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PREFACE

Recent popular literature abounds with articles on fractals or chaos.

Laymen will find them quite accessible, except for occasional stumbling blocks

like dimension, self-similarity, dynamics, randomness, etc. But technical

readers will likely be frustrated by a lack of detail. This report assumes

the reader has a mathematical background equivalent to an upper-division math

major. The report is being used as the textbook for a Math 495 course

during spring, 1989.

The popularity of fractals and chaos is not an accident. There is an

amazing number of natural phenomena which can be interpreted by either

fractals or chaos or both. It is more surprising that these fields weren't

"discovered" until the mid-1970's. Benoit Mandelbrot noticed that many

geographic entities--coast lines, mountains, etc.--could be thought of as

having a "fractional dimension"; hence, fractal. Mitchell Feigenbaum

theorized univers,'] properties of certain "chaotic processes". For example,

fluid turbulence and a nonlinear oscillator exhibit similar qualitative and

quantitative behavior.

Mathematicians became interested when old topics like Hausdorff Dimension,

Ergodic Theory, and everything in between were found to have applications and

to have the ability to make pretty computer graphics. Fractals and chaos have

beccme such hot topics that they have worked their way into the diverse fields

of art and biology.

The eager researcher will jump at (or contrive) any opportunity to say

"Ha, a fractal!" or, "Ha, chaosl" But: FRACTALS AND CIAOS ARE NOT MODELS Or

NATURE. THEY ARE, AT BEST, SYMPTOMS. It is like noting that the sky is blue.
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Quite often, knowing an object is a fractal or a process is chaotic will not

give any new information about that object or process.

In the author's opinion, the classification of something as a fractal or

chaotic process is most useful from a "first principles" point of view. For

example, it has been known for some time that clouds are self-similar

(fractals) on a scale of about 10 km on down. More recently, from satellite

photographs, it was found that they're actually self-similar on a scale of

1000 km on down! This information is useful in the sense that any valid

theory on the formation of clouds must address this large-scale

self-similiarity. Likewise, population growth in nature exhibits chaotic

behavior. So, there are definite limits to a non-chaotic (exponential growth,

for instance) model's applicability.

The goal of this report is to give a basic foundation upon which the

interested researcher may "build-to-suit". To this end, and for the Math 495

students, exercises will be found at the end of many sections. There are

several computer programs available (for the Z-24F with ECA) which illustrate

the ideas presented in this report.

If this is yoor first encounter with the ideas in and the applications of

fractals and chaos, I hope you find them as enjoyable and amazing as I do.
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Reading List

In addition to the articles reprinted in appendices I through 5, it is

highly recommended that the following books be read by the interested

researcher (or layman):

1. CHAOS: Making a New Science, James Gleick, 1987, Viking Penguin Inc.,

ISBN 0-670-81178-5.

Comments: This is the best book on science directed to the layman that I

have read. It is also the best book on chaos that I have read. The author

does an outstanding job giving historical perspective, the insights of leaders

in the field, and relevance to today's society.

2. The Fractal Geometry of Nature, Benoit Mandelbrot, 1983, W. 11. Freeman and

Company, ISBN 0-7167-1186-9.

Comments: In my opinicn, this book is written in a egocentric style--a lot

of first person usage. It also vacillates between the technical and obscure,

and the obvious. The book is hard to read. However, there are many beautiful

and worthwhile ideas spread throughout and punctuated by fantastic images.

3. Fractals Everywhere, Michael Barnsley, 1988, Academic Press/Harcourt Brace

Jovanovitch, ISBN

Comments: This is a textbook on Iterated Function Systems (IFS).
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I.1 Introduction

It is hard to date ideas to their true originators. But "fractional

dimension" is largely due to the work of Felix Hausdorff (1868-1942). This was

a mathematical formulation and was not necessarily thought to have real-world

applications.

Scientists and philosphers have noticed basic patterns and "self-simi-

larity" in nature throughout history. However, it is probably safe to say

that Benoit Mandelbrot was the first person to successfully integrate

fractional dimension with self-similar natural phenomena. He was the one to

coin the term "fractal"--without explicitly defining it at first, but later

giving it a mathematical definition.

Much of the popularity of fractals is a result of the relatively recent

advances in computer graphics. Mandelbrot, who works for IBM, was able to

turn out some spectacular images of fractals simulating geographic shapes--

like a false Earth-rise as seen from a false moon. Many scientists and com-

puter enthusiasts have expanded on his work. Fractal images now seem to be

the cover picture of choice on calculus textbooks.

Some of the most promising work in fractals has been done by Michael

Barnsley of Georgia Tech. (He is funded by DARPA and AFOSR, among others.)

Barnsely's work centers on the question: Given a digitized image on a monitor,

(with resolution of, say, 1024 by 1024 pixels), can fractal techniques be used

to reduce the amount of memory required to store the image? The compression

ratio is the quotient of the raw data of the image on the screen to the

data required when using some fractal technique. The objective is to make the

compression ratio as large as possible.

2



Current techniques (nonfractal) are able to achieve compression ratios as

high as 10 to 1. Barnsley has achieved ratios of 15 to 1 for perfect repli-

cation of the image and as high as 1000 to 1 for non-perfect replications. Even

though the latter are non-perfect, they retain the fundamental qualities of the

picture, and look rather like a painted (or sketched) copy of a photograph.

Barnsley has formed his own company to exploit his techniques: Iterated

Systems, Inc., named after the process used to store and regenerate these

images. Iterated Function Systems (IFS), as a mathematical topic, will be

discussed in this report.

3



1.2 Intuitive Dimension

What is dimension? Mathematics students might say that it's the number

of basis vectors in a vector space. This is a good answer if the question is:

What is the dimension of a vector space?

A vector space is an abstract structure which happens to be used a great

deal to model different settings of physical phenomena. For example, we

usually imagine ourselves as moving around in R 3 , Euclidean 3-space. Relativity

is modeled using a curved 4-dimensional vector space called space-time. But

vector spaces are used almost exclusively to model some section of the

universe, rarely for the objects within.

Finding a dimension is intuitively like counting "degrees of freedom." How

many (seemingly) independent observations are possible? We might say that colored

pigment is 3-dimensional since it can be decomposed into red, green, and blue.

Sound is infinite dimensional, but hearing probably isn't, since humans cannot

hear the whole auditory spectrum. Taste might be 5-dimensional.

These examples deal with InformaLion. How much information is the key

question in determining dimensions this way. Powever, there is a difference

between information and "shape". We will define a shape to be what's left when

all the available information is known. Most objects are a combination of shape

and information.

Basis vectors are part of the "where" in a shape. They are basis vectors

because they are all that is needed to convey this information. So counting basis

vectors is equivalent to finding an iniormation dimension.

4



We will use historical techniques to find dimensions of objects which aren't

vector spaces. It should come as a relief that shape and information dimensions

3
will agree when they can be applied to the same object, like R . It is

unfortunate, however, that only information dimension seems to be intuitive. The

definitions we will use for "shape" dimension are difficult.

-5-



1.3 Observations and Representations

Before we develop methods of determining the dimension of shapes, we must

distinguish between different dimensions used to represent an object. We will

3
use 3-dimensional Euclidean Space, R , to model the three directions which

seem to surround our environment. Two-dimensional Euclidean space, R2 , will be

used to model a sheet of paper or a computer screen.

The subjective link in any observation is the human. Our vision is

influenced by imperfect eyes and an imperfect brain. But essentially,

reflected (or transmitted) light from an object in R3 is imaged (through the

iris and cornea) onto the retina at the back of the eye. Information is sent

from the retina via the optic nerve to the brain. Because the retina is a sur-

face (and can be modeled with 2 dimensions), there are subtle ways in which the

brain interprets a 3-dimensional image from the information sent by the eye.

The study of this process is called stereopsis.

Perhaps because of the way our vision works, humans are able to interpret

3-dimensional images from photographs or drawings in R . And because it is

easier to take a picture than build a model (or construct a hologram), we

2 3
commonly use R to represent images from R

Definition: A set, S, is imbedded in another set, T, if and only if S C T.

For example, if we take a picture of a ball (imbedded in R 3), the photo-

2
graph will contain a shaded disc imbedded in R . The area of the shaded disc

2
is a two-dimensional subset of R . The shading cues our eyes to see curvature

which is not present in the photograph.

Definition: We will say an n-dimensional object, E, is flat, if E can be

fmbedded in Rn; i.e., E C R



Thus, a line is flat (straight), since it is one dimensional and can be

imagined to lie in R (the number line)--it is the whole set in this case. A

shaded disc, (filled in circle), is flat since it is two-dimensional but fits

2 3
in R . A solid box is flat, since it is three-dimensional and a subset of R

A triangle is not flat. Neither is a circle. Both curves cannot be im-

bedded in R even though they are 1-dimensional. These curves can be imbedded

2in R . However, a helix (a curve in the shape of a spring) cannot even be

imbedded in R 2 . It is still 1-dimensional, but must be imbedded in R 3 . Fortu-

ately, all 1-dimensional objects (curves) may be imbedded in R3 .

A surface is a 2-dimensional object. A sphere (the surface of a ball) is

3
curved but can be imbedded in R . An eggshell is also not flat. (A sphere

cannot be imbedded in R .) But there are surfaces, like the Klein Bottle,

3 4
which cannot be imbedded in R and must be imbedded in R . The situation with

"curved" space (3-dimensional objects) is even worse. By definition, we cannot

"see" any curved space since we can only see objects imbedded in R3 . One can

imagine that R4 is not even enough to imbed all curved 3-dimensional spaces, so

the space-time model (which is curved 4-dimensional space) must live in a very

high dimensional Rn.

The point of this discussion is to be able to recognize the dimension of

the object as being (possibly) different from the space in which it is

imbedded, and to realize that visual cues (or tricks) are necessary to

2
represent curved 2-dimensional objects (and some 1-dimensional objects) in R

(a picture).

Exercises:

1. What is the dimension of a pencil? Is it flat? What is the (approximate)

dimension of the surface of a pencil? Is it flat?

7



2. A torus can be constructed by taking a finite circular cylinder and joining

the two ends to make a shape like an inner tube. What is the dimension of

the torus? What is the smallest dimensional Euclidean space into which it can

be imbedded?

3. A Klein Bottle is constructed like a torus, except the two ends are not

joined in the natural way. Instead, they are attached so that the cylinder is

on the same side of the join. Is this possible in R 3? What is the dimension

of the Klein Bottle?

4. Suppose you take a picture (of the surface) of a pyramid. In the photo-

graph, what dimension is the surface of the pyramid? Is it flat? What is the

dimension of the surface of the actual pyramid? Is it flat?

A D .. ... .. ... .... .. 8



1.4 Topology and Open Covers

The objective of part I is to introduce the reader to fractional dimension.

But first, we need to introduce "topological dimension" as a base. The topolo-

gical dimenision-will not be fractional, but some ideas from its development are

extrapolated in the formulation of Hausdorff dimension, which is fractional.

Topology is the study of shape without distance. Because it is so abstract,

many shapes which we perceive as different are lumped together by topology. For

example, the surface of a cube, a sphere, and the surface of a football are all

the sane. Similarly, a semi-circle and a line segment are equated in topology.

So, most of the aspects of curvature are ignored by topology. For this

reason, a topological definition of dimension is very useful. To use topology,

it is not necessary to throw away our familiar mathematical structures (distance,

arithmetic, etc.). The ideas of topology are just incorporated into one's

setting. These ideas are formulated using open sets:

Definition: Let T be a set and n a collection of subsets of T. (T, ) is called

a topological space (with topology ) if and only if:

(i) # e na and T e n; (0 is the empty set).

(ii) If Ga c Q for each a e I (I is any index set), then U G a eA.
aelan

(iii) If G e 0 for i - I, ..., n, then n Gi E a.

A topological space, T, is a set together with a topology on that set.

Elements of the topology are subsets of T. They are called open sets. To be a

topology, three criteria must be satisfied: (i) the empty set and T itself must

be open; (ii) any union of open sets must still be open; and (iii) any finite

intersection of open sets must still be open.

2 3
We will work in familiar spaces, like R

2 and R , and define a topology on

them. This will make topological dimensions accessible in our settings.

9



Examples:

I. (R, fl1) is a topological space where R is the real line and a subset of R is

in f1I (the topology) if and only if it can be written as a (possibly) infinite

union of open intervals. We throw in the empty set to be complete.

Thus, each open interval (including R) is itself an open set. Aecause two

open intervals must intersect in an open interval or an empty set (both of which

are open), criterion iii is satisfied. Criterion ii is satisfied by definition.

The open intervals are called a basis for the topology since any open set

is a union of these basis sets. (They act like components.)

2. (R2 , _a) is a topological space where 02 is formed from the basis consisting

2
of all open discs in R . (An open disc is the area inside a circle, without the

circle itself.) Therefore, open sets in 12 are unions of open discs. It is a

little harder to verify that finite intersections of open sets are still open.

33. (R , i ) is a topological space when 0 3 consists of open sets formed from the

basis of open balls (the interiors of spheres).

Remark: In examples 2 and 3 above, it is possible to change the basis without

changing the topology. See the exercises.

Definition: A set, F, in a topological space, T, is called closed if and only if

the complement of F, denoted Fc, is open.

Theorem: If (T, ) is a topological space then:

(i) Both * and T are closed;

(ii) if Fa is closed for each a r I (I is any index set), then n F

is closed and
n

(iii) if Fi is closed for i - 1, ... , n, then F, is closed.

10
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The proof of the theorem relies on the definition of closed as the (set)

complement of open and is left for the exercises.

2 3When one is working in a metric space, like R, R , or R , there is a natural

topology induced by the metric. The topologies in examples 1 through 3 are

induced by the Euclidean metrics. For this reason, limit points and interior

points are other ways to characterize closed and open sets.

Definitions: Let (Rn, d) be Euclidean n-space with the usual metric, d:

d[(xs ... x n ), (YI' ..., Yn 
)] -=  (x : yi)2o

Let A C Rn and x0  R n . Then x0 is an interior point of A if and only if there

is an c > 0 so that if d(x, x0 ) < e then x c A. Also, x0 is a limit point of A

if and only if for every e > 0 there is an x * x0 so that x c A and d(x, x0 ) < C.

Theorem: In examples I through 3, a set, A, is open if and only if each element

of A is an interior point of A. Also, a set, B, is closed if and only if H

contains all of its limit points.

The proof is left for the exercises.

In topology, open sets have a connotation of being large. (In a metric

space, every point of an open set is an interior point; so open sets cover a lot

of area.) One way to measure the size of an arbitrary set, is to find the

"smallest" open set which contains it.

Definition: Let (T, n) be a topological space, and suppose A C T. Then II is an

open cover of A if and only if U c fl and A C U.

There are usually (infinitely) many open covers for the same set. In sub-

sequent sections, we will find ways of measuring the "smallest" such cover. This

is part of the subject called measure theory.

11



Example 4.

There is no "smallest" open cover of a single point, x0 e R, since any

interval of the form (x0 - C, x0 + C ) is an open cover of {x0) (C > 0).

But, the "smallest" open cover of any open set is that set itself.

We will end this section with another definition of "large".

Definition. In a topological space (T, 11), a subset A C T is dense in T if and

only if for each U io f2, U A A * *.

Exercises:

1. Let X be a nonempty set and P(X) be the power set of X. So P(X) contains all

subsets of X. Show that (X,P(X)) is a topological space. Which subsets of X are

closed?

2. Tn R, let (a, b] {x c R: a < x < b) be a half-open interval. Define a new

topology on R by: a set is open if and only if it can be written as the union of

half-open intervals (always closed on the right), or is the empty set. Show that

an open interval, (u, v) - [x: u < x < v), is an open set in this new topology.

Thus, the new topology contains the usual topology. Is (a, b] open in the usual

topology? The new topology is finer than the usual topology; or the usual

topology is coarser than the new topology.

3. Using the definition of closed in a topological space, (T, 0)...

a. Show that * and T are closod.

b. Show that if F is closed for . e I, then n F c fn.
n

c. Show that if PI is closed for I - 1, ..., n, then U F is closed.

Hint: ( U a~c~ -1 Ac and ( t.Y-U Ac
c a t~a CI a

12



4. The Euclidean metric on R is given by absolute value:

d(x, y) - Ix - yl.

Show that every point of an open interval is an interior point of that interval;

thus, open sets are the same metrically and topologically (with the usual

topology).

5. Same as 4. with R2 .
6. Same as 4. with R3 .

7. Show that if a set doesn't contain all of its limit points, then it's not

closed by showing that the missing limit point cannot be an interior point of the

complement of the set. Hence, the complement of the set isn't open. Work in Rn

with the Euclidean metric.

8. Show that if a set isn't closed (so that it's complement isn't open) then

there is a point in the complement which isn't an interior point of the compli-

ment, but ust be a limit point of the set. Hence, the set doesn't contain all

of its limit points. Work in Rn.

9. It is often possible to find a different basis for a topological space which

will give the same topology:

a. Show that the basis of open squares (the interior only) in R2 will also

generate the usual topology. Is there a metric which corresponds to this basis?

b. Show that the basis of open cubes (the interior only) in R3 will also

generate the usual topology.

a10. Show that a single point is a closed set in R . Hence, any finite subset

of 1n is also closed.

11. Let Q denote the rational numbers. Is Q a closed subset of R? Is it open?

13



12. In Rn with the Euclidean metric and usual itduced topology, open n-balls

can be used as the basis of the topology. (An open 1-ball is an open interval,

etc.) Show that an open set (which is a union of open n-balls) cannot be the

uncountable union of disjoint open n-balls. (Hint: Use the fact that there

are countably many points whose coordinates are all rational.)

13. Let {rn} be an enumeration of all the rational numbers in R. Find an open

cover of {rn} so that the sum of the lengths of all the component intervals is

less than 1.

(Hint: Let each rn be the midpcint of an interval of Length In
2

Thus, this open cover is "large" in two senses: it's open and dense. But it's

"small" in the sense that it has a short length compared to all of R.

14



1.5 Topological Dimension

2 3
We will be interested in calculating the dimension of objects in R and R

An important fact is that subsets of a topological space are also topological

spaces with the "relative topology."

Definition: Let (T, n) be a topological space, and S = T. Define the relative

op logy on S to be 0' - {U': there is a U c 0 with U' - Sn u}.

It is easy to show that (S, R') is a topological space. The open sets in S

are just intersections of open sets in T with S itself.

Example 1:

2
Find the relative topology on a circle imbedded in R

Since an open set in R2 is a union of open discs, the relative topology on S

consists of open sets which are the union of open arcs.

The following definition is due to Henri Lebesque (1875-1941). We have

adapted tt to subsets of R0.

Definition: Let X be imbedded in Rn, for some n. The topological dimension (or

Lebesiue dimension or covering dimension) of X is less than or equal to m, i.e.,

dim X < m, if and only if for any finite collection of p open sets, Gi , (rela-

p
tively open in X) with X = U Gi, there is another collection of p open sets,

i-I
p

Hi  so that each H, CG,, X - U Hi, and any m + 2 of the Hi have no point in
Ji=

common. And, if dim X > m - 1, then dim X - m.

Essentially, the above definition finds the most efficient open covers (in

terms of overlap) of a set, X. The topological dimension is related to that

efficiency.
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Example 2:

A single point has topological dimension zero.

Suppose x0 e R. The only open sets in {x0} are * and {x0} itself. So if C1 ,

p
i = 1 ... , p, are any open sets so that {x0 1 UJ Gi, then at least one of the

i-l

Ci must be Jx0} itself, call it (without loss of generality), G I. Then define

p
H1 = G, and H = ... H = *. Thus, {x0 } u Hi, but any two of the Hi have

1' 2p i-i

an empty intersection. Therefore, dim {x0 } < 0. Also, the only set with dimen-

sion -1 is the empty set. (Since each open set in the cover must be empty.) So

we can conclude that dim {X0 = 0.

Remarks: In our definition of topological dimension, we do not specify which Rn

the set X is imbedded in. In example 2 we imbedded a point in R, but we could

2 3have imbedded it in R , R , etc. The topological dimension will be invariant

(with respect to the imbedding space) since the usual topology of Rm is also the
Rn Rnm

relative topology on If is imbedded in Rn where n > m. See the exercises.

Example 3.

The dimension of any line segment (finite or infinite) is one.

Let S be a line segment. We imbed S as an interval (open, closed, or

half-open) in P. The proof will proceed by induction on the number of open sets

(in S) which cover S:

If S U GI then we can choose 1I = 1 and we're through.
i-I p p

Assume that when S -U G i there exists open H, G, so that S =U H
4-= i l

and no 3 of the Hi have a point in common.

p+l
Now suppose S = G Gj where p _ 1. For i - 1, ... , p - 1 define G, G'.

i-i

We proceed through four cases based on the relationship of G' to C +i:

)
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Case 1: G' ( G'+

P PP

Then let G - C' U C'+i. Now, S = I so there are open it C rf so that

p
S = U Hi and no 3 of the H have a point in common. Define H' = H for I = I,

.... p - I and let H' - G' n Hp and H'+, a C'+ (I Hp. Since G' C'+l - * we

p+l

also have H' H'p+1 a #. So each H ' is open, H ' C G S = J H', and no 3 of

the H' have a nonempty intersection, completing the proof in this case.

Case 2: G' C G'p1 -p

As above, let Gp G ' U C' G'. Then, we can obtain H, gCC G . Redefine

H' H for i -1, ... , pand let H = As before, the open HC '
1 p;+1  - '
p+l

S J Hi , and no 3 of the H' have a nonempty intersection (since the HI's

didn't), completing the proof in this case.

Case 3: C' C G'p - p4-"

This case is the same as case 2 with p replaced by p + I and visa versa.

Case 4: Not case 2 or 3, but G' n C' G ; .p p41

Again, we let Cp = Gp U G and obtain open H,, ..., H . Now, let H "I
p pp ~lt

for i = 1, ..., p - I and define H" - H f) G'. Also, define H" = H f( C'
p p p p+l p p+l

Since H" is a union of disjoint open intervals, we will remove any interval fromp+l

H" which is a subset of H" and any interval from H" which is a subset of H"plp p pl'

forming new sets, H +land Hp, which are still open. We now have open H I  (-I

p+l

so that S U H;. Since no three of the H have a nonempty intersection, if 3 of
i-i

the H ' have a point in cosmon, then H' and H'+l must be two of those sets.

I' p p4-

(Also, no 4 of the H ' can have a nonempty intersection.) Suppose I < k < p

and HI (IH' n H' * #. Then, this nonempty intersection must be mimicked among
p p+

1
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their open (component) interval(s). Let Ii C H' be such component intervals for

I - k, p, and p + 1. Because of the way H 4l was constructed, I I ap+ ndpl wa costute, n

Ip+ 1 (t Ip. i e have three cases:

Case a: I U Ip+ C I k . In this case, we nay redefine H' and R' to bep p - p p4 l

H' - I and H' - Ip+ 1 respectively. The sets are still open, and the union of
p p p+l

the Ht's still cover S.

Case b: I C Ip I. In this case we can redefine H' as H' -I.k ! p p+l* k k k-

Case c: Not case b or c. Then since Ipnip+ I * UIp+1 is an interval

and Ik must overlap either the right or left side. Redefine Ik so that it still

overlaps but does not go so far as to also overlap I pnI p+. Then the new H' will

use this new Ik -

Case a, b, and c may be applied to any of the component intervals which

Ibehave in that way. After such applications, we obtain open HI C_ C' ota

p+1

S U Hi and no 3 of the H ' have a nonempty intersection. This completes the
iJ1

proof by induction and establishes that dim S < 1. Suppose S is covered by 2

overlapping open intervals, G1 and G2. Then, in order to still cover S, HI and H2

must also be overlapping. Thus, dim S 0 O. So, dim S - 1.

In particular, example 3 shows that the topological dimension of R (an

infinite line segment) is one. So topological dimension, which is capable of

measuring nany shapes, agrees with the vector space dimension of R, which measures

information.

The following facts are presented without proof:

)
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Theorem: Let dim denote topological dimension.

(I) dim - n.

(ii) If X1 , X2, ... is a countable collection of closed sets (each Imbedded In

the same Rn for some n) then dim t U Xi ) = max {dim X i
i=I i

(iii) If X * * then dim (X x Y) < dim X + dim Y.

(iv) If dim X = n, then X can be written as the union of n + I

0-dimensional subsets of X.

Exercises:

1. What is the topological dimension of the rational numbers, Q?

2. What is the topological dimension of the irrational numbers, R - Q?

3. What is the topological dimension of Q x Q? This is the set of all ordered

pairs where both coordinates are rational. What is the dimension of (R -Q) x (R -Q)?

4. A topological space, T, is called disconnected if and only if T can be written

as the disjoint union of two nonempty open subsets. The space, T, is totally dis-

connected if every subset of T consisting of more than one point is disconnected

(using the relative topology). The space, T, is connected if it is not

disconnected. Is R connected, disconnected, or totally disconnected? How about Q

and R - Q?

2
5. Let S be a finite rectangle in R . Cover S with 3 open discs which overlap in

the center of S. Is it possible to find 3 sub-discs which cover S but have an

empty intersection? What is the dimension of S?

6. What is the dimension of the surface of a cube? Since the surface of a cube

and a sphere are topologically equivalent, what is the dimension of a sphere?

19



1.6 Hausdorff Dimension--A Definition of Fractal

Hausdorff Dimension was the first logically developed tool which could

give a non-integer result to be interpreted as the dimension of some shape.

With the advent of recent computer graphics, it can be seen that this dimen-

sion is useful. The human eye is capable of distinguishing between similar

shapes with different Hausdorff dimensions. However, Hausdorff dimension is

mathematically difficult to work with. To start, we will discuss some ideas

from measure theory.

Lebesque (outer) measure is a way to define the "length" of abstract

sets. Essentially, one finds the most efficient open cover of the set, and

then finds the length of that open set by adding the lengths of the intervals.

We'll restrict ourselves to R for the time being.

Definitions. Let I be an open interval in R. So I = (a,b) for some a and b.

The length of I is b - a, and is denoted by II.

Let E be a subset of R. The Lebesque outer measure of E is denoted by

4(E) and X(E) = inf E I1nI where U In is an open set of disjoint component
n n

intervals, In, and the infimum Is caken over all open sets which cover E.

Example 1.

The Lebesque measure of a single point is zero.

Without loss of generality, assume the point is zero as a subset of R.

Then, for any c > 0 we can find an open interval, and hence an open set, which

covers zero and has length less than E. This implies (since c is arbitrary)

that the infimum over all covers is zero, proving the claim.
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(A measure, like Lebesque measure, is always defined on a large class of

sets which form a "o-algebra." If one assumes the "Axiom of Choice", then it

can be shown that there are subsets of R which are not Lebesque measurable;

although every subset is Lebesque outer-measureable.)

For this report, we will assume that the sets we encounter are always

measureable. The following are presented without proof:

Theorem.

Let.denote Lebesque measure. Then:

(i) If 4 (E) - 0 then every subset of E is measureable and has measure

zero.

(ii) If El, E2, E3, ... is any countable collection of disjoint measure-

able sets, then

Some immediate consequences of this theorem are that the measure of any

interval, (open, closed, or half-open), is computed by subtracting the left

endpoint from the right; and that the Lebesque measure of the rational numbers

(or any countable set) is zero.

The idea behind Lebesque measure will now be generalized to get Hlausdorff

(ouLer) measure. Instead of adding the lengths of all the intervals in the

cover, we add a power of the lengths of all the intervals in the cover.

Definitions.

Let 6 > 0 and s > 0. If E is a subset of R, then the Hausdorff s-dimen-

sional 6-pre-measure of E is:

'(E) - inf I fI s
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where the In's are open component intervals of a cover of E and each IIn is

less than 6. The infimum is taken over all open covers of order 6 (that is,

each 1f < 6).

The Hausdorff s-dimensional (outer) measure of E is

Hs (E) - lim H (E).

6.*0 6

Needless to say, this is a very technical definition. However, it is

easy to generalize to higher dimensions. (That is, Rm instead of R.) One

just defines jini to be the (maximum) diameter of an open set in Rm .

The 6's in the definition are needed for obscure reasons. Basically,

5 5
H 6 ,(E) is larger than H (E) if 6' < 6. Thus, the covers are less efficient as

their maximum size decreases.

The s in the definition is the power to which each !In I is raised. It

will be directly related to the dimension of the set, E. Since s is only

restricted to be positive, non-Integer dimensions will be possible.

Example 2.

Let E be a line segment of length one. We can assume E - (0,1) in R.

The Hausdorff s-dimensional measure of E will be-

a. infinite if s < 1,

b. one if s = 1, and

c. zero if s > 1.

To start, note that it s - I t-,n "eusdorff 1-dimensional measure is the

same as Lebesque measure. So, we need inly concern ourselves with parts a

and c.
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Part a. Let s ( I.

Choose a large M > 0. We'll show that there is a small 6 so that N(E) > M,

and that as M gets larger, 6 gets smaller. This will imply that lim H(E) -

60
completing the proof of this part.

So, we choose a large integer, k, such that k1- s > H and then let 6 - .

(Since s < 1, as M increases so will k, and hence 6 will get smaller--approaching

zero.) The most efficient cover of order 6 (of E) will be less efficient than

k open intervals, each of length 6 -. 1. So,

k k
HIcE > a ~) H

n-l n-l

This shows that the Hausdorff s-dimensional measure of E is infinite when s < 1.

Part c. Let s > 1.

Choose a small number c > 0. We'll show that there is a small 6 so that

Hs(E) < e, and that as c gets smaller, so does 6. This will imply that

i H6(E) - 0.
i-s 1

Let c > 0, and choose a large integer k so that k1- s < c, and 6 = . (Since

s > 1, as C decreases, 6 will decrease as well.) The most efficient cover of

order 6 will be approximately as efficient as k intervals of length 1. Thus,
k k

n-i n-1

This shows that the Hausdorff s-dimensional measure of E is zero when a > 1,

completing the proof.

Example 2 displays the type of behavior that Rausdorff s-dimensional measure

always exhibits. For subsets of R, when s > I the measure will be zero, and when

s - I the measure will agree with Lebesque measure. If the Lebesque measure is

positive, then for smaller values of a, the Hausdorff s-diensonal measure will

always be infinite. (This can happen even if the Lebseque measure is zero--see

section 1.8.)
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These qualities are used to define Hausdorff dimension:

Definitions.

Let E be a subset of R. The Hausdorff dimension of E is the infimum of

the set of s such that the Hausdorff s-dimensional measure of E is zero.

This definition is extended to Rm by using the diameter of I instead

of the length of I . So, jini - sup {d(x,y): x,y e InI where "d" denotes distance

in Rm , and I is now any open set. Then the Hausdorff dimension of subsetsn

of Rm is the same as that above.

Example 2 shows that the Hausdorff dimension of the open interval (0,I) is

one. This agrees with both intuition and topological dimension. In fact, the

11ausdor~f dimension of a point (and any countable set) is zero (also in agreement),

and the Hausdorff dimension of Rn is n. This leads us to a definition of "fractal."

Definition. A subset, E, of Rn is a fractal if the topological dimension of E

is different than the Hausdorff dimension of E.

The first fractal we will encounter will be the "Cantor Set" in section

1.8. But, since Hausdorff dimension is hard to work with, we'll define a

"similarity dimension" in the next section. This similarity dimension will be

easy to calculate on special sets, and will agree with the Hausdorff dimension on

such sets.

Exercises

1. Show that the Hausdorff dimension of a single point Is zero.

2. What is the Lebesque measure of the irrational numbers between zero and one?

3. What is the Hausdorff dimension of the irrational numbers between zero and

one?

4. Is the set of irrational numbers between zero and one a fractal?

5. What is the Hausdorff dimension of E - {(x,y): 0 < x,y < 1)?
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1.7 Similarity Dimension

Similarity dimension is an easier tool for measuring the (Hausdorff)

dimension of special sets. These sets are "self-similar". We will use the

following definition for now:

Definitions.

For the following recursive procedure, N is a positive integer and r is

a real number, 0 < r < 1.

Mi) Start with a generating set, EO, with one component.

(ii) Given E , with Nn components, form En+ by replacing each component

of E by N new components so that the diameter of each new component is rn

times the diameter of the old component. En+1 will have Nn + l components.

If this recursive process has a limit set, E, which uniquely depends upon

the choices for N and r, then E will be called a self-similar set.

The term, "component", used above, is intentionally vague. But, whatever

is meant by component in part (i) is to be used in part (ii) as well. "Com-

ponent" could be replaced by "shape". Note that there is no restriction on

the Rm in which this process takes place.

For example, E0 , could be a line segment. Then, each line segment would

be replaced by N new line segments, r times the size. Or, one could use

triangles, spheres, pyramids, helices, etc.

We'll now motivate the formula used in similarity dimension. It is

equivalent to Hausdorff dimension for self-similar sets...

In the recursive process, EI could be covered by N open sets, each of

diameter r. (We assume that the diameter of E0 is 1.) Then, if 6 > r,2N 2

H(E 1 ) - N(r)s . Note that for E 2' the diameters are r2  but there are

components, so H "(E (Nrs)2, and in general, H(E.) (Nr)n . Now, as 5
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goes to zero, we have n going to infinity, (so that r is less than 6), but

this will not give a nonzero or noninfinite limit unless Nr3 - 1. However,

we're looking for this value of s, say SO. When s is bigger than so$ the

Hausdorff s-dimensional measure will be zero, and when s is less than sop

the Hausdorff s-dimensional measure is infinite. So, so is the Hausdorff

dimension of E and satisfies Nr 1. (Or, so  logN Note: E is~0 log(l/r)'
imbedded in R7, for some m, so s0 can never be greater than m.)

Definition. The similarity dimension of a self-similar set, E, is logN

log(l/r)

where N and r are as defined in the recursive process. This is also the

Hausdorff dimension. The formula fails if it generates a dimension larger

than that of the space in which E is imbedded.

Exercises.

1. Define a point as follows: Start with a line segment, and replace any

line segment by a smaller (subset) line segment one-half the size. Then N 1

I
and r =-. What is the dimension of a single point. Is a point uniquely

defined in terms of N and r?

2. Restricting N as a positive Jntegor and r as a real number, 0 < r < 1,

what is the range of the function: s(N ,r) - 1Nlog(1/r)

3. Suppose you observe a coastline from orbit. You digitize a picture of it

and count a total of 10 pixeig on the rosstline between two fixed points.

The 100 pixels given an approximate length of 100 kms. You are now in an air-

plane over the same coa3tline and nolc" a new digitized image has twice the

resolution. After counting pixels on the coastline you now get an approxi-

mate coastline length (between the same points) of 121 kms. Finally, with a

good map with twice the previous resolurlon you approximate the length to be

146 kms. What approximate dimension wculd model this coastne'
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1.8 The Cantor Set

This will be the first section which is dedicated to applying our tools

to examples of fractals. The Cantor Set is one of the most famous "weird"

sets in all of mathematics. It was originally developed by Ceorg Cantor

(1845-1918) to show properties of cardinality: that it is possible for a

"small" set to be "uncountable". We will give three equivalent formulations

of this set.

