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1. Introduction.

Consider the linear regression model

Y - XB + e , (1.1)

where Y is an (n x 1) vector of observations on a dependent variable,

X is an (n x r) nonstochastic matrix (we assume full column rank for

convenience) of observations on r explanatory variables, 0 is an

(r x 1) vector of regression coefficients, and e is an (n x 1) vector

of disturbances, normally distributed with zero expectation and

covariance matrix o21. Estimators of 0 improving upon the least

squares estimator,equivalently the maximum likelihood estimator, have

been extensively discussed. See, for example, Judge and Bock (1978).

Improved estimation of the disturbance variance o2 seems to have been

generally overlooked. The usual estimator of o2, (Y-Y) (Y-Y)/(n-r)

is best unbiased but is inadmissible under squared error loss (SEL),

L(c,2 ,o2) = (o - 02)2 It is immediately dominated by the best

invariant estimator based upon the error sum of squares,

(Y-Y)t(Y-Y)/(n-r+2 ). (1.2)

However, (1.2) is also inadmissible. In the sequel, we develop

a class of estimators of c2 which arise naturally in a regression

model and dominate (1.2) in terms of the mean square error (MSE), DIM

EL(a 2 , 2 ). The roots of this problem date to Stein (1964), who

showed that if X... ,Xn are N(p,a 2 ), then (X.-X) 2/(n+l), the best

invariant estimator of o2 based upon S -(X. - X)2, is inadmissible, -

i.e., for fixed V = 0, Ju.irl tLo 0

6(S,X) = min{Z(Xi- O)2/(n+2), 1(Xi-)2/(n+l) }
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dominates the best invariant estimator. The interpretation is that

for some samples the best invariant estimator is too large.

Interestingly, 6(S,R) does not dominate E(X.-wO) 2/(n+2). The latter

does better in a neighborhood of V0' Brown (1968) subsequently

extended this idea to a different class of dominating estimators.

For further reference, see Brewster and Zidek (1974), Strawderman

(1974), and Gelfand and Dey (1986). The key point is that (S,X) is

a version of the sufficient statistic for this problem, that

contains information about a2, and that estimators based upon S only

will be inadmissible. In the regression model (1.1), a version of

the sufficient statistic is (O= (X'X) -X'Y, SSE = (Y - XB)'(Y - Xa))

which suggestswhy (1.2) will be inadmissible. Our development in

extending Stein's work is briefly alluded to in Klotz, Milton and

Zacks (1969, p. 1392) in the context of variance components. In

Section 2, we offer a general development of dominating estimators

of 02 for this type of problem. In Section 3, we look specifically

at the example of the regression model in (1.1). We note that these

results will be applicable to more complicated econometric models.

2. Development of Dominating Estimators.

Suppose we observe several independent chi-square random variables

as SO A o2X 2  and Si 0 a22 X.' i = l,...,p, i.e., SO is central
0 1i

chi-square with n o as d.f. and the S. are noncentral chi-square

with n. d.f. and noncentrality rarameter X.. Define c. = n. + 2,
_. i=0

T. = c. E S. and finally
S 3 i O
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6. = min(To,Tl,... ,T), j = O,l,...,p. (2.1)

Then we have

Theorem 2.1. In estimating a2 under squared error loss, the

following holds:

60 << 61 << 62 << << 6 p

where 6. << 6. means 6. dominates 6i,1 .1 a

Proof. Since the MSE of 6. is E 2(2-6 )2 o4 E (1 -6 2

j = 0,...,p, without loss of generality we take o2 = 1. We may
2

consider Si11, % Xn+2L where L. % Po(X.) and given L ...,L
11 1 2,11 1l 'p1 1

the S., i = 0,...,p, are conditionally independent. Moreover, the
1

variables U. = c.T./C. T , j = 0,1,...,p-1, are also conditionally

independent and for fixed j, U0,...,Uj_ 1 are conditionally independent

of T..a

Thus for any estimator of the form

cj h(U0Ul ... :U J )T . (2.2)

we may write its MSE at a2 = 1 as

E(cjh(U 0,U,..., Uj- )Tj-)2

= E[E{(h(UoUI'... UJ-
1 )c ' T ' - I ) 2 L I ' 1 ...,L.)}]

i j 2= E[(c.-2+2 . L.i)(c.+2 ZL.)E{h2(OUoUI...,Uj IL1,...,Lj
S il=1 I i=l1 (u,) 5  u.)L 5

J
- 2(cj-2+2 Z L.)E{h (UoU 1 ,Uj1 )1L1 ,... ,Lj}+ 1

i=l133
2 .

