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INTRODUCTION

A research program of basic experimental and computational studies on the unsteady

flow generated by a pitching airfoil was initiated in October 1986 under grant no. AFOSR-

86-0243. This report is being written to describe the work carried out during the period

October 1986 - October 1988. It is of interest to note that the work is being continued

under a separate contract AFOSR F49620-89-C-0014.

The present study has the following objectives to the general problem of unsteady

flow past a NACA 0012 airfoil undergoing large amplitude incidence variation.

1. Investigate the unsteady flow structure generated by an impulsively started airfoil

from rest, at different angles of attack.

2. Investigate the transient flow characteristics of an NACA 0012 airfoil undergoing a

stepwise varying angle of attack.

3. Investigate the unsteady flow structure of an accelerating NACA 0012 airfoil at dif-

ferent fixed angles of attack.

4. Investigate the transient flow characteristics of an accelerating airfoil undergoing a

stepwise incidence variation.

In all these studies attention was directed to the basic understanding of the unsteady

flow phenomena. A unique experimental technique, known as Particle Image Displacement

Velocimetry, developed in our laboratory, is successfully implemented to study, in detail,

the unsteady large scale vortical motions that occur in these flows. A parallel effort was

devoted to study the experimentally observed features using numerical simulations. In an

attempt to expand the parameter range, in consultation with AFOSR, a new larger towing

tank facility has been designed and constructed.

In the following, the status of the research effort is given along with some of the most

important conclusions arrived from this study. The details of various investigations are

given in reporfs and papers, which are included here as appendices.

'I
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STATUS OF THE RESEARCH EFFORT

In the following, major conclusions on the various facets of the research program are

given.

a) Impulsively stated airfoil.

A systematic investigation has been carried out to understand the basic flow structure

generated by an impulsively started NACA 0012 airfoil, of finite aspect ratio, at different

angles of attack, and at a fixed Reynolds number of 1400.

A novel experimental technique known as "Particle Image Displacement Velocimetry"

was used to measure the instantaneous two dimensional velocity field. The velocity field

was measured with sufficient accuracy and spatial resolution that the vorticity field and

pressure field can be computed accurately, a unique capability of the technique. The

detailed description of this technique is given in the Appendix I.

A parallel computational study was conducted to augment the above mentioned ex-

perimental study. In this study, a new algorithm was developed to solve the Navier-Stokes

equations using the discrete vortex method. The new fast velocity summation algorithm

enables the flow to be computed with much more resolution than previously possible in

vortex methods. The details of the algorithm is given in Appendix II.

The main features of the unsteady large scale separated flow about an impulsively

started airfoil are as follows:

The multiple exposure photographs of the flow field about the airfoil at 100 or less

incidence showed that the flow is well behaved and attached to the airfoil over the period

of observation. However, at large angles of attack a > 20', the flow separates on the upper

surface of the airfoil and generates large scale vortices. The following scenario develops

in time on the upper surface of the airfoil. At the start of the airfoil. a starting vortex

develops at the traifing edge and is carried away downstream of the airfoil. Concomitant

with is the generation of a separation bubble at the leading edge of the airfoil. At a later

time, the sparailon Nbble grows into an isolated primary vortex with se rondary vortices

following behind it. This multiple vortex structure continues to grow together and move

along the upper surface until it reaches the trailing edge. At this point, the primary vortex

in duces a vortex at the trailing edge with the sense opposite to that of the primary vortex

Finally, the primary vortex and the induced trailing edge vortex interact and generate a

complex flow field. However, for finite aspect ratio airfoils or wings, a different type of flow

field seems to emerge at later stages of development. The various events described above
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occur at different times, depending upon the angle of attack and free stream Reynolds

n',nibrer.

Typical PIDV measurements of the instantaneous velocity field, at different times, for

an airfoil at a = 300 are shown in figure 1.The aspect ratio of the wing was about 3. The

airfoil travels from right to left. The data is presented in the body fixed reference frame.

The length of the velocity vector corresponds to its magnitude. The dimensionless time V

is defined as __, where U is the free stream velocity and C is the airfoil chord. The starting

vortex (at the far right of the picture) and the intial separation bubble at the leading edge

can be seen in the figure corresponding to V = 0.68. The primary vortex with secondary

vortices following behind it can be seen in the figure at t* = 2.02. The trailing edge vortex

can be seen in the figure at t* = 3.02 At t* > 3, the primary vortex abruptly moves away

from the upper surface leaving behind a vortex sheet type like structure. Such a behavior

is attributed to the interference of tip vortices which are generated due to the finite aspect

ratio of the airfoil. At later times, for example at tV = 4.85, the tip vortices interact with

the separated flow on the upper surface and generate a complicated three-dimensional flow

field. The nature of this interaction and parameters that govern such a flow field is not

yet known. The current experiments with a larger aspect ratio (10) airfoil will help us in

the interpretation of these results.

Typical two-dimensional computational results from random-walk vortex simulations

of the full Navier-Stokes equations are shown in figure 2. The angle of attack and the

Reynolds number are the same as those in the experiment; the results of which are shown

in figure 1. The stream line pattern, along with vorticity, which is represented in bit-

mapped graphics as half tones are shown in the figure. Except for the effect of the finite

aspect ratio of the airfoil, the stream line pattern looks very much similar to those found

in figure 1. To further evaluate these results, the locus of the primary vortex as it develops

in time is shown in figure 3. The computational results agree well with the experiment for

t < 2. Beyond t* = 2, it is expected that the experimenial flow ficd was inflenced by the

tip vortices making it to be three-dimensional. The coefficients of lift and drag as obtained

from the computations axe shown in figure 4. As expected, the coefficient of lift increases

with t* up to a point where the primary vortex is attached to the upper surface. For

later times, where the primary vortex leaves the upper surface, the coefficient of lift drops

significantly. In order to have a proper comparisons, the experiment is being conducted

at this time with a larger aspect ratio airfoil, where the flow can remain two-dimensione'
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beyond t* > 2.

Similar olservaliinns are also madc rir the nir'il at. ry - 20', and ti!,- resuflts are

shown in figures 5 and 6. Figure 5 shows typical flow field measurements at four different

times. The drop out regions are a result of the blockage of the laser light by the airfoil.

The new optical set up explained later will avoid such regions. The various stages of the

development of the separated flow, as explained above, can be seen in these instantaneous

flow fields. The dynamics of these vortices and their role on the surface pressures are being

investigated at this time. The corresponding computational results are shown in figure 6.

From these results, it appears that the numerical simulation depicts clearly the various

stages of the flow development observed in the experiment.

b) Pitching Airfoil.

The experimental facility to investigate the transient flow characteristics of an airfoil

with stepwise varying angle of attack has been built and the details ar'e given in the next

section. However, numerical simulations have been carried out on a typical case of a NACA

0012 airfoil undergoing a rapid variation in its angle of attack as shown in figure 7. In

the simulation, the airfoil initially translates at zero angle of attack during a time interval

0 < t* < 1; in the interval 1 < t* < 2.3 the angle of attack increases linearly from 00 to

300; beyond this time the angle of attack is held fixed at 300. The numerical procedure is

summarized in appendix III. The results of this numerical simulation are shown in figure

8. The results clearly shows the various stages of the transient flow development and

associated vortical flow field. These results are still being analyzed.

c) Towing Tank Facility.

A computer controlled towing tank facility has been designed, and constructed. A

schematic of the facility is shown in figure 9. The various components of the facility are

indicated in the figure. The significant improvement in this facility, over other traditional

towing tanks, is the ability to vary the velocity rapidly without encountering any vibration

of the model. Which is accomplished by the use of "Anorail" linear motor system controlled

by an intelligent axis controller with a speed range from 3mm/sec to 0.3m/sec. Impulsive

or continuous airfoil pitching motion is controlled by "Klinger" stepping motor system. A

new optical arrangement has been incorporated in to this facility, which has the capability

of steering the laser sheet in several directions. This capability will enable us to illuminate

the entire flow field around the airfoil.

The laser source and the camera are synchronously controlled by an electronic system

4



which is activated by a computer. A schematic of the arrangement is shown in figure 10.

lip ~The etiire operaflon ijq monitored bY DE(' Va-x Station TT romputer.
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Figure 2. Two-dimensional computational results of the flow field
about an NACA 0012 airfoil. Re = 1400.
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Figure 6. Numerical simulation of the flow past an impulsively started airfoil at =200;

Re= 1400; a) t*=0.5; b)t*=1.0; c)t*=2.0; d)t*=3.0; e)t*=4.0; f)t*=5.0.
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Figure 8. Time evolution of the flow past a NACA 0012 airfoil undergoing the motion shown in figure 7;
a) t-1.0; b) t*-2.0; c) t*-2.7; d) t*-3.7; e) t*-4.5; f) t*-5.0; Re - 1400.
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UNSTEADY SEPARATED FLOWS: A NOVEL EXPERIMENTAL APPROACH

A. Krothapalli' and L. Lour enco'"

Department of Mechanical Engineering
FAMU/FSU College of Engineering

*The Florida State University, Tallahassee, FL 32306

Abstract given by Lauterborn and Vogel', and the
reader is referred to this article for

A novel experimental technique, details. A qLuantitative flow visualiza-
commonly referred to as Laser Speckle tion technique would be very helpful in
Velocimetry (LSV) or Particle Image the study of these flow fields. Attempts
Displacement Velocimetry (PIDV), is devel- to accom, sh this task by tracing the
oped for thE easurement of instantaneous streaklines of injected particles''
velocity fields in unsteady and steady usually can not provide the spatial
flows. The main advantage of this tech- resolition that is required and a large
nique is that the velocity field is amount of labor is necessary to reduce the
measured with sufficient accuracy so that data.
the distribution of vorticity can be cal-
culated with accuracy. In unsteady separated flows, as will

be shown later, it is often desirable to
The PIDV technique, which is ideally obtain the vorticity field, in addition to

suited for the study of unsteady separated the velocity field. However, measurement
flows, has been utilized to measure the of the vorticity exceed the present exper-
development of the separated flow field imental capability. This difficulty
generated by an high angle of attack arises from the fact that vorticity is a

(a=30 0 ) NACA 0012 airfoil started impul- quantity defired in terms of local veloc-

sively from rest. ity gradients. In contrast, the currently
available measurement techniques, such as

1. Introduction hot-wire anemometry or laser velocimetry,
are sensitive only to the local velocity.

For the solution of many problems that Hence, measurements must he made over
occur in high angle of attack aero- several points and the resulting velocity
dynamics, it is a necessary to have a components are then analyzed by finite
thorough understanding of the behavior of difference schemes. However, the errors
unsteady separated flows. Although much produced by the necessary differentiations
progress has been made in predicting the limit the accuracy and spectral range. In
steady flow phenomenon with the use of addition, the spatial resolution of this
numerical methods, it is still difficult method is oft,.n not sufficient to measure
to predict unsteady flows which contain small-sk.ale tluid motions or rapidly
flow separation. The difficulty mainly changing velocity gradients. As a conse-
arises from the fact that these flows are quence, the measured vorticity field is a
extremely complex and are not amenable to type of spatially averaged estimate of the
standard experimental and numerical actual vorticity field. Finally, this
techniques. In view of this, a novel method provides information at only a
experimental technique is being developed single point. If information on the
for the m-asurement of instantaneous entire flow field is required, measure-
velocity fields in unsteady and steady ments must be carried out sequentially one
fluid flows. This paper provides a point at a time. This sequential method,
description of this technique along with although laborio,,s, is straightforward in
its successful application to the study of applications i. iolving steady flows.
an unsteady separated flow generated by ar However, the method becomes very diffi-
high angle of attack airfoil. cult, if not impossible to implement, when

studying unsteady flows. Direct measure-
In an unsteady flow, a single photo- ment of vorticity has been tried, for

graph of the flow pattern at a given instance, by injection of spherical
instant does not generally provide any particles which rotate in the flow with an
meaningful information. In order to angular velocity proportional to the local
understand the unsteady flow phenomena, it VO ticity 4 . Such methods suffer the same
is necessary to obtain both spatial and dlawback of insufficient spatial tesolu-
temporal information of the entire flow tion just mentioned and also can be quite
field. With this in mind, optical complex.
techniques have been widely used to
observe and measure properties of flow Recently, a novel velocity measurement
fields such as velocities and densities, technique, commonly refe-ed to as Lasei
Many of these techniques are qualitative Speckle Velocimetry (LSV) or Particle
in nature, but of great value in guiding Image Displacement Velocimetry PIDV) has
intuition and in suggesting ways to become available. This technique provides
investigate the problem by quantitative the simultaneous visualization of the two-
means. An admirable review of the modern dimensional stieamline pattern in unsteady
optical techniques in fluid mechanics is flows as well as the quantification of the

velocity field over an entire plane. The

Associate Professor and member of AIAA advantage of this technique is that the

- Assistant Professor and member of AIAA velocity field can be measured over an
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entire plane of the flow field simul- be retrieved using Fourier or Auto-
taneously, with accuracy and spat-al cotrelation analysis. Basically, the
resolution. From this the instantaneous multiple-exposed photographs or speckle-
vorticity field can be easily obtained, grams can be analyzed either on a point-
This constitutes a great asset for the by-point basis, which yields measurements
study of a variety of flows that evolve of the local displacements (velocity),
stochastically in both space and time, (refs. 7-8) () with a whole field filter-
such as the unsteady vortical flows that inn techfli(juC, which yteld'i isovelocty
occur in rotorcraft and high-single-of- contouLs (Lt. 9). Thu muthod, which hau
attack aerodynamics. For the background been selected and implemented by the Fluid
of this present technique, the reader is Mechanics Research Laboratory at the
referred to reference 5. Florida State University, is the Young's

fringes method. The local displacement isThe principle of the technique is deteLmined using an focused laser beam to
given in the next section followed by the interrogate a small area of the multiple
description of the apparatus, instrumen- exposed photograph transparency. The dif-
tation and procedures. Section 4 provide fraction produced by coherent illumination
the results and their description for the of the multiple images in the negative
flow over an high angle of attack NACA generates Young's fringes, in the Fourier
0012 airfoil. plane of a lens, provided that the

particle images correlate. This is shown
schematically in Figure 2. These fringes2. Principle of the Technique have an orientation which is perpendicular
to the direction of the local displacement

