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PREFACE

Recent popular literature abounds with articles on fractals or chaos.
Laymen will find them quite accessible, except for occasional stumbling blocks
like dimension, self-similarity, dynamics, randomness, etc. But technical
readers will likely be frustrated by a lack of detail. This report assumes
the reader has a mathematical background equivalent to an upper~division math
major. The report is being used as the textbook for a Math 495 course
during spring, 1989.

The popularity of fractals and chaos is not an accident. There is an
amazing number of natural phenomena which can be interpreted by either
fractals or chaos or both. It is more surprising that these fields weren't
"discovered" until the mid-1970's. Benoit Mandelbrot noticed that many
geographic entities--coast lines, mountains, etc.-—-could be thought of as
having a "fractional dimension"; hence, fractal. Mitchell Feigenbaum
theorized universa] properties of certain "chaotic processes". For example,
fluid turbulence and a nonlinear oscillator exhibit similar qualitative and
quantitative behavior,

Mathematicians became interested when old topics like Hausdorff Dimension,
Ergodic Theory, and everything in between were found to have applications and
to have the ability to make pretty computer graphics. Fractals and chaos have
beccme such hot topics that they have worked their way into the diverse fields
of art and biology.

The eager researcher will jump at (or contrive) any opportunity to say
"Ha, a fractal!"” or, "Ha, chaos!"™ But: FRACTALS AND CHAOS ARE NOT MODELS OF

NATURE. THEY ARE, AT BEST, SYMPTOMS. It is like noting that the sky is blue.

iv



Quite often, knowing an object is a fractal or a process is chaotic will not
give any new information about that object or process.

In the author's opinion, the classification of something as a fractal or
chaotic process is most useful from a "first principles" point of view. For
example, it has been known for some time that clouds are self-similar
(fractals) on a scale of about 10 km on down. More recently, from satellite
photographs, it was found that they're actually self-similar on a scale of
1000 km on down! This information is useful in the sense that any valid
theory on the formation of clouds must address this large-scale

self-similiarity. Likewise, population growth in nature exhibits chaotic

behavior. So, there are definite limits to a non-chaotic (exponential growth,

for instance) model's applicability.

The goal of this report is to give a basic foundation upon which the
interested researcher may "build-to-suit". To this end, and for the Math 495
students, exercises will be found at the end of many sections. There are
several computer programs available (for the Z-24R with EGA) which illustrate

the ideas presented in this report.

If this is your first encounter with the ideas in and the applications of

fractals and chaos, I hope you find them as enjoyable and amazing as I do.




Reading List

In addition to the articles reprinted in appendices 1 through 5, it is
highly recommended that the following books be read by the interested

researcher (or layman):

1. CHAOS: Making a New Science, James Gleick, 1987, Viking Penguin Inc.,
ISBN 0-670-81178~5.

Comments: This is the best book on sclence directed to the layman that I
have read. It is also the best book on chaos that I have read. The author
does an outstanding job giving historical perspective, the insights of leaders

in the field, and relevance to today's soclety.

2. The Fractal Geometry of Nature, Benoit Mandelbrot, 1983, W. H. Freeman and
Company, ISBN 0-7167-1186-9.

Comments: 1In my opinicn, this book is written in a egocentric style--a lot
of first person usage. 1t also vacillates between the technical and obscure,
and the obvious. The book is hard to read. However, there are many beautiful

and worthwhile ideas spread throughout and punctuated by fantastic images.

3. Fractals Everywhere, Michael Barnsley, 1988, Academic Press/Harcourt Brace

Jovanovitch, ISBN

Comments: This is a textbook on Iterated Function Systems (IFS).
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I.1 Introduction

It is hard to date ideas to their true originators. But '"fractional
dimension" is largely due tec the work of Felix Hausdorff (1868-1942), This was
a mathematical formulation and was not necessarily thought to have real-world
applications.

Scientists and philosphers have noticed basic patterns and "self-simi-
larity" in nature throughout history. However, it is probably safe to say
that Benoit Mandelbrot was the first person to successfully integrate
fractional dimension with self-similar natural phenomena. He was the one to
coin the term "fractal"--without explicitly defining it at first, but later
giving it a mathematical definition.

Much of the popularity of fractals is a result of the relatively recent
advances in computer graphics. Mandelbrot, who works for IBM, was able to
turn out some spectacular images of fractals simulating geographic shapes--
like a false Farth-rise as seen from a false moon. Many scientists and com-
puter enthusiasts have expanded on his work. Fractal images now seem to be
the cover picture of choice on calculus textbooks.

Some of the most promising work in fractals has been done by Michael
Barnsley of Ceorgia Tech., (He is funded by DARPA and AFQOSR, among others.)
Barnsely's work centers on the question: Given a digitized image on a monitor,
(with resolution of, say, 1024 by 1024 pixels), can fractal techniques be used
to reduce the amount of memory required to store the image? The compression
ratio is the quotient of the raw data of the image on the screen to the
data required when using some fractal technique. The objective is to make the

compression ratio as large as possible.
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Current techniques (nonfractal) are able to achieve compression ratios as
high as 10 to 1. Barnsley has achieved ratios of 15 to 1 for perfect repli-
cation of the image and as high as 1000 to 1 for non-perfect replications. Even
though the latter are non-perfect, they retain the fundamental qualities of the
picture, and look rather like a painted (or sketched) copy of a photograph.

Barnsley has formed his own company to exploit his techniques: Iterated
Systems, Inc., named after the process used to store and regenerate these
images. Iterated Function Systems (IFS), as a mathematical topic, will be

discussed in this report.




1.2 Intuitive Dimension

What is dimension? Mathematics students might say that it's the number
of basis vectors in a vector space. This 18 a good answer if the question is:
What is the dimension of a vector space?

A vector space is an abstract structure which happens to be used a great
deal to model different settings of physical phenomena. For example, we
usually imagine ourselves as moving around in R3, Euclidean 3-space. Relativity
is modeled using a curved 4-dimensional vector space called space-time. But
vector spaces are used almost exclusively to model some section of the
universe, rarely for the objects within.

Finding a dimension is intuitively like counting "degrees of freedom.'" How
many (seemingly) independent observations are possible? We might say that colored
pigment is 3-dimensional since it can be decomposed into red, green, and blue.
Sound is infinite dimensional, but hearing probably isn't, since humans cannot
hear the whole auditory spectrum, Taste might be 5-dimensional.

These examples deal with Information. How much information is the key
question in determining dimensions this way. Fowever, there is a difference
between information and "shape". We will define a shape to be what's left when
all the available information is known. Most objects are a combination of shape
and information.

Basis vectors are part of the '"where" in a shape. They are basis vectors
because they are all that is needed to convey this information. So counting basis

vectors is equivalent to finding an insormation dimension.
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We will use historical techniques to find dimensions of objects which aren't
vector spaces. It should come as a relief that shape and information dimensions
will agree when they can be applied to the same object, like R3. It 1is
unfortunate, however, that only information dimension seems to be intuitive. The

definitions we will use for "shape" dimension are difficult.




1.3 Observations and Representations

Before we develop methods of determining the dimension of shapes, we must
distinguish between different dimensions used to represent an object. We will
use 3-dimensional Euclidean Space, R3, to model the three directions which
seem to surround our environment. Two-dimensional Euclidean space, R2, will be
used to model a sheet of paper or a computer screen.

The subjective link in any observation is the human. Our vision is
influenced by imperfect eyes and an imperfect brain. But essentially,
reflected (or transmitted) light from an object in R3 is imaged (through the
iris and cornea) onto the retina at the back of the eye. Information is sent
from the retina via the optic nerve to the brain. Because the retina is a sur-
face (and can be modeled with 2 dimensions), there are subtle ways in which the
brain interprets a 3-dimensional image from the information sent by the eye.
The study of this process is called stereopsis.

Perhaps because of the way our vision works, humans are able to interpret
3-dimensional images from photographs or drawings in RZ. And because it is
easier to take a picture than build a model (or construct a hologram), we

commonly use R2 to represent images from R3.

Definition: A set, S, is imbedded in another set, T, if and only if S CcT.
For example, if we take a plcture of a ball (imbedded in R3), the photo-

graph will cont3in a shaded disc imberdded in RZ. The area of the shaded disc

is a two-dimensional subset of R2. The shading cues our eyes to see curvature

which is not present in the photograph.

Definition: We will say an n-dimensional object, E, is flat, if E can be

i mbedded in Rn; fie., E C R".
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Thus, a line 18 flat (straight), since it is one dimensional and can be
imagined tc lie in R (the number line)--it is the whole set in this case. A
shaded disc, (filled in circle), is flat since it is two-dimensional but fits
in Rz. A solid box is flat, since it is three-dimensional and a subset of R3.

A triangle 18 not flat. Neither is a circle. Both curves cannot be im-
bedded in R even though they are 1-dimensional. These curves can be imbedded
in Rz. However, a helix (a curve in the shape of a spring) cannot even be
imbedded in R2. It is still l-dimensional, but must be imbedded in R3. Fortu~
ately, all I-dimensional objects (curves) may be imbedded in R3.

A surface is a 2-dimensional object. A sphere (the surface of a ball) is
curved but can be imbedded in R3. An eggshell is also not flat. (A sphere
cannot be imbedded in Rz.) But there are surfaces, like the Klein Bottle,
which cannot be imbedded in R3 and must be {imbedded in Ra. The situation with
"curved" space (3-dimensional objects) is even worse. By definition, we cannot
"see" any curved space since we can only see objects imbedded in R3. One can
imagine that Ra is not even enough to imbed all curved 3-dimensional spaces, so
the space-time model (which is curved 4-dimensional space) must live in a very
high dimensional R".

The point of this discussion is to be able to recognize the dimension of
the object as being (possibly) different from the space in which it is
imbedded, and to realize that visual cues (or tricks) are necessary to

2
represent curved 2-dimensional objects (and some I-dimensional objects) in R®,

(a picture).

Exercises:

1. What is the dimension of a pencil? 1Is it flat? What is the (approximate)

dimension of the surface of a pencil? 1Is it flat?
7
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2. A torus can be constructed by taking a finite circular cylinder and joining
the two ends to make a shape like an inner tube. What is the dimension of

the torus? What is the smallest dimensional Euclidean space into which it can
be imbedded?

3. A Klein Bottle is constructed like a torus, except the two ends are not
joined in the natural way. Instead, they are attached so that the cylinder is
on the same side of the join. 1Is this possible in R3? What is the dimension
of the Klein Bottle?

4. Suppose you take a picture (of the surface) of a pyramid. In the photo-

graph, what dimension 1s the surface of the pyramf{d? Is it flat? What is the

dimension of the surface of the actual pyramid? 1Is it flat?



1.4 Topology and Open Covers

The objective of part I is to introduce the reader to fractional dimension.
But first, we need to introduce "topological dimension" as a base. The topolo-
gical dimenision.will not be fractional, but some ideas from its development are
extrapolated in the formulation of Hausdorff dimension, which is fractional.

Topology is the study of shape without distance. Because it is so abstract,
many shapes which we perceive as different ar= lumped together by topology. For
example, the surface of a cube, a sphere, and the surface of a football are all
the sane. Similarly, a semi-circle and a line segment are equated in topology.

So, most of the aspects of curvature are ignored by topology. For this
reason, a topological definition of dimension is very useful. To use topology,
it is not necessary to throw away our familiar mathematical structures (distance,
arithmetic, etc.). The 1deas of topology are just incorporated into one's

setting. These ideas are formulated using open sets:

Definition: Let T be a set and f? a collection of subsets of T. (T, Q) is called

a topological space (with topology Q) if and only if:
(1) ¢ e Qand T € Q; (¢ is the empty set).

(11) 1If Ga € Q for each a € I (I 1s any index set), then U Ga € fl.

acel
n

(141) If G, e @ for £ =1, «ev, M, then (1 G, € A
i=]

A topological space, T, is a set together with a topology on that set.
Elements of the topology are subsets of T. They are called open sets. To be a
topology, three criteria must be satisfied: (i) the empty set and T itself must
be open; ({1) any union of open sets must still be open; and (iii) any finite

intersection of open sets must still be open.

3
We will work in familiar spaces, like R2 and R™, and define a topology on

them. This will make topological dimensions accessible in our settings.




Examples:

1. (R, ﬂl) is a topological space where R is the real line and a subset of R is

in nl (the topology) if and only if it can be written as a (possibly) infinite
union of open intervals. We throw in the empty set to be complete.

Thus, each open interval (including R) is itself an open set. Recause two
open intervals must intersect in an open interval or an empty set (both of which
are open), criterion iii 18 satisfied. Criterion ii is satisfied by definition.

The open intervals are called a basis for the topology since any open set
is a union of these basis sets. (They act like components.)

2. (Rz

R 92) is a topological space where 92 is formed from the basis consisting
of all open discs in Rz. (An open disc is the area inside a circle, without the
circle itself.) Therefore, open sets in 02 are unions of open discs. It is a
little harder to verify that finite intersections of open sets are still open.

3. (R3, gs) is a topological space when R, consists of open sets formed from the

3

basis of open balls (the interiors of spheres).

Remark: In examples 2 and 3 above, it {s possible to change the basis without

changing the topology. See the exercises.

Definition: A set, F, in a topological space, T, is called closed if and only if

the complement of F, denoted FC, is open.

Theorem: If (T, 1) is a topological space then:
(i) Both ¢ and T are closed;
(i1) 1f Fa 18 closed for each a ¢ I (I is any index set), then 1 F
acl

is closed and

(1i1) 1f P{ ig closed for 1t = 1, ..., n, then Fi is closed.
i=1

10
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The proof of the theorem relies on the definition of closed as the (set)
complement of open and is left for the exercises.

When one 1s working in a metric space, like R, Rz, or R3, there is a natural
topology induced by the metric. The topologies in examples 1 through 3 are
induced by the Euclidean metrics. For this reason, limit points and interior

points are other ways to characterize closed and open sets.

Definitions: Let (Rn, d) be Euclidean n-space with the usual metric, d:

n
2
d[(xl, cees xn), (yl, cvey yn)] = //:fl (xi - yi) .

e R". Then X, is an interior point of A if and only if there

Let A SL R" and X,

is an € > 0 so that if d(x, xo) < ¢ then x € A. Also, Xy 1s a limit point of A

if and only 1if for every ¢ > O there 18 an x # X, 80 that x € A and d(x, xo) < €.

Theorem: 1In examples 1 through 3, a set, A, is open if and only if each element
of A is an interior point of A. Also, a set, B, is closed if and only 1f B

contains all of its limit points.

The proof is left for the exercises.

P

In topology, open sets have a connotation of being large. (In a metric
space, every point of an open set is an interior point; so open sets cover a lot
of area.) One way to measure the size of an arbitrary set, is to find the

"smallest”" open set which contains {t.

Definition: Let (T, 1) be a topological space, and suppose A € T. Then U is an

open cover of A if and only if U ¢ Q and A € U.

There are usually (infinitely) many open covers for the same set. 1In sub-
sequent sections, we will find ways of measuring the "smallest" such cover. This

is part of the subject called measure theory.
11




Example 4.

There is no "smallest" open cover of a single point, X € R, since any
interval of the form (x0 - € % + ¢ ) is an open cover of {xo} (e > 0).

But, the 'smalleat" open cover of any open set is that set itself.
We will end this section with another definition of "large".

Definition. In a topological space (T, R), a subset A C T is dense in T if and

only 1if for each U inQ, UN A # ¢.

Exercises:
1. Let X be a nonempty set and P(X) be the power set of X. So P(X) contains all
subsets of X. Show that (X,P(X)) is a topological space. Which subsets of X are
closed?
2. InR, let (a, b] = {x e Rt a <(x < b} be a half-open interval. Define a new
topology on R by: a set is open if and only if it can be written as the union of
half-open intervals (always closed on the right), or is the empty set. Show that
an open interval, (u, v) = {x: u < x < v}, is an open set in this new topology.
Thus, the new topology contains the usual topology. Is (a, b] open in the usual
topology? The new topology is finer than the ususl topology; or the usual
topology is coarser than the new topology.
3. Using the definit{on of closed in a topological space, (T, 2)...

a. Show that ¢ and T are closed.

b. Show that if F'L is closed for ¢« € I, then Fa € .

ael
n
c. Show that 1f Fi is closed for { = 1, ..., n, then U Fi is closed.
{=1

Hint: (U AN = ) ASand /N &\ = Uy a®.
a a a Q
aecl ael ael ael




4. The Euclidean metric on R is given by absolute value:

d(x, y) = |x - y|.
Show that every point of an open interval is an interior point of that interval;
thus, open sets are the same metrically and topologically (with the usual

topology).

5. Same as 4., with Rz.

6. Same as 4. with R3.
7. Show that if a set doesn't contain all of its limit points, then it's not
closed by showing that the missing limit point cannot be an interior point of the
complement of the set. Hence, the complement of the set isn't open. Work in R"
with the Euclidean metric.
8. Show that if a set fsn't closed (so that it's complement isn't open) then
there 1s a point in the complement which isa't an interior point of the compli-
ment, but must be a lim{t point of the set. Hence, the set doesn't contain all
of 1its limit poiants. Work in R".
9. It is often possible to find a different basis for a topological space which
will give the same topology:

a. Show that the basis of open squares (the interior only) in Rz will also
generate the usual topology. 1Is there a metric which corresponds to this basis?

3

b. Show that the basis of open cubes (the interior only) i{n R” will also

generate the usual topology.
10. Show that a single point 1s a closed set in R". Hence, any finite subset
of R" 1s also closed.

11. Let Q denote the rational numbers. Is Q a closed subset of R? 1Is it open?

13




12. In R" with the Euclidean metric and usual {uduced topology, open n-balls
can be used as the basis of the topology. (An open l-ball is an open interval,
etc.) Show that an open set (which i1s a union of open n-balls) cannot be the
uncountable urion of disjoint open n-balls. (Hint: Use the fact that there
are countably many points whose coordinates are all rational.)

13. Let {r_} be an enumeration of all the rational numbers in R. Find an open
cover of {rn} so that the sum of the lengths of all the component intervals is
less than 1.

(Hint: Let each r_ be the midpcint of an interval of length ih.)

Thus, this open cover is "large" in two senses: it's open and dense. But it's

"small" in the sense that it has a short length compared to all of R,

14




1.5 Topological Dimension
We will be interested in calculating the dimension of objects in Rz and RJ.
An important fact is that subsets of a topological space are also topological

spaces with the "relative topology.”

Definition: Let (T, Q) be a topological space, and S € T. Define the relative

topology on S to be 2' = {U': there 1s a U € Q with U' = SNU}.

It is easy to show that (S, Q') is a topological space. The open sets in S

are just intersections of open sets in T with S itself.

Example 1:

Find the relative topology on a circle imbedded in Rz.
Since an open set in Rz is a union of open discs, the relative topology on S

congists of open gets which are the union of open arcs.

The following definition 1s due to Henrl Lebesque (1875-1941). We have

adapted (t to subsets of R".

Definition: Let X be imbedded in Rn, for gsome n. The topological dimension (or

Lebesque dimension or covering dimension) of X is less than or equal to m, i.e.,

dim X { ®, 1if and only if for any finite collection of p open sets, Gi' (rela-

P
tively open in X) with X = U Gi' there is another collection of p open sets,
i=]

P
H,, so that each H1 CG,X= U H,, and any m + 2 of the H, have no point in

1 i 1=1 1
common. And, if dim X > m - 1, then dim X = m.

i

Eesentially, the above definition finds the most efficient open covers (in
terms of overlap) of a set, X. The topological dimension is related to that

efficlency.
15
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Example 2:

A single point has topological dimension zero.

Suppose X, € R. The only open sets in {xo} are ¢ and {xo} itself. So if Ci’

P
i=1, ..., p, are any open sets so that {xo} = U Gi’ then at least one of the
i=]

G, must be {xo} itself, call it (without loss of generality), G Then define

i 1’
p
H =G, and By = ... = Hp = ¢. Thus, {xo} = ng H,, but any two of the H, have

an enpty intersection. Therefore, dim {xo} £ 0. Also, the only set with dimen-
sion -1 is the empty set. (Since each open set in the cover must be empty.) So

we can conclude that dim {xo} = 0.