Formulation 1. (Self-similarity.) Let E0 be the closed interval, [0,1], in R.
1

Choose N - 2 and r - !-. Given a line segment (component) in E , remove the

3.
1

middle (open) T and replace the segment with the 2 closeo end-segments of

length I times the original:

S........

Formulation 2. (Closed Set.) From the interval [0,1] in R, remove the open

interval which is the middle one-third. For each closed interval remaining

repeat this process ad infinitum.

Formulation 3. (Tertiary numbers.) All real numbers may he written in a base

3 expansion using the digits 0, 1, and 2. This expansion is unique, up to

repeating 2's which are equivalent to a I followed by repeating zeros. (This

is analogous to .9- - 1.0.) The Cantor Set is the collection of all real

numbers between zero and one (inclusive) which can be written in base 3 using

only the digits 0 and 2. (So .1 (base 3) is in the Cantor Set since

.1 (base 3) - .07 (base 3).)

It isn't too hard to see that formulations I and 2 give the same set.

But it is rather remarkable that formulation 3 is also the same set!
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I From formulation 1, we can calculate the Hausdorff dimension (similarlity

dimension) of the Cantor Set to be log(2)/log(3). This is a noninteger number,

so it cannot agree with the topological dimension. This shows that the Cantor

Set is a fractal.

Definition. A subset, E, of a topological space, T, is nowhere dense if and

only if for every open set, U, in T, there is an open subset of U which does

not intersect E0.

Theorem. Let C denote the Cantor Set.

(I) The topological dimension of C Is zero.

(ii) The Lebesque measure of C is zero.

(iII) C is an uncountable set.

(iv) C is a cJosed set, with no isolated points.

(v) C is nowhere dense.

Proofs.

(i) C is a totnliv disconnected Pet hy conetruction. Let G,..., Cp be
Dp

open sets so that i C covers C. Then we can choose open subsets M, C G,
i i-

which cover C and are at most abutting. That is, the Hi's do not overlap.

Thus, the topological dimension of C Is zero.

(14) Te cornlement of r Inside !O,11 is art open set. We'll denote it

by P. We'll find the Lebesque measure of P by addiiig the lengths of all its

intervale:

since at the ith level of construction, one removes 2 intervals, each of

length (1)'. Thun,

1 2/3
)1.
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Since PI has measure one inside [0,1] and C = PC =

(iii) We'll prove this part by using formulation 3. The tertiary numbers

between 0 and I which only contain the digits 0 and 2 are in I - I corres-

pondence with the binary numbers between 0 and 1. Since there are uncountably

many (binary) numbers between 0 and 1, C is also uncountable.

(iv) C is a closed set since its complement, P, is open. Also, the end-

points of the intervals which were removed from C are elements of C. These

endpoints form a countable subset of C, but they are dense in C; i.e., each

point of C is a limit point of the endpoints.

(v) Given any open set, U, in [0,11, there is an open Interval in P which

is completely contained in U. Since P n C = , must be nowhere dense.

Thvs, C is a perfect (closed with no isolated points), null (zero Lebesque

measure), nowhere dense fractal with Hausdorff dimension equal to log(2)/log(3).

It is easy to construct Cantor-type sets by removing the middle p,

(0 < p < 1), instead of the middle one-third, of each remaining interval. The

resulting set will share most properties of the Cantor set, except its Hausdorff

dimension and self-similarity.

in fart, it is possible to construct a Cantor-type set which has zero

Hausdorff dimension. This means its topological and Hausdorff dimension

agree, so it is not a fractal. This points out a serious flaw in the

definition of "fractal." A more general definition will be given later.
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Exercises.

1. Form a Cantor-type set by removing the middle p, (0 < p < 1), of

each remaining interval instead of the middle one-third. What is its Hausdorff

dimension? For 0 < p < 1, what is the range of values for this dimension.

2. Given any open set, U, in R, what is the Hausdorff dimension of U? What is

the Hausdorff dimension of the complement of any Cantor-type set?

3. If you divide an interval into 4 pieces and remove the second one, then

repeat this process ad infinitum, you obtain another self-similar closed set.

1
In general, let N = n - I and r = -. For such self-similar sets, state ann

analogous theorem to that for the Cantor set. (Include this set's Hausdorff

dimension.) If you replace N = n - I by N = n - m, what values of m make

sense? What is the range of achievable 11ausdorff dimensions?

4. In R2 , divide a square into 9 subsquares and remove the middle one. Vill

this recursive process generate a fractal? What is its Hausdorff dimension.

(Remember to use diameter lengths when calculating r.)

35. In R , divide a cube into 27 subcubes. At each step, (level of recursive

process), remove 7 of these subcubes. Is the Hausdorff dimension effected by

which 7 are removed? Could one remove a different (or random) 7 at each level?

30
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1.9 Koch Snowflakes

Some of the first "monster curves" or "snowflakes" were constructed by

Helge von Koch. We will look at a few examples of self-similar shapes in these

categories:

Example i.
1

Let the generating set, E0 , be a line segment. Use N 4 and r = - in the

following manner: o

Whenever you encounter a line segment, replace It by four line segments in

the above formation. The dimension of the resulting "curve" is log 4/log 3

which is larger than 1.

n
t h  nl 1 4 n

At the n stage, the length of E is 4 (S') (j)n. This quantity

approaches infinity as n approaches infinity, so the curve must have infinite

length. On the other hand, the entire curve will fit inside a bounded square.

This is not a contradiction; for example, if we tried to compute the

1-dimensional length of a 2-dimensional square, we would get an infinite

answer.

The Hausdorff s-dimensional measure is exactly the tool necessary to

compute "lengths" (or measures) of s-dimensional shapes. It is necessary to

adapt the measurement to the dimension of the shape you are measuring. The

measurement could still be infinite, or zero, but it would have more meaning:

just as it means more to say that a line segment is 2 units long rather than it

has zero area.
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Unfortunately, it is difficult to calculate the Hausdorff s-dimensional

measure of a shape (where s is the shape's dimension). This measurement is also

2
dependent on the type of sets one allows in the cover. For example, in R , if

we only allow open discs, we will get a different measurement than when wee

allow any open sets to be used. F. this reason, we note that such measurements

exist and have meaning, but won't be used in this report.

Example 2.

The generating set, E0 , will be the same as in Example 1, but N = 2 and

r = - . The process is:

The self-similar shape resulting from this recursive process has dimension

log 21log /3 = log 4 /log 3, so the dimensions of Examples 1 and 2 are the same

(in fact, they are more directly related than that--see the exercises).

Since in both of the examples above each shape is connected (not

disconnected) and lies in R 2 , their topological dimensions are at least one. It

is a bit harder to show that their topological dimensions are actually equal to

one. But for any shape, E, the topological dimension of E is always less than

or equal to the Hausdorff dimension of E. Regardless, the shapes in examples I

and 2 are fractal curves.

Example 3.

1
The generator, E0 , will still be a line segment. Now, N 3 and r =

The process is:

h

. . .. . . . . .. .



The height, h, is times the length of the segment on the left. Thus, if E

has length 1, the farthest displaced point from E0 in the limit set, E, will be
n3+40

n= I) n = 43 units away. The Hausdorff dimension of this fractal curve

is log 3/log 2.

Exercises.

1
1. In example 2, if r -- , the Hausdorff dimension of the resulting set is 2.

21This is an area filling curve. If this process is done in R and < r ( 1,

does the predicted Hausdorff dimension make sense?

2. As in example 2, let N - 2 and r -- . Each time the process is done, flip

a coin to determine whether the triangle will displace up or down. Does the

dimension change from that of example 2? Give a rough sketch of a resulting E.
I 1

3. For N - 3 and a fixed r, L < r < - , there are more degrees of freedom in

a random process than there were in exercise 2. Explain.

4. If we take example 1 and apply it to the 3 sides of an equilateral triangle,

we get a "snowflake". What is its dimension? Does this change if we apply it

to the sides of a square?
3 1

5. Let E be a square imbedded in R 3 . Define N - 13 and r - as follows:
0 3

What is the Hausdorff dimension of E?

6. Exercise 5 may be applied to the 6 sides of a cube. What shape does it

resemble?

7. Show that a countably infinite set of points on the curves generated in

examples I and 2 are the same.

,(3
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1.10 Random Coastlines

Exercise 3 in section 1.9 contains an idea we can use to generate random

fractal curves of any specified dimension between one and two. Since

self-similarity does not require that the same scheme be used at each level of

the recursive process, (only F and r need be fixed), we can randomly change the

scheme to obtain a random fractal curve.
1 1.

If N - 3 and - < r < - , by specifying r, it is possible to achieve
3 3 

1
any dimension between one and two. In example 3 of section 1.9, r =i so the

resulting dimension was log 3/log 2. If you want the dimension to be d,

then choose r = N- I/d  where N - 3.

Since we want our curve to be connected, at each stage we join 3 segments

where there was only one. These segments have fixed length, k:

e

--max - -

old segment

In the above diagram, we can place the first segment anywhere within the

maximum arc -bott the left endpoint. (See the exercises.)

34
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% old segment_

Once this segment has been placed, there are exactly 2 choices for the

placement of the second segment (unless the first was at + max e, in which case

there is only one choice). The placement of the third segment is determined.

So, this algorithm requires a random number between -max 9 and max 0 for

placement of the first segment; and a coin toss (0,1 random variable) for place-

ment of the second segment which also determines placement of the third segment.

The continuous random variable in the process allows for greater variability

than a single coin toss at each step (which is what happens if N - 2).

The four pages of figures which follow make it clear that this process can

be used to model coastlines. At first glance, this fact seems to be of little

use. However, the fact is useful from a "first-principles" point of view,

leading us to believe that coastlines are self-similar objects. Thus, any valid

geological theory on the evolution of coast-lines would need to address some

similarity at different scales.

(
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Figure 2

"The nine frames in this figure depict random coastlines

generated with an algorithm based on exercise 2 in sec-

L~ion 1.9. The ratio, r, is varied so that dimensions of

1.1, 1.2 .... , 1.9 are realized. For each pic-ture, the

Probability of displacing tip is li2. 2,)49 points are

graphed per frame. We c . F-P the higher dime-,ision

fractals are area filling.
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Figure 3

"In each row of this figure, dimensions are 1.01, 1.05,

and 1.1 (from left to right). The same algorithm was

used as in figure 2, but now the probabilities of

curving down are .5, .7, and .9 for the top through

bottom row, respectively. 1025 points were plotted

in each figure."

(
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Figure 4

"Each random fractal in this figure has dimension I.I. Th.

probabilities of curving down vary from .1 to .9."

"On the following page: All 18 frames in figure 5 use the 3

segment algorithm developed in this section. Tn the first 3

rows, a uniform distributiorn is used for the angle of the

first segment and .5 is used fer t%,e ne:tt two segments (just

like a 2-segment algorithL". fhe last 3 rows all depict a

dimension of I.i. The last 2 rows use a truncated normal

distribution with small and large staneard deviation

(respectively) aer probabilities of .1 and .9,

respectively for the last 2 sogments."
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Figure 5
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Unfortunately, the algorithm described in this section is not too useful

outside of graphic simulation. A much more applicable idea would be to use

self-similarity in order to decrease the amount of data required to depict an

actual geographic object. That is, given a mountain, is it possible to generate

an accurate image of this mountain without using the millions of bits of

information contained in a high resolution photograph? If it were, then the

image could be transmitted to another person (or machine) in a fraction of the

usual time.

Exercises.
1 1

1. Given N = 3 and fixed r, with < r < -, what is the value of max 6 as
33

described earlier in this section?

2. If the first segment makes an angle of max e with the left endpoint of the

old segment, what angle will the third segment make with the right endpoint?

Note that this value was used as the standard deviation of the (truncated)

normal distribution in some of the figures in this section.

3. Construct an algorithm similar to the one in this section, but use N = 4.

40
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1.11 Another Approach - IFS

The definition of a self-similar set given in 1.7 is neither exact nor

formal. It is useful from an intuitive point of view, but not too useful

mathematically. In this section we will develop the framework necessary to

study Iterated Function Systems (IFS).

The paper "Fractals and Self-Similarity" by John Hutchinson gives a

complete discussion of the ideas behind IFS. Michael Barnsley coined the term

IFS and has exploited the mathematics for applications for DARPA, AFOSR, and his

own company, Iterated Systems, Inc.

Three topics will be introduced in this section: "compact sets", "the

Hausdorff metric", and "contraction maps". It will help to use the following

relations:

a. Compact sets will be pictures, images, or real shapes.

b. The Hausdorff metric will measure how close two compact sets

(pictures) are to being the same.

c. Contraction maps will act as lenses which focus any starting image

into a determined compact set (picture)--sort of like a kaleidoscope.

In practice, the contraction maps will be repeatedly applied to any

generating set (image). Each application will bring a new image which is closer

to the limiting image (compact set). This process can be used to generate

fractals like those we have seen earlier, or extremely detailed pictures of

nature, including human faces. (The less self-similar seeming the picture, the

greater number of contraction maps are necessary to generate it.)

We will start with the idea of a compact set.
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Definition. Let (T, SI) be a topological space. A subset of T, F, is compact if

and only if for all collections fA a I, A e n} such that U A 0 F,
aCI

there is a finite subcollection A i: - 1, ... , n, ai C I} such that

n A 2. F also.
U-

In words, a set is compact if and only if given an arbitrary open cover,

there is a finite subcover.

Example I. A point is compact.

Let 0 e R. If there is an arbitrary collection of open sets in R which

cover {0}, then at least one of those sets must actually contain 0. This set is a

finite subcover, so {0} is comract.

Example 2. An open interval is not compact.

Let (0,I) be a subset of R. We will construct an open cover of (0,1) which

has no finite subcover:

1n Then U G - (OX so Gn is an open cover of (0,I).
nn nn-I

If there were a finite subcover from CG 1, then :here would be a maximum index,kr.

say N, in that subcover. But G. (, I, ad since no index in the subcover 1s
I

larger than N, the poirts between 0 and-! arq no* covered by this finite

collection. Thus, there is ro finite subcover and (0,1) is no. compact.

Definition. A subset, B, of Rn is boundei if nnd only if sup {d(x,O): x c B is

finite where d 16 Fjclidean distance. Ttmt iz, P ii bounded iU and only if B

will fit inside some n-ball of finite radiUF..

We will state the following useful theorem without proof-

Theorem. A subset of Rn is (ompace if and only if it is closed and bounded.
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Example 3. The Cantor Set Is compact since it is closed and bounded in R.

Exanple 4. All the fractal curves generated in section 1.10 are compact, since

they are also closed and bounded.

Example 5. Any image on a monitor is compact since it consists of a finite

number of points (pixels).

Fxample 6. Any observable shape of matter is compact. (One would need to be

careful with particle/wave duality at a very small scale.)

The next two topics require a review of metric spaces.

Definition. If S is a set and d: S x S + R, then iS,d) is a metric space If and

only if the following conditions are satisfied:

(i) for all x,y c S, d(x,y) > 0 and d(x,y) - 0 if and only if x - y.

(ii) for all x,y c S, d(x,y) - d(y,x).

(iii) for all x,y,z c S, d(x,z) < d(x,y) + d(y,z).

Remarks. A metric space abstracts the idea of distance, embodied in the

function, d. The first two requirements are straightforward; the third

requirement says that it's always shorter to go from one point directly to

another. Also, every metric space generates a natural topology in the following

rianner:

A point, x, is an interior point of (a subset of the metric space), if

and only if there is an c > 0 so that I' ', < c then y c A. With this

definition, a set is open if and only f its elements is an interior

point.

This development shows that a tol. space is more abstract than a

metric space since every metric space I topological space, but not vice

versa.



Example 7. (Rn,d) is a metric space where d((Xl, ... , xn),(yl, ... , yn))

This Euclidean metric, d, generates the usual topology on Rn . (Note

n = 1, 2, 3...)

We are now in a position to define the Hausdorff metric.

Definition. Let n be a fixed natural number, and S = fF C Rn: F is compact

and nonemptyl.

n ni
If x is any point in R and A C R , extend the usual Euclidean metric to

d(x,A) = inffd(x,y): y E A}. So, d(x,A) measures the closest distance between

the point and the set. Now extend d to A and B, (subsets of R n), as d(A,B) is

the maximum of sup{d(x,B): x c A) and sup{d(y,A): y c B}.

d is the Hausdorff metric.

We need to show that (S,d) is a metric space.

Theorem. (S,d), described above, is a metric space.

n
Proof. Fix n c N and let A, B, and C be compact sets in R , and thus elements

of S.

(1) d(A,B) > 0 since the Euclidean metric is nonnegative. d is finite

valued since both A and B are bounded sets. Assume A = B. Then, for all x F A,

d(x,B) - 0. Thus, sup{d(x,B): x c A) - 0. Similary, sup{d(y,A): y C B) = 0.

Therefore, d(A,B) = n. Now ?s-nune d(AB) - 0. Then, sup{d(x,B): x E A) - 0,

implying that each d(x,B) - 0, since they're all nonnegacive. Thus, inf(d(x,y):

y c B} = 0 for each x. This implies that x Is a limit point of B. Since B is

closed, x c B for each x c A, implying A C B. Similarly, B C A, which shows

that A = B and completes part (I) of the definition of a metric space.

)
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(ii) By definition,

d(A,B) -max {suK d~x,B), sug d(y,Aj

a max {suj d(y,A), sU~ d(x,B)}

- d(B,A)

(ii) ug d(z,A) - uE inE d(x,z).

Since B is a closed set, there is a y for which d(y,,z) = mE d(y,z)

=d~z,B). Thus, su~ ~A u n dxy)+dy,)

su~ m d~x,y) + dig n [zB)]+ ~z~)

'su Ng inf [d(x~y) + d(z,B)]

ZCE [ifd(,) + d~z,B)

-~~A +u [d su,) d(z,B)l

< sui d(y,A) + su2 d(z,B).

By an exactly similar argument,

up d(x,C) < sup d(y,C) + sup d(x,B).

irA YEB xcA

Therefore,

d(A,C) - max {sup d(x,C), sup d(z,A)}
xcA z c

<max {sup d~y,C) + sup d(x,B), sup d(y,A) + sup d(z,B)}
yeB xeA yeB rC

<max {sup d(y,C), sup d~z,B)} + max jaup d(x,B), sup d(y,A)f
yeB zCC xrA yrB

-d(B,C) + d(A,B), completing part (iii) and shoving that (S,d) is a

metric space.
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Example 8. In R, the (Hausdorff) distance between the Cantor Set and the interval

[0,1] is 1

Let A be the Cantor Set and B - [0,1]. Since A C B, d(x,B) - 0 for each

x c A. Thus, su~ d~x,B) - 0. If y c B then d~y,A) > 0 when y 4 A. The largest

part of B which does not contain points of A is the interval 1i- 2) It is easy

[1

to see that y -is the point in B which is farthest from any point in A, so

b2

11 1
d(TA) - -Thus, d(A,B) 6~

Example 9. In R , the (Hausdorff) distance between A - Cxy): x 2+ y 2he 1n and

B - (0x,y): y = 0 and -2< x < 2} is 1.

It is easy to check that sup d((xy),A) - 1. Also, sup d(Cxy),B) 1.
B A

S dAThus, sB) - 1.

We will now define contraction mappings.

Definition. If f: S + S where (S,d) is a metric space, then f is a contraction

mapping if and only if there is a real constant, r, so that 0 < r < 1, and for

all x,y e S, d(f(x), f(y)) < rd(x,y).

Intuitively, a contraction mapping decreases the distance between any two

points. Consequently, every contraction mapping Is continuous, and every

contraction mapping has a unique "fixed point." That is, if f is a contraction

napping on S, then there Is a unique point, Y., so tbaL f(;:O) -x. The proofs

of these factq are left for the exer -ises.

Example 10. If f: R + R by (x) -.1, then f is a contraction map.

Let r then, for any x,y e R, d(f(x), I.y)) - f( ) - f(y)j - .j

Defixi - yn rd(xy). Zero Is the fixed point.
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Example 11. Define f: R * R 2 by f(x,y) -('~[/3x - y], .1{/~y + xl). Then f is a

1

contraction mapping with r -L, and fixed point, (0,0).

Let (x1 ,Yl) and (x2,Y2 ) be points in R2 .

d(f(xlYl), f(x 2 ,y 2 ))

= (~ / ~-yl] -J3yI + x]), (* 13 3c2 - Y21, -L4/3 Y2 + x2]))

"Cxi - 2) - - y 2)D + (13 (y1 - y + x -x)

3(x - x)2 + (Yl - Y2) 2 + 3(y, - Y2 ) 2 + (x - x2) 2

I 1x x2)2 - 2
2 Vi 2 + (,'l Y2

I d((x i , Yl), (x2 , y2 )).

It is easy to see that zero is the fixed point. This function rotates a point

by I radians, counterclockwise about the origin, and decreases its distance from

the origin by I. Thus, repeated applications of f will take a point through a
2

spiral trajectory into the origin.

Definitions. Let fl, .... f be contraction maps on Rn Then Ifi: i 1, ..., m}

m

is called an iterated function system (IFS).

If A C R , then f I(A) - {y . Rn: there is an x c Rn and f (x) =  for each

i " I, ... , m; f0 (A) ' A and fk+l (A) - fi(f k(A)).
i i

We will let f denote the collection {f : i - 1, ..., m} as follows:

f(A)- U f (A),
i-I

and f k(A) is the kth iterate of f.

( The following fact is presented without proof:
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Theorem. If f = ff : i = 1, ... , m} is an interated function system of contrac-

tion maps on Rn, then there is a unique compact set, F C Rn, such that f(F) - F

and for any nonempty set, A C R, lm fn (A) - F in the Hausdorff metric.
n w

Example 12. Let f = {fl,f 2} where each fi: R + R by f1Cx) , f2 (x) - (x+2)/3.

Then, the fixed point of f is the Cantor Set.

First, we'll show that lim fn ( 0 ,1]) C, where C is the Cantor Set:
n +C

f ([0,1]) - {y: there is an x [0,1] and fl(x) - yl - [0, .
113

Also, f ([0,1]) = [-,I].

Thus, f([0,11) = f 1 0,11) U f 2([0,1])- [0, I U 3 -,i1. We can see that this is

the first level of the construction of C in section 1.8.

Now, we'll calculate f2 ([0,1]) f(f[Ol]):

f1 ([o,3 U r ,1) =ro, !1u 2 1

fU [ 1U1) u , 1.
-k3' 9 .9

So, f 2 ([0,1])= FO,1 U [-, -] U 3-, 91 U [98, 1. In general, f, will take an

interval and move both the endpoints 3 closer to the origin. f2 will do the
2

same thing, and then add - to every point in that interval, shifting it to the
32

right by une should be able to see that this is equivalent (when repeated ad

infinitum) to both formulations 1 and 2 in section 1.8. Thus, lim fn([0,]) C.n -C.

Let's try to show that r is in fact a fixed point of f. To do this, we'll

use formulation 3 of C from section I.:

00 d

C - {x: x - F -! where d 0 or 1.
n- 3n n
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Let x c C. Then,

d
x = - (tertiary expansion with O's and 2 's)

nil 3n

d d
f 1 (x) - - =  n- = where d0- 0.

n13 nli3

Thus, fI takes points in C to other points in C.

2xn- +1 w 2
2(x )  3 ni 3n  3 whered o  ,

d where d o = 2.
n-I 3n

So, f2 also takes points in C to the other points in C. Thus, C is a fixed (set)

point of f.

How does one find the dimension of a fixed point of an IFS? We know the

dimension of the Cantor Set is log 2/log 3, but in general the functions in the

IFS must hold the key.

Definition. The ratio of a contraction map on Rn is the infinum of all r for

which d(f(x), f(y)) ( rd(x,y) still holds for all x, y c Rn .

Thus, in example 12, the ratios of f and f are both

1 23

Fact. Under certain conditions on the IFS given by f - {fi: i - 1, ..., m}, if

the ratio of fi is rt, then the dimension of the fixed point (set) of f is the
iM

unique number s such that I r1 a 1.
i-i

The conditions necessary for this fact are too technical to discuss. But,

among other things, each f must be a similitude (preserves shape, but not size).

Additionally, there cannot be too much overlap in a construction (following the

process of section 1.7).
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Example 13. Calculate the Hausdorff dimension of the Cantor Set by using the fact

on the previous page.

I I8 18
Since r1  r 2 - 3, we need to solve (3) + (3) - 1 for s.

2(1 ")s - 1, so s - log(1/2)/log(1/3), implying that s - log 2/log 3.

Exercises.

1. Prove that the topology generated by a metric space really is a topology.

2. Prove that the general Euclidean metric really is a metric.

3. In section 1.8, let E be the nth set in the recursive process which generatesn

the Cantor set in formulation 1. (Alternately, E is the nth iteration of f onn

[0,11 in example 12 of this section.) Find d(En, [0,1]) where d is the Hausdorff

metric on compact subsets of R.

4. Let f be the IFS in example 12. Find lim fn (-1,0)).
n. w

5. Let f - {fl, f2, f 3 1 where each f,: R2 + R  is given in polar coordinates by:

f(r,8) - ( e + T)

f (re) r+l 2wf2 C r 0  " ii- 0 + -)

f3 (r,8) - (4jE, e - C).

Calculate the Hausdorff dimension of the fixed point of f. Find f(A) where

A -{(r,e): r < 11.

6. Prove that a contraction mapping is continuous and has a unique fixed point.
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1.12 Further Examples

It turns out that many useful IFS are collections of "affine" functions.

Definition. A function, f: Rn + R , is affine if and only if there is an n x n

matrix, A, and a n x I vector, b so that if x . Rn, (x is n x 1), then

f(x) - Ax + b.

The functions in the IFS must still be contraction maps, but affine

functions usually suffice to form useful pictures (compact fixed sets).

Example . Let f = f 20 f31 where each fi: R 2 + R2 and

{ f0 2 
1: R 2I ] 0'  °]-I

f] : r .] + 5 , and

0.5 050 i]F2

Remembe 3 ([:]r['l:] +[:
This IFS has the "Sierpinski Triangle" as its fixed set (point).

(Figure 6, page 57.)

Remember that the fixed set, P, is the lim fn(A), where A is any nonemptyn

subset of R2. The easiest A to choose would be the set containing just the

origin;

Then:

f (A) f 2 (A) 115 and f (A) 25

51



2 r.5 l.1 r13. l r*.i rl.51 f'3.1 r255i r2551 ,.7.f 2(A - .s 5, [1.51, [1 51 15, [;]1;5] , [2 551, [3.5, etc.
f2(A) = IL. 5  26 ' 50 5  L7 5  75J' L50.51' t75 75

Implementing this algorithm on a computer is memory intensive. It is

necessary to store f k(A), reference all its elements, and generate f k+(A). To

generate a picture on a typical computer monitor would require two arrays, each

capable of holding 640 x 350 bits. And this is only for functions in R2

Here is another algorithm. Unfortunately, it is extremely slow and

redundant, but it does require minimal memory.

Theorem. If f = {f1 : i - 1, ..., m} is an IFS, then the fixed set (point) of f, P,

is the collection of all fixed points of all finite compositions of the f 's.

Example 2. Another way of constructing the fixed set of example 1.

We first find the fixed points of fl, f2, and f3 " (Note: the fixed

point of Ax + b is (I - A)- b if it exists, where I is the identity matrix.)

The fixed point of fl is:

W[ Oj [0.5 05) [10 ] 1 - 0.5 ,

=[2 0o1 _ [1)

Similary, the fixced points of f2 and f3 are! [10and 501 respectively.

ro2[ ] 2 ~ 50
So, [2][O 0j, and [, 10 are points in, the fixed set of f, not just approximating

points.
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The theorem says we need all fixed points of all compositions of the f 's.

We just computed fixed points of compositions of order 1. I.e, f1, f2 P f3 are

themselves trivial compositions.

Next we'll calculate compositions of order 2:

These are:

f 1 f ' fl 0 f2 fl 0 f3 9 f2 0 fj 9 f2 o f2 1 f2 o f3  f

f3 o f2 , and f3  f3.

Since composition of functions is not necessarily commutative, all nine need to be

considered. To compose two affine functions: f1 I Ax + b and f2 a Cx + d,

f0 " f2(x ) = A(Cx + d) + b

- AC + Ad + ;.

In our example, all the matrices are the same, so each matrix of the order 2 com-

position will be [.25 01. However, there are nine possibilities for the vectorpostin il b L0 .25

part: [1 5 0 + ; where d and b can be (11, [51], or [515. So, we get vectorpar: 'U.50

parts of : 1 l.51, 13.5], 1, [1;5], 13.;5, [2 ], [2S;5 1, and (37. 5j.p1tso" :5 L26 26 150.1 5 7 75 ,50.5 75 75"

We need to calculate the 9 fixed points of these 9 compositions. Since each com-

position is still an affine map, we use the same technique as on the order 1

compositions to obtain fixed points:

182201 41180 40 and 0
1100

Note that [2) and [,0] were already known. Even though we calculated 3 + 9 fixed

points, we only have 10 distinct points in our fixed set.
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Since the number of compositions of order n is 3 n , and there is much

redundancy, it should be clear that this algorithm is slow. But, at least it

requires minimal memory, (just for the original functions).

Example 3. Define an IFS as f - ifi: i - 1, ... , s} where f: R 2 + R 2 as

f (x) - Aix + b and
A2 . F.85

A , [0f .10] A [.8
A1=' ['0 .85 '

A08. 85

A = = .85J A4  [2 .2] and
3 0-.2 .21

5 .2 .2]

foo [ ', , 2 ' 3 = 1 ,6 and ;5 f1, 1

This IFS will generate a fern branch in R2 . It is possible to modify this

IFS to generate a (curved) fern branch in R3...

-- 0o 0 85
A1  .18 0 , A 2  0 .85 .1

LO 0 0l 2 L0 -.1 .85]

.85 0 0-.2 .2
0 .85 15 , A4  . .2 ,and
0 -.1 85

V- .2 .2 0]A5 ='.2 .2 01
*0 0 .3j

b b~ [1 6] anLO

b 4 -b
5  85]
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The best known algorithm for generating a fixed set of an IFS is the "Random

Iteration Algorithm" or "Chaos Game". It Is an extrapolation of the scheme

presented in example 1. Instead of computing the complete set function at each

iteration, we randomly choose a single contraction map from the IFS to iterate

the last point only.

The RIA (Random Iteration Algorithm) relies on fixed probabilities

associated with each contraction map in the IFS. The probabilities are chosen to

describe the area-relationship of each map to the whole.

Area-relationships of affine maps are easily calculated by determinants.

For example, if f(x) = Ax + b then f will map the unit square (in R 2 ) with

vertices: (0,0), (1,0), (1,1), and (0,I) to a parallelegram with area equal to

the determinant of A.

Thus, if an IFS is given by {f1 : i - 1, ..., ni and each fi(x) - Aix + bit

then we will assign a probability, pit to each f via the formula:

det Ai

Pi - n
det A1i-I

This will insure that those contraction maps dealing with "a lot of area" have

a higher probability. If detA - 0, then assign a small probability like 0.01

to f .

The RIA can be described as follows:

1. Given an "IFS with probabilities": {ift Pl; f2,p2 ; ""; fn' Pn1 so

n
that P1 

= 1.
i-I

2. Pick a fixed point, Xold' of one of the f 's.

3. Generate a uniform random number, r, between zero and one.
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k-I k
4. Choose k so that p < r < T p

i - i :tl

5. Let xne w = f k(xol ) and graph Xold.

6. Let xold be replaced by xnew and repeat steps 3 through 6.

The RIA is very efficient. All the figures in this section were created

with the RIA.

FArT: Small changes in the parameters (entries of the matrices and vectors)

of an IFS will cause small changes in the fixed set (picture).
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Figure 6

"This Sierpinski Triangle is the fixed set of three contraction

maps; f I(x) - Aix + bit I 1, 2, 3 where

A, .A2  A3 - [0T 0"5J b I L
b- - anFb 50]
2 so 0 an 3 -t50J
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Figure 7

"This siral w-i, ,rteied using two contraction maps with matrices

and vectors given by

[a Wj and I e

where

._ a .. . , . . .,1 d t

f, .85 -.31 .l .85 1 -19

f., -. 3 0 0 -. 3 t0 -1 .'
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Figure 8

"Continuing the notation from Figure 7, this figure is the fixed

set of the IFS given by:

Ia b c d e f

f 0 0 0 .5 0 (1

f1 4 .2 .2 .2 0 .

f3 .42 -.42 -.42 .42 0 .2

f4 .1 0 0 .1 0 .2 .
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"ThIs fern br,-4acl i' is:c' ~

f C

f .85 C
2

f 4 -. 15 2 '



Figurre 10

"The IFS for this figure is:

a b c d

f1 .6 0 0 .6 .18 .36

f .6 0 0 .6 .18 .12

f 4 .4 -. 3 .3 .4 .27 .9



bV

"Thc IFS '

i -

• 

. k.,



Figure 12

"This figure's IFS is:

a b- c d e f

ft .3 -. 4 .4 .3 1 0

f .5 0 0 .5 0 0

f .3 .4 -. 4 .3 -1 0
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Figure 13

"This dragon's tail was created with an IFS of:

a b c d e f

f .2 -.3 .3 .4 10 -1

f2 .9 -. 1 .1 .9 -1 10 ."
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Figure 14

"This star-burst fractal was created with an IFS of:

a b c d e f

f -.707 .707 .707 0 10 1

f .5 0 0 -.8 10 1
2

f3 .5 -.5 10 0 .



Exercises.

1. What is the dimension of the Sierpinaki Triangle?

[cose -sine 22. Recall that the matrix I sine cose] will rotate points in R , 8 radians,

counterclockwise about the orgin. Write -. 1 as r ths csOinI ..1 a85 r sine cose J

What is r and e. Note that r is the contraction ratio.

3. What is the approximate dimension of the fern in R3 described in the

second half of example 3? (Hint: When dealing with a function which

doesn't have an easy contraction ratio, bound it by 2 functions which do.

This will give bounds on the dimension when using the fact in section 1.11.)

4. If f(x) = A + b, under what conditions will I-A be an invertable matrix, so

that the fixed point of f may be found? (Hint: Consider the eigenvalues

of A.)

5. It can be shown that if A is a 2 x 2 matrix and f(x) - Ax + b, then f is a

contraction map if and only f:

IAN2 + /AA,4 - 41A12

< 1.
2

In fact, the ratio of f is the quantity on the left-hand-side where:

1A12 . a2 + b2 + c2 + d2 and JA12 - (det4)2 . Find the dimension of the

fractal in figure 14. What is the ratio of a rotation map?
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II.1 Introduction

The study of chaos is better described as a ztudy of the paths to

chaos. Typically, a physical system--like a driven pendulum--will undergo

predictable regular behavior through a continuous change of a parameter (in

the motor), until all at once, irregularity is observed. Or, a column of

smoke from a cigarette will rise in easy patterns, until at some height it

breaks up and becomes turbulent. Or, the fluid flow in a blender seems to

follow regular swirls, until at some speed, it looks random.