The application of LSV or PIDV to and a spacing inversely proportional to
fluid flow measurement involves several the displacement. The use of Young's
steps. First, it is necessary to "create" fLinges eliminates the difficulties of
a selected plane or surface within the finding the individual image pairs in the
flow field. This is accomplished by photograph. The basis of the Young's
seeding the flow with small tracer fringe method is described in reference
particles, similarly to LDV applications, l.
and illuminating it with a sheet of coher-
ent light, as shown in Figure 1. A pulsed The photographic recording method
laser such as a Ruby or a NdYag laser, or discussed above has the disadvantage that
a CW laser with a shutter is normally used the photograph consists of particle pairs
as the light source. The laser sheet is which have a 180 degrees ambiguity in the
formed, for example, by focusing the laser direction of the velocity vector. In
beam first with a long focal length spher- addition, it has been shown (reference 10)
ical lens, to obtain minimum thickness, that the velocity dynamic range of the
and then diverging the beam in one dimen- technique is limited to a maximum value of

* sion with a cylindrical lens. The light about. 10. In most flows of interest (e.g.
scattered by the seeding particles in the boundary layers and separated flows), this
illuminated plane provides a moving dynamic range is not sufficient to capture
pattern. When the seeding concentration the flow field in its entirety. These
is low, the pattern consists of resolved limitations ale critical when measuring
diffraction limited images of the partic- complex flows having flow -reversals and
les. When their concentration increases, stagnation aleas.
the images overlap and interfere to pro-

• duce a random speckle pattern. A multiple A method to resolve both the ambiguity
exposure photograph records this moving of the velocity vector as well as to im-
pattern. The lower particle concentration prove the technique's velocity range is
originates a mode of operation of the incorporated in this experiment. This
technique referred to as Particle Image mEthod proposed by Lourenco' and
Displacement Velocimetry, reserving the Adrian 1 2 , commonly known as "velocity bias
term Laser Speckle Velocimetry for the technique", Consists of recording the flow
high particle concentration levels where a field in a moving reference frame, thus
random speckle pattern is actually formed supernosing a known velocity bias to the
(reference 6). In a second step the local actual flow velocity. This effect may be
fluid velocity is derived from the ratio accomplished in several ways, in paLticu-
of the measured spacing between the images lar, using a moving camera during the
of the same tracer, or speckle grain, and photographic recording or by optical means
the time between exposures. using scanning or rotating mirrors. For

the data presented here, a rotating mirrorSeveral methods exist Lu Lon~eLt the was used to displace the image during the
information contained in the multiple- exposure with a pte-determined velocity.
exposed photograph, or specklegram, to A schematic of the rotating mirror
flow field data such as velocity or vor- arrangement is shown in figure 3.
ticity. The recorded image, whether Consider two particle pairs AB 0  and C D0formed by isolated disks, in the case of having equal displacements in opposite
low particle concentration, or speckle directions in the object plane. By intro-
grains for high particle concentration is ducing a 450 mirror between the camera
a complicated random pattern. It would be lens and the object plane, the correspond-
very difficult to measure the local dis- ing displacements appear in the film plane
placements by visual or computer-aided as AB and CD with equal magnitudes. When
inspection. However, it is important to the mirror is iotated by an angle of Ae
realize that the multiple exposure photo- beetween exposures, the displacements
graph results in a periodic random image corresponding to AG B, and CoD 0 appear in
from which the periodicity information can
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th. film plane as AB' and CD' with time, t, are chosen according to the cri-
different magnitudes. The correct dis- teria discussed in reference 6. The time
placement or velocity with its direction between exposures was l0msec. For optimum
can now be obtained upon removal of the exposure, the exposure time was Imsec,
velocity bias. An example of the flow which corresponded roughly to (d/Mlvmax),
field obtained with and without the where D is the analyzing beam diameter, V
velocity bias can be seen in figure 4. is the maximum expected velocity plus the

0 This flow represent a typical separated shift velocity in the field and d is the:
flow field containing flow reversal and particle image diameter expresst2 d in teLmI
stagnation areas (a discussion of this of
flow field is given later).

d = (d' + d )i

3. Apparatus, Instrumentation and 
1

Procedures with d the particle diameter and d the
edge sbread caused by the limited response

* The time-space development of the of the recording optics (ref. 6).
unsteady separated flow generated by an
high angle of attack (m=3 0 ') NACA 0012 Data Processin
airfoil impulsively started from rest is
examined using Particle DisplacementVelocimetry. The flow is created by The fringe images were acquired and
towing the airfoil in the reduced scale analyzed using the digital image analysis
towing hehairfoin in he bre d towing system of the Florida State University
Fluid Mechanics Research Laboratory FMRL (Fig. 5). This system consists of
tank facility. The tank is 300 x 200 x the following components: a DEC LSI-1I/73
600 mm. A detailed examination showed host computer, Gould IP-8500 Digital image
that the motion of the towing carriage is processor which includes four memory tiles
smooth and vibration free. The towing for storage of image data in a 512 x 512
carriaqe is driven by a variable D.C. foLmat with a resolution of 8 bit per
motor, and the towing velocity can vary pixel, a frame digitizer, a pipeline pro-
from 0 to 100 mm/sec. For the photo- cessor and a video output controller to
graphy, a 35mm camera (Nikon F-3) is used. convert digital to analog information for
To photograph the flow at regular time display on a color monitor. The system
intervals, the photographic camera has a also includes a two-dimensional Klinger
electric winding device. The photographic traversing mechanism with a controller for
time interval available with this camera the purpose of automatically scanning the
can be continuously varied up to a maximum film transparencies. Two methods are
of 6 frames per second. Two options are available and used for fringe analysis
available to fix the camera; one by (ref. 10). The first one is an inter-
attaching it to the towing carriage, active method in the sense that it
which means an observation point fixed in requires the assistance of an operator.
relation to the model, and the other by
attaching it to the frame of the water The inconvenience of the one-
tank, which means an observation point dimensional averaging method is the need
fixed in relation to the fluid. The for an external adjustment of the angle of
selection of these two depends upon the the fringes by an operator. This problem
flow field being photographed. can be by passed by computing the velocity

components along independent directions.
In this experiment the airfoil chord Because each line of the fringe frame can

is 60mm and is towed with a velocity of be considered as a noisy periodic signal
22mm/sec. The corresponding Reynolds with variable phase, the automatic deter-
number was 1400. The fluid used in this mination of a velocity component can be
experiment was water seeded with 4um performed only by averaging over a quanti-
metallic coated particles (TSI model ty independent of the phase. The autocor-
10087). For the illumination, a laser relation for each line or its Fourier
beam from a 5 Watt Argon-Ion Laser transform for the power spectrum satisfies
(Spectra-Physics series 2000) is steered this requirement. The m velocity compo-
and focused to a diameter of .3mm using an nent can be computed from:
inverse telescope lens arrangement. A
cylindrical lens, with a focal length of 5111 [I(m,n)I(m+u,n)]
-6.34mm, is used to diverge the focused -il= E [ 511<u<511
beam in one dimensior, creating a light g(u) = _ _ _ .... -
sheet. The laser sheet is 70mm wide and nE0 rI(m,n)]2

illuminates the mid-span section of the m
airfoil. For the multiple exposure, the
CW laser beam is modulated using a Bragg This algorithm has been implemented
cell. In this experiment, the laser power
density, I0, of the sheet was .27 W/mm 2

. using the pipeline processor of the Gould

In order to record the time development of IP-8500 image processor to perform simul-

the flow field, the camera was attached to taneously the autocorrelation for all the

the towing carriage and the frequency of lines of a frame. For an accurate esti-

which the multiple exposures were taken mate of the velocity magnitude and direc-

was set at 2.0Hz. The aperture of the tions, four of such full image operations,

lens with a focal length of 50mm and a yielding four autocorrelation functions,

spacer of 12mm, was set at F#5.6 and the are required. From these the velocity

resulting magnification factor was 0.40. vector is determined by selecting the

For the multiple exposure, the time values of the components which have been

between exposures, T, and the exposure comouted from autocorrelations having the

3



highest SNR, and visibility. (The compu- cylinder. This multiple vortex structure
tation, which includes the determination continue to grow together until the t'
of the fringe angle and position updating reaches a value of about 2.5 (figure 4c
of the film transparency scanning mecha- and 4d). At t" = 2.5 (figure 4d), because
nism, is completed in a few seconds, of the close proximity of the primary
typically 4-5 sec, using the PDP 11-73 vortex, a trailing edge vortex is
computer.) generated. At L = 2.75 the primary

vortex abruptly moves away from the sul-
The overall accuracy of the technique face of the aittoil leaving behind a

was evaluated using a method described in "vortex sheet" like structure (figure 4e).
reference 10. A uniform flow field is For t' > 3.0, this "vortex sheet" rolls up
created by producing a multiple exposure into distinct vortices and they grow in
photograph of the still seeded water, in size with time as shown in figure 4f - 4q.
the water tank, with a camera moving at During this process, the trailing edge
constant speed. For the multiple exposure vortex also grows and as a result the
photograph a number of time between whole flow field becomes very complex.
exposures are used, thus resulting in Close to the surface of the airfoil, a
photographs with particle pairs at small vortex remain present for t' > 3.0.
different known distances. This 'ortex has the same sign of rotation

as . trailing edge vortex. A similar
In the absence of a systematic bias, vorteA structure was observed by Ho , who

the standard deviation of the obtained calls it an "induced vortex" and associ-
velocity distribution is an estimate of ates it with unsteady separation
the mean measurement error. From the phenomenon.
error analysis, it is believed that the
velocity data is obtained with an accuracy The velocity data is acquired in a
of 2 percent or better. Cartesian mesh by digital processing of

the Young's fringes, produced by point-by-
4. Results and Discussion point scanning of the positive contact

copy of the photograph. The scanning step
Typical multiple exposure photographs size and the dimension of the analyzing

of the flow generated by the impulsively beam are 0.5mm, which corresponds to a
started NACA 0012 from rest for different spatial resolution of about 1.25mm in the
times are shown in figure 6. The photo- object plane or about 0.02c. The fringes
graphic arrangement was purposely adjusted were processed using the method described
to enhance the view of the flow field on in the previous section. The resultant
the upper surface of the airfoil rather two-dimensional velocity fields, corre-
than to show the entire flow around the sponding to figure 6a - 6h, are shown in
airfoil. Consequently, the details of the figure 7. The length of each vector is
flow under the airfoil can not be seen proportional to the local velocity at that
clearly in these photographs. The angle point. The color code superimposed on the
of attack of the airfoil is set at 300 .  velocity data represents the vorticity
These pictures display the flow field from level, the magnitude of which is given by
the leading edge to a downstream location the color bar at the bottom of the
of about 1.5 chords. Photographs were picture. The red and green colors repre-
taken at a frequency of 2Hz. A total of sent the peak positive and negative vor-
34 pictures were obtained covering the ticity regions respectively. This type of
range of t" from 0.1 to 5. The non- display clearly depict the various regions
dimensional time, t' (- Ut/c, where U is of vorticity and its strength. As dis-
the free stream velocity, t is the time cussed above, the presence of primary
between two successive pictures, and c is vortex, secondary vortices, vortex sheet
the chord of the airfoil) between suc- trailing edge vortex and the induced
cessive pictures was 0.167. However, in vortex on the surface of the airfoil are
figure 6, only a limited number of pic- clearly depicted along with their time-
tures are included. The quadruple exposed space development. The detailed analysis
photographs shown here increase the SNR of this data is being conducted at this
(signal to noise ratio), the fringe visi- time and will be reported later.
bility, and provide an excellent flow
visualization. The added advantage of 5. Conclusions
providing a good flow visualization is an
asset of the PTDV technique. A recently developed velocity measure-

ment technique, known as Particle Image
From the flow visualization pictures Displacement Velocimetry (PIDV), has been

shown in figure 6, the following obser- briefly described. Using this technique,
vations are made. At the start of the the time-space evoluti-n of the flow
airfoil a vortex, at the trailing edge, generated by an impulsively started high
commonly known as "starting vortex", is angle of attack (a=300) NACA 0012 airfoil
generated and is carried away from the is presented. This experiment illustrated
body. concomitant with this is the the technique's capabilities to record
generation of a separation bubble at the with accuracy the complex unsteady
leading edge of the airfoil (figure 4a). separated flow.
At a later time, for example at t" = 1.2
(figure 4b), the separation bubble grows The technique has been shown to pro-
into an isolated primary vortex with vide both flow visualization and quanti-
"secondary vortices" following behind it. tative measurements, which include the
Similar type of vortex structure was also velocity and vorticity fields.
observedl0 in the flow behind a circular
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The unsteady separated flow field 10. Lourenco, L., and Krothapalli, A.,
generated by an high angle of attack air- "Application of PIDV to the Study of
foil contains many large scale vortical the Temporal Evolution of the Flow
structures such as; primary vortex Past a Circular Cylinder", Proc. of
generated at the leading edge with second- Intn. Symp. on Laser Anemonetry
ary vortices upstream of it, trailing edge Application in Fluid Mechanics,
vortex, vortex sheet and an induced vortex Lisbun, Poitugal, July 1986.
in the upper surface of the airfoil. The
origins and time development of these are 11. Lourenco, L., "Applic tion ot L c
clearly depicted by the instantaneous Speckle and Particle Image Velocimetry
velocity and vorticity fields obtained in Flows with Velocity Reversal",
using PIDV. Bull. Amer. Phys. Soc., vol. 31, no.

10, 1986, p. 1723.
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Direc. sutmalitoi of the %elicitir field introduced by poinit oroie,, tends to be lime

corstluiii i sice ht.. 11c1:C of each vortex is found its a sun over ill other ,ortices. The
resuitingU ntumnber of minie:ivil operations is propotional to the squar of the number of
%ortice, Here a relateey smiple procedutrc is otilitncd Mich sigtificartdlv reduces the number
of" operntions by replacing scicctcd partial sums by a',ymptotic scries. The resulting number of
operations appears to %ara r'ughly in proportion to the number ,f tinkrowits. corresponding
tO it -a[". soiver. os i: d,,) c ['re. Inc

1. INTROI)UCTION

Incompressible flMM at h gh Reynolds number with large-scaic separation can be
difficult to compute since lhe vorlicity tends to concentrate it limited parts of the
flow field. Vortex methods [1] attempt to reduce the number of variables needed
for the computation hy describing only the vorticity, in its simplest form, by a series
of delta-function.s or point vortices:

The fno velocity 1i, relat:d to the vorticity bs the sol,,Jon of at Poisson equation.
wilt the korticity as fortcino function, resulting in the stream function. The flow
velocity is found by taking the curl of the stream function. The solution for a sertes
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of delta functions can be found and leads to the following expression for the flow
velocity:

21 _ Z- ; =1.. V, (21

where Z is the complex posit ion x + V- I v and IV* the comlcx conjugate velocity
u- /---. In general, it will be necessary to add to this flow velocity a solution
of a Laplace problcm to take care of the boundary conditions.