Remarks: In our definition of topological dimension, we do not specify which R"
the set X is imbedded in. In example 2 we imbedded a point in R, but we could
have imbedded it in R2, R3, etc. The topological dimension will be invariant
(with respect to the imbedding space) since the usual topology of R” is also the

relative topology on ™ 3¢ R™ is imbedded in R” where n > m. See the exercises.

Example 3.

The dimension of any line segment (finite or infinite) is one.

Let S be a line segment. We imbed S as an interval (open, closed, or
half-open) in R. The proof will proceed by induction on the number of oren sets
(in S) which cover S:

1
If S = | G1 then we can choose “1 = G1 and we're through.

i=1 P P
Assume that when § = ) G, there exists open H, < Gi so that § = |JH,
oy L 1=1

and no 3 of the Hi have a point in coamon.

p+l
Now suppose S = {J Gi where p > 1. For 1 = 1, ..., p = 1 define Gi - Gi.
i=]

We proceed through four cases based on the relationship of G; to G;+1:

16
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Case 1: G;) N G;'H»l = ¢,

P
T let G =G'Yyc'. ... N = G ¢
hen let o p U p+l ow, 8 191 4 9° there are open ", C { S0 that

p
S =y H1 and no 3 of the Hi have a point in common. Define H; = H'l for i =1,
i=1
- [y ] - ! [ oM -
seey p — 1 and let Hp Gp N Hp and Hp+1 Gp+1 ] Hp. Since Gp n Cp+l ¢, we
p+l
also have H;',ﬂ H'p+l = ¢é. So each Hi is open, Hi c Gi, s ={J Hi, and no 3 of
i=1

the H{' have a nonempty intersection, completing the proof in this case.

. ] ]
Case 2: Gp+l (o Gp'
= 1] ' - ' 3, e
As above, let Gp GPU Gp+l Gp. Then, we can obtain Hi C (‘1 Redefine

[ - = ' - ] '
Hi Ht for 1 1, ..., p and let Hp+l ¢. As before, the open Hi < G,

p+l
Ss= U Hi, and no 3 of the Hi have a nonempty intersection (since the Hi's
i=1

didn't), completing the proof in this case.

. L L
Case 3: Gp c Gp+l'

This case is the same as case 2 with p replaced by p + 1 and visa versa.

. L] L
Case 4: Not case 2 or 3, but Gp n Gp+l * 4.

= t 1] | -
Again, we let Gp Gp ] Gp+1 and obtain open Hl’ eoey Hp. Now, let Hi Hi
for { =1, ..., p -~ 1 and define H;" = Hp n Gl". Also, define H;H = Hp n G",”.

Since H"+ is a union of disjoint open intervals, we will remove any interval from

p+l

“;ﬂ which is a subset of H; and any interval from H"', which is a subset of ""p+1’
forming new sets, H;;+land HI'D' which are still open. We now have open Hi ol Ci
ptl
so that S = | Hi. Since no three of the H1 have a nonempty intersection, if 3 of
i=]

the Hi have a point in common, then H;’ and Hl;"'l must be two of those sets.

(Also, no 4 of the Hi can have a nonempty intersection.) Suppose 1 { k < p

and Hl" N H;n H;:ﬂ # ¢. Then, this nonempty intersection must be mimicked among

17
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their open (component) interval(s). Let I1 Ei Hi be such component intervals for
i =k, p, and p + 1. Because of the way H;+1 was constructed, Ipﬁ{_ Ip+l and

Ip+l g_ Ip. We have three cases:

Case a: Ip U Ip+1 < Ik. In this case, we may redefine H; and H;+l to be

H' - 1 and H;+l - 1p+1 respectively. The sets are still open, and the union of

the Hi's still cover S.

Case b: Ik < IPU Ip+l' In this case we can redefine HL as H' - Ik'

Case c: Not case b or c. Then since Ipﬂlpi‘.1 # ¢ IpLJIp+l is ar interval
and Ik must overlap either the right or left side. Redefine Ik so that it still
overlaps but does not go so far as to also overlap Ipf]Ip+1. Then the new Hé will
use this new Ik’

Case a, b, and c may be applied to any of the component intervals which

behave in that way. After such applications, we obtain open Hi c Ci so that

ptl
S = (jH and no 3 of the H]
i=1 i i

proof by induction and establishes that dim § { 1. Suppose S is covered by 2

have a nonempty intersection. This completes the

overlapping open intervals, Gl and CZ' Then, in order to still cover S, H‘ and H2

must also be overlapping. Thus, dim S i_O. So, din § = 1.,

In particular, example 3 shows that the topological dimension of R (an
infinite line segment) is one. So topological dimension, which is capable of

measuring many shapes, agrees with the vector space dimension of R, which measures

information.

The following facts are presented without proof:

18




Theorem: Let dim denote topological dimension.
(1) dim R" = n.
(ii) 1f Xl, x2, «ee is a countable collection of closed sets (each imbedded in

the same R™ for some n) then dim ( U Xi) = max {dim XI}
i=] i

(ii1) If X # ¢ then dim (X x Y)  dim X + dim Y.
(iv) If dim X = n, then X can be written as the union of n + 1

O-dimensional subsets of X.

Exercises:

1. What is the topological dimension of the rational numbers, Q?

2. What is the topological dimension of the irrational numbers, R - Q?

3. What is the topological dimension of Q x Q? This is the set of all ordered

pairs where both coordinates are rational. What is the dimension of (R -Q) x (R -Q)?
4, A topological space, T, is called disconnected if and only if T can be written
as the disjoint union of two nonempty open subsets. The space, T, is totally dis-
connected 1f every subset of T consisting of more than one point is disconnected
(using the relative topology). The space, T, is connected if it is not

disconnected. 1s R connected, disconnected, or totally disconnected? How about Q

and R - Q?

S. Let S be a finite rectangle in Rz- Cover S with 3 open discs which overlap in
the center of S. 1Is it possible to find 3 sub-discs which cover S but have an
empty intersection? What is the dimension of S?

6. What is the dimension of the surface of a cube? Since the surface of a cube

and a sphere are topologically equivalent, what is the dimension of a sphere?




1.6 Hausdorff Dimension—-A Definition of Fractal

Hausdorff Dimension was the first logically developed tool which could
give a non-integer result to be interpreted as the dimension of some shape.
With the advent of recent computer graphics, it can be seen that this dimen-
sion is useful. The human eye is capable of distinguishing between similar
shapes with different Hausdorff dimensions. However, Hausdorff dimension is
mathematically difficult to work with. To start, we will discuss some ideas
from measure theory.

Lebesque (outer) measure is a way to define the "length" of abstract
sets. Essentially, one finds the most efficient open cover of the set, and
then finds the length of that open set by adding the lengths of the intervals.

We'll restricc ourselves to R for the time being.

Definitions. Let I be an open interval in R. So I = (a,b) for some a and b.
The length of I is b - a, and is denoted by |I].
Let E be a subset of R. The Lebesque outer measure of E is denoted by
jf?E) and‘;((E) = inf [ IInI where U In is an open set of disjoint component
n n

intervals, In’ and the infimum is caken over all open sets which cover E.

Example 1.

The Lebesque measure of a single point is zero.

Without loss of generality, assume the point is zero as a subset of R.
Then, for any € > 0 we can find an open interval, and hence an open set, which
covers zero and has length less than e. This implies (since € is arbitrary)

that the infimum over all covers is zero, proving the claim.
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(A measure, like Lebesque measure, is always defined on a large class of
sets which form a "o-algebra." If one assumes the "Axiom of Choice", then it
can be shown that there are subsets of R which are not Lebesque measurable;
although every subset is Lebesque outer-measureable.)

For this report, we will assume that the sets we encounter are always

measureable. The following are presented without proof:

Theorem.

Let.{’denote Lebesque measure. Then:

(1) 1f X (E) = 0 then every subset of E is measureable and has measure
Zero.

(11) 1f El, EZ’ E3, ..+ 18 any countable collection of disjoint measure-

able sets, then

L\ T 12133(31).

Some immediate consequences of this theorem are that the measure of any
interval, (open, closed, or half-open), is computed by subtracting the left
endpoint from the right; and that the Lebesque measure of the rational numbers
{or any countable set) is zero.

The idea behind Lebesque measure will now be generalized to get Hausdorff
(outer) measure. Instead of adding the lengths of all the intervals in the

cover, we add a power of the lengths of all the intervals in the cover.

Definitions.

Let § >0 and 8 > 0. If E is a subset of R, then the Hausdorff s-dimen-

sional §-pre-measure of E is:

H:(E) = inf g [In(°
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where the In's are open component intervals of a cover of E and each 'In! is
less than 8. The infimum is taken over all open covers of order § (that is,
each |In| < 8).

The Hausdorff s—dimensional (outer) measure of E is

RS (E) = 1im H‘;(E).
§+0

Needless to say, this 1is a very technical definition. However, it is
easy to generalize to higher dimensions. (That is, R™ instead of R.) One
just defines |In| to be the (maximum) diameter of an open set in R™.

The 8's in the definition are needed for obscure reasons. Basically,
Hi,(E) is larger than H:(E) if 8' < §. Thus, the covers are less efficient as
their maximum size decreases.

The s in the definition is the power to which each fIn| is raised. It
will be directly related to the dimension of the set, E. Since s is only

restricted to be positive, non-integer dimensions will be possible.

Example 2.

Let E be a line segment of length one. We can assume E = (0,1) in R.
The Hausdorff s-dimensional measure of E will be:

a. infinite if 8 < 1,

b. one if s =1, and

c. zero if s > 1.

To start, note that if s = { then “‘2usdorff l-dimensional measure is the

same as Lebesque measure. So, we need 7nly concern ourselves with parts a

and c.




Part a. Let s < 1.
Choose a large M > 0. We'll show that there is a small § so that H:(E) >M,
and that as M gets larger, § gets smaller. This will imply that lim Hg(E) = o,
completing the proof of this part. 80
So, we choose a large integer, k, such that k1-° > M and then let § = %.
(Since s < 1, a8 M increases so will k, and hence § will get.smallet--approaching
zero.) The most efficlent cover of order § (of E) will be less efficient than

k open intervals, each of length § = %w So,

HS(E) > ‘2{ (~-1 )' > l}f (!) =M
§ = k k *
n=1 n=1

This shows that the Hausdorff s-dimensional wmeasure of E is infinite when s < 1.

Part ¢. Let 8 > 1.

Choose a small number ¢ > 0. We'll show that there is a small § so that

HZ(E) < €, and that as ¢ gets smaller, so does §. This will imply that
}a Hg(E) = O.

Let ¢ > 0, and choose a large integer k so that kl-s <€, and § = %u (Since
8 > 1, as ¢ decreases, § will decrease as well.) The most efficient cover of
order § will be approximately as efficient as k intervals of length %. Thus,

8 % 1lye x €
Hy(E) = nzl (;) < n§1 (E) - €.

This shows that the Hausdorff s-dimensional measure of E 18 zero when s > 1,

completing the proof.

Example 2 digplays the type of behavior that Hausdorff e-dimensional measure
always exhibits. For subsets of R, when 8 > 1 the measure will be zero, and when
s = 1 the measure will agree with Lebesque measure. 1f the Lebesque measure is
positive, then for smaller values of s, the Hausdorff s-dimensonal measure will
always be infinite. (This can happen even if the Lebgseque messure is zero--see

section I.8.)
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These qualities are used to define Hausdorff dimension:

Definitions.

Let E be a subset of R. The Hausdorff dimension of E ig the infimum of

the set of s such that the Hausdorff s-dimensional measure of E is zero.

This definition is extended to R" by using the diameter of In instead
of the 1?ngth of In. So, IIH( = sup {d(x,y): x,y ¢ In} where "d" denotes distance
in Rm, and In is now any open set. Then the Hausdorff dimension of subsets
of R" is the same as that above.

Example 2 shows that the Hausdorff dimension of the open interval (0,1) is
one. This agrees with both intuition and topological dimension. 1In fact, the
Hausdorff dimension of a point (and any countable set) is zero (also in agreement),

and the Hausdorff dimension of R® is n. This leads us to a definition of "fractal."

Definition. A subset, E, of R" 1s a fractal if the topological dimension of E

is different than the Hausdorff dimension of E.

The first fractal we will encounter will be the "Cantor Set" in section
1.8. But, since Hausdorff dimension is hard to work with, we'll define a
"similarity dimension" in the next section. This similarity dimension will be
easy to calculate on special sets, and will agree with the Hausdorff dimension on

such sets.

Fxercises

1. Show that the Hausdorff dimension of =z single point is zero.

2. What is the Lebesque measure of the {rrational numbers between zero and one?
3. What is the Hausdorff dimension of the irrational numbers between zerc and
one?

4. 1Is the set of irratfonal numbers between zero and one a fractal?

5. What is the Hausdorff dimension of E = {(x,y): 0 < x,y {1}?
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I.7 Similarity Dimension
Similarity dimension is an easier tool for measuring the (Hausdorff)
dimension of special sets. These sets are "self-gsimilar". Ve will use the

following definition for now:

Definitions.
For the following recursive procedure, N is a pogitive integer and r is
a real number, 0 < r < 1,

(1) Start with a generating set, EO’ with one component.

(i1) Given En’ with N" components, form En+1 by replacing each component
of En by N new components so that the diameter of each new component is r
times the diameter of the old component. En+1 will have Nn+l components.

If this recursive process has a limit set, E, which uniquely depends upon
the choices for N and r, then E will be called a self-similar set,

The term, "component", used above, is intentionally vague. BRut, whatever
is meant by component in part (i) is to be used in part (ii) as well. "Com~
ponent” could be replaced by "shape". Note that there is no restriction on
the R™ in which this process takes place.

For example, Eo, could be a line segment. Then, each line segment would

be replaced by N new line segments, r times the size. Or, one could use

triangles, spheres, pyramids, helices, etc.

We'll now motivate the formula used in similarity dimension. It is
equivalent to Hausdorff dimension for self-similar sets...

In the recursive process, El could be covered by N open sets, each of
diameter r. (We assume that the diameter of Eo is 1.) Then, if 6§ > r,
H%(El) = N(r)®. Note that for EZ' the diameters are rz, but there are N2
components, 80 H:(Ez) - (Nrs)z, and in general, H:(En) = (Ne*)%. Now, as &
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goes to zero, we have n going to fafinity, (so that r" is less than §), but
this will not give a nonzero or noninfinite limit unless Ne® = 1. However,

we're looking for this value of s, say 59° When s is bigger than s the

0’
Hausdorff s-dimensional measure will be zero, and when s is less than so,

the Hausdorff s—-dimensional measure is infinite. So, s, is the Hausdorff

0
- _10gN
0  log(l/r)’

can never be greater than m.)

5
dimension of E and satisfies Nr 0 = 1. (Or, s Note: E is

imbedded in Rm, for some m, so SO

logN
log(l/r)

where N and r are as defined in the recursive process. This is also the

Definition. The similarity dimension of a self-similar set, E, is

Hausdorff dimension. The formula fails 1f it generates a dimension larger

than that of the space in which E is imbedded.

Exercises.

1. Define a point as follows: Start with a line segment, and replace any
line segment by a smaller (subset) line segment one-half the size. Then N = 1
and r = %. What 1is the dimension of a single point. 1Is a point uniquely
defined in terms of N and r?

2. Restricting N as a positive integor and r as a real number, 0 < r (1,
what is the range of the function: s(N,r) = I;%%%?;T?

3. Suppose you observe a coastline from nrbit. You digitize a picture of it
and count a tetal »f 107 pixe.!s on thz coastline between two fixed points.

The 100 pixels given an approximate length of 100 kme. You are now in an air-
plane over the same coastline and noti{co a new digitized image has twice the
resolution. After counting pixels on the coastline you now get an approxi-
mate coastline length (between the same points) of 12! kms. Finally, with a

good map with twice the previous resolution you approximate the length to be

146 kms. What approximate dimenston wzculd model this coastine?
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1.8 The Cantor Set

This will be the first section which is dedicated to applying our tools
to examples of fractals. The Cantor Set is one of the most famous "weird"
sets in all of mathematics. It was originally developed by Georg Cantor
(1845-1918) to show properties of cardinality: that it is possible for a

"emall" set to be "uncountable". We will give three equivalent formulations

of this set.

Formulation 1. (Self-similarity.) Let E, be the closed interval, [0,11, 1in R.
Choose N = 2 and r = %. Given a line segment (component) in En. remove the
middle (open) %-and replace the segment with the 2 closeu end-segments of

length % times the original:

[‘: _{ cessscc P '______" |_____l o

Formulation 2. (Closed Set.) From the interval [0,1] in R, remove the open

interval which i{s the middle one~third. For each closed interval remaining

repeat this process ad infinitum.

Formulation 3. (Tertiary numbers.) All real numbers may be written in a base
3 expansion using the digits O, 1, and 2. This expansion is unique, up to
repeating 2's which are equivalent to a 1 followed by repeating zeros. (This
is analogous to .99 = 1,0.) The Cantor Set is the collection of all real
numbers between zero and one (inclusive) which can be written in base 3 using
only the digits O and 2. (So .1 (base 3) is in the Cantor Set since
.1 (base 3) = .02 (base 3).)

It fsn't too hard to see that formulations 1 and 2 give the same set.

But it 18 rather remarkable that formulation 3 is also the same set!

27




From formulation 1, we can calculate the Hausdorff dimension (similarlity
dimension) of the Cantor Set to be log(2)/log(3). This is a noninteger number,
so it cannot agree with the topological dimension. This shows that the Cantor

Set is a fractal.

Definition. A subset, E, of a topological space, T, 18 nowhere dense if and
only if for every open set, U, in T, there is an open subset of U which does

not intersect EO.

Theorem. Let C denote the Cantor Set.
(i) The topological dimension of C is zero.
(ii) The Lebesque measure of C is zero.
(iii) € 1is an uncountable set.
(iv) € is a closed set, with no isolated points.

(v) ¢ is nowhere dense.

Proofs.

(i) C is a totally disconnected set hy construction. Let Gl""’ Gp be
open sets so that Gl Ci covers C. Then we can choose cpen subsets H1 < G1
which cover C and ;;e at mogt abutting. That is, the Hi's do not overlap.
Thus, the topological dimension of € is zero.

(i) The comnlement of ~ inside !0,]] is an open set. We'll denote it

by P. We'll find the Lebesquc measure of P by adding the lengths of all its

intervale:

()\((P) - )- ?1‘1(_;_Jl’
1=1

. , i-1
since at the ith 'evel of construction, one removes 2 intervals, each of

length (%Jj. Thus,

L ]
- Yo L 20
() 1_21 16V =7 93 b




Since P, has measure one inside [0,1] and C = PC, 2?(0) = 0,

1

(ii1) We'll prove this part by using formulation 3. The tertiary numbers
between 0 and 1 which only contain the digits O and 2 are in 1 - | corres-
pondence with the binary numbers between 0 and 1. Since there are uncountably
many (binary) numbers between O and 1, C is also uncountable.

(iv) C 1is a closed set since its complement, P, is open. Also, the end-
points of the intervals which were removed from C are elements of C. These
~

endpoints form a countable subset of C, but they are dense in C; i.e., each
point of C is a limit point of the endpoints.

(v) Given any open set, U, in [0,1], there is an open interval in P which

1s completely contained in U. Since P[1 C = ¢, C must be nowhere dense.

Thus, C is a perfect (closed with no isolated points), null (zero Lebesque
measure), nowhere dense fractal with Hausdorff dimension equal to log(2)/log(3).

It 1s easy to construct Cantor-type sets by removing the middle p,
(0 < p <1), instead of the middle one-third, of each remaining interval. The
resulting set will share most properties of the Cantor set, except its Hausdorff
dimension and gself-similarity.

in fact, it is possible to construct a Cantor-type set which has zero
Hausdorff dimension. This means its topological and Hausdorff dimension
agree, so it is not a fractal. This points out a serious flaw in the

definition of "fractal." A more general definition will be given later.
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Exercises.

