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INTRODUCTION

A research program ol basic experimental and computational studies on the unsteady
flow generated by a pitching airfoil was initiated in October 1986 under grant no. AFOSR-
86-0243. This report is being written to describe the work carried out during the period
October 1986 - October 1988. It is of interest to note that the work is being continued
under a separate contract AFOSR F49620-89-C-0014.

The present study has the following objectives to the general problem of unsteady
flow past a NACA 0012 airfoil undergoing large amplitude incidence variation.

1. Investigate the unsteady flow structure generated by an impulsively started airfoil
from rest, at different angles of attack.

2. Investigate the transient flow characteristics of an NACA 0012 airfoil undergoing a
stepwise varying angle of attack.

3. Investigate the unsteady flow structure of an accelerating NACA 0012 airfoil at dif-
ferent fixed angles of attack.

4. Investigate the transient flow characteristics of an accelerating airfoil undergoing a
stepwise incidence variation.

In all these studies attention was directed to the basic understanding of the unsteady
flow phenomena. A unique experimental technique, known as Particle Image Displacement
Velocimetry, developed in our laboratory, is successfully implemented to study, in detail,
the unsteady large scale vortical motions that occur in these flows. A parallel effort was
devoted to study the experimentally observed features using numerical simulations. In an
attempt to expand the parameter range, in consultation with AFOSR, a new larger towing
tank facility has been designed and constructed.

In the following, the status of the research effort is given along with some of the most
important conclusions arrived from this study. The details of various investigations are

given in reports and papers, which are included here as appendices.




STATUS OF THE RESEARCH EFFORT

In the following, major conclusions on the various facets of the research program are

given.

a) Impulsively stated airfoil.

A systematic investigation has been carried out to understand the basic flow structure
generated by an impulsively started NACA 0012 airfoil, of finite aspect ratio, at different
angles of attack, and at a fixed Reynolds number of 1400.

A novel experimental technique known as “Particle Image Displacement Velocimetry”
was used to measure the instantaneous two dimensional velocity field. The velocity field
was measured with sufficient accuracy and spatial resolution that the vorticity field and
pressure field can be computed accurately, a unique capability of the technique. The
detailed description of this technique is given in the Appendix L

A parallel computational study was conducted to augment the above mentioned ex-
perimental study. In this study, a new algorithm was developed to solve the Navier-Stokes
equations using the discrete vortex method. The new fast velocity summation algorithm
enables the flow to be computed with much more resolution than previously possible in
vortex methods. The details of the algorithm is given in Appendix IL

The main features of the unsteady large scale separated flow about an impulsively
started airfoil are as follows:

The multiple exposure photographs of the flow field about the airfoil at 10° or less
incidence showed that the flow is well behaved and attached to the airfoil over the period
of observation. However, at large angles of attack a > 20°, the flow separates on the upper
surface of the airfoil and generates large scale vortices. The following scenario develops
in time on the upper surface of the airfoil. At the start of the airfoil. a starting vortex
develops at the trailing edge and is carried away downstream of the airfoil. Concomitant
with is the generation of a separation bubble at the leading edge of the airfoil. At a later
time, the separation hubble grows into an isolated primary vortex with secondary vortices
following behind it. This multiple vortex structure continues to grow together and move
along the upper surface until it reaches the trailing edge. At this point, the primary vortex
in duces a vortex at the trailing edge with the sense opposite to that of the primary vortex
Finally, the primary vortex and the induced trailing edge vortex interact and generate a
complex flow field. However, for finite aspect ratio airfoils or wings, a different type of flow

field seems to emerge at later stages of development. The various events described above




occur at different times, depending upon the angle of attack and free stream Reynolds

mimber,

Typical PIDV measurements of the instantaneous velocity field, at different times, for
an airfoil at o = 30° are shown in figure 1.The aspect ratio of the wing was about 3. The
airfoil travels from right to left. The data is presented in the body fixed reference frame.
The length of the velocity vector corresponds to its magnitude. The dimensionless time ¢*
1s defined as %, where U is the free stream velocity and C is the airfoil chord. The starting
vortex (at the far right of the picture) and the intial separation bubble at the leading edge
can be seen in the figure corresponding to t* = 0.68. The primary vortex with secondary
vortices following behind it can be seen in the figure at t* = 2.02. The trailing edge vortex
can be seen in the figure at t* = 3.02 At ¢* > 3, the primary vortex abruptly moves away
from the upper surface leaving behind a vortex sheet type like structure. Such a behavior
is attributed to the interference of tip vortices which are generated due to the finite aspect
ratio of the airfoil. At later times, for example at ¢* = 4.85, the tip vortices interact with
the separated flow on the upper surface and generate a complicated three-dimensional flow
field. The nature of this interaction and parameters that govern such a flow field is not
yet known. The current experiments with a larger aspect ratio (10) airfoil will help us in

the interpretation of these results.

Typical two-dimensional computational results from random-walk vortex simulations
of the full Navier-Stokes equations are shown in figure 2. The angle of attack and the
Reynolds number are the same as those in the experiment; the results of which are shown
in figure 1. The streamn line pattern, along with vorticity, which is represented in bit-
mapped graphics as half tones are shown in the figure. Except for the effect of the finite
aspect ratio of the airfoil, the stream line pattern looks very much similar to those found
in figure 1. To further evaluate these results, the locus of the primary vortex as it develops
in time is shown in figure 3. The computational results agree well with the experiment for
t* < 2. Beyond t* = 2, it is expected that the experimental flow ficld was inflnenced by the
tip vortices making it to be three-dimensional. The coefficients of lift and drag as obtained
from the computations are shown in figure 4. As expected, the coefficient of lift increases
with t* up to a point where the primary vortex is attached to the upper surface. For
later times, where the primary vortex leaves the upper surface, the coefficient of lift drops
significantly. In order to have a proper coinparisons, the experiment is being conducted

at this time with a larger aspect ratio airfoil, where the flow can remain two-dimensiona'




beyond t* > 2.

Similar observations are also made for the airfoil at o — 20%, and the resulis are
shown in figures 5 and 6. Figure 5 shows typical flow field measurements at four different
times. The drop out regions are a result of the blockage of the laser light by the airfoil.
The new optical set up explained later will avoid such regions. The various stages of the
development of the separated flow, as explained above, can be seen in these instantaneous
flow fields. The dynamics of these vortices and their role on the surface pressures are being
investigated at this time. The corresponding computational results are shown in figure 6.
From these results, it appears that the numerical simulation depicts clearly the various
stages of the flow development observed in the experiment.

b) Pitching Airfoil.

The experimental facility to investigate the transient flow characteristics of an airfoil
with stepwise varying angle of attack has been built and the details are given in the next
section. However, numerical simulations have been carried out on a typical case of a NACA
0012 airfoil undergoing a rapid variation in its angle of attack as shown in figure 7. In
the simulation, the airfoil initially translates at zero angle of attack during a time interval
0 < t* < 1; in the interval 1 < t* < 2.3 the angle of attack increases linearly from 0° to
30°; beyond this time the angle of attack is held fixed at 30°. The numerical procedure is
summarized in appendix III. The results of this numerical simulation are shown in figure
8. The results clearly shows the various stages of the transient flow development and
associated vortical flow field. These results are still being analyzed.

¢) Towing Tank Facility.

A computer controlled towing tank facility has been designed, and constructed. A
schematic of the facility is shown in figure 9. The various components of the facility are
indicated in the figure. The significant improvement in this facility, over other traditional
towing tanks, is the ability to vary the velocity rapidly without encountering any vibration
of the model. Which is accomplished by the use of A norail” linear motor system controlled
by an intelligent axis controller with a speed range from 3mm/sec to 0.3m/sec. Impulsive
or continuous airfoil pitching motion is controlled by "Klinger” stepping motor system. A
new optical arrangement has been incorporated in to this facility, which has the capability
of steering the laser sheet in several directions. This capability will enable us to illuminate

the entire flow field around the airfoil.

The laser source and the camera are synchronously controlled by an electronic system




which is activated by a computer. A schematic of the arrangement is shown in figure 10.

The entire operation is monitored hy DEC Vax Station T compnter.
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Figure 8. Time evolution of the flow past a NACA 0012 airfoil undergoing the motion shown in figure 7;
a) t*=1.0; b) t*=2.0; ¢) t*=2.7; d) t*=3,7; e) t*=4.5; f) t*=5.0; Re = 1400.
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UNSTEADY SEPARATED FLOWS: A NOVEL EXPERIMENTAL APPROACH

A. Krothapalli'

and L. Lourenco'’

Department of Mechanical Engineering
FAMU/FSU College of Engineering
The Florida State University, Tallahassee, FL 32306

Abstract

A novel experimental technique,
commonly referred to as Laser Speckle
Velocimetry (LSV) or Particle Image
Displacement Velocimetry (PIDV), is devel-
oped for the measurement of instantaneous
velocity fields in wunsteady and steady
flows. The main advantage of this tech-
nique is that the wvelocity field 1is
measured with sufficient accuracy so that
the distribution of vorticity can be cal-
culated with accuracy.

The PIDV technique, which is ideally
suited for the study of unsteady separated
flows, has been wutilized to measure the
development of the separated flow field
generated by an high angle of attack
(a=30°) NACA 0012 airfoil started impul-
sively from rest.

1. Introduction

For the solution of many problems that
occur in high angle of attack aero-
dynamics, it is a necessary to have a
thorough understanding of the behavior of
unsteady separated flows. Although much
progress has been made in predicting the
steady flow phenomenon with the wuse of
numerical methods, it is still difficult
to predict unsteady flows which contain
flow separation. The difficulty mainly
arises from the fact that these flows are
extremely complex and are not amenable to

standard experimental ~ and numerical
techniques. In view of this, a novel
experimental technique 1is being developed
for the m~asurement of instantaneous
velocity fields 1in wunsteady and steady
fluid flows. This paper provides a

description of this technique along with
its successful application to the study of
an unsteady separated flow generated by ar
high angle of attack airfoil.

In an unsteady flow, a single photo-~
graph of the flow pattern at a given
instant does not generally provide any
meaningful information. In order to
understand the unsteady flow phenomena, it
is necessary to obtain both spatial and
temporal information of the entire flow
field. With this in mind, optical
technigues have been widely used to
observe and measure properties of flow
fields such as velocities and densities.
Many of these technigues are gualitative
in nature, but of great value in guidiny
intuition and 1in suggesting ways to
investigate the problem by quantitative
means. An admirable review of the modetn
optical techniques in fluid mechanics is
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given by Lauterborn and Vogel', and the
reader is veferred to this article for
detnils. A guantitative flow visualiza-
tion technique would be very helpful in
the study »of these flow fields. Attempts
to accom, ish this task by tracing the
streaklines of injected particles’ ?
usually can not provide the spatial
resolation that is required and a large
amount of labhor is necessary to reduce the
data.

In unsteady separated flows, as will
be shown later, it is often desirable to
obtain the vorticity field, in addition to
the velocity field. However, measurement
of the vorticity exceed the present exper-
imental capability. This difficulty
arises from the fact that vorticity is a
quantity defired in terms of local veloc-
ity gradients. In contrast, the currently
available measurement techniques, such as
hot-wire anemometry or laser velocimetry,
are censitive only to the local velocity.
Hence, measurements must he made over
several points and the resulting velocity
components are then analyzed by finite
difference schemes. However, the errors
produced by the necessary differentiations
limit the accuracy and spectral range. In
addition, the spatial resolution of this
method is often not sufficient to measure
small-scale tluid motions or rapidly
changing velocity gradients. As a conse-
guence, the measured vorticity field is a
type of spatially averaged estimate of the
actual wvorticity field. Finally, this
method provides information at only a
single point. I1f information on the
entire flow field 1is required, measure-
ments must be carried out sequentially one
point at a time. This sequential method,
although laborions, is straightforward in
applications 1. sotving steady flows.
However, the method becomes very diffi-
cult, 1f not impossible to implement, when
studying unsteady flows. Direct measure-
ment of wvorticity has been tried, for
instance, by injection of spherical
particles which rotate in the flow with an
angular velocity proportional to the local
votticity'. Such methods suffer the same
drawback of insufficient spatial tesolu-
tion just mentioned and also can be quite
complex.

Recently, a novel velocity measurement
technique, commanly tefe:-ed to as Lase:
Speckle Velocimetry (LSV) or Particle
Image Displacement Velocimetry (PIDV) has
become available. This technique provides
the simultaneous visualization of the two-
dimensional stieamline pattern in unsteady
flows as well as the guantification of the
velocity field over an entite plane. The
advantage of this techniqgue is that the
velocity fireld can be measuted over an




flow field simul-
with accuracy and spatial

From this the instantaneous
vorticity field can be easily obtained.
This constitutes a great asset for the
study of a variety of flows that evolve
stochastically in both space and time,
such as the unsteady vortical flows that
occur in rotorcraft and high-single-of-
attack aerodynamics. For the hackground
of this present technique, the reader is
referred to reference 5.

‘entire plane of the
taneously,

resolution.

principle of the technique {is
given in the next section followed by the
description of the apparatus, instrumen-
tation and procedures. Section 4 provide
the results and their description for the
flow over an high angle of attack NACA
0012 airfoil.

The

2. Principle of the Technique

The application of LSV or PIDV to
fluid flow measurement involves several
steps. First, it is necessary to "create"
a selected plane or surface within the
flow field. This 1is accomplished by
seeding the flow with small tracer

particles, similarly to LDV applications,
and illuminating it with a sheet of coher-
ent light, as shown in Figure 1. A pulsed
laser such as a Ruby or a NdYagq laser, or
a CW laser with a shutter is normally used
as the light source. The laser sheet is
formed, for example, by focusing the laser
beam first with a long focal length spher-
ical lens, to obtain minimum thickness,
and then diverging the beam in one dimen-
sion with a cylindrical lens. The light
scattered by the seeding particles in the

illuminated plane provides a moving
pattern. When the seeding concentration
is low, the pattern consists of resolved

diffraction limited images of the partic-
les. When their concentration increases,
the images overlap and interfere to pro-
duce a random speckle pattern. A multiple
exposure photograph records this moving
pattern. The lower particle concentration
originates a mode of operation of the
technique referred to as Particle Image
Displacement Velocimetry, reserving the
term Laser Speckle Velocimetry for the
high pacrticle concentration levels where a
random speckle pattern is actually formed
(reference 6). In a second step the local
fluid velocity is derived from the ratio
of the measured spacing between the images
of the same tracer, or speckle grain, and
the time between exposures.
Several methods exist tu con.eitt the
information contained in the multiple-
exposed photograph, or specklegram, to
flow field data such as velocity or vor-
ticity. The recorded image, whether
formed by isolated disks, in the case of
low particle concentration, or speckle
grains for high particle concentration is
a complicated random pattern. It would be
very difficult to measure the iocal dis-
placements by visual or computer-aided
inspection. However, it is important to
realize that the multiple exposure photo-
graph results in a periodic random image
from which the periodicity information can

be Auto-

the

retrieved wusing Fourier or

cotrelation analysis. Basically,
multiple-exposed photographs or speckle-
grams can be analyzed either on a point-
by-point basis, which yields measurements

of the local displacements (velocity),
(tefs. 7-8) ot with a whole field filteyr-
ing technique, which yirelds 1sovelocity
contouts (ret. 9). The method, which hay

becn selected and implemented by the Fluid
Mechanics Research Laboratory at the
Florida State University, is the Young's
fringes method. The local displacement is
determined using an focused laser Leam to
interrogate a small area of the multiple
exposed photograph transparency. The dif-
fraction produced by coherent illumination
of the multiple images in the negative
generates Young's fringes, in the Fourier
plane of a lens, provided that the
particle images «correlate. This is shown
schematically in Figure 2. These fringes
have an orientation which is perpendicular
to the direction of the local displacement

and a spacing inversely proportional to
the displacement. The wuse of Young's
fiinges eliminates the difficulties of

image pairs in the
of the Young's
in reference

finding the individual
photograph. The basis
fringe method is described

The
discussed above
the photograph

photographic recording method
has the disadvantage that
consists of particle pairs

which have a 180 degrees ambiquity in the
direction of the velocity vector. In
addition, it has been shown (reference 10)
that the velocity dynamic range of the
technique is limited to a maximum value of
about 10, In most flows of interest (e.g.

boundary layers and separated flows), this
dynamic range is not sufficient to capture
the flow field in its entirety. These
limitations ate <critical when measuring
complex flows having flow . reversals and
stagnation areas.

both the ambiguity
as well as to im-
velocity range is
experiment. This

A method to resolve
of the wvelocity vector
prove the technique’s
incorporated in this
me thod proposed by Lourenco!! and
Adrian'?’, commonly known as "velocity bias
technique", Consists of recording the flow
field in a moving reference frame, thus
superposing a known velocity bias to the
actual flow wvelocity. This effect may be
accomplished in several ways, in particu-
lar, wusing a moving camera during the
photographic recording or by optical means
using scanning or rotating mirrors. For
the data presented here, a rotating mirror
was used to displace the image during the
exposure with a pre-determined velocity.
A schematic of the rotating micror
arrangement is shown in figure 3.
Consider two particle pairs A, B, and C, 0,
having equal displacements in opposite
directions in the object plane. By intro-
ducing a 45° mitror between the camera
lens and the object plane, the correspond-
ing displacements appear in the film plane
as AB and CD with equal magnitudes. When
the mircror is rotated by an angle of a6
between exposures, the displacements
corresponding to A B, and C,D, appear in




the film plane as AB' and <¢D!' with
different magnitudes. The correct dis-
placement or velocity with its direction
can now be obtained upon removal of the
velocity bias. An example of the flow
field obtained with and without the
velocity bias can be seen in figure 4.
This flow represent a typical separated
flow field containing flow reversal and

stagnation areas (a discussion of this
flow field is given later).