While the sum in Eq. 12) may easily be evaluated, the number of terms is propor-
tional to the square of the number of vortices N. Thus, the computational effort
increases rapidly when the number of vortices increases. In contrast, various mesh-
based solution procedure, for the Poisson equation are able to find the solution in
a computational time roughly proportional to the number of mesh cells. ,As a result,
a point ,ortex description seems most useful if (a) the number of vortices is much
smaller than the number of mesh cells needed to describe the flow (i.e., the vorticity
is restricted to a small part of the total domain); (b) the point-singularity
description itself is of particular ;nterest and the errors induced by a mesh-based
representation must be avoided; or (c) the infinite domain implicit in Eq. (2) is to
bc preserved. Certainly discrete vortex representations have drawn and continue
to draw considerable theoretical and numerical interest. In addition, the Poisson
equation is not unique to fluid mechanics; it arises in other fields such as electro-
magnetism and gravitation. For these reasons, more efficient procedures to evaluate
the solution under pointAise forcing are of considerabtc interest.

Variow, methods to reduce the computational effort have been proposed.
Anderon [2] used a Fast Fourier transform method, with corrections for the
interactions between nearby vortices. Howevcr, some of the mentioned advantages
of the vortex method are lost dLe to the presence of the mesh. In addition, for high
accuracy the evaluation of the interactions between neighboring vortices can
become computationally intensive.

An alternative approach followed in this paper is, to group the vortices spatially
and to approximate the effects induced by each group at larg listances. Appel [3]
and Barnes and Hut [4] made approximations using a single replacement element.
Yet, using such approximations, high accuracy is difficult to achieve while the
algorithn tends to be scalar.

In contrast, the present study uses a Laurent series approximation for the
velocity induced by each group. This approximation takes tlie form

, z I*,(/ - (3a)

2n ,



where ,, is a suitably chosen origin point for the group o vortices and tile sum
in (3b) extends over all vortices in the considered group. Thc Laurcnt series allow
the desired accuracy to be maintained by the choice of the truncation of the infinite
sum. In addition, whcn the point j at which the ,elocity is to be evaluated is
sufficiently far distant from the group of vortices, the series converges geometrically
and onlyv a limited lunihcr of terms is needed for given accuracy. Savingsl com-
putational effort result %hCn the number of terms nccded for the Laurent series is
sufficiently small compared to the numbcr of vortices in the group. For that reason.
a minimurn group size exists below Which fu rt her saings are not made. Using the
adaptive algorithm on a CYBER 205 computer. Van Dommelen and Rundensteiner
[5] found that this grotip size is of the order of a 100 elements.

At about the saame time, similar ideas were developed by Rokhlin [6] and
Gireengard and Rokhlin [7]. In fact, an adaptive algorithm developed by Carrier,
Greengard, and Rokhlin [8] is quite similar to the present one in both the use of
Laurent series and the grouping involved. An important difference between the
procedures is how the adaptive group structure is addressed. While the procedure
[8] is based on five topological sets expressing the relationships between groups,
the present procedure is based on an unusual numbering system of the groups. The
numbering system is generated simultaneously with the group structure: it leads to
a relativsely simple and streamlined program logic.

The procedure of Grecngard and Rokhlin recasts the Laurent series as Taylor
series to achieve further reductions in computational operations, an enhancement
not yet incorporatcd in tlie present scheme. I lowe, 'r, unless the number of vortices
is sufficiently large, the possible savings seem limited. Furthermore, not recasting
the series offers some compensating advantages, such as reduced storage (only a

nsngl .y small fractinn of the Luren series e pa irsions necd be qtored).
increase vector length, and lcss overhead.

In its present form, our procedure can be divided into twko parts: gencration of
an adaplivc panel strucltre, to g lois the %trtces slitrilly. mid detcriiniation of
tire 5 clocty. The text two sections describe each of these steps Ill turn.

2 GENIRAItI()N ANt) Niiti %iIN(; i1 tl1t PANtII 2

In order to use I.atrcrtt series effectively. tIhe vortices tust be spatially grouped
together Figure I illustrates a typical giouplig for the exMIIiplc of flow aboult a
circular cylinder. II this example, there arc 16,479 \orliccs outside tre le del
(shown as dots) and an equal nutimbcr of niirror vortices iilxide tile cvlitdcl (iot
shown ).

The procedure for gene'ratlrg this pariel stiticture is shown il Fig. 2 The first few
steps arc further illustrated in Fig. 3. Tle starting doman Is taken as tle smallest
square that encloses all vortices. This squac is subdivided into four squares. or
subpancls. of equal size (indicated as A. 1, C. and I) int Fig 3). The \ortices are
reordered so as to group tire vorticcs int each of the foir subpitnels together (In tile 3
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The four panels gieratd a the first level of Subdivision ca be numbered using
it one-digit binary numher (top of Fig. 4). Each additional level Of Subdivision
requires onee additional digit.

Therefore, the binary digits deterineti the position of the panel. The number of
binary digits decterminecs the subdivision level. It follows that the binary digits of the
.A- and .v-positions dcsciihe thie panecls uniquecly. The complete intformnation is stored
ill a single panel nunimc using the following procedure: (
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(a) Increment cach digit in both the v- and .- position by one, so that biinr
zero becomics I and binary one becomes 2.

(b) "Interleave" the resulting digits of the x- and y-positions into a single

number, so that the odd digits become the digits of the v-position and the even

digits those of the r-position.

(c) Add trailing /cros to obtain a final panel number with a fixed and

predetermined number of digits. The 205 procedure chooses a 28 digit panel
number.

The procedure is illustrated in Fig. 4 for example panels. Since the highest value

of the digits in the obtaincd panel number is 2, it can be considered as the represen-
tation of a number in a base-3 notation.

Vortex Panel Panel
Physical Domain Storage Information Number

A A

A 11000000 .00

12000000. .00

21000000 00
B D 2200000.00

I

NON- 00
d Ell 110000 00

I I B 10000 0000
1210000 0BD12000000 00

I i2000000 00
c 22.0oo00lo O0

D

-- 11OO~ l' I 0

a 7--I 1110' 00
0C 00,i l2 ), V 00

-32 2 01
-- .(I 3 12012>:0 00

S11222' 
'  

00
1111Z.' 00BI 1212 I~ 00

D d 11220¢>1 00
B I 2W11' V 00

C C 2101'
, hI  

00
1)2201 0,. ) no

FIG, 3. lic first itirce sIcp , 1 gi lra iing the paicl srtcitirc if lig I Sho%%n ire: Ihc "lbseqiliti

di isions of tie domain, the ordcr ill %stiici lihe vortiics ire stloretd. !he oiki tl n which IiC iic w rowRiiii ll

ab th the '.illels is s it l, an 111 C ti illiberlig o f the pilllCIs

/
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0 1

y 0 A Panel number for panel A:

x 0 -* I
y 1 --- I

panel number: 1 1 0 0 0 0 0 0...0 0

x 0 0 1 1
0 I 0 1

y 0 0

Panel number for panel b:

0 1 b x = 00 1- 1Y .oo0 -I 1
panel number: 1 1 1 2 0 0 0 0...0 0

1 1

0 0 0 0 I 1 1

10 0 1 1 0 1
0 1 0 1 0 1 0 1

= IO
Y 00 0

-_ -Panel number for panel 3:
010 3 -

x . ool -- 0 1 1 2

011 010 2 1

100 44444
1 0 1 panel number: 1 1 1 2 2 1 0 0...0 0
110

1Fi;. 4 Dcltnition (if ilic paIcl numblcr of examplc pick

By construction, the panel numbcr Contains all (he information about tile panlel:
tile non-zero digits dcterminc thc panel positioll and the inlumber of pairs of lon-
zcro digits the subdivision levcl, Particularly im portant propcrties arc

(i) For anv given pancl, the pancl numbers of ncighboling pancls of the
samc sizc may bc found by simply binary manipulations. (1-or example, to find 1he
panel at the same v-position but the previous N-position., (lcrilInC the odd non-
zero digits of tie panel lumber, giving the A-Ioc;atioi,. Mld do a binary Su(tractOio
of unity to find the digits of the souigh pancl lullmberl.
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(ii) For any given panel number, tile panel number of the next larger
"mother" panel containing the given panel is found by setting the last two non-zero
digits to zero. (The last two non-zero digits were generated by the last panel
subdivision.)

(iii) Subpancls of any panel have a panel number greater tha:' the original
panel, but less than the next panel of equal size. (The subpancls have the same
leading digits as the original panel, but non-zero trailing digits.) This property
implies that in order of increasing panel number, panels are arranged in "families,"
with the subpanels always immediately following the panels of which they are a
part.

The algorithn for generating the panels described at the start of this section
generates them in order of increasing panel number, subdividing the current lowest
panel before moving on to the next panel.

Since each subdivision adds two more non-zero digits, the total number of digits
in the panel number limits the smallest panel that can be defined. In the 205
implementation, this total number of digits was chosen to be 28, since 28-digit
numbers are the largest base-3 numbers than can be stored in a single 205 memory
location, saving storage and conihputational operations. In 28 digit representation,
tle smallest panel can be about 16,000 times smaller than tlie original domain,
which would seem sufficient for most purposes.

3. DETENiMINATIOtN OF THE VELOCITY

The velocity is determined in a single pass over all panels in (lie order in which
they were generated as described in the previous section. The procedure is outlined
in Fig. 5.

For each panel, a "neighb,,rhood" of vortices is established, consisting of the
vortices hoth within the panel itself and in the panels, of at least equal size, sharing
a boundary line or a corner point with the considered panel. The vortices in this
neighborhood are not sttmmed by the Laurent series expansion of the considered
panel. This restriction ensures that the Laurent series converges exponentially.
Instead, in evaluating the velocity induced on the neighborhood, the original sum
in Eq. (2) is used. This sum is only performed for panels which are not further
subdivided; for panels which are subdivided, the velocity is evaluated by means of
the subpanels.

Laurent series can be used for all vortices outside the neighborhood of a panel.
However, to reduce the computational effort, the Laurent series is only used for
those vortices which cannot be evaluated by means of the Laurent series of the next
larger "mother" panel: the single Laurent series of the mother panel is more
efficient than the four laurent series of its subpanels. Therefore, the Laurent series
of any panel is used only for the vortices within the neighborhood of the mother.
but outside the neighborhood of the panel itself.

"/
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In this scheme, at each stage the smallest possible number of Laurent series is
used. for N vortices resulting in the O(N In N) operation counts of the next section.
In the procedure of Grcengard and Roklin [7] this operation count is further
reduced to O(N) by rccasting the Laurent series as Taylor series; however, the
present procedure has the advantage of being less complex and requires only a
single sweep over the panel structure to evaluate the velocity.

To incorporate the Taylor series within the present procedure, the evaluation of
the neighborhood of the mother would have to modified. For each suitable panel
within this neighborhood. the sum (3a) would be replaced by a recasting of the
Laurent series into a Ta\ ]or series. Additional steps would be needed to transfer the
Taylor series of the larger panels to the subpanels and to add the contributions of
these series to the velocity.

Clearly, this will increase program complexity and scalar overhead. In addition,
It requires that the ncighborhood of the mother is described in terms of individual
panels. The present procedure describes this neighborhood in terms of a small

• number of vectors of vortices, increasing vectorization. Furthermore. the present

0J
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procedure has a storage advantagc: whcn the final subpancl of any group of 4 Is
reached, the four Laurent series of the subpnicis can be combined into the Laurent
series of the mother (bottom of Fig. 5). The four Laurent ;crics of the subpancls can
then be discardcd; they are no longer nccdcd. As a result, t any time only a small
fraction of the Laurent series need be stored. Onl the other hand, using Taylor
series, no obvious way to avoid storing the Taylor series cocrncients for cach panel
is evident. This can bc a disadvantage since cach series represents a set of cocf-
ficients while, in addition, the total nti mbcr of pa nels may bc difficult to estimate
precisely beforehand.

In the actual implementation of the procedure in Fig. 5, the First step is identifica-
tion of the neighborhood of each panel. The present procedure starts Out by
identifying the individual digits of the binary x- and y-positions of the panel. By
performing unit binary additions and subtractions, the panel numbers of the eight
neighboring panes of the same size are found. For each of these eight panel
numbers, the corresponding panel is located. In case any of the eight panels is
undefined, the panel with the largest panel lumber less than or equal to the sought
one is selected. On behalf of the properties of the panel number, the selected panel
will always enclose the sought panel, ensuring the geometric convergence of the
Laurent series. Since the panel numbers are ordered, an appropriate search on a
scalar machine is binary; the CYBER 205 implementation switches to the vector
function Q8SLT when the search interval extends over less than 500 panels.

After the neighboring panels have been located, the storage locations of the vor-
tices in the neighborhood are simply the combination of the storage locations of the
vortices in each of the nine panels. The subdivision process of the previous section
reordered the vortices so as to group vortices in the same panel in contiguous
storage locations or vcctnrs. As a result, the neighborhood is described by at most
rine vectors of vortices. and an additional check is made to identify contiguous
,ectors which can be dccribcd by a single vector. (In particular. the four subpanels
of the larger panel containing the considered panel describe a single vector of
%ortices.) Since the nu, iber of vortices per panel is never small, the computations
remain efficient oil the 205.

The next step in the procedure in Fig. 5 is tlie evaluation of the original sum ill
Eq. (2) for panels which are not further subdivided. This suM was split into real and
imaginary parts and modified to:

I, - 1I' +
U1 = , g' (.v, - .v,)2" 

-+ (y',- y,)- + , (4a.)

A - Xj (4b)
=,+ (., . (y - +

,= -. (4c)2n -,o

These expressions arc ekitlIclt to the original stil ill Eq. (2) when the valtic of
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d, vanishes. They are equivalent to the sum in Eq. (2) to machine precision when
the value of di equals the machine epsilon. The addition of the (,-term in (4a) and
(4b) has the advantage of avoiding the singularity in the i= / term while limiting
the effect of numerical inaccuracy. For larger values of d,, the velocity corresponds
to vortices with finite core, which tend to improve the numerical properties of a
vortex representation [9]. Expressions more elaborate than Eqs. (4a) through (4c)
could be used [10]; since they increase the computational time for the original
algorithm, they are likcly to enhance the relative performance of tile present
algorithm.