1. Form a Cantor-type set by removing the middle p, (0 < p < 1), of

each remaining interval instead of the middle one-third. What is its Hausdorff
dimension? For 0 < p < 1, what is the range of values for this dimension.

2. Given any open set, U, in R, what is the Hausdorff dimension of U? What is
the Hausdorff dimension of the complement of any Cantor-type set?

3. If you divide an interval into 4 pieces and remove the second one, then
repeat this process ad infinitum, you obtain another self-similar closed set.
In general, let N =n -1 and r = %. For such self-similar sets, state an
analogous theorem to that for the Cantor set. (Include this set's Hausdorff
dimensicn.) If you replace N =n -1 by N =n - m, what values of m make
sense? What is the range of achievable ilausdorff dimensions?

4, 1In Rz, divide a square into 9 subsquares and remove the middle one. Will

this recursive process generate a fractal? What is its Hausdorff dimension.

(Remember to use diameter lengths when calculating r.)

5. 1In R3, divide a cube into 27 subcubes. At each step, (level of recursive

process), remove 7 of these subcubes. T1s the Hausdorff dimension effected by

which 7 are removed? Could one remove a different (or random) 7 at each level?
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1.9 Koch Snowflakes
Some of the first "monster curves" or "snowflakes" were constructed by
Helge von Koch. We will look at a few examples of self-similar shapes in these

categories:

Example i.

Let the generating set, EO’ be a line segment. Use N = 4 and r --% in the

following manner:
- > " A o
r

L N
o L 1 r 1

Whenever you encounter a line segment, replace it by four line segments in

the above formation. The dimension of the resulting "curve" is log 4/log 3

which 1s larger than 1.

At the nt? stage, the length of E is 4"6%)“ - (%)n. This quantity
approaches infinity as n approaches infinity, so the curve must have infinite
length. On the other hand, the entire curve will fit inside a bounded square.
This is not a contradiction; for example, if we tried to compute the

1-dimensional length of a 2-dimensional square, we would get an infinite

answer.

The Hausdorff s-dimensional measure is exactly the tool necessary to
conpute "lengths" (or measures) of s-dimensional shapes. It is necessary to
adapt the measurement to the dimension of the shape you are measuring. The
measurement could still be infinite, or zero, but it would have wmore meaning:

just as it means more to say that a line segment is 2 units long rather than it

has zero area.
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Unfortunately, it is difficult to calculate the Hausdorff s—dimensional
measure of a shape (where s 1s the shape's dimension). This measurement {i{s also
dependent on the type of sets one allows in the cover. For example, in Rz, if
we only allow open discs, we will get a different measurement than when wee
allow any open sets to be used. F.. this reason, we note that such measurements

exist and have meaning, but won't be used in this report.

Example 2.

The generating set, EO‘ will be the same as in Example 1, but N = 2 and
1
r = — . The process 1is:

______ > .

The self-similar shape resulting from this recursive process has dimension
log 2/log V3 = log 4/log 3, so the dimensions of Examples 1 and 2 are the same
(in fact, they are more directly related than that--see the exercises).

Since in both of the examples above each shape is connected (not
disconnected) and lies in R2, their topological dimensions are at least one. It
is a bit harder to show that their topological dimensions are actually equal to
one. But for any shape, E, the topological dimension of E is always less than
or equal to the Hausdorff dimensior of E. Regardless, the shapes in examples |

and 2 are fractal curves.

Example 3.

The generator, EO, will still be a iine segment. Now, N = 3 and r = %.

The process {is:

A
-




v

The height, h, is ﬂg times the length of the segment on the left. Thus, if EO
has length 1, the farthest displaced point from E0 in the limit set, E, will be

0 n
+
Z <Jg> '2—1—3—91—3 units away. The Hausdorff dimension of this fractal curve
n=}

is log 3/log 2.
Exercises.
1
I. In example 2, if r -jg » the Hausdorff dimension of the resulting set is 2.

This is an area filling curve. If this process is done in R2 andjé <r<l,

does the predicted Hausdorff dimension make sense?

2. As in example 2, let N = 2 and r -jé « Each time the process is done, flip
a coin to determine whether the triangle will displace up or down. Does the
dimension change from that of example 2? Give a rough sketch of a resulting E.
3, For N =3 and a fixed r, %-( r < j% » there are more degrees of freedom in
a random process than there were in exercise 2. Explain.

4, 1If we take example 1 and apply it to the 3 sides of an equilateral triangle,
we Zet a "snowflake". What is its dimension? Does this change if we apply it
to the sides of a square?

5. Let Eo be a square imbedded in R3. Define N = 13 and r =-% as follows:

""" > /T
a4 7

What 1is the Hausdorff dimension of E?

6. Exercise 5 may be applied to the 6 sides of a cube. What shape does it

regsemble?

7. Show that a countably infinite set of points on the curves generated in

examples 1 and 2 are the same.
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1.10 Random Coastlines

Exercise 3 in section 1.9 contains an idea we can use to generate random
fractal curves of any specified dimension between one and two. Since
self-similarity does not require that the same scheme be used at each level of
the recursive process, (only N and r need be fixed), we can randomly change the

scheme to obtain a random fractal curve.

1
3

any dimension between one and two. In example 3 of section 1.9, r = % so the

1
If N=3 and + {r { —, by specifying r, it is possible to achieve
V3

resulting dimension was log 3/log 2. If you want the dimension to be d,

-1/d

then choose r = N where N = 3,

Since we want our curve to be connected, at each stage we join 3 segments

where there was only one. These segments have fixed length, £:

N, old segment -

l \\‘\ . ';/?j

In the above diagram, we can place the first segment anywhere within the

maximum arc sbout the left endpoint. (See the exercises.)
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Once this segment has been placed, there are exactly 2 choices for the
placement of the second segment (unless the first was at + max 0, {in which case

there is only one choice). The placement of the third segment is determined.

So, this algorithm requires a random number between -max 9 and max 6 for
placement of the first segment; and a coin toss (0,1 random variable) for place-
ment of the second segment which also determines placement of the third segment.
The continuous random variable in the process allows for greater variability
than a single coin toss at each step (which is what happens if N = 2),

The four pages of figures which follow make it clear that this process can
be used to model coastlines. At first glance, this fact seems to be of little
use. However, the fact {s useful from a "first-principles" point of view,
leading us to believe that coastlines are self-similar objects. Thus, any valid
geological theory on the evolution of coast-lines would need to address some

gimilarity at different scales.
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Figure 2

"The nine frames in this figure depict random coastlines
generated with an algorithm based on exercise 2 in sec-
tion 1.9. The ratio, r, is varied so that dimensions of
1.1, 1.2, eee, 1.9 are realized. For each picture, the
probability of displacing up is 1/2. 2749 points are
graphed per frame. We ca. s:z# the highar dimeusion

fractals are arca filling.

16




Figure 3

"In each row of this figure, dimensions are 1.01, 1.05,
and l.1 (from left to right). The same algorithm was
used as in figure 2, but now the probabilities of
curving down are .5, .7, and .9 for the top through
bottom row, respectively. 1025 points were plotted

in each figure."
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Figure 4

"Each randon fractal in this figurc has dimension 1l.1. The

probabilities of curving down vary from .l to .9."

"On the following page: All 18 frames in figure 5 use the 3
segment algorithm developed in this section. 1In the first 3
rows, & uniform distribution is used for the angle of the
first segment and .5 is used for the next two segments (just
like a 2-segment algorithu’ ‘he last 3 rows all depict a
dimension of l.i. The last 2 rows use a truncated normal
distribution with small and large standard deviation
(respectively) anrd probabilities of .1 and .9,

respectively for the las: 2 segments.”
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Unfortunately, the algorithm described in this section is not too useful
outside of graphic simulation. A much more applicable idea would be to use
self-similarity in order to decrease the amount of data required to depict an
actual geographic object. That is, given a mountain, is it possible to generate
an accurate image of this mountain without using the millions of bits of
information contained in a high resolution photograph? If it were, then the
image could be transmitted to another person (or machine) in a fraction of the

usual time.

Exercises.
1

1. Given N = 3 and fixed r, with l-( r <
3 /3

, what is the value of max 6 as
described earlier in this section?

2, If the first segment makes an angle of max 8 with the left endpoint of the
0ld segment, what angle will the third segment make with the right endpoint?
Note that this value was used as the standard deviation of the (truncated)

normal distribution in some of the figures ir this section.

3. Construct an algorithm similar to the one in this section, but use N = 4,
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I.11 Another Approach - IFS

The definition of a self-similar set given in I.7 is neither exact nor
formal. It is useful from an intuitive point of view, but not too useful
nathematically. 1In this section we will develop the framework necessary to
study Iterated Function Systems (IFS).

The paper "Fractals and Self-Similarity" by John Hutchinson gives a
complete discussion of the ideas behind IFS, Michael Barnsley coined the term
IFS and has exploited the mathematics for applications for DARPA, AFOSR, and his
own company, Iterated Systems, Inc.

Three topics will be introduced in this section: "compact sets", "the
Hausdorff metric", and "contraction maps"”. It will help to use the following
relations:

a. Compact sets will be pilctures, images, or real shapes.

b. The Hausdorff metric will measure how close two compact sets
(pictures) are to being the same.

c. Contraction maps will act as lenses which focus any starting image
into a determined compact set (picture)--sort of like a kaleidoscope.

In practice, the contraction maps will be repeatedly applied to any
generating set (image). Each application will bring a new image which is closer
to the limiting image (compact set). This process can be used to generate
fractals like those we have geen earlier, or extremely detafled pictures of
nature, including human faces. (The less self-similar seeming the picture, the
greater number of contraction maps are necessary to generate it.)

We will start with the idea of a compact set.
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Definition. Let (T, 92) be a topological space. A subset of T, F, is compact if

and only if for all collections {Aa: a €1, A e 0} such that (J ALDF,
ael

there is a finite subcollection {Au : 4 =1, .o, n, a € 1} such that
i
n
U Aa1 > F also.
i=1
In words, a set is compact if and only if given an arbitrary open cover,

there is a finite subcover.

Example 1. A point is compact.
Let 0 € R. If there ig an acrbitrary collection of open sets in R which

cover {0}, then at least one of those sets must actually contain 0. This set is a

finite subcover, so {0} is compact.

Example 2. An open interval is not compact.

Let (0,1) be a subset of R. We will construct an open cover of {(0,1) which

has no finite subcover:

Define G = (%, 1). Then Y G, = (0,1) so {Gn] is an open cover of (0,1).

n=1
If there were a finite subcover from {Gr}, then :here would be a maximum index,

say N, in that subcover. But G,q = %, 1), and since no index in the subcover is
larger than N, the points between 0 and % ares rc*% covered by this finite

collection. Thug, there 18 ro finite subcover and (0,1) is no: compact.

Definition. A subset, B, of R" is bounded {f and only if sup {d(x,0): x e B} is
finite where d !s F.ciidean distance. Ttut iz, 7 ie bounded 1 and only if 3
will fit inside =some n-ball of finite radius.

We will state the follewing useful theorem without proof:

Theorem. A subset of R" is compact if and only if it 18 closed and bounded.
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Example 3. The Cantor Set is compact since it is closed and bounded in R.

Exanple 4. All the fractal curves generated in section I.10 are compact, since

they are also closed and bounded.

Example 5. Any image on a monitor is compact since it consists of a finite

number of points (pixels).

Fxample 6. Any observable shape of matter is compact. (One would need to be

careful with particle/wave duality at a very small scale.)
The next two topics require a review of metric spaces.

Definition. If S is a set and d: S x S + R, then (S,d) is a metric space if and

only if the following conditions are satisfied:
(1) for all x,y € S, d(x,y) > O and d(x,y) = 0 if and only if x = y.
(ii) for all x,y € S, d(x,y) = d(y,x).
(ii1) for all x,y,z € S, d(x,z) < d(x,y) + d(y,z).

Remarks. A metric space abstracts the idea of distance, embodied in the

function, d. The first two requirements are straightforward; the third
requirement says that ic¢'s always shorter to go from one point directly to

another. Also, every metric space generates a natural topology in the following

ranner:

A point, x, is an interior point of ‘. (a subset of the metric space), if
and only if there is an ¢ > 0 so that 1 ~ , ' < € then y € A. Uith this
definition, a set is open if and only ' .- .f its elements is an interior
point.

This development shows that a toj.' ... space is more abstract than a
metric space since every metric space i. . topological space, but not vice
versa.
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Example 7. (Rn,d) is a metric space where d((xl, coe, xn),(yl, oo, yn)]

n 1/2
3 - P]

i=1
This Euclidean metric, d, generates the usual topology on R". (Note

n=1, 2, 3...)

We are now in a position to define the Hausdorff metric.

Definition. Let n be a fixed natural number, and S = {F E; R": F is compact
and nonempty}.

If x is any point in R" and A < Rn, extend the usual Euclidean metric to
d(x,A) = inf {d(x,y): y € A}. So, d(x,A) measures the closest distance between
the point and the set. Now extend d to A and B, (subsers of Rn), as d(A,B) is
the maximum of sup{d(x,B): x € A} and sup{d(y,A): y € Bl.

d is the Hausdorff metric.

We need to show that (S,d) is a metric space.

Theorem. (S,d), described above, 1s a metric space.

Proof. Fix n € N and let A, B, and C be compact sets in Rn, and thus elements

of S.

(1) d(A,B) > 0 since the Euclidean metric is nonnegative. d is finite
valued since both A and B are bounded secs. Assume A = B. Then, for all x € A,
d(x,B) = 0. Thus, sup{d(x,B): x € A} = 0. Similary, sup{d(y,A): y € B} = O.
Therefore, d(A,B) = 0. Now 2scume d(A,B) = 0. Then, sup{d(x,B): x € A} =0,
implying that each d(x,B) = 0, since they're all nonnegacive. Thus, inf {d(x,y):
y € B} = 0 for each x. This implies that x is a limit point of B. Since B is
closed, x £ B for each x ¢ A, implying A C B. Similarly, B C A, which shows

that A = B and completes part (1) of the definition of a metric space.
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(i1) By definition,

d(A,B) = max {sux d(x,B), sug d(y,A}
X€E ye
- d ] » »
max {;2g (y,A) sup a(x,B) }

= d(B,A)

(111) s:e d(z,A) = sup inf d(x,z).
z zeC xe€A

Since B is a closed set, there is a y, for which d(yz,z) = ing d(y,z)
ye
= d(z,B). Thus, sup d(z,A) < sup inf [d(x,y ) + d(y_,z)
(z, ’ zeg vA) "zeg XEA [ Yz Var ]
= gup inf {d(x,y ) + d(z,B)
zeg x€A [ ayz ’ ]

= su [igﬁ dx,y,) + a(z,8) ]

= :2 [d(yz.A) + d(z,B) ]

= d(y,,A) + sup d(z,8)

A

;23 d(y,A) + sup d(z,B).

By an exactly similar argument,

sup d(x,C) < sup d(y,C) + sup d(x,B).
xX€A yeB x€A

Therefore,

d(A,C) = max {sup d(x,C), sup d(z,A)}
X€A zeC

< max {sup d(y,C) + sup d(x,B), sup d(y,A) + sup d(z,B) }
yeB XeA yeB zeC

< max {sup d(y,C), sup d(z,B)} + max {sup d(x,B), sup d(y,A) |
yeB zeC xX€A yeB

= d(B,C) + d(A,B), completing part (iii) and showing that (S,d) is a

metric space.

-45-




Example 8. In R, the (Hausdorff) distance between the Cantor Set and the interval

[0,1] is %.
Let A be the Cantor Set and B = [0,1]. Since A & B, d(x,B) = 0 for each
x € A. Thus, ::K d(x,B) = 0. If y € B then d(y,A) > O when y 4 A. The largest
part of B which does not contain points of A is the interval [%3 %). It 1s easy
to see that y =-% is the point in B which is farthest from any point in A, so
a(3, A) =¢. Thus, d(A,B) =% .

Example 9. 1In R2, the (Hausdorff) distance between A = {(x,y): x2 + y2 < 1} and

B = {(x,y): y =0 and -2 { x {2} is 1.
It is easy to check that sgp d((x,y),A) = 1, Also, sxp a{(x,y),B) = 1.

Thus, d(A,B) = 1.
We will now define contraction mappings.

Definition. 1f f: S + S where (S,d) is a metric space, then f is a contraction
mapping if and only if there is a real comstant, r, so that 0 { r < 1, and for

all x,y ¢ S, d(f(x), f(y)) £ rd(x,y).

Intuitively, a contraction mapping decreases the distance between any two
points. Consequently, every contraction mapping 1s continuous, and every

“fixed point." That is, if f is a contraction

contraction mapping has a unique
mapping on S, then there is a unique point, Xy 80 thav f(xo) = Xqe The proofs

of these facts are left for the exerrises.

Example 10. If f: R » R by f(x) = X then £ is a contraction map.

Let r = %. Then, for any x,y e R, d{f(x), f(y)) = |f(x) - £(y)| = |§ - %1

= %Ix - y| = rd(x,y). Zero 1s the fixed point.




Example 11. Define f: 82 » ®? by f£(x,y) = (2%-[/3;( -], —l-[liy + x]). Then f is a

contraction mapping with r '-%, and fixed point, (0,0).

Let (xl,yl) and (x2,y2) be points in Rz.

d(f(xl ,)'1 ), f(xz 'yz)) -

d(('ll.' ['/3 S Yll» 7,1'[';3- y, + xl])- ('117 [IS Xy = )'Z]v %["3 Yy * xz]))

— m 2
/(—5[/3 (x) = %) = (y; - yz)])z + (217["3 (y) = 9) * Gy = xp)])

1 2 2 2 2
L/ = x)t Gy =y 3y -y R * x) - x,)

2

1 )
7 /("1 - X))+ (y) - yy)

1
7 d((xl, yl). (xz, yz)).
It is easy to see that zero is the fixed point. This function rotates a point

by g radfans, counterclockwise about the origin, and decreases its distance from

1
2.

spiral trajectory into the origin.

the origin by Thus, repeated applications of f will take a point through a

Definitions. Let fl’ eves fm be contraction maps on R". Then {fi: i=1, ..., m}

is called an iterated function system (IFS).

If A & R", then f{(A) = {ye R": there is an x € R" and £, (x) = y} for each

i =1, veuy m; £OCA) = A and £ 1) = £, (£5(0)).
i i b A §
We will let f denote the collection {fiz i=1, «., m} as follows:

n
is=1

and fk(A) is the kth iterate of f.

The following fact is presented without proof:
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Theorem. If f = {f ti=1, o.., m} is an interated function system of contrac-

i
tion maps on Rn, then there is a unique compact set, F g;'Rn, such that f(F) = F

and for any nonempty set, A C Rn, IE& fn(A) = F in the Hausdorff metric.
n

Example 12. Let f = {fl’fZ} where each fi: R * R by fl(x) - %, fz(x) = (x+2)/3.
Then, the fixed point of f is the Cantor Set.

First, we'll show that lim fn(lo,ll) = C, where C is the Cantor Set:
n-+o

fl([O,ll) = {y: there is an x ¢ [0,1] and fl(x) =y} = fo’%ﬂ.
Also, £,([0,1]) = 21
Thus, £([0,1]) = £,([0,1D U £,(l0,1]) = [0,%] LJ[%.ll- We can see that this is

the first level of the construction of C in section I.8.
Now, we'll calculate f2([0,1]) = £(£[0,1]):

g, (0L UE1]) = fo, 11U B, 41

(031 UBaN - B, 21U g1l

So, fz([0,1]) = I’O,-l] U [%" %] U[%, %] U Eg,l]. In general, fl will take an
interval and move both the endpoints %-closer to the origin. f2 will do the
same thing, and then add % to every point in that interval, shifting it to the
right by %. une should be able to cee that this {s equivalent (when repeated ad
infinitum) to both formulations 1 and 2 in section 1.8. Thus, %1& fn([0,l]) = C.