Obviously, there are magnitudes of irregularity, and chaos is not always

an apt term for some of the less dramatic behavior of these systems. But the

connotation that the word chaos provides is appropriate: there is an order of

complexity in the system which makes it unpredictable. This complexity is

usually a symptom of a nonlinear system. Linear systems have highly regular

behavior through all changes in their parameters. But a nonlinear system has

an amazing potential for strange behavior.

Some thought on observations of physical systems leads us to suspect

noise, and at very small scales, quantum effects as the culprits behind

unpredictability. Noise and Heisenberg's uncertainty principle are not

explained away or even encompassed by chaos theory. They are additional limits

to observations. Chaos provides randomness from seemingly exact mathematical

models. Noise and quantum effects provide additional unpredictability to the

exact model. This report will no address the effects of noise and quantum

principles.
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First, we will discuss what a nonlinear function can ,do when applied

repeatedly to a point (iterated). This is the study of orbits, and it leads

to invariant sets and attractors, all of which have physical significance.

We will tie this to fractals by noting that many natural invariant sets and

attractors are also fractals.

Perhaps the most astonishing facts in chaos theory come from universality.

Mitchell Feigenbaum has shown that many of the paths to chaos are essentially

the same. When viewed from the parameter space, (the parameter whose change

will bring unpredictability), the progression to chaos of a driven pendulum

will be "the same" as that of a small cell of heated fluid. Two univeral

constants, a 2.50290787... and 6 - 4.66920i6..., will show up in both of

these systems. These discussions will focus on the "bifurcation diagram."

After universality, we will also present some basic complex number dynamics,

to include the Mandelbrot Set, and finish wlth a discussion of randomness.
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11.2 The Poincare Map

One of the most useful spaces in which to describe physical phenomena is

called phase ssace. It frequently involves twice the number of dimensions

needed to describe the system itself because phase space usually contains

information on both the position and velocity of the system. We are plotting

dependent variables against each other. For example, x(t) and v(t). Phase

space allows us to tell how a system evolves in time. The path (trajectory) in

phase space shows how the system behaves. If the path is confined to a region,

that says something about the system's nature.

If a pendulum is oscillating in a plane, then only the angle, 8, is

necessary to describe the pendulum's position. So, it is a one-dimensional

system. Rather than graph e versus time, t, phase space will plot 8 versus 8

(where 8 = dW/dt).

If the pendulum is not oscillating in a plane, (this is realistic due to

the Coriolis effect), then two angles are necessary to describe its position.

Thus, a graph of position versus time would require three dimensions, whereas

the phase space is four dimensional.

Recause phase space is usually of a dimension which precludes graphing,

it is often useful to use a Poincare section on a difficult trajectory. The

trajectory in the first exnmple will be close to a circle, patametrized by time

(and thus, with direction). But, if the pendulum is driven, the trajectory

need not closc back on itself. One way of simplifying this is to intersect the

trajectory with a curve (or line). This curve, with its points of intersection,

(usually labeled with the time of intersection), is the Poincare section.

The Poincare map is the function which gives a point of intersection from

the trajectory and the Poincare section. In the ease of the driven pendultm, we

will obtain a dlfferent Poincire map (and Poincaro section) diLh each change in
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Pendulum Simple Harmonic Motion
(Posirlon vs Time)

Simple Iarmonic Motion
(Phse Spare)

A Poincare Ssc-ctr:

(Tht curve is at time: 0, F', and P)

.. 4 /

/
/

, .~/

3"cyc!e with period, P

Chaos
(No period)



the nonlinearity constant: that number which describes the driver. For very

small values of this number, we will still obtain a 1-cycle (closed curve).

Then at a fixed value, a 2-cycle will appear. For smaller and smaller changes

in the nonlinearity constant, 4-cycles, 8-cycles, etc. will develop until at

last, chaos will prevail. In this case, chaos simply means that there is

no cycle, and so the motion is irregular. This progression to chaos is best

seen through a bifurcatton dagram. (See 11.7).

Poincare
Map

/

//

/

Nonlinoarity Parameter

Another vercion of the Poincare map (also (.-Mad t' e return mly) is

obtained by fixing a value f'or the nonlinearity parameter and fixing a Poncal

section. We then start the trajectory at an arbitrary point in phase space

and number the consecutive intersections with the Poincare section (instead of

just looking ;1L the limit trajecoor' and labeling the time of intersectio). A

function, f, is defined as F(xn ) n :+1 where Yn and Xn+1 nre cinsecutIve
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positions on the Poincare section. By starting the tral?'tory at all points in

phase space, wL obcain a continuous function, f. It turns otit that nearly

all such Poincare maps have the same generic shape: that of an inverted

parabola, (although it usually is bounded since we usually limit ourselves to a

bounded region in phas2 space).

Because of the wa- this Poincare rzp is det- -:d, the fundamental technique

in studying it is the iteration of ccntious f-ncticns. If repeated

.npli,at!Dns of the function, f, bring us closer to F simdle point, then we are

approaching a fixed point of f, and it corresponds to a i-tycle in phase space.

Exercisec.

i. An idea! pendulun (with planar notion) with no friction will regularly

repeat any stjte iL is started ii-. Thus, the *imit trajectory is always a I-

cycle. If we measure theta from -, to 1T, re o: that tf'e Poincare map (return

na) will he: f(x) = Y, for -n < x < T. (Use the 6-axis as the Poincare

section. )

2. Do the same as in probler, I hut use the e-axis as the Poincare section.

lhat will th& domain of the return map be?
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11.3 Iterations of Continuous Functions: Orbits

Because the Poincare map can reduce the dimension and complexity of a

physical system's behavior, it is very useful in the study of chaos. The return

map is usually a continuous function defined on an interval which is strictly

increasing to a maximum and then decreasing. This generic characteristic of

most Poincare maps led mathematicians to study their behavior without reference

to any physical system.

The most commonly used technique to analyze behavior of return maps

involves repeated iterations of functional values. We start with a fixed

value, x0 , and compute f(x 0 ) = x1, f(f(Xo) ) = f(x,) - x2, etc., to obtain the

orbit of x0 . The orbit is a sequence of numbers, {xnJ:0 , which can display

many types of behavior:

1. Each x is either the same, or eventually the same. That is, {xnI is a

constant sequence. Recalling that the Poincare map is derived from a fixed

Poincare section and nonlinearity parameter, the significance of this is that

the physical system is going through a 1-cycle.

2. Every n values of the orbit, Jxni, repeat. This implies that the

system is going through an r-cycle.

3. The orbit gets closer and closer to m repeating values. This system

has an t-cycle as its limit trajectory, but the particular orbit chosen is not

on that trajectory. It merely approecbes it.

4. The orbit, {xn1, is dense in the domain of the return map. Most

definitions will include this as a criterion for chaos. We can imagine the

trajectory of the physical system as rendomly filling up its phase space: like

a motorized spinning cue ball rehounalng on a billiard table (without pockets).
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5. The orbit seems to be random, as in 4, but is localized: that is, it

never goes in some regions of the domain. The trajectory of this system is

influenced by some attractor, quite possibly a fractal. (These are often called

strange attractors, and will be discussed more in section 11.5.)

All of the behaviors listed above, while significant to the physical

P system, can be studied using simple mathematical tools.

A useful geometric trick is described in the following example:

Example 1.

(1
Let f(x) - x(I - x), for x e [0,11. Find the orbit of x= -

The straightforward approach Involves finding f(--) , f2(-~ f(f(-!-)', etc.:

1 1 3 13
we would get -T, W, " ... The arithmetic gets tedious, and a calculator or

6
computer is useful. But the qualitative behavior of the orbit of can be

gleaned from the following geometric technique:

2
2 /

4 )

II7
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If we believe the diagram, it is obvious that the orbit is converging to

zero. This technique works as follows: We start at x. and go up to the

graph of f to find f(x 0). This value is xI but is represented as a height on the

y-axis. To represent xI on the x-axis, we go horizontally to the line, y = x,

and then vertically (down) to the x-axis. The distance from zero to x1 is

exactly the height of x, = f(x0 ). We then repeat this process ad infinitum

to observe the orbit, {xn}. In this case, the x 's obviously decrease to zero, a

limit point. (This corresponds to a physical system approaching a 1-cycle, or

losing energy to a state of no motion.)

Example 2.

Define f (x) = Xx(l - x), for x e [0, 1]. When X - 1, the function of

example I is obtained. X is a nonlinearity parameter, and changes in X can put

us on the path to chaos. (See the exercises.)

Example 3.

C x. if0< -

Define gA(x) = -2

LX - x), if -<x< 1.

Again, X is a nonlinearity parameter. The functions defined by g are called

tent maps because of their shape. The functions defined by f are called

logistic tnaps.

When A = 2, g2 can be analyzed with a nuverical trick:

Write the numbers in [0, 11 in :heir binary expansion. Then note

that since g2 (x) 2x or g2 (x) = 2( - x), (and 2 - 10 base 2), calculations of

92 are very easy. In the following explanation, all numbers with a point, ".",

are base 2.
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For example, if YO = .01011, then since the first digit is a zero, x0 , so

g2 (X0 ) = 
2x0 = .1011 - xI . Now, x , so g = 2(1-x = 2(.0101) = .101 = x2 .

Then, g2 (x2 ) = 2(-x 2) .11 - x3. g2 (x3 ) 2(1-x 3) = .1 = x4 , g2 (x4 ) = 1 = x and

g2 (x5 ) 0 0. So, x6 - x7 - 0. Thus, the orbit is: {.01011, .1011, .101,

.11, .1, 1, 0, 0, . . .

2Note that the line y = x will intersect g2 at x = 2(i-x); or x = 7

2 -6 base 2, so we can check that .101010 ... is really a fixed point of g2:

=(-) - 2( -) - . We can note a few things about the return map given

by g2 . First, any x0 which can be expressed as a finite decimal in base 2,

will have an orbit which is eventually always zero. Zero and two-thirds are

the only fixed points and the only points of g2 which will have orbits that fix

2
onto - must end in 10 (base 2).

In fact, every rational number In 10,1l will have an orbit which eventually

corresponds to an m-cycle, for some m. (The above remarks are detailed in the

exercises.)

This has an interesting application to computer calculations with g2 "

We might expect irrational orbits to behave chaotically; but, this cannot

be simulated on a computer since any computer representation of an

irrational number is, in fact, rational. If done correctly in base 2, then the

computer will always end up at zero.

There is a technique which can glean more infocmation from chaotic maps.

It is called symbolic dynamics, and we recommend An Introduction to Chaotic

Dynamical Systems by Robert Devaney.
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Exercises.

1. In example 1, find the orbit of 0. What is the orbit of I? And -

3.

2. In example 2, find all the fixed points of f when 0 < A < 4.
1

3. For A = 2, find the orbits of 0, 1, and - under f Ax) - Xx(l - x).

4. For f A as above, what value of X will force f A to intersect the line,
1 2

y = 1, at x = I and x - 2

5. Same as problem 4 with fX replaced by gA (the tent map) of example 3.

6. In problems 4 and 5, for the given value of X, if 1 < x < 1 then f x)

3 3 A

and g,(x) are not in the interval [0,1]. Find the values of x such that

f (x) is still in (0,11 for every value of n. Will these values of x

change when we examine gX?

7. In example 3, find the orbit of .010111 base 2 under g2 "

8. Find the orbit of -L under g2 "

9. Prove that if x0 has a finite representation, base 2, then g2(xo) is

eventually zero.

10. Prove that if x0 is rational with an infinite base 2 representation that ends

in repeating "10", then n(xO ) is eventually 2

11. Prove that if x is rational, then there exists a positive integer, m, so

that the orbit of x0 under g2 will eventually repeat exactly m values.

12. Show that there is an x0 (irrational) such that zhe orbit uf x0 is dense

in [0,11 under g2 "
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11.4 Periodic Points

Periodic points are points whose orbits (under the return map) repeat a

tinite sequence.

Definition I. The point, x0, is periodic under f if and only if there is a

positive integer, n, so that f n(x0 ) = x0 . If n is the least sucb integer,

then n is called the prime period of xO.

Thus, a fixed point has prime period one and corresponds to a 1-cycle In

Fhase space. Similarly, if x0 has prime period m, then there is an m-cycle in

phase space which will intersect the Poincare Section at x0 and then at n - I

other values before returning again to xO .

There are two fundamental questions pertaining to periodic points:

1. Is a given periodic point an attractor?

2. How many periodic points are there? (And where?)

Definition 2. A periodic point, xo, of period m of f is an attractor if and

only if there is an an c > 0 so that if Ix - x0 i < E then Jim fmn(x) .x 0 .
n w

The periodic point, x, is a repellor if and only if there is an F > 0

so that if 0 < jx - xnl < C then there is a k such that xikm(::) - Xo C.

Attractors are also called sinks if they are fixed points, just as

repellors are called sources.

Fortunately, it is usually easy to determine whether a given periodic

point is an attractor or repellor:

Theorem I. If x0 Is a fixed point of f and If'(x 0 )i < 1, then x is an

attractor. If if'(x 0 ) 1 > 1, then x0 is a repellor.
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Proof: Assume lf'(xo)I < 1. Then there is an e > 0 so that if Ix - Xl < C,

f(x) - f(Xo)1
X r where r < 1.

x -x 0

Thus, for all x in the interval (x0 - , x0 + e) , lf(x) - f(xo)l I r Ix - X0 ,

which shows that f is a contraction mapping on (x0 - e, x0 + e) with fixed

point, xn. So, if Ix - x0I < c, then lim f(x) = x0.
n m

Assume If'(x0 )I > 1. Then there is a 6 > 0 so that if Ix - xo) < 5,

f(x) -f(X O )
> q where q > 1.

0-K0

Hence, on (x - 6, x0 + 6), If(x) - f(x0 )1 Ix - x0 . So, given x such that

Ix - x0l < 5, f(x) is farther from x0 than x is; (q > 1). Thus, there is k and 5

so that Ilk(x) _ x 01 > 6, completing the proof.

It is easy to extend theorem I to general periodic points:

Theorem 2. If x0 has prime period m under f, then x0 is attracting if

d fm(x > 1. Moreover, if x' is any

point in the orbit of ., then - f m W 0  d fm(x,), implying that the orbit of
dx x~1

x0 shares the properties of x itself when fmx

Proof: First assume -x fm(xO) < 1. Then x is an attracting fixed point of f".

d fm(xo)
So, we need only show that if ' is in the orbit of xo, then -dx

d fm~x')

dxd in n-

But, fx f(xo) = I f'(x i) by the chain rule, where xi W f(xi I) for
i=0o

i 1, ... , m - 1. Thus, the derivative of f at x. is the same as that at any

other point in the orbit of X0 , completing the proof.
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Theorem 2 can be used with the definition of an attrnctfnw periodic point to

show that if _fn(Xo) I < 1, (where xo has prime period Ti tinder f), then there

is an c > 0 such that when Ix- x0 1 < e, lin ifn(x) - fn(xo)! = 0. Fssentiallv,

the entire orbit attracts x. This will be discussed more in the next section.

Definition 3. A periodic point, x., of prime period m under f is called

d nhyperbolic if and only if -f (xo) 0 1. Otherwise it is nonhyperholic.

(Branch points in a bifurcation diagram are always nonhyperbolic. See section

11.7.)

Example 1. Let fA(x) x(l - x) be the logistic map introduced in the last

suction, for A > 0, and 0 < x < 1.

First, find all periodic points and classify them when 0 < X < 1.

It is easy to see that zero is the only periodic point of fA when 0 < A < 1.

f =(O) A, so zero Is attracting when X < 1.

When X = 1, zero is nonhyperbolic, but still attracting (weakly attracting).

Next, we'll consider X > 1.

Here, fA has another fixed point at (X - 1)/X. So f has 2 fixed points.

f'I( - ) = 2 - A, showJng that (X - 1)/X is attracting and hyperholic when

I < < 3 and repellin7 and hyperbolic for A > 3. Geometric considerations

show that (A - 1)/A Js weakly repelling (nonhyperbolic) for X = 3.

The above completely describes the fixed point behavior of f

Next, wc'll try to find points of prime period 2...

To do this, we'll look for fixed points of: f 2x) - 3 x4+ 23 x 3

A

3 ) x2 + A2 x. Thus, we'll solve f (x) - x - 0, which mist have 0 and

2
(A - I)/A as solutions (A > 1) since they are fixed points of fA . Thus, we cn

reduce f(x) - x - 0 to a quadratic equation:
A
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x 2 + (X3 + X2)x - (A2 + X) = 0, or X2 x - (X2 + X)x + (X + 1) - 0. The discrim-

inant of the latter quadratic is:

D - X2(X + 1)(X - 3).

Since we are assuming X > 1, (in order to have (X - I)/A be a fixed point), we can

see that D is negative until A > 3. Thus, there are no periodic points of prime

period 2 until X > 3. (When A - 3, the discriminant is zero and the old fixed

point: (A - I)/A, has multiplicity 3).

Note that the roots of f 2x) - x are a continuous function of A. So, at A = 3
A

we have one repelling fixed point at zero (a root of multiplicity one), and a

weakly repelling fixed point at 2/3, (X -1)/X, which is a root of multiplicity 3.

This root at 2/3, will split into 3 distinct roots for x > 3. One of them is

(A-1)/X which is still a (repelling) fixed point, but the other two are new points

of prime period 2.

Are these new periodic points attracting or repelling or nonhyperbolic?

By evaluating the quadratic formula, we obtain the 2 new points of prime

period 2:

)+l + /(A+1)(A-3) A +1-/( A+I)( A-3)

0= 2A and p1  2X

d 2
when A > 3. Also, d P0 2P f'(p0)f'(pl)

a X(1 - 2 p0 ) - A( - 2pj)

. -X2 + 2A + 4.

Thus, p0 and p1 are attracting when 3 < A < 1 + /, nonhyperbolic for A I + V,

and repelling when A > I + /.

If the previous pattern from fixed point to 2 points of prime period two

repeats, then we would expect each point of prime period 2 to "give birth" to two

points of prime period 4 (for a total of 4 points of prime period four) when the

period 2 points are nonhyperbolic at A - 1 + .
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We will now turn to the question: how many periodic points are there?

2x ,_l !x /

Example 2. Let g2 (X) 2if 0 x < 1/2

2(-x) ,L if 1/2 < x < 1.

So i2 Is the tent map from the previous section. It is easier to find the periodic

p'ints of this map tnan the logistic map of example 1.

We will develop a geometric technique to find periodic points of different

order.

First, periodic points of order I are fixed points and are obtained from the

intersection of 92 with the identity map:

92

0 2/3 x

So, g2 ha-4 fixed points at 0 and 2/3.

M 2
T'o find points of prime period 2, we graph g2. This can be done without an

explicit representation of 2 ! Note that g2 (x) - g2 (g2(x)), so that the range

values of g2 then become the domain values for the next g2. Thus, since g2 maps

[0, 1/2, onto [0,11, (g2 (x)) wil go through a complete up and down graph for

x c (0, 1/2] and for x c [1/2, 1)...
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y X

2 1 

Hence, 2 will intersect y = x at 4 points, two of which must be 0 and 2/3. The 2

new points are points of prime period 2.

We can repeat this graphical technique to find periodic points of order n.

It is clear tnat in this case, as n + , we will obtain an infinite number of

periodic points. And, the collection of all periodic points will be dense in the

interval, (0,1].

One of the properties of g which lends itself to this technique is that the

maximum value of 92 is the same as the maximum value of the domain: one. In

example 1 the logistic map, %, will not achieve a maximum value of one until

X - 4. For this value, f4 and g2 have essentially the same behavior. The hard

part is tracking their behavior when X < 4 (for f,) and X < 2 for g.. (See the

exercises.)

We will now look at the case when X > 2 for g,, (which is the same as that

for f A when X > 4). In particular, we'll examine g3 (x).

r 3x if 0 < x < 1/2
Example _. Let g3 (x) =

L3(1-x) , iff 1/2 <x£ < .

The most important dilference here, from earlier cases, is that whi.t

1/3 < x < 2/3, g3 (x) > 1, gnd so point between 1/3 and 2/3 get mapped out of the

domain interval, (0,1j. Repeated applications nE g3 will take these points to

-a. We could lntepret ,nis as a type of resonance. Initial conditions in the
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physical system which correspond to these values in the domain of the return nap

are carried out-of-bounds.

Put the values between 1/3 and 2/3 are not the only ones which are

attracted to --. For example, x = 1/6 is mapped by g3 to 1/2. And now 1/?

%ill be attracted to --. By using the graphical technique in the previous

example, we can determine that every point In [0,11 excent those in the Cantor

Set will eventually be attracted to -:

1 2 1 x

2

/\

,\,

3 g

1 2 1 2 7 

11 tis, 9 n(x) will take 2- Intervals of length -from its Oomain, and mn! 3 3n

thiem ouit of 10,11, thus sendinj' then on their way to --- So, the points In the

Cantor Set are the only points which stay In 10,11 after arbitrary Iterations

by g3.

k
Note that all numbers of the form n ntually mapped to zero, and

3 3n

periodic points will be dense in the Cantor Set. (See the exercises.)
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Although the number and type of periodic points for g is closely related

to the number and type of periodic points for fs, (for a suitable choice of 8),

there is a fundamental difference. For X > 1, gA has no attracting periodic

points since the slope of g is always ± A. Thus, g is useful since it's easy

to work with, but not very realistic, since we expect physical systems to have

some steady state solutions.

Tle'll conclude this section with a remarkable result due to Sarkovskii.

Theoren 3. If f is a continuous function mapping R to R and f has a point of

prime period 3, then for every natural number, n, there is a point of prime

period n.

This is actually a corollary to Sarkovskil's theorem which gives a precise

listing of what periods imply what other periods.

Thus, f4 and g, have points of prime period n for all n. In fact, fX has

points of prime period 3 for X - 3.839.

Exercises
4

1. Uhat is the degree of the polynomial, f (x)? If 3 < A ( 1 + /6, how many

known roots are there to f4(x) - x - 0?
3

2. What is the degree of the polynomial, f (x)? How many known roots are theio

to f (X) - =

3. Use numerical methods to find four points of prime period 4 of fX(x) when

A - 1.01 + /6.

4. Use numercarl methods to find three points of prime period 3 of IF(x) when

= 3.839.
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5. Draw a graph of f 4x) when A = I + F6. (Hint: Use the answer to prob 3 to

make the graph more accurate.

k

6. Prove that g3 (x) maps points of the form 3- eventually to zero.

7. Find the two points of prime period 2 of g3 (x). Are these points in the

Cantor set? If so, write them in base 3 form using only O's and 2's.

8. Find the 4 points of prime period four of g3 (x). Are these points in the

Cantor sct? If so, write them in base 3 using only O's and 2's.
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11.5 Invariant Sets and Attractors

We'll start with a couple of definitions.

Definition 1. A set, F, is an invariant set of the (return) map f if and only

if for each x c F, fix) c F.

Definition 2. A set, P, is an attractor of f if and only if there is an c > 0 so

that if p is any point in P and x is any point such that d(x,p) < c then all

limit noints of the orbit of x are contaInrrl In P.

The definition of invariant set is straightforward. For example, a fixed

point is an invariant set, as is any periodic orbit: that is, the collection of

m points is invariant. A more interesting example is the Cantor set. In the

last section, we saw that the Cantor set is an invariant set of g3 and f9/2"

Attractors are fairly easy to understand, but their definition is tedious.

Intuitively, a set, P, is an attractor if nearby points are drawn closer and

closer by the return map. In the definition, we used "d" to emphasize that

distance can be measured in any metric space and we are not limited to return

maps whose domain is the real line (or subset thereof). Also, if the orbit of a

point approaches -, tlen - is considered to be a limit point of the orbit, and

can also be considered an attractor.

Recall from part I that ,he fixed point of every contraction map is

actually an attract-ir of that map. In fact, an IFS has an attractor which is a

fractal, even though we would not usually consider an IFS to be a return map of

some physical system.

88



In a physical system, an invariant set corresponds to trajectories which

keep intersecting the Poincarz section in the same set of points. It should be

noted that every attractor is also an invariant set, but has the additional

physical property of attracting nearby trajectories.

Example 1. Explain the physical significance of the logistic map, f., as X

increases (A > 1).

We will give a physical interpretation of the information presented in

example I of 11.4:

For I < A < 3, there is one attracting fixed point at (A - 1)/A. All

trajectories (except one) are drawn to this fixed point, so the physical system

Las a stable, attracting 1-cycle as its steady state solution. Note that zero

is a repelling fixed point, so it can be considered as an unstable invariant

set. The one trajectory which intersects the Poincare section at zero is the

only one which isn't attracted to (A - 1)/A. For this reason, zero is ignored.

For 3 < A < 1 + 6, there is one attracting set which is an orbit of

period two. The fixed point at (A - 1)/X is now a repellor, and hence can be

ignored. For all practical purposes, the physical system will draw all tra-

lectories into a stable steady state solution of a 2-cycle. This 2-cycle was

generated through a bifurcation of the fixed point (A - I)/X.

As A increases through 1 + A, the stable 2-cycle above will bifurcate into

a stable 4-cycle which becomes the steady state solution of the physical system.

Now we are ignoring two repelling fixed points--at 0 and 0A - 1)/A --and two

repelling points of prime period 2. For fairly obvious reasons, including

noise, It is impossible for an actual trajectory in the system to repeat an

unstable or repelling cycle (or orbit).
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This bifurcation behavior will continue for smaller and smaller increases

in the parameter, A. The accumulation point will correspond to a type of chaos.

At this chaotic value of X there will be no attracting cycle, so the motion in

the system will be irregular and aperiodic. There can still be a steady state

solution (attractor), but it will not be periodic.

Further increases in X will show periods of chaos interspersed with

regular, attracting cycles. When the cycles exist, they will bifurcate as

before and lead to another period of chaos. When A = 4, X will be so large that

no attracting solution will exist, even an aperiodic one. At this value, there

is no attractor and the system is completely turbulent.

Exercises.

1. For A > 2, find the measure of the invariant set of g.. [Hint: Add up the

length of the intervals in the complement of the invariant set, then take one

minus this.]

2. Can g, (X > 1) be used to model a physical system? Explain.
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11.6 Scrambled Sets--Definitions of Chaos

We will give two definitions of chaos in this section. To do so, the

concepts of "sensitive dependence on initial conditions" and "scrambled sets"

need to be clarified.

Definition I. A function (return map) has sensitive dependence on initial

conditions if and only if there is an c > 0 so that for every x and every > 0

there is a y and n such that d(x,y) < 6 and d(fn(x), ff(y)) > C.

The definition states that arbitrary accuracy of orbits cannot be main-

tained. That is, there is an c > 0 so that no matter how close you start to x,

there is a y which will end up c units away from x after some number of

iterations.

This behavior is strengthened (worsened?) by scrambled sets:

Definition 2. Suppose f: I + J is a continuous function mapping I onto J, where

J ic a subset of I. Let X be the length of J. S is a scrambled set of f if and

only if for every x and y in S, (x y),

(i) llm sup ifn(x) - fn(y), A, and
n -

(Uf) lim Inf fn(x) - fn(y)} - O.

We'll explain "lim sup" and "lim inf": the lim sup as n + - is the

supremum of values achieved by Ifn(x) - fn(y)I as n + -. Thus, condition (i)

implies that any two points in S will be iterated as far apart as possible (J is

the limiting factor). At the same time, condition (ii) implies that these two

points will be Iterated close together again as well. The terminology,

"scrambled", seems understated.
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First, note that sensitive dependence on initial conditions happens for

every value in the domain, I. (We used arbitrary metric space notation in

definition I so that it can be applied to higher dimensional situations.) But

the behavior in a scrambled set is localized to that set, and it will never be

the entire domain. (A metric, d, could also be used in definition 2.)

Second, note that if a return map has an attracting set, it cannot have

sensitive dependence on initial conditions since points drawn to the attractor

will stay close together.

We need one more definition.

Definition 3. A (return) map, f, is transitive (or nomadic) if and only if

there is an x so that the orbit of x is dense in the domain of f.

We have seen this behavior for g2 back in section 11.3.

Now we'll present two definitions of chaos:

Definition 4. A function, f, is chaotic-3 if and only if the following 3

conditions are satisfied:

(i) f has sensitive dependence on intial conditions,

(ii) f is transitive, and

(iii) the periodic points of f are dense in the domain.

Definition 5. A function, f, is chaotic-s if and only if there is a scrambled

set of uncountable CRrdtnality.

In the article "On Scrambled Sets for Chaotic Functions", Andrew Bruckner

and Thakyin Hu showed that if we assume the continuum hypothesis (see Funda-

mentals of Contemporary Set Theory, by Devlin) then a function, f, is chaotic-s

2
if and only if the second iterate, f , is transitive. They also showed that 92

(the tent map) is chaotic-s.
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Example 1. The tent map, g2 , is also chaotlc-3.

We only need to show that g2 has sensitive dependence on initial condi-

tions. For this function, we can choose c > 0 to be any number less than 1.

Fix such an c. Now let 6 > 0 and choose m so that-!-- < 6. Fix a number, x, in
2
m

[0,11 and write x in base 2 as x = .dd 2 ... where each dI c [0,1. Now, we

need zo find a y within & of x so that after some number of iterations f n (x) and

fn(y) will be at least c apart:

Define y c [0,1] as y - .ele 2 ... where e1 = dI for I < i < m and ei * di

for all i > m. Thus, y - x has zeros in the first m positions; and hence,

iy - x1 < .

2

Now, g2 (z) - g2 (.zlz 2 ... ) = 23 if 0

where q zi for each I. q2q3 ... if Z 1

Thus, after iterating x and y m times, g2(x) - .xm+lxm+2 ... where either
m

each xm+j . din+ j or each xm+j * d* +j, and similarly for y: g2(y) = "Ym+l Ym+2"'"
in.jmm

where each ym * x *"This last fact implies that lg2(y) - g2(y)l - .J base 2

= 1. So, since £ < 1, we have shown that g2 has sensitive dependence on

initial conditions.

In section 11.3, it was shown that g2 is transitive and that the periodic

points of g2 are dense in (0,1]. Thus, g2 is chaotic-3.

Example 2. The logistic map, fX0 is chaotic-3 on its invariant set when

First, note that we are restricting the domain of f to its invariant set

since if A > 4 (as is 2 + /5) then fA will take the majority of the interval

[0,11 off to --. Recall that the invariant set will be a Cantor-type set (the

actual Cantor set At X - 9/2) when ) > 4.
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Using symbolic dynamics, it is possible to show that f has a dense orbit

(in its invariant set) and that periodic points are dense (in its invariant set),

whenever A > 4.

Now, when A > 2 + /5, If,(x)I > I for all x in the invariant set. (See the

exercises.) Thus, there can be no attracting set for fA, and hence fA must have

sensitive dependence on initial conditons. So f A is chaotic-3 when A > 2 + V3.

In fact, f4 is also chaotic-3. (f and g2 are "topologically conjugate." See

II.10.)

We will now discuss the physical implications of our criteria for chaos.

Sensitive dependence on initial conditions is quite plausible physically since it

precludes an attracting set. It is harder to rationalize the necessity of dense

periodic points. But, since the orbits cannot be attracting, knowing that there

are unstable m-cycle trajectories intersecting the Poincar; section doesn't hurt.

The transitivity says that there is a trajectory which will intersect the

Poincare section in every interval, which is certainly a type of irregularity.

If there is an uncountable scrambled set, that shows that many trajectories

are repeatedly converging and diverging along the Poincare section. That this

also implies transitivity lends physical credibility to the chaos-s definition.

In general, it Is not easy to determine If 1 return map is either chaoric-3

or chaotic-s. One usually uses numerical techniques to see if it jlght be chaoti,

and then conjectures one way or another. See seo'tion 11.10.

Exercises.

1. Prove that if A > 2 + V5 then f,(x)! > I on its invariant set.

2. Prove that if f Is any function with sensitive dependence on initial condi-

tions, then f cannot have an attracting set.

3. Do you think that f, the logistic map, can be chaotic for values of

A < 2 + V5? Where is it definitely not. chaotic?
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11.7 UnIveiPi.ilty--The Bifurcation Diagram

First, we'll describe how to interpret a bifurcation diagram. (See page

' d.) The non-linearity parameter, X for the logistic map: f (x) = Ax(l-x), is

plotted along the horizontal axis. The attracting set for that particular A is

plotted along the vertical axis, which runs from zero to one for f .

Thus, for I < A < 3, (A - 1)IA is the attracting set (I-cycle). At A = 3,

this bifurcates to give an attracting 2-cycle, etc.

Where whole intervals seem to be shaded along the vertical axis, there Is

no attracting cycle, but rather attracting intervals (or subsets thereof).

Notice that there are bands of attracting cycles (periodicity) interspersed

among the aperiodic regions. When A is equal to 4, the whole interval, [0,11,

iq shaded and chaos-3 is in effect. The shaded areas prior to this do not

correspond to chaos-3 (since there will not be a dense orbit) but do correspond

to a weak chaos or aperiodic behavior. (Weak turbulence in fluid dynamics.)

We will 9resent universality from the standpoint of the bifurcation

liagrams. The figures in this section may be helpful. (Pages 98 to 101.)

Our first discussion will center on the constant, 6 = 4.6692016... If

we denote by L the values of X for which the logistic map, fX(x) = X( x),

haq an attracting 2 -cycle, then Li will be an interval.

For example, fV has an attracting 2-cycle for 1 < A < 3, so L0 = (1,3).

Similarly, L, a (3, 1 + A). Define A to be the length of Li. Then, Mitchell

Feigenbaum has shown that lin - - 5.
i,- i+ 5
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The universal aspect of 6 is that Feigenbaum's formula will hold for any

system with a bifurcation diagram. Essentially, every bifurcation diagram looks

the same when rescaled along the horizontal axis. Thus, the cascading of 2n _

cycles (or any bifurcating cycles) will be the same for the logistic map and for

the experiment with a heated fluid.

In fact, the windows in the bifurcation diagrams which are rescaled and

blown up in this section, can be seen to be essentially the same as well. All

bifurcating cycles do so at the same rate (in the limit).

We will now discuss the constant, a - 2.50290787... . Notice that on the

bifurcation diagram a one-cycle literally splits into a two-cycle, then each

branch of the two-cycle splits again to give a total of a four-cycle, etc.

Denote the vertical distance between the two branches of the 2-cycle at their

point of bifurcation as A1 . Pick a pair of the new split branches in the 4-

cycle. (It doesn't matter whether we choose the upper or lower pair. But the

branches of the pair must have originated from the same branch of the 2-cycle.)