3. Apparatus, Instrumentation and
Procedures

development of the
unsteady separated flow generated by an
high angle of attack (a=30°) NACA 0012
airfoil impulsively started from rest 1s
examined using Particle Displacement
Velocimetry. The flow 1is created by
towing the airfoil in the reduced scale
Fluid Mechanics Research Laboratory towing
tank facility. The tank is 300 x 200 x
600 mm. A detailed examination showed
that the motion of the towing carriage is
smooth and vibration free. The towing

The time-space

carriage 1is driven by a variable D.C.
motor, and the towing velocity can vary
from 0 to 100 mm/sec. For the photo-

graphy, a 35mm camera (Nikon F~3) is used.
To photograph the flow at regular time
intervals, the photographic camera has a
electric winding device. The photographic
time interval available with this camera
can be continuously varied up to a maximum
of 6 frames per second. Two options are
available to fix the camera; one by
attaching it to the towing carriage,
which means an observation point fixed in
relation to the model, and the other by
attaching it to the frame of the water
tank, which means an observation point
fixed in relation to the fluid. The
selection of these two depends upon the
flow field being photographed.

In this experiment the airfoil chord
is 60mm and is towed with a velocity of
22mm/sec. The corresponding Reynolds
number was 1400. The fluid used in this
experiment was water seeded with 4um

metallic coated particles (TSI model
10087). For the illumination, a laser
beam from a 5 watt Argon-Ion Laser

(Spectra-Physics series 2000) is steered
and focused to a diameter of .3mm using an
inverse telescope lens arrangement, A
cylindrical lens, with a focal length of
-6.34mm, is used to diverge the focused
beam in one dimensior, creating a light
sheet. The laser sheet is 70mm wide and
illuminates the mid-span section of the
airfoil. For the multiple exposure, the
CW laser beam is modulated wusing a Bragg
cell. In this experiment, the laser power
density, 1,, of the sheet was .27 W/mm’.
In order to record the time development of
the flow field, the camera was attached to
the towing carriage and the freqguency of

which the multiple exposures were taken
was set at 2,0Hz. The aperture of the
lens with a focal length of 50mm and a
spacer of 12mm, was set at F#5.6 and the
resulting magnification factor was 0.40.
For the multiple exposure, the time
between exposures, T, and the exposure

time, t,

are chosen according to the cri-
teria discussed in reference 6. The time
between exposures was lOmsec. For optimum
exposure, the exposure time was lmsec,
which corcresponded roughly to (d, /MVmax),
where D is the analyzing beam diameter, V
is the maximum expected velocity plus the
shift veluvcity in the field and d 15 the
particle image diametetv expressed in tetms
of
i

d, = (d; + df)?
with d the particle diameter and d the
edge sbread caused by the limited response
of the recording optics (ref. 6).

Data Processing
The fringe images

analyzed using
system of the

were acquired and
the digital image analysis
Florida State University
FMRL (Fig. 5). This system consists of
the following components: a DEC LSI-11,/73
host computer, Gould IP-8500 Digital image
processor which includes four memory tiles
for storage of image data in a 512 x 512
foimat with a resolution of 8 bit per
pixel, a frame digitizer, a pipeline pro-
cessor and a video output controller to
convert digital to analog information for
display on a color monitor. The system
also 1includes a two-dimensional Klinger
traversing mechanism with a controller for
the purpose of automatically scanning the
film transparencies. Two methods are
available and wused for fringe analysis
(ref. 10). The first one is an inter-
active method in the sense that it
requires the assistance of an operator.

The inconvenience of the one-
dimensional averaging method is the need
for an external adjustment of the angle of
the fringes by an operator. This problem
can be by passed by computing the velocity
components along independent directions.
Because each line of the fringe frame can
be considered as a noisy periodic signal
with variable phase, the automatic deter-
mination of a velocity component <can be
performed only by averaging over a quanti-
ty independent of the phase. The autocor-
relation for -each line or its Fourier
transform for the power spectrum satisfies
this reguirement. The m velocity compo-
nent can be computed from:

5117 {I(m,n)I{m+u,n))

g{u) = [ (m -511<¢u<sll
n=0 I(I(m,n)]?
i
This algorithm has been implemented

pipeline processor of the Gould
processor to perform simul-
taneously the autocorrelation for all the
lines of a frame, For an accurate esti-
mate of the velocity magnitude and direc-
tions, four of such full image operations,
yielding four autocorrelation functions,
are reqguired,. From these the velocity
vector is determined by selecting the
values of the components which have been
computed from autocorrelations having the

using the
1p~8500 image




Bigﬂest SNR, and visibility. (The compu-
tation, which includes the determination
of the fringe angle and position updating
of the film transparency scanning mecha-
nism, is completed in a few seconds,
typically 4-5 sec, using the PDP 11-73
computer.)

accuracy of the technique
using a method described in
uniform flow field is
multiple exposure

The overall
was evaluated
reference 10. A
created by producing a
photograph of the still seeded water, in
the water tank, with a camera moving at
constant speed. For the multiple exposure
photograph a number of time petwegn
exposures are used, thus resulting in
photographs with particle pairs at
different known distances.

a systematic bias,
of the obtained
estimate of

In the absence of
the standard deviation
velocity distribution is an
the mean measurement error. From the
error analysis, it is believed that the
velocity data is obtained with an accuracy
of 2 percent or better.

4. Results and Discussion

Typical multiple exposure photographs
of the flow generated by the impulsively
started NACA 0012 from rest for different
times are shown in fiqure 6. The photo-
graphic arrangement was purposely adjusted
to enhance the view of the flow field on
the wupper surface of the airfoil rather
than to show the entire flow arocund the
airfoil. Consequently, the details of the
flow wunder the airfoil can not be seen
clearly in these photographs. The angle
of attack of the airfoil is set at 30°.
These pictures display the flow field from
the leading edge to a downstream location
of about 1.5 chords. Photographs were
taken at a frequency of 2Hz. A total of
34 pictures were obtained covering the
range of t° from 0.1 to S. The non-
dimensional time, t' (= Ut/c, where U is
the free stream velocity, t is the time
between two successive pictures, and ¢ is
the <chord of the airfoil) between suc-
cessive pictures was 0.167. However, in
figure 6, only a limited number of pic-
tures are included. The quadruple exposed

photographs shown here increase the SNR
{signal to noise ratio), the fringe visi-
bility, and provide an excellent flow

visualization. The added advantage of
providing a good flow visualization is an
asset of the PIDV technigue.

From
shown
vations

the flow wvisualization pictures
in figure 6, the following obser-

are made. At the start of the
airfoil a vortex, at the trailing edge,
commonly known as “starting vortex", is
generated and 1is carried away from the
body. concomitant with this is the
generation of a separation bubble at the
leading edge of the airfoil (figure 4a).
At a later time, for example at t' = 1.2
(figure 4b), the separation bubble grows
into an isolated primary vortex with
"secondary vortices" following behind it.
Similar type of vortex structure was also
observed'®in the flow behind a circular

cylinder. This multiple vortex structure
continue to grow together wuntil the t'
reaches a value of about 2.5 (figure 4c
and 4d). At t° = 2.5 (figure 4d), because
of the «close proximity of the primary
vortex, a trailing edge vortex is
generated. At t' = 2,75 the primary
vortex abruptly moves away froum the sur-
face of the aittoil leaving behind o

"vortex sheet” like structure (figure 4de).
For t° > 3.0, this “"vortex sheet" rolls up
into distinct vortices and they grow in
size with time as shown in figure 4f - 4q.

During this process, the trailing edge
vortex also grows and as a result the
whole flow field becomes very complex.
Close to the surface of the airfoil, a

remain present for t' > 3.0.
has the same sign of rotation

small vortex
This vortex

as . : trailing edge vortex,. A similar
vortes structure was observed by Ho!'', who
calls it an "induced vortex" and associ-

ates it with

phenomenon.

unsteady separation

The velocity data is acquired in a
Cartesian mesh by digital processing of
the Young's fringes, produced by point-by~
point scanning of the positive contact
copy of the photograph. The scanning step
size and the dimension of the analyzing
beam are 0.5mm, which' corresponds to a
spatial resolution of about 1.25mm in the
object plane or ahout 0.02¢c. The fringes
were processed using the method described

in the previous section. The resultant
two-dimensional velocity fields, corre-
sponding to figure 6a - 6h, are shown in
figure 7. The length of each vector is

proportional to the local velocity at that
point, The color code superimposed on the
velocity data represents the wvorticity
level, the magnitude of which is given by
the color bbar at the bottom of the
picture. The ved and green colors repre-
sent the peak positive and negative vor-
ticity regions respectively. This type of
display clearly depict the various regions
of wvorticity and 1its strength. As dis-
cussed above, the presence of primary
vortex, secondary vortices, vortex sheet
trailing edge vortex and the induced
vortex on the surface of the airfoil are
clearly depicted along with their time-
space development. The detailed analysis
of this data 1is being conducted at this
time and will be reported later.

5. Conclusions

A recently developed velocity measure-
ment technique, known as Particle Image
Displacement Velocimetry (PIDV), has been
briefly described. Using this technique,
the time-space evolutiun of the flow
generated by an impulsively started high
angle of attack (a=30°) NACA 0012 airfoil

is presented. This experiment illustrated
the technique's capabilities to record
with accuracy the complex unsteady
separated flow.

The technique has been
vide both flow visualization
tative measurements, which
velocity and vorticity fields.

shown to pro-
and quanti-
include the
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The wunsteady separated flow field
generated by an high angle of attack air-
foil contains many large scale vortical
Structures such as; primary vortex
generated at the leading edge with second-
ary vortices upstream of it, trailing edge
vortex, vortex sheet and an induced vortex
in the wupper surface of the airfoil. The
origins and time development of these are
clearly depicted by the 1instantaneous
velocity and vorticity fields obtained
using PIDV.
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Direct summation of the velocity ficld introduced by pomt vortices tends to be nme
consunung since the velocts of each vortex is found as @ sum over all other vortices. The
reswlting number of numencal operations is proportional to the square of the number of
vortices Here a relatvely simple procedure ts outlined which sigmificantly reduces the number
of operations by replacing sciccted partial sums by asvmptotic serics. The resulting number of
operations appears to vary roughly in proportion to the number of unknowns, corresponding
10 o "t solver. o 1989 v demic Press, Ine

{. INTRODUCTION

Incompressible flow at lugh Reynolds number with large-sciic separation can be
diflicult to compute since the vorticity tends to concentrate i limited parts of the
flow ficld. Vortex mcthods [ ] attempt to reduce the number of vanables needed
for the computation by describing only the vorticity, in its simplest form, by a series
of Jelta-functions or point vortices:

A
= Z I 30X = X,). (1

=1

The flow velocity ix related to the vorticity by the soluaon of a Poisson equation,
with the vorticity as forang function, resulting in the stream function. The flow
velocity is found by taking the curl of the stream function. The solution for a series
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of delta functions can be found and leads to the following expression for the flow
velocity:

’_l ~ |
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where Z is the complex position x + /= Ly and F* the complex conjugate velocity
u —\/_—-Ix'. In general, 1t will be neeessary to add to this flow velocity a solution
of a Laplace problem to take care of the boundary conditions.

While the sum in Eq. (2) may casily be evaluated, the number of terms is propor-
tional to the square of the number of vortices N. Thus, the computational effort
increases rapidly when the number of vortices increascs. In contrast, various mesh-
bused solution procedures for the Poisson cquation are able to find the solution in
a computational time roughly proportional to the number of mesh cells. As a result,
a point vortex description scems most useful if (a) the number of vortices is much
smaller than the number of mesh cells necded 1o describe the Mlow (ie., the vorticity
is restricted to a small part of the total domain). {b) the pownt-singularity
description itself is of particular interest and the errors induced by a mesh-based
representation must be avoided: or (c) the infinite domain implicit in Eq. (2) is to
be preserved. Certainly discrete vortex representations have drawn and continue
to draw considerable theoretical and numerical interest. In addition, the Poisson
equation s not unique to fluid mechanics; it arises in other fields such as electro-
magnetism and gravitation. For these reasons. more efficient procedures to evaluate
the solution under pointwise forcing are of considerable interest.

Various methods to reduce the computational clfort have been proposed.
Anderson [27] used a fust Fourier transform method, with corrections for the
interactions between nearby vortices. However, some of the mentioned advantages
of the vortex method are fost due to the presence of the mesh. In addition, for high
accuracy the evaluation of the interactions between neighboring vortices can
become computationally itensive.

An alternative approach followed in this paper is, to group the vortices spatially
and to approximate the clfects induced by each group at larg:  listances. Appel [3]
and Barncs and Hut (4] made approximations using a single replacement element.
Yet, using such approximations, high accuracy is difficult to achicve while the
algorithm tends to be scalar.

In contrast, the present study uses a Laurent scrics approvimation for the
veloeity induced by cach group. This approxmation takes the form
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where Z, 15 a suitably chosen origin point tor the group of vortices and the sum
m (3b) extends over all voruices in the considered group. The Laurent series allow
the desired accuracy to be maintained by the choice of the truncation of the infinite
sum. [n addition. when the point j at which the vclocity is to be evaluated is
sufficiently far distant from the group of vortices, the scries converges geometrically
and only a limited number of terms is needed for given accuracy. Savings ‘@ com-
putational cffort result when the number of terms necded for the Laurent scries is
sufficiently small compared to the number of vortices in the group. For that reason,
a4 minimum group size exists below which {urther savings arc not made. Using the
adaptive algorithm on a CYBER 205 computer. Van Dommelen and Rundcensteiner
[3] found that this group size is of the order of a 100 elements.

At about the same time. similar ideas were developed by Rokhlin [6] and
Greengard and Rokhlin [7]. Tn fact. an adaptive algorithm developed by Carrier,
Greengard, and Rokhlin {8] 15 quite similar to the present one in both the use of
Laurent series and the grouping involved. An important difference between the
procedures is how the adaptive group structure is addressed. While the procedure
[8] 1s based on five topological scts expressing the rclationships between groups,
the present procedure is based on an unusual numbering system of the groups. The
numbering system is gencrated simultancously with the group structure: it leads to
a relatively simple and streamlined program logic.

The procedure of Greengard and Rokhlin recasts the Laurent series as Taylor
series to achieve further reductions in computational operations, an enhancement
not yet incorporated in the present scheme. Hower »r, unless the number of vortices
is sufficiently large, the possible savings scem fimited. Furthermore, not recasting
the series offers some compensating advantages, such as reduced storage (only a
sanishingly small fracton of the Laurent series expansions need be stored).
ncrease¥ vector length, and less overbead.

In its present form, our procedure can be divided into two parts: generation of
an adaptive panel structure. to groups the vortices spatially, and determimation of
the velocity, The next two sections deseribe cach of these steps in turn.

2 GENFRATION AND NUMBERING OF (HE PaNETS

In order to use Laurent series cffectively, the vortices must be spatially grouped
together. Figure 1 itlustrates a typical groupig for the example of flow about a
circular cylinder. In this example, there are 16,479 vortices outside the cylinder
(shown as dots) and an cqual number of nurror vortices mside the eylinder (not
shown).

The procedure for generating this pancl stiucture is shown an g 2 The frst few
steps are further illustrated i Fig, 3 The starting domain s taken as the smallest
square that encloses all vortices, This squatee 1s subdivided into four squares, or
subpancls. of equal size (indicated as A, B. Coand D in Figo 3). The vortices are
reordercd so as to group the vortices in cach of the foar subpanels together (in the 3
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Fig. 1. Example panel structure generated for flow about a aircular evlinder. The 16,000 vortices
outside the cylinder are shown as dots, an cqual number of mirror vortices within the eylinder are not
shown.

CYBER 205 implecmentation, the built-in vector function QSVCMPRS was used for
this purpose).

Information about eiach of the pancls is stored in memory. This informition
includes the position of the panel and the storage locations of the first and the Jast
vortex within the pancl [t also includes an identifying panel number defined later.