Let's try to show that € is in fact a fixed point of f. To do this, we'll
use formulation 3 of C from section I.8:

C = [x: x= § —L uhere d_ = 0 or 2].
n=1 3" n
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Let x € C. Then,

L d
x= ¥ -f} (tertiary expansion with 0's and 2's)
n=l 3

. L dn o d
f(x) =T = ] —— = ) where d.= O,
1 3 oper 3™l o 0

Thus, f takes points in C to other points in C.

d

1

wlr

x 2 v -1
fz(x) ~3t3y= ¥ — + 3 ,vhere d; = 0,
n=] 3
n-1

n=1 3

where do = 2,

So, f2 also takes points in C to the other points in C. Thus, C is a fixed (set)

point of f.

How does one find the dimension of a fixed point of an IFS? We know the
dimension of the Cantor Set is log 2/log 3, but in general the functions in the

IFS must hold the key.

Definition. The ratio of a contraction map on R" is the infimum of all r for

which d{f(x), f(y)) £ rd(x,y) still holds for all x, y ¢ R".
Thus, in example 12, the ratios of fl and f2 are both %.

Fact. Under certain conditions on the IFS given by f = {fi: 1 =1, «ov, m}, if

the ratio of f, is r,, then the dimension of the fixed point (set) of f is the

i 1’ o
unique number s such that § ri = 1.
i=1

The conditions necessary for this fact are too technical to discuss. But,
among other things, each fi must be a similitude (preserves shape, but not size).

Additionally, there cannot be too much overlap in a construction (following the

process of section 1.7).




Example 13. Calculate the Hausdorff dimension of the Cantor Set by using the fact

on the previous page.

1 1.s JRY:)
Since r, = r, =3, we need to solve (3] + (5) = 1 for s.

2(%)8 =1, so s = log(1/2)/10og(1/3), implying that s = log 2/log 3.

Exercises.

1. Prove that the topology generated by a metric space really is a topology.

2. Prove that the general Euclidean metric really is a metric.

th gset in the recursive process which generates

th

3. In sgection I.8, let En be the n
the Cantor set in formulation 1. (Alternately, En is the n iteration of f on
[0,1] in example 12 of this section.) Find d(En’ {0,1]) where d is the Hausdorff

metric on compact subsets of R.

4. Let f be the IFS in example 12. Find lim £ ([-1,0)).

n+o

2

5. Let f = {fl' f2, f3} where each f1: R" »+ Rz, is given in polar coordinates by:

£,(r,0) = (3, 8 + %)

6
r+l in
£y(m,0) = (B 0+ )

1-r b
f3(r,e) - (—2—', e - -é-).
Calculate the Hausdorff dimension of the fixed point of f. Find f(A) where
A ={(r,0): r < 1}.

6. Prove that a contraction mapping is continuous and has a unique fixed point.
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1.12 Further Examples

It turns out that many useful IFS are collections of "affine" functions.

Definition. A function, f: R » Rn, is affine if and only if there is an n x n

matrix, A, and a n x 1 vector, b so that if x € Rn, (x 18 n x 1), then

£(x) = Ax + b.

The functions in the IFS mist still be contraction maps, but affine

functions usually suffice to form useful pictures (compact fixed sets).

Example 1. Let f = {fl’ £, £3} vwhere each f,: R

(]
£ 1

This IFS has the "Sierpinski Triangle" as its fixed set

(Figure 6, page 57.)

Remember that the fixed set, P, is the lim f"(A),
ne

subset of Rz. The easiest A to choose would be the set

origin;

A.grg]?‘.

Then:

0.5

P

2

and

50 _J
L

(point).

where A 1s any nonempty

containing just the

1 1 25
fl(A) - [1] ’ fz(A) - [50] ’ and f3(A) - [50]‘
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1 1 25
So, f(A) = {[1]’ [50]’ [50]}‘
2 1.5 1.5 13.5 1.5 1.5 13,5 25.5 25.5 37.5
£7@ = {75k Lo h [Uoe b [sols b [3s) 13570 [sgis ) 155570 (557711, ete.
Implementing this algorithm on a computer is memory intensive. It is

l(A)o To

necessary to store fk(A), reference all its elements, and generate fk+
generate a picture on a typical computer monitor would require two arrays, each
capable of holding 640 x 350 bits. And this is only for functions in Rz.

Here is another algorithm. Unfortunately, it is extremely slow and

redundant, but it does require minimal memory.

Theorem. If f = {fi: 1 =1, ..., m} is an IFS, then the fixed set (point) of f, P,

is the collection of all fixed points of all finite compositions of the fi's.

Example 2. Another way of constructing the fixed set of example I.
We first find the fixed points of fl’ f2’ and f3. (Note: the fixed
point of Ax + b is (I - M7 1f 1 exists, where I {s the identity matrix.)

The fixed point of fl is:

(g 21-1% %™ 1)

- 120150 - 2.

2 50
Similary, the fixed points of f, and f, are: [ ,.] and [100], respectively.

3

So, [g], [130], and [133] are points in the fixed set of f, not just approximating

points.
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The theorem says we need all fixed points of all compositions of the fi's
We just computed fixed points of compositions of order 1. T.e, fl’ fz, f3 are

themselves trivial compositions.
Next we'll calculate compositions of order 2:
These are:
By efy £y oty £y of3, £y ey, fyofy, fyefy, f5°1)
f3 ° fz > and f3 ° f30

Since composition of functions is not necessarily commutative, all nine need to be

considered. To compose two affine functions: fl = Ax + b and f2 = Cx + &,

£, 0 £,(x) = A(Cx +d) + b

= ACx + Ad + b.
In our example, all the matrices are the same, so each matrix of the order 2 com-

25

position will be ['0 25].

However, there are nine possibilities for the vector

part: ['g .g]i + b where d and b can be [i], [Sé], or [gg]. So, we get vector

1.5 5 13.5 e5 13.5 25.5 25.5 37.5
parts of : [1_5]' [26 ] [ ] [50 5] [ ] [ ] [50.5] [ ]r [ ]‘
We need to calculate the 9 fixed points of these 9 compositions. Since each com-

position is still an affine map, we use the same technique as on the order 1|

compositions to obtain fixed points:

30 Geod Gad) 1750 Lol Liogds Lerosle ool ané (1go):

Note that [g] and [lgg] were already known. Even though we calculated 3 + 9 fixed

points, we only have 10 distinct points in our fixed set.
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Since the number of compositions of order n is 3“, and there is much
redundancy, it should be clear that this algorithm is slow. But, at least it

requires minimal memory, (just for the original functions).

Example 3. Define an IFS as f = {fi: 1 =1, ..., 8} where £,: R% » R2 as

fi(X) = Aix + bi and

0 0 85 0
ap=lo el v A= [g aslo
.85 01 2 .
Aa”[o s A= 3], and
(-2 .2
As = .2 .2] .

- 0 - - 0 - 0
by = [p) s By =by=[; ), andb, =bs=["T

This IFS will generate a fern branch in RZ. It 18 possible to modify this

IFS to generate a (curved) fern branch in R3...

{‘o 0 o“ .85 0 0
Ap = |0 .18 ol , Ay = 0 .85 .1
l_o o o] Lo -1 .85

>
]

-.85 0 0 .2 2 0
3 0 .85 .1 , Aé = .2 o2 0 , and
| 0 -.1 .85 | 0 o .

54




The best known algorithm for generating a fixed set of an IFS is the "Random
Iteration Algorithm” or "Chaos Game". It is an extrapolation of the scheme
presented in example 1. 1Instead of computing the complete set function at each
iteration, we randomly choose a single contraction map from the IFS to iterate
the last point only.

The RIA (Random lteration Algorithm) relies on fixed probabilities
associated with each contraction map in the IFS. The probabilities are chosen to
describe the area-relationship of each map to the whole.

Area-relationships of affine maps are easily calculated by determinants.

For example, 1f f(x) = Ax + b then f will map the unit square (in RZ) with
vertices: (0,0), (1,0), (1,1), and (0,1) to a parallelegram with area equal to
the determinant of A.

Thus, if an IFS is given by {f1: 1i=1, ..., n} and each fi(;5 = Ai; + Ei’

then we will assign a probability, Py» to each f1 via the formula:

. det Ai
Py n ¢
§ det A
i=1

This will {nsure that those contraction maps dealing with "a lot of area" have

i

a higher probability. If detAJ = 0, then assign a small probability like 0.0l

to f,.

]
The RIA can be described as follows:

1. Given an "IFS with probabilities”: {fl, Pys fz.Pzi I fn’ Pn} so

n
that § py = Lo
i=1

1]
2., Pick a fixed point, %514’ of one of the f1 8.

3. Generate a uniform random number, r, between rero and one.
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k-1 k
4, Choose k so that § P, <rX y Py
i=1 i=1

5. Let x .= fk(xold ) and graph Xo1d.

- 3 6'
6 Let X014 be replaced by xnew and repeat steps through

The RIA is very efficient. All the figures in this section were created

with the RIA.

FAC'I::

Small changes in the parameters (entries of the matrices and vectors)

of an IFS will cause small changes in the fixed set (picture).
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,.Ar‘iur A

Figure 6

"This Sierpinski Triangle is the fixed set of three contraction

f‘(;) = Aix + bi' i =1, 2, 3 where

maps:

0.5
0

AI'A2=A3'[
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Figure 7

"This spiral was ~1earted using two contraction maps with matrices

and vectors given by

a b] Ly fe
(5 g eme [F]

J
where
_a bk e 4 e f
£ 85 -.31 51 8 1 -1
f., =<3 0 0 -.3 10 1
-58-
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Figure 8

"Continuing the notation from Figure 7, this figure

set of the IFS given by:

is the fixed

a b c d e f
fl 0 0 0 5 0 0
f, A2 -.42 42 42 0 .2
f3 42 42 =42 42 0 o2

. o1 0 i
fb 1 0 0
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"This fern braach a’sc anpzavs oo sas~ ! e iTe Ag:
LN " .
fl 0 U (1 S '
£ 25 Ok i
2
¥ >y -
1 .2 .ot .
£, =19 25 e . Y M




Figure 10

"The IFS for this figure is:

a b c d e f
fl .6 0 0 o6 .18 .36
fz .6 0 0 .6 .18 .12
f3 24 .3 -.3 o4 W27 .36
fa .4 -3 .3 WA .27 .9 .
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A«v‘ L
Figure 12
"This figure's IFS is:
a b c d e f
£, .3 .4 b .3 i 0
£, .5 0 0 .5 0 0
£, o3 o4 -4 .3 -1 o ."
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Figure 13

"This dragon's tail was created with an IFS of:

a b c d e f
fl a2 ‘-.3 03 "'/‘ 10 -1
- [ - "
f2 .9 .1 .1 o0 1 10 .
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Figure 14

"This star-burst fractal was created with an IFS of:

a L c d e f
f1 -.707 .707 .707 0O 10 1
f2 .5 0 0o -.8 10 1
f3 0 0 S5 =5 10 o .
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Exercises.

1.

2.

What i{s the dimension of the Sierpinski Triangle?

cosd -sind

Recall that the matrix[
sind cos®

] will rotate points in Rz, 6 radians,

counterclockwise about the orgin. Write [.f?l :;5] as r [:::: -:i::] .
What is r and 6. Note that r i{s the contraction ratio.

What 1is the approximate dimension of the fern in R3 described in the

second half of example 3? (Hint: When dealing with a function which
doesn't have an easy contraction ratio, bound it by 2 functions which do.
This will give bounds on the dimension when using the fact in section 1.11.)
If f(x) = Ax + b, under what conditions will I-A be an invertable matrix, so
that the fixed point of f may be found? (Hint: Consider the eigenvalues

of A.)

It can be shown that if A is a 2 x 2 matrix and f(x) = Ax + b, then f is a

contraction map if and only f:

< 1.

i + Jart - 4fa)?
)

In fact, the ratio of f is the quantity on the left-hand-side where:

2 = a2 + b2+ 2+ q? and IAI2 - (detA)z. Find the dimension of the

fractal in figure 14. What is the ratio of a rotation map?
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Figure 15

Part 1I1:

Chaos

A7




I1.1 Introduction

The study of chaos is better described as a =tudy of the paths to
chaos. Typically, a physical system~—-like a driven pendulum-~will undergo
predictable regular behavior through a continuous change of a parameter (in
the motor), until all at once, irregularity is observed. Or, a column of
smoke from a cigarette will rise in easy patterns, until at gsome height it
breaks up and becomes turbulent. Or, the fluid flow in a blender seems to
follow regular swirls, until at some speed, 1t looks random.

Obviously, there are magnitudes of irregularity, and chaos is not always
an apt term for some of the less dramatic behavior of these systems. But the
connotation that the word chaos provides is appropriate: there is an order of
complexity in the system which makes it unpredictable. This complexity is
usually a symptom of a nonlinear system. Linear systems have highly regular
behavior through all changes in their parameters. But a nonlinear system has
an amazing potential for strange behavior.

Some thought on ohservations of physical systems leads us to suspect
noise, and at very small scales, quantum effects as the culprits behind
unpredictability. Noise and Heisenberg's uncertainty principle are not
explained away or even encompassed by chaos theory. They are additional limits
to observations. Chaos provides randomness from seemingly exact mathematical
models. Noise and quantum effects provide additional unpredictability to the
exact model. This report will no address the effects of noise and quantum

principles.
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First, we will discuss what a nonlinear function can do when applied
repeatedly to a point (iterated). This is the study of orbits, and it leads
to invariant sets and attractors, all of which have phvsical significance.

We will tie this to fractals by noting that many natural invariant sets and
attractors are also fractals.

Perhaps the most astonishing facts in chans theory come from universality.
Mitchell Feigenbaum has shown that many of the paths to chaos are essentfally
the same. When viewed from the parameter space, (the parameter whose change
will bring unpredictability), the progression to chaos of a driven pendulum
will be "the same" as that of a small cell of heated fluid. Two univeral
constants, a = 2.950290787... and 6 = 4.66920i6..., will show up in both of
these systems. These discussions will focus on the "bifurcation diagram."

After universality, we will also present some basic complex number dynamics,

to include the Mandelbrot Set, and finish with a discussion of randomness.
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I1.2 The Poincare Map

One of the most useful spaces in which to describe physical phenomena is
called phase space. It frequently involves twice the number of dimensions
needed to describe the system itself because phase space usually contains
information on both the position and velocity of the system. We are plotting
dependent variables against each other. For example, x(t) and v(t). Phase
space allows us to tell how a system evolves in time. The path (trajectory) in
phase space shows how the system behaves. If the path is confined to a region,
that says something about the system's nature.

If a pendulum is oscillating in a plane, then only the angle, 6, {s
necessary to describe the pendulum's position. So, it is a one-dimensional
system. Rather than graph € versus time, t, phase space will plot é versus 8
(where & = d8/dt).

1f the pendulum is not oscillating in a plane, (this is realistic due to
the Coriolis effect), then two angles are necessary to describe its position.
Thus, a graph of position versus time would require three dimensions, whereas
the phase space is four dimensional.

Because phase space 1is usually of a dimension which precludes graphing,

it is often useful to use a Poincare section on a difficult trajectory. The

trajectory in the first example will be close to a circle, parametrized by time
(and thus, with direction). Butr, if the pendulum i{s driven, the trajectory
need not close back on itself. One way of simplifytng this 1is to intersect the
trajectory with a curve (or line). This curve, with its points of intersection,
(usually labeled with the time of intersection), is the Poincare section.

The Poincare map is the function which gives a point of intersection from
the trajectory and the Poincare seciion. In the case of the driven pendulum, we

will obtaln a different Poincare map (and Poincaré section) wich each change in
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Pendulum

Simple Harwmonic Motion
(Prage Space)

-
) Poincare Secticn
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J-cycle with period, P
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Chaos
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the nonlinearity constant: that number which describes the driver. For very
small values of this number, we will still obtain a l-cycle (closed curve).
Then at a fixed value, a 2-cycle will appear. For smaller and smaller changes
in the nonlinearity constant, 4-cycles, 8-cycles, etc. will develop until at
last, chaos will prevail. In this case, chaos simply means that there is

no cycle, and so the motion is irregular. This progression to chaos is best

seen through a bifurcation diagram. (See II.7).

-

/ <
Poincaré |

__.-"‘"4_/{

Map kY
///////’///////’//«’,,/f””/f \\\\\\\\\\*//.
. N\

Nonlincarity Parameter

Another version of the Poincarve map (also «i:llad the return map) is
obtained bv fixing a value for the nonlinearity parameter and fixing a Poincaie
section. We then start the trajectory &t an arbitrary point in phase space
and number the congecutive intersectlions with the Poincare section (instead of
just looking at the limit trajectory and labeling the time of intergsection). A

function, f, is defined as F(xn) e where ¥ and X+1 Ve consecutve
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positions on the Poincare section. By starting the trai- tory at all points in
phase space, wc obcain a continuous function, f. It turns out that nearly
all such Poincaré maps have the same generic shape: that of an inverted
parabola, (although it usually is bounded since we usuaily limit ourselves to a
bounded region in phasz space).

Because of the wa this Poincare nep is det:-~-d, the fundamental techknique
in studying it is the iteration of ccrtirous functicns. If repeated
applications of the function, f. bring us closer to s single point, then we are

anproaching a fixed point of f, and it corresponds to a i-evcle in phase space.

Exercises.

i. An ideal penduium (with planar motion} with no friction will regularly
repeat any state i is started {n. Thus, the !imit trajectory is always a 1-
cycle. TIf we measure theta from -7 to =#, renso:r. that the Poincare aap (return
map) will be: f(x) = », for -n < x < n. (ilse the B-axis as the Poincare

section. )

- »
2 Do the same as in problem 1| hbur use the B8-axis as the Poincare section.

What will the domain of the rerurn map be?




I1.3 1Iterations of Continuous Functions: Orbits

Because the Poincare map can reduce the dimension and complexity of a
physical system's behavior, it is very useful in the study of chaos. The return
map is usually a continuous function defined on an interval which is strictly
increasing to a maximum and then decreasing. This generic characteristic of
rnost Poincaré maps led mathematicians to study their behavior without reference
to any physical system.

The most commonly used technique to analyze behavior of return maps
involves repeated iterations of functional values. We start with a fixed
value, X, and compute f(xo) = X, f(f(xo)) = f(xl] = X, €tcs, to obtain the

orbit of Xy The orbit is a sequence of numbers, {xn}:=0’ which can display

many types of behavior:

. Fach x_1is either the same, or eventually the same. That s, {xn} is a
constant sequence. Recalling that the Poincare map is derived from a fixed
Poincare section and nonlinearity parameter, the significance of this is that
the physical svstem is going through a l-cycle.

2., Every m values of the orbit, {xn}, repeat. This implies that the
system is going through an mrcycle.

3. The orbit gets closer and closer to m repeating values. This system
has an mcycle as its limit trajectory, but the particular orbit chosen is not
on that tralectory. It merely approeches it.

4, The orbit, {xn}, is dense in the domain of the return map. Most
definitions will include this as a criterion for chaos. lie can imagine the
trajectory of the physical system as randomly filling up its phase space: 1like

a motorized spinning cue ball rebouncing on a billiard table (without pockets).
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5. The orbit seems to be random, as in 4, but is localized: that is, it

never goes in some regions of the domain. The trajectory of this system is

influenced by some attractor, quite possibly a fractal. (These are often called

strange attractors, and will be discussed more in section I1.5.)

All of the behaviors listed above, while significant to the physical

system, can be studied using simple mathematical tools.

A useful geometric trick is described in the following example:

Example 1.

Let f(x) = x(1 - x), for x ¢ [0,1]. Find the orbit of Xq = % .