For this pair of branches, denote by A2 the vertical separation when each one

bifurcates (to give an 8-cycle). If we continue to find 4,'s in this fashion,
A t

then Mitchel Feigenbaum also showed that lim- a. This f,-ct is independentj+ . A 1+ 1

of which branche, .)ie chooses, it only depends on the branches bifurcating.

The universal aspect of a is that all bifurcation diagrams, (for any

system), are now essentially the same when rescalee along the vertical axis

as well! Tha combination of u and 6 show that every bifurcation diagram has

essentially the same rates of vertical aid horizontal accumulation.

At this point, we will describe the techi!que for generPinLrIg a bifurcation

diagram for tX(x) - Xx(l - x)...
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Essentially, we would like to graph the attracting cycle (if it exists)

for different values of X. Recall that the cycle is attracting if j_ fn(xo)j< 1,
dn-i

and that dx f (xo) H f'(x i ) where NXo , ..., Xn_1 is the n-cycle. Thus,
i-O

the cycle is attracting any time - is one of the elements of the n-cycle since

-0, implying d. fn(x)l. o 1.

In the evolution of an n-cycle, (being created from an -cycle, and becoming

a 2n-cycle), the n-cycle will go from weakly attracting-- sxx fn(x O) I --to

stable, to weakly attracting again. Essentially, f will achieve values from
dxl

1 down through 0, and then to -1 when it bifurcates. Thus, I will be an element
2

of every stable n-cycle in the bifurcation diagram.
1

For this reason, we ise as the starting point, (for a fixed X), and

50 1
iterate some number of times, say up to fO(s). Now, if there is an attracting

n-cycle for the value of X with which we're working, then fSOj) should be

"attracted" to it. Thus, we plot an the graph f(O+iI.) for i equal from one to

50. These fifty plotted points will be on the attracting n-cycle if it is

pre.ent, or, they will bounce around in some attracting set. We plotted several

thousand points in the diagrams In this section in order to completely (or

partially) shade the aperiodic attracting sets.
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Figure 16

"Figure 16 is the bifurcation d'cigram of the logistic map fX(x) AX(1

Values of X between 1 and 4 are platted along the horizontal axis and the

attracting sct is plotted along the vertical scale which is from 0 to 1.

The largest "window" in the predominantly shaded region to the rigat is

rescaled in figure 17 to show a bifurcating 3-cycle.

This sane figure is also on page 67.'
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Figure 17

"Figure 17 shows a 3-cycle bifurcating into a 6-cycle, then 12-cycle, etc.

The bifurcations are simultaneous even though it looks as if the upper

branch takes longer to bifurcate. This is because of the resolution of the

graphics.

The vertical scale is still 0 to 1. But, A is now between 3.8284 and 3.86

along the horizontal axis.

The largest "window" is rescaled in figure 18. It is a 9-cycle."
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Figure 18

"Figure 18 is a rescaling of the largest window in figure 17. The vertical axis

is also rescaled so that only the large middle window is visible, and hence this

1
looks like a 3-cycle, but is just - of a 9-cycle.

X is between 3.85355 and 3.85415, and the vertical scale is between 0.4324

and 0.5405.

The largest middle window is again rescaled in figure 19."
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Figure 19

"Figure 19 is Ith of a 27-cycle. The values of X are between 3.854069 and

3.854079. The vertical axis is scaled between 0.493754 and 0.506902.

Notice the striking similarity between figures 17, 18, and 19. Figure 18

looks like the vertical mirror image of figure 17, and figure 19 is the vertical

mirror image of figure 18."
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In section 11.6 we presented a theorem due to Sarkovskii. Here we will give

Sarkovskii's ordering of the natural numbers.

Definition. The Sarkovskii ordering of the natural numbers is:

3 < 5 < 7 < 9... < 2-3 < 2-5 < 2.7...

S 22 23

< 2.3 < 2 .5 < 2 2.7 < ... < 2 3.3 < 2 3.5 ...

< ... < 2 3 < 2 2 < 2 < 1.

Thus, one first lists all odd numbers, in the usual order, then all products

2of an odd number and 2, then an odd number and 2 , etc. This will list all the

natural numbers except those that are powers of 2 (and 1). List these powers of 2

last, in reverse order.

A more general Sarkovskii's theorem is:

Theorem. Suppose f: R + R is continuous. If f has a point of prime period k and

k < m in Sarkovskil's ordering, then f also has a point of prime period m.

Thus, if f has a 2-cycle, f will also have a 1-cycle and if F has a 3-cycle,

f will have an n-cycle for every value of n. However, this theorem doesn't say

the cycles are attracting.

For example, when X = 3.1, fA has a stable 2-cycle, so it must also have a

1-cycle. Well, (X-1)/X is still a fixed point when X - 3.1, but it is repelling.

So when X - 3.83 there will be a stable 3-cycle, and hence an n-cycle for

every n. But for this A, only the 3-cycle is attracting; every other n-cycle is

repelling, and thus, not drawn on the bifurcation diagram.
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Exercises.

1. For each A between I and 4, find the range of f

2. For each X between 1 and 4, define gc(A) 11 1 M f' x I

f,(g,(X)), etc. Show that g0 (2) - gl(2) ... 1

3. Show that whenever - has period n, then g (), (as in prob 2), is tangent to
2

the bifurcation diagram at that A.

4. Show that whenever 2 has period n, then g2(X), (as in prob. 2), is tangent

to the bifuraction diagram at that value of X.

5. For X > 2, show that if 0 < x < g2 M), then lim f (x) > g2(n) and, for all x,

lim fW (x)< gl(A), where g, and g2 are as in problem 2.
n 4

6. If gi is as in problem 2, what can be said about each g (M) for those X

where is an element of some n-cycle?
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11.8 Higher Dimensions

When we use a one-dimensional Poincare section there are two types of bifur-

cations which the return map can display. The one we looked at in section 11.8
dfn

was a period-doubling bifurcation, and this occurs when d- (x -1, (where x0

is any point in an n-cycle).
Wh n

When d (x 0 ) = 1, the return map goes through a saddle-node bifurcation.

Essentially, a saddle-node attracts points from one side while repelling points on

the other side. For example, h (x) - ex - A goes through a saddle-node bifur-

cation as A increases through 1.

In a phase space of dimension greater than two, we will probably be using a

Poincare section of dimension larger than one. Thus, the return map is not a

function of one variable, but rather of several variables. The types of bifur-

cations that can occur (both in the phase-space and on the Poincare section) are

varied. They include analogies of the period-doubling and saddle-node bifurcations

as well as others, the most common of which is the "Hopf bifurcation".

As an example of the type of dynamics possible, we'll give a brief treatment

of the Horseshoe , due to Smale.

Example 1. The Horseshoe map takes the figure drawn into itself by stretching,

contracting and bending:

D .- 4 n ____DIZZt

010
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This map works on a 2-dimensional region in the plane and maps it into

itself. We've defined it geometrically because it is easier to work with that

wray.

Since the Horseshoe map shrinks (and stretches) the set DI into a subset of

Dip it is a contraction mapping, and thus has a unique fixed point in D . Also,

all points in D2 are mapped into a subset of D1 ; so, for every point x c D1 U D2,

Lim f n(x) - x0 where x0 is the unique fixed point of f, the Horseshoe map, in D I.

Many of the points in S will also be mapped into D1 and thus iterate towards

x0 as well. Rut there is a two-dimensional Cantor-type set in S which is invar-

lant. That is, the Horseshoe map leaves this 2-dimensional Cantor-type set fixed.

Points in this invariant set can be shuffled around by the map, but will

always remain inside it. This is exactl S  nlogous to the logistic map, f , when

X > 4. There, we had a one-dimension:' set which was invariant. (Also for

the tent map, g., when X > 2.)

Next we'll look at a function 1 gebraically called the Henon ma.

Example 2. Define Hab: + by: ) a - by - x , x).

Thus, points in R are mapped t )Ints in R2 . There is an analogy to

hyperbolicity of one-dimensional fun ;ch relies on full derivatives of

multi-dimensional functions:

Ha x,y)

D~ab(XY (-x1 , y j

Lax Yj

where Hl(x,y) - a - by - x2 and H 2(x,y) - x.
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Thus, DH(x,y) Ll x ]

The Jacobian of P is simply the determinant of the derivative of H, JDHJ = b.

H is hyperbolic so long as Ibi * 1. When b = 0, H is no longer dependent on

2
y, and is essentially: H (x) = a - x , which is analogous to the logistic map.

a

When b * 0, we can algebraically find the inverse of H to obtain:

2

a1h(x y) = (y, b - Y ) which looks quite similar to H itself.b b -

Ve will try to find the fixed points of Ha,b, assuming that 0 < I < 1:

First, set

(x,y) = (a - by - x2, x),
which iplies x= y and x = a - hx - x2  2

which implies x , or x + (0 + b) x - a = 0. Thus, this has

real solutions if and only if (1 + b)2 + 4a > 0.

2-1 )2So, when a ( -(l+bh 2 , there are no fixed points; when a =--(1 + b),there

is one fixed point at x = (1 + b); and when a > -(1 + b)2, there are two fixed
24

-(: + b) + 4I + b)2  4a -( + b) - 1(I + b) 2 + 4a
points at: x - 2 and x = 2 Note

that the y-coordinates of all these points are the same as the x-coordinates by our

qubstitutions.
Thecrttnl ale f a a is-1 )2

The critcal value of R, acrt is (1 + b)2. On the line y = x, we have
crit 4

has no fixed points of Ha,b when a < a crt, then 1 fixed point for a = a cr1t, and

then 2 fixed points for a > a . It turns out that of these two fixed points,
crit

one is a saddle Point and the other is (sometimes) attracting. Thus, as a

increases through atcrt, a saddle-oode bifurcacion occurs. As a increases further,

one of the fixed points bifurcates into a period-2 point. This is a period-

doubling blf,|rration.

The dyn nimcs of the Henon map get very complicated. See An Introduction to

Chaotic Dynanical Sytems for further details.
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"Strange Attractors" are quite common for higher dimensional return maps.

When a - 1.4 and b = -0.3, the Henon map, Hb, seems to have one. Strange

attractors are attracting sets for a return map which display fractal-type

properties. There are strange attractors imbedded in 3-dimensional toroidal

figures for some systems, and the bifurcation diagram itself is a type of

strange attractor. This is a nice relationship between fractals and chaos:

dynamical systems can generate fractal sets. For example, an IFS is a type

of dynamic system. Also, fractal sets display "chaotic organization" to the

average observer.

Higher dimensional dynamics is still a frontier for researchers and there

are many unsolved problems: both specific ones and general ones.

(
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11.9 Complex Dynamics

Because of the elegant theory of complex numbers, dynimics which occur in

2
R are often interpreted to lie in the complex plane. We'll spend most of this

section discussing the Mandelbrot set, which is a parameter space map for a

simple dynamical system in complex variables.

First, recall that a complex number can be represented as: a + ib or re ,

2
where a, b, r, and e are real and i - -1. When graphing complex numbers the

number, a, goes on the x-axis (the real axis) and the number, b, goes along the

y-axis (imaginary axis). Plotting a + ib is the same as plotting (a,b). The

form, re , is analogous to polar coordinates since e = cos 8 + i sin 8. That

is, to graph re , just graph (r,8) in the polar plane.

To mulitply: (a + ib)(c + id) - ac - bd + i(ad + bc), and (re10)(qe 
t o

1( + f) . 1 .a - b since
- rqe . A ultiplicative inverse of a + ib isa + ib a2 + b 2 i

2a+i)•a-i 2 a 2

(a + ib) (a -4 - a' +b 1, (assuming a2 + b2 * 0).

+ b 2  a + b 2

The modulus of a complex number, z - a + ib, is jzf - ja + ibi = /a2 + b2 .

If z - re , then [zI = Irl, which is the distance from the complex number, z,

to the origin, 0 = 0 + 01.

Before we present the algorithm for the Mandelbrot set, we'1 look at its

real number analog.

Example 1. Define h (x) - x 2- c. Show that h has essentially the same

dynamics (as a return map) aa the logistic map, f, for appropriate values of

Aand c.
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First, we'll choose I < A < 4 and let c -=-( - A), so that X 1 + / c

Now define the linear function, g(x) - ax + b, where a and hb ThenX 2
-1

g * hc . fA o g, or g * hc * g fA" This relationship between hc and f. is

called topological conjugacy. It is analogous to two matrices being similar (and

thus having the same eigenvalues). It is easy to verify that h duplicates thec
1

dynamics of fA(as X goes from one to four) as c goes from - to -2. (See the exer-

cises.)

-1 2 2 -1One way to check this is to notice that: (g a hc o . g ah o gC c
n -1 n n-

Thus, fk n g ° hc n . 1 and g fc n g = hc . So, if x is a point of period n

fort, then g-l(x 0 ) is a point of period n for h . Also,

- hn(g-(x) _= fn(x 0 ), which shows that the dynamics of the two functions are

the same for all attracting cycles.

If we were to make a bifurcation diagram of h , then we would choose zero

as the point to iterate, since it will be present as a periodic point in all

stabic n-cycles. (Just as 2 was present in all stable n-cycles for f .)

Therefore, h (which goes through a saddle-node bifurcation for c (Justc 4

like f does when A - 1) has an attracting fixed point for c between I and -- , anX 4 4-3 -5
attracting 2-cycle for c between-Z and -5, etc; with chaos-3 at c - -2.

We'll now develop the algorithm to construct the Mandelhrot set.

Exanple 2. Define H (z) - z2 + c to be a complex-valued function of the complex

variable, z. The nonlinearity parameter, c, is also complex valued.

For each value of c, we determine whether the orbit of zero (a critical point

as in example 1) will converge to infinity.
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If the orbit does not go to -, then c is defined to be in the Mandelbrot set,

M. So

M {c C C: lum Hn(O) * a},
c

n +-

where C is the set of all complex numbers.

It is easy to check that zero is in H, since if c - 0, then H n(0) - 0 for

every n. Similarly, one is not in the Mandelbrot set, since, HI (0) - 1, H 2 (O) = 2,

H3 (0 ) - 5, ... which converges to .
I

It turns out that if there is an n so that IH (O)[ > 2, then c will not be in

the Mandelbrot set.

On the real axis between I and -2, H has the same dynamics as h in example
c c

1. Thus, the real numbers from - to -2 are all contained in the Mandlebrot set.
4

The points not in the Mandlebrot set form what is known as a Julia set. The

boundary of the Julia set is the same as the boundary of the Mandelbrot set. The

Mandelbrot set is a map in parameter space. It describes what parameters give

zero a bounded orbit under F c . The dynamics of Fc in the complex plane (not

parameter space) are completely different. There are many possibilities for coming

up with interesting pictures.

Other examples can exhibit mltiple strange attractors, their corresponding

basins, and an invariant set all for the same complex function! By using different

coloring schemes, the computer graphics generated by these functions can be amazing

and appear frequently on book covers and in magazine articles.
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Exercises

1. Verify the second paragraph in example 1.

1 2
2. By writing z = x + iy, write H (z) as a function of x,y ... H (x,y) = (H , H),

C C

where FI and F are real-valued functions of x and y. (Let c = cI + Ic2.)

3. Investigate the dynamics of the real-valued function f (x) 4-3 + cx for

c c R.

4. Using problem 3, what can you say about the complex dynamics of

F (z) =-43 + cz.
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II.10 Randomness

We have often referred to chaotic behavior as being unpredictable. A

chaotic physical system is one which is going through seemingly irregular

motion. Even though we have very precise definitions of chaotic functions

(chaotic-3 and chaotic-s), they are based on characteristics which imply a kind

of randomness.

We will now quote some references on the definition of random:

1. From: An Introduction to Information Theory, Pierce. "Random:

Unpredictable."

2. From: AnEncyclopedic Dictionary of Mathematics. "Practically, random

numbers are those that are generated by complex finite algorithms that

produce a finite sequence of numbers that have no apparent regularities and

are not rejected by tests of typical statistical hypotheses on independence,

uniformity, and goodness of fit."

3. From: Mathematics Dictionary, 4th ed., James/James. "Random Sequence: A

sequence that is Irregular, nonrepetive ani haphazard.... A completely

satisfactory definition of random sequence is yet to be discovered."

4. A paraphrase of Andrei Kolomogorov (who laid the foundations for modern

probability theory in 1933): A finite sequence is random if the shortest

algorithm which can generate It is of the same approximate length as the

finite sequence.

Mark Kac was a famous mathematician who used to give very popular talks on

"randomness." His thesis was that there is no statistical definition of random-
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ness. He claimed, (correctly), that given any statistical test--such as those

mentioned at the end of the second quote--there is an algorithm which will

generate pseudorandom numbers that pass that statistical test.

In other words, if you know that a statistician is going to run some

analysis techniques on data, you can give him two sets of data: one set is

generated by what we commonly think of as a random process--such as a scatter

pattern of arrows on a target--and the other set is generated by a deterministic

algorithm. The statistician will not be able to tell if either set of data is

"truly random".

It should be noted that although probablity and statistics seem

Inextricably connected to randomness, the foundations of both subjects rely on

"random variables", which are essentially just normal everyday functions. A

"random sample" is usually meant to connote a theoretical "random sequence" and

is defined in such a way as to make the theory progress smoothly. However, the

statistical tests which try to verify this type of randomness are inconclusive.

This does not lessen the utility of probability or statistics--they have proven

themselves time and again in such diverse areas as gambling and quantum

mechanics--it merely points out that "random" might be a term so basic, that It

defies definition. This thought is echoed in the third definition.

Finally, we need to peruse Kolomogrov's definition. A full treatment

would involve some theoretical computer science, so we'll stick to practi-

calities. It is theoretically possible to find the algorithm which

generates psuedorandom numbers, but it is impossible in practice. Actually, It

is just as likely that an algorithm will be found to generate a "truly random"

sequence.
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Let's consider a chaotic map as a pseudorandom number generator. The two

2x, ifO0 <x <
-2

simplest examples are g(x) -

20 - x), if x <

and f(x) 4 x( - x): the tent map and logistic map we've already dealt with. As

discussed earlier, any finite decimal will be iterated to zero in a finite number

of steps (approximately the length of the decimal expansion) by the tent map. So

g(x) does not seem to be suitable for generating long strings of pseudorandom

numbers.

But f(x), the logistic map, will iterate a point in the interval [0,1] in a

seemingly random fashion with few exceptions. (Zero, one-half, and one, as well

as the inverses of one-half will all iterate to zero.) Of course, if we just

I
pick a point, say -, and print its orbit, it is obviously not random. If we

'ni1 N 1t. 1hedenote fn( )I n-0 by {xo, x1l, x2 ,...,xN} where x0 = , x1 = f(-, etc., then

a plot of the points (x,, xi+i) in the xy-plane will give good graphical evidence

that this sequence is highly correlated. This is obvious: each xi , f(xi.),

the graph will fill in points on the curve of y - f(x).

Being a bit more clever, we could choose a number, n, and let each

x= fn(x il). For a value of n greater than the number of significant digits

carried by one's calculator or computer, a graphical plot of (x,, xi+i) will no

longer fit on an obvious graph, and thus roundoff error will destroy the actual

correlation. (This is brought on by sensitive dependence to initial conditions.)

Frequency plots of one thousand pseudoranoom numbers generated in this
1

fashion will fit a beta distribution whose parameters are: a - b- 1. The

same a and b work for any choice of n. The beta distribution is rather obscure,

being used mostly for curve fitting and prior distribution In Bayesian statistics.

l
It is lucky that a - b -1 is one of the few cases in which the cumulative

distribution can explicitly be found:
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(1) The p.d.f. is:

V ., for 0 <z <1

b(x; 1, 1) x-x

0, otherwise.

(2) The c.d.f. is:

0 if x <O

B(x; [Arc sin(2x - 1) + '], if 0 < x < I

if x > 1.

Using the fact that if X is a random variable with c.d.f. F, then F(X) is a

random variable with a uniform distribution on the interval, [0,1], we can

transform our pseudorandom numbers into pseudorandom numbers with a uniform dis-

tribution on [0,1] by letting y = B(xi; '

Amazingly, the numbers, Yi, are iterates of the tent map! That is the tent

map is a theoretical uniform random number generator and the tent map and logistic

map are topologically conjugate. (See 11.9.) That is, B - f o RB g where -I

is the inverse of the cumulative beta distribution.

The gist of this discussion is that chaotic behavior really is "random". In

the eyes of the observer, any sequence of pseudorandom numbers is truly random if

the observer doesn't know how to duplicate them, or at least know what algorithm

was used to generate them. Thus, randomness is subjective.
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TO~~&iS SHAPES - -..--

When mathematicians talk about fractalT he~~lci pr ct.a fra talWsns", they are not using the term inT he rac icalfra talits ordinary sense. Roughly speaking, if
something has more than one but less than
two fractal dimensions it is better at filling
up space than is an ordinary one-dimen-
sional object (such as a line), but not quite so
good as a two-dimensional one (such as a

It is no accident that the inventor of fractal goerDr Benoit surface). A crinkly line of, say. 1.25 dimen-
M~andeibrot, workts for IBM. His new science is a chil oftecompu ae sions a bester at "lin pace than a one.
Without the caliculatiag epowe topeplore its weird avenues, and=etoi diensional srihlnebecause you need
plsictures to fire the mgmadon, fractal geometr would have remained a more ink to draw the crinkle than you do to
iMstematical oddity. Uastead it my overtake Euiclid draw the straight line. A line of 1.26 dimen-

mons as Cen crinklier and need even m
B ETWEE the late 1950. and the early ione goety which lose their structe ink. Some fractal curves are inly and

197%. Dr Mandeibroc ivented a when m=lid For examnple, the surace of detailed that they fillup nearly all ofth sur-
bnc-h of matheaics that can describe a laVg spome appears almosit Ua when face they are drawn on. So they cine within
and analyse the irregularity of the natural viewed dose up, which is why plenty of peo- a whisker of qualifying as surisces-sie, as
world. The key to his theory is a type of ple usedto think the earth itself wasfla. two-dimensonalThat a the crude idea be-
shape thar he called a fractal. The descrip, Traditional geometry has to ignore the hind fractal dimensions.
tin po- of fractals was soon evident. crinkles, whorls, squiggles a&d blows of the Armed with a technique for measuring
Fractal forgeries-ai type of com putrnr real woirld beows they are irregular and an the ireularity of shapes, the theory of
iseed picture--of clouds, muaisand do not submi tw standard mathematicall for- frcals has now been applied to protein
cramtline bear an uncanny resew- structure. acid rain, earthquakes, the
blancer to the real thing. But pretty ductuatmon of exchange rates, oil ex-
pictures ame not enough to overthrow traction, epidemics, corrosion, brittle
Euclid Now, 12 years after Dr )A- 'fractures, music, the distribution of
Manidelbwot wrote hi boo .7h galaxies, the level of the Nile: and the
Fmcral Geometr of Nature", the evi. shapes of clouds, trees, lakes and

dence that fractals can shed light on a mountains. Nearly every branch of
wide variety of problems is piling up. science studies something thatThe aplie fratalt arrved.fractals can help with, because all as- ;Fracalsare how thatbokpects of nature involve some rough.
more or less the same on A or many. esadireuaiy

sclsof amagnscatiori. Consider a
coastline, the most obvious example Superficial science
of a fractal in nature. Maps ofcoat- Begin with surfaces. The shape of sur-
lines drawn on dilezient scales all fasces is significant throughout sci-
show a similar distribution of bays ence. 'When antibodies bind to a vi.
and headlands. Each bay has ts own rus. or enzymes to a Molecule Of r*M..
omailer bays and heaidlands, ad (a6 they do so bemause of some affinity for
structure can be seen in the mapuhf- volved. Chemical catalysts used in in-
cent sweep of the Gulf of Mexico, the usingwr b A eciost
Baie de Is Seine, the Pendower Coves occur on surfaces. Mealurgist worry
near LAnds End. the gapbetwee. two about the form of framctr surfaces in
rocks on the foreshore at Acapulco metals. Geologists do mucrh the same
and so on down to the individual ire for mountain ranges. T'he ame
dentations of a single rock. Costlines ae mulse. The notion of self-similarity lets shapes may occur on many scalesi high-
crinkly however closet to them you get. fractal geometer wee a sort of order in the powered microscope pictures of the surface

A mathemaitical shape that sharm this apparent chaos of these shapes. It lets them of silicon look rather like the Grand
rroperty with coaslines is the Koch snow- quantify the roughness and irregularity of a -anyon.
dake, in which the bays and headland are shap and giIt anmrclvalue, known Shaspes, in nature are usually neither en-
successively diminishin aqwateral triangles as its fratldmni. tirey regular nor entirely random. Towcn-
(swe diagram). Nature dosntsup os- Dimensions are usually thought* of as samc theories of how masterials behave,
lies fromn triangles, but the Koch snowilake whole numbers. A line is odiesnaa these shapes must be simulated mathemati-
does capture one feang of oaisdinas well. square two~dimesional, a cube threed- caily, oither on paper or by compuer.
-;t wy ;maofastline, magnifed t menionil ut fractal dimensionsamrenot Fracals amthe perfect tool for the job be-
aries, still looks like a coaseliner the same whole numnbers: the Koch sno*Utk has cruse they have the right mixture of struc-
Oes for any parst of the snowfake. Such o6. 1.2618 dimensioins, the coastline of Britain ame and irregularity. Compute models

tects are aid to be "self-siuular'. has around 1.25 dimensions. The best way inmd on fractals can explore how physical
Not ao the farfuli&. shapes of old-lah- to understand this is not to worry about it. poperties of a material vary under diferent

to a wsaasi ec~as zm7



TOMORROWS SHAPES _ _ _ _ _ _ _ _ _ _ _ _

condion how clay fiow under pressure, model known as Difuslon Limited Aagrep-, out of the Wells,
for eample. tiori (D-. In the DLA model, single pp rticles Thle usuial way to audy thin. pr*les of

In 1960 Dr Harvey Stapleton at the Unia spread out in what mnathematicians call a flow uses an apparatus known s a He'le
verso yof Illinosat Lkbenainvestigated the random -walk; that it, every to after, they Shaw celL two tAt glass plates witch a ttun

m neiproperties of iron-bearing protein move a certain dAnce in a& rsadow dire- layer of oilssndwi~hed in betwcen. Watu is
ole =cu.lf Wa crysal is placed in a magnetic nion. They continue this difion until they fad in through~ a hole in the middle of-oner fiekl, which is then reemoved, it loses, its mw colde with a roAwng 3mudge whene others glass pl"c. At first +e water spreads o~i in a

netic properties in a characteristic fislion. have. alread# hit and then stick to t. - dcrculardisc, bat. the dise vows, an incon
This 'relaxationi rates'can be quantified; hor Simulation of this process on a co'm- veralmndy cornphicwtqd "*myanu instability"
perfect crystob irias alw thre This can be puter stran produce branchtig shapes lite sen in. The boundary between oil and Water
explained mathematicalyt a crystal is a irregular fernis with a fractal dissension of pow bumps, which in trnrow into "ir,
threelimensionall obw cand the relaxation 1.7. Similar random walkts in thaea~dlmea rm" dam mr the oi a star-likepat.
rae a equal to the dimension. For proteia sionall space lead to fractal clusters with &Ad- ten Thes fiegera repeaedly break up in
though, Dr Stapleton obitained pueding w. menamon of roughly 2.U The DLA model ha the samse way, aphttstgat the tipswhnte
lazaation rates, suchaw 1.7. madw it poesile to analyst and Monte r wkqethma

He shiowed that the solution to the PtU iaqWat f rca saeplss ins gm* =*,a Use adreongp .
zik lay in the pomewy of the moliuesA JON WA anhisColms at dma msaudwnsionfwun .
uPWcs prosein molecule iesit ong dtain of Uniu of sbre mppllei tamls t Thisiv - akabllydmevoheframal

anoacids, folds~ mmd crumnpled to a most r= si of WpiwParticles artnd in
irregula Way. The Cru1111ing is frta--i, tew dL A lau gta h two Pa.ts
keep tsa stnuctur ammi a wide map of oes ame to"&ud is now in a
scales- sad dhe r*hii- e ascast be cm deawthadmkpmu11e5 he r
puted from a freemadimension. c o, dw lea of tandem duon ambe rem ina
two are equelL So the abstrac concept of Ilona tha .i lpu'm mt~a

fctluiensiont paos A ab dMov n drpen So a experi.
Dr Douglas Rea; at the t~Lh Miami ofth frmcWdimuimn

Caomsat LsAin and hs ea. , -. oteso poesshas ledto a srpri*4gthloo.
to"a havemm sh wha protein surfaaw-(e reital cmeiaw betwen thewe
example, the surfa of huglbsIn peanis,od does am oei n hWg
which t-Wruupo oxygn in the blidar spce brab ind in with pI of
fractal Ws comsputer analysis of the way rodc rsad Dr Feder and othem howe al,
x-rays are rcatteredwhen theyhihe amog6o etpe viscouss fiwnge in amtre of
bin. they found that the surface of thee pro. s ok and. They hew foaund that the
tein has a fractal dimension of around 2.4. Ufracta dimension of die shapes ade by di,
Pit sulesta that the autfaces wre very oil X it mixuwish WaWcisreduced ham .1 T is
rotqgk,rsther ke a crnpied paper baL (If to about IhLThe finthatdthefiacadi

you take a piece of paper the sin of this mensionis low r means that less oil will be
peat, crumple it in your fist and then 1st p, squeeted out by the amn amount of water
the resuling ogewiniule has a fracta di. when the oil is dispersed in pcrous rock
mension of 2.5.) at.. Kfvowing &..&s hould help compialus

Dr Rea alo found that sme regionsl of ta-abrs king o sas to extract oil more etkiently bychangirl
a protin's surface ame san clter-that is, their pumping me-thods, to sit the rock
h-ave a smaller fracta dimension- than oti- ammunogloblln clusren. Immamioglobulins at that occur in a given well.
cr -hu; trm out to be a quite a help hor aft proteins and, like a poached e& tend 0 AhidUCo
bsochrrical engineers Lake vekm Petru stick together when heated up. Lit what e.A n pieko (letW1
stick togethier best where their su ag ae a*el mkes them stick tgethed Wh don't Not only partwls gather int chaem& people
roughest. Anid smoother regions aem to be they crumble awsy? Knowing die fractal db. do at, too. Dr Pete Grassberger at the tine'
where enzrymes, which control the way mole- mens.on of such chumes proides =n cxpW,. verway of Wuppertal in West Germany has
c'cs fucton, do their wort Bymasuring mental tool for working o w to Nsik! used the mathema or frz-scitustuingto
the faaldmnino.roenmolecule's them up in the first place By simulaiting the understanid the spread of epidemics. In' a
vu'face. the tough carr be soted from the aswegcicn of partices you cam at which not-too-mobile population, a the:.C lh
scxiaxh insa precie way. Such mhnaques proee kiad rn tie r*ju sorn cfh,.P. TIs nwd close conta between people to pass
could hep in the dsw of synthaiad pmo Wvzs a wayto oampsar w'ihe cxnr- 0 spreads ratutr ikie 1 he Partk.&a Z' a 01-4 A
rin MoIccul. for new drop becaulie they mmnt Beforte fracals ere ivented. 14 le modr. The infectt " Svu . -t Ldoes 7
shcvid be able to pintpolnt the acrtve sres quantitatv %witk could he &4-qa an the wa-Y through ite porlulatiorl and "stictti whez-V
wtih r nes will be abl to wo& particles pile upsetdepoits kqs i' becomes infectious. A newly inietd li A

An~ehe proeo that protives rv'ili ctea a ceatm for fudrd ifuiom A
S*Abh badl ranclirqcndrl shapes *k",-~ a vis- ne procm Cm be "i~dttetd oni a o t
Soot is soft and crumbly because I-' ConsiAf cots flpring, Thm has. been studi for pure by pretending that ldhidtals hte ma
of * lose knit oWegedon of carbon parti. q~uite some timoe, hut ail cornpanies would the cells of a squitre array, like a hup. chin
cift ! Cqilsr sort of mucky sreption ane like to Wolr'e" tbatr nodrt ex- board, and wlatching te Infectionwo
founa insidea bteis. they corrorlein+*h trace oad frm a w4ll w&-cr a* pumped in un- fromn one square to anothe. M elcm of
Proe of electroplrt and eloewhere. in der pressure, The oil is then pwc ow be. dierene "erassamlmlon roles" (or thediseas
196), Dr Thomas Vimre at Exwtn Labom rA cuse oil uAi ewter do tio miJx. But theism (such s that the infection can move oalf
tones un Clinton, No"e Jerley, A~ D, Leon- pcth folloovd Ty the wvt r w or &'wxs fmrm otw cell to ar immediatr rleihbourx
ard Sender from thes Unlvtem, oi Machia through thea oit A e~uA co., 4-..d. A -m-wv ratm of inh.'r,m (esg, tl' infcctii
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TOMORROW'S SHAPES

Wil'.

Some mathematiclans think tha the
black snowman shape pictured
a~bove-called the bandelbrot e
may be the most complex object In the
universe- It is an infinitely detailed

or, fractal obtained by telling a computer
to draw the co-ordinates genemated by a
mathematical formula. The formula is
simple--except for the fact that It
involves the square wo of negative
numbers. The colours are added later,

The other pictures on our colour
paes are all close-ups of details of the

Maodelbrot set. T1hrey show that the
same whorls, tendrils, spirals and
snowmen kee appearing, even when
magnified millions of times.

dures can theni be explored and tested. their behaviour and thus spread the disease
Often the resut. is a fractal distribution at widely varying rates. Average infection

4 ofrl c d!-ease- the complicated pattern of in- rates ignore this variation and so can lead to
Fected .'cells" is tie sarne on several scales. wildly wrong predictions.
Thus an infection map of a city will look Any model with a fair chance of coming
much like the infection map for each block, up with the right answers has to recognise

whch will look lik: the infection map for that society is an irregular cluster rather
each street. Clusters 01 infected cells form, than an homogeneous mass. Most of the
k-irchiriV in a similar m~anne.r to the, oLA time people move in their own social circles
mni . It turns out that the spacial distribu- but different circles can also interact with
tion of an infection--where the ill people each other. This makes life horribly compli-
are in the first plarce--can be crucial to the cated for epidemiologists. Dr Robert May, a
way the disease spreads later. mathematical biologist at Princeton Univer-

These ideis have .c:~rosfor the sity. is workinq on simulations of the spread
s tuo) c'.is. Simple mod. is take the aver- Of AIDS based on ideas in "chaotic dynam-
4ge rate of ntc.;;on oc a disease and apply it ics". They deal with the sort of structured
to a uniormly ranc! hr:-, .prepd of infected irregularities found in fractal geometry.
oevr, c 5'. averages c'o nor mnean much. If rhe notion of fractal clusters can make
L.Ziicr r-,,wcis irc.4mst chat 1,eople ifiet in the enormousiump from particles it, peoprle,
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.'~.' e~. foceans, thtr historical vana-
trf onK.-. .c.- .. tAi Ie~i .t Ile. the Mner~v out-(r A1oc ''..nsinission ofsinl

I ~ - I. 1 1; .ao %' f2)Also be found in. the
"'I.c X;i a t. ,.ioA, ior tl'e most part, the behavicw ofelecronic components.

