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1. Introduction.

Consider the linear regression model

Y=XRB +e, ’ (1.1)
where Y is an (n x 1) vector of observations on a dependent variable,
X is an (n x r) nonstochastic matrix (we assume full column rank for
convenience) of observations on r explanatory variables, 8 is an
(r x 1) vector of regression coefficients, and e is an (n x 1) vector
of disturbances, normally distributed with zero expectation and
covariance matrix o2I. Estimators of B improving upon the least
squares estimator,equivalently the maximum likelihood estimator, have
been extensively discussed. See, for example, Judge and Bock (1978).
Improved estimation of the disturbance variance 02 seems to have been
generally overlooked. The usual estimator of o<, (Y—&)t(Y-;)/(n-r)
is best unbiased but is inadmissible under squared error loss (SEL),
L(Gz,gz) = (o~ - ;2)2. It is imme&iately dominated by the best
invariant estimator based upon the error sgm of squares,

(Y-Y) T (Y-¥)/ (n-r+2). (1.2)

However, (1.2) is also inadmissible. In the sequel, we develop
a class of estimators of 02 which arise naturally in a regression
model and dominate (1.2) in terms of the mean square error (MSE),

EL(02,02). The roots of this problem date to Stein (1964), who

showed that if X ,...,X are N(u,0?), then z(xi-i)z/(ml), the best -~ ——

invariant estimator of o2 based upon S = Z(Xi - i)z, is inadmissible, E;

i.e., for fixed y = g

i Ju;}LlfluuL;OKl_—-——_
8(s,X) = min{i(xi-uo)zl(n+2), Z(xi-§)2/(n+1)}
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dominates the best invariant estimator. The interpretation is that
for some samples the best invariant estimator is too large.
Interestingly, 8(S,X) does not dominate Z(Xi-uo)z/(n+2). The latter
does better in a neighborhood of ¥o- Brown (1968) subsequently
extended this idea to a different class of dominating estimators.
For further reference, see Brewster and Zidek (1974), Strawderman
(1974), and Gelfand and Dey (1986). The key point is that (S,X) is
a version of the sufficient statistic for this problem, that X
contains information about ¢?, and that estimators based upon S only
will be inadmissible. In the -egression model (1.1), a version of
the sufficient statistic is (B= (X'X)-IX'Y, SSE = (Y - XB)'(Y - X8))
which suggests why (1.2) will be inadmissible. Our development in
extending Stein's work is briefly alluded to in Klotz, Milton and
Zacks (1969, p. 1392) in the context of variance components. In
Section 2, we offer a general development of dominating éstimators
of o for this type of probleml In Section 3, we look éﬁecifically
at the example of the regression model in (1.1). We note that these

results will be applicable to more complicated econometric models.

2. Development of Dominating Estimators.

Suppose we observe several independent chi-square random variables

2 2 . . .
as S0 ~ ozxno and Si n ozxni’xi, i=1,...,p, 1.e., S0 {s central

chi-square with n_ as d.f. and the Si are noncentral chi-square

0
J
with n. d.f. and noncentrality parameter Ai. Define cj = I o, ¢ 2,
. i=0
-1 J -1

T, =c. I Si and finally

J J i=0




Gj = min(TO’Tl"'°’Tj)’ j=0,1,...,p. (2.1)

Then we have

Theorem 2.1. In estimating 02 under squared error loss, the
following holds:

60 << 61 << 62 << ,,. << dp ,
where &§. << §, means &, dominates §.,
i 3 i i

Proof. Since the MSE of §. is E 2(02—6.)2 = g% E (1 —6.)2,

Ia— b o 3 1 3
j=0,...,p, without loss of generality we take 02 = 1. We may

consider SilLi ~ where L. ~ Po(Ai) and given L.,...,L

13‘ "p

the Si’ i=20,...,p, are conditionally independent. Moreover, the

2
Xn.+2L.
i 1

variables Uj = CjTj/cj+1Tj+1’ j =0,1,...,p~1, are also conditionally

independent and for fixed j, UO""’Uj-l are conditionally independent

of T..
J

Thus for any estimator of the form

cjh(UO’Ul""i 5-1

we may write its MSE at 62 =1 as

. T, ' - (2.2)
3 _

2
E(th(Uogul,-..,Uj_l)Tj 1)

2
= E[E{(h(UO,Ul,...,Uj_l)chj—l) |L1,...,Lj)}]

j j 2
= E[(cj-2+2i£1Li)(c.+2i£1Li)E{h (UO,UI,...,Uj_l)lLl,...,Lj}

b
- 2(c.-2+42 ¢ L.)E{n(u_,U
1 0

U, )L, ., 41
s=1 1°75-1 _1 Jj

. . 2 23
(using the fact that given Ll""’Lj’ Tj " ch-Z*Z% L -

i=]

i 19 j j
LU, )-(c.+2 T L,) "} (c.,~2#2 2 L,)(c.+2 L L)
J-l ) 1 h] . 1

= E[{(h(Uo,U
i=1 i=1 * i=1

1’