The straightforward approach involves finding f(%), sz%) = f(f(%)), etc.:
we would get %3 %, %E' %%3’ es. The arithmetic gets tedious, and a calculator or
computer is useful. But the qualitative behavior of the orbit of % can be

gleaned from the following geometric technique:

A
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1f we believe the diagram, it is obvious that the orbit is converging to

zero. This technique works as follows: We start at X

but is represented as a height on the

and go up to the
graph of f to find f(xo). This value is X,

y—axis. To represent x, on the x-axis, we go horizontally to the line, y = x,

1
and then vertically (down) to the x-axis. The distance from zero to X is
exactly the height of xI = f(xo). We then repeat this process ad infinitum

to observe the orbit, {xn}. In this case, the xn's obviously decrease to zero, a

limit point. (This corresponds to a physical system approaching a l-cycle, or

losing energy to a state of no motion.)

Example 2.

Define fX(X) = xx(l - x), for x € {0, 1]. When X =1, the function of
example 1 is obtained. A is a nonlinearity parameter, and changes in A can put

us on the path to chaos. (See the exercises.)

Example 3.

Define gx(x) = J'XX. 10 <x<

L - 0, 1t T<x <L
Again, ) is a nonlinearity parameter. The functions defined by g are called
tent maps because of their shape. The functions defined by f are called
logistic naps.
When X = 2, gy can be analyzed with a nurmerical trick:
Writé the numbers in {0, 1] in :heir binary expansion. Then note
that since gz(x) = 2x or gz(x) = 2(1 - x), (and 2 = 10 base 2), calculations of

"o
.

f) are very easy. In the following explanation, all numbers with & point, ,

are base 2.
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For exampie, {if Xy = .01011, then since the first digit is a zero, X S_%3 80

- - ; 1
gZ(XO) 2x0 = .1011 X . Now, L) 2_2,

Then, gz(xz) = 2(1-x2) = 1] = Xy gz(x3) = 2(l-x3) =,1 = Xy gz(xa) =] = Xgs and

80 gz(xl) = 2(1-xl) = 2(.0101) = 101 = Xye

gy(xg) = 0. So, x, = x; = «++ = 0. Thus, the orbit is: {.n1011, .1011, .101,

J1, W1, 1, 0, 0, ...}
Note that the line y = x will intersect g, at x = 2(1-x); or x = %u

% = .10 base 2, so we can check that .101010 ... is really a fixed point of 8y°

gz(%) = 2(1 —-%) --%. We can note a few things about the return map given
by g, First, any X5 which can be expressed as a finite decimal in base 2,
will have an orbit which is eventually always zero. Zero and two-thirds are
the only fixed points and the only points of g, which will have orbits that fix
onto % must end in 10 (base 2).
In fact, every rational number in [0,1]} will have an orbit which eventually
corresponds to an m-cycle, for some m. (The above remarks are detailed in the

exercises.)

This has an interesting application to computer calculations with e
We might expect irrational orbits to behave chaotically; but, this cannot
be simulated on a computer since any computer representation of an
irrational number is, in fact, rational. If done correctly in base 2, then the

computer will always end up at zero.

There ig a technique which can glean more infocmation from chaotic maps.

1t {s called symbolic dynamics, and we recommend An Introduction to Chaotic

Dynamical Systems by Robert Devaney.

77




l.

10.

11.

12.

Exercises.

In example 1, find the orbit of 0. What is the orbit of 1? And % ?

In example 2, find all the fixed points of f, when 0 < A < 4.

A
For A = 2, find the orbits of 0, 1, and %-under fA(X) = Ax(1l - x).
For fx as above, what value of A will force fA to intersect the line,

y =1, at x = % and x = % .

Same as problem 4 with f, replaced by g) (the tent map) of example 3.

A
In problems 4 and 5, for the given value of A, if %-( x < % then fA(X)
and gA(x) are not in the interval [0,1]. Find the values of x such that
f:(x) is still in [0,1] for every value of n. Will these values of x
change when we examine gx?
In example 3, find the orbit of .010111 base 2 under gye
Find the orbit of T%-under gz.
Prove that {f x, kas a finite representation, base 2, then g;(xo) is
eventually zero.
Prove that {f X is rational with an infinite base 2 representation that ends
in repeating "10”, then g;(xo) is eventually-% .

Prove that if x,  1is rational, then there exists a positive integer, m, so

1Y

that the orbit of X under & will eventually repeat exactly m values.

Show that there is an X (irrational) such that the orbit of X is dense

in [0,1] under gye
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11.4 Periodic Points
Periodic points are points whose orbits (under the return map) repeat a

finite sequence.

Definition 1. The point, g is periodic under f if and only if there is a

positive integer, n, so that f"(xo) = X If n is the least such integer,

0"
tnen n is called the prime period of Xqe
Thus, a fixed point has prime period one and corresponds to a l-cycle in
phase space. Similarly, if X has prime period m, then there is an m—-cycle in
phase space which will intersect the Poincare Section at X and then at n - 1

other values before returning again to Xqe

There are two fundamental questions pertaining to periodic points:
. 1Is a given periodic point an attractor?

2. How many periodic points are there? (And where?)

Definition 2. A periodic point, X5 of period m of f is an attractor if and
aonly if there is an an € > 0 so that {f |x - xoi < € then Iim £™(x) = Xq*
n+oe

The periodic point, X( is a repellor if and only if there is an € > 0

so that {f 0 ¢ Jx - %x,| < £ then there is a k such that ifkm(x) - xoi > E.

|
Attractors are also called sinks if they are fixed points, just as

repcllors are called sources.

" Tortunately, it is usually easy to determine whether a given periodic

pofnt is an attractor or repellor:

Theorem 1. If x, is a fixed point of f and |f'(x4)j < 1, then xy 1s an

attractor. If |[‘(x0)| > 1, then X is a repellor.
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Proof: Assume [f'(xo)l <1, Then there is an ¢ > 0 so that if |x - xol < e,

LE(x) - £(xy)!

—e—————— < r where r < 1.
x-xo ]—

Thus, for all x in the interval (x, = € x, + e) , |f(x) - f(x0)| <ro|x - xol,
which shows that f is a contraction mapping on (x0 - € X + ¢) with fixed

point, X So, 1if Ix - xol { ¢, then :12 f(x) = Xge

Assume [f'(x;)] > 1. Then there is a § > 0 so that {f Ix - x4 <8,

| f(x) - f(x0)|
—~ ) > q where q > 1.
X = Xq L

Hence, on (x0 -6, x5 * §), |£(x) - f(xo)[ >q |x - xol. So, given x such that

|x - xol < 8§, f(x) is farther from X, than x is; (q > 1). Thus, there is k and $
so that |fk(x) - x,| > 6, completing the proof.

It is easy to extend theorem 1 to general periodic points:
Theorem 2. 1If X has prime period m under f, then X0 is attracting if

. i
| d .m b d .m ' '
!E; f (xo)‘ < 1 and repelling if lﬁ; f (xo); > 1. Moreover, {f x', is any

d .m, , I
point in the orbit of Xy then Tx £ (x o) 5 f (xo), implying that the orbit of
d .m I
X, shares the properties of x4 itself vhen | — f (xo) 1,
] :
Proof: First assume ;—% fm(xo) |< 1. Then X0 i{s an attracting fixed point of £,
] ._dm' -
So, we need only show that if X is in the orbit of Xy then Ix f \xo)
4 em
Ix f (XO)"f
d .m m-1
But, — f (x,) = N f£'(x,) by the chain rule, where x, = f(x,_.) for
dx 0 {=0 i i i-1

1 =1, «e., m-1. Thus, the derivative of " ar X0 {8 the same as that at any

other point {n the orblit of g completing the proof.
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Theorem 2 can be used with the definition of an attracting periodic point to

show that 1if

%;fm(xo) < 1, (where X, has prime period rm under f), then there

is an € > 0 such that when (x - x_ | < e, 1lin if"(x) - fM(x )! = 0, Fssentiallv,
0 fve 0

the entire orbit attracts x. This will be discussed more in the next section.

Definition 3. A periodic point, X of prime period m under f is called

hvperbolic if and only if g?fm(xo) # 1. Otherwise it is nonhyperbolic.

(Branch points in a bifurcation diagram are alwavs nonhvperbolic. See section
11.7.)
Example 1. Let fA(X) = Ax(! - x) be the logistic map introduced in the last
svction, for A > 0, and 0 < x < 1,

First, find all periodic points and classify them when 0 < X < 1.

It is easy to see that zero is the only periodic point of fk when 0 < A < 1,
fi(O) = ), so zero is attracting when X < I.

When A = 1, zero is nonhyperbolic, but stiil attracting (weaklv attracting).

Next, we'll consider A > 1.

Here, fx has another fixed point at (A - 1)/A. So fx has 2 fixed points.
f'(x—l) = 2 - X, showing that (X - 1)/) is attracting and hyperbolic when
< 3 and repelline and hyperbolic for X > 3. Geometric considerations
show that (X - 1)/x is weakly repelling (nonhyperbolic) for A = 3.

The above completely describes the fixed point behavior of fk'

ﬁext, we'll trv to find points of prime period 2...

i

3.4 3.3
To do this, we'll look for fixed points of: fi(x) = =-A"x + 2A"x” -

2
2, XJ) x° 4 Azx. Thus, we'll solve fi(x) -~ x = 0, which mist have 0 and

(2
2
(X ~ 1)/x as solutions (X > 1) since they are fixed points of f,. Thus, we can

reduce fi(x) - x =0 to a quadratic equation:

8’1




a2 s 3 -2+ ) =0, or 3%x% - A2+ 2)x + (A + 1) = 0. The discrim-

3.2

inant of the latter quadratic is:

D= 2(x+ 1) - 3.
Since we are assuming A > 1, (in order to have (X - 1)/) be a fixed point), we can
see that D is negative until X > 3. Thus, there are no periodic points of prime
period 2 until X > 3. (When XA = 3, the discriminant is zero and the old fixed
point: (A - 1)/, has multiplicity 3).

Note that the roots of fi(x) ~ % are a continuous function of A. So, at A =3
we have one repelling fixed point at zero (a root of multiplicity one), and a
weakly repelling fixed point at 2/3, (X -1)/A, which is a root of multiplicity 3.
This root at 2/3, will split into 3 distinct roots for x > 3. One of them is
(x-1)/X which is still a (repelling) fixed point, but the other two are new points
of prime period 2.

Are these new periodic points attracting or repelling or nonhyperbolic?

By evaluating the quadratic formula, we obtain the 2 new points of prime

period 2:
2 AL+ /(A+1)(A-3) L A1=/(A+1)(A-3)
Po X and p, 73\
when X > 3. Also, S£2(P.) = £1(p. V! (p,)
: SO ax'ato A Po/EaNPy

= A1 - 2py) M1 = 2p))

= -AZ + 2) + 4.
Thus, Py and p, are attracting when 3 < X <1 + /E, nonhyperbolic for A =1 + /3,
and repelling when A > 1 + /6.

If the'prevlous pattern from fixed point to 2 points of prime period two
repeats, then we would expect each point of prime period 2 to "give birth" to two

points of prime period 4 (for a total of 4 points of prime period four) when the

period 2 points are nonhyperbolic at A =1 + /6.
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We will now turn to the question: how many periodic points are there?

2x , [ 1f 0 <x<1/2
Example 2. Let gz(x) =
2(1-x) , | 1f 1/2 < x < 1.

b So g, is the tent map from the previous section. 1t 1is easier to find the periodic
gints of this map tnan the logistic map of example 1.

We will develop a geometric technique to find periodic points of different

order.

First, periodic points of order 1 are fixed points and are obtained from the

intersection of gy with the {dentity map:

v

0 2/3 x
So, g, has fixed points at 0 and 2/3.

Te find points of prime period 2, we graph g;. This can be done without an
explicit representation of g%! Note that g%(x) = gz(gz(x)), so that the range
values of 8y then become the domain values for the next £ge Thus, since g, maps
[0, 1/2] onto [0,1], gz(gz(x)) will go through a complete up and down graph for

x € {0, 1/2] and for x € [1/2, 1]...

33
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9 4

Hence, gg will intersect y = x at 4 points, two of which must be 0 and 2/3. The
new points are points of prime period 2.

We can repeat this graphical technique to find periodic points of order n.
It is clear that in this case, as n + =, we will obtain an infinite number of
periodic points. And, the collection of all periodic points will be dense in the
interval, [(0,1].

One of the properties of ¥ which lends itself to this technique is that the
maximum value of ) is the same as the maximum value of the domain: one. 1In
example 1 the logistic map, fx, will not achieve a maximum value of one unt{l
A = 4, For this value, f& and gy have essentially the same behavior. The hard
part is tracking their behavior when X\ < 4 (for fx) and A < 2 for £,, (See the

exercises.)

We will now look at the case when X > 2 for g (which is the same as that

for £, when ) > 4). 1n particular, we'll examine g3(x).

1 . Af v <x<1/2

Ix
Example 3. Let g,(x) = 4
’ { 3=x) , if 1/2<x< 1.

The most important di“forence here, from earlier cases, is that when
1/3 < x < 2/3, gqfx) > 1, and go points between 1/3 and 2/3 get mapped out of the
domain intervai, [0,1j. Repeated applications of g4 will take these points to

-®, We could inte.pret this as a type of resonance. Initial conditions in the

R4

b}
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physical system which correspond to these values in the domain of the return map
are carried out-of-bounds.
Rut the values between 1/3 and 2/3 are not the only ones which are

For example, x = 1/6 is mapped by fqy to 1/2. And now 1/?

attracted to -,
will be attracted to -». By using the graphical technique in the previous

cxarple, we can determine that every point in [0,1] except those in the Cantor

Set will eventually be attracted to —=:
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intervals of length l; from its domain, and map
3

them out of [0,1], thus sending them on their way to -=. So,

That is, gg(x) will take Zn-l

the points in the
Cantor Set are the only points which stay in [0,1] after arbitrary iterations

b_v g3o

Note that all numbers of the form Eh are eventually mapped to zero, and

3

periodic points will be dense in the Cantor Set. (See the exercises.)
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Although the number and type of periodic points for g 18 closely related
to the number and type of periodic points for f&‘ (for a suitable choice of §),
there is a fundamental difference. For A > 1, g, has no attracting periodic
points since the slope of gx is always * A. Thus, gx is useful since it's easy
to work with, but not very realistic, since we expect physical systems to have

some steady state solutions.
7e'll conclude this section with a remarkable result due to Sarkovskii.

Theorem 3. If f is a continuous function mapping R to R and f has a point of
prime period 3, then for every natural number, n, there is a point of prime

period n.

This is actually a corollary to Sarkovskii's theorem which gives a precise
listing of what periods imply what other periods.

Thus, and g, have points of prime period n for all n. 1In fact, f, has

€
“4 A

points of prime period 3 for A = 3.839.

Exercises

1. Vhat is the degree of the polynomial, fi(x)? If 3< A< 1 + ¥6, how many
known roots are there to fi(x) -x =07

2. What ig the degree of the polynomal, fi(x)? How many known roots are the:eo
to fi(x) -x =M

3. Use numerical methods to find four points of prime period 4 of fx(x) when
A = 1,01 + /6.

4, Use numerical methods to find three points of prime period 3 of fA(X) when

A = 3.839,
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4
Draw a graph of fx(x) when A =1 + V6. (Hint: Use the answer to prob 3 to

make the graph more accurate.

Prove that 33(x) maps points of the form E; eventually to zero.
3

Find the two points of prime period 2 of g3(x). Are these points in the
Cantor set? If so, write them in base 3 form using only O's and 2's.
Find the 4 points of prime period four of g3(x). Are these points in the

Cantor set? If so, write them in base 3 using only O's and 2's.
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I11.5 Invariant Sets and Attractors

We'll start with a couple of definitions.

Definition 1. A set, F, is an invariant set of the (return) map f if and only

i1f for each x ¢ F, f(x) € F.

Definition 2. A set, P, 1s an attractor of f if and only if there is an ¢ > 0 so
that if p is any point in P and x is any point such that d{(x,p) < e then all

1imit noints of the orbit cf x are c¢ontalned In P.

The definition of invariant set is straightforward. For example, a fixed
point 18 an invariant set, as 1is any periodic orbit: that is, the collection of
m points is invariant. A more interesting example is the Cantor set. In the
last section, we saw that the Cantor set is an invariant set of 84 and f9/2.
Attractors are fairly easy to understand, but their definition is tedious.
Intuitively, a set, P, is an attractor if nearby points are drawn closer and
closer by the return map. In the definition, we used "d" to emphasize that
distance can be measured in any metric space and we are not limited to return
maps whose domain is the real line (or subset thereof). Also, if the orbit of a
point approaches =, then = ig considered to be a limit point of the orbit, and
can also be considered an attractor.

Recall from part I that rhae fixed point of every contraction map is
actually an attractor of that map. In fact, an IFS has an attractor which is a
fractal, even though we would not usually consider an IFS to be a return map of

some physical system.
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In a physical system, an invariant set corresponds to trajectories which
keep intersecting the Poincaré section In the same set of points. 1t should be
noted that every attractor is also an invariant set, but has the additional

physical property of attracting nearby trajectories.

Example 1. Explain the physical significance of the logistic map, fA’ as A
Increases (X > 1).

We will give a physical interpretation of the information presented in
example 1 of II.4:

For 1 < A < 3, there is one attracting fixed point at (A -~ 1}/A. All
trajectories (except one) are drawn to this fixed point, so the physical system
has a stable, attracting l-cycle as its steady state solution. Note that zero
is a repelling fixed point, so it can be considered as an unstable invariant
set. The one trajectory which intersects the Poincaré section at zero is the
only one which isn't attracted to (A ~ 1)/A. For this reason, zero is ignored.

For 3 ¢ A < 1 + /6, there 1s one attracting set which is an orbit of
period two. The fixed point at (A ~ 1)/A is now a repellor, and hence can be
{gnored. For all practical purposes, the physical system will draw all tra-
jectories into a stable steady state solution of a 2-cycle. This 2-cycle was
senerated through a bifurcation of the fixed point (A - 1)/).

As ) increases through 1 + /6, the stable 2-cycle above will bifurcate into
a stable 4-cycle which becomes the steady state solutfon of the physical system.
Now we are ignoring two repelling fixed points--at O and (A - 1)/A --and two
repelling points of prime period 2. For fairly obvious reasons, including
noise, it is impossible for an actual trajectory in the system to repeat an

unstable or repelling cycle (or orbit).
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This bifurcation behavior will continue for smaller and smaller increases
in the parameter, . The accumulation point will correspond to a type of chaos.
At this chaotic value of X there will be no attracting cycle, so the motion in
the system will be irregular and aperiodic. There can still be a steady state
solution (attractor), but it will not be periodic.

Further increases in A will show periods of chaos interspersed with
regular, attracting cycles. When the cycles exist, they will bifurcate as
before and lead to another period of chaos. When XA = 4, XA will be go large that
no attracting solution will exist, even an aperiodic one. At this value, there

is no attractor and the system 1s completely turbulent.

Exercises.

1. For X > 2, find the measure of the invariant set of - {Hint: Add up the

length of the intervals in the complement of the invariant set, then take one

minus this.)

2. Can g, (X > 1) be used to model a physical system? Explain.

Qo
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I1.6 Scrambled Sets—~Definitions of Chaos
We will give two definitions of chaos in this section. To do so, the
concepts of "sensitive dependence on initial conditions" and “scrambled sets"

need tec be clarified.

Definition 1. A function (return map) has sensitive dependence on initial

conditions if and only if there is an € > 0 so that for every x and every 5 > G

there is a y and n such that d(x,y) < 6 and d(f"(x), fn(y)) > E.

The definition states that arbitrary accuracy of orbits cannot be main-
tained. That is, there is an € > 0 so that no matter how close you start to x,
there is a y which will end up € units away from x after some number of
iterations.