The coefficients of the Laurent series follow from the sum {3b). The coelricients
may be split into real and imaginary parts At and B,, leading to the following
recursive relationships:

aI =0, ) =g, (5a), (5b)

,,i ' = ,,"(., -., --Y, ,,, .,,, (5c)

4, "' = 1(- 'o) + 1/,(.,- yo) (Sd)

A = ( ,*, , ( 5 (Se), (Sf)

In order to avoid possible inaccuracy caused by undcrflow of terms, tile x- and
y-positions were measured from the center of tile panel and normalized with half
the linear panel dimenrsion.

For the evaluationl of the neighborhood of the mother panels in Fig. 5, tile
Laurent series (3a) is used. Sit into real and imaginatry pats, the series can be
% ritten: r

LvI- - .All (6a)I) = x-V N,,)- + (Y', y,,)"

' Y 0 -- .
(6 b

Uk,- x,,) (y- y " {6c)
(6d

' V 2- ) -_ (.1, Yo

-A4I= 7. ,I, '
- /J L . ,I

" ){6d

,A-I

I', ~ I, ~ + / A(6f)
A{-I /1
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It can readily be shown that tie terms induced by any individual vortex i
converge geometrically with a convergence ratio

I'k _ Z- Z)lft ,{ - Z,-Zo.(7

if Z, is the position of the center of the panel. Since ti vortices in the eight
neighboring panels arc excluded from the Laurent series, simple geometry shows
that the convergence ratio is at least 3/,/-. Therefore, truncating the Laurent series
at 22 terms, each vortcx would be summed to a relative erro 6 10-8. about the
machine accuracy in half precision on the CYBER 205.

The last step in the procedure in Fig. 5 is the evaluation of the Laurent series of
the current mother panel. While this Laurent series could be found using Eq. (3b),
it can be found more cfficiently from the Laurent series of the subpanels. The
contribution of each of the subpanels to the Laurent series of the mother is given
by

/,CjPrC,+ 11k I + + (Sa)

,u =2 A (8b)

In nk k- I (8c)

where

I1= -1 + - (Sd)

If= -l - - (8c)

1 = - (Sf)

It= I-\ -I (Sg)

for the first through the fourth subpancls, respect icly. (The factor 2 in the above
expressions reflects the scaling of I.aurent series proportional to the panel size. ) The
coefficients m. I can be evaluated a priori after which tle cvaltnation of the
coefficients vectorizes.

4. PERFORMANCE

The numerical perfornancce of the )resent algorithm is difficult to analyze in
general. In the following, the analysis has been simplified by assuming that the N
vortices are homogeneously distributed over a square. In that case, the domain will
be subdivided in panels containing the same number of vortices, o. each. The
number of unsubdividcd panels is N/n and the number of levels of subdivisions
needed is log,(N/).

* /7



The total computational timc fo ind the velocity of the N vortices consists of a
number of contributions. First of all, the vortices must be gathered into panels. The
first subdivision of the total domain involves N vortices which are first examined on
x-position, then on y-position, and correspondingly reordered. The time involved in
this step will be written as

Ni,( . ,.

The factor vr; is the time necded to compare the v- and y-positions of a vortex with
those of the center of the panel, pass the vortex 4 times through the vector function
Q8VCM IRS (in the 205 implementation, otherwise to store the vortex twice), and
add one to the number of vortices in first the right half of the panel and then to
the numher of vortices in the subpanel, using QSSCNT.

The penalty factor ./', , expresses the overhead performed which is independent
of the number of vorticeS involved, such as computing and storing the panel infor-
mation for the four panels and, on the 205, tarting tip the vector operations. For
a 'arge number of vortices, the operations for the individual vortices dominate the
total time and f; will approach unity. However, for vector processors such as the
205, the vector operations for the individual vortices are performed with such a
speed that fG,,, becomes apprecible when the number of vortices becomes less than
a few hundred. (For the simple vector operations in half precision on the
FSU/DOE 205, the start-up overhead becomes equivalent to the time of execution
when the number of vortices is 200). The subscript .\ in the penalty factor f;.v
expresses the reprcsentative number of elements or vector length.

In the next level of subdivision. four panels with each IN vortices are subdivided,

requiring a computationAl time

Nu N ;.-;.,4 4 = \rc.;f;. ..

Since there are log.,( N/w levels of subdivisions and the penalty factor increases with
decreasing vector length. the total time for Finding the panels may conservatively be
written as:

t N0 1 ;f; ,, log.,(i)" (9a)

The logarithmic factor may be bounded by the maximum number of subdivisions
allowed by the machine accuracy [8], but such a bound depends on the particular

' coding techniques and machine accuracy available and will he avoided here.
In the present algorithm, the original sum in Eq. (2) is used to evaluate the

\elocity induced by the n vortices in each unsubdivided panel upon its
neighborhood of nine panels. If v.. is the time needed to evaluate a single term in
Eq. (2), the total time can be written, conservatively, as

N
t = -9n , / , . -, (9b)

It



neglecting panels that may fall outside the domain, or

3,N- - 1 v:9N ,,N.

after correction. Since ii will typically be sizably smaller than N, Eq. (9b) will be
used.

For each of the unsubdivided panels, K coefficients of the Laurent series (3h)
must bc determined, rcquiring a time

N
( = it. K . /"C.,, .-- (9c)

It

Thesc Laurent series are next used to determine the velocity induced on the 4- 9n
vortices in the neighborhood of tile larger panel containing the unsubdivided panel,
excluding the 9n vortices in the neighborhood of the unsubdivided panel itself. The
time needed for N,,n unsubdividcd panels is

K 27n v .,, N
" @.

Similarly, the Laurent series for the NV/4n larger panels are used to evaluate the
velocity induced upon 27. 4n vortices, neglecting edge effects. With log,(N/4) levels
of subdivision, the time can be written conservatively as:

t,. = K. 27n i,.f, log4 ()(9d)

The procedure of Greengard and Rokhlin [7] avoids the logarithmic factor,
since the number of coefficients in the Taylor series does not increase with panel
size. However, the logarithmic factor in (9a) would remain.

Time is further needcd to combine the Laurent series of the unsubdivided panels
into these of the larger panels. In the 205 implementation, each coefficient Ck of the
larger panel was written as an inner product between the vector of 4K coefficients
of the subpanels and a corresponding vector of coefficients in, Eqs. (8a) through
(8g). The time needed is:

4 K-
*tl =-~ - V/../xN. (9e)

3 n

The contribution most difficult to estimate is the overhead involved in addressing
the panel structure. For each panel, the neighborhood needs to be established, as
well as the neighborhood of the next larger panel. Most of the operations involved
will roughly be proportional to the number of panels: N/n unsubdivided ones, N/4n
next larger ones, and so on, a total of less than 4Ni/3n panel,. However, the binary l,,.
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search to find the nine neighboring panel,, requires operations proportional to
log,(4Ni'3n). The time for overhcad will therefore be written as

=L4 8
to= so + ..1 log- (9f)

where s, and s, arc representative computational times for each pancl and for each
binary search, respectively, neglecting log2 4,,3. Tile symbol s was used here instead
of v in order to indicate that the operations involved are largely scalar.

Using these various contributions to the computational time, the decision when
to stop subdivision of the panels can be addressed. Collecting all contributions, the
total time needed to find the velocity becomes:

U = + 8 NlogiV
Vra ,,.,, 27 vt..4 2,, K +4 'jN log -

+ (9 _jr "n + v-- f,,K. Vlf.A K + .V. (10)

In estimating the relative importance of the terms, it will be assumed that the
nu ' er of vortices N is large. Indeed, the number of vortices must be sizably larger
than the typical number of terms in the Laurent series in order for the algorithm
to be useful.

Under the limiting process where both N and the number of vortices per panel
t: tend to infinity, corresponding to relatively few large panels, the dominant term
tn Eq. (10) is the time, Eq. (9b), for the original sum. as could be expected. ..incc
this term is proportional to ,. decreasing the number of vortices per panel leads to
corresponding reductions in computation tile.

However, when decreasing tme number of panels, adverse affects must eventually
occur. The penalty factor .. increases when the value of u decreases, since the
_-start up time increases in relative importance. On a two pipe 205, the vector start
up bccomcs dominating when the numbcr of vortices becomes less than 200,
limiting further reductions in the time needed for the original sum.

On tle other hand, the time needed for other operations increases while 1i
decreases. For example, the time for doing the Laurent series (9d) increases when
it decreases below a certain limit, since the penalty factor increases. This term
contains the relatively large numerical factor 27K, so that appreciable increases in
the penalty factor tend to be important. In addition, the scalar times, which can be
relatively large on a 205, are inversely proportional to n.

It may be concluded that for sufficiently many vortices, tile computational time
first decreases with the number of vortices per panel and then increases. As ,i result,
a number of vortices per pancl exists for which the present ;mlgaorithm performs
optimally.

For ihat reason. ill gcncraling (he pancls. tie picscit algoilhmi decides Mhcthcr -r5



to subdivide panels further based oil tile number of vortices in the panel, Further
subdivisions are only made when the number of vortices is grcitcr than some
minimum value n, chosen it priori.

Table I provides examples of the influence of the value of i on the computational
time. In this case, the vortices were approximately homogeneously distributed over
the interior of a circle, grouped in rings. It appears from Table I that the minimum
number of vortices to subdivide a panel on a 205 should be roughly 200.
Fortunately. the precise value used appears to have relati 'cly little influence on the
results.

In addition to the computational time, tile nuimerical errors in the algorithm are
important. For p vortices of strength / located on a ring of radius R, the velocity
induced is

* ~ I -- iF Z"
27rZ,Z" -R

TABLE I

Comp.I, ional Tnie and Nunicriicai Errors for Vortices HomogeneOUsly Distributed

within ;t (ircle U(sing 23 Term As.ntotic Fxpansions

Number
of

vorticcs 1000 200(1 4M()) 8(00 16()O 32.000 64.000

Time for summation, CPU second,;

Original 0.10 0.36 1.38 53) "35 26t ,2 56 71t

ICo 0.11 () 0 5 0.71 1 95 S ' 5 17.17
200 0.1I (27 067 1 61 1 5 1 2 17 10

400 0.10 027 0 S2 I 61 .1 5, 12 "2 53

Rato of imprvremen

20 0.9 I 2.0 3.3 1O 0 2)'

M,\inmum elior in the vch,cily, percciii

Original 0,005 0o9 0.020 0.040 0080 0 160 ( 11 )
l0 0.004 1)007 0.009 0013 oi o16 10022 024

200 0,004 0 06 0.()9 (1.)13 .016 0.i21 11)024

400 0.005 0 IX)6 0.012 tO.13 1021 i 21 0 030

Mean square error in ihc eloci). lciceni

Original 0.003 00N 6 0.012 023 u 046 0 093 0 IS7
200 0.002 ()4 (1005 0,007 (.009 0(12 0013

Average error in ihe velocIIy. percent

Original 0.003 .11515 0)10 0 120 01)41 o082 0 164

200 0.002 it (W1 ()005 OAX)6 (100 ()10 001112

1]
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or
(- l)Fv ,* = x/ l

41TZ,

if the vortex j is located on the same ring. By summation over all rings the
analytical solution can be found and compared to the obtained results.

Table I list the maximum deviation in either velocity component from the
analytical solution, expressed in a percentage of the velocity a t the perimeter of the

circle. The present algorithm shows considerably better accuraicy than the original
sum, which may be duc to the summation of the terms in groups. In the original
algorithm, the individual terms were added to an increasingly large total, leading
to a loss of significant digits.

For random walk coip)utations, the mean square or average errors may be more
relevant than the maximum error, since only averaged quantities are relevant. Both
these errors show behavior similar to the maximum error.

TABLE It

A, Fable t, bit Using 13 Term Expanions

Number
of

vortices 1000 2 100 4(X)0 16,0)0 32.)000 64.000

Time for summation, CPJ seconds

Original 0.10 0136 1.39 5.39 136 S6.35 356.72
100 0.09 0 26 0.57 t 40 279 66t1 13.03
2(0 0.09 1i25 0.55 1 07 279 691 130S

40 0.10 _25 079 I 43 4 27 (,.92 20.40

Ratio of iniprov.ement

100 1.1 14 24 39 77 13.1 274

Maximum error in the velocity. percent

Original 0.005 01010 0.020 1 040 .080 0.160 0.319

100 0.003 1005 0.007 (1009 0.01 0.013 0.015
200 0.003 01006 0.007 O01 t O.011 t 016 0.015

400 0.005 01006 0.011 0012 o.ol0 0016 0025

Mean square error in (tie ,elocirs, percent

Original 0.003 (1006 0.012 11023 0,046 0.093 0 .87
100 0.002 1 003 0.004 I00 5 0.0)6 0007 0009

Acrage error in the velocity, 1,crcent

Original 0.03 1 1 W5 0010 ()1020 01041 1)082 0 164

100 0.002 o 002 0.003 () 04 0 005 00006 0008

//



The results in Table I wcrc obtained by expanding all Laurent series to mlacliinc

precision, 23 terms. Yet in view of the final crrors inl the results. there appcars little

justification in dlemanding such accuracy, unless spCial prov isions arc made to
avoid accumulation of the round-off crrors. Result:; for 13 tcrin Laurent scries are
presented in Table 11. Remarkably, thc resulting crrors prove somewhat lower than
those in thle 23 tcrni expansion. A good explanation of this effect cannot be given;
however, the nlaxiinuin possible error in truncating the Laurent series is only
O.CK)6 0/ smnall compared to the Final errors. Onl the other hand. thle final terms in
the Laurent series correspond to the fastest Fourier components: for that reason
truncating the series may have some averaging effect onl thle round-off errors.