After subdivision, execution transfers to the first of the four subpanels generated,
and a decision is made whether this pancl should be further subdivided. The
decision 1s based on the number of vortices in the panel; if sufficient voruces are
present, for example, moere than 100, the pancl is further subdivided. Meanwhile the
panel data for the remarting three subpanels is temporarily stored away 1o a last-in,
fifld-out buffer. (The last part of the memory allocated for the panel information
was used as buffer.) “




Panel 1s total domain

Subdivide nto group
of 4 subpanels

|

store last Y subpanels
in LIFO buffer

Panel = first subéanel

sufficient
Yes voriices ?

No

Buffer
Yes empty !

No

Take rext panel

from buffer

Fis. 20 Basic flow chart for genereting the panel steucture.

If the considered pancl does not contain sufficient vortices, the next panel will be
retrieved from the buffer foo possible further subdivisions. Proceeding in this
manner. the entire domuin is subdivided into panels containing a limited number
of vortices.

Each of the pancls is given a unique number to simplify identification of the
panel and its place in the panel structure. Figure 3 illustrates that the storage is
always kept in order of increasing panel number. The actual definition of the panel
number is illustrated in Fig. 4: all panels which could be created by the subdivision
process can be represented as a serics of uniform divisions of the domain For each
of these uniform subdivisions. the x- and y-positions can be given a binary number.
The four panels generated at the first level of subdivision can be numbered using
a onc-drgit binary number (top of Fig.4). Each additional level of subdivision
requires one additional Jigit.

Therefore, the binary digits determine the position of the panel. The number of
binary digits determines the subdivision level. Tt follows that the binary digits of the
x-and y-positions describe the panels uniquely. The complete information is stored
in a single pancl number using the following procedure: e




(a) Increment cach digit in both the x- and y-position by one, so that bmary
zero becomes 1 and binary once becomes 2.

a

(b) “Interleave™ the resulting digits of the x- and j-positions into a single
number, so that the odd digits become the digits of the x-position and the cven
digits those of the v-position.

(¢) Add trailing ceros to obtain a final pancl number with a fixed and
predetermined number of digits. The 205 procedure chooses a 28 digit panel
number.

The procedure is illustrated in Fig. 4 for example panels. Since the highest value
of the digits in the obtained panel number is 2, it can be considered as the represen-
tution of & number in a base-3 notation.

. . Vortex Panel Panel
Physical Domain Storage Information Number
A C A
; 11000000 .00
.
| B 12000040. .00
I B C | 21000000..00
l B D D 22000000...00
| C
| D
! a
H ¢
C b A 1100800 .00
i 11110000 . 00
b d c
i b 11120000 00
¢ ¢ 11210009 .00
% 11220009 .00
B 12000000 . 00
B D C | 21000000 00
. D 22000000, 00
C
D
‘l' A 11000001 00
1 ¢ 3 a 11110000 00
! \ b 11120000 .00
C . | 11200 09
13 | F
N ¢ 2 Pzize o
= d Rl 12122100 09
4 12z 00
B C 2reaa 0o
B D d 1220000 0o
B 12060000 00
! C C 21000000 00
D D 22000000 D)

FIG. 3. The first three steps i generating the panel structure of Frg b Shown are: the subsequent
drasions of the doman, the order m which the vortices are stored. the order in which the information
about the panels is stored, and the numbering of the pancls
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y = 0 A Panel number for panel A:

Xz 0 =1
y =1 - 1

A/

panel number: 11000000..00

x 0 Q 1 1
o 1 0 1
Yy = 00
Panel number for panel b:
01 b x =00 ™1

y =00 % 1 2

1o 222,

: panel number: 11120000.00
‘ 11
! o 0o o O 1 1 1 1
| X 0 0 1 1 9 0o 1 1
t 6 1 0 1t o0 1 0 1
i ¥y = 000
H 003
‘ Panel number for panel 3:
010 3
x =001 ¥ 1 1 2

011
X y=o00 ™ 1 2

P00 YRR

101 panel number: 11 122100.00

Fii. 4. Delinition of the pancl number of example pancls

By construction. the panel number contains all the information about the panel:
the non-zero digits determine the pancl position and the nunmber of pairs of non-
zero digits the subdivision fevel. Puarticularly important propertics arc:

(1) For any given pancl, the pancl numbers of ncighboring pancls of the
same sizc may be found by simply binary manipulations, (I-or cxample, to find the
panel at the same r-position but the previous x-position, determiune the odd non-
zero digits of the pancl number, giving the y-location, and do a bmary subtrachon
of unity to find the digits of the soughs panel number.)




(ii) For any given pancl number, the panel number of the next larger
“mother” panel containing the given pancl is found by sctting the last two non-zcro
digits to zero. (The last two non-zero digits were generated by the last panel
subdivision.)

(iit)  Subpancls of any pancl have a panel number greater than the original
panel, but less than the next panel of cqual size. (The subpancls have the same
lcading digits as the original panel, but nen-zero trailing digits.) This property
implies that in order of increasing pancl number, panels are arranged in “lamilies,”
with the subpanels always immediately following the pancls of which they are a
part.

The algorithm for generating the pancls described at the start of this section
generates them in order of increasing pancl number, subdividing the current lowest
panel before moving on to the next pancl.

Since cach subdivision adds two more non-zero digits, the total number of digits
in the panel number limits the smallest panel that can be defined. In the 20§
implementation, this total number of digits was chosen to be 28, since 28-digit
numbers are the largest base-3 numbers than can be stored in a single 205 memory
location, saving storage and coriputational operations. In 28 digit representation,
the smallest pancl can be about 16,000 times smaller than the original domain,
which would seem sufficient for most purposcs.

3. DETERMINATION OF THE VELOCITY

The velocity is determined in a single pass over all pancls in the order in which
they were gencrated as deseribed in the previous section. The procedure is outlined
in Fig. 5.

For cuch pancl. a “neighborhood™ of vortices is cstablished, consisting of the
vortices both within the panel itsclf and in the pancls, of at least cqual size, sharing
a boundary line or a corner point with the considered panci. The vortices in this
neighborhood are not summed by the Laurent serics cxpansion of the considered
panel. This restriction ensures that the Laurent scries converges exponentially.
Instead, in evaluating the velocity induced on the ncighborhood, the original sum
in Eq. (2} is used. This sum is only performed for panels which are not further
subdivided; for pancls which are subdivided, the velocity is cvaluated by means of
the subpanels.

Laurent series can be used for all vortices outside the neighborhood of a panel.
However, to reduce the computational effort, the Laurent series is only used for
those vortices which cannot be cvaluated by means of the Laurent series of the next
larger “mother” panel: the single Laurent series of the mother panel is more
cfficient than the four Laurent scries of its subpancis. Therefore, the Laurent serics
of any pancl is uscd only for the vortices within the neighborheod of the mother.
but outside the ncighborhood of the pancl itsell.

¥




Next panel

Find neighborhood

No

Influence on neighborhood
using the original sum (2)

Evaluate Laurcnt
series using (3b)

Influence on neighLorhood
maother using Laurent series

last panel of
group of 4 7

Find Laurent scries
of the mother

I, 5. Basic low chart for the determination of the velocity.

In this scheme, at each stage the smallest possible number of Laurent series is
used, for N vortices resulting in the O(N In V) operation counts of the next section.
In the procedure of Greengard and Rokhlin [7] this operation count is further
reduced to O(N) by rccasting the Laurent series as Taylor series; however, the
present procedure has the advantage of being less complex and requires only a
single sweep over the panel structure to evaluate the velocity.

To incorporate the Tavlor series within the present procedure. the evaluation of
the neighborhood of the mother would have to modified. For cach suitable panel
within this neighborhood. the sum (3a) would be replaced by a recasting of the
Laurent series into a Tavlor serics. Additional steps would be needed to transfer the
Taylor scries of the larger pancls to the subpanels and to add the contributions of
these series to the velocity.

Clearly, this will increase program complexity and scalar overhead. In addition,
it requires that the ncighborhood of the mother is described in terms of individual
panels. The present procedure describes this neighborhood in terms of a small
number of vectors of vortices, increasing vectorization. Furthermore, the present




procedure has a storage advantage: when the final subpancl of any group of 4 is
reached, the four Laurent scrics of the subpanels can be combined into the Laurent
series of the mother (bottom of Fig. 5). The four Laurent serics of the subpancls can
then be discarded; they arc no longer needed. As a result, at any time only a small
fraction of the Laurent secrics need be stored. On the other hand, using Tavior
series, no obvious way to avoid storing the Taylor series cocfficients for cach pancl
15 evident. This can be a disadvantage since cach scries represents a set of cocl-
ficients while, in addition, the total number of pancls may be difficult to cstimate
precisely beforchand.

In the actual implementation of the procedure in g, 5, the first step is identifica-
tion of the neighborhood of cach panel. The present procedure starts out by
identifying the individual digits of the binary x- and p-positions of the pancl. By
performing unit binary additions and subtractions, the panel numbers of the eight
neighboring pancls of the same size are found. For each of these cight panel
numbers, the corresponding panel is located. In case any of the cight pancls is
undefined, the panel with the Jargest panel number less than or equal to the sought
one i3 selected. On behalf of the properties of the pancl number, the selected panel
will always enclose the sought panel, ensuring the gcometric convergence of the
Laurent series. Since the pancl numbers arc ordered. an appropriate search on a
scalar machine is binary; the CYBER 205 implementation switches to the vector
function Q8SLT when the search interval extends over less than 500 panels.

After the neighboring panels have been located, the storage locations of the vor-
tices 1n the neighborhood are simply the combination of the storage locations of the
vortices in each of the nine panels. The subdivision process of the previous section
reordered the vortices s as to group vortices in the same panel in contiguous
storage locations or vectnrs. As a result, the neighborhood is described by at most
ngne vectors of vortices, and an additional check is made to identify contiguous
vectors which can be described by a single vector. (In particular, the four subpanels
of the lurger pancl containing the considered pancl describe a single vector of
vortices.) Since the number of vortices per panel is never small, the computations
remain cfficient on the 205.

The next step in the procedure in Fig. 5 1s the evaluation of the original sum in
q. (2) for panels which are not further subdivided. This sum was split into real and
imaginary parts and modified to:
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These expressions arc cquivalent to the origimal sum i Eq. (2) when the valuc of

-0

®




d, vanishes. They arc equivalent (o the sum in Eq. (2) to machine precision when
the value of d, equals the machine epstlon. The addition of the d-term in (da) and
(4b) has the advantage of avoiding the singularity in the /= term while limiting
the effect of numerical inaccuracy. For larger values of d,, the velocity corresponds
to vortices with finite core, which tend to improve the numerical properties of a
vortex representation [9]. Expressions more claborate than Egs. (4a) through (d¢)
could be used [10]; since they increase the computational time for the original
algorithm, they arc likcly to enhance the relative performance of the present
algorithm.

The cocfficients of the Laurent serics follow from the sum (3b). The coeflicients
may be split into real and imaginary parts 4, and B,, leading to the following
recursive relationships:

al =0, bl =g, (5a), (5b)

@it = af(x, = xo) = bi(y, = r0) (5¢)
D+t =ak(yi— vo) + b¥(x, — vy) (5d)
A=Y af, B.=3 bt (Se), (50)

In order to avoid possible inaccuracy caused by underflow of terms, the x- and
v-positions were mcasured from the center of the pancl and normalized with half
the lincar panel dimension.

For the evaluation of the neighborhood of the mother panels in Fig. 5, the
Laurent series {3a) is used. S‘J)i( into real and imaginary parts, the serics can be
written:
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It can readily be shown that the terms induced by any individual vortex ¢
converge geometrically with a convergence ratio

llkl )Z_Z() (7)

el 1Z,~2Z,

if Zy 1s the position of the center of the pancl. Since the vortices in the cight
neighboring pancls are excluded from the Laurent series, simple geometry shows
that the convergence ratio is at least 3/ﬁ. Therefore, truncating the Laurent series
at 22 terms, cach vortex would be summed to a relative crro 6-107%; about the
machine accuracy in half precision on the CYBER 205.

The fast step in the procedure in Fig. 5 is the evaluation of the Laurent series of
the current mother panel. While this Laurcent series could be found using Eq. (3b),
it can be found more cfficiently from the Laurent scrics of the subpanels. The
contribution of cach of the subpanels to the Laurent series of the mother is given
by

ACe=miCp+ny (Co \+ - +m¥C, (8a)
my=2* (8b)
k-1
niy I='”::-/+l_-:ll‘ (8c)
\’/2

where

= -1+/-1 (8d)
H=—1-/-1 (8c)

H=1+_ -1 (8&0)

H=1-_ -1 (8g)
for the first through the fourth subpanels, respectively. {The factor 2 % in the above
expressions reflects the scaling of Laurent serics proportional to the panel size.) The
coeflicicnts m¥ , can be cvaluated a priori after which the cvaluation of the
coeflicicnts veclorizes.

4. PERFORMANCE

The numerical performance of the present algorithm s difficult to analyze
general. In the following, the analysis has been simplhified by assuming that the N
vortices are homogencously distributed over a squarce. In that case, the domain will
be subdivided in pancls containing the same number of vortices, n, each. The
number of unsubdivided pancls is N/n and the number of levels of subdivisions
needed is log (NV/n).
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The total computational time fo {ind the velocity of the NV vortices consists of a
number of contributions First of all, the vortices must be gathered into panels. The
first subdivision of the total domain involves .V vortices which arc first examined on
x-position, then on y-position, and correspondingly reordercd. The time involved in
this step will be written as

Nvg [ s

The factor vg; is the ime necded to compare the x- and y-positions of a vortex with
those of the center of the pancl, pass the vortex 4 times through the vector function
Q3VCMPRS (in the 205 implementation, otherwise to storc the vortex twice), and
add onc to the number of vortices in first the right half of the pancl and then to
the number of vortices in the subpanel, using Q8SCNT.

The pcnalty factor f,,  expresses the overhead performed which is independent
of the number of vortices involved, such as computing and storing the panel infor-
mation for the four pancls and, on the 205, starting up the vector operations. For
a 'arge number of vortices, the operations for the individual vortices dominate the
total time and fg; « will approach unity. However, for vector processors such as the
205, the vector operations for the individual vortices are performed with such a
speed that f¢ . becomes apprecizble when the number of vortices becomes less than
a few hundred. (IFFor the simple vector operations in half precision on the
FSU/DOE 205, the start-up overhead becomes equivalent to the time of execution
when the number of vortices is 200). The subscript ¥ in the penalty factor f o
expresses the representative number of elements or vector length.

In the next level of subdivision, four panels with cach }V vortices are subdivided,
requiring a computalional time

. .
3/\'1’(:./(;. Ny 4=\, f(i..\' 4

Since there are log, (N levels of subdivisions and the penalty factor increases with
decreasing vector length. the totaf time for finding the panels may conservatively be
written as:

. N
lo=Nvg [, log, (;) (9a)
The logarithmic factor may be bounded by the maximum number of subdivisions
allowed by the machine accuracy [8], but such a bound depends on the particular
coding techniques and machine accuracy available and will be avoided here.

In the present algorithm, the original sum n Eq. (2) is used to evaluate the
velocity induced by the n vortices in cach unsubdivided panel upon its
neighborhood of ninc panels. If vy is the time needed to evaluate a single term in
Eq. (2), the total ume can be written, conservatively, as

N
te=n-9n v, fv, —, (9b)

n
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neglecting panels that may fall outside the domain, or

9 _l 4\/7_*_4” Y
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after correction. Since n will typically be sizably smaller than N, Eq. (9b) will be
used.

For cach of the unsubdivided panels, A cocfficients of the Laurent serics (3b)
must be determined, requiring a time

. N
/(.=;1-I\'~v(,/c,,-;-. (9¢)

These Laurent scries are next used to determine the velocity induced on the 4-9n
vortices in the ncighborhood of the larger panel containing the unsubdivided panel,
excluding the 9n vortices in the neighborhood of the unsubdivided panel itself. The
time needed for N/n unsubdivided panels is

N
K . 27” : Ul../-l,‘u .
n

0,

Similarly, the Laurent series for the N/4n larger panels are used to evaluate the
velocity induced upon 27 - 4n vortices, neglecting edge effects. With log,(N/4) levels
of subdivision, the time can be written conscrvatively as:

. N N
t,=K2Mn-v, f,, - log, <;> (9d)

The procedure of Greengard and Rokhlin [7] avoids the logarithmic factor,
since the number of cocllicients in the Taylor series does not increase with panel
size. However, the logarithmic factor in {9a) would remain.

Time is further nceded to combine the Laurent series of the unsubdivided panels
mto these of the larger panels. In the 205 implementation, cach coefficient C, of the
larger panel was written as an inner product between the vector of 4K coeflicients
of the subpanels and a corresponding vector of coeflicients m¥, Eqs. (8a) through
{8g). The time nceded is:

"~

4 K
f,=*i

T v, axN. (9¢)

The contribution most difficult to estimate is the overhead involved in addressing
the panel structure. For cach pancl, the neighborhood necds to be established, as
well as the neighborhood of the next larger pancl. Most of the operations involved
will roughly be proportional to the number of panels: N/n unsubdivided ones, N/4n
next larger ones, and so on, a total of less than 4N/3n pancls. However, the binary ¢




search to find the nine neighboring panels requires operations proportional o
log,(4¥/3n). The time for overhead will therefore be written as

lo= 4 +8 1 v 9f
o=|3sotgsdog(—))~, (90

where s, and s, arc representative computational times for cach pancl and for each
binary scarch, respectively, neglecting log, 4,3. The symbol s was used here instead
of v in order to indicate that the operations involved are largely scalar.