This behavior is strengthened (worgsened?) by scrambled sets:

Defirition 2. Suppose f: 1 + J is a continuous function mapping 1 onto J, where
J 1ic a subset of I. Let X be the length of J. S is a scrambled set of f if and
only if for every x and y in S, (x #y),
(1) 1im sup {£f"(x) - £"y)| = A, and
n+e
(11) 1w taf if"(x) - £7(y)| = O.
n+e
We'll explain "lim sup" and "lim inf": the 1lim sup as n + = is the
suprepum of values achieved by lfn(x) - fn(y)[ as n *+ =, Thus, condition (1)
implies that any two points in S will be iterated as far apart as possible (J is
the limiting factor). At the same time, condition (ii) implies that these two
points will be iterated close together again as well. The terminology,

"gcrambled”, seems understated.
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First, note that sensitive dependence on initial conditions happens for
every value in the domain, I. (We used arbitrary metric space notation in
definition ! so that it can be applied to higher dimensional situations.) But
the behavior in a scrambled set is localized to that set, and it will never be
the entire domain. (A metric, d, could also be used in definition 2.)

Second, note that if a return map has an attracting set, it cannot have
sengitive dependence on initial conditions since points drawn to the attractor
will stay close together.

We need one more definition.

Definition 3. A (return) map, f, is transitive (or nomadic) if and only if

there 18 an x so that the orbit of x is dense in the domain of f.

We have seen this behavior for g, back in section II.3,

Now we'll present two definitions of chaos:

Definition 4. A function, f, is chaotic-3 if and only if the following 3
conditions are satisfied:
(1) f has sensitive dependence on intial conditions,
(i1) f is transitive, and

(i14) the periodic points of f are dense in the domain.

Definition 5. A function, f, is chaotic-s if and only if there is a scrambled

set of uncountable cardinality.

In the article "On Scrambled Sets for Chaotic Functions", Andrew Bruckner

and Thakyin Hu showed that if we assume the continuum hypothesis (see Funda-

mentals of Contemporary Set Theory, by Devlin) then a function, f, is chaotic-s

1f and only {f the second iterate, f2, is transitive. They also showed that 5%

(the tent map) (s chaotic-s.
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Example 1. The tent map, s is also chaotic-3.
We only reed to show that 8 has sensitive dependence on initial condi-
tions. For this function, we can choose € > 0 to be any number less than 1.

Fix such an €. Now let & > 0 and choose m so that l; < § Fix a number, x, in
2

[0,1) and write x in base 2 as x = .dld2 +se where each di e {0,1}. Now, we

need co find a y within 4§ of x so tha: after some number of iterations fn(x) and
f7(y) will be at least ¢ apart:

Define y € [(0,1) as y = erey coe where e, = d; for 1 {1 <m and e, # d,

for all 1 > m. Thus, y - x has zeros in the first m positions; and hence,
( 1 R
iy - x| < - < é.

ZnZa e if z, =0
2°3
Now, gz(z) = gz(.zlz2 ves) ™ !
*Qyqq oo if z, = 1

where 9y # z, for each 1.

Thus, after iterating x and y m times, g;(x) = +++ where either

ot 1¥m+2

m
h = F3 H =
eac X J d J or each x j d J, and similarly for y gz(y)

. This last fact implies that lgg(y) - g;(y), = .1 base 2

Yo+l Yme2°*”
where each Yo+d # X+
= 1, So, since € < 1, we have shown that &, has sensitive dependence on
initial conditions.

In gection II.3, 1t was shown that g is transitive and that the periodic

points of 8, are dense in (0,1)}. Thus, g, 1s chaotic-3.

Example 2. The logistic map, fx, is chaotic-3 on its {invariant set when
1> 2+ /5.

First, note that we are restricting the domain of fX to its invariant set
since 1f A D> 4 (as 1s 2 + V5) then fx will take the majority of the interval
(0,1] off to -e. Recall that the invariant set will be a Cantor-type set (the

actual Cantor set at A = 9/2) when ) > 4.
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Using symbolic dynamics, it is possible to show that fA has a dense orbhit
(in its invariant set) and that periodic points are dense (in its invariant set),
whenever A > 4.

Now, when A > 2 + /5, Ifi(x)l > 1 for all x in the invariant set. (See the
exercises.) Thus, there can be no attracting set for fx, and hence fA must have
sensitive dependence on initial conditons. So fx is chaotic-3 when X > 2 + /5.
In fact, fa is also chaotic-3. (fa and g, are "topologically conjugate." See
11.10.)

We will now discuss the physical implications of our criteria for chaos.
Sensitive dependence on initial conditions 1s quite plausible physically since {t
precludes an attracting set. It is harder to rationalize the necessity of dense
periodic points. But, since the orbits cannot be attracting, knowing that there
are unstable m-cycle trajectories intersecting the Poincare section doesn't hurt.
The transitivity says that there is a trajectory which will intersect the
Poincare section in every interval, which is certainly a type of irregularity.

If there is an uncountable scrambled set, that shows that many trajectories
are repeatedly converging and diverging along the Poincare section. That this
also implies transitivity lends physical credibiiity to the chaos-s definition.

In general, it 1s not easy to determine If a return map is efither chaotic-3

or chaotic-s. One usually uses numerical techniques to see if it might be chaotf.

and then conjectures one way or another. See section I1.10.

Exercises.

1. Prove that if A > 2 + ¥5 then [£3(x3! > 1 on 1ts invariant set.

2, Prove that {f f ieg any function with sensitive dependence on inftial condi-
tions, then f cannot have an attracting set.

3. Do you think that fx, the logistic map, can be chaotic for values of

A <2z + /57 Uhere is it definitely not chaotic?
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II.7 Univer=.lity--The Bifurcation Diagram

First, we'll describe how to interpret a bifurcatfon diagram. (See page
98.) The non-linearity parameter, X for the logistic map: fx(x) = xx(1-x), is
plotted along the horizontal axis. The attracting set for that particular A is

plotted along the vertical axis, which runs from zero to one for fA'

Thus, for 1 < X < 3, (A - 1)/x is the attracting set (l-cycle). At ) = 3,
tnis bifurcates to give an attracting 2-cycle, etc.

Where whole intervals seem to be shaded along the vertical axis, there is
no attracting cycle, but rather attracting intervals (or subsets thereof).
Notice that there ara bands of attracting cycles (periodicity) interspersed
among the aperiodic regions. When )\ is equal to 4, the whole interval, (0,1},
{s shaded and chaos—-3 {s in effect. The shaded areas prior to this do not
correspond to chaos—3 (since there will not be a dense orbit) but do correspond
to a weak chaos or aperiodic behavior. (Weak turbulence in fluid dynamics.)

We will nresent universality from the standpoint of the hifurcation
ilagrams. The figures in this section may be helpful. (Pages 98 to 101.)

Our first discussion will center on the constant, & = 4.6692016... . 1If
we denote by Li the values of X for which the logistic map, fx(x) = Ax(1l - x),

has an attracting 21~cycle, then L1 will be an interval.

For example, fx, has an attracting 2-cycle for 1 < A < 3, so LO = (1,3).

= (3, 1 + /6). Define A, to he the length of L,. Then, Mitchell

Similarly, L 1

1
A

Feigenbaum has shown that 1lin L S.
{+= "4l
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The universal aspect of § is that Feigenbaum's formula will hold for any
system with a bifurcation diagram. Essentially, every bifurcation diagram looks
the same when rescaled along the horizontal axis. Thus, the cascading of 2"-
cycles (or any bifurcating cycles) will be the same for the logistic map and for
the experiment with a heated fluid.

In fact, the windows in the bifurcation diagrams which are rescaled and
blown up in this section, can be seen to be essentially the same as well. All
bifurcating cycles do so at the same rate (in the limit).

We will now discuss the constant, a = 2.50290787... . Notice that on the
bifurcation diagram a one-~cycle literally splits into a two-cycle, then each
branch of the two-cycle splits again to give a total of a four-cycle, etc.
Denote the vertical distance between the two branches of the 2-cycle at their
point of bifurcation as Al' Pick a pair of the new split branches in the 4-
cycle. (It doesn't matter whether we choose the upper or lower pair. But the
branches of the pair must have originated from the same branch of the 2-cycle.)
For this pair of branches, denote by A2 the vertical separation when each one
bifurcates (to give an 8-cycle). If we concinue to find A{'s in this fashion,

A
then Mitchel Feigenbaum also showed that lim i a. This fact is independent

fse Ayyy
of which branches o1e chooses, iL only depends on the branches bifurcating.
The universal aspect of a is that all bifurcation diagrame, (for any
system), are now essentially the same when rescaled along the vertical axis
as well! The combination of « and & show that every bifurcation diagram has
essentially the same rates of vertical ad horizontal accumulation.

At this point, we will describe the techn!que for generaciang a bifurcation

diagram for tx(x) = Ax(l - ...
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Essentially, we would like to graph the attracting cycle (if it exists)

for different values of A. Recall that the cycle Is attracting if 4 fn(xo) <1,
]

dx
n-1
and that d_ Fixa) = M f'(x,) where {%r) Xy sees X } is the n-cycle. Thus,
dx 0 1=0 i 0 1 n-1
1
the cycle 1s attracting any time 7 is one of the elements of the n-cycle since

2
£ (%) = 0, implying that '—% fn(xo)i- 0<1.
In the evolution of an n-cycle, {being created from an g—cycle, and becoming
a 2n-cycle), the n-cvcle will go from weakly attracting-- %; f?(xo) » | —-to
stable, to weakly attracting again. Essentially, %; f? will achieve values from
1 down through 0, and then to -1 when it bifurcates. Thus, %-will be an element
of every stable n-cycle in the bifurcation diagram.

For this reason, we use L as the starting point, (for a fixed )), and

2
;
iterate some number of times, say up to f'oﬁé). Now, if there is an attracting
n-cycle for the value of X with which we're working, then fsof%) should be

"attracted” to it. Thus, we plot on the graph 550+1(%) for { equal from one to
50, These fifty plotted points will be on the attracting n-cycle if it is
present, or, they will bounce around in some attracting set. We plotted several
thousand points in the diagrams in this section in order to completely (or

partially) shade the aperiodic attracting sets.
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Figure 16

"Figure 16 is the bifurcation d!agram of the logistic map fx(x) = ax(l - V.

Values of A between 1 and 4 are plotted along the horizontal axis and the
attracting set is plotted along the vertical scale which 1is from 0 to 1.

The largest "window" in the predominantly sheded reglon to the rignt is
rescaled in figure 17 to show a bifurcating 3-cycle.

This same figure is also on page 67."
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Figure 17

"Figure 17 shows a 3-cycle bifurcating into a 6~cycle, then 12-cycle, etc.
The bifurcations are simultaneous even though it looks as if the upper
branch takes longer to bifurcate. This is because of the resolution of the

graphics.
The vertical scale is still 0 to 1. But, A is now between 3.8284 and 3.86

along the horizontal axis.

The largest "window" is rescaled in figure 18. 1t is a 9-cycle."”
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Figure 18

"Figure 18 is a rescaling of the largest window in figure 17. The vertical axis
is also rescaled so that only the large middle window is visible, and hence this
looks like a 3-cycle, but 1s just % of a 9-cycle.

A is between 3.85355 and 3.85415, and the vertical scale is between 0.4324
and 0.5405.

The largest middle window is again rescaled in figure 19."
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Figure 19

"Figure 19 is %1h of a 27-cycle. The values of A are between 3.854069 and

3.854079. The vertical axis is scaled between 0.493754 and 0.506902.

Notice the striking similarity between figures 17, 18, and 19.
e 19 is the vertical

Figure 18

looks like the vertical mirror image of figure 17, and figur

mirror image of figure 18."
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In section I1.6 we presented a theorem due to Sarkovskiil. Here we will give

Sarkovskii's ordering of the natural numbers.

Definition. The Sarkovskii ordering of the natural numbers is:

3<C5<7 <%« €23 <25 2¢7..,

2

¢ e3¢ 2bes ¢ 2207 ¢ il <2303 ¢ 235 <L

3¢t c2¢.

< eee <2

Thus, one first lists all odd numbers, in the usual order, then all products
of an odd number and 2, then an odd number and 22, etc. This will list all the
natural numbers except those that are powers of 2 (and 1), List these powers of 2

last, in reverse order.

A more general Sarkovskii's theorem is:

Theorem. Suppose f: R + R is continuous. If f has a point of prime period k and

k < m in Sarkovskil's ordering, then f also has a point of prime period m.

Thus, if f has a 2-cycle, f will also have a l-cycle and i{f f has a 3-cycle,
f will have an n-cycle for every value of n. However, this theorem doesn't say
the cycles are attracting.

For example, when A = 3.1, fx has a stable 2-cycle, so it must also have a
l-cycle. Well, (A-1)/x is still a fixed point when A = 3,1, but it is repelling.

So when A = 3,83 there will be a stable 3-cycle, and hence an n-cycle for
every n. But for this A, only the 3-cycle is attracting; every other n-cycle is

repelling, and thus, not drawn on the bifurcation diagram.
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Exercises.
1. For each A between 1l and 4, find the range of fk'
2. For each A between 1 and 4, define g, (\) = — g,(2) = ¢ GL) =X () -
’ J £ 2> B W2 T B
1
fx(gl(l)), etc. Show that gy (2) = g,(2) = ... = 3.
3. Show that whenever %-has period n, then gl(X), (as in prob 2), is tangent to
the bifurcation diagram at that 2.
4, Show that whenever %-has period n, then gz(x), (as in prob. 2), is tangent
to the bifuraction diagram at that value of A.
5. For X > 2, show that if 0 < x < gz(k), then 1lim f:(x) 2_g2(x) and, for all x,
n+o
lim f?(x) S.gl(x), where g, and g, are as in problem 2.
n+o
6. If 8 is as in problem 2, what can be said about each gi(x) for those A

where % is an element of some n-cycle?
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I1.8 Higher Dimensions
When we use a one~dimensional Poincaté section there are two types of bifur-
cations which the return map can display. The one we looked at in section II.8

n
was a period-doubling bifurcation, and this occurs when g&— (xo) = -1, (where x,

i1s any point in an n-cycle).
n

df
When ax 0

Essentially, a saddle-node attracts points from one side while repelling points on

(x

) =1, the return map goes through a saddle-node bifurcation.

the other side. For example, hx(x) = e* - 2 goes through a saddle-node bifur-
cation as A increases through 1.

In a phase space of dimension greater than two, we will probably be using a
Poincaré section of dimension larger than one. Thus, the return map is not a
function of one variable, but rather of several variables. The types of bifur-
cations that can occur (both in the phase-space and on the Poincare section) are
varied. They include analogies of the period-doubling and saddle-node bifurcations
as well as others, the most common of which is the "Hopf bifurcation”.

As an example of the type of dynamics possible, we'll give a brief treatment

of the Horseshoe map, due to Smale.

Example 1. The Horseshoe map takes the figure drawn into itself by stretching,

contracting and bending:

/1;' S l&  Smmammma o a4 D
P
a
——-+ ) . . -
[{ Sm————— -~
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This map works on a 2-dimensional region in the plane and maps it into
itself. We've defined it geometrically because it is easier to work with that
vay.

Since the Horseshoe map shrinks (and stretches) the set Dl into a subset of
Dl’ it is a contraction mapping, and thus has a unique fixed point in Dl' Also,
all points in D2 are mapped into a subset of Dl; so, for every point x ¢ Dl U D2,

iin £7(x) = Xy where X4 is the unique fixed point of f, the Horseshoe map, in Dl.
n»o

Many of the points in S will also be mapped into D1 and thus iterate towards
X, as well. But there is a two-dimensional Cantor-type set in S which is invar-
iant. That 1is, the Horseshoe map leaves this 2-dimensional Cantor-type set fixed.
Points in this invariant set can be shuffled around by the map, but will

always remain inside it. This is exactlyr xnalogous to the logistic map, fA’ when

A > 4. There, we had a one-dimension- - r set which was {nvariant. (Also for

the tent map, g,, when ) > 2))

Next we'll look at a function .. i lgebraically called the Henon map.
Example 2. Define Ha,b: R2 + R2 by: ) = (a - by - x2, x).
Thus, points in R2 are mapped t >ints 1in R2. There is an analogy to
hyperbolicity of one~dimensional fun - ich relies on full derivatives of

nult{~-dimensional functions:

1
oH
rratni X,¥)
DHagb(x’y) - 2 2
oH "
L‘s‘;("xt)') ‘y','(‘x’y)

2

where Hl(x.y) = a - by - x" and Hz(x.y) = x,
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Thus, DE(x,y) = l_l 0

The Jacobian of P is simply the determinant of the derivative of H, [DH[ = b.
H is hyperbolic so long as |b] # 1. When b = 0, H is no longer dependent on
y, and is essentially: Ha(x) =a - xz, which is analogous to the logistic map.

When b # 0, we can algebraically find the inverse of H to obtain:

P—;’b(x,y) = (y,-i—:—%—:—XE) which looks quite similar to H itself.
We will trv to find the fixed points of Ha,b’ assuming that 0 < |b] < 1:
First, set
(x,y) = (a = by - x2. x),

which implies x =y and x = a - bx - x2, or x2 + (1 +b) x ~a =0, Thus, this has
real solutions if and onlv if (1 + b)2 + 4a > 0.

So, when a < :%(l+b)2, there are no fixed points; when a = :%(1 + b)z, there
is one fixed point at x = :%(1 + b); and when a > :%(l + b)2, there are two fixed

/ 2 2
-(1 + + . - -
points at: x = (1 b) 2'(1 tb) * 4a and x = (1+5) ;Ql Bt 43. Note

that the y-coordinates of all these points are the same as the x—-coordinates by our
substitutions.

The critical value of a, a is i%(l + b)2. On the line y = x, we have

crit’
has no fixed points of Ha,b when a < a rie’ then 1 fixed point for a = A rie? and
then 2 fixed points for a > a . It turns out that of these two fixed points,
crit

one is a saddle point and the other is (sometimes) artracting. Thus, ar a

increases throush a , a saddle-node bifurcacion occurs. As a increases further,

crit

one of the fixed points bifurcates into a period-2 point. This is a period-

doubling bifurcation.

The dynamics of the Henon map get very complicated. See An Introduction to

Chaotic Dynamical Sytems for further details.
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"Strange Attractors" are quite common for higher dimensional return maps.
When a = 1.4 and b = -0.3, the Henon map, Ha,b’ seens to have one. Strange
attractors are attracting sets for a return map which display fractal-type
properties. There are strange attractors imbedded in 3-dimensional toroidal
figures for some systems, and the bifurcation diagram {tself is a type of
strange attractor. This is a nice relationship between fractals and chaos:
dynamical systems can generate fractal sets. For example, an IFS is a type
of dynamic system. Also, fractal sets display "chaotic organization” to the
average obgerver.

Higher dimensional dynamics is still a frontier for researchers and there

are many unsolved problems: both specific ones and general ones,
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I1.9 Complex Dynamics

Because of the elegant theory of complex numbers, dynamics which occur in

R2 are often interpreted to lie in the complex plane. We'll spend most of this

section discussing the Mandelbrot set, which is a parameter space map for a

simple dynamical system in complex variables.

.

First, recall that a complex number can be represented as: a + ib or reie,

where a, b, r, and 6 are real and 12 = -1, When graphing complex numbers the

number, a, goes on the x-axis (the real axis) and the number, b, goes along the

y-axis (imaginary axis). Plotting a + ib is the same

form, reie, is analogous to polar coordinates since e10

as plotting (a,b).

= cos 6 + 1 sin 0.

is, to graph reie, just graph (r,8) in the polar plane.

The

That

To mulitply: (a + 1b)(c + id) = ac - bd + i(ad + bec), and {reie)[qeie)

+ -
= rqel(e ¢). A multiplicative inverse of a + ib is i T az ibz , 8ince
2 2 a a +b
{a + ib) - (27:-£E§\ = .55_1_35 = 1, (asguming a2 + b2 + 0).
a  +b / a~ +b
2 2

The modulus of a ~omplex number, z = a + ib, is

i8

[z] = |a + 1b] =/ a” + b°.

If z = re , then |z| = !r|, which is the distance from the complex number, z,

to the origin, 0 = 0 + 0i.

Before we present the algorithm for the Mandelbrot set, we'll look at {ts

real number analog.

