1) + Hi(y)] +[H 1(x) - H1(y -1)] [poi(x) + t] for all y = 0,1,... ,x,

where H,(-1) M0. Then, R, (yjIz, t) is nonincreasing in y for y = 0, 1,...x, and hence,

min R1(ylx,t) = A(xlx,t) = thi(x) > 0.

Proof: ForO~y< x-1,

Rdylx,t) - Rj(3i + 1Ix,t)

=Hy)- H1 (y + 1)1 + [Hi(y) - H1 (y - 1)1[pdz) + tl

= - h1 (y + 1) + hi(y)[p1 (x) + t]

=hj(Y)[-(oi(y) + pi(x) + t]

>0

since 0 < y <5 x - 1 and thus pj(x) - pi (y) : 0. Therefore, Rj(yjx, t) is nonincreasing in

Y fory =0,1,...,x, and hence min Ri(sIz,t) =Ri(xjx,t) =hj(x)t >0.
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Lemma 4.4. For each 1,. ,k, t > 0 and x=0, 1, 2,..

P~p7(x)- pi(z) :5 -t} ! [F1() Th + dexp(-nt'h0(x)/8)

where d is a positive constant which is independent of the distribution Fi.

Proof: Note that 0 < V,!n(x), wi(x) < 1. Hence P{p* (x) - cpi (x) ! -t} = 0 if t >pi()

Thus, in the following, it suffices to consider those t such that 0 < t <~o()

Now, for 0 < t < Wi(x),

P{vion(x) - cpi(x) :5 -t)

=P{v* ~(x) - po1(x) < -t and Nin <z}I + P{Wo! (x) - po1(x) < -t and Ni xjz,

w here 
P ! ( ) -p~ ) < - n i I 5[ i xI

-i(nS-tadM z} [ 1 z] (4.2)

which is obtained by the definition Of Nin.

Let Ti~n(x) = Hi(x) - Hi(x) and Tin(x) = Hin(x) - 111(x). From (3.11), (3.7),

Corollary 4.1, Lemma 4.2 and Lemma 2.1 of Schuster (1969) and by noting the fact that

0 < t < W(x) < 1, we have
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P{ p,(x) - p1,x) < -t and N > x}

<P{Hi,,(y + 1) Hi,(Cx) - AMy) - H,( 1)][eP(x) - t] < 0 for some x <y _< Nin}

=P{T,,Cy + 1) - T.,(x) - [T.,,(y) - T.,,Cx - 1)][Vdx) - tl <_ Q(yl,t) for some x < Y _ N,}

<P{Ti, (y + 1) - T,(z) - [Tin(Y) - T,(z - 1)][,,(x) - t] < -thi(x) for some x < y 5 Ni,}

<P{ sup IT,' (z)I > th 1 (z)/4} (4.3)
z <z< Ni.+l

<P{supjTj*n(z)I > th 1(z)/4}
z>o

<_P{supIFs, (z) - F,(z)I > th1 x)14}
Z>O
Z>o

<dexp(-nt 2 h?(x)/8).

Thus, from (4.1), (4.2) and (4.3), the proof of this lemma is complete.

Lemma 4.5. For each l= 1,...,k, t > 0 and x=0,1,2,...,

P{P (z ) - i(z) _ t} < [F,(x)]" + dexp(-nt 2h Cz)/8)

where d is a positive constant which is independent of the distribution F,.

Proof: The proof of this lemma uses the results of (3.7), (3.14), Corollary 4.1, Lemma 4.3

and Lemma 2.1 of Schuster (1969). The argument for the proof of this lemma is similar

to that of Lemma 4.4 We omit the detail here.
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Proof of Theorem 4.1

Let A(XI,X 2 ) = P1X)- 02 (X2). Note that

0. mI2(21)

r12(fl) = E F, A(X1,X 2 )P{ 0*1(Xi) V2.(X2 )}fl(Xl)f 2 (X2 )

00O 20 
(4.4)

+ (-A(XlIX 2 ))P{P~l(XI) ~n(2)}fl(X1)f2(X2).
ZI=0 Z2 =M1 2 (Zj)

For X2 :5 mi2(Xl), W1 (X1 ) - P2 (X2 ) > 0 and

P{V*1.(XI2 :5 P(Z 2 ))

{5P V-i(Xi) - Po1(zI) 5 - (Pi(Xl) 2-2(22 (4.5)

+ 2,X)- PO2(Z2) 1( )-2(2

For X2 M12(zI), PI(X1 ) - 2(X 2 ) < 0 and,

SO2( X2) - (I

+ P { P2,(X2 ) - 2(X2) <5 2(2 C0(

Also, 0 < 901 (Z j 2V2 (21) < min(P'I(Xl), 1 - V'2(X2)) as X2 5 m1 2(xj), and 0 <

V2 (2)- 2WI 1 < min(Po2(X2), 1 p(XI)) as X2 ! M12(xi). Then, from (4.4)-(4.6),

Lemmas 4.4 and 4.5, one can obtain the following:

where each of the three terms at the right-hand-side of (4.7) tends to 0 as n tends to

infinity. This implies that r12(n) --+ 0 as n --* co. Hence the proof of the theorem is

complete.
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