For the case of Tables I and 11, (lhe vorticity occupied most of the domain under
consideration. A somewhat dlifferent :ase arises when the vortices are evenly spaced
along the perimeter of a circle. Since the vorticity is now sparsely distributed, the
present procedure \ ill generate a considerable number of empty paniels, and it

TABLE ttt

Computationat Tinme ;ini Numecrical Errors for Vorticcs Homzogenously
Disirloiled oni a Circle Using t13 Termn Asymptotic Expansions

Numrri--
of

'orticcs lowX t-X)0 4kx00 8000 16,000 32.000 64,000

Time for summatlion, CPtU seconds

OnRina 0.10 1136 1.38 5 1t -1! 38 S6 32 356.75
50 008 0 17 0.16 0.78 1 65 3 53 7.30

100K 0.06 ) 14 0.31 0065 1 42 304 6.28
loo 0.06 017 0.34 075 1 5 3 36 7.19

Raiio of improvemnt

00 1.7 i 4.5 83 15.t 284 56.8

Maxmmurn e~ror in lhc %clocity. prcent

O.nvjnaiI 0.024 i 061 0.128 0,271 0.547 t.100 -

50 0012 0023 00)46 0.093 0.180 0360 0.702
00 0,012 o024 0016 0094 0.181 6.361 0.702

100 0.013 ('026 0049 0 098 0(.184 0 363 0705

Mca n square error .n (he vctocit'.. perenti

Original 0.005 001 OtOg 008 041 0.079 0 143 -

t00 0.004 0008 O002 0031 0.059 0.096 0.149

A 'eragc erroi in tile YeloCIty, percent

Originail ROM0 (1002 0.003 0 006 0012 0024 -

100 0.0(00 (101 0 W 1 0(00 1 002 0002 0002



might seem that this would adverscly affcct computational time. I lowever, tie data
in Table Ill shows that pcrformancc inproves. This appears to agree with the
observations of Carrier, Greengard, and Rokhlin _8].

The simplified case of vortices arranged on a single horizontal line can shed sonic
light on this increase in efficiency. Repeating the previous analysis with suitable
modifications, the total time becomes:

6" i K 4-8 .j N log4 --2v( , f , + 61 ..1- ..,, .

0" [1 ,f,,n + vc-fc",K+4vjf1,x-- "K2 + 4 ' N. (12)

Comparison with Eq. 1 0) does show that tile time for scalar panel overhead has
increased. On the othc hand, the time needed for the direct summation has
improved, since the empty panels decrease the number of vortices in the
neighborhood of unsubdivided panels from 9)1 to 3n. In addition, the time for the
Laurent series has decreased. :ace 6n rather than 27n vortices need to be

TABLE IV

('omputational Timc and Nunerical Errors for Vortices
on the Perimeter of a Circle for a MicroVAX 1t

Number

.ortice, 400 80'( 1600 3200 6400 12.800 25.600

Imie f,,r uimation. C PU sc.mds

OrImnal 9.1 36.3 151.9 f-,14.2 2470S 9867.3 39469.2
30 5.t 109 24.5 56.3 1270 2723 604.1
40 4.7 10.6 25.1 55.4 128.5 2863 597.8
50 4.7 i0 6 25.0 55.5 1335 292.5 616.3
60 4.7 10.6 26.4 55.7 138.9 303.3 635,6

Mean square error in tie vclo,tii,, percent

Orininal 0.00 ( (I i(YO0 0 0) 1 000004 o.0(0)7 000019 0.00036
40 0.0001 00001 0 Ok O1 00002 t0.004 000010 000019

Additional array storage used. 1 b ie %,ords

40 496 3289 3907 5040 7281 11374 20827

* Perceniage CPU time for ,ariii, ,ieps

to  62 50 4S 43 42 41 34
30 14 9 1 7 7

1i 1) 26 3,1 3 4(0 .13 S

.-.5



0 determined from the Laurent series of the unsubdivided panels; the remaining
contributions are found using the combined Laurent series.

Next, while scalar operations are relatively slow on the 205, the corresponding
total times are proportional to I/n, which is of order 10-2. On the other hand, tile
times for the direct sum and the Laurent series are proportional to 9u and 27K,
respectively, which ace of order 102. For that reason, the scalar times need not
dominate even for quite slow scalar processing.

While the present algorithm still leads to reduced errors, the differences are not
so pronounced as in Tables I and 1I. Tile reason may be that in this case the
vortices in the immediate vicinity of each other dominate the errors (the sum
approximates a singular integral). Those vortices are still summed in the same way
as in the original algorithm.

0 Table IV shows computational times for a scalar version of the algorithm. As
may be expected, the scalar version can address smaller groups of vortices more
efficientlv than the 205 version, resulting in some additional savings.

The total time CPU time used can be divided into contributions t, to perform the
original sum (2), 1,, to perform the Laurent series of panels which are not further
subdivided, and t, for the Laurcnt series of panels which arc. Table IV shows those

0 contributions for the case that n =40. Recasting of Laurent series into Taylor series
as used by Greengard and Rokhlin [7] could be used to reduce the required
time i1.,.

Comparison of Table IV with the data of Carrier. Greengard, and Rokhlin [8]
does suggest a significant increase in storage due to such a recasting.

5. (ON(CIt.IIN REMARKS

The present algorithm is concerned with fast solution of the 2-dimensional
Poisson equation under poiit,,isc forcing. Since tie actual application is not the
true subject of this paper. or' a concise description of the one considered here will
be given: Lagrarigian flow cornpitations using a randomn walk simulation of
diffusion effects similar to [9]. A relatively simple removal of the singular behavior,
Eq. (4), was used in computed examples such as Fig. 1. In ist comlputiations, tihe
chosen vortex diameter was 0.675 times the random step size a= I,,2V ,It. The
normal boundary condition was satisfied by means of mirror vortices within tlie
cylinder. To satisfy the tangential boundary condition, after cach predictor-correc-
tor step all vortices within a distance 1.27 ar from tile w:ll., a thin sub-Liver of tile
boundary layer, were removed. Next tle slip velocity alt tile wall was evaI a Lted aid
integrated to find the amount of circulatiomi needed to satisfy the no-slip condition.
This circulation was subscquently assigned to a ring of vortices a distance 0.675 7
away from the wall and spaced 1,27 a apart. The p'rocedurc Icads to the smilc flux
of vortices through time cutoff It 1.27 (, as a homogeneous dist rihution of vortices
within the cutoff. In order to reduce lie erandom fluctuations introduced by strong
\orticcs, the number of \orticcs pliced il each location along tlie wall was chosen Zo



to give an approximately uniform vortex strength. At least one vortex was placed
at each location if the local circulation was non-zero. Some experiments varying the
given numerical values, or using an exponential vortcx core rather than Eq. (4),
were performed, but results were ambiguous due to tile random noise. The random
step sizes were taken from a data base of 8000 random numbers, starting from a
randomly chosen position.

The purpose off this paper was to show how the computational time can be
greatly reduced using Laurent series, allowing a much larger number of vortices to
be included. The use of Laurent series or replacement elements to save computa-
tional time is not a new notion [6]; however, the present method renders the
application effective by gathering the point forces into an adaptive, ordered panel
structure. The contribution of the present paper is therefore primarily a program-
ming technique which allows an easily addressable adaptive description of irregular
distributions of points. Nloreover, it is quite suited for vector processing and
requires little storage. It seems simpler and possibly more vectorizable than the
procedure of Carrier, Grcengard, and Rokhlin [8].

The evidence of the Tables I through IV shows that the present algorithm is
"fast" in the sense that the computational time roughly doubles when the number
of vortices doubles. For the original sum in Eq. (2), the computational time
becomes larger by a factor four instead. For that reason the savings in computa-
tional time increase with tile number of vortices.

In fact, the time estiniates in Eqs. (10) and (12) show the coiputational time to
be proportional to N log N, similar to the fast Fourier transform solutions of the
Poisson equation such as Hlockney's FACR algorithm, which needs N log 2(log 2 N)
operations. However, a closer study of Eqs. (10) and (12) shows that for typical
valuesK- 20 and it- 100, tile coefficient of the N log N term iin the present
algorithm will be nuiiMerically quite large.

For that reason, one of the motivations mentioned in the Introdcetion should
still be present in order to adopt an algorithm such as the prcselt one.

An interesting question is whether the present algorithm is applicable to
3-dimensional Poisson problems. This would make it possible to address such
problems as the motion of stars in galaxies and 3-d imensional flows with sparse
vortex geometry. Most of the proccdtires in Sections 2 and 3 carry through
immediately by the simple step of including the digits of the third coordinate in the
panel numbers. However. the straightforward generalization of the Laurent series to
spherical harmonics as applied by Greengard and Roklin [II ] has tie disadvan-
tage that tile number of terms added for each order of accuracy increases A proce-
dure based on fast Fourier transforms proposed by Grcengard and Rokhlin [12]
can significantly reduce the effort.

The present procedure of generating and addressing a complex panel structure
does not need to bc rcstricted to solution of the Poisson equation, but could be
used for other problems involving groups of points in which the interaction between
elements of different groups can be simplified when the distance between the groups
is sufficient.
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APPENDIX III

Summary of the Computational Scheme.



Computations

Random-walk vortex simulations of the full Navier-Stokes equations were performed

as comparison. In the computations, the flow field was represented by discrete vortex blobs

of the form:

Uj = gi Yj Yi(X _ 0 + _Y Y,) 2 +4

Xi - Xj

(Xj- x)'+ (Yj - yO)2 + di

ii
27r

A recently developed fast procedure allowed the computations to be performed with sizably

more vortex blobs than previously possible [see J. Comp. Phys. paper]. The vortices were

advanced in time using a two-step Runge-Kutta scheme. To simulate diffusion effect,

each time step the vortex motion was augmented with a random component of average

magnitude 2vZt

The normal wall boundary condition was satisfied by mirror vortices, after a mapping

of the airfoil onto a circle. The mapping used was a generalized Von Mises transform which

correctly reproduces the kinks in the contour at the trailing edge:

dZ (-dl( = C?)(
k=1

The constants C, (A and 7k are determined from: the kinks in the NACA 0012 airfoil

contour caused by the small but finite thickness at the trailing edge, the regularity of the

mapping at infinity, and finally from least square minimization of the errors in airfoil shape

elsewhere. The Von Mises type procedure was preferred above a Fast Fourier transform,

since the transform is relatively inaccurate due to the singularities in contour. In addition,

the transform would be quite inefficient during the actual flow computation.

The no-slip boundary condition was satisfied by addition of vortices at the wall during

each time-step: First all vortices within a distance of 1.27V/ivzAt were removed. Then a

ring of new vortices was added at a distance 0.675 v2 vAt to correct the wall velocity to zero.

(The distance for adding vortices equals the diffusion distance of the vorticity generated

by the wall during the time-step for the true Navier-Stokes equations; the removal distance



was chosen based on a statistical study requiring that the scheme handles locally uniform

vorticity (listributions accurately, not unlike discretization tecrhniq1es in finite diference

procedures). The vortex diameter d, was rather arbitrarily chosen to be 0.675\'2vz2t;

testing showed that results depended little on the actual value used.

The CYBER 205 results were post-processed on the departmental MicroVAX 11, using

a fast Fourier transform to find the streamlines. The vorticity was represented in bit-

mapped graphics as half tones.

0
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Abstract

Although unsteady, high-Reynolds-number, laminar boundary layers have convention-

ally been studied in terms of Eulerian coordinates, a Lagrangian approach may have sig-

nificant analytical and computational advantages. In Lagrangian coordinates the classical

boundary-layer equations decouple into a momentum equation for the motion parallel to

the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for

the motion normal to the boundary. The momentum equations, plus the energy equation if

the flow is compressible, can be solved independently of the continuity equation. Unsteady

separation occurs when the continuity equation becomes singular as a result of touching

characteristics, the condition for which can be expressed in terms of the solution of the mo-

mentum equations. The solutions to the momentum and energy equations remain regular.

Asymptotic structures for a number of unsteady three-dimensional separating flows follow

and depend on the symmetry properties o the flow (e.g. line symmetry, axial symmetry).

In the absence of any symmetry, the singularity structure just prior to separation is found

to be quasi two-dimensional with a displacement thickness in the form of a crescent shaped

ridge. Physically the singularities can be understood in terms of the behavior of a fluid

element inside the boundary layer which contracts in a direction parallel to the boundary

and expands normal to it, thus forcing the fluid above it to be ejected from the boundary

layer.

1. Introduction

A major feature of unsteady large-Reynolds-number flow past a rigid body is the shed-

ding of vortices from the surface of the body. Such vortices alter the forces exerted on the

body dramatically (McCroskey & Pucci 1982). A more complete theoretical understanding

of vortex shedding would be advantageous in the design of air, land and water transport.

Theoretical models of vortex shedding also have application, inter alla, in the description

of air flow over hills and water waves, water flow over sand ripples, and blood flow through

curved and constricted arteries and veins.

A classical example of vortex shedding develops when a circular cylinder is set into

motion in the direction normal to its axis. This example was first studied by Prandtl (1904),

and the process by which an initially attached boundary layer develops into a separated flow



with detached free shear layers has becn clearly illustrated by the experiments of Nagata,

Minami & Murata (1979), and Bouard & Coutanceau (1980). The term 'separation' will

in this paper be used to refer to the 'breakaway' of a thin layer of vorticity from the

surface of a body. This definition of separation is dose to that of both Prandtl (1904)

and Sears & Telionis (1975). In particular, Sears & Telionis speak only of separation when

the penetration of the boundary-layer vorticity away from the wall becomes too large to

be described on the usual O(Re-2) boundary-layer scale (Re is the Reynolds number of

the flow, and is assumed large). Therefore, once separation has developed the classical

attached flow solution will, in general, no longer be valid.

The first theoretical advance in understanding the unsteady cylinder flow at high

Reynolds numbers was made by Blasius (1908). He explained the occurrence of flow

reversal inside the attached unsteady boundary layer which is set up immediately the

cylinder starts to move. In the case of steady flow past a rigid surface, flow reversal is

often accompanied by separation. However, Moore (1958), Rott (1956) and Sears (1956)

all realized that zero wall shear is not necessarily related to separation in unsteady flow.

Sears & Telionis (1975) noted subsequently that their definition of separation is consistent

with the termination of the boundary-layer solution in a singularity. Such a singularity

will be referred to as the separation singularity, and the time at which it develops as the

separation time.

A considerable number of numerical computations have attempted to verify the ex-

istence of a singularity in the boundary-layer solution for the circular cylinder problem.