] - .
+ 2(c.+2 Z L.) 1] (2.3).
3 oy=1?




where the expectation in (2.3) is over the Ui given Li and then over

L..
b

From (2.3) we see that replacing h by
h* = min(h,cgl) (2.4)
yields an estimator cjh*Tj which dominates cthj.

In particular, writing Gj-l in the form (2,2), we have

h(UO""’Uj-l) = B(UO""’Uj—Z)Uj-l
where
[ j-2 k'-1
I Ui/ck if I Ui < ck/ck., k < k', and
i=k i=k
k-1
] = : '
B(Lo,...,Uj_l) * izk.U. > ck./ck, k' < k,
-1 s / '
> = -
cj_1 1f i=kUi 2 cj—l’ k 1,2,...,3-2,
j=2 ) - .
i.e., B= TNMU./Je, =T /c. T. . if T, = min T., k < j-1,
=k 3 k k' 3-17j-1 ] k 1<i<j-T 1 .
-1 . .
and B = C:y if T._l min T,.
J J 1<i<j-1

Finally, using h* in (2.4), we obtain cjh*Tj = min(cith,Tj)

= min(§, .,T.) = 8. dominating c.hT. = &
i B b 33

1

Remark 2.1.

3

When p = 1, we obtain the fact that

= min(so/(n0+2), (so+sl)/(n0+n1+2))

dominates SD/(no+2), vhich includes Stein's (1964) fesult. We note,

possibly counter to one's intuition, that 8o does not dominate

(SO*SI)/(n6+n1+2). In particular, when_the:noncent}glity parameter ),




is very small, the MSE of & is only slightly smaller than 2/(n0+2)

0
(see, for example, Brown (1968)), while that of (So+81)/(n0*n1+2) is
only slightly greater than 2/(n0+nl+2). Stated another way, 61 is too
small in the estimation of o2 when Al is small. Figure 1 illustrates
the situation.

More generally, the estimator Gj as defined in (2.1) dominates
TO but not Tl,...,Tj.

Remark 2.2. Theorem 2.1 establishes the inadmissibility of

nontrivial scale preserving estimators of the form (2.2). It can be
generalized to the estimation of " by extending the discussion in
Gelfand and Dey (1986). We omit the details here.

Next we state as Theorem 2.2, an extension of Theorem 2.1 for
p = 1. The extension for general p is apparent.

2 2
o2 24.2
v oo xno, S, v (oj+r )xn1 and So° S1

are independent. Using the notation of ‘Theorem 2.1, in estimating

Theorem 2.2. Suppose S0

02, 61 dominates 60 under SEL.
. 2
Proof. We may think of S, as arising from S |w = w, " o2y s
—_— 1 1'71 1 n,,w;
2 i . . . .
where wl n (1'2/202))(n , 80 that the resulting marginal distribution of
1
. 2
S. is (o2+12)x" .
1 n
1
Hence, by Theorem 2.1, regardless of the given WI, 60 << 61

whence integrating over wl yields the result.

Remark 2.3. Theorem 2.2 and jts-extension to general p finds
immediate application to the estimation of the error variance in
balanced variance components ﬁodels. -See, Klotz, Milton, and iacks

(1969) for discussion in the one-way layout.




Remark 2.4. As in Remark 2.2, Theorem 2.2 can be generalized to
the estimation of o.

Returning to the setting of Theorem 2.1, let a = (a,,...,a ) be
1 3 P

any permutation of the integers 1l,...,p and let S = n, + I o, + 2.
i . i=l 73
. a = a,-1 2 5

Also, define Tj (cj) (-Z s, * So), where as before S, Vv ¢ X,

i=l i 0 0

S 02Xn N and S0 and the Sa are all independent. Finally,
i a,’ a, i
i i -

define

5? = min(To,T?,...,Tﬁ) . (2.6)

Then Theorem 2.1 implies that in estimating 02 under SEL, for each o

6 << 6; << 6a << << 5a,

0 2 cee Hence we obtain p. estimators, 6; each

defined by a permutation of 1,...,p. These estimators are order

dependent (i.e., dependent upon the specification of a particular

permutation) and a natural question to ask is how to combine these

to construct a permutation invariant estimator. A first thought is
. a . . . T,
6% = min 6p. The discussion in Remark 2.1 shows -that &* will be

"too small" and will not dominate-éz. A better choice will be

Qa

- -1
= (p!) 18 .7
§ =(p!) I b (2.7

where the summation is over all permutations of 1,...,p. In particular,

we have
Theorem 2.3. If the MSE of 6: is constant, say m, for all a,

then éz << § for any perﬁutation a= (al,...,ap).