(using the fact that given L 1,...,L., T. ' Xc . 2+2 E L.

-J i-I1

= E[{(h(UO,UI ... , 3 ,1 )-(c.+2 E L.) I2(c.-2+2 E L.)(c.+2 E L.)

i=l iinl 1 3 i=l

+ 2(c.+2 E L.) -  (2.3)
Si=l1
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where the expectation in (2.3) is over the U. given L. and then over

L..

From (2.3) we see that replacing h by

h* = min(h,c. ) (2.4)

yields an estimator c.h*T, which dominates c.hT..J .1 . J

In particular, writing 6j_1 in the form (2.2), we have

h(Uo,...,Uj I ) = B(Uo,...,Uj2)Uj_ 1

where

j-2 k'-1
I. U./c k if R U. < C/c, k < k', and

i=k i=k 1 kk

k-la(U0,...,lUj ) = T1 U'I >  ck,/ck, k < k,
0'. ~*' jlik' k

-I j-2
cj_ 1  if fl i > ck/cj_, k = 1,2,...,j-2,

I i=k
j-2

i.e., a = E Ui/c = T k/cj_Tj_ I if Tk -= min T. k < j-1,
i=k k<_i<j-k 1 '

-1
and 8 c1 if T = in T..

l <i~ -l 1

Finally, using h* in (2.4), we obtain c.h*T. = min(c:hT.,T)

min(6j_l,T j ) = 6. dominating c.hT. = 6Sj j-l"

Remark 2.1. When p = 1, we obtain the fact that

61 = min(S 0/(n +2), (So+Sl)/(no+n1+2))

dominates SD/(n 0+
2), which includes Stein's (1964) result. We note,

possibly counter to one's intuition, that 60 does not dominate

(S0+S1)/(n0 +n1 +2). In particular, when the noncentrality parameter X
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is very small, the MSE of 60 is only slightly smaller than 2/(n 0+2)

(see, for example, Brown (1968)), while that of (S0 +Sl/(n0+n1 +2) is

only slightly greater than 2/(n 0+n1 +2). Stated another way, 61 is too

small in the estimation of a2 when X1 is small. Figure 1 illustrates

the situation.

More generally, the estimator 6. as defined in (2.1) dominates

T but not T V,...,T j .

Remark 2.2. Theorem 2.1 establishes the inadmissibility of

nontrivial scale preserving estimators of the form (2.2). It can be

generalized to the estimation of am by extending the discussion in

Gelfand and Dey (1986). We omit the details here.

Next we state as Theorem 2.2, an extension of Theorem 2.1 for

p = 1. The extension for general p is apparent.

Theorem 2.2. Suppose S- - o2X2 , S -" (o2+T2)X2  and0 n0  1 n S, S1

are independent. Using the notation of Theorem 2.1, in estimating

02 , 61 dominates 60 under SEL.

Proof. We may think of S1 as arising from S IjW1  w ' o2x 2

where W I 'X (T2/202)X2 1sol 1 l w

wr 1 2 2X2 nI , so that the resulting marginal distribution of

SI  is (2+T2)x
2

Hence, by Theorem 2.1, regardless of the given WI, 60 << 61

whence integrating over W, yields the result.

Remark 2.3. Theorem 2.2 and its extension to general p finds

immediate application to the estimation of the error variance in

balanced variance components models. See, Klotz, Milton, and Zacks

(1969) for discussion in the one-way layout.
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Remark 2.4. As in Remark 2.2, Theorem 2.2 can be generalized to

the estimation of a

Returning to the setting of Theorem 2.1, let a = (al,...,p) be

any permutation of the integers 1,...,p and let cc n0 + E + 2.

ac a c- 1 3  i 1
Also, define T. Z Cc. S + , where as before a'

Si=l a. 0

S. °2x 2 and S and the S. are all independent. Finally,
1 nx. ' xa. 0 1

1

define

6 = min(T0,T'.. .,T.) a (2.6)