Using these various contributions to the computational time, the decision when
to stop subdivision of the panels can be addressed. Collecting all contributions, the
total time needed to find the velocity becomes:

’ . . 8 RN N
I= ( Vo lin+ 270, f1 K+ = - Nlog, —
\ 3 "
i 4 K45\
+ <9":f:_,.” +oefea K+ 3 v f1an m 3 ﬁ) V. (10)

In estimating the relative importance of the terms, it will be assumed that the
nuv er of vortices N is large. Indeed, the number of vortices must be sizably larger
than the typical number of terms in the Laurent serics in order for the algorithm
to be uscful.

Under the limiting process where both N and the number of vortices per panel
# tend to infinity, corresponding to relatively few large pancls, the dominant terin
i Eq. (10) is the time, Eq. (9b), for the original sum. as could be expected. since
this term 18 proportional to s, decreasing the number of vortices per panel leads to
corresponding reductions in computation time.

However, when decreasing the number of panels, adverse affects must eventually
occur. The penalty factor [, increases when the value of » decreases, since the
start up time increases in relative importance. On a two pipe 205, the vector start
up becomes dominating when the number of vortices becomes less than 200,
limiting lurther reductions in the time necded for the original sum.

On the other hand, the time needed for other operations increases while n
decreases. For example, the time for doing the Laurent serics (9d) increases when
n decreases below a certain limit, sincc the penalty factor increases. This term
contains the relatively large numerical factor 27K, so that appreciable increases in
the pcnalty factor tend to be important. In addition, the scalar times, which can be
relatively large on a 205, arc inversely proportional to n.

It may be concluded that for sufficiently many vortices, the computational time
first decreases with the number of vortices per pancl and then increascs. As a result,

a number of vortices per pancl cxists for which the present algorithm performs
optimally.

For that reason, in generating the pancls. the present algonthm deerdes whether 73




to subdivide panels further based on the number of vortices in the panel. Further
subdivisions are only made when the number of vortices is greater than some
minimum value n, chosen « priori.

Table [ provides examples of the influence of the value of # on the computational
ume. In this case, the vortices were approximately homogencously distributed over
the interior of a circle, grouped in rings. It appears from Table [ that the minimum
number of vortices lo subdivide a panel on a 205 should be roughly 200.
Fortunately. the precise vilue used appears to have relatiely little influence on the
results.

In addition to the computational time, the numerical crrors in the algorithm are
important. For p vortices of strength [ located on a ring of radius R, the velocity
induced 1s

V= \/j il '.—ZJF—
nZ, 2"~ R’

!

TABLE |

Compu.ational Tane and Numericat Errors for Vortices Homogencously Distributed
within i Circle Using 23 Term Asymiptotic Expansions

Numbecr
of
vortices 1000 2000 4000 8000 16,000 12000 64,000

Time for summation, CPU scconds

Original 0.10 0.16 1.38 Si 2138 RG22 156 78
100 0.1l 013 071 195 VAS 91s t7.17
200 0.11 027 0.67 1.61 188 X2 1710
400 0.10 027 0R2 1 61 458 812 AR

Ratio of improvement

200 0.9 I3 20 3 60 10.6 2049

Mavmum error in the velocity, pereent

Original 0.005 0019 0.020 0.040 0080 0160 0
100 0.004 0007 0.009 0013 o6 0022 0024
204 0.004 0006 0.009 0013 0016 0.021 00
400 0.005 0006 0012 0.043 0021 002 0030

Mean squarc crror in the scloaly. pereent
Onginal 0.003 0006 0.012 0023 G046 00y} 0187
200 0.002 0.004 0.00S 0.007 0.009 0012 0013
Average error in the veloaty, percent

Onginal 0.003 [ARLEN 0010 0020 0041 0082 0164
200 0.002 Hoot 0005 0.006 [V A0L0 0012
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if the vortex j is located on the same ring. By summation over all rings the

analytical solution can be found and comparcd to the obtained results.

Table T list the maximum deviation in cither velocity component from the
analytical solution, ecxpressed in a percentage of the velocity at the perimeter of the
circle. The present algorithm shows considerably better accuracy than the original
sum, which may be duc to the summation of the terms in groups. In the original
algorithm. the individual terms were added to an increasingly large total, lcading

to a loss of significant digits.

FFor random walk computations, the mean square or averige crrors may be more
relevant than the maximum crror, since only averaged quantitics are relevant. Both

these errors show behavior similar to the maximum error.

TABLE 11
As Table I, but Using 13 Term Expancions

Number
of
vortices 1000 2000 4000 SO00 16,000 312,000 64.000

Time for summation, CPU scconds
Orniginal 0.10 0.36 1.38 39 2136 R6.35 356.72

100 0.09 026 0.57 140 279 6.61 1302

200 0.09 028 0.55 1.07 Y 6.91 1308

400 0.10 02s 079 143 427 692 20.40
Ratio of improvement

100 1.1 14 24 R 27 13.1 274
Mtximum crror in the velocity, percent

Oniginal 0.005 0.010 0.020 0040 0.080 0.160 0.319

100 0.003 0005 0.007 0009 0011 0.013 0015

200 0.003 0006 0.007 0.011 o0t 0.016 0013

400 0.005 0006 0.011 0012 0.019 0016 0025
Mcan square crror in the velocity, pereent

Onginal 0.003 0006 0.012 0.023 0046 0.093 0.1§87

100 0.002 0003 0.004 0005 0.006 0.007 0.009
Average crrorin the veloaity, percent

Original 0.003 n0s 0010 0020 0041 0.082 0.164

100 0.002 0002 0.003 0004 0.005 0.006 0.008
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The results in Table [ were obtained by expanding all Laurent series to machine
precision, 23 terms. Yet in view of the final errors in the results. there appears litte
justification in demanding such accuracy, unless special provisions are made to
avoid accumulation of the round-off crrors. Results for 13 term Laurent scrics arc
presented in Table 11. Remarkably, the resulting crrors prove somewhat lower than
those in the 23 term expansion. A good cxplanation of this cffcct cannot be given:
however, the maximum possible crror in truncating the Laurent series is only
0.006 %. small compared to the final errors. On the other hand, the final terms in
the Laurent series correspond to the fastest Fourier components: for that reason
truncating the series may have some averaging cffect on the round-off errors.

For the case of Tables | and I, the vorticity occupied most of the domain under
consideration. A somewhalt different :ase arises when the vortices are cvenly spaced
aiong the perimeter of a circle. Since the vorticity is now sparscly distributed, the
present procedure will generate a considerable number of empty panels, and 1t

TABLE 111

Computational Time and Numerical Errars for Vortices Homogencously
Distributed on a Circle Using 13 Term Asymptotic Expansions

Number
of
sortices 1000 2000 4000 %000 16,000 32.000 64,000

Tine for summation, CPPU sceonds

Onginal 0.10 036 1.38 Sd 2438 8632 356.75

0 008 017 0.16 0.78 165 383 7.30
100 0.06 N4 0.3t 0.65 142 304 628
200 0.06 017 0.34 075 151 336 719

Riaio of improvement

100 1.7 26 4.5 X3 1501 284 568

Mavumum error in the velocity. pereent

Ongnal 0.024 a061 0.128 0.271 0.547 1.100 —
0 0012 0023 0.046 0.093 0.180 0.360 0.702

100 0.012 0024 0046 0194 0.181 6.361 0.702

200 0.0!3 026 0.049 0098 0.184 0363 0.705

Mean square error .n the velocity, percent

Ongnal 0.005 0010 0018 0041 0.079 0.143 —
100 0.004 0008 0.012 0031 0059 0.096 0.149

Average erroran the veloaty, pereent

Onginal 0.001 002 0.003 0.006 0012 0024 -
100 0.000 0001 0001 0001 0.002 0002 0.002
75
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might scem that this would adversely affect computational time. However, the data
in Table 1T shows that performance improves. This appears to agree with the
observations of Carrier. Greengard, and Rokhiin {8].

The simplified case of vortices arranged on a single horizontal linc can shed some
light on this increcase in cfficiency. Repeating the previous analysis with suitable
modifications, the total time becomes:

i

KN N
(= 20,1, +00, /1 K+8 —J Nlog, —
i " "
. K? So
3oy fentvefe  K+do, 1 —+4 = | N (12)
n n

Comparison with Eq. 110) does show that the time for scalur pancl overhead has
increased. On the other hand, the time nceded for the direct summation has
improved, since the cmpty panels decrease the number of vortices in the
neighborhood of unsubdivided panels from 92 to 3. In addition, the time for the
Laurent serics has decreased, srace 6n rather than 27n vortices need to be

TABLE IV

Computatonal Time and Numerical Errors for Vortices
on the Perimeter of a4 Circle for a MicroVAX {1

Number
uf
voriices 400 300 1600 3200 6400 12.800 25,600

Time for summation, CPU seconds

Onginal 9.1 36.3 1519 614.2 24708 9867.3 39469.2

30 5.0 109 24.5 56.3 1270 2723 604.1

40 4.7 10.6 25.1 554 128.5 286.3 597.8

50 4.7 10.6 250 58.5 1335 2925 616.3

60 4.7 10.6 264 55.7 1389 3033 6356
Meun square error in the veloaty, percent

Onginal 0.00000 000000 0 00001 0.00004 0.00007 0.00019 0.00036

40 0.0000t 000001 0.00001 0 00002 (0.00004 000010 000018
Additional array storage used. 4 byte words

40 496 1289 3907 5S040 7281 11374 20827
Percentage CPU time for varnous steps

‘o 62 0 48 4 42 41 34

1, 30 14 g 9 9 7 7

’ 0 26 4 38 30 43 50

,/j
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® determined from the Laurent serics of the unsubdivided panels; the remaining
contributions are found using the combined Laurent scries.

Next, while scalar operations are relatively slow on the 205, the corresponding
total times are proportional to 1/n, which is of order 102 On the other hand, the
times for the dircct sum and the Laurent scries are proportional to 92 and 27K,
respectively, which ace of order 10% For that reason, the scalar times need not

() dominate even for quite slow scalar processing.

While the present algorithm still leads to reduced crrors, the differences are not
so pronounced as in Tables I and TI. The recason may be that in this case the
vortices in the immediate vicinity of cach other dominate the errors (the sum
approximates a singular integral). Those vortices are still summed in the same way
as in the original algorithm.

® : Table IV shows computational times for a scalar version of the algorithm. As
' may be cxpected, the scalar version can address smaller groups of vortices more
efficiently than the 205 version, resulting in some additional savings.

The total time CPU time used can be divided into contributions 7, to perform the
original sum (2), ¢,, to perform the Laurent series of panels which are not further
subdivided, and ¢, for the Laurenc series of pancls which arc. Table IV shows those

o contributions for the case that n == 40. Recasting of Laurent scrics into Taylor series
as used by Greengard and Rokhlin [7] could be usecd to reduce the required
ume r,,.

Comparison of Table IV with the data of Carrier, Greengard, and Rokhlin {8]
does suggest a significant increasc in storage duc to such a rccasting.

5. CONCLUDING REMARKS

The present algorithm is concerned with fast solution of the 2-dunensional @
Poisson cquation under pointwise forcing. Since the actual application is not the
true subjcct of this paper. o™ a concisc description of the one considered here will
® be given: Lagrangian flow computations using a random walk simulation of
diffusion cffects similar to [9]. A relatively simple removal of the singular behavior,
Eq. (4), was used in computed examples such as Fig. 1. In most computations, the
chosen vortex diameter was 0.67S times the random step size n=\/2v At The
normal boundary condition was satisficd by means ol mirror vortices within the
cvlinder. To satisfy the tangential boundary condition, after cach predictor-correc-
P ' tor step all vortices within a distance .27 a from the wall, a thin sub-laver of the
boundary layer, were removed. Next the slip velocity at the wall was evatuated and
integrated to find the amount of circulation needed to satisfy the no-slip condition.
This circulation was subscquenty assigned 1o a ring of vortices a distance 0.675
away from the wall and spaced 1.27 ¢ apart. The procedure feads to the same fiux
of vortices thirough the cutoff at 1.27 ¢ as w homogencous distribution of vortices
PY within the cutoff. In order to reduce the random fluctuations ntroduced by strong
vortices, the number of vortices pliced at cach location along the wall was chosen 29




to give an approximatcly uniform vortex strength. At least one vortex was placed
at each location if the local circulation was non-zero. Some experiments varying the
given numerical values, or using an exponcntial vortex core rather than Eq. (4),
were performed, but resuits were ambiguous due to the random noise. The random
step sizes were taken [rom a data base of 8000 random numbers, starting from a
randomly chosen position.

The purpose off this paper was to show how the computational time can be
greatly reduced using Laurent scries, allowing a much larger number of vortices to
be included. The use of Laurent series or replacement clements to save computa-
tional time is not a new notion [6]; however, the present mcthod renders the
application effective by guthering the point forces into an adaptive, ordered panel
structure. The contribution of the present paper is therefore primarily a program-
ming technique which allows an casily addressable adaptive description of irregular
distributions of points. Moreover, it is quite suited for vector processing and
requires little storage. It seems simpler and possibly more vectorizable than the
procedure of Carricr, Greengard, and Rokhlin [8].

The evidence of the Tables 1 through [V shows that the present algorithm is
“fast”™ in the sense that the computational time roughly doubles when the number
of vortices doubles. For the original sum in Eq.(2), the computational time
becomes lurger by a [actor four instcad. For that reason the savings in computa-
tional time increase with the number of vortices.

in fact, the time estimates in Egs. (10) and (12) show the computational time to
be proportional to N log N, similar to the fast Fourier transform solutions of the
Poisson cquation such as Hockney's FACR algorithm, which needs N log,(log, N)
operations. However, a closer study of Egs. (10) and (12} shows that for typical
values{~ 20 and n~100. the cocllicient of the Nlog N term in the present
algorithm will be numernically quite large.

For that reason, onc of the motivations mentioned m the Introduction should
still be present in order to adopt an algorithm such as the present one.

An anteresting question s whether the present algorithm s applicable to
J-dimensional Poisson problems. This would make it possible to address such
problems as the motion of stars in galaxics and 3-dimensional flows with sparse
vortex geometry. Most of the procedures in Sections 2 and 3 carry through
immediatcly by the simple step of including the digits of the third coordinate in the
panel numbers. However. the straightforward generalization of the Laurent series to
spherical harmonics as applied by Greengard and Rokhlin [117] has the disadvan-
tage that the number of terms added for each order of accuracy increases. A proce-
dure bascd on fast FFouricr transforms proposed by Greengard and Rokhlin [12]
can significantly reduce the cflort.

The present procedure of gencrating and addressing a complex panel structure
does not need to be restricted to solution of the Poisson cquation, but could be
used for other problems involving groups of points in which the interaction between
elements of different groups can be simplified when the distance between the groups
is sufficient.
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Summary of the Computational Scheme.




Computations

Random-walk vortex simulations of the full Navier-Stokes equations were performed
as comparison. In the computations, the flow field was represented by discrete vortex blobs

of the form:

Yi — U
u; = i
’ Z.g (zj — i) + (y; —~ ) + d

1

T; — T;
v Z # ey — =) + (g J~ye)’ +d
.
Yoo
A recently developed fast procedure allowed the computations to be performed with sizably
more vortex blobs than previously possible [see J. Comp. Phys. paper|. The vortices were

advanced in time using a two-step Runge-Kutta scheme. To simulate diffusion effect,

each time step the vortex motion was augmented with a random component of average

magnitude v2vAt

The normal wall boundary condition was satisfied by mirror vortices, after a mapping
of the airfoil onto a circle. The mapping used was a generalized Von Mises transform which

correctly reproduces the kinks in the contour at the trailing edge:

K

dZ G \
i C k];[] (1- ?)
The constants C, (, and <, are determined from: the kinks in the NACA 0012 airfoil
contour caused by the small but finite thickness at the trailing edge, the regularity of the
mapping at infinity, and finally from least square minimization of the errors in airfoil shape
elsewhere. The Von Mises type procedure was preferred above a Fast Fourier transform,
since the transform is relatively inaccurate due to the singularities in contour. In addition,

the transform would be quite inefficient during the actual flow computation.

The no-slip boundary condition was satisfied by addition of vortices at the wall during
each time-step: First all vortices within a distance of 1.27v/2vAt were removed. Then a
ring of new vortices was added at a distance 0.675v/2vAt to correct the wall velocity to zero.
(The distance for adding vortices equals the diffusion distance of the vorticity generated

by the wall during the time-step for the true Navier-Stokes equations; the removal distance




was chosen based on a statistical study requiring that the scheme handles locally uniform
vorticity distributions accurately, not unlike discretization techniques in finite difference
procedures). The vortex diameter d; was rather arbitrarily chosen to be 0.675v/ WAL,
testing showed that results depended little on the actual value used.