-o~pLr ?! tsimAi nt -'mous amnounts -an soirt of patterns as rain charts for a Mus-c seems to flow like I/If noise. Dr
of computing power I - wuld take the com- rnonth, a week, o- a smn~le +-.' 56 +'h tein- *I. - - 1 ZPM's research laborato-It.
'3 ined ir. tmory c, ! t 'Coho!Tz- n _-: . , tuct urt rain is . ., tractal .i Nei ork state has analysed variations of
.i Ore the diats needed to recons-uct the cra- The idea ofdistributiof. across iaMe--se, pitch in many kinds of music and found that

V' ered surface oi (he moon. no- reasonable te shape drawn 1-n 2, Jha.' Wz - r Cme- .J pr-dlominates. This is equally true
5't:~o- ,tm . . ..cgue o, lu- Ltifr-lets the concept of fracials apply to cf Gregorian chants, Beethoven's sy-npho-

iar geographvy, but G, to tx's'nxiw i' rh tour-A and, more gleneratv uc -i.at ptsysi- mes, -)ieblisy's piano works, the rags of
'ou want zi ;i convi- . ; 1 a Kr'ound (. -4 -it call "noise". PKiysicists use the term ScottJoplin, arnd the Beatles' Sergeant Pep-
'c-evitsion since-fitron drarria. Fractal 'nose" to refer to any proc"s that fluctu; per album Only a few modern composers.

fo cie hat minir the forrms with- such as Kariheint Stockhausen and
wt Wo-tn'.& aboi,! prtcse dlerv'ls car lot Carter, violate this rule. Dr

0..bow &M I' f.If noise. White muskc is
ora wsi cmw a o tado an brwusi whit

lk ' 'i~~r T1101 i. qur-r a? ~pe -( ,,% music. But aftifsciail I/f music.
C-! oir~ 1L.C *, npe~d x. iln& ur Or Vu sond if it is music