Then Theorem 2.1 implies that in estimating 02 under SEL, for each a

6 < 6 1<2 ... << 6 . Hence we obtain p! estimators, 6 P each60 < 1 2 .. p" p

defined by a permutation of 1,...,p. These estimators are order

dependent (i.e., dependent upon the specification of a particular

permutation) and a natural question to ask is how to combine these

to construct a permutation invariant estimator. A- first thought is

6* = min 6 
. The discussion in Remark 2.1 shows-that 6* will be

p

"too small" and will not dominate-6 . A better choice will be
p

= (p')-lZ 6a (2.7)
p

where the sunmmation is over all permutations of 1,...,p. In particular,

we have

Theorem 2.3. If the MSE of 6 is constant, say m, for all a,P

then 6 a << 6 for any permutation cx (cxp".. "cx
p P
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Proof. The MSE of T is

E(T - 1)2 = E[(p) - I  ( - )2

P

= (p')1 m+ (p')2 1 E(6' - 1)(6 - 1)
ai~aI p p

= m + (p!)- 2 E [E(6' - 1)(6" - 1) - m] < m,
a(a' p p

since by the Cauchy-Schwartz inequality

E( - 1)(6a ' - 1) <-{E(6' - 1)2 E(6" - 1)2} iM.
p p p p

This completes the proof of the theorem.

3. Application to Linear Regression.

In this section we will use the improved estimators of a2 as

developed in Section 2, in a linear regression context. Consider the

linear model (1.1) and suppose we are interested in testing the

2 2hypothesis I' . Let R 02R 1 be the full model and reduced model

error sum of squares respectively, i.e.,

R2 min(Y - Xe)'(Y - XS)0

and

2
R min (Y - XB)'(Y - XO).

H' B=

Then, whether or not the hypothesis is true, it follows that (see, e.g.,

Rao (1973) for details) 2 2  and is independeni of R1 - R0
0  n-p 1 0

S02 X2 where k = rank (H) and % is the resulting noncentrality

parameter. Thus from Remark 2.1, it follows that

2 2

61 M min( 1
n-r+2 ' n-r+k-2 (3.1)
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dominates R 2/(n-r+2) which is the best invariant estimator of a2 of the
0

form cR2
c0 '

The estimator 3.1 can also be viewed as a preliminary test

estiwator for testing the null hypothesis that H'O - E vs. the

alternative Hi : H'8 # C. For a definition and discussion of preliminary test

estimators,see Judge and Bock (1978).

Let us now consider general p. We presume a sequence of nested

hypothesis as given below:

H0 : Xe C M(X) with dim(M(X)) = r,

H. : XF c S. C M(X) with dim(S.) = k., i = l,...,p,1 1 1 1

where M(X) denotes the linear manifold of X (i.e., the vector space

generated by columns of X), S 1 C. S 2 C ... C S and k1 > k2 > ... > kp.

Now define

R2 = min (Y - XB)'(Y - Xe), i = 1,...,p,

2and again let R be the full model error sum of squares. Thus it follows

that

2 R2 2
1 - 2Xn~ i = . p

1 1

2and S.'s are independent and also independent of So = R0' 02X where

no = n - r, nI 
= r - ki, n i = k_ - ki, i = 2,...,p. Thus we are in

the framework of Section 2. Applying Theorem 2.1, we obtain the improved

estimator of a2 as

R2 R2 R2 R2

6p min(- 0  1 ) (3.2)p n-r+2 ' n+2-k I n+2-k 2 ' n+2-k p
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Computation . (3.2) should present no problem since the R. are obtained

in fitt,-g the nested models.

In the special case where we are looking at the r explanatory

variables individually, we have r! sequences in which the variables can

be removed. For any particular sequence, a,using the notation of (2.6)

in (3.2), we obtain

2 R2  R2

R 0i CL16 , min RO 0.3)
p I n-r+2 ' n-r+l '''* n+2 (

In obtaining an estimator of o2 we then have two possibilities.

(i) If, on the basis of prior experience or theoretical grounds, we

have a particular sequence in which the variables are to be entered,

hence removed, then this sequence provides (3.3). If, however,

this sequence arises from some formal variable selection procedure,

then a is data dependent whence the resultant (3.3) does not meet

the assumptions of Theorem 2.1, so that no claims can be made for

its MSE performance. In fact, such a 6 is nearly min 6 a
p a p

which from remarks after (2.6) will likely be "too small."

(ii) Calculate T as in (2.7). We may argue that the MSE's of the 6a
p

are likely to be close. First we expect that each of the 6a

p
achieves small improvement in MSE over R /(n-r+2) (see, e.g., Brown

0
1968 for some empirical evidence) and second, the sequence of

denominators in (3.3) is the same regardless of a. Theorem 2.3

thus encourages 6.
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