The CYBER 205 results were post-processed on the departmental MicroVAX II, using
a fast Fourier transform to find the streamlines. The vorticity was represented in bit-

mapped graphics as half tones.
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Abstract

Alt.hough unsteady, high-Reynolds-number, laminar boundary layers have convention-
ally been studied in terms of Eulerian coordinates, a Lagrangian approach may have sig-
nificant analytical and computational advantages. In Lagrangian coordinates the classical
boundary-layer equations decouple into a momentum equation for the motion parallel to
the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for
the motion normal to the boundary. The momentum equations, plus the energy equation if
the flow is compressible, can be solved independently of the continuity equation. Unsteady
separation occurs when the continuity equation becomes singular as a result of touching
characteristics, the condition for which can be expressed in terms of the solution of the mo-
mentum equations. The solutions to the momentum and energy equations remain regular.
Asymptotic structures for a number of unsteady three-dimensional separating flows follow
and depend on the symmetry properties of the flow (e.g. line symmetry, axial symmetry).
In the absence of any symmetry, the singularity structure just prior to separation is found
to be quasi two-dimensional with a displacement thickness in the form of a crescent shaped
ridge. Physically the singularities can be understood in terms of the behavior of a fluid
element inside the boundary layer which contracts in a direction parallel to the boundary
and expands normal to it, thus forcing the fluid above it to be ejected from the boundary

layer.

1. Introduction

A major feature of unsteady large-Reynolds-number flow past a rigid body is the shed-
ding of vortices from the surface of the body. Such vortices alter the forces exerted on the
body dramatically (McCroskey & Pucci 1982). A more complete theoretical understanding
of vortex shedding would be advantageous in the design of air, land and water transport.
Theoretical models of vortex shedding also have application, inter alig, in the description
of air flow over hills and water waves, water flow over sand ripples, and blood flow through

curved and constricted arteries and veins.

A classical example of vortex shedding develops when a circular cylinder is set into
motion in the direction normal to its axis. This example was first studied by Prandtl (1904),

and the process by which an initially attached boundary layer develops into a separated flow
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with detached free shear layers has becn clearly illustrated by the experiments of Nagata,
Minami & Murata (1979), and Bouard & Coutanceau (1980). The term ‘separation’ will
in this paper be used to refer to the ‘breakaway’ of a thin layer of vorticity from the
surface of a body. This definition of separation is close to that of both Prandtl (1904)
and Sears & Telionis (1975). In particular, Sears & Telionis speak only of separation when
the penetration of the boundary-layer vorticity away from the wall becomes too large to
be described on the usual O(Re"§) boundary-layer scale (Re is the Reynolds number of
the flow, and is assumed large). Therefore, once separation has developed the classical

attached flow solution will, in general, no longer be valid.

The first theoretical advance in understanding the unsteady cylinder flow at high
Reynolds numbers was made by Blasius (1908). He explained the occurrence of flow
- reversal inside the attached unsteady boundary layer which is set up immediately the
cylinder starts to move. In the case of steady flow past a rigid surface, flow reversal is
often accompanied by separation. However, Moore (1958), Rott (1956) and Sears (1956)
all realized that zero wall shear is not necessarily related to separation in unsteady flow.
Sears & Telionis (1975) noted subsequently that their definition of separation is consistent
with the termination of the boundary-layer solution in a singularity. Such a singularity
will be referred to as the separation singularity, and the time at which it develops as the

separation time.

A considerable number of numerical computations have attempted to verify the ex-
istence of a singularity in the boundary-layer solution for the circular cylinder problem.
The first convincing evidence that a singularity forms within a finite time was given by
Van Dommelen & Shen (1977, 1980a, 1982). In a Lagrangian computation, with fluid par-
ticles as independent coordinates, they found that a separation singularity develops after
the cylinder has moved approximately % of a diameter. The existence of this singularity
has been confirmed by the finite difference numerical calculations of Ingham (1984) and
Cebeci (1982) (however see Cebeci, 1986), and the computer extended series solution of
Cowley (1983). These calculations were all based on Eulerian formulations. A similar
two-dimensional separation singularity has been observed using Lagrangian procedures on
an impulsively started ellipse at several angles of attack (Van Dommelen, Wu, Chen &

Shen, unpublished results), on airfoils (Wu 1988), in turbulence production (Walker 1988),




on an impulsively started sphere (Van Dommelen 1987), and using Eulerian schemes in
leading edge stall (Cebeci, Khattab & Schimke, 1983) and about a rotating cylinder (Ece,
Walker & Smith, 1984).

Excluding vortex methods, flows with free surfaces, and some more specialized com-
pressible flow computations, Lagrangian coordinates have not been as widely used as their
Eulerian counterparts in fluid mechanics, especially for boundary-layer flows. Yet for some
flows, such as unsteady flows in which advection dominates diffusion, Lagrangian coordi-
nates seem more appropriate (e.g. see the inviscid calculations of Stern & Paldor (1983),
Russell & Landahl (1984) and Stuart (1987)). As far as unsteady separation is concerned,
the advantage of a Lagrangian approach stems from the fact that in these coordinates
the classical boundary-layer equations decouple into a momentum equation for the motion
parallel to the boundary, and a continuity equation for the motion normal to the boundary
(Shen 1978). The solution of the former equation can be found independently of the latter.
Moreover, while the time that the separation singularity develops can be identified from
the solution to the momentum equation, only the solution to the continuity equation is
singular (see section 2).

An important consequence of the Lagrangian approach is that simple descriptions can
be found to a wide variety of separations in one-, two- and three-dimensional unsteady
flows. In this paper we consider unsteady flows in general, then in part 2, (Van Dommelen
1989), the separation process that occurs at the equatorial plane of a sphere which is set |

into a spinning motion is examined in detail.

In the next section we develop the simple analytic machinery needed to find self-
consistent three-dimensional separation structures for both compressible and incompress-
ible fluids. Some of the properties of the Lagrangian version of the boundary-layer equa-
tions are also discussed. In section 3 the Lagrangian structure for three-dimensional sep-
aration is derived under the assumption that the flow can be completely general, then in
section 4 the changes in structure are discussed when various symmetries restrict the flow

geometry.

2. Lagrangian Formulation

The Lagrangian description of boundary-layer flow uses fluid particles (i.e. infinitesi-
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mal masses of fluid) as the basis of the coordinate system. A convenient coordinate system
for the fluid particles (£,7,() is given by the initial Eulerian position of the particles (see
Lamb (1945) for example):

fE(faﬂ,C)‘—'(m,y,z) at t=0 . (2.1)

The precise form of the Lagrangian solution depends on the particular reference time,

defined here as the start of the motion, but the physical solution is independent of it.

Following Rosenhead (1963) we assume that the position coordinates = and z describe
an orthogonal coordinate system on the surface of the body in question. The lengths of the
line elements dz and dz are taken as h;dx and hjdz respectively. The coordinate normal
to the surface is denoted by y, which is scaled with the square root of the reference shear
viscosity.

In Lagrangian coordinates, conservation of volume for a compressible fluid can be

expressed in terms of a Jacobian determinant as follows (e.g. Hudson 1980):

pH(a:,z)J(:c,y,z) =poHy (2.20.)
where
E,E zr'l z;(
J(z’y7 z) =1Y%¢ Yn Yg y PO(E; 777() = P(f, 77,C, 0) ’ (22b, c)
z,f Z',’ Z'(
H(z,z) = hy(z,2)hs(z,2) , Hp =H((C) (2.2d,e)

p(€,m,(,t) is the density of the fluid, and a subscript comma denotes a Lagrangian deriva-

tive. The velocity components of the flow are related to the fluxions of position by
uw=nh(z,2)2 , w=hs(z,2)z , (2.3a,b)

where a dot represents a Lagrangian time derivative.

For compressible flow, the momentum and energy equations are (e.g. Rosenhead

1963):

1

pli + (uhis — whae) ) = ~7=pe + Dy(uDyu) + pgc (2:3¢)
1

P> + (wh, — uhis)57) = =P + Dy(uDyw) + o5 (2.3d)

4




pgfp + pg;p - %’p = p((Dyu)? + (Dyw)?) + D,(%D,T) , (2.3¢)
where p is the scaled shear viscosity, o is the Prandtl number, and g, and g, are the
components of the acceleration of gravity. The temperature, T, and internal energy e, are
assumed to be functions of density and pressure, while the pressure, p, is a known function

of z, z and ¢; thus

. u w
P=p+ ﬁ'l'pz + Epz . (23f)
For an incompressible flow p = 0 and e is taken to be a function of T and p.

Although the y-derivative Dy is Eulerian in nature, it can be written in the Lagrangian
form (see also Shen 1978):

D.u = p(f,n,(,t)H(a:,z)J(a:,u,z)
! po (&, Q)H(, ()

From (2.4) it follows that at a fixed wall the Eulerian D, and Lagrangian 8/3n operators
differ only by the density ratio, which leads to simplifications in the calculation of the wall

(2.4)

shear.

Allowing for a moving boundary, appropriate boundary conditions to (2.3) are:
(w,w,p) = (up(z, 2,t),ws(z, 2,t), pp(z,2,t)) on y=0 , (2.5a)

(u,w,p) — (ue(:c,z,t),w,(z,z,t),pe(z,z,t)) as y—+oo , (2.5b)

where u;, and w; specify the velocity of the boundary in the z- and z-directions respectively,
u. and w, are the corresponding external slip-velocities, p, is the external flow density,
and the wall density p, can be given implicitly as the temperature at the wall. Ordinarily,
these boundary conditions translate immediately to the Lagrangian domain by means of
(2.3a,b). In the case of suction or blowing through the wall, they must be applied at an 7
boundary moving through the Lagrangian domain, however, the wall boundary conditions

turn out to be of little importance for the local analysis of this paper.

The principle advantages of Lagrangian coordinates derive from the absence of both
the normal particle position y and the normal velocity component v from (2.3) anu (2.4).
Consequently, the particles’ motion, as projected onto the surface of the body (z,z), can

be found independently of the normal particle position y. Subsequent integration of the
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Jacobian (2.2) along lines of particles at constant projected position (z, z) yields the normal

particle position
s
_ poHodJ
y= /0 oH[Vz A V2] (2.8)
where ds? = d¢? + dn® + d(?®, Vz = (z ¢,z ,4,¢,¢) is the Lagrangian gradient, and the
integral is performed in the Lagrangian (£,7,(;t) coordinate system along the lines of

constant z, z, and ¢, i.e. lines which in physical space are vertical through the boundary

layer.

The central issue of this paper can now be stated: we hypothesize that during the evo-
lution toward separation, the projected position (z,2) can remain regular, and commonly
does remain regular. When true, such regularity strongly restricts the possible behavior of
z and z near separation, and to characterize separation we need only identify the nature
of solutions to the continuity equation (2.2) or {2.6) - an equation which is much simpler
than the momentum equations. The remaining ambiguity in the behavior of z and z is

resolved using arguments of symmetry.

Various arguments to justify our hypothesis can be given. One of them is self-
consistency. If it is assumed that z,z,u,w, and p are non-singular at the separation time
t,, then the solution to the Lagrangian momentum equations can be expanded in powers
of (t —t,) to any algebraic order. In contrast, the usual Eulerian asymptotic expansions

show only that the first few terms in the expansions are self-consistent.

As another argument, Van Dommelen (1981) showed analytically that the tnviscid
incompressible two-dimensional equations have solutions, z, z, which are regular func-
tions of the Lagrangian variables, although y(§,t) is singular (this analysis can be further
developed by expanding in powers of a small coefficient of viscosity). Yet this example is
somewhat artificial; physically it would require that during the evolution of the boundary

layer the coefficient of viscosity was changed significantly by some external means.

A more powerful argument is possibly the capability of the analysis in this paper to
reproduce and extend several known separation processes previously analyzed in Eulerian
coordinates. However, the most convincing argument is provided by actual numerical solu-
tions of the Lagrangian boundary-layer equations. For example, Van Dommelen & Shen's

(1980a) computation of the boundary layer on an impulsively started circular cylinder
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provided direct numerical evidence as to regularity of the momentum equation. Further,
it is in remarkably close agreement with the results obtained by Cowley (1983) using a
series extension technique. In particular, Cowley (1983) finds a singularity in the solution
at the same time and position as the Lagrangian computations. Ingham (1984) performed
an Eulerian Fourier series expansion of the solution in the direction along the cylinder.
By carefully increasing thie order of expansion as the spectrum expands due to the incipi-
ent singularity, he obtained results in close agreement with those of both Van Dommelen
& Shen (1980a) and Cowley (1983). The fact that these three very different procedures
were found to produce results in excellent agreement with one another until very close to
the breakdown of the solution at separation is reassuring, since a number of more con-
ventional finite difference computations (e.g. Telionis & Tsahalis (1974), Wang (1979),
Cebeci (1986)) give significantly different results. Yet the results of Henkes & Veldman
(1987) remain in agreement with the three unconvential methods until relatively close to
the singularity, but disagree with Cebeci (1986) at a significantly earlier time. One of the
difficulties with conventional finite difference procedures, as pointed out by Cebeci (1986),
is the need to satisfy the CFL condition, a condition which is implicitly satisfied by the
three procedures of Van Dommelen & Shen, Cowley and Ingham.

Clearly in any numerical Lagrangian computations, it is not possible to prove that the
solution is regular, since the inevitable upper limit on resolution means that high order
singularities are difficult to resolve. However, in the accompanying numerical study, part
2, the boundary layer at the equatorial plane of a spinning sphere is solved using up to
1000 mesh points across the boundary layer. Even at such high resolution, no trace of

singular behavior was observed, and derivatives of high order could be evaluated precisely.

When the fact that solutions to the momentum equations are regular is accepted,
(and for compressible flow in addition the density must be regular), the next question to
arise is what implications such regularity has for the structure of the separation process.
First, only the continuity equation can develop singular behavior, and from (2.2) or (2.6)
it follows that this is only possible if the Lagrangian gradients of £ and z become parallel,
i.e. if at some point s

Ve =A,Vz (2.7a)
where ), is a constant. Generally, the point s of interest is the particle and time at which
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(2.7a) is satisfied for the first time. The condition (2.7a) is a three-dimensional extension
of the two-dimensional condition first pointed out by Van Dommelen & Shen (1980a); it

requires that a Lagrangian stationary point, Vn = 0, exists for an oblique coordinate
n=z-XAz . (2.76)

An alternate way to phrase the condition for singular y is to define a unit vector in

n-direction tangential to the wall,
(Iv _ A,)

\/m-z- ’ (276)

in which case a singularity occurs when, for all infinitesimal changes 8¢ in fluid particle,

n=(ngn;)=

n-ox=0 , 0x=(9z,0z) . (2.7d,e)

This implies that an infinitesimal particle volutne 9¢9nd¢ around point s has been com-
pressed to zero physical size in the n-direction. But since particle volume (or mass in
compressible flow) is conserved, this compression in the n-direction along the wall is com-
pensated for by a rapid expansion in the y-direction (see figure 1), which drives the fluid
above the compressed region 9¢dnd¢ ‘far’ from the wall to form a separating vorticity

layer.

From (2.6) it can be shown that this process constitutes separation in the sense of Sears
& Telionis (1975), since the particle distance from the wall becomes too large, ‘infinite’, to
be described on the usual boundary-layer scale. Note that the assumed regularity of z and
z does not allow an infinite expansion in the direction parallel to the wall but normal to n;
the particle can only expand strongly in the direction away from the wall. Similarly for a
compressible fluid, the assumed regularity of p is inconsistent with an infinite compression
of the particle volume. (At present there is no direct numerical evidence for the regularity

assumption in the compressible case, although it is of course self-consistent).

From (2.7) we can derive generalized so-called Moore-Rott-Sears (MRS) conditions at
the stationary point, similar to the conditions formulated by Sears & Telionis (1975) for
two-dimensional flow. The form of the Eulerian D, operator (2.4) implies using (2.2b) and

(2.7a) that the vorticity vanishes at that point, i.e.

Dyiu=Dyw=0 at Vn=0 . (2.8a)
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In fact, the Dy -operator vanishes for all quantities which remain regular in the Lagrangian

domain.