The first convincing evidence that a singularity forms within a finite time was given by

Van Dommelen & Shen (1977, 1980a, 1982). In a Lagrangian computation, with fluid par-

ticles as independent coordinates, they found that a separation singularity develops after

the cylinder has moved approximately of a diameter. The existence of this singularity

has been confirmed by the finite difference numerical calculations of Ingham (1984) and

Cebeci (1982) (however see Cebeci, 1986), and the computer extended series solution of

Cowley (1983). These calculations were all based on Eulerian formulations. A similar

two-dimensional separation singularity has been observed using Lagrangian procedures on

an impulsively started ellipse at several angles of attack (Van Dommelen, Wu, Chen &

Shen, unpublished results), on airfoils (Wu 1988), in turbulence production (Walker 1988),
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on an impulsively started sphere (Van Dommelen 1987), and using Eulerian schemes in

leading edge stall (Cebeci, Khattab & Schimke, 1983) and about a rotating cylinder (Ece,

Walker & Smith, 1984).

Excluding vortex methods, flows with free surfaces, and some more specialized com-

pressible flow computations, Lagrangian coordinates have not been as widely used as their

Eulerian counterparts in fluid mechanics, especially for boundary-layer flows. Yet for some

flows, such as unsteady flows in which advection dominates diffusion, Lagrangian coordi-

nates seem more appropriate (e.g. see the inviscid calculations of Stern & Paldor (1983),

Russell & Landahl (1984) and Stuart (1987)). As far as unsteady separation is concerned,

the advantage of a Lagrangian approach stems from the fact that in these coordinates

the classical boundary-layer equations decouple into a momentum equation for the motion

parallel to the boundary, and a continuity equation for the motion normal to the boundary

(Shen 1978). The solution of the former equation can be found independently of the latter.

Moreover, while the time that the separation singularity develops can be identified from

the solution to the momentum equation, only the solution to the continuity equation is

singular (see section 2).

An important consequence of the Lagrangian approach is that simple descriptions can

be found to a wide variety of separations in one-, two- and three-dimensional unsteady

flows. In this paper we consider unsteady flows in general, then in part 2, (Van Dommelen

1989), the separation process that occurs at the equatorial plane of a sphere which is set
into a spinning motion is examined in detail.

In the next section we develop the simple analytic machinery needed to find self-

consistent three-dimensional separation structures for both compressible and incompress-

* ible fluids. Some of the properties of the Lagrangian version of the boundary-layer equa-

tions are also discussed. In section 3 the Lagrangian structure for three-dimensional sep-

aration is derived under the assumption that the flow can be completely general, then in

section 4 the changes in structure are discussed when various symmetries restrict the flow

geometry.

2. Lagrangian Formulation

The Lagrangian description of boundary-layer flow uses fluid particles (i.e. infinitesi-

3
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mal masses of fluid) as the basis of the coordinate system. A convenient coordinate system

for the fluid particles (C, q, C) is given by the initial Eulerian position of the particles (see

Lamb (1945) for example):

E_ (C,,)= (z,y,z) at t = 0 . (2.1)

The precise form of the Lagrangian solution depends on the particular reference time,

defined here as the start of the motion, but the physical solution is independent of it.

Following Rosenhead (1963) we assume that the position coordinates z and z describe

an orthogonal coordinate system on the surface of the body in question. The lengths of the

line elements dc and dz are taken as hl d and h3 dz respectively. The coordinate normal

to the surface is denoted by y, which is scaled with the square root of the reference shear

viscosity.

In Lagrangian coordinates, conservation of volume for a compressible fluid can be

expressed in terms of a Jacobian determinant as follows (e.g. Hudson 1980):

pH(x,z)J(x,y,z) = poHo , (2.2a)

where
Xf X,17 XC

J(,y,z) = y,4 y,, y,( , po(CI7,) = p( ,,,C,O) , (2.2b, c)
Zf Z,? ZC

H(x,z) = h1 (z,z)h 3 (X,z) , Ho = H(,) , (2.2d, e)

p(t,i7, C, t) is the density of the fluid, and a subscript comma denotes a Lagrangian deriva-

tive. The velocity components of the flow are related to the fluxions of position by

u = hj(x,z)i , w = h 3 (X,z)i , (2.3a, b)

where a dot represents a Lagrangian time derivative.

For compressible flow, the momentum and energy equations are (e.g. Rosenhead

1963):
wi 1

p(ti + (uhlz - wh32 )-) = - -- p. + Dv(pD. u) + pg. (2.3c)
u h

p(vi + (wh 3. - uhl) -) = p, + Dy (pDvw) + pgz, (2.3d)
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POe. Oe. _ p = I((D.u)2 + (Dw)2 ) + D.(D, T) (2.3e)
+P Y- p 0

where IA is the scaled shear viscosity, o is the Prandtl number, and g. and g. are the

components of the acceleration of gravity. The temperature, T, and internal energy e, are

assumed to be functions of density and pressure, while the pressure, p, is a known function

of z, z and t; thus

- P, i (2.3f)

For an incompressible flow p = 0 and e is taken to be a function of T and p.

Although the y-derivative D. is Eulerian in nature, it can be written in the Lagrangian
form (see also Shen 1978):

Dvu = p(c,, (,t)H(z,z)J(z,u,z) (2.4)p0 ( , 1, () H (, ()

0 From (2.4) it follows that at a fixed wall the Eulerian D. and Lagrangian 4/o% operators

differ only by the density ratio, which leads to simplifications in the calculation of the wall

shear.

* Allowing for a moving boundary, appropriate boundary conditions to (2.3) are:

(u,w,p) = (Ub(X,z,0),Wb(*,z,t),pb(X,z,t)) on y = 0 , (2 .5a)

S(u,w,p) - (ue(,z,t),we(x,z,t),pe(o,z,t)) as y -o o , (2.5b)

where Ub and Wb specify the velocity of the boundary in the x- and z-directions respectively,

u, and w, are the corresponding external slip-velocities, p, is the external flow density,

and the wall density Pb can be given implicitly as the temperature at the wall. Ordinarily,

these boundary conditions translate immediately to the Lagrangian domain by means of

(2.3a,b). In the case of suction or blowing through the wall, they must be applied at an 7t-

boundary moving through the Lagrangian domain, however, the wall boundary conditions

* turn out to be of little importance for the local analysis of this paper.

The principle advantages of Lagrangian coordinates derive from the absence of both

the normal particle position y and the normal velocity component v from (2.3) arni (2.4).

* Consequently, the particles' motion, as projected onto the surface of the body (x, z), can

be found independently of the normal particle position y. Subsequent integration of the

5
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Jacobian (2.2) along lines of particles at constant projected position (X, z) yields the normal

particle position
0 IS po Ho 6 (2.6)
0 pHlVxr A VzJ

where ds2 = d 2 + ct72 + dQ, Vx = ( is the Lagrangian gradient, and the

integral is performed in the Lagrangian ( ,i7,(; t) coordinate system along the lines of

constant x, z, and t, i.e. lines which in physical space axe vertical through the boundary

layer.

The central issue of this paper can now be stated: we hypothesize that during the evo-

lution toward separation, the projected position (x, z) can remain regular, and commonly

does remain regular. When true, such regularity strongly restricts the possible behavior of

x and z near separation, and to characterize separation we need only identify the nature

of solutions to the continuity equation (2.2) or (2.6) - an equation which is much simpler

than the momentum equations. The remaining ambiguity in the behavior of x and z is

resolved using arguments of symmetry.

Various arguments to justify our hypothesis can be given. One of them is self-

0 consistency. If it is assumed that X, z, u, w, and p are non-singular at the separation time

t,, then the solution to the Lagrangian momentum equations can be expanded in powers

of (t - t.) to any algebraic order. In contrast, the usual Eulerian asymptotic expansions

show only that the first few terms in the expansions are self-consistent.

As another argument, Van Dommelen (1981) showed analytically that the invicid

incompressible two-dimensional equations have solutions, x, z, which are regular func-

tions of the Lagrangian variables, although y(t, t) is singular (this analysis can be further

* developed by expanding in powers of a small coefficient of viscosity). Yet this example is

somewhat artificial; physically it would require that during the evolution of the boundary

layer the coefficient of viscosity was changed significantly by some external means.

* A more powerful argument is possibly the capability of the analysis in this paper to

reproduce and extend several known separation processes previously analyzed in Eulerian

coordinates. However, the most convincing argument is provided by actual numerical solu-

tions of the Lagrangian bondary-layer equations. For example, Van Dommelen & Shen's

(1980a) computation of the boundary layer on an impulsively started circular cylinder

6



provided direct numerical evidence as to regularity of the momentum equation. Further,

it is in remarkably dose agreement with the results obtained by Cowley (1983) using a

series extension technique. In particular, Cowley (1983) finds a singularity in the solution

at the same time and position as the Lagrangian computations. Ingham (1984) performed

an Eulerian Fourier series expansion of the solution in the direction along the cylinder.

By carefully increasing tlhe order of expansion as the spectrum expands due to the incipi-

ent singularity, he obtained results in close agreement with those of both Van Dommelen

& Shen (1980a) and Cowley (1983). The fact that these three very different procedures

were found to produce results in excellent agreement with one another until very dose to

the breakdown of the solution at separation is reassuring, since a number of more con-

ventional finite difference computations (e.g. Telionis & Tsahalis (1974), Wang (1979),

Cebeci (1986)) give significantly different results. Yet the results of Henkes & Veldman

(1987) remain in agreement with the three unconvential methods until relatively dose to

the singularity, but disagree with Cebeci (1986) at a significantly earlier time. One of the

difficulties with conventional finite difference procedures, as pointed out by Cebeci (1986),

is the need to satisfy the CFL condition, a condition which is implicitly satisfied by the

three procedures of Van Dommelen & Shen, Cowley and Ingham.

Clearly in any numerical Lagrangian computations, it is not possible to prove that the

solution is regular, since the inevitable upper limit on resolution means that high order

singularities are difficult to resolve. However, in the accompanying numerical study, part

2, the boundary layer at the equatorial plane of a spinning sphere is solved using up to

1000 mesh points across the boundary layer. Even at such high resolution, no trace of

singular behavior was observed, and derivatives of high order could be evaluated precisely.

When the fact that solutions to the momentum equations are regular is accepted,

(and for compressible flow in addition the density must be regular), the next question to

arise is what implications such regularity has for the structure of the separation process.

First, only the continuity equation can develop singular behavior, and from (2.2) or (2.6)

it follows that this is only possible if the Lagrangian gradients of x and z become parallel,

i.e. if at some point a

V = A, Vz , (2.7a)

where A, is a constant. Generally, the point s of interest is the particle and time at which
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(2.7a) is satisfied for the first time. The condition (2.7a) is a three-dimensional extension

of the two-dimensional condition first pointed out by Van Dommelen & Shen (1980a); it

requires that a Lagrangian stationary point, Vn = 0, exists for an oblique coordinate

n = - A,z . (2.7b)

An alternate way to phrase the condition for singular y is to define a unit vector in

n-direction tangential to the wall,

n = (n,&) (-(2.7c)

in which case a singularity occurs when, for all infinitesimal changes Of in fluid particle,

n.0x=0 , 8x=(8z,8z) . (2.7d, e)

This implies that an infinitesimal particle volume 9050qa( around point s has been com-

pressed to zero physical size in the n-direction. But since particle volume (or mas in

compressible flow) is conserved, this compression in the n-direction along the wall is com-

pensated for by a rapid expansion in the y-direction (see figure 1), which drives the fluid

above the compressed region 0l0,ip% 'far' from the wall to form a separating vorticity

layer.

From (2.6) it can be shown that this process constitutes separation in the sense of Sears

& Telionis (1975), since the particle distance from the wall becomes too large, 'infinite', to

be described on the usual boundary-layer scale. Note that the assumed regularity of x and

z does not allow an infinite expansion in the direction parallel to the wall but normal to n;

the particle can only expand strongly in the direction away from the wall. Similarly for a

compressible fluid, the assumed regularity of p is inconsistent with an infinite compression

of the particle volume. (At present there is no direct numerical evidence for the regularity

assumption in the compressible case, although it is of course self-consistent).

From (2.7) we can derive generalized so-called Moore-Rott-Sears (MRS) conditions at

the stationary point, similar to the conditions formulated by Sears & Telionis (1975) for

two-dimensional flow. The form of the Eulerian D. operator (2.4) implies using (2.2b) and

(2.7a) that the vorticity vanishes at that point, i.e.

D ,u=D , w=0 at Vn= 0 (2.8a)

8
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In fact, the D.-operator vanishes for all quantities which remain regular in the Lagrangian

domain.

The second Moore-Rott-Sears condition is more complicated. Since (2.7a) is equivalent

to two conditions on the Lagrangian derivatives of z and z, in three dimensional space we

expect it to be satisfied on a curve of particles for times beyond the first occurrence of

separation (c.f. section 3 and sub-section 4c). The Eulerian projection of the singular

curve on the wall will be denoted by XMRS = (ZMRS,ZMRS) and the Moore-Rott-Sears

condition concerns the motion of this projected curve. To derive it, we focus attention on

an arbitrary point s on the singular curve (rather than our usual choice in which i is the

first point at which a singularity occurs). First we consider a Lagrangian differential Oe

along the singular curve passing through point s, keeping time constant. Since z and z

are functions of t and t only, 8 corresponds to a change in Eulerian position along the

projected curve which satisfies (2.7d),

n. OxMRS = , (2.8b)

so that the singular curve is normal to the local vector n. As for any curve, the propagation

velocity of this curve is given by the component of the propagation velocity of points on

the curve in the direction normal to the curve. To find an expression for it, we now

consider a total differential in Lagrangian space-time at the point s, resulting in changes

dzMRS = 8xmRS + isdt and dZMRS = #ZMRS + i.,dt. Since (iZrMRS,19ZMRS) satisfies

(2.8b),
dX MRSn d =- nUMRS , UMRS = (20,i0) , (2.8c, d)

dt

which shows that the propagation velocity of the singular curve equals the flow velocity of

the singular particle s at the considered position (XrRs,ZMRs).

While this three-dimensional form of the MRS condition seems new, the general ap-

plicability of the two-dimensional case is fairly well established both theoretically (Moore

1958, Sears & Telionis 1975, Williams 1977, Shen 1978, Sychev 1979, 1980, Van Domme-

len & Shen 1980b, 1982, 1983a,b, Van Dommelen 1981) and experimentally (Ludwig 1964,

Didden & Ho 1985).

We can also verify the notion of Sears & Telionis (1975) that unsteady separation

occurs in the middle of the boundary layer rather than at the wall. In the absence of a

9
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transpiration velocity, the motion of points on the wall equals the motion of the boundary-

layer particles at the wall, cf. (2.5) and (2.3a, b). Thus a fluid particle at the wall can only

contract to vanishing size in the n-direction if the wall itself performs the same contraction,

which is not possible for a solid wall.