)
Example 1. Define hn(x) = x_ 4+ c¢. Show that hc has essentially the same

dynamics (as a return map) a= the logistic map, £y

A and c.

198

for appropriate values of




First, we'll choose ! ¢ A ¢ 4 and let ¢ = %(2 - 1), 80 that A = 1 + /1 - bc.

Now define the linear function, g(x) = ax + b, where a = :% and b = %. Then

g °oh, = f,°8, 0rge h,eg = fA' This relationship between hc and fx is
called topological conjugacy. It is analogous to two matrices being similar (and
thus having the same eigenvalues). It is easy to verify that hc duplicates the

dynamics of fx(as A goes from one to four) as ¢ goes from % to -2. (See the exer-

cises.)

1,2 2 -1

One way to check this is to notice that: (g ° hc ° g ) =g o hc °og .

Thus, f: =g o hz » g and g-l ° f: °og = hZ’ So, if x5 is a point of period n
for t,, then g-l(xo) 1s a point of periocd n for hc' Also,

< h"(g-l(x Y) = 4 ey ), which shows that the dynamics of the two functions are
dx ¢ 0 dx A0

the same for all attracting cycles.

If we were to make a bifurcation diagram of hc‘ then we would choose zero
as the point to iterate, since it will be present as a perindic point in all
stablec n-cycles. {(Just as % was present in all stable n-cycles for fx.)

Therefore, hc (which goes through a saddle-node bifurcation for c = % (just
like fA doeg when A = 1) has an attracting fixed point for c between % and :%, an
attracting 2-cycle for ¢ between :% and :%, etc; with chaos-3 at ¢ = -2,

We'll now develop the algorithm to construct the Mandelbrot set.

Exanple 2. Define H (z) = 22 + ¢ to be a complex-valued function of the complex

variable, z. The nonlinearity parameter, c, is also complex valued.

For each value of ¢, we determine whether the orbit of zero (a critical point

as {n example 1)} will converge to infinity.
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If the orbit does not go to =, then ¢ {s defined to be in the Mandelbhrot set,

M. So
M = {ceC: 1lim H:(O) # o},

n+e

where C i{s the set of all complex numbers.

It is easy to check that zero is in M, since if ¢ = 0, then HS(O) =0 for
every n. Similarly, one is not in the Mandelbrot set, since, HI(O) = 1, Hf(o) = 2,
H?(O) = 5, ... which converges to =,

It turns out that if there is an n so that |H:(0)[ > 2, then c will not be in
the Mandelbrot set.

On the real axis between % and -2, Hc has the same dynamics as hc in example
1. Thus, the real numbers from-% to -2 are all contained i{n the Mandlebrot set.

The points not in the Mandlebrot set form what 1is known as a Julia set. The
boundary of the Julia set is the same as the boundary of the Mandelbrot set. The
Mandelbrot set is a map in parameter space. It describes what parameters give
zero a bounded orbit under Fc. The dynamics of Fc in the complex plane (not
parameter space) are completelvy different. There are many possibilities for coming
up with interesting pictures.

Other examples can exhibit multiple strange attractors, their corresponding
basins, and an invariant set all for the same complex functfon! By using different

coloring schemes, the computer graphics generated by these functions can be amazing

and appear frequently on book covers and in magazine articles.
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Exercises

l.

2.

Verify the second paragraph in example 1.

By writing z = x + iy, write Hc(z) as a function of x,y ... Hc(x,y) = (Hl, Hz),
where F] and F2 are real-valued functions of x and y. (Let c = ¢y + 1c2.)
Investigate the dynamics of the real-valued function fc(x) --%x3 + cx for

c ¢ R,

Using problem 3, what can you say about the complex dynamics of

4
F (z) = 323 + cz.
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I1.10 Randomness

We have often referred to chaotic behavior as being unpredictable. A

chaotic physical system is one which 1is going through seemingly irregular

motion. Even though we have very precise definitions of chaotic functions

(chaotic-3 and chaotic=-s), they are based on characteristics which imply a kind

of randomness.

2.

We will now quote some references on the definition of randomn:

From: An Introduction to Information Theory, Pierce. '"Random:

Unpredictable.”

From: An Encyclopedic Dictionary of Mathematics. "Practically, random

numbers are those that are generated by complex finite algorithms that
produce a finite sequence of numbers that have no apparent regularities and
are not rejected by tests of typical statistical hypotheses on independence,
uniformity, and goodness of fit."

From: Mathematics Dictionary, 4th ed., James/James. 'Random Sequence: A

sequence that 1s irregular, nonrepetive and haphazard.... A completely
satisfactory definition of random sequence is yet to be discovered."

A paraphrase of Andrei Kolomogorov (who laid the foundations for modern
probability theory in 1933): A finite sequence is random if the shortest
algorithm which can generate {t is of the same approximate length as the

finite sequence.

Mark Kac was a famous mathematician who used to give very popular talks on

"randomness." His thesis was that there is no statistical definition of random-
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ness. He claimed, (correctly), that given any statistical test--such as those
mentioned at the end of the second quote--there 1s an algorithm which will
generate pseudorandom numbers that pass that statistical test.

In other words, if you know that a statistician is going to run some
analysis techniques on data, you can give him two sets of data: one set is
generated by what we commonly think of as a random process--such as a scatter
pattern of arrows on a target—-—and the other set is generated by a deterministic
algorithm. The statistfician will not be ahle to tell if either set of data is
"truly random",

It should be noted that although probablity and statistics seem
inextricably connected to randomness, the foundations of both subjects rely on
"random variables", which are essentially just normal everyday functions. A
"random sample" is usually meant to connote a theoretical "random sequence" and
is defined in such a way as to make the theory progress smoothly. However, the
statistical tests which try to verify this type of randomness are inconclusive.
This does not lessen the utility of probability or statistics-—they have proven
themselves time and again in such diverse areas as gambling and quantum
mechanics--it merely points out that "random" might be a term so basic, that it
defies definition. This thought is echoed in the third definition.

Finally, we need to peruse Kolomogrov's definition. A full treatment
would involve some theoretical computer science, so we'll stick to practi-
calities. 1t is theoretically possible to find the algorithm which
generates psuedorandom numbers, but it is impossible in practice. Actually, it

{8 just as likely that an algorithm will be found to generate a "truly random"

sequence.
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Let's consider a chaotic map as a pseudorandom number generator. The two

2x, 1£0<x<y
simplest examples are g(x) =

201 -x), #£7<x <1
and f(x) = 4x(1 - x): the tent map and logistic map we've already dealt with. As
discussed earlier, any finite decimal will be iterated to zero in a finite number
of steps (approximately the length of the decimal expansion) by the tent map. So
g(x) does not seem to be suitable for generating long strings of pseudorandom
numbers.

But f(x), the logistic map, will iterate a point in the interval [0,1] in a
seemingly random fashion with few exceptions. (Zero, one-half, and one, as well
as the inverses of one-half will all iterate to zero.) Of course, if we just
pick a point, say % , and print its orbit, it is obviously not random. If we
N 1

1
n=0 by {xo, X5 x2,...,xN} where Xg T 50 X 7 ff;), etc., then

n,l
denote {f OF -

a plot of the points (xi, x ) in the xy-plane will give good graphical evidence

i+1
that this sequence 1s highly correlated. This is obvious: each X, = f(xi-l)’
the graph will fill in points on the curve of y = f(x).

Being a bit more clever, we could choose a number, n, and let each

n
X o= B0y

carried by one's calculator or computer, a graphical plot of (xi, x1+1) will no

Y. For a value of n greater than the number of significant digits

longer fit on an obvious graph, and thus roundoff error will destroy the actual

correlation. (This is brought on by sensitive dependence to initial conditions.)
Frequency plots of one thousand pseudorandom numbers generated in this

fashion will fit a beta distribution whuse parameters are: & = b= %u The

same a and b work for any choice of n. The beta distribution is rather obscure,

being used mostly for curve fitting and prior distribution in Bayeslan statistics.

It i8 lucky that a = b = % is one of the few cases In which the cumulative

distribution can explicitly be found:
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(1) The p.d.f. is:

% dx , for 0 C 2z <1
x-x2
1 1
b(x; -i'» 'E) bt
0 » otherwise.
(2) The c.d.f. is:
s if X S_O

B(x; %3 % [Arc sin(2x - 1) + %J, if 0<{x¢<1

0
1
L |
1 , 1f x> 1.

Using the fact that {f X is a random variable with c.d.f. F, then F(X) is a
random variable with a uniform distribution on the interval, [0,1], we can

transform our pseudorandom numbers into pseudorandom numbers with a uniform dis-

tribution on [0,1]) by letting yy = 3(x1;.%. %).

Amazingly, the numbers, Yy» are iterates of the tent map! That is the tent
map 1s a theoretical uniform random number generator and the tent map and logistic
map are topologically conjugate. (See II1.9.) That is, B o f o B~1 = g where “-l
s the inverse of the cumulative beta distribution.

The gist of this discussion 18 that chaotic behavior really is "random". 1In
the eyes of the observer, any sequence of pseudorandom numbers is truly random if
the observer doesn't know how to duplicate them, or at least know what algorithm

was used to generate them. Thus, randomness is subjective.
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TONIARIw'S SHAPES

The practical fractal

1970s
of

Fracral Geometry of Nature”, the evi-
dencuhatfncukunshedhd\tmn

The applied fractal has arrived.

Fractals are shapes that look
more or less the same on all, or many,
scales of magnification. Consider a
coastline, the most obvious example
of a fractal in nature. Maps of coast-
lines drawn on different scales all
show 2 similar distribution of bays
and headlands. Each bay has its own
smaller bays and headlands, ad (al-
now) infinitum. The same general
structure can be seen in the magnifi-
cent sweep of the Gulf of Mexico, the
Baie de la Seine, the Pendower Coves
near Land's End, the gap between two
rocks on the foreshore at
and 30 on down to the individual in-
dentauons of a single rock. Cosstlines sre
cnnkly however close to them you get.

A mathematical shape that shares this
property with coastlines is the Koch snow-
dake, mwhxhdnbnynndhndluﬂm
successive dammuhnx:mhmtluunda
(see diagram). Nacture not xulpt coast-
lines from triangles, but che Koch snowflake

mulse. The notion of selfsimilarity lets
fractal geometers see a sort of order in the
lpparentduooof these shapes. It lets them

and irregularity of a
xpemdrvehaaumvd\g,km
as its fractal dimension

1.2618 dimensions, the coastline of Britain
has around 1.25 dimensions. The best way
to understand this is not to worry about it.

77

When mathematicians talk about fractal
di.x2nsions”, they are not using the term in
its ordinary sense. Roughly speaking, if
something has more than one but less than
two fractal dimensions it is better at filling
up space than is an ordinary one-dimen-
sional object (such as a line), but not quite so
good as a two-dimensional one (such as a
surface). Amnklylmeof say, 1.25 dimen-
sions is’ better at up space than a one-

wraight line because you need
more ink to draw the crinkle than you do to
hwduumd\tline.Alimofl.Mdm
sions is even crinklier and needs
ink. Some fractal curves are ao

“

galaxies, the level of the Nile: and rhe
shapes of clouds, trees, lakes and
mountains. Nearly every branch of
science studies something that
fractals can help with, because all as
pects of nature involve some rough-
ness and irregularity.

Superficial science

Begin with sutfaces. The shape of sur-
faces is significant throughout sci-
ence. When antibodies bind to a vi-
Tus, Of enzymes to a molecule of DNA,
they do so because of some affinity for
the particulsr shape of surface in
volved. ical catalysts used in in-
dustry work by causing reactions to
occur on surfaces. lurgsts worry
sbout the form of fracture surfaces in
metals. Geolom do much the same
for mountsin ranges. The same
shnpamyoccuronmnynlu.huh-
powered microscope pictures of the surface
of silicon look rather like the Grand

Zan
gﬁapesmmnmmumllynmhcrm
urdy ' nor entirely random. To con-
of how materials behave,

2;; mmtbeﬁmuht;dymlthewi-
i on peper o computer.
Fractals are the perfect tool for the job be-
cause they have the right mixture of struc-
ture and irregularity. Computer models
besed on fractals can explore how physical
properties of a material vary under different
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s

RS N




TOMORROW'S SHAPES -
conditions: how clay flows under pressure,  model known as Diffusion Limited Agyregs-  out of the wells. L
for example. tion (OLA). in the DLA model, single nerticles The usual way 5 srudy this problem of

In 1980 Dr Harvey Stapleton at the Uni-

ion rates, such-as 1.7.

He showed that the solution to the pu»
tle lay in the geometry of the molesules. A
typiczl prosein molecule is « long chain of
mx&b#ﬁmpledincm
way. "

i
5
|
i
]

r £

the resulring
mension of 2.5.)
Dr Rees alyo found that some regions of
8 protein's surface are smooiter—that is,
tave a smaller fractal dimension— than oth-
ers. This turns owe to be a quite a help for

process of electroplating,

1983, Dv Thomas Witren at Exxon Labors-
tonies i Clinton, New jerey, svef D+ Leon
acd Sander from the Univers.n of Michigan
s Ann Arbor found s new way of looking s
how such deposits build up, » marh -~ aeienl

o ——— g o o Z—K,-——-‘- s v W A, v - ——

spread out in what mathematicians call 2
random walk; that is, every so ofter they
mcve & certain distance in & randoi direc-
tion. They continue this diffusion undil they
collide with & growing :mudge where others
have siready hit and then stick coie. -

@ivas a way (0 compere thersy wich experi-
mcm‘.Bc_for: fractals were invented. licle

' bnnchirmmdril shapes is knowr: w v

cous fngering Thit has been srudied o
quite some time, tat
like to understand it betrer. in order to ex-
tract oil f«m;}:eg.dmm pumped in \::
der pressure. o pushet o

cause oil 2ntd weter do e mix. But the «xact
prsh foliowed by che warmr o &t fom
through the oil & extremah cor ~Nested. A
Setter »ndderaer Ao of s tvitls end eddire
should make 1t o>l ve 0 wneer oe ol

. drcuhd‘n;hqudndi:mmm'

ﬂovmamamrmukmwnnaﬂeb
Shaw ceil: two flar glass plates with 2 thin
layer of oil sndwizhed in berween. Wares is
fad in throughy a hole in the middle of one P
glase plare. Ac frae the water spreads ourina

veniently complicated “dynamic instability”
sets in. The boundary between cil and wazer
gows bumps, which in tum grow imto “fin-
gery”’ chae penetrate che oil in & star-like: pat-
tern. These fingere repeatedly up in
the samae way, ing at the tips when they
gee w00 wide. The is 2 repeated beanch-

ing growsth rachey like 2 developing plam. k
has & fracel dissension of sround L.7.
This is remaskably close to the fracral &b

}m Ml wasrg
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vacicus rates of infesmon {eg, the infocnon
will move w a neighbouring ceil only after
ter: days), and different immunissrtion proce-




dures can then be explored and tested.

Often the resul: is a fractal distribution
of the Aresase the complicated pattern of in-
fected “cells” 1s the same on several scales.
Thus an infection map of a city will look
much hke the infection map for each block,
which will Jook lik2 the infection map for
cach steeet. Clusters of infected cells form,
hrarching 1 a similar manner to the LA
model. lt turns out that the spatial distribu-
tion of an infection-—where the ill people
are i the first place—can be crucial to the
way the disease spreads later.

These 1deas have -apiizations for the
stugy o ~10n. Simple modsls take the aver-
age rate of indz.iion iur a disease and appiv it
to a uniformly randsrs pread of tected
pevre 3oL averages Co not mean ruch.
Letter raaaets recognise thar people differin

COMNM 27 b EMIEET S0 v’
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snowman shape
above—called the Mandelbrot se¢—
may be the most complex object in the
universe. It is an infinitely detailed
fractal obtained by telling a computer
to draw the co-ordinates generated by a
mathematical formuls. The formula is
simple—except for the fact that it
involves the square roots of negative
numbers. The colours are added later,
to taste.
The other pictures on our colour
mel are all close-ups of details of the
udelbrot set. They show that the
same whorls, tendrils, spirals and
snowmen keep appearing, even when
magnified millions of times.

their behaviour and thus spread the disease
at widely varying rates. Average infection
rates ignore this variation and so can lead to
wildly wrony predictions.

Any model with a fair chance of coming
up wicth the right answers has to recognise
that society i1s an srregular cluster rather
than an homogeneous mass. Most of the
time people move tn their own social ciecles
but different circles can also interact with
each other. This makes life horribly comph-
cated for epidemiologists. Dr Robert May, a
mathematical biologist at Princeton Univer-
sity, is working on simulations of the spread
of AIDS based on ideas in “chaotic dynam-
ics”. They deal with the sort of structured
irregularities found in fractal geometry.

If the notion of fractal clusters can make
the enormous jump from particles 1o people,
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forgeries chat mimic the forms with-
290 worrying about precse derails can
30 tae j10b on a relatively modest
computet.
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X 42 adly a8 7 rounds becauss he
aacrecwen Thue g wak Gan be G-
aned in terms - f the frer instruction,
“ria e o b ks, Sl pou lay
a tour. of beieks then voo by 2o
ahet - rop, s anothes ord L o
4]l you have tc add u # rule saying
when te oz,

Libe a rezoomes ser ~f nstric:
s, fractaly bresk uparro oone of
aenmel 1. Mari-teseng  form:
00 «art to emnerge on the screen
wher, a fev ra,doc. nunbers 2re fod
110 throw up irreg iiar ‘eacures. By nereas
g the f1acrai durenion of the object «c be

consrructedd 18 & i¥ace can be ma e rougher
nd meas pocked Feactals were used ro cre-
ate the geg-apt 1 cbe Moens of Endor in
Alr Geuoge fucass “The Rerurn of the
Ledi 1 Peier Opnenterter of the New
Yoo breawre of Telaoiogy cses the for-
woras L Ladiarbuanehing or s osees fo pros
" ce Lichike ees ano plants.
Dr Shaan Love,uv at McGil Universiry
W ceal has bt za) Louds nsing
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tove ihe za- fL o’ dimension
- smen crdars of magnitedi— -Tom ters
ometn e ronusands o kdomenes. Sucha
A iee saformicy oo almost unprece
ed ¢ he naren] world. It means that
o3 monatunal gk walel U you
e g+~ 1 photograph of a cloud, wath o
obje ts suon as tre=s o houwes to ¢l you the
<za's there ..e w iues i the shape of the
cloud reself that will cell you whother it 1s
Vo o VO Rma 15 Thewar asurmese
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© 61,0 5004, 107 the most part, the
e sort of pacterns as rain charts for a
ronth, a week, ¢- a single dsv, 5o the teme

poral stiuciure of rain is alss fractal

The idea of distribution: across 1ime—ie,
the shape drawn ~n o chat wi. 2 ume-
scis—lets the concept of fracials apply to
sourd and, more generally to ~tat physic
~ievs call “noise’”. Physicists use the term
“noue” to refer to any process that fluctu:

ates irregularly over time, even if it does not
invelve svund Different sorts of noise are
classif~3 crasding 0 chew “spectral den-
sity”’. This measures which frequencies oc-
cur. and how often “Whute" noise has equal
amounts of ali frequencies (sust as white light
has eqral amounts of ali coinurs) and s en-
arely random. The noise at auy gven time
cannot be predicted from the nuise at eacher
simes. “Brown noise” s named after a nine-
teenth century  Scotishk btanst, Robert
Brow., who studied the o ton, mosinn of
«av parteles floating > a hquid. Brown
raise 1t much more ordeced than whue
WS, The notse a0 a0y tine Jepends to
none extent Oy what 1t wasn che pasi. And
12 contains .nore tagh frequer tiss and fewsr
iew unes than white potse. - intermediaie
ot of noise is knewn a5 1/f noise because
each frequency, f. occars at s cae that 15 10
versely proporrional to 1s pitct. he tugher a
note 15, the less often it appears. All three
tvpes of noise produce wicsh fractal curves if
et L e Tk wingles
Rav: vgges aed o on
Remember chat inyrhung vhih changes
wcegulo ly vt ane w0 regeiced as
2 B S T Ut 1
MRS T A .4 . ."vu(,
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Vel e
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R wiIAres
f oceans, the historical vana-
2F1ar Nide, the energv out-
- .ot C.ansmission of signals
“yuor . wocan also be foynd i the
behaviou of electronic components.