The second Moore-Rott-Sears condition is more complicated. Since (2.7a) is equivalent
to two conditions on the Lagrangian derivatives of z and z, in three dimensional space we
expect it to be satisfied on a curve of particles for times beyond the first occurrence of
separation (c.f. section 3 and sub-section 4c). The Eulerian projection of the singular
curve on the wall will be denoted by xprrs = (zMRs,2MRs) and the Moore-Rott-Sears
condition concerns the motion of this projected curve. To derive it, we focus attention on
an arbitrary point s on the singular curve (rather than our usual choice in which s is the
first point at which a singularity occurs). First we consider a Lagrangian differential 9¢
along the singular curve passing through point s, keeping time constant. Since z and 2
are functions of £ and ¢ only, O¢ corresponds to a change in Eulerian position along the

projected curve which satisfies (2.7d),
n- BxMRs =0 s (2.85)

so that the singular curve is normal to the local vector n. As for any curve, the propagation
velocity of this curve is given by the component of the propagation velocity of points on
the curve in the direction normal to the curve. To find an expression for it, we now
consider a total differential in Lagrangian space-time at the point s, resulting in changes
depps = Ozpmps + 2,dt and dzpps = Ozpps + 2,dt. Since (0zapps,02rmRs) satisfies

(2.8b),
_dxMRs
dt

which shows that the propagation velocity of the singular curve equals the flow velocity of

=Nn-UMRS + UMRS = (i!,,i,) ’ (286,d)

the singular particle s at the considered position (zarrs,2MmRS)-

While this three-dimensional form of the MRS condition seems new, the general ap-
plicability of the two-dimensional case is fairly well established both theoretically (Moore
1958, Sears & Telionis 1975, Williams 1977, Shen 1978, Sychev 1979, 1980, Van Domme-
len & Shen 1980b, 1982, 1983a,b, Van Dommelen 1981) and experimentally (Ludwig 1964,
Didden & Ho 1985).

We can also verify the notion of Sears & Telionis (1975) that unsteady separation

occurs in the middle of the boundary layer rather than at the wall. In the absence of a
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transpiration velocity, the motion of points on the wall equals the motion of the boundary-
layer particles at the wall, cf. (2.5) and (2.3a,b). Thus a fluid particle at the wall can only

contract to vanishing size in the n-direction if the wall itself performs the same contraction,

which is not possible for a solid wall.

In the next sections the nature of the separation process is analyzed. First we form
local Taylor series expansions for the regular solutions to the momentum equations near
the stationary point, and then we expand the solutions of the continuity equation in an
asymptotic series. This procedure is similar to the one followed by Van Dommelen &
Shen (1982) for two-dimensional separation. In contrast to the steady viscous singularities
of Goldstein (1948) and Brown (1965), and the ideas of Sears & Telionis (1975), the
unsteady singularity is essentially inviscid in character and consists of two vortex sheets
separated by an increasingly large central inviscid region (as found by Ockendon (1972)
for a rotating disc with suction, and by Sychev (1979, 1980), Van Dommelen & Shen
(1980b,1983a,b), Williams & Stewartson (1983) and Elliott, Cowley & Smith (1983) for
steady separation over up- and down-stream moving walls). The leading order asymptotic
structure of the unsteady singularity has also been recovered by Van Dommelen (1981) as
a matched asymptotic solution to the Eulerian boundary-layer equations. More generally,
Elliott et al. (1983) showed that there is a certain amount of arbitrariness in the Eulerian
expansions. The Lagrangian expansion resolves such arbitrariness by the assumption,
(supported by various numerical data, see Van Dommelen & Shen (1982), the closing
remarks of subsection 4c, and part 2), that the leading order coefficients in the Taylor

series expansion near the stationary point are non-zero.

3. Three-dimensional separation singularities

In this section we find the leading order term of an asymptotic analysis which describes
the local structure of the flow .3 unsteady separation is approached. The time and position
at which the separation singularity first develops will be denoted by the subscript s, thus

for example

(Vn), =0 (3.1a)

where n is the oblique coordinate corresponding to the initial separation, defined in (2.7b)

as
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n=z— Az . (3.1b)

Note that the definition of the x- and z-coordinates can simply be interchanged if n and
z are not independent coordinates. In index notation, (3.1a) can be written as n; = 0,
where we will adopt the convention to omit the subscripts comma (to indicate Lagrangian
derivatives) and s (to indicate the separation particle at the separation time) if they occur
together (i.e. n; = (n;),).

The solution of the continuity equation (2.2) for y can be greatly simplified by a
number of coordinate transformations for both the particle position coordinates (z, z) and
the Lagrangian coordinates (§,n, (). Here we will select transformations which preserve the
Jacobian J (2.2b), since these are algebraically more simple than transformations which

preserve the physical volume HJ, or mass pHJ.

As a first transformation, we drop the position coordinate z in favor of n, shift the
Lagrangian coordinate system to the separation particle s, and rotate it, resulting in the

set of coordinates

3
n=z—-Az , z , k;=Zm,(£j—§j,) , (3.2a,b,¢)

i=1
where a;; is an orthonormal rotation matrix which is is chosen to eliminate the mixed

derivatives n,3, n;3, and nz3. Therefore, expanding n and z in a Taylor series expansion

about the separation point, we obtain

3 3
n=n,+ Y Ingk? +...+6t(r’z, + ) nik +) o, (3.3a)
1=1 i=1
3
z=z,+22¢k,~+...+6té,+... , (3.3b)

=1
where §t =t — (.

However, if t, is the first time that a stationary point occurs, the Taylor series co-
efficients in (3.3) cannot be completely arbitrary: the singularity condition may not be
satisfied anywhere for 6t < 0. The condition for a singularity to exist for earlier times at

some neighboring point is, in terms of n and z,
ni—(A=2)zi=0 , (3.4a)
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where ) is the ratio between Vz and Vz at the neighboring singular point. Expanding

(3.4a) in a Taylor series, we obtain
ngki — A +nét+...=0 for: =1,2,3 , (3.4b)

where 6A = A — A,. K all three coefficients n,y, ny;, and n33 were non-zero, a solution
to (3.45) could be found for 6t < 0, contradicting our assumption that the singularity
develops first at 6t = 0. (Strictly, because of the higher order terms omitted in (3.4b),
the solution must be found iteratively, however, the iterations converge because the higher
order terms act as a contraction mapping sufficiently close to point s). Therefore at the
first occurrence of separation, at least one of n;;,n33, or n3; must be zero, and we will
reorder (ky,k3,k3) such that ny; vanishes. In addition, the coefficients nz3,n33,2; cannot
all be non-zero, since by solving for 6], ka, and kj, it again follows that a singularity exists
for 6t < 0. Without loss of generality, we assume that z, is zero, since if either ny; or nss

vanishes, the (k;,k2,k3) coordinate system can be rotated further to eliminate 2;.

It follows that in some suitably oriented Lagrangian coordinate system the conditions
nyy = 21 = 0 are necessary at the time when separation starts. This implies two addi-
tional conditions on z(§,t) and 2(§,t), besides the two conditions implicit in (3.1a). Since
Lagrangian space-time is four-dimensional, in general we do not expect that more than
four conditions can be satisfied at any time. Hence, in the remainder of this section we
will assume that the values of the remaining derivatives can be completely arbitrary and

in general non-zero.

However, when the functions z and z are not arbitrary, but restricted by constraints of
symmetry in the flow, the latter assumption needs to be reconsidered, since the symmetry
requires that various derivatives must vanish. Examples are two-dimensional flow, and the

flows discussed in the next section.

Under the assumption that the remaining coefficients in the Taylor series have arbi-

trary values, the transformation

F=z-2,t) , A=n-n(&,t)-ANVF7 (3.5a,b)

: :_ Taazzky — nazzzky - mayznks +nazk

= ky = (3.5¢,d, )
7,2 2 2 /? 3 7,2 ! '
Vnj, 2 + M33% n223 + N3z
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where

@) _ N22M33
A' 2(17.22 zg + n3s3 Zg) ! (3'5f)

eliminates the 733 term. The final coordinate transform

. o113 = - .
L=k + ﬁka , b=k , L=k |, (3.6a, b, c)
A=n- MV —udtz , I=3 |, (3.6d, )
where
Al 3as — 111 faasfaas + 203 iy — finan
,\(3) - My11 1333 l_]l 1-13 133 113 — 11173 1137¢1 3.6
M Gnguzg y  Hs RN ' ( f’g)

eliminates the 71,3, 7333, and 73 derivatives.

The transformed position coordinate 7 corresponds to an oblique coordinate measured

from a moving, curved line through the separation particle, viz.

n=7—Zo(z,t) , (3.7a)

where
z=z—z(&,t) , Z=2z-2§,,t) , (3.75,¢)
To(Z,t) = A2+ AP + 23 4,6tz . (3.7d)

Note that the curved line Z = Z,(z,t), which can be viewed as the line along which
the separation initially develops (see below), does not have a singular shape at the first

occurrence of separation.
The Taylor series expansions for 7 and z near the separation point become
A= 4nl + > MWgdilile +.. 8t mli+... , (Rus =7 =7 =0), (3.80)
ijk i
2=z +7Z30 + ... . (3.8b)
The characteristics of the Jacobian equation (2.2) for y are, in terms of the new coordinates,

dl, pH

@ B POHO

{—237_12212 + ... } y (39(1)
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dl H _ . _ _ N

.d?’= sHo{za(%nn,lf-}-%n13313+n16t)+...} , (3.9b)
dl H .

2= P n(mm B + Waesll + 6t +...) (3.9¢)
dy poHo

with a singularity occurring when all three right hand side expressions vanish (note that
not all three are independent). Near the point s, (3.9a) is zero on a surface approximating
the l; = 0 plane, while both (3.9b) and (3.9¢c) vanish at points depending on the nature
of the quadratic expression (3711148 + 3M13383). If this quadratic is hyperbolic, singular
particles occur along hyperbolic lines regardless of the sign of ét. Thus, if 6t = 0 is to be
the first time that separation occurs, the quadratic must be elliptic, and of the same sign
as the constant term when 6t < 0. This requires fi;;;7133 > 0 and 7y 7; < 0; we will

choose the positive [;-direction such that
MaaMy1y >0, MMy >0 ’ngg#l <0 . (3106, b, C)

The Lagrangian description of the separation process can now be completed by the
determination of y at times shortly before the initial occurrence of separation. At ¢ = ¢,
the boundary-layer approximation is obviously no longer valid because from the integral
(2.6) it follows that y becomes infinite at the stationary point. However, the rate of growth
near this point can be found by means of an asymptotic expansion. To find local scalings,
we follow the guiding principles of Van Dyke (1975). In general, we attempt to scale the
Lagrangian coordinates l; and the position coordinates 7, z and y to variables L;,N, Z,

and Y such that in the inner region the Jacobian equation for Y, i.e.

ARV Y
JLU(N,Y,Z) =Yy, Y, Y., |= T (3.11)
Zu, Zi, Zi, P

has non-singular leading order coefficients. This suggests that the 6t term in (3.9b), which
ensures the absence of singular points for é¢ < 0, should be retained. Further, for 6t = 0
we want to match the solution close to the stationary particle to a solution for y which
is regular away from this point. Thus we want to retain those terms which ensure the
absence of singular points away from particle &, at time §t = 0, i.e. the [?- and {}-terms

in (3.96) and the [3-term in (3.9a). The appropriate scaling is therefore
L= 1680y, L= I8t|3L, , Ly ={6t|3Ly (3.12a, b, ¢)
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a=l6tIN |, z=6t)¥z , y=16t" Yy . (3.12d,¢, f)

These scalings suggest that the separation process occurs in a relatively thin strip, @ ~
|6t/ along a segment of the separation line T = Zo(Z,t) of length z ~ 6t]%.

For the scaling (3.12), the solution for Y is most easily found by integration of (3.11)
as in (3.9a), where L; and L are eliminated in favor of NV and Z, which are constant along

the lines of integration, using (3.8). The result is:

Y ~ ”°'H°' / (3.13a)
\/P(L N,Z) ~ Ji, ,/P(L N,z)) '’ '
where
P(L;N,Z) = - 1A {z}R11, L* + (37133 Z® - 6m,23)L - 623N}, (3.13b)

and Ly(N, Z) is the real root of the cubic P . This root is a unique and continuous function

of N and Z since P is a monotonically decreasing function of L from (3.10).

The choice of sign of the square-root in (3.13a), and the limits of integration are
determined by the topology of the lines of constant NV and Z. In physical space these lines
are straight and pass vertically through the boundary layer; however, in Lagrangian space
they are highly curved near the separation particle, as shown qualitatively in figure 2a. The
lines can be divided into three segments corresponding to three asymptotic regions. The
lower segments start at the wall and extend upward towards the vicinity of the separation
particle. Because the Jacobian is nowhere singular along these segments, the y-positions
of the fluid particles remain finite on the boundary-layer scale, i.e. the scaled coordinate
Y is small. Hence, these lower segments give rise to a layer of particles at the wall with
a thickness comparable to that of the original boundary layer, this is shown schematically

in figure 1.

Along the central segments, the lines of constant N and Z pass through the vicinity
of the separation particle. Here the y-position of the particles grows rapidly, and is given
in scaled form by (3.13). Thus the central segments give rise to the intermediate, thicker,
layer of particles shown in figure 1. The topology of the central segments in the Lagrangian
domain, figure 2a, determines the choice of sign in (3.13a). From (3.8) and (3.9) it follows

that on integrating upwards, L, increases from large negative values towards Lo(N,Z).
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Since Y is increasing along this part, the negative sign in (3.13a) applies. At position Lo,
the lines of constant N and Z turn around in the Lagrangian domain and L; again tends
to —oo; along this second part the positive sign in (3.13a) applies.

Along the third segments, the lines of constant NV and Z proceed upwards toward the
external flow. As in the lower segments, the Jacobian is no longer small here. Thus the
changes in y are finite on boundary-layer scale, and the third segments give rise to a layer

of particles with a boundary-layer scale thickness, atop the central region, as shown in

figure 1.
Hence, the separation structure is one in which the boundary layer divides into a
central layer of physical thickness proportional to Re‘§|6t|‘* between two ‘sandwich’

layers of thickness proportional to Re™}.

The structure (3.13) is identical to the one obtained by Van Dommelen & Shen (1982)
for two-dimensional separation, except that the coefficients now depend on the position Z
along the describing line Z,. A convenient way to illustrate the influence of the position

Z is to scale out the coefficients using a procedure similar to Van Dommelen (1981):

- - 3. R
Li =B L, =B2(2% + 1)%L; v Ly =B} La = PoB; (2 + l)iL; ) (3.14a,d)
N=aflN =of3(Z* +1)iN", Y = Yé = — Y , z=&2, (3.14¢,d,€)
¥8; B3 (2% + 1) !
where the tilde-variables scale out the Taylor series coefficients, the starred variables scale
out Z, and
= 2= = H ps H,
a = %nln y Y= (%z?,’nnnm) po. Ho, ) (3.14d,¢)
- = — L 2'_ i
n : g\
=BT g (FE) s (G e
(A )’ Zanu e
In terms of the starred variables (3.13) reduces to
L; L .
° dL* 0 dL
Y* ~ / + / , (3.142)
~oo V2N* —3L* - [**  Ji; VaN+ -3L* - L[}
where
Lo(N*)=I(N") , (3.15a)
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and the function I is the inverse to the cubic N* = %13 + %I, i.e.
3 3
IV = (N + 0+ N8+ (- + ) (3.15b)

The values of 3 /fa, a3, and 7ﬂ2§ depend on the choice of the Eulerian coordinates (z, z),
but not on the definition of the Lagrangian coordinates.
An alternative expression for Y* can be found in terms of the incomplete elliptic
integral of the first kind F(¢|m):
Y*(L5,N) ~ 2 F(5im) + + Flplm) (3.16a)

where

. ) o _ 1, 3L
AN = (357 +D)° , mN) =S+ S (3.16,¢)

L‘ — L-
¢(L},N") = 2 arctan (————V"‘) . (3.16d)

A
Elliptic integrals are distorted identity functions, (in particular F(p]0) = ¢ exactly), so

that the arctan is responsible for the major variations in Y along the characteristics.

Further terms in the asymptotic expansions (3.8) and (3.16) can be found in princi-
ple. We note that the next term in the expression for Y does not involve a logarithmic
correction, even though logarithmic second order terms do arise for the symmetric flows

studied in the next section.

We now turn to the physical interpretation of these results. The boundary-layer
thickness is asymptotically determined by the position of the upper particle layer in figure
1; letting L7 — —oo along the positive branch of (3.16a), we obtain the scaled boundary-
layer thickness as

Y+H(N) ~ %F(glm) . (3.17)
The function Y+"(N*) gives the general shape of the boundary-layer thickness in a cross-
section of constant z. For large values of N* the boundary-layer thickness decays toward
zero much more slowly than suggested by the sketch in figure 1. Nevertheless, at the outer
edges of the thin separation region, the solution still matches with finite values of y; for
from (3.12), (3.14), and (3.16)

+ 4ot F(W

~ for 6t} <« i| <1 . (3.18)
34207

Y
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To show the dependence of the boundary-layer thickness on the coordinate z, contours
of constant Y* in the N,Z-plane are plotted in figure 2b. Note that the coordinate N
is measured from the oblique, curved, separation line. Actual lines of constant boundary-
layer thickness might, for example, appear as sketched in figure 2c, which has been drawn
by taking |§t| = 0.06 and unit values for various coefficients in (3.7) and (3.14). Asymptot-
ically, the boundary-layer thickness has the shape of a crescent shaped ridge. The crescent
shape is long and thin, i.e. quasi-two-dimensional, because from (3.12) the 7 length scale
is asymptotically shorter than the Z length scale (note that for three-dimensional steady
separation Smith (1978) has proposed a quasi-two-dimensional structure). In an Eulerian
numerical calculation, the development of such a crescent-shaped ridge may be a possible
diagnostic indicating the presence of a singularity.