of nU noes hat ointng.drama and scuh;-
~~~~~~~ ~ ~ ~ ~ 141 I A , kO t i 3 usually im:aC nature in se

2X iz;J Ll -r' oon beWA Vk . e ($' way. So 'what does music imitate? HeI
.-. ~ 'btiau~L~' an b. 4. saemt it imitates the I/f noise cf 6t

oned in terms ;h ra anstructurl, natural world-"the charactelusric
Xcv a 7Mfl.-L-'' kJ". 'u.z - S'la way Our world changes with time"

a o f.. Ivrick, ry -c 1.i- Firzcrals are nivel in so many
.Ahe- toip. t,c~h.~'.~- ways that it is easy to regard them as
AT IYou hav'e cc VI i rule &a~irg wholly isolated from traditional math-

wi en rn -- is. 1. , waould be a mistake: rhe
LL. a ezrt'-si'!:ns~-nw- theory of fracrals is closely linked to at

,star t-tl Ji - . leasw one apparently independent
t. Ni t-.'vfield, chaoti. dynamics. Chaoitic dy-

x'rI .art to nymrge or. the screen Mythical raountain. conjured-up clowls namics, is a belated recognition that
wA~er, a fe'" ma~cicrn numnber-. 2,e ftd purely deterrninitic-e, predict-

1 0 tiiuow up itycg dir ftatures. By rwreas- aros irregularly over time, even if it does not sble-mathematical models can throw up
.ig the li.-c dre.c,.ion oi the objec (c, be involvie Y'-and Ditferent sorts of noise are appaiently random results. For example,

cosn.:tc s: S itace Lan Ike n-.:, ri'o..gher classi4-: c- n-trg to ihei1 "spectral den- tmagint an insec; population that grows
.r.! mns. porke.; T -tals wete used uo c-re- siry". This rn'.asures whicl frequencies oc- from one breeding season to the next ac-

armthege~apt iihc~~~fljof~dorin cur. and howA often "White' noise has equal cording to a fixed numericai formula. The
Mr ~ iucas . 7' Rcrri' of the amoutits of ali frequencies CIust as white light po-ulatson next year can, in theory, be cai-

':eCPnn"ter--s: at(K Ne ias em~al vrnuumtz cof alt t.--i arfd is tn- :.,lated frorn tlh.s Year's. Yet despite such
I*h0 Li,m uur ei 'I(. I .iop y'-b !she for- cirty ranuom. The noise at as-' given time regular iaus 4~ growth, the popular=z ca..

M.ITc~ N - ssiopm- caninot ie predicted from the nuise at earlier fluctuate i:ldly and unpreclicrablW This is
(:M no ~anii. imes. "Browr. noise" is nried after 3s nine- because tiny errors in the calculation can

~)rh~ai .~vn-~at ML~il' University teentherntury Scorish bxasai, Robert b,-vs Li', wildly diverger: piediction.
I aa.r I. ul z.A.Auds i'sinj BMwAI,. WIJo arudie' "I -' '. n.,it n 17f O' r-. aSinr rirrc h result, fo: all pracnmal
a ail . c.. Co0c USK: .nN, pan -ies datsng :r, a liquid. Brown purposes, i, . andomness, or chaos

:1 " i -lir- ft. za' Jimnijoi, vi);sc at mucii nst-re -'9rdertd ss-white Frar-i i and chaos com'e togethet in the
-tmn c' 1ers, 0( -to-m tots ko.4z. Ti, noise at I i~ie Jepends to study of tuibulent flow, Scientists have long

ser--n ~ ~ cii~s~,-":.s. Such a '.-ne eciemi what tzs it. -he pas:. And ien puzzled by the way fiuids sometimes
em .ofom':iy L, almtz unprete- 11 oiaina noit high fitr-cuz es and fewer flow smoothly and at ocher times break up
- n msitil wcrld. It meai-u that iw j nes than white noise .. imermciiaze into an irregular frotfoing mass. The sane

AItL3 .o rirsra! :rgs L' you ,,c cA i n-. e is knewn as I /J noise because body of fluid can have both turbulent and
t i *'r'hotograph of a clout-'. wt& 11, each fre.4uencv, f. x urs a! c6 . ci is in- smooth regions, with a complicated border
ohrt 5s,-5a tren- 1 11t' tOi'. r.-!j you t.he .erse!N-proporiional to :ts,,)ir. oie igher a between them. The classical approach to tur-

'- , the re .e'.. t _-, .it' s*n the shape of the note is, Ihe less often i. apr-eats. All three bulence sees it as a cascade tn which the en-I clud ited5 that %ill -ell you w'-zther it is types of noise produce wiv.71,',- ac'al curves if ergy :)f fluid mat~on is progressively pas'.o- I Off tim a , :i Tli ! a, svrnr-s- 7 *. - . . .c 6X -iagles tu smalier and smaller v'ortices. Such a pro-
III. , Itis s lc-4 .)f ar [hil ra :s -k I - .. on resa is fractal because the ever-smaller vorti-

.ccloods led n rem>olngisus to expert I Rcerriet (-iit :n-,1hin. -hJ, changes ces ha,,e the saire structure on many "Iafs
s ~et c'far~'ri- ;0"ii :euIv~ r ,t .1 rcg.,5,ed As The brames. nope f.)! 'rasctals is that thery il'

:,. hat A*lw *,rt .- .... . . uni Avcl the mysteries oi chaos.
rc I C j:
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FractaI Applications
by Mort La Brecque

n 194;, ' zolem Mandeibroip, a prom-
inent Prench mathematician whose
SPecialtyr was the abstruse fiild of

comples analysis, had some word!; of
,kdvii- lo: a gifted nephe.w It's very nice
fo'r children to get some feel (or geonie-
trv. iardelbrolt counseled thie young
mii, oho was about to undcr~j ke his
igher mnathimnatical educaticn, but vou

must leave it behind; a mature mathe- -
matician does not use visual .mae

Like morny other youthis before and 4

sincv. Fint Mandeibrot decided to re-
lkd( the wisdomi of his elders. li e had
dvvelip.-d ai passioinate att.schment to
s.hape and form that hev could not relin-
quish. The decision, in this case, hasA
N-en v'indicated by time. Not only has kI
his pursuit of a1 geometrical grail guided :j
NI-indvibrot ito extraordinarNy Success as
a mathematician, but the fractal geome-

r~to which it led his profoundly influ-
exied contemporary science as well.

the coincept with which Maodeibrol's
riam, Iiis become synonymous is de-

epiessim pie: An object that is self-a I
similar his a rough shapew to one degree
o- another made of pai ts "which, when
r iagnitied. rcsemble the whole. The
parls are, dliisible into look-alike en-
titics-and this geometric cloning con-
tinuo's forever, at least in the abstract
world of pt-re mathematics. Mandeibrot Fractats. Self-similar branching produces images of organic tree and inorganic sno~'la~e

-nvd the' word fractal to describe a
'elf-"jinilar iibject -lhe Latin Iractigs,
meaning irregular aind fragmented,
slais its twisted and tcrmented form So, Nat'ralists observe, a Flea
Sve "Fractal* S~ mmctri" by Mort La

Brecque. Mosaic Volume .16 Number 1. Hath smaller Fleas that on him prey;
If iractal is a new word, self-similarity And these have smaller Fleas to bite 'em;

can hardly be considered a new idea.
The image of a flea upoin a flea that Swift Anid so proceed ail infinitiu.
t-mplioyed in Oft Poctry refers to the -Jonathan Swtft,
1,0ndon literary scene but was inspired Onl Poetry. A Rhapsodfl
by Goxttned Wilhelm von Leibniz, the
seventeenth- and eighteenth-ceriit'iv
German philosopher and mathemnati-
cian Althoiugh l.eibnizs, exuberant op.
urn,sm.-all is for thc b-est in this best of
all possible worlds- ww; wickedly sati- This is ;pirl one of a tini-,iirt special rqsr!l 11 i
nzed bv Voftaire in ',,';dI- ,7so had Aort La7 P-.r i iii otroc!nI 011ilii-atii',

3 1, N, 7:3 V



Fractals are far more than the fantastic fruits of the
crossmatching of geometric theory and computer graphics.

Both the spawn and the seed of a mathmaia revolution, they
are influencing an Increasing range of scientific undertaking.

MOSAIC lAIunk- 17 Numho-, 4 Wink-r 3'IA7



the patt. in it) which oijl and .trdo'
not mis. Iratal materials also include
iniorp'hotis malterl like glass cl-
;oid.'; aggregates, elect rr'de-pi- ' nwt
its, elect rolvtes, t hin ii I111s. (coal. an rd ce-
ra'nt, L yen theii cracks tit teraicis irv

at tualiv trattal.

An vquiall impressive list can 1,v
culled I rom the world ofntrai.
from whience the shape of I ractals
sprang. To thie Cantor bar, Peanti curvi,
and Sierpinski gasket of the late nine-

S teenth and carl), twentieth centuries--
now often used by physical and life sci-
entists as models oft natural fractals-
has teevil added the Ma odellir it st fit
the Litt t weiil t I centunr. 'I lit, I j;,irre

-~obet-. sinmultaneously wet I-ordere'd a nd

(scrut InIy by some of the best mothe-
\ - ~ matical 'minds.

Pertgen. 1There -s so much compienty in these sysii'rns; so much wildness and 'mtrue. Mandelbrot

the worthier -),,,ion that in every d -up of turn out nott to bc pathological at all. In All the activity in science and mathe-
deitv is ant entire world with its own fac:, they are almost the rule in the uni- matics that has identified and explicated
drops of dew, themnselves containing verse. Shapes which are nut tractat are those (ractals can be. traced from a bur-
wi.orlds-and d-wdrop-of their own, the exception.' geoning number of younger acolytes to

'That ha, a strong, ilmost theologikol Those esceptiomnal shapes are the per- thie central avuncular figure of 1Bermoit
resuonance- ior mati," sayvs Maridelbrst ioct lines, pllmcs _id cubes oft Euclid, Mindelbrot. fie is to fractal geometry
Frttals h.:e corni po~pulzrc he corn- %liuh ha)'v ben part of our culture for what Einstein was to relativity and
tenus, because (if the intrinsic appeal 2S0KA~ vears. "I love euclidean geome- Freud to psychoanalysis. Although he
they tiase for Lis. now that their nature is trNW' he says. 'but it is quite clear that it has often ruffled the feathers of some
understood. does not. give a reasonable presentation colleagues by his immodevst insistence

Science I as succunibe,' to the lure of ;it the world. Mountains art! no: cones, that credit go where credit is doe, most
trictals for ie.,s mystical reasons. 'The sinujs are not spherecs, trees are not cyl- would protuaill'v agree that his peripa-
mathematical concepts related tot f ractals indvrs. Almost everytiung around us is tetic imaoination, proselytizing tervor,
havv go'-t' a long waiy in unifying areas esi.'ntially noneuclidean." and sheer dogged persistence virtually

Of FIIYSicS, chemistrY, and biology that There is both an upper and a lower created the field.

'%ire prevvou~lv obsc ure and couldn't limit, however, to the size range ovvr Manideibrot, now, at H-arvard Umiver-
K_ ' opro.chcd," says chemist Raoul which natural fractals are fractal: At cer- site, conducted most of his work over a

Kvepeirnan., who works at the Univet-sitv tai n poiints, they may either become period of nearly 30~ y'ears at iM's
(if' kthigan. smooth or rough but not fractal, or else Thomas 1. Watson Research Center,

Thefratalworclthv rkach their particuiar ultimnate state where he continues as an 111M fellow
Thefrata woldin bigness hir smallness. Moreover, natu- Oddis' enough, his interest in tractals

Mandclbrot. who has used the ron- rat frartals. are fractal in a statistical or began about that time, when he was
:..Ip t o scif-similarity since the late s'othnstic sense, a particular shape giv- studying short- and long-term comn-
1956C,, believed initially that he had hit tog no clue to the length scale at which it modity price changes. The structure of
upon a basic organizing principle (if was determined and niot looking exactly the fluctuations, he discovered. :uld
nawLre 'There was a very widespread like a shape on a different length scale. be reproduced by a self-similar forger%'.
feeling. fostered by many poets and Exactitudes and infinities exist only in (Were he t) focus on one field today. he
great writers, that nature has an organic the province of mathnatical fractals. says, it would be economics.)
complication which no mathematics can Thme range of natural phenomena there followed work on a sequence of
ever imitate.'- he -.;a 's 'It's ironical that un1COMpasseci bv self -similarity is problems that was distinguished, out-
fractals. many of whicl' were tivented i.stono-hing tn adrition ito the sioun- side of the fractal connection, by . ua
[by, nineteenth-century mathematiciansj ai clouds, and iTeus mentioned by absence of relatedness: errors in (lt
as exvimples oi patholoPgical behavior, M,-'deihrot and the- ralactic clusters and transmission of data over telephone

Wlrtlnt flows ort, which so much ot his channels, the widespread phenomenon
La Bre'u p" ha , Fv'r.1ef fav hi Misz-f oe %,irk i-oeethere ire proteins, acid called lif noise, and fluctuations in the

.; 3uijiju s *., mi, wc.? a o Jpsi 0 the suirfare of the level of the Nile River. Concurrently,
Ai Wia 1114 Pt NO 1? 11 0ii;; cr' 1: t,. ;ii, otas o.c.artlioumke patterns, Mandelbrot was developing lis- knowl-

ii.~a ,; .lc -. ,.an JgL oif rnathem; tics and c'-r nvi; vke



structures that he would then apply to I technical distinction that didn't truly
the scientific problems that had con- matter to the central issues of their

founded him. The oscillation between fields," he explains.

different fields of science and mathe- In the late 1960s, he realized that he

matics has been constant, a hallmark of could use a simple pen writer to draw

his entire career. real records of river-level fluctuations

Beginning in 1964, Mandelbrot began side by side with fractal forgeries. The

to consolidate his findings from his ear- A illustrations convinced a hydrologist

lier disparate studies, at the same time that Mandelbrot was making a point of

adding to their number. He also recalls fundamental significance. Shortly after-

the ensuing decade as one in which he wards, Mandelbrot acquired access to

met great resistance from the scientific some of the first computers for making

establishment. 'I was certainly the only graphics and, using them to construct

person doing these things,' he says, _,;l fractal forgeries of mountains, fooled
,except for friends who occasionally people who saw photographs and a mo-

)ined ne because they were interestedi tion picture of the images into thinking

in a particular project" that they were the real thing. Since

The turning point apparently came in - then, he has upgraded both his graphics

1975, with the publication of his first and photographic equipment to pro-

book in French, translated into English duce, with IBM colleague Richard Voss,

in 1977 as Fractals: Form, Chance, and Di- even more natural, counterfeit moun-

ni.,simi. In the late 1970s and early tainous terrains.

1980s, his work was finally adopted by Devaney. Aolication of Julia sets must wait. Computer graphics proved to be

the physics community, first by phys- more than a rhetoric Mandelbrot could

icists newly engaged in studies of the he organized the first scientific meetings use to explain his thoughts to others.

chaotic behavior born of turbulence and on fractals by himself-he was the only The pictures acquired a life of their own,

then by statistical physicists, a larger person k:owledgeable enough to do stimulating him to make new conjec-

group interested in a broader range of so-such a-rar\e'mcnts; must now be tures and to advance his own research.

phenomena. Those influential converts left largely to others. "For me, the most important instru-

and the .ublication of Mandelbrot's ment of thought is the eve,' he says. 'It

best-,tling ,econd book, The j-'ractal G- Computer graphics sees similarities even before a formula
,m'!r/ of Natur', in 1982, brought chem- Mandelbrot likcs to point out that his has been created to identify them."
ists, biologists, computer scientists, own labor was enhanced immeasurably The use of computer graphics as an

geophysicists, astrophysicists, materials by a stroke f g.oc luck-the simul- intuition-builder has persuaded Benoit
scientists, meteorologists, mechanical taneo,, deve)o&pnient of computer Mandelbrot and others that technology

vngie'r,., and scientists from other dis- graphat,., that was to prove invaluable in can be as great an influence on science

ciphne,, into the fractal fold. the app.ition of f..a!s to science. as science is on technology.
'I he number of people involved is 'NV first ,0 'i h.d no pictures what-

becoming enormous,' says Mandelbrot. soever, and I fund I couldn't make my Image synthesis

-1 .ho't know all of them, and I can't i Aas uder-bt),d by my audiencv," he The application of computer graphics

IL'A. evervthing they ,rite-' Although says, 'The. :hought I was making a fine is vast, and in the realm of image syn-
thesis also beginning to have an influ-
ence on art, both representational and
aIbstract, displayed in forms both tradi-
tional and technological. Some of the
most striking computer-generated pic-
5ures there are have been made with
fractal algorithms.

The first images made with a com-
puter. created by Ivan Sutherland at MUi
in the late 190s, were composed first of

dots and then of lines. By the late 196s,
restarchers at the University of Utah
had depicted objects made of triangles

,.'E4 and polygons. The French mathemati-
cian Pierre Bezier, one of the founders

1 of computer-aided design, sculpted
curved surfaces in the early 197N,, but

l ,those reference shapes were merely
drawings, highly inaccurate tor the
i,eds of the airplane and automobile in-

JU03 .*s ', ' , .... ,. I, ,set .- 4, t lef on l r. 1, A hi,..' ,r ,1- [.Iles dustries, where they were bt-ing used.
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cozme the -tansdpa fr e makn - i cun'ed ot< Fow the ac t turso wo enm(; haies- One thzye line i roe, the two re-

sAes i :1v mev*'s lo to be desired, lance is constrained bnatre fruls do- suitnlincts a seifred agai according
Thred sntrf iagm oe by han'itttingJ them It a !rappogramer. rtmstb outhes am ed inple asre 't fourt
thlytns ivas di tremea inerfention of prourti a timthe engt ofuthe dist line tat crsta fisromten seofndoer-

ptherhmnmd-bid h musties tsriO cte t he- ex pend poin sotwat the- ton. hichst cursie ptints areeated

coei the \itadard oordainateo same aprxmteo sen produced T at u nl a h crince is roduc(ed to such

evvr , corner or contro! point that lies in all length scales; it must have a global statistical complexity that a human be-
a curve. Since any comiplex shape, such ing could never reproduce it without a
.)F a tree !r , hill, could require hun- computer. More important, the moun-
JreJs of 9 h tusa-nds cr even a million tamn assembled from such curves will
points to IKe d&c.crited adequately, the look like a real mountain.
cost irt human labor is prohibitive> ex- Filmed tractals
cept for ti'c ;iudist ipproxirnati ...-

In 197o-. Qorpti~ei. rteaoiirg a itview -Carpenter created a two-minute-long
of Mandis,'- first 11,"k. ,aw imm(- W. anrinated film to illustrate his ideas.
diatel -v that tract,11 offered a way t~f *,. Shown at the 1980 ACM StGGRAt'f-Spe-
overcoming those limitations and began . cial Interest Group in Graphics--con-
to dlevelojp -n algorithm to do so. That fereince "Vol Libre" portrayed a simu-
idea occurred at the same time, inde lated flight over a fractal landscape,
ps'ndentlv. to Alain Fournier and D~on which included a number of different
Fussell of tho University of Texas at Aus- fractal processes. It also demonstrated
tin, and eventuallyi the three published that computer-animated film could be
a paper together in a journal of the As- entertaining as well as instructive.
sociation for Compui tng Machinery The movie apparently succeeded be-

Computers take oiver from tIN yond Carpenter's wildest dreams. Tal-
human-for the most part-in their ent scouts from George Lucas's Lu-
stochastic modeling techniquti' You casfilms, who attended the conference,
let the roroputer generate r,. idorn were sufficiently impressed in hire
sha,,vs i nut are c.'nrl--,ne bv '.irtaiir, Carpenter for Pixar. the company's

rtils," - pi'l -aJ J twufledgling computer graphics division.
use ril',i 11 k - i-),i d frorin r.-nr'. Art M-rndediv not for a;f r-nkr (its original mandate to conmputerize im-

act t,_'
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Classical Chaos
Ro eri V. Jensen

A wide variety of natural phenomrena exhibit complicat- tion computer graphics have enabled the "experimental"
ed, unpredictable, and seemingly random behavior. mathematician to identify and explore ordered patterns
Common examples incude the turbulent flow of a which would otherwise be bured in reams of computer
mountain sUream, the diansing weather, and the swirl- output. In many cases the persistence of order in irregu-
ing patterns of cream, slowlystirred, in a cup of coffee. lar behavior was totally unexpected; the discovery of
The paradigm for this class of macroscopic phenomena is these regularities has led to the development of new
the problem of turbulent flow in fluids (Fig. 1). Addition- analytical methods and approximations which have im-
al examples of complex, inegular behavior occur'in the proved our understanding of complex nonlinear phe-
dynamics of molecules and atoms in nomena.
a gas or charged particles in a plas- This novel approach, which
ma. These microscopic systems de- New methods for combines numerical "experiments"
fine another class of important physi- with mathematical analysis, has giv-
cal problems which raise a dissing Studying chaotic behavior e rise to a new interdisciplinary field
question: How can the deterministic make the unpredictable called nonlinear dynamics. The work
and reversible ons of individual done in this field has been applied
particles give rise to the irreversible more understandable but not only to problems in physics but
behavior of the system, as described also raise disturbing also to a wide variety of nonlinear
by statistical mechanics and thermo- problems in other scientific fields,
dynam c? fiundamental questions such as the evolution of chemical

Although physics has made reactions (1), the feedback control of
monumental strides in the last hun- electrical circuits (1), the interaction
dred years, theoretical descriptions of these complex of biological populations (2), the response of cardiac cells
phenomena have remained outstanding unsolved prob- to electrical impulses (3), the rise and fall of ecnomic
lems. The difficulty lies in the nonlinear character of the prices (4), and the buildup of armaments in competing
mathematical equations which model the physical sys- nations (5). In this article I will limit myself primarily to
tews: the Navier-Stokes equations for fluid flows and physical problems. However, I hope that readers will
Newton's equations for three or more interacting parti- recognize the applicability of these methods to their
des. Since these equations do not generally admit varied fields, since the difficulties in solving nonlinear
dosed-form analytical solutions, it has proved extremely equations are common to every branch of science.
difficult to construct useful theories that would predict, Nonlinear dynamicists use the word "chaos" as a
for example, the drag on the wing of an airplane or the technical term with a precise mathematical meaning to
range of validity of statistikW mechanics. However, in refer to the irregular, unpredictable behavior of deter-
the last ten years considerable progress has been made, ministic, nonlinear systems (6). Contrary to what Isaac
using a unique synthesis of numerical simulation and Newton may have believed, the deterministic equations
analytical approximation. of clasical mechanics do not imply a regular, ordered

The key to the recent progress has been the use of universe. Although most modem physicists and gam-
high-speed digitid computers. In particular, high-resolu- blers would concede that dynamical systems with iarge

numbers of degrees of freedom, such as the atmosphere
or a roulette wheel, can exhibit random behavior for all

& I.tv,4 V I ,n. an asepate pvWa ofa elW piysk at Yale practical purposes, the real surprise is that deterministic
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Figure 1. When moation becomes chaotic, the results awe uipredictable and sometimes disastrous. in classical dynamics, the behavior of
tibuleft fuids bm proved extremely difficuft lo predict-st we know, Wo example, from weather forecasting. But nuew insights about the

nature of chaos have revealed an underlyinig structure that is counso in many natural system and even in hum" social behavior. These
insights have been applied to such problems asthe evolution of clhjnmj gvsc$Jas the cono of electlcal circuits, the growth of biological
populations, the respo-..e of cirdiu cells to electrical impulses, the rise and fall of economic prices, and the buildup of armaments.
(Photograph rFour By Five.)

phenomena from first principles. However, the dascov- These examples will graphically illustrate the irregular,
ery of much simpler systems which can nevertheless unpredictabl, but nevertheless deterministic behav-ior
exhibit behavior as complicated as these standard exam- we call chaos. Then, after formulating a precise deftni-
p&s means that we no longer have to throw up our tion of classical chaos, I will attempt to dispel the
hands in debpair. Using the computer as a laboratcuy longstanding psychological prejudice which insists on a

aprtsto study these simple systems, we can begen distinction between detriistic and randcm behavior
texplore and understand chaotic, irregular, and unpee- by showing that the chaotic behavior of detenrniniitc

dictable phenomena in nature. dynamical systems con be indistinguishable horn a r-.r-
In this review I will concentrate on phenomena dom. process.

which ame well described by classical phyrics and, conse- uhseee nrtanding Of chos will lead, final-
quently, on problem of "classical chaos." Unfortunate- ly, toa sb* mM pbkophical discussion of where
ly, the question of chaos in quantum physics remains classical daos really covies from and what it is good for.
controversial. At present, "quantum chaom" is a poorly We will see that investigations of nonlinear dynantical
chAracterized disease for which we have only identified systems haes se ata asest oeo h
some of the possible symptoms. Both an unambiguous fundamena pwlmof turbulence and statistical me-
definlitiont as well as the very existence of quantum chunks which were first formulatled in the nineteenth
chaos remraur open problems. In contrast, we have a century. However, "hi reearch has also raised new
dear understanding (f the svmptoms and causes of ap-ifttions, mote profound than those they have an-
classical chaos, if only a partial understanding of the swered, relating to twentieth-century problems arising
cure. from G~deI's incompletees theotrm, the theories of

I will start by examining in detail two deceptively algorithiuc and computational complexity of moderr
simpl nolir 4 a il systems which ehbt a computer science, and the principles of quantum m,
trsic-- ro rvgullr. ordered behavior to chtaoq chanics ()
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Examples of chaotic dynamical equation, with the first term linear and the second term
systems: The logistic map nonlinear. When the original population xo is small

(much less than I on a normalized scale, where 1 might
Perhaps the simplest example of a nonlinear dynamical stand for any number, such as 1 million individuals), the
system is the celebrated logistic map. This system is nonlinear term can initially be neglected. Then the
described by a single difference equation population at time-step (year) n = I will be approximate-

I i- X,)y equal toax0 . Ifa > 1, the population increases. Ifa< 1,
.- the population decreases. Therefore, the linear term ira

which determines the future value ol the variable x,. I at equation I can be interpreted as a linear growth or death
tine-step n + I from the past value at time-step n. The rate which by itself would lead to exponential population
time-evolution of x. generated by this singfe algebraic growth or decay. If a > 1, the population will eventually
equation exhibits an extraordinarv transformation from grow to a value large enough for the nonlinear term,
order to chaos as the parameter a, which measures the -a4,,, to become important. Since this term is negative,
strength oi thc nonlinearity, is in,-reased. it represents a nonlinear death rate which dominates

Although nonlinear differe.:e v.quations of this type when the population becomes too large. Biologically,
n ve been *eudied extensive.y es simpi( models for this nonlinear death rate could be due to the depletion of
"rb6'ince in fluids, they also zviw. naturaly in the study food supplies or the outbreak of diseases in an over-

of the evolution of biological populations. In fact, the crowded environment.
re,',:w art-icle on the logistic map by the biologist Robert As emphasized in May's review artide, the dynam-
Mwa (2) is a historical milestone in the modem develop- ics of this map and the dependence on the parameter a,
ment of nonlinear dynamics. Threfoie, tor illustrative which measures the rate of linear growth and the size of
p,.irposes we will examine the use of the iogi-tic map as a the nonlinear ter.n, are best understood using a graphic
crde model for the annual evolution of a single biologi- analysis. Consider the graphs of x, , versus x. (called
cal populatioo, x., say that of gypsy moths in the "return maps") displayed in Figure 2 for four different
northeastern United States, which ,xhibits wild and values of a. Equation I defines an inverted parabola with
unpredictable fluctuations from year to year. However, intercepts at x,, = 0 and I and a maximum value of
we could equally well consider the evolution of econom- x., f = a1 4 at x. = 0.5. Using these return maps, we can
ic prices determined by a nonhner "cobweb" model get a qualitative understanding of the dynamics of the
with tionmonntonic, backward-bT dlng supply and de- logistic map without performing any calculations. The
manJ curve- (4) 'ir the dyaiamks (f a perio.'i,: lv kicked successive values of the populations can be determined
and Janiped nonlinear oscillator, simply by tracing lines on these graphs. Just start your

Writing equabon I in a slightly ditfvn.ol torm, pencii at an initial x0 and move vertically to the parabola
-aA, A,,. V i;,at ii v, a .tiiple quadratic to get Y I. At this point you could return to the horizontal



axis to repeat this procedure using the ahte f %, to get that they appear in the dynamics of an ivster. w: :b
x:, but it is more convenient simply to trace horizontally can be approximately modeled by a nophnear map %%ith
to the 450 line and then vertical)% to the parabola again, a quadratic extremum (8). Feigenbaum's theor' has
as shown by the colored lines in each graph. subsequently been confirmed in a wide variety of phvsi-

This graphic analysis tells us that if the normalized cal systems such as turbulent fluids, oscillating cherr'"Cal
population starts out iarger than 1, then it immediately reactions, nonlinear electrical circuits, and ring lasers i ).
goes negative, becoming extinct in one time-step. More- The investigation of period doubling in nonlinear
cver, if a > 4, the peak of the parabola will exceed 1, dynamical systems provides a superb example of the
which makes it possible for initial populations near 0.5 to interplay between numerical "experiments" and analh'ti-
become extinct in two time-steps. Therefore, we will cal theory. However, this sequence of regular peindic
restrict our analysis to values of a between 0 and 4 and to orbits is only the precursor to chaos. Since the period-
,'aues of Y beh.een 0 -nd 1 doubling route to chaos has been the subject of several

For values of a < 1, the population always decreases othei review artides and texts (2, 8-10), 1 will now .ov:c
b to 0, as shown for a = 0.95 in Figure 2. The intersection on to still larger values of a, where the dynamics of the

of the parabola with the 45' line at x, = 0 represents a logistic map are truly chaotic.
stable fixed point on the map. Because a is small, For many, if not most, values of a > 3.57... the
perturbation theory can be used to % rif . that almost all bifurcation diagram shows that the long-time behavior of
initial populations are attracted to this fixed point and the population is aperiodic and ranges over continuous
become extinct. However, for a > 1 this fixed point intervals of x. As I will demonstrate, the evolution of
becomes unstable. (This is readily verified by tracing the populations in these continuous intervals is indistin-
dynamics in the second graph or by applying a local guishable from a random process, even though the
perturbation theory for small populations.) Instead, the
parabola now intersects the 45° line at x := (a - 1)1a,
which corresponds to a new fixed point. Conventional Contrary to what Isaac Newton may
perturbation theory gives no hint f the existence of this
nonvanishing steady state population. have believed, thw deterministic equations

For values of a between I and 3 almost all initial
populations evolve to this tq:ii!;.t'4.,,n population. Then, of classical mechanics do not imply a
as a is increased bet, .en 3 an. i. . dynarrucs char.." regular, ordered universe!I remarkable wvavs.. First, the fixed point becomes
unstable and the population ov i1 -ves to a dvnamic steady
state in wnich it attemna-,.: ccn a large and a small logistic map Is fully deterministic in the sense that there
population. A bme-s(,qtie,, .nv,:rging to such a pert- are no "randor" forces and the future is completely
od-2 cycle is displayed in Fig-tre 2 for a = 3.2: the determined by the initial condition, xo.; I popdation eventually cycles hK,veen two points on the However, we also find windowf of per-irdic behav-
parabola, r, - b.5 and x, m . n a.,f.rnate Years. For ior embedded in this chaotic regime The most promi-
qomewhat larger valuc. c; t- ps:'d", c-cle xcomes nent window corresponds to a peiiod-3 cycle for a
unstable and is repla, , a p(,, .' ., I: in which .he 3.3., in ,,hich the population increases in t,;o '-uccess*ve
population alternates higi-Iow, returning to its original years ani de-zreae,. in the third. Mcrreaver, as a is
value every four time-steps. As a is increased, the long- increased within ti-s window o' stability the period-3
time motion conveges to period-8, -16, -32, - 4,... cycle can al-,. be seen to exhibit period-doubling bifurra-
cycles, finally accumulating to a cycle of infinte period tions to period 6. -12. -24, ... cydes. In fact, between e,,f
frr a = rf- ,.57. and a - 3.R3 there are windows of stability for evr.,v

This sequence of "period-doubling bifurcations" in integer per,-d, which terninate in a period-doubling
the long-tine, fiteady state behavior of the logistic map is cascade back ,, chaos. Although the windows of stability
dearly displayed in Figure 3. The graph shows the for most of .h? higher-order cycles are too narrow to be
steady state values of the population a., a function of a seen in Figien ), a period-5 -d a period-6 cycle can be
Vetween 3.5 ad 4. ; nr a <- 3 only a sin61e steady rtate readily discer-d.value of x = (a - I)': woul: e displayed. Fr a > 3, we It is ! :wrma-k;tbie mathematical fact that. althc_;h
get two steady state values tlhen four, then eight and so the-e irtoer-, o. stbility are dense throug,,ou, the
on. Each bifurcation in Figure 3 thu- --epresents a range ot a, it is not correct to conclude that the et of
doubling of the "'iimber -A steady state value,- and a values of a fnr which the notion is truly chaotic is
doubling of the timesteps in a period. negligibly small. On the contry, this %e has been

The range of a over which a single cycle is stable proved to have a noivanishing measure (11). In other
decreases rapidly e period of the cycle increases, wvcrds, it the exact evolution of r,, looks haotic, then it
which accounts for te rapid accumulation of cycles with probably is; we are not necessarily being deceived by a
LaW and larger periods. In fact, having observed this rey I'oig, hit periodic, cycle. In particular, the irregular
period-doubli,P se,.,ence m numerical experimcn4t, dyr fnfr ! - , .v'*ch de!.rmuhistically spans theFeigenbaum wai ab!, t) prove, using a remarkable entire unit int'wva, i-3 rasily shown to meet the defini-
application of the r'ormaliration Proup, that the inter- dons of e-rth - chaotic rntj a random process formulated
vals over which a cvcle is :st,);e ec-,oPie at a geometric later .n t"4 - t.,"e.
rate of- 4.66921 TI . ",,'neus .1ignaif,...,, of this ,'.- striking featuie in the bifurcation diagrW
work is that mt oo a. prope.'tes ,t th., pc. i: is N-a dat-4 . wh'ch mn, the urm Pr and loe.

workistha '.,'ch-.,

doub~~i,,:fi ,t v iii,. , , , itiver., ,1 in th, , e -, K. ,:,- ',' ,i -- ,.s t)--. • jj , nnain. Th e dark
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streaks reprcwr t vals o . . .: probab! 11'.4te d-.lption I. ,mnt-cliniLnioilaI motion of a
and visited more oten durirn65 e ,,. . Jurto,. zitarwed l I., i Irix"., ,spectrum of
These ordered structures were J :.ov.jr,- "expe.-,e- oi- l'k,, , . ... ,,, k'iiotc the position
tally" in high-resolution graphs, hlie igPur, 3, displaying ind velocity of the partici, a. oi.mTcte time t = n and k
hundreds of thousands if not millions of iterations of the is a measure of the electric field amplitude. It also arises
logistic map. Once discovered, their explanation was naturally as an approximate description of general one-
found to be simple (12). The streaks are located at the dimensional, nonlinear tsollators subject to periodic
future values of the "critical" population, xt, = 0.5. The perturbations (hence the name "standard map").
upper bound of values for x is determined by the heights As ie nonlinear parameter, k, is increased, the
of the inverted parabolas, x, = a/4, as diagrammed in evolution of this map exhibits, like the logistic map, a
Figure 2, and the lower bound and all the interior streaks dramatic transformation from regular, predictable mo-
L Figure 3 by th: sub.ccquenl it.,-at.,. The reason that tion to chaotic, statistical behavior As a consequence,
populations have a higher probability of passing through detailed numerical and analytical investigations of this

classical mc-hanical system have played, and continue
to play, an important role in studies of the microscopic

High-resolution computer graphics have foundations of classical statistical mechanics.
The si.mpl.est physical system described by this pairaiabied mathematicians to identify of coupled, nonlinear difference equations is a rigidrdered patterns which would otherwise rotor, such as the one depicted in Figure 4, which isred inem s ofih copule otpue subject to sudden kicks at regular time intervals. In this

be buried in reams of computer output case the variable x. corresponds to the angle of the rotor
and y, to the angular velocity immediately after the nth
kick, and equations 2 and 3 are just Newton's equations

values near the trajectory of x0 = 0.5 is that the slopes of for this classical mechanical system. The kick can be
the parabolas on the return maps (Fig. 2) vanish there, either forward or backward, depending on the sign of
which tends to compress nearby trajectories. Moreover, sin x,,, and the maximum strength of the kick is deter-
the intersections of these dark streaks in Figure 3 corre- mined by the size of the nonlinear parameter, k.
spond to "crises" in the chaotic dynamics, where disjoint Equations 2 and 3 provide an exact, detenrviniatic
intervals of chaotic orbits collide to form larger regions, description of the evolution of the "phase-point" (x,, y.)
and they have been a topic of recent research (13). The in the two-dimensional x-y "phase-space" which is
most spectacular ciz is i' readily visible at a - 3 68. uniquely determined by the iniitial condition (xo, yo). For

The discovery and explanatior. o! such rgul_; struc- example, if we set k = 0 and look at the motion of the
tures in the ch.-utic !."main is not just an :,rausing rotor at st boscopic intervals of time, then the angular

xerCiSe for experunent . ma.heraticians; rather, an velocity woula remain constant at y,, = Yo and the angle

understanding of these probability distributions has im- x, would increase by yo cach unit of time. A graph of the
portant practical applications. Since an analytical de- point (x, y,,) in the x-y phase-space of this dynamical
scription of the chaotic evolution of individual initial system would show a sequence of d,-', lying in a
condition, i , ,m ;issible, the best we c,,n hope for is a straight, horizontal line of constant y, The itrst graph in
statistical theorv ,,'wtath predicts the leliihood of the Figure 5 shows a computer-generated "phase-space por-
variable r', taking on anv particular value. In this case the trait" (also known as a Poincar6 section) for several
"order in chaos" which is apparent in Figure 3 plays an values of yo with k = 0. (For convenience we have taken
untiortant role in delineating the range o! validity and advantage of the natural periodicity of the angle r to
the structure of statistical descriptions. For example, in restrict the range of x to the interval [0, 2w) by evaluating
.;lYing this analysis to the evolution of biological equation 2 modulo 2w.) In fact, an analytical solution
popuiatons, we 'ee that for conditions corresponding to which describes this regular behavior for the linear
" -- 4 the pp'latior, will fluctuit. in an apparently difference equations (linear when k = 0) can easily be
*.tdom fashiot over t'ie cnre raagyi but is ;,.ost likely determined. However, for nonzero k the standard map

to lie at either the maximum or irnindtrurnm \aues. is no longer integrable and does not admit dosed-form
analytical solutions for .., and y.,, at an arbitrary time t =

And the standard map n. In these cases we must rely heavily on intuition
derived from numerical "experiments" to develop new

O.ir scond example of a nonlinear ','nial system methods of analysis.
', hih exhibia, a transition hom regular to chaotic behav- We can exploit several symmetries which signifi-
)or is the standard map (14), descnbed by a pair of cantly reduce the complexity of the analysis. The first
nonlinear difference equations symmetry is the fact that the map is naturally periodic in

( with period 2n. (If we increment V by 2v on both sides
. + 3) of equation 3, its value remains unchanged.) We have

Yn.- - , k sil, A,, 3) already noted tist x is an angle variable which is only

,'ach mai., the values of the two variables x, and V,, at defined modulo 21r. Therefore, for the purposes of
time-step 1 intoi,, and y,,.. at hme-step n + 1. In 1his graphic analysis it is convenient to evaluate both equa-
.i the parar,,,'cr k in equation 3 o ,nrols "e ragri tions 2 and 3 modulo 21r so that the evolution of x. and
.,e of th. nimtihe,'ritv i/ is restricted to a square in the x-y phase-space with

I his map cam ii' ued ito de,"rilea ilrge r,-amlx' of sides of length 2wn'.
;',i:-'.ql ,v~VtV,%,; It pro'v,%A's. lor ,v)naipl', 1u ,1-r.1xi- The graphs i" Figure S show phase-spi.ce 1v.rtr!0!ts

.... .....,,.,, ..... ,. -,
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Figure 3. A parafita i the ield of aaus' i'arer ;%omnics, thi t. uiac 1, .- ~VO.iil U: 'Ile wop ce-vw ' a per All:
CAiM diagram &hows the loti;-4iarit e ha'a A l., Io'is:it ''>e oft Ix" - R 4i.grwar 4- -. ."! J i for I
sup foe values of a between 3.5 and 4. The iva-h is generited i~ (at a - 3 5, 1- -- ir.ip;, there ar- ,).; di'.lr. J~ I'm 1 tbf
tnzwriCafly htaiting the map for diffevent vaiuvs of ansld , ettir.z sylem tver;, .A'vv ' down *.;i ~r li. o ahnoo %imonir

sevala husldk-d rucce-sive %,-Aue, of ,after in.*iz. f,> . hve tI,,se to'.. ',::A err the r-olutiua. ii -aaotbc 1*-t ok-e-
died out. Thw esult is a graphic displav of 'he unde-Nsing %Incture coaver, (1 tirun - ;ntcrv&6 iaat' tha ~Ia. kros5 of tiho- shadinag
of dums-ptrrs that show an orderly pa aession from reguia.- r. mptesnts tl'. !rti'c probabiitf lht - will -;q t a r-ulai

dulotik behavicir in any system that ran be modeled by arqvAatioa I rvgan.

of the restricted dynari~cs for irwrejsii',% valuei oft d~e ais,. t~ ,v l'.Xijf, cl Vi mip as a~ txi-.li.n.te
5 nonlinear parameter, k. 'hits *,'rae,; K .rcai c. .At, ftrm varie.. e:; t,, Va1Q ' Ces Oft,;,

shows the trarnsibtir [i.jn- reguiar tv 'vtgui >la, . A1 ,j,) .- -;-ilas , k Auov.A ui JXc a
behavior as the strengih o'f t kick., I':,,.....n.i. irifjiuate'si.aa! aie.a.; .~voldniz-i

speckled region ina the graph (In: k = Z s ctwkc, d U--(.h or o.-17itct by the -.o;gic of t-w ;disal
single orbit.)'Thiese grach-; Ia'j :!he restii..tf' u toll ;-r *.. . -;f the :~iAc v ~ u~o A
extr'emely useful, since uzdioi ronditions that ihu-. .egu .. I G ~ f c l jaad a ~w ht
Wa or chaotic behavior in !he restricted phase-space %ilU o, e i. prop"rt pon~it; the dpl-licatioaA of a
also exhibit rl'guiar arnd ct-3ct' belia%,o, .?.t -i gat. PT' LIC11 .."Oh --&~ .".J OlecreMIS
the unrestricted dylnc. .. a : ia ,ysteais have been de~f-o--d

A second import.nt 1 upraty whOi hfes0 u *J :-d-. ti. - '. di- .ludy cf ree~ai
miathemrauical analysis -- ti -e~ standaidir 'ha r). an

mnost equation-, dvc*rkmiar 1:5sipatl~c, -- a.... ail (lta .iJ4, ~. .iac yu
c aua Ystor, 'l i, 1.irt iff d~ 0 ' -,-I vi. Ofac s 'd a. '. .it-,1-,z
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!O3.- .: : ., ,. ; ." .. . tr.ln,e dhd al L zI2 ,, -s.' ce Ia itt- remain quite
attractor" (6, 16. n i 0 . , . . " a l ' a ' " ;,r o i e t a. U v l w( and that the perturba-

I s-ip,:t o ) 1r -c to ,h, - r:. i-,'?- , .. 3 i, 'I :,I: becorr, ._h,, Is .oe the evolution of a
by sing:" phase-traletory egins to iJI large regions of

.. phase-space, as it does in the graph for k = 2.
with A < I decreasing the velocity each time-step due to In practice this trznsit:on from mostly regular be-
nfrction, then in the absence of inv kicks, k = 0, every havior to global chaos as k i- increased has tremendous
iutial condition would evolve to the attracting set de- physical !ignifica, ce. For example, numerical expert-

fined by the line y = i However, for large enough ments showm/ that for small values of k the angular
Vadu?,s ," .k un kicks ca., ,vercome the friction, and the velocity and kinetic energy of the kicked rotor may

." ,g set can he ruinci more complicated. For exam- increase and decrease but remain confined to a restricted
pie, the uppor..-.:am in Figure 6 shows the outline of range of values for all time. However, for large values of
the "strange attractor' for X = 0.1 and k = 8.8 (17). The k the velocity and energy can wander over all of phase-

space. U in this case we remove the restriction to
velocities cA the interval 10, 2ir}, we find that the rotor's

We could always ia, te in velocity and energy can wander to arbitrarily large
values. .i-svite the fact that there are no "random"orihciple, stirring very carefully, we forces at b.i this diffusion in energy appears for all7 n sare " w, E crea m fnrym the co, ee intents and purposes to be a randor walk. Since the
standard map also provides a model for the interaction

2fter it has been thoroughly mn:,xd of charged particles with a broad spectrum of oscillating
electrical fields, this deterministic diffusion in energy
provides an important means of heating high-tempera-

reason t iis attracting ,et is considere-, to be strange is ture, low-density fusio, n plasmas where "random" parti-