Music seems to flow like 1/f noise. Dr
w5 a0 1BM's research laboratosics
11 New jork state has analysed variations of
prtch in many kinds of music and found that
</f ecuse predominates. This is equally true
cf Gregorian chants, Beethoven's sympho-
mies, Debnasy's piano works. the rags of
Scott joplin, and the Beatles’ Sergeant Pep-
per album. Only a few modern composers,
such as Karlheinz Stockhausen and
Elliott Carter, violate this rule. Dr
Voss has produced fractal forgeries of
TUBK on 2 computer using white,
brown and 1/f noise. White music is
far 100 tandom and brown music far
too correlated o sound like any sort
of :cz] music, But arrificial 1/f music,
sy Or Vose, sounds as if it is music
orcduced by 2 foreign culrure. He
notes that painting, drama and scul;-
rure wually imitate nature in scme
way. So what does music imutate’ He
suggests it imirates the 1/f noise cf the
vatural  world—"the characteiwstic
way our world changes with time"

Feactals are novel in 50 many
ways that it is easy to regard them as
wholly isolared from traditional math-
21aalics. ¥ e woulkd be 2 mistake: the
theory of fractals s closely linked o at
least one apparently independent
field, chaotic dynamics. Chaotic dy-
namics is a belated recognition that
purely deterministic—ie, predict-
sble—mathematical models can throw up
sppacently random results. For example,
imagine an insec population that grows
from one breeding season to the next ac-
cording to a fixed numericai formula. The
porulation next year can, in theory, be cai-
vlated from this year's. Yet despute such
regular laws ~f growth, the populaticn can
fluctuate ~1ldly and unpredictably. This 1s
because tiny errors in the calculation can
biow up -7 wildly divergen: predictions
overashonrt tirre | he result, for all pracual
purposes, i randomness, or ckaos.

Fract1is and chaos come togethes in the
study of turbulent flow. Scientists have long
bevn puzzlel by the way fiuids sometimes
flow smoothly end at other tumes break up
into an irregular frothing mass. The same
body of fluid can have both turbulent and
smooth regions, with a complicated border
between them. The classical approach to tur-
bulence sees it as a cascade in which the en-
ergy of fluild motion 1s progressively passe!
to smalier and smaller vortices. Such a pro-
cess 15 fractal because the eversmaller vorti-
zes have the same structure on many scales.
The braves: nope (> fractals is that they wil!
untavel the myscenies of chaos.
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Fractai Applications

by Mort La Brecque

n 1943, Szolem Mandelbrojt, a prom-
inent French mathematician whese
speaalty: was the abstruse fidd of
compley analvsis, had some words of
advice 16 a gitted nephew. It's very nice
tar children to gret some feel for geome-
try, Mandelbrogt counseled the voung
man, who was about to undertake his
higher mathematical education, but vou
raust leave it behind; a mature mathe-
matician dovs not use visual images.
Like many other vouths before and
since, Benoit Mandelbrot decided to re-
ek the wisdom of his elders. He had
developed a passionate attachment to
shape and form that he could not relin-
quish. The decision, in this case, has
been vindicaled by time. Not only has
his pursuit of a geometrical grail guided
Mandclbrot to extraordinary success as
a mathematician, but the fractal geome-
irv to which it led has profoundly influ-
enved contemporary science as well.
The concept with which Mandelbrot's
name has become svnonymous is de-
ceptively simple: An object that is self-
stmular has a rough shape to one degree
o- anather made of parts which, when
rgnitied. resemble the whole. The
parts are duasible into look-alike en-
ttics—and this geometric cloning con-
tinues forever, at least in the abstract
world of prre mathematics. Mandcelbrot
corned the word fractal to describe a
selt-similar object—the Latin fractus,
meanmyg srrepular and fragmented,
suits its twisted and termented furm
{See “Fractal Symmetry” by Mort La
Brecque, Mosare Volume 16 Number 1.)

If tractal is a new word, self-similarity
<an hardiv be considered a new idea.
The image of a flea upon a flea that Swifl
emploved in On Poctry refers to the
London literary scene but was inspired
by Gottfried Wilhelm von Leibniz, the
seventeenth- and cighteenth-century
CGerman philosopher and mathemati-
cian. Althaugh Leibniz's exuberant op-
tum.sm—all is for the Fest in this best of
all possible worlds- was wickedly sati-
nzed by Vol'awre in Caniide b 2tso had

R IR S R oo T

Fractals. Self-simitar branching produces images ol otganic tree and inorganic snowlaxe

=

So, Nat'ralists observe, a Flea
Hath smaller Fleas that on him prey;
And these have smaller Fleas to bite ‘'em;
And so praceed ad infinitum.
—Jonathan Swift,
On Poctry. A Rhapsody

This is part one of a two-part special report by
Mort La Brocque on fractal applications

1%




crossmatching of geometric theory and computer graphics.
Both the spawn and the seed of a mathematical revolution, they
are influencing an increasing range of scientific undertakings.

'{ Fractals are far more than the fantastic fruits of the
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the worthicr notion that in every d-op of
dew is an entire world with its pwn
drops of dew, themselves containing
worlds—and dewdrops—aof their own.

“That has a strong. simost theological
resonance tor man,” says Mandelbrot
Frodals hove become populor, ke con-
tends, because of the intrinsic appeal
they have for us, now that their nature s
understood.

Svience Fas succumbed to the fure of
tractals for ivss mystical reasons. “The
mathematical concepts related to fractals
have gose o long way 1in uniiving areas
of phvsics, chemistry, and biology that
were previousiv obscure and couldn’t
be spproached,” savs chemist Raoul
Kepeiman, who works at the University
of Michigan. '

The fractal world

Mandelbrot, who has used the con-
weptoof sell-similarity since the iate
19505, befieved initially that he had tat
upen a basic organizing principle of
naiure “There was a very widespread
feehing, fostered by many poets and
great writers, that nature has an organic
complication which no mathematics can
ever imqtale,” he savs “It's ironical tha
fracials, many of whicl: were invented
[by nineteenth-century mathematicians|
as examples of pathological behavior,

La Brecque i oniedited o Mose on
mariy subpects Ul mes orecont sonle sogs
“Many body Probiess Tl e appearsd u

Vilana L7

e

turn out not to be pathological at all. In
fact. they are almost the rule in the uni-
verse. Shapes which are not tractal are
the exception”

Those exceptional shapes are the per-

tect hines, planes .ad cubes of Fuclid,
which have heen part of our culture for
2,000 vears. “1 lave euclidean geome-
try,” he says, “but  is quite clear that it
duoes nut give a reasonatie presentation
of the wordd. Mountams are nal cones,
Ciouds are not spheres, trees are not eyl
mders. Almost everything around us is
essentially noncuchdean”

There is both an upper and a Jower
himit, however, to the size range over
which natural fractals are fractal: At cer-
tain points, thev may either become
smooth ar rough but not fractal, or else
they reach their particuiar ultimate state
in bigness or smallness. Moreover, natu-
ral fractals are fractal in a sfatistical or
stochastic sense, a particular shape giv-
ing no clue 1o the length scale at which it
was determined and not looking exactly
like a shape on a different length scale.
Exactitudes and infiritics exist only in
the province of mathematical fractals.

The range of natural phenomena
rncompassed by self-similarity s
astonching In addion 10 the moun-
s, clouds, and trees mentioned by
Mandelbrot and the palactic clusters and
werbutent lows on which so much ot his
wark ceatered, there are proteins, acid
apusitions the surface of the
vah Lol 2on0s, carthguake patterns,
' A cectaneal avo elec-
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trcal sveeews, chemidcal reactson ~ —even
the pattorn an which o)) and cater do
not mx. Fractal matenals also aclude
amorphous materials like glass, col-
Jndot agpregates, clectrodepositcd met-
als, electrolvtes, thin Gims, coal, and ce-
ranucs Lven the cracks i ceranies are
acually fractals.

An cqually impressive hist can be
culled trom the world of mathematics,
from whence the shape of tractals
sprang. To the Cantor bar, Peano curve,
and Sierpinski gasket of the late nine-
teenth and early twenticth centuries—
now often used by physical and hife sai-
entists ax models of natural fractals—
has been added the Mandelbrot set of
the bte twentieth century. This bizarre
object, simuftancously wetl-ordered and
wildly chaotic, is the focus of intensive
scrutiny by some of the best mathe-
matical minds.

Mandelbrot

All the activity in science and mathe-
matics that has identified and explicated
those fractals can be traced from a bur-
geaning, number of younger acolvtes to
the central avuncutar figure of Benoit
Mandclbrol. He is to fractal geometry
what Einstein was to relativity and
Freud to psvchoanalvsis. Althoygh he
has often ruffled the feathers of some
coffeagues by his immodest insistence
that credit go where eredit is due, most
would probably agree that hes peripa-
tetic imagination, proselvtizmg fervor,
and sheer dogged persistence virtually
created the field.

Mandelbrot, now at Harvard Univer-
sitv, conducted most of his work over a
period of nearly 30 vears at iBM's
Thomas ]. Watson Research Center,
where he continues as an M (eltow
Oddly enough, his interest in fractals
began about that time, when he was
studving short- and long-term com-
madity price changes. The structure of
the fluctuations, he discovered, could
be reproduced by a self-similar forgery.
(Were he to focus on onc field taday, he
savs, it would be economics.)

There followed work on a sequence of
problems that was distinguished, out-
side of the fractal connection, by« .otal
absence of relatedness: errors in the
transmission of data over tclephone
channels, the widespread phenomenon
called 1/f noise, and Nuctuations n the
level of the Nile River. Concurrently,
Mandelbrot was developing hus hnowi-
udge of mathemetics and crotting aew




structures that he would then apply to
the scientific problems that had con-
founded him. The oscillation between
different fields of science and mathe-
matics has been constant, a hallmark of
his entire career.

Beginning in 1964, Mandelbrot began
to consulidate his findings from his ear-
lier disparate studies, at the same time
adding to their number. He also recalls
the ensuing decade as one in which he
met great resistance from the scientific
establishiment. “I was certainly the only
person doing these things,” he says,
“except for friends who occasionally
pined ne because thev were interested
in a particular project.”

The turning point apparently came in
1975, with the publication of his first
book in French, translated into English
in 1977 as Fractals: Form, Chance, and Di-
mension. In the late 197U0s and early
1980s, his work was finally adopted by
the physics community, first by phys-
icists newly engaged in studies of the
chaotic behavior born of turbulence and
then by statistical physicists, a larger
group mnterested in a broader range of
phenomena. Those influential converts
and the publication of Mandeibrot's
best-seling second book, The Fractal Ge-
omtetry of Nature, in 1982, brought chem-
ists, pivlogists, computer scientists,
geophvsicists, astrophysicists, materials
scientists, meteorologists, mechanical
enginvers, and scicntists from other dis-
aphines wito the tractal (old.

“Ihe number of people involved is
becoming: cnormous,” savs Mandelbrot.
I dor’t know all of them, and | can’t
read evervthing they wnte” Although

Jukta sets s HETENNTEN

Devaney. ~oplication of Julia sets must wait.

he organized the first scientific meetings
on fractals by himself—he was the only
person knowledgeable enough to do
so—such arrangements must now be
left largely to others,

Computer graphics

Mandelbrot likes to point out that his
own labur was enhanced immeasurably
by a stroke of good luck—the simul-
tancous development of computer
praphics that was to prove invaluable in
the appueation ot fractals to science,
“My first woik had no pictures what-
soever, and | found [ couldn’t make my
rdeas under tood by my audience,” he
says. “The thought I was making a fine
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technical distinction that didn’t truly
matter to the central issues of their
fields,” he explains.

In the late 1960s, he realized that he
could use a simple pen writer to draw
real records of river-level fluctuations
side by side with fractal forgeries. The
illustrations convinced a hydrologist
that Mandelbrot was making a point of
fundamental significance. Shortly after-
wards, Mandelbrot acquired access to
some of the first computers for making
graphics and, using them to construct

" fractal forgeries of mountains, fooled
people who saw photographs and a mo-
tion picture of the images into thinking
that they were the real thing. Since
then, he has upgraded both his graphics
and photographic equipment to pro-
duce, with 1BM colleague Richard Voss,
even more natural, counterfeit moun-
tainous terrains.

Computer graphics proved to be
more than a rhetoric Mandelbrot could
use to explain his thoughts to others.
The pictures acquired a life of their own,
stimulating him to make new conjec-
tures and to advance his own research.

*For me, the most important instru-
ment of thought is the eye,” he says. “It
sves similarities even before a formula
has been created to identify them.”
The use of computer graphics as an
intuition-butlder has persuaded Benoit
Mandclbrot and others that technology .
can be as great an influence on science
as science is on technology.

Image synthesis

The application of computer graphics
is vast, and in the realm of image syn-
thesis also beginning to have an influ-
ence on art, both representational and
abstract, displayed in forms both tradi-
tional and technological. Some of the
most striking computer-generated pic-
tures there are have been made with
fractal algorithms.

The first images made with a com-
puter, created by Ivan Sutherdand at Mit
in the late 1950s, were compuosed first of
dots and then of lines, By the fate 1960s,
researchers at the University of Utah
had depicted objects made of triangles
and polygons. The French mathemati-
cian Pierre Bezier, one of the founders
of computer-aided design, sculpted
curved surfaces in the cardy 1970, but
those reference shapes were merely
drawings, highly inaccurate tor the
needs of the airplane and aatomobile in-
dustris, where they were being used.
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Enzyme fractals. Oisplay basec on »av crystallonrashy chows suriace structures of two maotecules of the enzyme superoxide dismutase

An improved method for making
curved surface: by spitting them into
polygons was thereafter perfected by
Loren Carpenter. then of Boerng Com-
puter Services.

Although this eaphicit method has be-
come the <tandard for making curved
surfaces, it Jeaves a ot to be desired.
The entire iImage must be done by hand,
thatis with direct mental intervention of
the human maode!-builder, who must
specifv—«sphcitiy—the coordinates of
every corner or contro! point that hies in
a curve. Since uny complex shape, such
as a tree or & hill, could require hun-
dreds of thousands or even a million
ponts to be described adequately, the
cost in human labor 1s prohibitive, ea-
cept for thic srudest approximaty s,

In 1970, Carporact readmy a roeview
of Manduibios first book, saw imme-
diately that fractals offered a way of
overcoming those imitations and began
to develop ~n algorithm to do so. That
idea occurred at the same time, inde-
pendently, to Alain Fournier and Don
Fussell of the University of Texas at Aus-
tin, and cventually the three published
a paper together in a journal of the As-
soctation for Computing Machinery

Computers take over from the
human—for the most pari—in their
stochastic modeling techniques. “You
let the cormputer generate rundor
shapes tnat are conctaned by certain
rules,” Coperte s wpiand, a W(dif you

use rudes o e et e sl tadtod from
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prcesses that yield patural forms, you
can i their appearance.”’

To produce a simple fractal curve that
might be used to form a fractal moun-
tan, tor example. the computer pro-
wiain veetically treaks a line somewhere
vetvern the two end pouits That dis-
tance is constraired by three rules de-
termined by the programmer. It must be
propurtional to the length of the dis-
tance between the end points so that the
same approximate shape is produced at
all length scales; it must have a global

At denidedty not tor aite sake
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scale factor that specifies the degree of
roughness desired in the curve; it must
have a certain distribution of random-
ness, usualiv that of a Gaussian curve
an which most of the points are clus-
tered near the center.

Once the line is broken, the two re-
sulting lines are severed again according
to the same principles, as are the four
lines that result from the second opera-
tion. This recursive splitting is repeated
until a crinkly curve is produced of such
statistical complexity that a human be-
ing could never reproduce it without a
computer. More important, the moun-
tain assembled from such curves will
look like a real mountain.

Filmed fractals

Carpenter created a two-minute-long
annnated film to illustrate his ideas.
Shown at the 1980 ACM SIGGRAPH—Spe-
cial Interest Group in Graphics—con-
ference “Vol Libre” portrayed a simu-
lated flight over a fractal landscape,
which included a number of different
fractal processes. It also demonstrated
that computer-animated film could be
entertaining as well as instructive.

The movie apparently succeeded be-
yond Carpenter's wildest dreams. Tal-
ent scouts from George Lucas’s Lu-
casfilms, who attended the conference,
were sufficiently impressed to hire
Carpenter for Pixar, the company's
fledgling computer graphics division.
(Its onginal mandate to computerize im-
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Appendix 3:

nc1assical Chaos™, Roderick V. Jansen,
American Sclentist, March/April 1987,

pages 168-18F.
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Classical Chaos

Roderick V. Jensen

Awidevuietyofnatural phenomena exhibit complicat-
ed, unpredictable, and ingly random behavior.
Common examples incdude the turbulent flow of a
ing patterns of cream, slowly stirred, in a cup of coffee.
The paradigm for this class of macroscopic omena is
the problem of turbulent flow in fluids (Fig. 1). Addition-
al eamples of complex, irregular behavior occur'in the

tion computer graphics have enabled the “experimental”
nuﬁ\empn‘;anstr: identify and explore ordered patterns
which would otherwise be buried in reams of computer
output. In many cases the persistence of order in irregu-
hrbehaviorwastotallyuneﬁmed;ﬂ\edmwvay' of
these ities has led to development of new
analytical methods and approximations which have im-
proved our understanding of complex nonlinear phe-

dynamics of molecules and atoms in nomena.

a gas or charged particles in a plas- This novel'app?ad\,‘whid",
fine another dass of in ;:mn}tph);‘sei: New methods for with mathematical analysis hasg:r-
cal problems which raise a disturbing studying chaotic behavior  enrisetoa new interdisciplinary field
T s e of iy Mmake the unpredictable & PR ﬁel?iwgaa‘:&nwp:l?g
partides give rise to the irreversible  1M07e understandable but ot only to problems in physics but
o ot e s s et glsg e disturbing 84,0 2 e e of ponke
dynamics? fundamental questions ~ such as the evolution of chemical

reactions (7), the feedback control of

physics has made
monumental strides in the last hun-
dred years, theoretical descriptions of these complex
rhenomena have remained outstanding unsolved prob-
ems. The difficulty lies in the nonlinear character of the
mathematical equations which model the physical sys-
tems: the Navier-Stokes equations for fluid flows and
Newton’s equations for three or more interacting parti-
des. Since these equations do not generally admit
closed-form analytical solutions, it has proved extremely
difficult to construct useful theories that would predict,
for example, the drag on the wing of an airplane or the
range of validity of statistical mechanics. However, in
the last ten years considerable has been made,
using a unique synthesis of numerical simulation and
analytical approximation.
The key to the recent progress has been the use of
hugh-speed digital computers. In particular, high-resolu-

Roterik V. Jensert 15 an assacwite professor of applied physics at Yale
Litrr iy, He is g graduate of Princeton Uniersity (A B. in physics 1976,
) e astrophiysial soaences 1981), wheve lus dissertaton research wes
< wvtaf to the staistial description of chaote dynamial systems unth
riwations to plaswa plysns. His current rescarch ss concerned with the
° o chaos m the foundatums of statistical mechanics and the investintion
= et behavior m quanitum systems. This work is supported by an
oved I Shan Fellooshup auf a Presidential Young mwstigator Auurd
< on the Nateoras v Forntation. Address. Alason Laboratory,
Coartwent of Aptdid Prgancs. Yale Uniersitv, Yale Statior: New Heeer:
Tam
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electrical drcuits (1), the interaction
of biological populations (2), the response of cardiac cells
to electrical impulses (3), the rise and fall of econornic
prices (4), and the buildup of armaments in competing
nations (5). In this article I will limit myself primarily to
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