Evidence of this type of singularity is provided by Ragab’s (1986) calculations for
impulsively started flow past a 4:1 prolate sphzroid inclined at a 30° angle of attack. His
results strongly suggest that the displacement thickness becomes unbounded away from
the symmetry line. However, it is not possible to deduce the shape of the singularity from

the results presented.

A point of interest is the decay of the boundary-layer thickness along the describing
line for large Z. From (3.12), (3.14), and (3.16),

} 1 ) n 1 by
y ' ) ( — ) — 1 f01' ot|3 < |z K 1 . 3.19
1,6]% aﬂ; |Zi3 '—Z'% I I I l ( )

Hence for increasing z, the separation structure expands in ni—direction, while the thickness

of the boundary-layer decreases.

The particle propagation velocity 7 which gives rise to the accumulation of particles

at the separation line is, according to (3.8a), given to leading order by
m~ |8t]ia Ly . (3.20)

To describe this in the more familiar Eulerian coordinates, the transcendental relationship

(3.16) must be inverted to the form

L; = LI(N*,Y*) . (3.21)
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The inversion has been performed numerically, and in figure 2d we present contours of L}
in the (N*,Y*) plane. From (3.14),

: - N - i
ﬁ~—5t5§a3Z3+1%L'(—.——,Y z’+1*>. 3.22
It follows that the lines of constant L} shown in figure 2d describe the shape of the lines
of constant 7 in cross-sections of constant Z through the separation structure. They also
give the asymptotic shape of the lines of constant velocity components ¢ and z and density

p in these cross-sections, since

(6120) = (bianpe) + 600} (B0, 50,5082 + 1T + G brnpi) g D) .
o (3.23)
We note that the topology of figure 2d for |6¢| = 0 seems quite close to the computed lines
of constant velocity presented by Van Domme:len (1981) for finite |§t|, and thus lines of

constant velocity might be a useful indication of an incipient unsteady separation.

The next point of interest is the shape of the velocity profiles. According to (3.23),
in Eulerian space the velocity profiles must develop a large flat region of nearly constant
velocity as separation is approached. However, accepting the numerical results of Van
Dommelen (1981), this flat region is only evident extremely close to the singularity, so that
resolution problems or finite: Re' 10lds number effects tend to obscure the phenomenon.
From (3.23) and figure 2d, the velocity profiles near an incipient three-dimensional separa-
tion must have a local maximum or minimum in velocity. However, this is not necessarily a
precise indication of incipient separation. For example, in the case of the circular cylinder,
a minimum in the velocity profiles develops relatively quickly, after é diameter motion,
yet separation occurs much later, after % diameter motion. Figure 2e shows the shape of
the velocity profiles near the interior extrema. The shapes of the velocity profiles in the
sandwich layers at the edges of figure 2e cannot be found from asymptotic analysis since
they depend on the precise details of the earlier evolution (cf. the remarks below (3.24)

and part 2).

A more significant sign of the start of separation might be a transverse expansion
of the lines of constant vorticity near the velocity minimum/maximum; since the above

analysis is inviscid to leading order, the vorticity lines closely follow the motion of the
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boundary-layer particles. In the boundary-layer approximation, the vorticity is the y—

derivative of the velocity distribution. The corresponding asymptotic topology of contours
of 9L} /8Y * is shown in figure 2f. This topology seems close to the computed vorticity

lises presented by Van Dommelen (1981) for a time near separation.

The asymptotic structures of the upper and lower vorticity layers are similar to the
two-dimensional case (Van Dommelen 1981). Expressed in terms of Eulerian coordinates,

they take the form of regular Taylor expansions:

(8:9,56)= 3 T T8 (vrnr @), omne (¥), Wir 8)s e ¥)) + (3:240)
mnr>0
and
(z,ﬁ,z,p) = Z Em‘-z-ﬂétr(u;nr(g%v;nr(g)vw;nr(g))p:nr(g)) ) (3-246)
mnr>0

respectively, where the sums run over the non-negative integers, and the Prandtl transfor-

mation y = y — y*(Z,Z,68t), describes the motion of the upper layer.

Substituting (3.24) into the boundary-layer equations, we find that the ufm,, wi |
pEney (myn > 0,7 > 1) and the vZ,., (m,n,r > 0) are determined in terms of the
(uf o, wE 0,0 .0), but that these latter functions are indeterminate due to the depen-
dence of the solution on earlier times. The (uino,w:no,pfmo) must, however, satisfy the
boundary conditions (2.5a) at the wall, and match both at the outer edge of the boundary
layer (see (2.5b)), and with the central inviscid low-vorticity region. At fixed N and Z,

the latter matching conditions yield from inverting (3.16) and using (3.23),

_ - - . oo 41
(%500 + Woo01Po00) — (T5124,P5) - (ml,zhﬂl)‘y—zy—z as y — +o0 (3.25a)
+ + + S = b ~ q 9r
(uoouvwooovpooo) - (Isazs,ps) - (1‘1,21,/’1)_'7—2'!;—2 as Yy — —2%0 . (320’))

Asymptotic matching conditions can also be derived as |NV|,|Z| — 20, as Van Dommelen

(1981) has done for two-dimensional flows.

A final point of interest is the ‘accessibility’ of the region of flow beyond the time
of initial separation. In a steady Eulerian computation, Cebeci, Khattab & Stewartson

(1981) took the accessible region to be the domain where a boundary-layer solution can be
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found, (whether it is still an asymptotically correct solution of the Navier-Stokes equations
in the presence of interaction or not). In the Lagrangian case, some care is needed, because
the singular continuity equation is integrated separately. Numerical experiments such as
the one in part 2 do in fact suggest that the non-singular momentum equations can be
integrated past the separation singularity without apparent difficulty. When that is done,
the vertical lines through the boundary layer appear in Lagrangian space as shown in figure
2g rather than figure 2a. For the shaded particles, y is indeterminate; these particles may
be thought of as having disappeared at infinite y. Yet the continuity equation can still
be integrated along all lines of constant # and Z which start at the wall. A singularity
develops only on the line passing through the saddle point in figure 2g, which for 0 < §t < 1
corresponds to a singular line segment

3
3

N~+(1-2°) (3.26)

However, the solution so obtained must be considered meaningless at least for all particles
which have at some previous time passed through the singular curve. For that reason, we
define the region of inaccessibility as those stations (z,z) which contain particles which
have at any tirne been on the singular curve. Initially, the region of inaccessibility will
primarily expand in the z-direction through the scaling (3.12¢). In the n-direction it will
expand by means of the motion of the describing line (3.7) and additionally through the
motion of the particles which propagate downstream away from the singular curve. Thus,
the region of inaccessibility extends over a finite surface area, rather than just the curve

(3.26), in agreement with the steady Eulerian definition of Cebeci et al. (1981).

Naturally, the singularity structure derived here will not remain asymptotically correct
arbitrarily close to t = t,, because the normal velocity above the central inviscid region
becomes infinite at t = t,. From a study of the Navier-Stokes equations it is found that the
singularity is smoothed out when a ‘triple-deck’ interaction comes into operation for 6t =
O(Re_le'), at which point the scaled boundary-layer thickness is ()(Re%). Because the
singularity is quasi-two-dimensional, the scalings and governing equations are essentially
those derived by Elliott et al. (1983) for two-dimensional flows, but with the addition of a
passive z-momentum equation. In the central interaction problem, the coordinate z, which
has an interaction length scale O(Re™ i ), only appears as a parameter. However, it is not

clear whether the singularity will be corapletely removed by the interaction (Smith 1987).
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4. Three-dimensional symmetric separation

In the previous section a separation singularity structure was derived assuming that
the flow was arbitrary, an assumption that might be appropriate for flow past an asymmet-
ric body. However, in the case of a spheroid at relatively small angles of attack it is likely
that separation first occurs on one of the symmetry lines; indeed numerical calculations
confined to the symmetry line have been performed on this basis (Wang & Fan (1982)
Cebeci, Stewartson & Schimke (1984)). In sub-section (a) below we derive the form of the
singularity appropriate for separating flows where the separation line crosses a symmetry

line normally.

However, this is not the only type of symmetric separation of interest. When a sphere
is impulsively rotated about a diameter, centripetal effects generate a boundary-layer flow
towards the equator. After a finite time an equatorial singularity develops as a result of
a boundary-layer collision. The structure of this singularity on the symmetry line has
been determined by Banks & Zaturska (1979), and Simpson & Stewartson (1982a). In
this case the separation line coincides with the symmetry line. Similar singularities occur
after a finite time at the apex of a horizontal circular cylinder which is impulsively heated
(Simpson & Stewartson 1982b), at the inner bend of a uniformly curved pipe through which
flow is impulsively started (Lam 1988), and at the stagnation points on a two-dimensional

cylinder in oscillating flow as a result of steady streaming effects (Vasantha & Riley 1988).

A more general form of the singularity generated by two symmetric colliding boundary
layers on a smooth wall would first develop at a point rather than along the entire symmetry
line. For example, such a singularity might develop on the equator of an ellipsoid which
is rotated about one of its principal axes, or in starting flow through a curved pipe with
non-uniform curvature, or at the apex of a heated ellipsoid. In sub-section (b) the three-
dimensional structure of such a singularity is derived. The results on the symmetry line
agree with previous authors, but the simplicity of the Lagrangian approach allows us to
determine additionally the singularity structure off this line. The latter is a necessary

preliminary in order to formulate subsequent asymptotic stages in the separation process.

Another class of separation singularities are rotationally symmetric about the sepa-
ration point, so that the separation line degenerates to a point. For example, singularities

develop after a finite time on the axis of a spinning disc or sphere whose direction of
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rotation is impulsively reversed (Bodonyi & Stewartson 1977, Banks & Zaturska 1981,
Stewartson, Simpson & Bodonyi 1982, Van Dommelen 1987), and at the apex of a sphere
which is impulsively heated (Brown & Simpson 1982, Awang & Riley 1983). The structures
of these singularities, which differ due to the presence and absence of swirl, are derived in
sub-sections (c) and (d) respectively. The results on the axis agree with those of previous

authors, while the singularity structures off the axis are new.

(a) Lateral symmetry

When the boundary-layer flow is symmetrical about a line along the surface of the
body, the describing line of separation must either cross the symmetry line normally or
coincide with it. In this sub-section we will address the case of normal crossing, leaving

the second possibility to the next sub-section.

For consistency with section 3, we identifv the compressed coordinate n with z and
take the £,7-plane as the symmetry plane so that z is an even function of ¢ and z an odd
function. Then the analysis is a simpler version of the one in the previous section. The
only transformation of the Lagrangian coordinate system needed is a rotation around the
(-axis to eliminate the zy; derivative. Also, the discussion concerning which derivatives
must be zero if ¢, is the first separation time (see (3.4) and following) can be restricted to
the symmetry plane to show that the second order derivative which is forced to be zero

must lie within the symmetry plane.

Hence the structure of the separation process remains basically unchanged, although
the describing line of separation simplifies, and is now symmetric about the symmetry line
z2=0(cf. (3.7):

ﬁ:z—m(e,,t)-%zz . (4.1)

A degenerate case is two—dimensional flow, where z is totally independent of ¢, and the

separation line becomes a straight generator in the z-direction. In addition, the coefficient

B, vanishes, which suppresses the decay of the boundary-layer thickness with z. The

resulting structure is described in detail by Van Dommelen (1981).

Thus lateral symmetry, or more strongly two-dimensinnality, does not fundamentally
alter the separation process. This conclusion is consistent with the symmetry line calcula-

tions of Cebeci, Stewartson & Schimke (1984).
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(b) Symmetric boundary-layer collision

When the describing line coincides with the symmetry line, significant changes in
structure are unavoidable, since the flow is symmetric while the separation structure illus-

trated in figure 2 is asymmetrical.

We identify the compressed coordinate n again with z, but now we assume that the
7n,(-plane is the symmetry plane, so that z is an odd function of £ while z is an even
function. A singularity occurs when z first vanishes at the symmetry plane, since the
derivatives z , and = ( are zero by symmetry. Since the first occurrence of a zero value
must occur where z ¢ is a minimum, the second order derivatives z¢, and z¢; must vanish,

while the other second order derivatives are zero by symmetry.

The fact that all the second order derivatives are zero invalidates the scalings for
n and y made in the previous section (e.g. (3.12), (3.14)), hence a separate analysis
with significant modifications is needed. Proceeding along similar lines as in the previous
section, a local Lagrangian coordinate system ky,k3,ks is introduced with origin at the
separation particle, but with the same orientation as the original axis system. A rotation

of this coordinate system around the k;-axis,

,;‘ E Lg _ 23’62 - 22k3 l:: ngg + Z3k3

— , , = 4.2a,b,c
VA 0T Jaia (42,5:c)
t=c , z=1z-2&,t) , (4.2d,e)

can be made to eliminate the z;—derivative. The shearing transformation

L=¢ , lz=k2+f.—l‘2—3ka ) ls"—";s

, (4.3a,b,¢)
T122
T=z , z=1z-2z(&,t) , (4.3d,¢)
eliminates the T3 derivative, resulting in the Taylor series expansions
T ~ éillll?+%51."3lllg + %5133[113 ++6t5|ll + ... y (44(1)
E ~ 5313 + ... . (446)

The expressions for the characteristics of the Jacobian equation for y become

dl] pH

dy B po Ho

h{-%Zih +...} (4.5a)
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(ﬂg pH

dy — poH,
In order to avoid singularities for §t < 0, the quadratic in (4.5b) must be elliptic and of

Zs(3z11 8 + 1T122f + T3] + 8tTy) + ...} . (4.5b)

opposite sign to Z;. Since z ¢ is initially positive, cf. (2.1), it follows from (4.4a) and (4.5b)
that at a first zero

i1 >0, T12>0, T3 >0, 2, <0, (4.6a,b,¢,d)

The topology of the characteristics (4.5), shown in figure 3a, can be compared to the
asymmetric case figure 2a, where the separation characteristic develops a cusp at §t = 0.

In this case, the separation characteristic is constrained by symmetry to remain straight.

Appropriate local scalings near separation can be found using arguments similar to

those of the previous section:

o= 16t138, L, = 16113 3(27 +1)5L; (4.7a)
b =6t B Ly = |63 50 (2* + 1)3L; (4.7b)
z=6t|3aB3X = 6t|3aB2(Z* + 1)IX" (4.7¢)
Y Y* LB -
y= = = z=|6t|: =2 , 4.7d,e
658, 161548 ( 27 + 1) , (4.7d;¢)
- 2= = \} psH,
a = %zn] y Y= (%2321222111)2 P (47f,g)
PO:HOJ
2 z 3 9. \ ?
By = 37111 . By = (_ziaa ) : _ (__h) . 4.7h,i,j
0 (53512251“)% ! 2333111 ,32 T111 ( ' J)
The continuity integral becomes
L L;
o dL* 0 dL*
v = / i / . (484)
o L*(2X* -3L* - L*3) Jr: /L*(2X* —3L* - L*3)
where
Lo(X*)=1(X") . (4.8b)
This can be written as an elliptic integral similar to (3.16),
e/re e 2 1
Y*(L3,X7) "- XF(§|m) + KF(<P|m) ; (4.9q)
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where

| 1 3L2 +6
AXT) = (I + 1) + )¢, m(x) =5 - R

¢(L3,X*) = 2arctan (%\/(L;’ + 3) (% - 1)) . (4.9d)

Note that instead of using L] as the independent variable, there is an advantage in using

(4.95,¢)

L3, as given implicitly by the relation
Li(L3,X") = (L + ) I(X* /(L3 + 1)3) (4.9¢)
since at the symmetry line the solution is regular in terms of Lj:

L] - 2 ™ »
YH(L5,0) ~ (-2- rarctan L) . (4.10)

Contours of the boundary-layer thickness ¥+ in the X,Z plane are shown in figure

3b. The asymptotic relations for large | X | and |Z|, corresponding to (3.18) and (3.19), are

da% il V3 1

+

~ P D) - ) — 51)3 _

I PY o (2 2 4)1:4% for |6t? <=l <1 -, (4.11)

y*~ Y‘+( > )i for |6t} < |z < 1 (4.12)
761 af} izl / [z ' ‘

The velocity components and density in the neighbourhood of the stationary point

are given by
2~ —|6t]52aB3(22 + 1)5 L} (4.13a)

. . v, _ > Lre 2~ P2 5
(Z,p) ~ (Z5,p,) + |6¢]3 ((Zz,pz)ﬁoﬂz(z2 +1):L; + (23’p3)ﬁ—iz> : (4.136)
123
Hence L] can be interpreted as the velocity component towards the svmmetry plane. The
scaled velocity profile, —L7, is illustrated in figure 3c at a number of X* stations, while
contours of L}, and the corresponding vorticity component, dL}/dY *, are illustrated in
figures 3d and 3e respectively. In cross-sections of constant z, the variations in velocity

parallel to the symmetry plane are proportional to L;. Lj velocity-profiles are given in

figure 3f, while figures 3g and 3h illustrate contours of Lj and the vorticity dL3/dY".
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Close to the wall, i.e. as Y — 0,

b S e L (o) ~ Gupd) - G =R (4.14a,b)
which match to a regular vorticity layer of similar form to (3.24). Similarly a match can be
achieved with a separating layer governed by a Prandtl transformation above the central
inviscid region.