Proof. The MSE of § is
EG - 1% = El(p))! 22 - 132

=D T+ G721 B - (- 1)
ata’ P

cm+ (PN 21 [EG® - 1D -1) -m <m,
afa’ P P

since by the Cauchy-Schwartz inequality

E(s® -
P

1) 1
DG - 1 < {5 - D2 EG - DAY = .
P - P P
This completes the proof of the theorem.

3. Application to Linear Regression.

In this section we will use the improved estimators of o2 as
developed in Section 2, in a linear regression context. Consider the

linear model (1.1) and suppose we are interested in testing the

hypothesis H'R = £. Let Rg, Ri be the full imodel and reduced model
error sum of squares respectively, i.e.,
RZ = min(Y - X8)'(Y - XB)
0
B .
and
RS = min (Y - X8)'(Y - XB).

H'B=¢
Then, whether or not the hypothesis is true, it follows that (see, e.g.,

2
Rao (1973) for details) Rg ~ ozxn_p and is independent of Ri - Rg

2

N ozxk’A

where k = rank (H) and ) is the resulting noncentrality

parameter. Thus from Remark 2.1, it follows that

2 2
Ro : R1 ,
n-r+2 ’ n-r+k-2

(3.1

61 = min(




dominates Ré/(n-r+2) which is the best invariant estimator of o2 of the
. 2
Iorm cRO.

The estimatuor 3.1 can also be viewed as a preliminary test

estizator for testing the null hypothesis that H'B = £ vs. the

alternative H, : H'B # £. For a definition and discussion of preliminary test

1

estimators, see Judge and Bock (1978).
Let us now consider general p. We presume a sequence of nested
hypothesis as given below:

Hy X8 e M(X) with dim(M(X)) = r,

R, Xt € 5. C M(X) with dim(Si) =k.,i=1,...,p,

where ¥ (X) denotes the linear manifold of X (i.e., the vector space

c
generated by columns of X), S1 52 c...cC Sp’ and kl > k2 > ... kp.

Now define

Ri = min (Y - XB)'(Y - XB), i =1,...,p,
XBeSi

and again let Rg be the full model error sum of squares. Thus it follows -

that

202 _ 2. 52 L
Si Ri-l Ri g X“i’ki’ i 1,...,p,

and Si's are independent and also independent of S0 = Rg v ozx; where
0

- k., 1=2,...,p. Thus we are in

n.=nan-r,n =71r- kl’ ni = ki-l i

0 1

the framework of Section 2. Applying Theorem 2.1, we obtain the improved

estimator of o2 as

2 2 2 2
R0 R1 R2 R

n-r+2 °’ n+2-k1 ’ n+2-k2 1T p42-k

). (3.2)

8§ = min(
P




10
Computation - (3.2) should present no problem since the Ri are obtained
in fittinz the nested models.
In the special case where we are looking at the r explanatory
variables individually, we have r! sequences in which the variables can
be removed. For any particular sequence, a,using the notation of (2.6)

in (3.2), we obtain

2 R2 Rz
a . R0 ! 02
Gp =winy — 5 s o o s [ (3.3)

In obtaining an estimator of 02 we then have two possibilities.

(i) 1f, on the basis of prior experience or theoretical grounds, we
have a particular sequence in which the variables are to be entered,
hence removed, then this sequence provides (3.3). If, however,
this sequence arises from some formal variable selection procedure,
then a is data dependent whence the resultant (3.3) does not meet
the assumptions of Thecrem 2.1, so that no claims can be made for
its MSE performance. In fact, such a 6; is nearly min 6;
which from remarks after (2.6) will likely be "too small."

(ii) Calculate € as in (2.7). We may argue that the MSE's of the Gz
are likely to be close. First we expect that each of the 6;
achieves small improvement in MSE over Rg/(n-r+2) (see, e.g., Brown

1968 for some empirical evidence) and second, the sequence of

denominators in (3.3) is the same regardless of a. fheorem 2.3

thus encourages 6.
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