.hat if we magnift a sect .n o: f any strand of the attractor, de collisions are too rare to mediate in the irreversible
we fEnd that it 1 composed or niany strands which in transfer of energy from the fields to the particles (19).

"T, ," , f." ' .' n'anv str---_,, ad irfiratum. 'The The numerical exneriments indicate that this transi-
.ee',-ra c Iagra ,- ,, 6 i a rna nificatKs, cl a se tion tion from confined to diffusive motion occurs for k,. - 1.

"4 -?is artracto "a'. " . at -imilar" '.x'isre" on a "'his observation has led to the development of a series
smaller sale. ot approximate theories of ever increasing sophistication

Ple srr'.,c. rc - ' ' n on (whc Ci .7ot nVcessar- and accuracl for predicting the critical perturbation
.' c th e f, .,:oing "fr'an ctal otractcr. are strength for the onset of global chaos in general nonlin-

. c . ,nuch .-i: rnt reoearch iti nonlinear ear systems. At present the best theoretical prediction
,o~rcs a: s zeearnh nus many possible applications, (20) for the standard map is k, -_ 63/64 = 0.984375,

.:.dudg the descrtpmicn -f chaotic behai~or in dissipa- which is very close to the best numerical estimate (21) of
.,e s 5)' ; 'uO as tirbulent flows, chemical oscila- k, - 0.971M35406.

tor's or ri-,ural ntw .V-Ltk f1) the -nteri'sted reader should The chains of elliptical "island" structures which
rete t:-. '... ek t Is ' -, %-,w article bv- Ed Ot+ (6) and the proliferate at k - I (Fig. 5) play a very important role in
beautifii! ) w ' b) Benoit Mandelbrot 18). determining this transition to global stochasticity. These

Returr:;,g to the nondissipative standard map, we regular structures in the nonlinear dynamics result from
iVte that in he absence of an attractor, the phase-point resonances between the motion of the nonlinear oscilla-
,v, ,, can u, prrcipie wtandcr an,-.wher, i. th,. available
;, .a~ s-s,Ct' I+.,wever, we have seen that when k = 0,
h u .-. uu -,! he phate-poit is tonia cd to a hori-

,lotei line. Frc nosrverr' k the angular %Vocity i, per-
tt ,-rb ' , .: , n.' : t,- bo a con,.!arit of motion.

,, !.g .c,. expx.ti t; e pha--po irt !. explore" all Y-.,

1; pK_.t. spa, , Nc -erth1.iss, wne phase-space portraits -

'r Figu e' 5 ( .va:I' how that this is lu,)t nezessanjv the

Ehas "o,.- ,an:cotal" restit is turt.hr substantiated /
t. I rI',-'.. 'heorem (or Hamitonon bystemrs
',-Y as iie KlImrnoeorov. Arnold, Moser (or KAot
" i.,iren (1 ' l'his ,,I.. rem states that if ': take an
.'e'rahme iia,'.k,ntan system (.such as th-e standard

,rai, wvith k -. il and add a noinntegrable perturbation ik
t l :eftn I'I ffr;'"nt! ,m .a perturlc tw ,, approx'i-.

,l', Con,,t.in' ., )t r)t1r will an'dc id the evolution "---._
,, thc Jv ia'na il system will remain regular (if sme- Figure 4. The simplest physical ystem described by the standard

i ha! -i-'..orr, , ; I, 1 MobLt itial conliltions Although the mar (equations 2 and 31 is a rigid "oto iutbject to periodic kicks.

tlt i, ;.ra(K)f of O,. .horn requires Thetti"m A, represenls te angular position of the rotOr at the ti e
r, t tt ';,t ' axemelv s ;v.I 0.1, Per'iai has nf the nth kiak: V. reprt,,ent the angular velocitv of the roo just

'"7!,, i 'iidc as .r ,c rabl.. t 'y'aita- I.-ore the nith ki,.k. The strenSth and diect-ion of ihe kicks are
" . . . " ,,.r ha ' , n 5.,'tin . dpierrnine,' bv 0 ,ctilinea - ,'arta I irn.

/,,'



Figure 5. Phase-space portraits (oincar-.
sections) for the standard map, shown ....... ..... . . . . .
here for four different values ot the !
nonlineu parameter k, are analogous to .-......
the bifurcation diagram for the logistt 1nap .. ....- .
(Fig. 3), in that they make it easier to see
transitions from regular to chaotic evolution.
These figures are generated by numerically
iterating the standard map for several I
diffeses initial conditions t., 1.) and
plotting several hundred of the ,ucceeding -

points Ua. y.) in the x-y phase-space.
The graph at the upper lelt shows the

reg u lar, in tgrable d ynam ics for -% 0 (............ . ................. . ............. '

4which corresponds, in F-g. 4. t., a kick

Of zero strength, so that dte aniaistr L ..... ......-..... ...
velocity of the rotor is constant). When k 's 0 b .......
increased to 0.5, testoriets for various Y k I C,
initial conditions are still regular and2,r- - -- - . 7

neryintegrable, as guarantee'd by the
Kolmogornff-Amold-Mowcr theorem for .. -' " - ', h- ":. ,",
Small values of L. A mistugc of ch-otic and * \ '- - I "'" ";'" "..

regular trajectories appears wh'n 1 .% ~
The graph fork = 2 is dominated by W... "

chaotic evolution: a sing[,! trajecton'\. .,j.. -4
can wander over large ereiotm (it" .,- .

S . +..... ... .C VA .%>'space.t..ug. .ome slnds f.... .f.,.da .A

tor 'the rtohr) 'd° ,''F ' ::- J'-.. '":: 5-I I

turbalton At th-- *e~ix.' oo~ f. 7'' )ii
land' n.. rh - i' .. , . ,
recurs after q j tt-,jd:.,o, 11-.n, he- - q..- -. ,so I" -,

ber of Ls!,,'d.i in Win ,:,
distance from x i I to 2- , reader .-.n re.. ,10v venly regions o, '',e-pace (like the obit for k = 2 ti Fig 5
that the poifnt ,0). -.. hic tith C.'ntet ( the larg u- , no : -i','tg5i I will ma tt these orbits exhubt.

S .: .... . *.' , tfe .- ["- :nt,irif and e tre ern s4nsitivltv to injitia
rsr.+ • "., ,, hl the xrregular orimts of thV IOgistir map and

,I. : ," , 't: t ' " ,r':.' ii no('.n .i¢ , t th. s,;iton, roquitre&
c.al island can ' wv ... . t, top o( 'he aph.) 1t i, 1x . , (f' , :a':or. oi c,: is. Lr.fJrtinatciv,, (.-w :;gorolt4
also easy to check that the phas,-point I -r, Tri, which t'es mathem.,t) -ai results are a','aable at present ':-r moder-
at the center of the smaller .wo-isLan chain wtross tile ateli rcallot-,- physical rnodels like the standard map;
center of the graph for k. 1. is a penodic oibit ol howevy, .Krcv the ma, Lan he eastiy iterated for manv
period 2; the interi,.,ite .u of the rt;or -.2;e and njlh,,,ri o! ,,m-siops the numerical evidence casi K,
' elocty correspond to the ilotnt (2t, -), v lch t.- Ih,+  

n :rt 'on'i':,cuig th ,c', one numerical stvdv reportei
same as (0, .-rl because tct the p,,nodictv of the map. '.h' resuit . .,r 3 ulculatio:i v.-ith as nary as 1(12 iera-

The islands suroundriv; t, e,,e perix'ic orbits :orr.- tions ot tl't -t.wc :rd map ,2"1
, pond to nearby oft- . ' art- trapped ir n, , s. ne 0!.t ";,"ules , -e ngorfvs mritherat-
resonancts. t ,,. tic--', d '. ' t ',, alv -5 tt. - cc " di f ,':le' t,
within the traprirg r .l. vi '. imncsJ rtA.tt(.r. %viii i' 'th r .. ; s i'e resonant ishdiL stMt ures)
also generate island structur's within the..- r:ular as %. ,Z!l as , - ,gtons for i,.ist rexlistic svstr.r s. In
regions and 't!i. is!.ind. n turn will !I-' .. ' '. .' . ,rt, ular, L ,- ')rdard rn-n. aeady ekill::t" bands of
tsland chains, a,+ infmnittm Fr k 1E I !'hc'e hi,. ' . r cht ac ort-its for x cv small values of k, alth .*igh the
resonances .re ,xtre!., narrow and only a t ... *c r' I k' th(-_y." guarrntpe% that they are very rutnow These
discerned at t!e I,s.si -t-on (of f'igum i i lows'v r, U Sit, mctxsc in si.ie as k inreases until k e~cef-.ds k,, after
Hamiltoniar, p.rturiatur, thabr N we fLd th., die jdi -",ch he u:otbc regics tx-,nd unil inev consum,.
vidual island chains increase tr'. width as V " sc wt in., t of ph,,se-nnace. For e;,imple, the bands- of chaos
would expect (atas topH- con' .,uence- when 1 r-c. s r-' tiri , .1 .- to be .e.n i-. Figure 5 wh-n k = 0.5 but
1. In fact, th. d,1 , ' . I .

r 
.1.' . .. .- <,.' 

".. " " anA, ri te the pha3e-.qptce
large numbers of r.i.n.ms',s", +', t o,' ,I.', . tt k 2 "!o"v v: r, perkilic (.rbits with stabie island
global chaos (22). .trmL:',,.-.va', ,'.sist in the chiab)ic regime. For exam-

For k 1 the appri,,;smt, constansts g ,:, " .- r, r,",. st s, '. s. ,lad of stability persists
detrr.,yed lo: r.,ai c,,,;i,,,ns, .,;. ;t -. e .rc, . ., .r:!,nt at (a, t io:k = 2 however, it
sponding prb.,.- ','1,,t(.res a w'rg. , I. . '. . - *w' . v y, tile chaoic sea wlen
to rm ( i , - , . ... r* r , t . s '

1s7-



,.".,. ... .J ," ., t., , ''. :j. : laws of St,.Iis-

:' .. . .il'tic i.)ws of classical
t'he grapt; cf -r ;,tar dy'- '. . . .. . . .h eram.h of mathematics,
logier- anl a. .,. . .,e eo,.. .'.! I. ,16ic theor,', _'.h pr, des a means of classi-
chaos '.e .- . k,, l a s-, . . .lure, theS. fying difierent deterministic dynamical systems with
matheit c irti. dels evxhibit behavior wh ch appears to irregular behavior (19,25, 26). In particular, this classifi-
be random despite the fa- that the eqvLiAons ot motion cation scheme define. s)mptoms for a hierarchy of
are t'!y)' dte-rrr, m. . .,, ire fitly .,Sierent classes of random-like behavior, "statistical
determined &,d the syst.... arc relatively simple, where diseases." of increasing severity.
does this conplex ,xchi 7 cone fro.:, What are the Dyamicai systems with the mildest disease are
.ymptv,. - ait a u, .identy chaos when we see called e-godic (25, 26). These are systems that come near
Z' Afid what are itc kal differvicv t any, between almost every possible state over time but do so in a

A&Oa Jeterrii'!ia, ha-.uc behavior and random pruciess- regular manner. For example, the evolution of the
s? To describe mon.. cearly this disva-e ,-ailed classical standard man for k = 0 is completely described by

aos, .%e must delve a little deeper into the mathemati- equation 2, since the angular velocity, y, is a constant of
al theoryy o Jvrasrdca) Syteral. motion. If the Initial angular velocity, yo, is an irrational

Vie have , e.n-adv lefied wh;t -.." moan by deter- multiple oi ;I.r, then the angle variable, x,., will eventual-
.. ,, sy_,S, adi-!, their iy cover t[. entire interval 10,21rl in an ordered and

.-.volu'on i" .. i:apleteiy deten..; eJ ,y tbe ini..ai condi- predictable way. This system is merely ergodic.
-nn anO tbe e ,,ation ot moch!, prescrnbed by the laws Although there has been considerable confusion in

,-,f p .F'ct "whi .1o we mean, b', randern behavior' the physical literature, ergodicity aloneis not sufficient to
,:,:uiu.e , , a rnd.:1 o'- .h..,O r.C Co'S. "'ucb justify the application of the probabilistic methods of

,., the r.,1 ot a he. te fip of a coin, or the ,;in of a statistical mechanics, since ergodicity alone does not
. .t. whe. ,s ; p,,i-ess which exhibits i'gular assure that nonequilibrium distributions evolve toward

toe t.vior I- not -I- nrrUled by any laws and defies
-. ~ ci~t ti *,, _ 'er, ouis xon,.ept would not be 2.0F

vry u.eAu , wc, -.o, ior the fa-t th. ', tritisacel
Orpi ic OS ".:the oi, i beliav- I
or ~~~e' i!1 A,. 'V r..,, c~.e;1fuf, .ire very we*G
.' 7. 4 t : u.; Of rorobibiities ai;,d tile so-

calluc ;a'A'S V;f :hal(.' !241 Iherefore. the traditional 0
an !Sealizt , o . , i Ci.,' I'll 0:i-el',

Seti, ,n.,' u. trms it .,,'ragc, . . ,s deter-
iruned bN w ,pi' rpnarwe -yrubabihty distribution. ,

'0.:i,.tal r,.:heo::~s ,_'.ed On the talCulu,. of probi
, ind t . rnathemaocai ti-r, ., s.:,ha.,hc .'ro-

\x(, I' . .. c' hd!. appii." tu ,. wdt vainetv ., -

;1 Phi , . lt , S .S CtILiL.LaI t alnpie is
th, t ' .I .I - -'ati I.tc, irc. hani,, Jeveloped by F'

, ,, .-. ,.C;ibs, ,nd idt tei;l, it provides

* , ,, :,.. * t..wirc~ '. u~.i l .f tho rildcrosCopic
• ,F!a:j Y. :r, ".-r "A'' hart' 0v,% .al' 11 t,'ttak III ,OT. S -

L' 02 04 0.6 0.8 10

" as' , 4 th 9 'r , t ih:,tj,; and ,

'it ' T' .... i ., 'h• ', i l' rl )' t'h'..'i't, ; v ci i0i .. .. . . . ..... ... .

1' n, .. :,nal,, Zc in, i "7.' UIO ."1,

J.61

i.-. m' ' i n 00rr tO A&tan AttAia la . tt in piai,.- !':"

._ . , . }).z I ,, ' - I vi more l 4ll on.. .t .lIIatrange - -

-',rr1~ " ....i , -.. dd diiaIon f i,(. ,.- to the roitor

depirr. . I Io . taij .,?ujli4,r I rt .,t-.. veap-!ion I the0
ia[ra At 1 r , y j%" t stl r ange altrodl.,> tot 'lit damped.,

ki,!Led r-) I wheI ,1 1 And kt 8.8. nhe ton --trm evolution of .*

,.,j )tf tthe 'at'.-' i. s'yui, v. v't.i.5 is rnointain.i n at: .;."
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equilibrium (2i, 2o). Rc' ve'.er, dynariical systerns %%th a ir.anraot under coordinate changes t26), thi' prn es tit
more severe disease, the so-called Kolmogorov ivstemns thi. logistic mapr with a = 4 is a K-w;steir -ind thert-bv
or K-systems, are irregular enough to figoro uslv justify a meets our definition of a chaotic dynanicl svstem. it
statistical description (26, 27). caYI also) be rigorouslv shown that the logistic mir. is., K.

K-systems exhibit the mathematical property systemn and therefore chaotic for manyi value-, of a> o
known as 'mixing' with "positive Kolmogurov-Sinai 3.5T .., whi-Ai ii: consistent with tihr numerical t-.i
entropy." The "mixing"behavior is a precise charact~ r- dence displayed in Figure 7.
ization of what you observe when you stir cream in your Trhe average Liapunov exponent can also- be calci
coffee, although many nonlinear dynamicists prefer the lated for dynamical systems in higher dimension;, likt.
example of rum and Coke (28). "Positive Kolmogorov- the standard map, although the algorithm is more
Sinai entropy"' is an essential technical condition which complicated than that for one-idimensional maps (.3M
is difficult to verify, directly for a given dvinamical system.
Ilow-ever, in practice this nieans that the dynamical - . -- ____ . ~
system exhibits extrme sensitivity to initial conditions, Th oo he ieAslisnte
so that two trajectories '.&arted at nearby, initial coiiditons Th otof I es isi h
diverge at an exponential rate. This rate is measured by matiematiCal patholog~ies of the real
the "average Liapunov expon-enlt,' which is equivalent
to the Kolmogurov -Sina; entropy and can be easily niumbers _ _ _ _

computed (29, 30). PBecause of this extreme sensitivity to *------- - - ______

initial conditions, thu evolution of deter ministic K-sys
tems defies long-tini pr'diction (like the weather), since For example:, a computation of the average Liapunciv
small errors or wwvci Lilic-s in the initial conditions give exponent (or the standard map shows that tor orbit-, in
rise to time-t'volubtkTs w~tict- are completely different. the regular regions ot the phase-space' of Figure 5, X -- 0;

We can now define chaos as the behavior of deter- in the irregular regions, A > 0). Urnfirtunately, very few
ministic dynAmical svsterms which exhibit these symp- realistic systems have been rigorcu~lv proved to be K-
10m1,L of mixing 1xi. ii. a: I Fosifivt' Kolmogorov- systems. Consequently, the juqtific .tion for classifying
Sinai entropy or. equivalently, a poxksiiive av2rage much irregular behavior as chaos depends on the accu-
Liapunov exponent. mulation of numerical evidence and on expecrience with

For 'xamhl !. -'. 1 flale thle a few ideali,,ed mathennatical models which are know-n
ogistic m~p) of tl" lrm '. , ,j. tile davcagetu t-2V K-systims.
La-,itmov -* e ' .y Us;ing this 'al tnical defir~t!%o.n of checos, we now 'ie,

d1,t '.iytic d'.riamical systtins tan exhibit mnany of the
A. t attributes o! a!lealized rarld.)r.; systems; namneiy, their

S evolution i'- unpredictable because of their extreme ser

Fag~'risivity to io'aial r-onditions, vuid 'Iieir average propertit

o: mnre' dai1ived ;n h. wli e~i we werve -e('qiler phei omnena in nature, such
,hii-et ira' ,v I as t1;abi;l% 11t ir Infuid, we don't always perform

values of the avertgv Liapuno, tvapw. -it andA lx'tw~ei donis. Rk'th'r, wv fe be igeraiaino h
periodic orbits and I'hjrp daps an .dy namcal process uvolving from a sptnfic (tlcugh

In piarticuilar tot a =4 the average L..iu0;'ov inlpreciseN, kaiowr.t iiiitia condition which nevertheless
exoetcart be calcdiattd is.ct-v by .Akirxg e'dvintage

ota re-,iarkibl9 c~vr~vw~te ...t~m. fv'edot!.e a - . . ..-

new variable i. - ?i:~' y 4

then the logisti-. vi anont 1, transf;ornals t:, theit

n..' 0 ')5_T -- 0 ) /fr Ir~

Herm we see that In Idia ti~ l, 2 to- ,aii x v tat-/
In 2 - 0.693 .'USaac".' 11e: Kol.vr .g orov-Sina, entreny ~.

Figuai 7. The av. rap t ' x~ por.tnt (x, equations5) defi- in
pITC. 8111thmmutiCA1 a i -~~i t" . '.%c itJity to initial

cendtiofls wtwni x. to, "- : in :..,a. o'l':I

ld 1to Im~p divtlkn11  inr itv Ita' ,m eui u iY T'.AI,t #v

adphOWuhm fhr th'i-Amr..'&. i i1 4.wain i7-,re3 V*iti
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appears as ra.-idJor as a .. 'u'p " , flips. Is it tainly :;eiu,,nc%' ' ..,nv ,ppirt' order, -such as
possible tha, deterministic but chaou, dv':i.'niical syC. Ca co. wc I3, W(,uJ.1 Io, hi ,in,0'vrvd to be very
tems can also account for the random appearance ot random, vhereas 4 .ic *hat has no regular pat-
individual realizations of these ph. sica! 5vstems? The terns and can be specified only by a program of length
answer is yes. Using the definition of a random sequence - N is likely to meet our intuitive criteria for random-
provided by algorithmic complexity theory (7), we will ness. In fact, for infinite sequences Martin-L6f has
see that the evolution of a chaotic dynarrucal system can proved that these random sequences will satisfy every
be indistinguishable from a sequence of coin flips and conceivable statistical test for randomness (32).
that these completely determined systems can be as What then, i. the complexity of the time-.iequences
irregular as any idealiz-d random system. (This latter generated by chaotic dynamical systems? Consider for
conclusion begs the question of whether any idealized convenience the one-dimensional map on the unit inter-
random systems exist in the. world of classical physics val
and whether the apparent randomness we observe and 24 Mod 1 (8)
exploit in statistical theories is just the chaotic behavior of which is closely related to the tent map and consequent-
some underlying deterministic dynamical system.) ly to the logistic map via the coordinate-transformation

Algorithmic complexity theory defines the complex- equation 6. Using equation 5, the average Lapunov
ity, KN, of a sequence of N numbers as the length of the exponent for equation 8 is easily determined to be In 2 >
shortest computer program that can generate the se- 0; so this map is a K-system and therefore chaotic. Now,
quence (7,31,32). This length is conveniently measured if we examine the action of this chaotic dynamical system

on initial conditions represented in binary, xD =

0.101001110100111..., then the multiplication of xo by 2

Under chaotic conditions the use cf just shifts the "binary" point to the right and the Mod I
throws away any integer part of x to the left of the

pesticides, price controls, or arms control 'inary point. Therefore, successive iterations of this
agreenfts -Vill not necessarily yield the ",-ister shift" simply read off successive binary digits in

the initial condition. In particular, if we call "heads"
desired outcomes when the value of x,, > I (i.e., the leading digit is 1) and

"tails" when r, < 4 (in which case the leading digit is 0),
then the evolution of the map will generate, from every

in term- of the number ot bits of information required to initial condition, a sequence of heads and tails which
inut the program, wi'ch is oroportional to the number resembles the tossing of a coin. But when will these
dhnes of FO r 1N (or any ot-er programming language) sequences appear random? The answer is again provid-
plus the nure,- of bits required to specity any numeri- ed by Martin-Lbf, who also proved that almost all initial
cal ir-uts or parameter. ri the program, such as the conditions on the unit interval have a random binary-
number of ek'ments in the sequence, N. In particular, digit sequence (32). Therefore, the deterministic shift
the minimnir program size required to generate a se- map will almost always generate a random sequence
quence c. nurriers of length N is at least log. N, since which is indistinguishable from the outcome of an
th,s is the nur-er of bits required to specify the length of idealized coin toss. Moreover, the same conclusions can
:ii, sequence i:. 11inan notation. Moreoer, if we consid- be generalized to the tent map (and equivalently the
-_r bmnan' scquences of Os and Is so that an output logistic map) and all other chaotic dynamical systems.
s".qetnc with N' elements corresponds to N bits of (Of course if you try to implement equation 8 on a digtal
nrormation, :hen the maximum value for KN is of the computer, only short sequences can be studied, because
.rder o. N', since the computer program can simply read the shift map quickly runs into the precision limits of the
.e ''-bit sequence as input and then output the same computer, which represents initial conditions with only

-"uence. (The programming commands to copy the - 30 or 60 binary digits in single and double precsion,
Lfput ,dd on., .-onstarnt contribuoion to K ,N which respectively.)

)re'. or dc 't'' o'mputers b!:t s ncghgiby sroall iii
th imit ot large ) Is physics conquering chaos, or chaos

A ran.oim s, iue11L.' s, defind to be i ',equence with undermining physics.
1,ma! conu'aty, K% N. A non~random squence

an be gen-ated by a snorter program which takes The definitions and example- in the previous sections
nivan'age of any order or regularity in the seqrente. For show that nonlinear dynamical systems can exhibit all

a ,A-quence con~sistig ol all Is, corresponding the attributes of an idealized random process. Moreover,
If a sequence of coir, flip, where heads appears every the theonr of algorithmic complexity reveals that the
.moe, can be generated by the computer program "Print origins of chaotic behavior in nonlinear dynamical sys-

N tines," ihich can be programmed with - log. N tems and perhaps in nature itself lie in the randomness
'its of inforirrin. 'lowever, a sequencc of 1s and Os if almost all real numbers.

jO .1o apparent xder, which is most efficiently gener- In other words, chaotic dynamical systems are
.ied by imply making a copy of it, has maximal mathemitical models which "read" initial conditions.
c0mph..'xav, Kv N They are like the compulsive librarians in Borges's

leis defi:-iii of a random sequ,%nce, wIUC arose Library of Babel (where books containing every possibl,
tht work oi Koumnogurv, Clhitin, ind Solmonov in combination of letters are shelved), who read ever),

,tormatlon teor (7'. 31 2), is r complete agreement %%ord and character in the books under their care,
'u ;'tu,' . O"a Vp. .M f,Widon se'quok. Cer- ,.hereas regular or nanchaotic systems are like the

*" . n nn.'o' nrn-. .. i m II IIrl



Figure S. On the New I ork Stock I(%change, titi use of comiputers
has decreased the frenzied shouting on the floor while increasing
the volume of trading-but prices seem more ,olathle than ever.
Even it the prices of stocks are completely determined bv initial
conditions-that is, if the system is mechaniitic-the behavior of
dhe maket on a given day might still satisfy the mathematical
definition of chaos. There would be no faster way to compute the
outcome than to watch the market itself perform on that day.
(Photograph c Four by Five.)

casual readers, who just i Lac the titles and skim the text
(33). The unpredictability of zhaotic dynamical systems . '

arises from the fact that slight errors or chan,-es in h
initial conditions correspond to different books in the
librarv which tell different stories

More generally, if nonlin'*' models describing thle
evolution of biological pop'ulations, economic prices,
armament stockpiles. or tulTbulent flows in fluids can
exhibit chaotic behavior, then xi'may be icapable, in
practice, of predictn the btiuxior Wf t!ie,,e svs temrs or-
their respoowe to e'.temnal t .e sinceQ any errors or
pe:rlturbations will grow (-x['iten!dUV. For example,
under chaotic conditions the use of pes~ticides, price
control., or arnn, control ...... viroent,; will riot nr'cessafflv y
vie'd tile desired outomres (i )

Another manifestation of the unpredictability of
chaotic dYnaitf.' t'o -O'' "!mr -evolution is

i~l-iatcnalv ).; i~ '11 a:-s no faster
way of findjng out hott 'II V:I et oh-c than ?,!foks'FJ ro-ent pro-,re-.b ha, sigo--ed partial soclutions
to w atchl "Is cxk ( luticr . b ;mil .- rlsm elt Is its tc 'hc nj''crh'' iu~ problems of tile origin of
GIwn fastv~t conrio -r I'. : it the_ JL..:tv of turt- ','nc. 1 t 1L*~l 'nrd the 'lici-scoric fomndation; of
iibKe the on!,. Wa% VOL' 1. i-cra1te thet conte:nts is to sctistil mc-. many c-M problems remain. an'l
read thle en~ire book tk. - (1.21Lafort unatelv, most, in s':;'e 0 xi ir'J very prvotii questions !lave bet-
fact almost ali, of tht. 1. k .ptxoar to be' gibberish and ra;.ed
make xcii unintpw.-'- at. .m he I-or examrple amoti:., the old p'robicms;, the discov-
in hi llrarx- it; a rot c~jn.~'ns the er, if clia'v I.snot rriiraks'.husiv solved the problem i4

*t7 p! ,~ ... , ' I~2)U-i ;,i~ i tx:-n. have r~eN% rilolhocs At
C'1lotic d krin.lk ; u.!r( -d kc football- ------ ;

er you could not predict tile outcome with CLerti-ntv. The Thr isw
players themselves provide the fastest ana r'-roputa-
tion of the evolution of th~s dr.namnical System. Because a cIi~attt ~IC t tish ll! CAI volve~ than to
of the cmplexitIy and tinprcJitlabilitv o'f chios, direct JL - I~~'j h ~sei >efi

i numerical simulations o, Ytoutball games and turbulent
flows are likely to rematit !rinpracticaJ with even the its OV'Y Ifstc~zt cw"Ite.7
Largest superc-imputers. 11( -vver, we can rivvenwleess - --- --
compute rehiae Kids it pruotlditles for the outcomes
oi these prcesses. A-. a ciinto quenlce, prrbat.'2utic and tiro'i~r 'r r eha.icr, such as th-e measure-
statistical theories provide a natural description -f! cver- fr,- o! !,t .. verage Liapunux expol'-It or h e fractal
age properties ot chootic dynamical systems - '-.n enter- d, wnrst.n v' tt-e' oT-,- a'ract- jssrciat- with turbu-
talting account of how sev,.ral well-known cha - tio- lerit ajO~ wn~we a muach ht,ed unde'-s';tndr'g of why
nsts used their kocwledfge kit nonWiear dvnan-ecs ~"titheorttzCal ; ,d numencAl doscl ptior oi the evolu-
improve their odd5 i~t roulette is piovided ;n Iref. 35 ho ,i of turt. i ten' flows is so zli'fiacul (36).

One of thiv most su rising properties of chaotic Mr"o,. . aldthough cti. exolains how average
dynamical sytmis that Tee deterrrnirusti( models are pr, .jii -ti of rcinlinear dvnamcal systemris can exhibit an
often very samplP. Th.- r;,ilizatton that complex beicvior u-.,- -lp:;rproa h tr' therm., iynamic -quilibrium, it
does not'reati ire c,Pik le iile ',i manicl no-, J-'s j.,_:t0 1i it j: .. .u! to; w.'v ind --hadt syqcms 'in nature
the most sigriicant contributi. is of nonluneat dyriam- dl P_,, +-h.:e~ n.c~lle Cvlti' madt
ics. Since simple mode!-Lhi1, ',it-d compleTrer'r I-,.v h- ,_-,,d l% ;t-nnod<va7~c.2ine the
behavior, we can aitiially hope- to develop thnOVItICAI t: ~-,torts ij motiti i'f 0l..- : ned'hanis are determain-

miodels v,~ I h- di- 'm--o'cs o"x> ccA. '-r;,tn . r itar !t N1 S-s5



thoroughly -ci .- 3.11 d h ;~re~*~s'*stl i- . Aturd% ;6eiv..,n . i ~kr o rt-var'll groups have
that this reversal of time-tvolution w., re e'tremely air, t, t' , ,:os .bMities of so-called
difficukl, since any crr.rs or ur,: "s -,1iii guarante( ceilio!t automata : o'dis tor natural phenomena which
failure. -he m-'ising ir. '.dic nt re(-, i-:1 ,r a complete are defined on discjvte sets of numbers (.39). 1 Iowever, it
justification of the foundations of classical statistical is possible that the scale at which the truncation of real
mechanics is an argument for why such errors are numbers occurs may be so small that no practical
inevitable. (Certainly, any numer;cJ simulation of the consequences nf thE 1stirction between continuum and
evolution and reversal of a chaotic dynamical system will discrete theories can be deduced or verified. In that case
fia to recover the iritial state, because whenever the the issuv f t he ::'iiin,,e discretization of the real world
machine rounds off a number it automatically introduces will pass from the domain of physics to that of philoso-
a slight change in the system which gives a completely phy. Nevertheless, cellular automata are a fascinating

subject in their own right and promise to play an
important role in future studies of nonlinear dynamical• systems.

What are the real differencc1, if, any,Syen.W a aThe second fundamental question which arises
between deterministic chaotic behavior from ou improved understanding of classical nonlinea:

systems is ,'hether chaos persists in microscopic physi-
nd random processes;" cal systems, such as atoms and moleules, where the

theory of quantum mechanics is expected to apply
(40,41). The difficulty here lies in the fact that the

ditferent and unpredczlble result.) A provocative dis- Schr6dinger equation for the evolution of the quantum
cussion of the relationship of chaos to the second law of mechanical wave fuoction is a linear equation which,
hemnodynanuc' can be found in IPigoome and Sten- strictly speaking, is incapable of exhibiting the chaotic

gers's Order out of Chaos (37). behavior of nonlinear dassical systems. Since quantum
Wh-tile confronting these rcm.,ainitg problem.,s, non- mechanics is presumed to be the fundamental theory for

in ear dynamucs has also identifed some new, uniquely all physical systems, and since the predictions of quan-
h,'er1-eth-cenr.' pro.lems w.-:ch ,i' . ac.ount for ,,n theory must agree with those of classical mechanics
some of thes tadurus. The firs, problem is that, since at the limit of the highest quantum numbers, according
daotic dnarrdcal systen., essentially read initial condi- to Bohr's correspondence principle, one of these physical
twins, they are exquitely sensitive to the infinities and descriptions--dassical chaos or quantum mechanics-
,rfi:imiesLals mrnife,.t in the continuum of .._al numbers threatens to undermine the other. Does this mean that
• ri tinderie arrost zfl! mathematical descriptions of the role of classical chaos in explaining the origins of
.vsturai phen, men'a r, contrast, regular systems, aLch turbulence and the foundations of statistica mechanics is
1s those siudit d in alr;iost every textbook, are relatively merely an illusion? That Bohr's correspondence principle
Ui.wnite :o the mathematical pathologies ot infinitely is invalid for systems that are classically chaotic? And
long digA-stnngs that there isn't any problem with the continuum of real

The ifticu!tv i,;t, :he cjntinuum of real numbers numbers after all?
he !r. th. faci 1! 2t. !th. iglh most real numn,:s can be The answers to these questions are naturally the
F'7V.'&d to have random digit-stnngs, it is impossible to goals of much current research. Preliminary results
Frve Chat a given digit-string is random. You simply can indicate that the evolution of the quantum mechanical

v.Mver exhaust all the pos-ible tests for underlying o.der. wave function appears to mimic chaotic behavior for
"h!s is a specifi . example of a cass of true stalements very long times (42, 43), in many cases longer than the
.-'ic, cannot b proved. itateinen!s first shown to exist age of the universe (44). Nevertheless, without chaos we

1 v G,(seii in his celebrated inC rpleteness theorem (33). have lost some of the necessary ingredients for the
:,r a dear di',cussion of the connection between ran- foundations of statistical mechanics. The validity of the

,lo, ,igt-st.-in , a:Cd Cudel's mcompleeness theorem, correspondence pnncip!e, which guided the early devel-
,.-v r 1

1. ior uver, by definition these number; opment of quantum mecharucs, also remains an out-
1.: il t.. towpu t"., by any aigonthm shorter than the standing problem, although recent experiments on the
-7: rI.,r it.clt A a ,'-eqence. most real numbers ionization of highly excited hydrogen atoms exposed to

: .,, m'vitab. ,lher -tore, r.,,w tHt our ;inderstand- intense electromagnetic radiation (which study the be-
I h,wtic !.V;1Jrnic.1 1 

'-,stems has revealed that the havior of a quantum system that is classically chaotic)
.l , t.h' doh t !'w fi. t' tse maih,m.tical pathologies suggest th,-,t the cone-;pondence principle is remarkably
, ral n;rnlr:, Joe Ford has suggested that these rbus' (4., 46).

* '-.,,rip. uih, ad undefinable objects should be cx- In unclusion, we have seen how deceptively sim-
I'd i:,-n any roeaning: ;I physical theory (7). In addi- pie mathematical models for nonlinear dynamical sys-
,n toprovidtng some loical corsistencv in the descrip- tems, like the logistic and standard maps, have provided

S" I :',jr l ov.enorn,,.,, !hi, r,.1tnctior might ,io, new hope for the description of the complexity and
•,'t :he nli, v'w, artument tor tht- validity of the chaos which surround us in the natural world. Howev-

ST.l n.I l,- !I thermoldvnamics For e.mple, if we er, these and more recent studies have also opened a
.- - ri,' 'hat :Wi Ure is i finite-state ,oi:,,- tor Turing Pardora s box of new prob!ems which ask profound and
Sictl"..,- tltr ."- '..,ltl trr.m:.',_,r- ol rcal nionbrs disturbing question- about the proper mathematical
..d tl, 1.It, ".w . ,i-t -graining t,-t'rv i-iiure d, scripticin of both macroscopic and micrus(opic natural
, -, ' r o!'.'. u, * ,.,, ',, .' --., , -henmena ,lid whkh proruse it lie at the forefront of
T' ' '' . . '*'i '' *.* I, ii ? , ,t I1 . ','tific r I V 'y m any y'cars t,) come.
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Chaos, Strange Attractors, and Fractal Basin
Boundaries in Nonlinear Dynamics

CELSO GREBOGI, EDWARD OTT, JAMES A. YoRE

the final set would be less than the area of the initial set. As a
Recently research has shown that many simple nonlinear consequence of this, dissipative systems typically are characterized
deterministic systems can behave in an apparently unpre- by the presence of attractors.
dictable and chaotic manner. This realization has broad Attractor. If one considers a system and its phase space, then the
implications for many fields of science. Basic develop- initial conditions may be attracted to some subset of the phase space
ments in the field of chaotic dynamics of dissipative (the attractor) as time t - c. For example, for a damped harmonic
systems are reviewed in this article. Topics covered in- oscillator (Fig. la) the attractor is the point at rest (in this case the
elude strange attractors, how chaos comes about with origin). For a periodically driven oscillator in its limit cycle the limit
variation of a system parameter, universality, fractal basin set is a closed curve in the phase space (Fig. lb).
boundaries and their effect on predictability, and applica- Strange attractor. In the above two examples, the attractors were a
tions to physical systems. point (Fig. la), which is a set of dimension zero, and a closed curve

(Fig. Ib), which is a set of dimension one. For many other attractors
the attracting set can be much more irregular (some would say
pathological) and, in fact, can have a dimension that is not an

N THIS ARTICLE WE PRESENT A REVIEW OF THE FIELD OF integer. Such sets have been called "fractal" and, when they arc
chaotic dynamics of dissipative systems including recent dcevl- attractors, they are called strange attractors. [For a more precise
opmcnts. The existence of chaotic dynamics has been discussed definition see (1).] The existence of a strange attractor in a physically

in the mathematical literature for many decades with important interesting model was first demonstrated by Lorenz (2).
contributions by Poincari, Birkhoff, Cartwright and Littlewood, Dimension. There are many definitions of the dimension d (3I '
Levinson, Smale, and Kolmogorov and his students, among others. The simplest is called the box-counting or capacity dimension and is
Nevertheless, it is only recently that the wide-ranging impact of defined as follows:
chaos has been recognized. Consequently. the field is now undergo- In N(t)
ing explosive growth, and many applications have been made across d u In(1/) (1)
a broad spectrum of scientific disciplines-ecology, economics,
physics, chemistry, engineering, fluid mechanics, to name several, where we imagine the attracting set in the phase space to be covered
Specific examples of chaotic time dependence include convection of by small D-dimensional cubes of edge length E, with D the
a fluid heated from below, simple models for the yearly variation of dimension of the phase space. N(e) is the minimum number of such
insect populations, stirred chemical reactor systems, and the deter- cubes needed to cover the set. For example, for a point attractor
mination of limits on the length of reliable weather forecasting. It is (Fig. Ia), N(e) = I independent of , and Eq. 1 yields d = 0 (as it
our belief that the number of these applications will continue to should). For a limit cycle attractor, as in Fig. lb, we have that
grow. N(e) - ie, where e is the length of the closed curve in the figure

We start with some basic definitions of terms used in the rest of (dotted line); hence, for this case, d = 1, by Eq. 1. A less trivial
the article, example is illustrated in Fig. 2, in the form of a Cantor set. This set is

Dispative system. In Hamiltonian (conservative) systems such as
arise in Newtonian mechanics of particles (without friction), phase a b dx.dt
space volumes are preserved by the time evolution. (The phase space
is the space of variables that specify the state of the system.)
Consider, for example, a two-dimensional phase space (q, p), where
q denotes a position variable and p a momentum variable. Hamil-
ton's equations of motion take the set of initial conditions at time
t = to and evolve them in time to the set at time t = t,. Although the
shapes of the sets are different, their areas are the same. By a
dissipative system we mean one that does not have this property
(and cannot be made to have this property by a change of variables). Limit.- IAreas should typically decrease (dissipate) in time so that the area of cydle '. 1-"

C. Grboi is a research scienat at the Iaboratory for Plasa and Fusion Energy
Srds. E Oc is a prokr in the depatmems ofeeura enineering and phyic,
and I A. Yorke is a profsor of mathematcs and is die rector of dIe lijtie for Fig. 1. (a) Phase-space diagram for a damped harmonic oscillator. (b) Phase-
Physical Science and Technology, univery o Maryland, College Park, MD 20742. space diagram for a system that is approaching a limit cycle.
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Fig. 2. Construction of a Can- 0 1 an arbitrarily fine .ah. intcwoven strucr,:rc fregions where orbit
tor set. i trajectori's are dcnse and par.e. Such attractors have been callcd2

o3 muJiifrZrals and can be c} racterzed by subsidiary quantities that
- kI - essentially give the dimensions of the dense and sparse regions of the

2 " 2 7 attractor. In this review we shall not attempt to survey this work.
- Several papers provide in introduction to recent work on the

dimension of chaotic -ctracturs (3-5).
Chaotic atractor. By this term we mean that if we take two typical

Fig. 3. Poincare surface of X3 points on the attractor that are separated from each other by a small
Src~tn. .distance 4(0) at t = 0, then for increasing t they move apartsurfc exponentially fast. That is, in some average sense A(r) 1(0)exp(hr)SE0 .o f on with h > 0 (where is called the Lyapunov exponent). Thus a small

uncertainty in the initial state of the system rapidly leads to inability
, to forecast its future. fIt is not surprising, therefore, that the

pioneering work of LA)renz (2) was in the context of meteorology. I
It is typically the case that strange attractors are also chaotic
(although Jhis is not always so; see (1, 6)].

Dmani systn. This is a system ofequations that allows ore, in
principle, to predict the fature given the past. One example is a
system of first-order ordinary differenrial equations in time, dx~t)/

/X1 dt = G(x,r), where x(t) is a D-dimensional vector and G is a D-
dimensional vector function of x and t. Another example is a map.
Afap. A map is an equation of the form x,, I = F(x,), where the

Fig. 4. The Henon chaontic a "ie" r is discrete and integer valued. Thus, given xo, the map gives
attractor. (a) Full sct. (b) s a o s r
Enlrgentc region dc- I xi. Given xi, the map gives x,, and so on. Maps can ase in
ftrxJ. -; the tangic in continuous time physical systems in the form of a Poincare surface
(2) (c, Enlargenen-itofre- *,o-Iof section. Figure 3 illustrates this. The plane x3 = constant is the
gmon defined by the rectan- : ] surface of section (S in the figure), and A denotes a rtaecton ' of thc

gle in (b).-s system. Every time A pierces S going downward (as at points A and
B in the figure), we record the coordinates (xj,x,). Clearly the
coordinates of A uniquely determine those of B. Thus there e-ists a

i2 -1 cmap, B = F(A), and this map (if we knew it) could be iterated to
fidalsubsequent piercings otS.

, .. Chaotic Attractors
As an example of a strange attractor consider the map first studied

by Hrnon (7):

0 6a 0.65 x,,=a-. + Py. (2)

•y = x,, (3)

C IFigure 4a shows the result otplorting 10' successive points obtained
1 by iterating Eqs. 2 and 3 with parameters a = 1.4 and I3 0.3 (and

am lp - the initial transient is deleted). The result is essentially a pic rurr of
I- . .. the chaotic attractor. Figure 4. b and c, shows successivc enlarge-
aments of the small square in the preceding figure. Scale invariant,

Cantor set-like structure transverse to the linear structure is cvi jent.

L_ This suggests that we may regard the attractor in Fig. 4, for
0.64 0.96 036 example, as being essentially a Cantor set of approximarebl straight

parallel lines. In fact, the dimension d in Eq. 1 can be estimated
numerically (S5) to be d a5 1.26 so that the attractor is strange.

t6srd by taking the line interval from 0 to I, dividing it in thirds, As another example consider a forced damped pendulum de-
then discarding the middle third, then dividing the two remaining scnbed by the equation
thirds into thirds and discarding their middle thirds, and so on ad
infinitum. The Cantor set is the closed set of points that are !eft in d2 /dt I + vdO/ld + Wsin0 = fcos(wt) (4)

the limit ot this repeated process. If we take a - 3-' with n an where 0 is the angle between the pendulum arm and the rest
integer, then we see that N(t) - 2" ann Eq. I (in which a 0 position, Y is the coefficient offriction, W0 is the frequency ot natural
curresponds to x-. =) yieldsd - (In 2)i(in 3),a number between 0 oscillanon, andfis the strength of the fircing. In Eq. 4, the first

id 1, henic, a fractal. The topic of the dimension of strange term iepresents the inertia of the pendulum, the second rc.rm
attrcton ris a large subject on which much research has been done. represents friction at the pivot, the third represents the gravitational
One of the most interesting aspects concerning dimensinn arses fi ce, and the right side represents an external sinusoidalh varying
fronm the fac tat r e distribution ,,f points or a chaotic attractror torque of strength fand frequenc'y w applied to the pendulum tt the
can be nonuo-,,f ,, i.3s a 'ri singlar "wa~r In par'iular. there can be pivot. In Fig Sa, we plot thc Poncare surtace ot section ot a strange



FIg. 5. ma Poincari sur- . .. . ... trajectory with a slightly different initial point that stays near theface it stion of a pctd. 3 -- ' noisy trajectory for a long time. [For example, for the Hnrion map
tun strange attra..tor. (b) 2 ozatEnlargenct of region de- for a typical numerical trajectory computed with 14-digir precision
ind by rectangle in (a). -- there exists a true trajector' that stays within 10 of the numerical,

• >.. trajectory for 107 iterates (1]). I Thus we believe that the apparentl
0 fractal structure secn in pictures such as Figs. 4, 5, and 7 is real.

-1 L+-

-3 -2 -1 0 1 2 3

_ _ _The Evolution of Chaotic Attractors
-. 3 b -In dissipative dynamics it is common to find that for some value )

-0. " of a system parameter only a nonchaotic attracting orbit (a limit-o~s, " j '; • .cycle, for example) occurs, whereas at some other value of the

parameter a chaotic attractor occurs. It is therefore natural to ask
how the one comes about from the other as the system parameter is
varied continuously. This is a fundamental question that has elicited

.. I __a great deal of attention (9, 12-19).o 0.2 .4 0e.6 0 1.0 To understand the nature of this question and some of the
possible answers to it, we consider Fig. 8a, the so-called bifurcation

Fig. 6. Chaotic tie series 5- .. diagram for the map.
for pendulum shown as a I (7)
plot of angular velocity 3 -
versus time. where C is a constant. Figure 8a can be constructed as follows: takeC = -0.4, set xO = -0.5, iterate the map 100 times (to eliminate

1-1 transients), then plot the next 1000 values ofx; increase C by a small
-3 amount, say 0.001, and repeat what was done for C = -0.4;

00 increase again, and repeat; and so on, until C = 2.1 is reached. We
0 1000 12000 3000 see from Fig. 8a that below a certain value, C = Co = -0.25, there

is no attractor in -2 < x < 2. In fact, in this case all orbits go to
x -- -- , hence the absence of points on the plot. This is also trueattractor for the pendulum, where wc choose v = 0.22, wo = 1.0, for C above the "crisis value" QA = 2.0. Between these two values

- ! fl, nf= 2 7 in Eq. 4. This surface of section is obtained by there is an attractor. As C is increased we have an attracting orbit of
plorring 50,000 dots, one dot for every cycle of the forcing term, "period one," which, at C = 0.75, bifurcates to a perioi-rwo.
that is, one dot at even' time t = r, = 27m (where n is an integer), attracting orbit (x., -X 8 -X - .xt - *), which then bifurcates
The strange attractor shown in Fig. Sa exhibits a Cantor set-like (at C = 1.25) to a period-four orbit (x. -+ -X c -- x, -
strururc transverse to the linear structure. This is evident in Fig. 5b, , . X -X I -- * -- , .. ). In fact, there are an infinite num-
which shows an enlargement of the square icgion in Fig. Sa. The ber of such bifurcations of period 2" to period 2 " orbits, and these
dimension of this strange attractor in the surface of section is accumulate as n - x at a finite value of C, which we denote C.
d -1.38. Figure 6 shows the angular velocirv dO/d: as a function of t (from Fig. 8a. C. ;- 1.4). [The practical importance of this phc-
for the parameters of Fig. 5. Note the apparently erratic nature of nomenolog' was emphasized early on by May (12).1
this plot. What is thc situati;,, for C.< C < C? Numerically what one

In general, the form of chaotic attractors varies greatly from sees is that for many C values in this range the orbits appear to be
system to system and even within the same systcm. This is indicated chaotic, whereas foc others there are periodic orbits. For example,