Figure 3i shows the characteristics, i.e. lines of constant z and 2, for 6t > 0. Inte-
gration of the continuity equation yields a singularity over a segment —1 < Z < 1 of the
symmetry line X = 0. Since neither the singularity nor any particles on the symmetry line
leave the symmetry line, the region of inaccessibility remains restricted to the symmetry
line.

A special case occurs for separation at the intersection of two symmetry lines, such
as at the apex of an ellipsoid. In that case, in addition to the symmetry in &, z is an even
function of ( and z an odd one, and the transformations of the Lagrangian coordinate
system (4.2) and (4.3) become trivial. No changes in the leading order singularity structure
occur, since it was already symmetric in z-direction, even though this condition was not
imposed. However, the velocity parallel to the symmetry plane must be antisymmetric,

and the density symmetric (cf. (4.13b):

3t td o~ B EAA(Z 1M (4.150,5)

In the case of two—dimensionality, where z is independent of (, the coefficient 3, van-
ishes as in the previous subsection, suppressing the decay of the boundary-layer thickness
with z. The flow on the symmetry line can then be written as a one-dimensional problem,
and was studied from an Eulerian standpoint by Banks and Zaturska (1979) and Simpson
& Stewartson (1982a,b). In part 2, Van Dommelen (1989) uses this flow to verify the
Lagrangian analysis numerically to high accuracy. Favourable numerical comparisons with
the singularity structure away from the symmetry line have been obtained by Lam (1988)

for starting flow through a circular pipe.

The existence of this singularity has also been reported by Stern & Paldor (1983),
Russell & Landahl (1984) and Stuart (1987) while studying tnviscid models for the growth

of large amplitude disturbances in boundary layers. In fact, because unsteady separation is
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primarily inviscid in its final stages, an alternative approach to that above would be to solve
the inviscid version of (2.3) exactly, and then to examine the possible singularities of the
solutions (see also Van Dommelen (1981) for the two-dimensional singularity). Note that
although Stuart’s (1987) exact, inviscid, symmetry line solutions do not include a parallel
flow in the z—direction, our results are in agreement since the details of the singularity

structure are independent of z(¢,,t).

As in section 3 the above singular solution will not remain valid for sufficiently small
|6t| because previously neglected pressure gradients will become important (cf. the inter-
active problem for the two-dimensional singularity formulated by Elliott et al. (1983)).
Further, because the velocity towards the separation line is much smaller in the upper and
lower vorticity layers than in the central layer, it is in the vorticity layers that the effect of
the pressure gradient will be felt first. However, it is the central layer which is responsible
for the growth in boundary-layer thickness; thus it appears that the first asymptotic rescal-
ing does not lead to an ‘interactive’ effect to smooth out the above singularity. Instead, the
singularity continues to be driven by the flow in the central layer, while significant changes

occur in the upper and lower layers. Similar arguments seem to hold for the singularities

in (c) and (d) below.
(¢) Axisymmetric boundary-layer flow with swirl

In axi-symmetric flow, the flow geometry does not depend on £ and ( individually,

but only on the Lagrangian distance,

e=vE&+¢ (4.16)

from the axis £ = ( = 0. The displacement of rings of particles p = n =t = constant from

their original position must remain restricted to a change in physical distance,
ro=Vz? 422, (4.17)

from the axis, a rotation around the axis, and a shift in vertical position. Hence according

to the theory of orthogonal matrices, the solution must be of the form

z = c(o®,n, )€ + s(e®\n, )¢ (4.18a)
2= —s(0’,n,t)€ + (@, t)¢ (4.186)
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where, because of the assumption of regular z and z,
c~z(0,n,0,t) + 1T eee(0,1,0,t)0* +... (4.19a)
8 ~2(0,1,0,t) + Lz ccc(0,1,0,t)0® +... . (4.19b)
In terms of ¢ and s the physical distance from the axis is given by
= (c? +s%)o? . (4.20)
The Jacobian J in (2.2) can be written in terms of p and r as

J = (7'2 )e* Y — ("2 JnYer - (4.21)

Thus separation occurs at a stationary point for r?(g?,7,t), and from (4.20) and (4.21) it
occurs on the axis when

o0,7,,t5) = 3(0,7,,t,) =0 . (4.22q, b)

A rotation of the Lagrangian coordinate system to diagonalize the second order deriva-
tives of = is not advantageous here, since the axial symmetry would be lost. Instead we

rotate the coordinate system around the symmetry axis,

- b o} - - -
ky = “"—"‘235 122C y ka=n-ny , k3= _____131252 s 232:;( ) (4.23a,b,¢c)
VT2 + 223 V13 1 223
to eliminate the &;;—derivative, followed by the shearing transformation
T i 3-3333 12 72 53 T
L=k , lL=k+ (ky +k3)+6t— |, I3 =ky , (4.24a,b,¢)

62,3 T23

to eliminate T3 and 7,.
The characteristics of the Jacobian are lines of constant distance r from the axis. If
t, is the first time that a singularity forms then Z111Z; must be negative, or for a suitable

choice of the positive [, —direction
T >0 éf_] <0 . (425a,b)

The characteristic lines of constant r in the p,/;-plane appear as sketched in figure 4a.
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Appropriate local scalings are

- 'S . - Are — % 3 p= _—

by

— _ l_
a=3Z1, 7= 3%m(

Qo3 |

leading to a continuity integral

. 5 24P* 24P*
Y ~ :t 3
o /4RI —(3P* +P3)® ~ Jp. /4R*7 _(3P* + PH )

where

Py(R*) = I(R*)
This can be written as the elliptic integral
2w 1
Yt . L Y A =
(L3, R") = L F(5Im) £ £ F(plm)
where

-4 w2
AR = (33 + (P +3P)F , m(re) = - T 00 + 19
i

. . 1 . 2 P-Z
¢(L3,R") = 2arctan (7\-\/(1302 +3) (P 7 = 1)) ,

and P*? is related to L} and R* through the solution of the cubic equation

4R*? = 9L;*P*? + (P*? + 3)?P*?

On the axis, (4.28a) simplifies to
- 2w .
Y*(L3,0) = (5 +arctan I3)
while for large R*, the boundary-layer thickness asymptotes to

4a? |l V3\ 1 :
*t~ Fl=|=- =)= for |6t|3 < 1
35234 (2 2 4) g Pl <<

r3
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(4.26a,b,c, d)

'

s H, 2%, \ ?
LR e Ry ﬂ (“ﬁ) , (4.26e, f,g, h)

(4.27a)

(4.27h)

(4.28a)

(4.28b,¢)

(4.28d)

(4.28e)

(4.29)

(4.30)




)
The velocity components in the radial and azimuthal directions, and the density, are
s~ —|68)3 2aB2(Us + XW) , r6 ~ |6t|3 2aB%c(Wy — xUS) , x = &3 (4.31a,b
) T~ 2 0 XWo ), 2 LW XO?X"él) .a,,c)
p =Py +16t1(5,80 8 L3 + 35187 P ~ D) (4.31d)
where ¢ = sgn(Z33), and
J
. _ (P +3)P"? . 3PT3L;
Uo = 2R* s Wo = 2R* y (4.32a,b)

are the symmetric and anti-symmetric velocity profiles shown in Figure 4b.

Both the radial and the drcumferential velocity profiles depend non-trivially on the

parameter x. However the magnitude of the velocity,

g=Vul +w? = |6t|}2a8°\/1+ 2P* (4.33)

does not; contours of q are illustrated in figure 4c. The vorticity components normal to

the velocity and parallel to it are proportional to

_ Uy Usy. + WiWey.

Qn = _3p*I» , 434a,b
VoTEwe b e?

Wy Usy. — Us Wy
Q, = L0 L_0¥: _ _3pr(p*? 11) . (4.35a, b)

+ Contours of these quantities are plotted in figures 4d and 4e respectively.

A match with the sandwich layer adjacent to the wall is again possible, sinceas Y — 0

o~ %7ﬂ2xry , T'é ~ _%.«Yﬁzcry R p~ Os - —— . (4.36@, b,c)

Similarly a match can be achieved with the upper separating layer.

Figure 4f shows the characteristics for §¢ > 0. The singular line is the physically
expanding circle R* = 1, but the region of inaccessibility is larger due to particles with

L} # 0 which move radially outward from the singular line at a greater rate.

On the axis itself, the continuity integral is particularly simple:

n
po Hodn
= [ b 4.37)
y /OpH(a:"€+a:'2<) (
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When this integral is expanded to second order, a logarithmic correction to the y—position
is obtained. This and other terms were initially overlooked in Eulerian analyses of the flow
on the axis (Bodonyi & Stewartson (1977), Banks & Zaturska (1981)), but in a Lagrangian
approach the logarithmic term follows naturally from the hypothesis that the solution for
the motion parallel to the boundary is regular. (A similar logarithmic term arises in the
symmetric case (b) above, cf. part 2). In fact, from this hypothesis alone, the complete
singularity structure presented by Stewartson, Simpson & Bodonyi (1982) can be recovered

by means of a simple integration of (4.37).

(d) Axisymmetric boundary-layer collision without swirl

Finally, we consider the case of axially symmetric flow when there is no rotation of

the flow about the axis. In the absence of such rotation (4.18) simplifies to

T = 0(92777at)£ y 2= C(Q’JM)C . (4.38)

No transformations of the Lagrangian coordinate system are needed in this case. It follows
that if a singularity first appears on the axis ¢ must vanish. The contours of constant r
are then identical to those for a symmetric collision (figure 3a), while the Taylor series

coefficients satisfy conditions (4.6a,b,d).

In a similar way to before suitable local scalings are

Y‘

0=|6t|3BP" | I = |6t|3BoBL; , r = |6t|3aB’R" , y = —— , (4.39a, b, c, d)
|6t| 332
L p,H z 3 2z :
— 1= —1(1=3 = 7 Fss - (2 - (<=
a=3tm, T 3 (3%“:’:122) pos Ho, > o (5122> , B ( 5111) '
(4'3981 fv 9, h‘)

leading to a continuity integral

P, «d - P, -% .
v «./ ’ p:dP i/ ___PredP , (4.40a)
o R*V2R* —3P* P2  Jp. R*V2R® - 3P+ _ p=3

where
Pe(R*) = I(R") . (4.4006)
This solution can be ‘reduced’ to the form
1

verre e 4 —dn T 2 0w
' (L"R):P;ua( A “(“;5"”7”5'"‘))

32




1 2-2n 1
2 P3 sin(p) )
+ — arctan
P3 (2A V1 —msin?
2 (nP sin(2y) )
4+ — arctan R 4.41
Pg 2A V13- msin? ( ?)

where II(n; ¢|m) is the incomplete elliptic integral of the third kind, and

1 3P? + 6 3P3? + 12
A ") _ Pc? 1 Pt? 3 , "y~ - _ Ot TV - _1_ 9o T 14
(R') = (P + DG +3)F | m(R7) = 3 - T LD wrry =1- T80

(4.41b,¢,d)
¢(L3,R") = 2arctan 1 (P‘2 + 3) Ps _ 1 (4.41e)

2 A 0 P. ! :
P (L3, R*) = (L3* - )3 I(R*/(L3? + 1)) . (4.41f)

On the axis (4.41a) simplifies to
Y*(L3,0) = 2 ( + arct L+——Li— (4.42
27T 33 cenfiT e i) 42)
while for large R® the boundary-layer thickness asymptotes to
V3 m|1 V3 Tl V3 1

yt (\/—H(l—~2—§§~7)—F(—2—§-—4—) - (4.43)

The velocity and density are given to leading order by
P~ —|6t5 208, p~p, +161135,008L; . (4.44a, b)

Sample velocity profiles are illustrated in figure 5a, while contours of P* and the vorticity
dP* /dY* are given in figures 5b and 5c respectively. Again, a match is possible with the

wall layer, since as ¥ — 0,

(4.45a,b)

5. Discussion
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In this paper we have shown tkat the description of attached flow past a body using
the classical boundary-layer equations can break down after a finite time due the formation
of a local singularity. In a Lagrangian description the class of singularities is characterized
by a singular continuity equation, but a regular momentum equation. The evidence shows
that such singularities are both mathematically consistent and physically relevant (e.g. Van
Dommelen & Shen 1980a, Van Dommelen 1987, 1989, Lam 1988, Bouard & Coutanceau
1980). The precise structure of the singularity depends on the symmetry of the flow,
and some of the simpler structures have previously been partially or totally described in
Eulerian coordinates by other authors. The purpose of this paper is to provide a unified
theory to facilitate the identification of singularities of the Lagrangian type when they do
occur. This seems especially relevant for the difficult problem of the asymmetric singularity,
where the singular behaviour would have to be deduced from a three-dimensional unsteady

computation.

These singularities occur when a fluid particle becomes compressed in one direction
parallel to the boundary. Conservation of mass then implies that the fluid above this fluid
particle is forced out of the boundary layer in the form of a detached vorticity layer. A
common feature of all the singularities is that the typical length scale in the direction
of compression is O(|6t|3). However, the the strength of the singularity increases with
the symmetry of the flow; the the boundary layer thickness varies from O(I&t]‘*) for the

asymmetric symmetry to O(|6t|‘§) for the axisymmetric singularity without swirl.

Because the singularities take the form of a vertical ejection of fluid from the boundary
layer, we believe that they indicate the onset of separation as hypothesized by Sears &
Telionis (1975). While the present singularity structures do at least seem to describe the
initial genesis of the separating shear layer, within an asymptotically short time interactive
effects which are neglected in the classical boundary-layer formulation must be included
(e.g. Elliott et al., 1983, Henkes & Veldman 1987). At that stage a new asymptotic scaling
must be substituted into the Navier-Stokes equations in order to recover the correct large-
Reynolds-number limit. Knowledge of the precise asymptotic structure of the singularities
is necessary to identify this new scaling, and one of the contributions of this work has been

to identify the full structure of a number of symmetric singularities.

At first sight the symmetric singularities may appear less likely to occur in problems of
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practical importance. However, they have previously arisen in inviscid models of ‘transition
to turbulence’ in regions where symmetric counter-rotating longitudinal vortices are forcing
the convergence of fluid particles (Stern et al. (1983), Russell et al. (1984), Stuart (1987)).
A three-dimensional extension of the work by Smith & Burggraf (1985), may lead to
an asymptotic description of transition which accounts for viscosity, where the turbulent
bursts are associated with local regions of classical boundary-layer separation (symmetric

or otherwise).
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Taylor” Conference, April 1986, Cambridge. The authors acknowledge financial support
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Structure of the separating boundary layer, illustrating the asymptotic scalings

in the boundary-layer coordinate system (schematic).

Structure of asymmetric three-dimensional separation: (a) Lagrangian topol-
ogy of vertical lines through the boundary layer near the separation particle;
(b) contours of the scaled boundary-layer thickness Y+ = 5%,5,4%,...,2%
in scaled, oblique coordinates; (c) possible actual appearance of contours of
boundary-layer thickness (schematic); (d) contours of the scaled velocity L} =
0,+1,42... in scaled coordinates; (e¢) —Lj velocity-profiles; (f) contours of the
scaled vorticity dL} /dY ™ = 0,+£1,+£2,...; (g) topology of vertical lines through
the boundary layer for times beyond the first singularity.

Structure of symmetric three-dimensional separation: (a) Lagrangian topol-
ogy of physically vertical lines; (b) contours of boundary-layer thickness Yt =
3-;-,3,2;—,... ,1; (¢) —Lj velocity-profiles; (d) contours of L} = 0, %,1,115,...;
(e) contours of dLi/dY* = 0,+1,+2,...; (f) L; velocity-profiles for flow par-
allel to the symmetry plane; (g) contours of L} = 0,+1,%2,...; (h) contours
of dL}/dY* = 1,2,3,...; (i) Lagrangian topology of physically vertical lines
beyond the first singularity.

Structure of axi-symmetric separation with swirl: (a) Lagrangian topology of
physically vertical lines; (b) the velocity profiles of the two components —Uyg
and W;; (c) contours of the scaled absolute velocity P* = 0,1,1,11,...; (d)
contours of the scaled vorticity component normal to the flow velocity 2, =
0,+1,+2,...; (e) contours of the scaled vorticity component parallel to the
velocity 0 = 0,—1,—-2,...; (f) Lagrangian topology of physically vertical lines
beyond the first singularity.

Structure of axi-symmetric separation without swirl: (a) P* velocity-profiles;

(b) contours of P* =0, %,1,115,...; (c) contours of dP*/dY* =0,£1,%2,....
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