In the next sections the nature of the separation process is analyzed. First we form

local Taylor series expansions for the regular solutions to the momentum equations near

the stationary point, and then we expand the solutions of the continuity equation in an

asymptotic series. This procedure is similar to the one followed by Van Domrnmelen &

Shen (1982) for two-dimensional separation. In contrast to the steady viscous singularities

of Goldstein (1948) and Brown (1965), and the ideas of Sears & Telionis (1975), the

unsteady singularity is essentially inviscid in character and consists of two vortex sheets

separated by an increasingly large central inviscid region (as found by Ockendon (1972)

for a rotating disc with suction, and by Sychev (1979, 1980), Van Dommelen & Shen

(1980b,1983a,b), Williams & Stewartson (1983) and Elliott, Cowley & Smith (1983) for

steady separation over up- and down-stream moving walls). The leading order asymptotic

structure of the unsteady singularity has also been recovered by Van Dommelen (1981) as

0 a matched asymptotic solution to the Eulerian boundary-layer equations. More generally,

Elliott et al. (1983) showed that there is a certain amount of arbitrariness in the Eulerian

expansions. The Lagrangian expansion resolves such arbitrariness by the assumption,

(supported by various numerical data, see Van Dommelen & Shen (1982), the dosing
remarks of subsection 4c, and part 2), that the leading order coefficients in the Taylor

series expansion near the stationary point are non-zero.

3. Three-dimensional separation singularities

In this section we find the leading order term of an asymptotic analysis which describes

the local structure of the flow .3 unsteady separation is approached. The time and position

at which the separation singularity first develops will be denoted by the subscript s, thus
for example

(Vn) 3 =0 , (3.1a)

where n is the oblique coordinate corresponding to the initial separation, defined in (2.7b)

as

10



n=x-Az (3.1b)

Note that the definition of the x- and z-coordinates can simply be interchanged if n and

z are not independent coordinates. In index notation, (3.1a) can be written as nj = 0,

where we will adopt the convention to omit the subscripts comma (to indicate Lagrangian

derivatives) and . (to indicate the separation particle at the separation time) if they occur

together (i.e. ni = (n,j),).

The solution of the continuity equation (2.2) for y can be greatly simplified by a

number of coordinate transformations for both the particle position coordinates (z, z) and

the Lagrangian coordinates ( , 77, (). Here we will select transformations which preserve the

Jacobian J (2.2b), since these axe algebraically more simple than transformations which

preserve the physical volume HJ, or mass pHJ.

As a first transformation, we drop the position coordinate z in favor of n, shift the

Lagrangian coordinate system to the separation particle s, and rotate it, resulting in the

set of coordinates

3

n=x-Az , z , = a.,(4, -E ai) , (3.2a, b,c)
j=1

where aij is an orthonormal rotation matrix which is is chosen to eliminate the mixed

derivatives n12 , n13 , and n 23 . Therefore, expanding n and z in a Taylor series expansion

about the separation point, we obtain

3 3
n--no+ 2niii +...+t hh+ nii.+.. +.. (3.3a)

i----1i=1

3

z = Z8 + zii + ... + t, +...(3.3b)
t=1

where 5t = t - t,.

However, if t, is the first time that a stationary point occurs, the Taylor series co-

efficients in (3.3) cannot be completely arbitrary: the singularity condition may not be

satisfied anywhere for bt < 0. The condition for a singularity to exist for earlier times at

some neighboring point is, in terms of n and z,

n-(A- A,)z, = 0 , (3.4a)
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where A is the ratio between Vz and Vx at the neighboring singular point. Expanding

(3.4a) in a Taylor series, we obtain

i - zSA + 70t +...- 0 for i = 1, 2,3 , (3.4b)

where 6A = A - A.. If all three coefficients n 11 , n 22 , and n 33 were non-zero, a solution

to (3.4b) could be found for St < 0, contradicting our assumption that the singularity

develops first at 6t = 0. (Strictly, because of the higher order terms omitted in (3.4b),

the solution must be found iteratively, however, the iterations converge because the higher

order terms act as a contraction mapping sufficiently close to point a). Therefore at the

first occurrence of separation, at least one of nil,n 22, or n 33 must be zero, and we will

reorder (k1 , k2,k 3 ) such that n11 vanishes. In addition, the coefficients n2 2 ,n 33 , zZ cannot

all be non-zero, since by solving for 8A, k2, and k3 , it again follows that a singularity exists

for 5 < 0. Without loss of generality, we assume that z1 is zero, since if either n2 2 or n 33

vanishes, the (ki, k2 , k3 ) coordinate system can be rotated further to eliminate zl.

It follows that in some suitably oriented Lagrangian coordinate system the conditions

nil = zi = 0 are necessary at the time when separation starts. This implies two addi-

tional conditions on x(, t) and z(t, t), besides the two conditions implicit in (3.1a). Since

Lagrangian space-time is four-dimensional, in general we do not expect that more than

four conditions can be satisfied at any time. Hence, in the remainder of this section we

will assume that the values of the remaining derivatives can be completely arbitrary and

in general non-zero.

However, when the functions x and z are not arbitrary, but restricted by constraints of

symmetry in the flow, the latter assumption needs to be reconsidered, since the symmetry

requires that various derivatives must vanish. Examples are two-dimensional flow, and the

flows discussed in the next section.

Under the assumption that the remaining coefficients in the Taylor series have arbi-

trary values, the transformation

z = z - z(t,,t) , A = n - n(t.3,t) - A(2, ) 2  , (3.5a, b)

n 2 2 z 3 k 2 - n 33Z2 k3  - 33 Z2k2 + n 2 2z 3 k 3  (3.Sc,d,e)

± = k2=k3 2  + 22(3.

V/' 3 '3z2 N/22 Z3 3

12



where

X( 2) - f 2 2 f33
2(n22 z + 2nsz) (35f)

eliminates the fi33 term. The final coordinate transform

1 -- kl + l- 13 k , 12 = k 2  13  k3  (3.6a, b, c)
il 1i

= -ii _ A 3 i-3 6t  , Z=Z , (3.6d, e)

where
2 + 2,h3

23) - 3n 1  11 fi13 n 3 3 + 2 13  nlhln3 - fnl 3 n,.
- lll 1'f333 11-a-3 , 11°= , (3.6f, g)

6fi 11 '3 f11 '

eliminates the fi1 1 3 , f 3 3 3 , and 5 3 derivatives.

The transformed position coordinate fE corresponds to an oblique coordinate measured

from a moving, curved line through the separation particle, viz.

(3.7a)

where
5=X-X(4ojt) , =z-Z(fo.t) (3.7b, c)

O(i,t) X- Ai ± Aa2)Z2 + . .6ti (3.7d)

Note that the curved line i = EO(T,t), which can be viewed as the line along which

the separation initially develops (see below), does not have a singular shape at the first

occurrence of separation.

The Taylor series expansions for fi and i near the separation point become

f' = f22 inpcll, + .... + 6t i + , (i 113 = f33 = 3 = 0), (3.8a)

sj Ic

z = z 212 + z 3 13 + ... (3.8b)

The characteristics of the Jacobian equation (2.2) for y are, in terms of the new coordinates,

•dil = pH {--za22/12 +.. (3.9a)

dy po Ho
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dy-poH o (l + f 133 13 + +...} (3.9b)

d13 _ pH {. .( 1 12 + l3 3 12 +i6t)+ .+-} 6 (3.9c)
4 p0-ol -  1 o.

with a singularity occurring when all three right hand side expressions vanish (note that

not all three are independent). Near the point ., (3.9a) is zero on a surface approximating

the 12 = 0 plane, while both (3.9b) and (3.9c) vanish at points depending on the nature

of the quadratic expression (- 12 -+ n13 3 12). If this quadratic is hyperbolic, singular

particles occur along hyperbolic lines regardless of the sign of 6t. Thus, if 6t = 0 is to be

the first time that separation occurs, the quadratic must be elliptic, and of the same sign

as the constant term when 6t < 0. This requires fE1 1 1 fi1 33 > 0 and fml < 0; we will

choose the positive 11-direction such that

n22nIIl > 0 , n22nF33 > 0 , f22ffl <0 (3.1Oa, b,c)

The Lagrangian description of the separation process can now be completed by the

determination of y at times shortly before the initial occurrence of separation. At t = t,

the boundary-layer approximation is obviously no longer valid because from the integral

(2.6) it follows that y becomes infinite at the stationary point. However, the rate of growth

near this point can be found by means of an asymptotic expansion. To find local scalings,

we follow the guiding principles of Van Dyke (1975). In general, we attempt to scale the

Lagrangian coordinates 1i and the position coordinates W, i and y to variables Li, N, Z,

and Y such that in the inner region the Jacobian equation for Y, i.e.

NL1  NL2  NL O
JL (N,Y,Z) = YL, YL, YL3 - pH '

ZL, Z L2  ZL3

has non-singular leading order coefficients. This suggests that the 6t term in (3.9b), which

ensures the absence of singular points for 6t < 0, should be retained. Further, for 6t = 0

we want to match the solution close to the stationary particle to a solution for y which

is regular away from this point. Thus we want to retain those terms which ensure the

absence of singular points away from particle t, at time bt = 0, i.e. the 12- and 1'-terms

in (3.96) and the 13 -term in (3.9a). The appropriate scaling is therefore

1, = JL, I, L , 12 = 1i 1i L2 13 = 1t1 2L 3  , (3.12a, b,c)
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ii= 16tj N , 1=16tl' Z , Y = ,6tl- (3.12d, ef)

These scalings suggest that the separation process occurs in a relatively thin strip, ii,

16t13 1 2 along a segment of the separation line F = Yo(Y, t) of length I , 16t! 1.

For the scaling (3.12), the solution for Y is most easily found by integration of (3.11)

as in (3.9a), where L2 and L3 are eliminated in favor of N and Z, which are constant along

the lines of integration, using (3.8). The result is:

Y1 posHos LO dL LO dL(31a
p. Hl vP(L; N, Z) L, VIP(L;N,Z) (3.13a)

where

P(L; N,Z) = -fi22 { I111L
3 + (3X13 3  -6i i2)L - 62N} , (3.13b)

and Lo(N, Z) is the real root of the cubic P. This root is a unique and continuous function

of N and Z since P is a monotonically decreasing function of L from (3.10).

The choice of sign of the square-root in (3.13a), and the limits of integration are

determined by the topology of the lines of constant N and Z. In physical space these lines

are straight and pass vertically through the boundary layer; however, in Lagrangian space

they are highly curved near the separation particle, as shown qualitatively in figure 2a. The

lines can be divided into three segments corresponding to three asymptotic regions. The

lower segments start at the wall and extend upward towards the vicinity of the separation

particle. Because the Jacobian is nowhere singular along these segments, the V-positions

of the fluid particles remain finite on the boundary-layer scale, i.e. the scaled coordinate

Y is small. Hence, these lower segments give rise to a layer of particles at the wall with

a thickness comparable to that of the original boundary layer, this is shown schematically

in figure 1.

Along the central segments, the lines of constant N and Z pass through the vicinity

of the separation particle. Here the y-position of the particles grows rapidly, and is given

in scaled form by (3.13). Thus the central segments give rise to the intermediate, thicker,

layer of particles shown in figure 1. The topology of the central segments in the Lagrangian

domain, figure 2a, determines the choice of sign in (3.13a). From (3.8) and (3.9) it follows

that on integrating upwards, LI increases from large negative values towards Lo(N, Z).
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Since Y is increasing along this part, the negative sign in (3.13a) applies. At position L0 ,

the lines of constant N and Z turn around in the Lagrangian domain and L, again tends

to -oo; along this second part the positive sign in (3.13a) applies.

Along the third segments, the lines of constant N and Z proceed upwards toward the

external flow. As in the lower segments, the Jacobian is no longer small here. Thus the

changea in y are finite on boundary-layer scale, and the third segments give rise to a layer

of particles with a boundary-layer scale thickness, atop the central region, as shown in

figure 1.

Hence, the separation structure is one in which the boundary layer divides into a

central layer of physical thickness proportional to Re- 1 6ti between two 'sandwich'

layers of thickness proportional to Re- .

The structure (3.13) is identical to the one obtained by Van Dommelen & Shen (1982)

for two-dimensional separation, except that the coefficients now depend on the position Z

along the describing line i0. A convenient way to illustrate the influence of the position

Z is to scale out the coefficients using a procedure similar to Van Dommelen (1981):

L1 -- L, -- 2(Z 
2 l) L , L-022%L2-60 2 (Z 2 + l)iL , (3.14a, b)

a V ( + 1) 1N, Y = - - y, Z = Z , (3.14c, d,e)

where the tilde-variables scale out the Taylor series coefficients, the starred variables scale

out Z, and

l-= , ' = (3 3 2 2 fi 1 11)2 poHo (3.14d, e)

I I,

= ,3ff111 iiQ33  2 02 = ( -- (3.14f, g,h)

(i i 2 iif1j

In terms of the starred variables (3.13) reduces to

L'dLy" 0 L*. ±I L (3.140)

--, v2N ° -3L _L 3  L; /2N -3L ° -L(1

where
Lo*(N*) -z I(N*) ,(3.15a)
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and the function I is the inverse to the cubic N* = 1i + I, i.e.

i(N*)= (N + (1 +N*2)2) + (N* - (1 + N. (3.15b)

The values of # 2/3, , and -8 depend on the choice of the Eulerian coordinates (Z, z),

but not on the definition of the Lagrangian coordinates.

An alternative expression for Y* can be found in terms of the incomplete elliptic

integral of thke first kind F(OIm):

Y*(L ,N*) .. F('Jm) ± -F(Wrm) , (3.16a)

where
4 ~ 1 3LO'

A(N) = (3(L;2 + 1)) , m(N*) 2 +4A , (3.16b, c)

V(L 'N*) = 2 arctan ( / L L 1 )A (3.16d)

Elliptic integrals are distorted identity functions, (in particular F(VI0) -- exactly), so

that the arctan is responsible for the major variations in Y along the characteristics.

Further terms in the asymptotic expansions (3.8) and (3.16) can be found in princi-

ple. We note that the next term in the expression for Y does not involve a logarithmic

correction, even though logarithmic second order terms do arise for the symmetric flows

studied in the next section.