by the sequence of chaotic attractors shown ii Fig. 7. All of these Fig. 8b shows an enlargement of Fig. 8a for C in the rangeartractors were generated from the same map (9), 1.72 < C < 1.82. We sec what appear to be chaotic orbits below

+= j, - ,+ P ,,O)I mood -C 1C0 -- 1.75. However, just above this value, a period-three
(S1 orbit appears, suppianting the chaos. The period-three orbit the:-

0.-= + W + -.P1l<,O8) mod 1 (6) goes through a pcilcd-doubling cascade, becomes chaotic, widens
into a three-piece chaotic attactor, and then finally at

where P, and P1 arc periodic with pei od one In both Gieir C = Co ; i 1.79 widens back into a single chaotic band. We call
arguments. The P, and P: are the same in alh of the cases shown in the region Cio5' < C < C,(" a period-three window. (Such win-Fig. 7; only the parameters wl. w, and e have been varied. The dowv., but of higher period, appear throughout the region C.
results show the great sariety of form and structure possible i < -" - ,, but are not as discernible in Fig. 8a because they arc
chaotic attractors as well as their aesthetic appeal. Since '1' and 9 may much narrower than the period-thrce window.)
be regarded as angles, Eqs. 5 and 6 are a map on a two-dimensional An infinite period-doubing cascade is one way that a chaotic
toroidal surface. (This map is used in (9) to study the transitior, attractor can come about from a nonchaotic one (13). There are also
from quasipenodiciry to chaos. I two other possible ioutes to chaos exemplified in Fig. 8, a and b.

Because of the exponential divergence of nearby orbits on chaotk These are the intermincncy route (14) and the crisis route (15).
attractors, there is a question as to how much of the structure in Inteminnex-y. Consider Fig. 8b. For C just above Cti' there is a
these pictures of chaotic attractors (Figs. 4 5, aucd 7) is an artifact pc-iod-three orbit. For C just below C 13 there appears to be
due to chaos-amplified roundoff error. Although a numerical trajec- chaotic orbit To undcrstand the character of this transition ittorn will diverge rapidly from the true trajectory with the same useul to examine the chaotic orbit for C just below Co|. The)inial point, it has lx, , i,.;sra ,,; J.. ;rous:V '10f. imri'irtart 0h1racter of this oh'i: . as follows. The (:rt't appe:rs to be a period-
cases [including -h- -i. ,,i:, I'.t 4,, 4 !.7f .s' t:Ur. - rre o--, ,F- p ,retches of ., after which thtre is a short
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Yi. 7.Sqec-o hv-1
Fig.7. Sequence ofha r- - iitcrval -2 -< x :- 2, and then rapidly begins to move to large
ic attractors for system . e 5ngative x values (that is, it begins to approach x - . This is
6. Plot shows iterated 0a called a chaotic transicnt (15). The length of a chaotic transient wil

nupingon rosa or depend on the particular initial condition chosen. One can dctine a
dcent values of wi, w, 0.. mean transient duration by averaging over, for example, a uniform
and e. (Top) w, = .4d7, distribution of initial conditions in the interval -2 < x < 2. For the

0.7. C a = a .... quadratic map, this average duration is

045922, . 0.53968, . l/(C - CJ)5  (8)
and It=0.50. (Bottom) -*

Wi =0.41500. w: - 0 " . with the exponent -y given by y = 1/2. Thus as C approachc% C,0.73 500 , ad c -0 .60 and" " " % "... 300ad 6f. .r fom above, the lifetime of a chaotic transient goes to infin' and
- -:2 --, . • the transient is converted to a chaotic attractor for C < Q. Again.

this 'pc of phenomenon occurs widely in chaotic systems. For
. ./ examplethe modcl of Lorenz (2) for the nonlinear evolution of &e

- 7. Rayleigh-Binard instability of a fluid subjected to gravity and
0.8 heated from below has a chaotic onset of the crisis type and an

accompvying chaotic transient. In that case, -y in Eq. 8 is y - 4
/ 20). In addition, a theory for determining the exponent -f for two-

dimensional maps and systems such as the forced damped penduium
" has recently been published (21). Thus we have seen that the period

a. "doubling, intermitrency, and crisis routes to chaos are illustrat(Ld b

S/ the simple quadratic map (Eq. 7).
0.2 We emphasize that, although a map was used for illustrating th, sc

routes, all of these phenomena are present in continuous-tirne
0 svsrems and have been observed in experiments. As an exampie of9 2 .4 0.6 0.8 1.0

chaotic transitions in a continuous time system, we consider the set
.0- .of three autonomous ordinary differential equations studied by

Lorenz k2' as a model of the Ravleigh-B~nard instabiity,

0.9.f. dv/dt = Pv - Px (9)
d't-x- +rx-y(0,..:., dry/dt = -= + :-y (10)

all. dz.d = x.v - z (11)

0 '/-. j '. where P and b are adjustable parameters. Fixing P = 10 and b = 8,3
and varying the remaining parameter, r, we obtain numerical

2 ' e 5.. solutions that are clear examples of the intermittency and crisis types
0,2NC _,k of chaotic transitions discussed above. We illustrate these in Fig. 9, a

- Z> through d; the behavior of this system is as follows:
0 1.' 7.. 1) For r between 166.0 and 166.2 there is an intermittencv0 02 0.4+ 06 0. o 1.0 transition from a periodic attractor (r = 166.0, Fig. 9at to a chao.tic

attracttor (r = 166.2. Fig. 9b) with intermittent turbulent bursts

Between the bursts there are long stretches of time tbr which the
burst ,tle "intermittent burst") ol c autik-hke behavior, fi.lowed by orbit oscillates in nearly the same way as for the periodic atractor
another long stretch of almost perl-threc behavior, olblowcd by a (14) (Fig. 9a).
chaotic burst, und so on. As C approacher ( ro trom below, the 2) For a range of r values below r = 24.06 there are two pciiidic
aserage dura:ijit of the long sticrhes between the intermittent attractors, that represent cls.kwisc and counercrckwise conc-
bursts becures longer and longer t 14), a proachig infinity and tions. For r slightly above 24 06, however, there are three attractors,
proportional to (CO'l - C)-ia C - (;I Thus the pure period- one that is chaotic (shown in the phase space trajectory in Fig. 9c,,
three orbit appears at C = Co15 . Alrernativelv we may say that the whereas the other two atractors are the previously meitioncd
attracting per-odic artractor of period three is converted to a chaotic periodic attractors. The chaotic attractor comes into existence as r
atirattor a the parameter C decreases through the critical value increases through r = 24.06 by conversion of a chaotic transient.
Co"'. It should he emphasized that, although our illustra,.on of the Figure 9d shows an orbit is phase space executing a chaotic
transition to chaos by way of intrrmirtencv is %t ithmn the context of transient before settling down to its final resting place at one of the
the period-rhree window of the quadratic map given by Eq. 7, this periodic attractors. Note the similarity of the chaotic transient
phenomenon (as well as period-doubling ciscades and crises) is very trajectory in Fig. 9d with the chaotic trajectory in Fig. 9c+
general, in other systems it occurs for otlie fcrtxls fperod lne. for The various routes to chaos have also received exhaustie oespri.
cx implel in easily observable fcrm. mental support. For instane, period-doubling cascades have benmr

Crues. From Fig. 8a we see ac there is a chaotic attractor for observed in the Raylcigh-Rciard eonvection (22, 23), in noinlincr
C < C, = 2. but no chaotic attractor for c - . thus, as C is ciroiits (24), and in lasers (125); intcrmirncy has been observcd in
'swered through C, A chaotic attractor is b rn. Ilow drics this the Ra lcigh-&enard co os'e tin (20) and in the Belousov-Zhao-
xccur? Note that at C = Cc ti'e chatic ,rbit osuptes the interval tinskv reactKn (27); and crists have been obervtd in nonlinear
- 2 s x f. 2 IC is just slightly argf-r than (... at orhit with initial rcuits (28-30), in the Jo 'phsn junctiom (31). and in lasers 12).
condition i, the ' -e" -. 'I N /ill x-pic.t-. tollw ath tic- Finally, we note that period doubling, interntrencv, and cri s
,.eC path I. t', t" .: -1C. alter Omu, h ,r 'ind its way out o1 the do not exhaust the possible list of routes to chats. (Indeed. the

, " '( i6 08 , .'iR LFS f1i



Fig. G. Topi Bifurcation 2.0 many' experiments, including ones on fluids. nonlinear circuits, laser
diagram r the quadrnr- systcms, and so torth. Although unisersalir arguments do not
thrvl A im tor the qua-" explain why cascades must exist, such explanations are aailablc from

draic m1.2 bifurcation theory (40).
map. Figure 8b shows the period-three window within the chaotic -

U range of the quadratic map. As already mentioned, there are an

infinite number of such periodic windows. [In fact, they are
0.4. generally believed to be dense in the chaotic range. For example, ifk

is prime, there are (2' - 2)/(2k) period-k windows.] Let Coi' and
S C*' denote the upper and lower values of C bounding the period-k

-0 - - - -.0-- -. window and let Cd"' denote the value of C at which the period-k
2 attractor bifurcates to period 2k. Then we have that, for typical k

windowss (41).
1.80 C hr13-

_ Cd ' ro --"' 9/4 (13)SCcM d 1

1.7 I |In fact, even for the k = 3 window (Fig. 8b) the 9/4 value is closely
U ;-Cu approximated (it is 9/4 - 0.074 ... ). This result is universal for

1.78' one-dimensional maps (and possibly more generally tor any chaotic
CaM dynamical process) with windows.

1.74

-1., -0.6 0 0.6 1.6 Fractal Basin Boundaries

In addition to chaotic attractors, there can be sets in phase space
on which orbits are chaotic but for whicl. points near the set move
away from the set. That is. they are repelled. Nevertheless, such

routes are not all known.) In particular, chaotic onsets involving chaotic repellers can still have important macroscopically observable
quasiperiodicit, have not been discussed here (9, 16, 18). effects, and we consider one such effect (42, 43) in this section.

Typical noniinear dynamical systems may have more than one
time-asymptotic final state (attractor), and it is important to consid-

Univcrsality er the extent to which uncertainty in initial conditions leads to
uncertainty in the final state. Consider the simple rwo-dimensionsI

Universality refers to the fact that systems behave in certain phase space diagram schematically depicted in Fig. 10. There are
quantitative ways that depend not on the detailed physics or model two attractors denoted A and B. Initial conditions on one side of the
description but rather only on some general properties of the boundary, 1, evcntualY asymptotically approach B, those on thesystem. Universality has been examincd b' renormahzation group other side of 1 eventually go to A. The region to the lef or right of

(33) techniques developed for the study of critical phenomena in , is the basin of attraction for attractor A or B, ,espectvely, and - is
condensed matter physics. In the context ,fdynamics, Feigenbaum the basin boundary. If the initial conditions are uncertain by an
(13) was the first to apply these ideas, and he has extensively amount c. then for those initial conditions within # of the boundary
developed them, particularly for period doubling for dissipative we cannot say a priori to which attractor the orbit cventuall' tends.
systems. [See (17) for a collection of papers on wiiversality in
.... 1,,car dynamics.] r0 1 pi-k4 doubling in dissipative systems,
results have been obtained on the scaling behavior of power spectra
for time series of the dynamical process (34), on the effect of noise a b

on period doubling (35), and on the depenidence of the Lvapunov .. i':
exponent (36) on a system parameter. Applications of he rerormali- :. ,"
zation group have also been made to interrmrency (19, 37;, and the
breakdown of quasiperiodiciry in dissipative , 18) and consetvative
(38) systems.

As examples, two "universal" results can be stated within the
context of the bifurcation diagrams (Fig. 8, a and b). Let C. denote d
the value of C at which a period 2" cycle period doubles to become a 6. C1hltC 0se4;Ol+ O-Dcay--

period 2 " cycle. Then, for the bifurcation diagram in Fig. 8a, one I I

obtains CC. 1 1 411 1i li -' -,=4669201 ". (12) 10 , ..

The result given in Eq. 12 is not restricted to the quadratic map. In " -- - ,fact, it aI)phw% it) a bro .ad ca.*% of sv'cnms that undergo period -0

doubling cascades (13, 39). In practice such cascades are very .
common, and the associated universal numbers are observed to 9 is, e. lntcrrmttcncv riss, and period doubling ui conti16us teservd tobe ,tcn. Intemutncriy in the Lzt-n eclaion () r- 16.0; (b)
well approximated by mears ot farh h;w order bifircations (for " I e.2 (ris transitton it) a Li)aoit srtrctc r ui t;, Lo, enz equatios.
example, n = 2,3,4". This %caling bchavior has bet-:, obsrrved i I .) - mN, dt r "
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Fig. 10. A rcgion of- phase SPAiLe dividedo ti (.> to he uraixnain. As a result of these calulat~iions, %sic find that] F
the basin boundarv 1 into basins ot attraction 025±005I easm hc.i

I and2 ~wav stated above, is approximatelv proportional tof (therc is some
L 2z~ support forcthis conjecture from theoretical work (44) J. then t =d

d ai 1.725 ± 0.005. We conclude, from Eq. 14. that in this case if
For example, in Fig. 10, points I and 2 arc initial conditions with an we arc to gain 2 factor of 2 in the ability to predict the ass mptic
uncertainty #.. The orbit gcnc-ated by initial condition 1 is attracd final state of the system, it is necessary to increase the accuracv in the
to attractor B. Initial condlition 2, howevtr, is uncertain in the sense measurement of the initial conditions by a factor subst'antiall%
that the orbit generated by 2 may' be attracted either to A or B. In greater than 2 (namely by- 2'"2' - 10 ). I-ence, firattal basin
particular, consider the fraction of the uncertain phase space volume boundaries (a < 1) represent an obstruction to predictability in
within the rectangle shown and denote this fraction f For the ease nonlinear dynamics.
shown in Fig. 10, we clearly havf- a. The main point we wish to Some representative works on fractal basin boundaries, including
make in what follows is that, from the point of view of prediction, applications, ame listed in (42-47). Notable basic questions that have
much worse scalings of f with a frequently occur in nonlinear recently been answered are the following:
dynamics. Namely, the fraction can scale as 1) H4ow does a nonfiractal basin boundary become a fractal basin

boundari, as a parameter of the system is varied (45)? This qiiestion
(14) is similar, in spirit, to the question of how chaotic attractors come

with the -unccrtainty exponet a satisfy-ing a < 1 (42, 43). In fact, about.
as -_ I is fairly common. In such a case, a substantial reduction in 2) Can firactal basin boundaries have different dimension values in
the initial condition uncertaint. *.. vields only a relatively small different regions atf the boundary, and what boundary structures
deccrease in the uncertaints of thec final state as "measured byf lead to this situation? This question is addressed in (46) where it is

Although as is equal to unity for simple basin boundaries, such as shown that regions of different dimension can be intertwined on an
:hat depicted in Fig. 10, boundaries with noninteger (firactal) arbitrarily fine scale.
dimension also occur. We use here the capacity' definition of 3) What are the effects of a fractal basin boundary wvhen the
iinnion. Eq. 1. In general, since the basin boundary divides the system is subject to noise? This has been addressed in the Josephson

phase space, it.% dimension d must sauisfv d D - 1, where D is the junction expersmcnts of (31).
dimension of the phase space. It can be proven that the following
relation bmetcn the index a and the basin boundary dimension
holdds t42. 43) Conclusion

cL = D - d (15) Chaotic nonlinear dynamics is a vigorous, rapidly expanding field

f-cr a simple twwundarv. such as that depicted in Fig. 10, we have Many important iisrure applications are to be. expected in a %varicny of
d - D - 1, and Eq IS then gives aL = 1, as expected. For a fractal areas. In addition to its practical aspects, the field alsaks has tunda-
basin boundary, d > D - I, and Eq. 15 gives ct < 1. mental implications. According tto Laplace, determination of the

We now illustrate the above with a conerc~c example. Consider futrure depends only on the present state. Chaos adds a basic newv
the forced damped pendulum as given by Eq. 4. For parameter aspect to this rule: small errors in our knowledge can grow
% aiucs v = 0.2. uir = 1 0. w =1.0, andf = 2.0, we find numerically esponentialh. with time. thus making the long-term prediction iot

'nat the only attractors, in the surfasce of section (0. d~idt) are the the futrure impossible.
fixed polints -0.477, --0.609) and (-0.471, 2.037). They repre. Although the field has advanced at a great rate in rCLC1nt years.
i-.m solutions with average icounterclock%% ise and clockwise rotation there is still a wealth at challenginig fiandamenit.sl iloetiOns that have
at the pcrno K(it the forcing. The co% er shows a computer-genecrated yet to be adequately dealt svith. For example. most cen cepts
pi~nrr of the basins of attraction for the two tixed point attractors. developed so) far havec been discovered in what are etfctisels low-
Each initial condition in a 1024 by 1024 point grid is integrated dimensional systems, what undiscovered important phenomena %% ill
until it is close ito one of the two attractors (typically 100 cycles). If appear only in higher dimensions? Why are transietly thiitic
an orbit goes to the attractor ate0 - 0477, a blue dot is plotted at miotions so prevalent in higher dimensions? In %%vhit wvays is it
the -orresponding initia condition. If the orbit goes to the other possible to use the dinrsion uif a chaotic attractor tio deternine the
trtractor. a red dot is plotted. Thus the bloe and red regions are dimension of the phase space necessary to describe the dvnarnics?

cescrnimills pictures of the basins of attraction tor the two attractors Can rentormalization group technique% be- extended past the bcorder-
t the atitiracv, of the grid of the computer plotter. Fine-scale line of chaos into the strongly chaotic regime, These are onks a fess

iristtorc iin the basinis of arrractioni is cvidenit. This is a consequence questions. There are many more, and probably the mos)t important
(it the (antur-set nature of the basin bounisdry. In fact. magnifica- questions are those that have not vet been asked.
wins iiithe basin bouindary show that, as we examine it osn a smaller RtEFERENCES ANt) NOTES
and smAller scale, it continues to have structure.IC fjiE.OtS.rhn IAYwc w&13..61 yli

We now %ish to explore the consequence-, for prediction of this 2 Erhii N .L on . t'dm %a 20 130119631 a SO 61i 'J4

in1finitely, finev-caled structure. To do this, consider an initial 3 1. 1) mcfrr. E. Ott. I A Yu,k. Phvma -). 153 119831.

o iisdition (A). dfi/k). What is the effect of a small change a in the 0- 4 1. K.Apian andf 1. A Yorke. I.,.n" Seim jaMadkisnr So 70 %pri-ihgc %'djig
Rertin. 197A), p. 228. L S Y, wiit. Ped Ttum' vw , 14 1.3 1 ONi1)

:.aordloiute' Thus we integrate the forced pendulum eluation with S. P G;raabcft" and I I'r4,wa Pus' Rev Leer SO. 34e 0983.ii It C.
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-rtlthey approach one of the attractors. If either or hoth oif th A97, 2 27 11"3), T C, 1tji-.v toa al. R I Shrjimjin. Pk,, Reri .4 M 11i41
19W,. C (irtioti. E (S. 1 A, Virkc. ahd 36, 3521 11981.

,.crturtwd initial conditiors yield orbits that do not approah the 6 A Nwujtelnnd Ph" Ru-y I if SS, 2103 119851,.F I Rtinear.s A &idc,.w1.

sAme artrasrOr AS the unperturbed initial condition, we say that (9, E Ott. T M. Antin. C. Gmt%tii,0 phwa 26D. 277 (1987?
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COVER Even systems as simple as a periodically fbrced damped pendulum can
have complex behavior. This computcr-gcncrated plot shows initial pendulum
velocities (measured horizontallv) and positions (measurcd vertically). Orbits
starting at points in the red region cvcntuallh settle into one type of peridic motion,
whilc orbits starting in the blue region yield a diffcrent nrvic of periodic motion. The
boundary between these regions is fractal. The lighter the shade of red or blue, the
longer it takes to settle into the corresponding motion. Sec page 632. [Photo
courtesy of C. Grebogi, E. Ott, and J. A. Yorke, University of Maryland, College
I-ark, MD 20742] )
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MANAGING MEGABYTES

Reprinted with permission from the January 1988
issue of BYTE magazine. Copyright (c) by
McGraw-Hill, Inc., New York 10020. All rights reserved.A Better Way to

Compress Images
Mathematics is providing a novel technique for achieving

compression ratios of 10,000 to 1-and higher

Michael F. Barnsley and Alan D. Sloan

THE NATURAL WORLD is filled with Georgia Institute of Technology is devel- geometry provides just such a collection

intricate detail. Consider the geometry oping the system, with funding provided of shapes. For a hint of this, glance at the
on the back of your hand: the pores, the by the Defense Advanced Research Proj- pictures in The Fractal Geometry of Na-
fine lines, and the color variations. A ects Agency (DARPA) and the Georgia ture by Benoit Mandelbrot, who coined
camera can capture that detail and, at Tech Research Corporation (GTRC). Our the term fractal to describe objects that
your leisure, you can study the photo to description is necessarily simplified, but are very "fractured" (see references for
see things you never noticed before. Can it will show you how a fractal image- additional books and articles). Some ele-
personal computers be made to carry out compression scheme operates and how to mentary fractal images accompany this
similar functions of image storage and use it to create exciting images. article.
analysis? If so, then image compression Using fractals to simulate landscapes
will certainly play a central role. Describing Natural Objects and other natural effects is not new; it has

The reason is that digitized images- Traditional computer graphics encodes been a primary practical application. For
images converted into bits for processing images in terms of simple geometrical instance, through experimentation, you
by a computer-demand large amounts of shapes: points, line segments, boxes, cir- find that a certain fractal generates a pat-

* computer memory. For example, a high- des, and so on. More advanced systems tern similar to tree bark. Later, when you
detail gray-scale aerial photograph might use three-dimensional elements, such as want to render a tree, you put the tree-
be blown up to a 3'h-foot square and then spheres and cubes, and add color and bark fractal to work.
resolved to 300 by 300 pixels per square shading to the description. What is new is the ability to start with
inch with 8 significant bits per pixel. Graphics systems founded on tradi- an actual image and find the fractals that
Digitization at this level requires 130 tional geometry are great for creating pic- will imitate it to any desired degree of ac-
megabytes of computer memory-too tures of man-made objects, such as curacy. Since our method includes a coin-
much for personal computers to handle. bricks, wheels, roads, buildings, and pact way of representing these fractals,

For real-world images such as the aeri- cogs. However, they don't work well at we end up with a highly compressed data
al photo, current compression techniques all when the problem is to encode a sun- set fbr reconstructing the original image.
can achieve ratios of between 2 to 1 and set, a tree, a lump of mud, or the intricate
10 to 1. By these methods, our photo structure of a black spleenwort fern. Overview of Fractal Compression
would still require between 65 and 13 Think about using a standard graphics We start with a digitized image. Using
megabytes. system to encode a digitized picture of a image-processing techniques such as

In this article, we describe some of the cloud: You'd have to tell the computer the color separation, edge detection, spec-
main ideas behind a new method for address and color attribute of each point trum analysis, and texture-variation
image compression using fractals. The in the cloud. But that's exactly what an analysis, we break up the image into seg-
method has yielded compression ratios in uncompressed digitized image is-a long ments. (Some of the same techniques
excess of 10,000 to I (bringing our aerial list of addresses a'id attributes. coiniMd
photo down to a manageable 13,000 To escape this difficulty, we need a
bytes). The color pictures in figures I richer library of geometrical shapes. Michael F. Barnsley and Alan D. Sloan
through 5 were encoded using the new These shapes need to be flexible and con- are professors of mathematics at the
technique; actual storage requirements trollable so that they can be made to con- Georgia Institute of Technology (Atlanta,
for these images range from 100 to 2000 form to clouds, mosses, feathers, leaves, GA 30332) and officers of Iterated Sys-
bytes. and faces, not to mention waving sun- tems Inc. (1266 Holly Lane NE, Atlanta,

A mathematics research team at the flowers and glaring arctic wolves. Fmctal GA 30329).
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IMAGE COMPRESSION

form the basis for the automatic coloring you should be able to encode and decode
of black-and-white motion pictures.) A fascinating black-and-white image seg-
segment might be a fern, a leaf, a cloud, ments, such as leaf skeletons. tree
or a fence post. A segment can also be a shadows, spirals, and thunderheads. You
more complex collection of pixels: A sea- should also obtain an overview of how a
scape, for example, may include spray, fully automated fractal compression sv-
rock, and mist. tem operates.

We then look up these segments in a li- Affine transformations can be de-
brary of fractals. The library doesn't scribed as combinations of rotations,
contain literal fractals; that would require scalings, and translations of the coordi-
astronomical amounts of storage. In- nate axes in n-dimensional space. An ex-
stead, our library contains relatively ample in two dimensions is
compact sets of numbers, called iterated

Figure 1: IFS-encoded color image of function system (IFS) codes, that will re- W(x,y) = (12x + Ay + 1. 1Ax + VY + 2),
three-dimensional ferns (4 produce the corresponding fractals. Fur-
transformations, 100 bytes). thermore, the library's cataloging system which can also be written in matrix form

is such that images that look alike are as
close together: Nearby codes correspond
to nearby fractals. This makes it feasible [yJ [+ ]
to set up automated procedures for W = 251
searching the library to find fractals that [

approximate a given target image. A
mathematical result known as the Collage This transformation moves the point (0,0)
Theorem (more on that later) guarantees to (1,2) and moves (- 1,0.5) to (0.625,
that we can always find a suitable IFS 2). To confirm your understanding of the
code-and gives a method for doing so. idea, you should work out where it moves

Once we have looked up all the seg- the point (1.1). We denote this transfor-
ments in our library and found their IFS mation by W; the notation W(S) denotes
codes, we can throw away the original the subimage of Won a set of points S.
digitized image and keep the codes, Now let's see what Wdoes to a picture
achieving our compression ratio of of a smiling face, F. lying on the x.,v plane
10,000 to I-or even higher. (see figure 6). The result is a new,

squeezed face W(F). The affine transfor-
Iterated Function Systems mation has deformed and moved the face.
We start by explaining how a set of IFS Notice that the eyes in the transformed

Figure 2: IFS-encoded colorphoto of codes can approximate a natural image. face W(F) are closer together than they
Black Forest, color set adjusted to give IFS theory is an extension of classical are in F. We say that the transformation W
winter tones (120 transformations, geometry. It uses affine transformations, is contractive: It always moves points
2000 bytes) explained below, to express relations be- closer together.

tween parts of an image. Using only these Another example of a contractive af-
relations. it defines and conveys intricate fine transformation is shown in figure 7.
pictures. With IFS theory, we can de- This time it acts on a leaf to produce a
scribe a cloud as clearly as an architect new, smaller leaf.
can describe a house. The general form for an affine trans-

By studying the following sections, formation is

FIgure 3: IF.5-encoided color photo of a Figure 4: IFS-encoded color photo of Figure 5: IFS-encoded color image
Bolivian girl (120 transformations, 2000 the Monterey coast (60 transform ations, from A Cloud Study (30
bytes). 100 bytes). transformations, 500 bytes).

Phoo trtp ID 1987 Georgia Tech Research CoM Figure I lairnsley. Filam aZi 3 larrucley,
Jacqin. Malitssenet. Remter. Sloen, Figures 4 and 5 : bauie., Jmcqu,. Reuter. Sloan
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W[x]= [a + a, a + a,b + e= . ()

-,,a+,b+e=-. (3) F

= 1x+b,+j and find c, d, and f in similar fashion F

L CX+d4Vrj from these equations:

where the coefficients a, b, c, d. e, andf a, c + a3 d + f = i&, (4) @
are real numbers. ,. c + d +f , (5) Wb

If we know in advance the translations, yc+y3d+f fj. (6) W(F)
rotations, and scalings that combine to
produce W, we can generate coefficient We recommend the use of an equation S
%u1ues as follows: solver such as TIX Solver Plus (Universal

Technical Systems, Rockford, Illinois) or
a = r cos 0. b -s sin , Eureka (Borland International, Scotts Figure 6: An a fine transformation W
c = r sin 0, d s cos 0, Valley, CaJifornia) for finding the coeffi- moves he silinggface F to a newface

cient values. Doing it manually can be W(F). The transformation is called
where r is the scaling factor on x, s is the tedious. contractive because it moves points
scaling factor on ., 0 is the angle of rota- Now that we know what a contractive closer together.
tion on x, 0 is the angle of rotation on y. e continucd
is the translation on x, and f is the transla-
tion on y.

How can you find an affine transfor- Y
mation that produces a desired effect?
Let's show how to find the affine trans- (0.,2)
formation that takes the big leaf to the lit-
fie leaf in figure 7. We wish to find the
numbers a, b, c, d, e, andf for which the
transformation W has the property (,)--- .

W(big leaf) - littie leaf.

Begin by introducing x and y coordinate
axes, as already shown in the figure.
Mark three points on the big leaf (we've
chosen the leaf tip, a side spike, and the
point where the stem joins the leaf) and
determine their coordinates (a,,oa),
(S,,0), and (-y,,,y). Mark the corre-
sponding points on the little leaf and fi,,-W
determine their coordinates ( ,&),

,, a,). and (j,, j:), respectively.
Determine values for the coefficients

a, b, and e by solving the three linear Figure 7: Two ivy leaves fix an affine transformation W.
eouations

Table 1: IFS codes for a Sierpiiuki triangle. Table 3: IFS codes for afern.

W a b c d * f p W a b e d 0 t P

1 0.5 0 0 0.5 0 0 0.33 1 0 0 0 0.16 0 0 001
2 05 0 0 0.5 1 0 033 2 0.2 -0.26 0.23 022 0 1.6 0.07
3 05 0 0 0.5 0.5 0.5 0.34 3 -0.15 0.28 0.26 024 0 044 0.07

4 085 004 -0.04 085 0 1.6 085

Table 2: IFS codesfor a square. Table 4: IFS codesforfracial tree.

W a b c d 0 f p W a b c d 0 f p

1 05 0 0 0.5 0 0 0.25 1 0 0 0 05 0 0 0.05
2 05 0 0 0.5 0.5 0 0.25 2 01 0 0 01 0 0.2 0.15
3 05 0 0 05 0 05 025 3 042 -0.42 0.42 042 0 02 04
4 05 0 0 05 0.5 0.5 0.25 4 0.42 0.42 -042 0.42 0 0.2 04

3
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affine transioration is and how to find formations. In the present case we might (i) Initialize: x-0, )'=0.
one that maps a source image onto a de- hamep,, pat and p,. Notice that the proba- (ii) For ni - 1 to 2500. do steps (iii)-tvii).
sired target image, we can describe an bilities must add up to 1. That is, p, + (iii) Choose kto beone ofthe numbers 1.
iterated function system. AnIFS is acol- P2 +P3 2 m, with probabiity p,
lection of contractive affine transfonnia- Of course, the above notation ibr an (iv) Apply the transformation W, to the
tions. Here's an example of an IFS of IFS is cumbersome. Table I expresses point (x,y) to obtain (,)
three transformations: the saoe information in tabular form. (v) Set (x,y) equal to the new point: x =x.

Other examples of IFS codes are given y= .
[050.][] 0 in tables 2 through 4. Notice that an IFS (vi) If n > 10. plot (X))

-I0.5 0.0 y l 0 can contain any number of affine (vii) Loop.

w~x [O 0.) () + . Te~adoslteatinApplybmin this procedure to the tas

r0.5 0.01 meth[.5] IF ode Remembte rano trto iri triangle. Increasing the num-
0.01 0. v [5 meho.Reeme that in general an ber of iterations ns adds points to the

.1LJIFS can contain any number, say m.of af- image. Figure 9 shows the result of the
fine transformations, Wt, W2, W3,.random iteration algorithm applied to thc

Each transformation must also have an W,,, each with an associated probability, data in table 3. at several stages during
associated probability, p, determining its The following code summarizes the the process. By increasing the scale fac-
"importance" relative to the other trans- method: tor used in plotting, you can zoom in on

________________________________________ the image (see figure 10). The text box on
page 221 contains a BASIC implementa-
tion of the method with additional com-
ments on programming.

You may wonder why the first 10
At' Xpoints are not plotted (step (vi)). This is

to give the randomly dancing point time
to settle down on the image. It is like a
soccer ball thr-own onto a field of expert

AZ players: Until someone gains control of
'e". Z2!the ball, its motion is unpredictable, or at

Z' least is independent of the players' ac-4i'~ .! ions. But eventually a player gets the
ball, and its motion then becomes a direct

A ~result of the skill of the players. The fact
15 A f guarantees that the "ball" will eventually

- get to one of the "'players," and that it
Figure 9: The result of applying the random iteration algorithm to the IFS code in will stay under control after that.
table 1. It is called the Sierpinski triangle. How do we know that the random iter-

______________________________________________________________________continued

Ae

Figure 9: A, "tnppe-- when the random iterat ion algorithm is applied to the IFS code in table 3.
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ation algorithm will produce the same plane, with its vertices at (0.0), (1,0), tions I through 3 and 4 through 6. The
image over and over again, independent (1.1), and (0,1) (see figure 1I). The ob- values one finds in the present case are
of the particular sequence of random jective is to choose a set of contractive af- given in table 2. When the random itera-
choices that are made? This remarkable re- fine transformations, in this case W,, W,, tion algorithm is applied to this IFS code,
sult was first suggested by computer-graph- W, W4", so that S is approximated as well the square is regenerated.
ical mathematics experiments and later as possible by the union of the four sub- The preceding example typifies the
given a rigorous theoretical foundation by images W,(S)U W2(S)U W(S)U WS). general situation: You need to find a set
Georgia Tech mathematician John Elton. Figure 11 shows, on the left, S together of affine transformations that shrink dis-

with four noncovering affine transforma- tances and that cause the target image to
The Collage Theorem tions of it; on the right, the affine trans- be approximated by the union of the af-
Our next goal is to show a systematic formations have been adjusted to make fine transformations of the image. The
method for finding the affine transforma- the union of the transformed images cover Collage Theorem says that the more ac-
tions that will produce an IFS encoding of up the square. curately the image is described in this
a desired image. This is achieved with the To find the coefficients of these trans- way, the more accurately the transforma-

, help of the Collage Theorem. formations, we use the method described tions provide an IFS encoding of it.
To illustrate the method, we start from earlier in the section on iterated function Figure 12 provides another illustration

a picture of a filled-in square S in the x,y systems, leading to simultaneous equa- of the Collage Theorem. At the bottom
left is shown a polygonalized leaf bound-
ary, together with four affine transforma-
tions of that boundary. The transformed
leaves taken together do not form a very
good approximation of the leaf; in conse-
quence, the corresponding IFS image
(bottom right), computed using the ran-
dom iteration algorithm, does not look
much like the original leaf image. How-
ever, as the collage is made more accu-
rate (upper left), the decoded image
(upper right) becomes more accurate.

" So, there's a fundamental stability
here. You don't have to get the IFS code
exactly right in order to capture a good
likeness of your original image. More-
over, the IFS code is robust: Small per-
turbations in the code will not result in
unacceptable damage to the image. In
each of the above examples. we have used
four transformations to encode the image.
However, any number can be used.

For example. the spiral image in figure
13 can be encoded with just two contrc-
tive affine transformations. See if you can
find them. Then determine the IFS trans-
formation coefficients and input them to

Figure 10: Successive zooms on pieces of an IFS-encodedfern. the random iteration algorithm to get the
spiral back again.

Y W(S) y(,1), w ,(S) 11 1 " (0),

S W(S) w(S)
(1.1) (0,1) (S) 1

wI(S) W2(S)WI(S) W(S)

(0.0) ,(tO) X (0.0) 0,o) X

Figure 11: The collage theorem is used to encode a classical square S. The correct IFS code is obtained when the four affine
transformations of S cover S. as shown on the right.
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Assigning Probabilities filled in. Let the affine transformations amount of time that the randomly dancing
Once you have defined your transforma- W corresponding to an image I be point should spend in the subimage W is
tions, you need to assign probabilities to approximately equal to
them. Different choices of probabilities [x] = [a, b]1 F ? +F,] ra f
do not in general lead to different images, i c, + Lf area of 
but they do affect the rate at which vari- area of I
ous regions or attributes of the image are where i = 1, 2, 3, .. , n. Then the continued

IFS D ecoding Listing A: A BASIC program demonstrating the use of the random
iteration algorithm to reconstruct an IFS-compressed image.

inl BAI C~~ 18 'Allow for a maximum of 4 transformations in the IFS
20 DIM a(4), b(4), c(41, d(4), e(4), f(4), p(4)

L isting A is a BASIC implementation 30 1
of the random iteration algorithm. 48 'Transformation data, Sierpinski triangle

It includes the data for the Sierpiski tri- 50 'First comes the number of transformations68 'then the coefficients a through f and probability pk
angle, but you can use it to process any 78 'The values for pk should be in descending order.
IFS tables. In particular, you will want 80 DATA 3
to try the data in tables 2, 3. and 4. Be 90 DATA .5,8,O,. 5,8,8, .34
sure to set the variable m correctly; it 108 DATA .5,0,8, .5,1,8, .33

tells the program how many transforma- 118 DATA .5,e,8,.5,.5,.5,.33

tions are in the IFS. 120 '
It is also essential that the probabili- 130 'Read in the data

ties in p( ) add up to 1. For speed, the 140 READ m

transformations should be listed in de- 158 pt - 8 'Cumulative probability
168 FOR j - 1 TO mscending order of probability: the high- 178 READ a(J), b(J), c(J), d(J), e(i), f(j), pk

est probability transformation first, and 180 pt - pt + pk
the lowest probability last. 190 p(J) - pt

The program includes variables for 288 NEXT j
rescaling and translating the origin to 218 '
accommodate the range of the points be- 220 'Set up for Graphics
ing plotted tothelimits ofyour screen. If 238 SCREEN 3 'Select graphics screen
the image is too wide, decreasexscale; 24e xscale - 350 'Map [8,1] onto [8,350]

if the points are too close horizontally, 250 yscale - 325 'Map [8,1] onto [8,325]
260 xoffset - 8

increase xseale. Adjust yscale simi- 278 yoffset - 8 'Leave the y-origin
larly to get a good vertical point spread. 288 I
To move the image, adjust xoffset and 290 'Initialize x and y
yoffset. 38o x - e

You can do these adjustments by trial 318 y - e
and error: Run the program; interrupt it 320 
and change the offsets and scale factors; 33e 'Do 2588 iterations

and run it again. Or, you can replace the 348 FOR n 1 To 2500350 pk - ND
plot command pset with a command to 368 'The next line works for m<-4. It must be modified
print the values of x and y and run the 378 'for values of m > 4.
progra-n to get an exact idea of the range 388 IF pk <- p(1) THEN k - 1 ELSE IF pk <- p(2) THEN k - 2
ofpoints being plotted, so you can adjust ELSE IF pk <- p(3) THEN k - 3 ELSE k - 4
the scale and offsets more precisely. 398 newx - a(k) * x + b(k) * y + e(k)

Another way to arrange the program 400 newy - c(k) * x + d(k) * y + f(k)

is to have it read all the data-m, a(), 418 x - newx
bC), cC), dC), e(), f() p 420 y - newy

438 'Use PRINT xy instead of the PSET linexscale, yscale, xoffset, and yoff- 448 'to see the range of coordinates. Then fix
set-from a disk file specified by the 458 'xscale, yscale, xoffset. and yoffset
user. Instead of reading in the coeffi- 468 IF n > 18 THEN PSET (x * xscale + xoffset, y yscale
cients a, b, c, and d, you may want to + yoffset)
read in angles 0 and 0 and scale factors r 478 NEXT n
and s, and then calculate the 488
coefficients. 498 LOCATE 24, 35

The random iteration method is com- 588 PRINT "Press any key to end.":

putation-intensive, so we recommend 51 WHILE INKY$529 WEND
use of a compiler such as Microsoft's 538 1
QuikBASIC ui Burlani'b Tuiu 54e 'Return to text screen
BASIC. If your computer has a floating- 550 SCREEN e
point coprocessor and your compiler 56e END
supports one, so much the better.
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So long as ad - cd is not 0. it is a stan-
dard calculus result that our ratio equals
the determinant of the transformation ma-

-itrix for 1,. So a good choice for the prob-
ability p is

/ . r ad-be

provided none of these numbers p, comes
out to be 0. A 0 value should be replaced
by a very small positive value, such as
0.001, and the other probabilities corre-
spondingly adjusted to keep the sum of all
the probabilities equal to 1.

g* We now summarize the compression
and decompression process: An input
image is broken up into segments through

1 Timage-processing techniques. These
image components are looked up in the
IFS library using the Collage Theorem,

Vill and their IFS codes are recorded. When
.€the image is to be reconstructed, the IFS

codes are input to the random iteration al-
gorithm. The accuracy of the recon-
structed image depends only on the toler-

Figure 12: The Collage Theorem is applied to a leaf The collage at lower left isn 't ance setting used during the collage
much good, so the corresponding IFS image, shown at lower right, is a poor mapping stage.
approximation. But as the collage improves, upper left, so does the IFS image. Applications

For graphics applications, we use a more
sophisticated procedure that allows full-
color images to be encoded. Combina-
torial searching algorithms can be used to
automate the collage mapping stage. Fig-

, ures 2, 3, and 4 were obtained using IFS
theory at compression ratios in excess of
10.000 to 1 These images were based on

c photographs in recent issues of National
C( . Geographic. A full-sequence video ani-

mation. A Cloud Study, was shown at
SIGGRAPH '87. This was encoded at a

c-1  ratio exceeding 1.000.000 to I and can be
transmitted in encoded form at video

drates over ISDN lines (ISDN stands for
~' .~integrated services digital network, a

concept for integrated voice and data
communications). A frame from the ani-
mation is shown in figure 5.

* The IFS compression technique is
computation-intensive in both the encod-
ing and decoding phases. Computations
$or the color images were all carried out
on Masscomp 5600 workstations (dual

., 68020-based systems) with Aurora
graphics. Comples color images require

t about 100 hours each to encode and 30
minutes to decode on the Masscomp.

For practical applications, you need
custom hardware that can speed the en-
coding and decoding process. An expei-
mental prototype, the IFSIS (iterated
function system-image synthesizer), de-

igure 13: Can you find the IFS codes for this spiral image? Only two codes at the rate of several frames per
transformations are needed second. The IFSIS device was produced

from a cooperative effort between GTRC,

I
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DARPA. Atlantic Aerospace Electronics
Corporation, and Iterated Systems, and it
Was demonstrated on October 5, 1987, at
the third annual meeting of the Applied and
Computational Mathematics Program ofDARPA. It can be connected to a personal
computer through a serial port; the per-
sonal computer sends the IFS codes to the
device, which responds by producing com-
plex color images on a monitor.

The IFSIS is a proof of concept for
faster devices with higher resolution.
Once the higher-performance IFSIS de-
vices are combined with ISDN telecom-
munication, full-color animation at video
rates over phone lines will be a reality.

Another area for future application of
IFS encoding is automatic image analy-
sis. What's in a picture? Does it show a
spotted sandpiper or a robin? The more
complex the image or the more subtle the
question, the harder it becomes for an a]-
gorithmic answer to be formulated. But
here's the point: Whatever the answer, itwill proceed faster if stable, compressed
images are used. The reason for this is
that image-recognition problems involve
combinatorial searching, and searching
times increase factorially with the size of
the image file.

During the spring of 1987, Iterated
Systems was incorporated to develop
commercial applications of IFS image
compression. It is exciting to see how an
abstract field of mathematics research is
leading to new technology with implica-
tions ranging from commercial and in-
dustrial wurk to personal computing. m
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