We now turn to the physical interpretation of these results. The boundary-layer

thickness is asymptotically determined by the position of the upper particle layer in figure

1; letting L - -oo along the positive branch of (3.16a), we obtain the scaled boundary-

layer thickness as

g+'(N') 4 F(' Im) (3.17)

The function Y+(N*) gives the general shape of the boundary-layer thickness in a cross-

section of constant z. For large values of N" the boundary-layer thickness decays toward

zero much more slowly than suggested by the sketch in figure 1. Nevertheless, at the outer

edges of the thin separation region, the solution still matches with finite values of y; for

from (3.12), (3.14), and (3.16)

+ 4a~ in1
.- F( 1 ± V/3 ) for 16h < If! < 1 (3.18)

2 2 4 Fn
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To show the dependence of the boundary-layer thickness on the coordinate z, contours

of constant Y+ in the *, 2 -plane are plotted in figure 2b. Note that the coordinate ?

is measured from the oblique, curved, separation line. Actual lines of constant boundary-

layer thickness might, for example, appear as sketched in figure 2c, which has been drawn

by taking I&I = 0.06 and unit values for various coefficients in (3.7) and (3.14). Asymptot-

ically, the boundary-layer thickness has the shape of a crescent shaped ridge. The crescent

shape is long and thin, i.e. quasi-two-dimensional, because from (3.12) the fi length scale

is asymptotically shorter than the i length scale (note that for three-dimensional steady

separation Smith (1978) has proposed a quasi-two-dimensional structure). In an Eulerian

numerical calculation, the development of such a crescent-shaped ridge may be a possible

diagnostic indicating the presence of a singularity.

Evidence of this type of singularity is provided by Ragab's (1986) calculations for

impulsively started flow past a 4:1 prolate sphcroid inclined at a 300 angle of attack. His

results strongly suggest that the displacement thickness becomes unbounded away from

the symmetry line. However, it is not possible to deduce the shape of the singularity from

the results presented.

A point of interest is the decay of the boundary-layer thickness along the describing

line for large Z. From (3.12), (3.14), and (3.16),

y+ , 1y ( 1 )
____fl' 3  - for 16t1 < ITI < 1 (3.19)

Hence for increasing -, the separation structure expands in i--direction, while the thickness

of the boundary-layer decreases.

The particle propagation velocity n which gives rise to the accumulation of particles

at the separation line is, according to (3.8a), given to leading order by

n-- 61 fi1L L, (3.20)

To describe this in the more familiar Eulerian coordinates, the transcendental relationship

(3.16) must be inverted to the form

LI = L;(N',Y') (3.21)
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The inversion has been performed numerically, and in figure 2d we present contours of L*

in the (N*,Y ° ) plane. From (3.14),

" 2J02 22 +(2 2 + 1) "1

It follows that the lines of constant L shown in figure 2d describe the shape of the lines

of constant n in cross-sections of constant i through the separation structure. They also

give the asymptotic shape of the lines of constant velocity components :i and i and density

p in these cross-sections, since

1i3

(3.23)

We note that the topology of figure 2d for 16I& ; 0 seems quite dose to the computed lines

of constant velocity presented by Van Domm,.-'Xen (1981) for finite 16t1, and thus lines of

constant velocity might be a useful indication of an incipient unsteady separation.

The next point of interest is the shape of the velocity profiles. According to (3.23),

in Eulerian space the velocity profiles must develop a large flat region of nearly constant

velocity as separation is approached. However, accepting the numerical results of Van

Dommelen (1981), this flat region is only evident extremely close to the singularity, so that

resolution problems or finite- Re, -olds number effects tend to obscure the phenomenon.

From (3.23) and figure 2d, the velocity profiles near an incipient three-dimensional separa-

tion must have a local maximum or minimum in velocity. However, this is not necessarily a

precise indication of incipient separation. For example, in the case of the circular cylinder,

a minimum in the velocity profiles develops relatively quickly, after 1 diameter motion,

yet separation occurs much later, after 1 diameter motion. Figure 2e shows the shape of

the velocity profiles near the interior extrema. The shapes of the velocity profiles in the

sandwich layers at the edges of figure 2e cannot be found from asymptotic analysis since

they depend on the precise details of the earlier evolution (cf. the remarks below (3.24)

and part 2).

A more significant sign of the start of separation might be a transverse expansion

of the lines of constant vorticity near the velocity minimum/maximum; since the above

analysis is inviscid to leading order, the vorticity lines closely follow the motion of the
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boundary-layer particles. In the boundary-layer approximation, the vorticity is the y-

derivative of the velocity distribution. The corresponding asymptotic topology of contours

of OL,/Y* is shown in figure 2f. This topology seems dose to the computed vorticity

liaes presented by Van Dommelen (1981) for a time near separation.

The asymptotic structures of the upper and lower vorticity layers axe similar to the

two-dimensional case (Van Dommelen 1981). Expressed in terms of Eulerian coordinates,
they take the form of regular Taylor expansions:

= S -et' (um,,,(v), vtnr(y),rY) ,Pmnr(Y)) ' (3.24a)
mnr>O

and

mnr>O

respectively, where the sums run over the non-negative integers, and the Prandtl transfor-

mation = y - y+(Fi,6t), describes the motion of the upper layer.

Substituting (3.24) into the boundary-layer equations, we find that the u+ w±,,.,

P*,,,, (m,n > O,r > 1) and the v,,,,., (m,n,r > 0) are determined in terms of the

(/,ntvO0 :tnO,P,,,,0), but that these latter functions are indeterminate due to the depen-

dence of the solution on earlier times. The + must, however, satisfy the

boundary conditions (2.5a) at the wall, and match both at the outer edge of the boundary

layer (see (2.5b)), and with the central inviscid low-vorticity region. At fixed N and Z,

the latter matching conditions yield from inverting (3.16) and using (3.23),

4 1S(uO- 00,w0- 0 ,Po 0 0 ) -. (iz*,Zps) (,iz,,) 1)2 y2 as y -. + c , (3.25a)

(u0o0, ) -. (ai,4,p) (- as - -00 (3.25b)

Asymptotic matching conditions can also be derived as INI, ZI - o0, as Van Dommelen

(1981) has done for two-dimensional flows.

A final point of interest is the 'accessibility' of the region of flow beyond the time

of initial separation. In a steady Eulerian computation, Cebeci, Khattab & Stewartson

(1981) took the accessible region to be the domain where a boundary-layer solution can be
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found, (whether it is still an asymptotically correct solution of the Navier-Stokes equations

in the presence of interaction or not). In the Lagrangian case, some care is needed, because

the singular continuity equation is integrated separately. Numerical experiments such as

the one in part 2 do in fact suggest that the non-singular momentum equations can be

integrated past the separation singularity without apparent difficulty. When that is done,

the vertical lines through the boundary layer appear in Lagrangian space as shown in figure

2g rather than figure 2a. For the shaded particles, y is indeterminate; these particles may

be thought of as having disappeared at infinite y. Yet the continuity equation can still

be integrated along all lines of constant ff and i which start at the wall. A singularity

develops only on the line passing through the saddle point in figure 2g, which for 0 <St < 1

corresponds to a singular line segment

However, the solution so obtained must be considered meaningless at least for all particles

which have at some previous time passed through the singular curve. For that reason, we

define the region of inaccessibility as those stations (z, z) which contain particles which

have at any timae been on the singular curve. Initially, the region of inaccessibility will

primarily expand in the z-direction through the scaling (3.12e). In the n-direction it will

expand by means of the motion of the describing line (3.7) and additionally through the

motion of the particles which propagate downstream away from the singular curve. Thus,

the region of inaccessibility extends over a finite surface area, rather than just the curve

(3.26), in agreement with the steady Eulerian definition of Cebeci et al. (1981).

Naturally, the singularity structure derived here will not remain asymptotically correct

arbitrarily close to t t,, because the normal velocity above the central inviscid region

becomes infinite at t = t,. From a study of the Navier-Stokes equations it is found that the

singularity is smoothed out when a 'triple-deck' interaction comes into operation for 6t

O(Re at which point the scaled boundary-layer thickness is O(Rei). Because the

singularity is quasi-two-dimensional, the scalings and governing equations are essentially

those derived by Elliott et al. (1983) for two-dimensional flows, but with the addition of a

passive z-momentum equation. In the central interaction problem, the coordinate z, which

has an interaction length scale O(Re- i ), only appears as a parameter. However, it is not

dear whether the singularity will be completely removed by the interaction (Smith 1987).
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4. Three-dimensional symmetric separation

In the previous section a separation singularity structure was derived assuming that

the flow was arbitrary, an assumption that might be appropriate for flow past an asymmet-

ric body. However, in the case of a spheroid at relatively small angles of attack it is likely

that separation first occurs on one of the symmetry lines; indeed numerical calculations

confined to the symmetry line have been performed on this basis (Wang & Fan (1982)

Cebeci, Stewartson & Schimke (1984)). In sub-section (a) below we derive the form of the

singularity appropriate for separating flows where the separation line crosses a symmetry

line normally.

However, this is not the only type of symmetric separation of interest. When a sphere

is impulsively rotated about a diameter, centripetal effects generate a boundary-layer flow

towards the equator. After a finite time an equatorial singularity develops as a result of

a boundary-layer collision. The structure of this singularity on the symmetry line has

been determined by Banks & Zaturska (1979), and Simpson & Stewartson (1982a). In

this case the separation line coincides with the symmetry line. Similar singularities occur

after a finite time at the apex of a horizontal circular cylinder which is impulsively heated

(Simpson & Stewartson 1982b), at the inner bend of a uniformly curved pipe through which

flow is impulsively started (Lam 1988), and at the stagnation points on a two-dimensional

cylinder in oscillating flow as a result of steady streaming effects (Vasantha & Riley 1988).

A more general form of the singularity generated by two symmetric colliding boundary

layers on a smooth wall would first develop at a point rather than along the entire symmetry

line. For example, such a singularity might develop on the equator of an ellipsoid which

is rotated about one of its principal axes, or in starting flow through a curved pipe with

non-uniform curvature, or at the apex of a heated ellipsoid. In sub-section (b) the three-

dimensional structure of such a singularity is derived. The results on the symmetry line

agree with previous authors, but the simplicity of the Lagrangian approach allows us to

determine additionally the singularity structure off this line. The latter is a necessary

preliminary in order to formulate subsequent asymptotic stages in the separation process.

Another class of separation singularities are rotationally symmetric about the sepa-

ration point, so that the separation line degenerates to a point. For example, singularities

develop after a finite time on the axis of a spinning disc or sphere whose direction of

22
0



rotation is impulsively reversed (Bodonyi & Stewartson 1977, Banks & Zaturska 1981,

Stewartson, Simpson & Bodonyi 1982, Van Dommelen 1987), and at the apex of a sphere

which is impulsively heated (Brown & Simpson 1982, Awang & Riley 1983). The structures

of these singularities, which differ due to the presence and absence of swirl, are derived in

sub-sections (c) and (d) respectively. The results on the axis agree with those of previous

authors, while the singularity structures off the axis are new.

(a) Lateral symmetry

When the boundary-layer flow is symmetrical about a line along the surface of the

body, the describing line of separation must either cross the symmetry line normally or

coincide with it. In this sub-section we will address the case of normal crossing, leaving

the second possibility to the next sub-section.

For consistency with section 3, we identify the compressed coordinate n with z and

take the , 77-plane as the symmetry plane so that x is an even function of C and z an odd

function. Then the analysis is a simpler version of the one in the previous section. The

only transformation of the Lagrangian coordinate system needed is a rotation around the

(-axis to eliminate the x12 derivative. Also, the discussion concerning which derivatives

must be zero if t, is the first separation time (see (3.4) and following) can be restricted to

the symmetry plane to show that the second order derivative which is forced to be zero

must lie within the symmetry plane.

Hence the structure of the separation process remains basically unchanged, although

the describing line of separation simplifies, and is now symmetric about the symmetry line

z= 0 (cf. (3.7)):

X(- 0-X33 2 (4.1)

A degenerate case is two-dimensional flow, where x is totally independent of C, and the

separation line becomes a straight generator in the z-direction. In addition, the coefficient

31 vanishes, which suppresses the decay of the boundary-layer thickness with z. The

resulting structure is described in detail by Van Dommelen (1981).

Thus lateral symmetry, or more strongly two-dimensionality, does not fundamentally

alter the separation process. This conclusion is consistent with the symmetry line calcula-

tions of Cebeci, Stewartson & Schimke (1984).
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(b) Symmetric boundary-layer collision

When the describing line coincides with the symmetry line, significant changes in

structure are unavoidable, since the flow is symmetric while the separation structure illus-

trated in figure 2 is asymmetrical.

We identify the compressed coordinate n again with x, but now we assume that the

* 7, (-plane is the symmetry plane, so that z is an odd function of while z is an even

function. A singularity occurs when x, first vanishes at the symmetry plane, since the

derivatives x,,, and x,, are zero by symmetry. Since the first occurrence of a zero value

must occur where z,4 is a minimum, the second order derivatives x(, and xf must vanish,

while the other second order derivatives are zero by symmetry.

The fact that all the second order derivatives are zero invalidates the scalings for

77 and y made in the previous section (e.g. (3.12), (3.14)), hence a separate analysis

0 with significant modifications is needed. Proceeding along similar lines as in the previous

section, a local Lagrangian coordinate system kl,k2,k 3 is introduced with origin at the

separation particle, but with the same orientation as the original axis system. A rotation

of this coordinate system around the k, -axis,

Z3 k2 - Z2 k3  Z2 zk 2 + Z3 k3k-1 = ,k2 - z72zk 3 = 1~azk (4.2 a, b, c)
V'2+ Z3 'Z + Z3
i=X: I i = z- z(t0,t) I (4.2d, e)

can be made to eliminate the i2-derivative. The shearing transformation

- 123 -
2 == 2 k2 + 7:-k 3  , 13 = k3  , (4.3a, b,c)

X122

* = , -=z- z(,t) , (4.3d, e)

eliminates the i123 derivative, resulting in the Taylor series expansions

X _ Xjy,1 l 3 + 1ll2 + j 133212 + + ' .±6t ,11 ± . (4.4a)
0

Z - i 3 13 +... (4.4b)

The expressions for the characteristics of the Jacobian equation for y become

dt- 1 f 3 2 21 + . ,(4 .5 a )
dy po Ho
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C112 _pH. jl1212 12 + bt= H 3( + 1122 + 3 + +...}(4.5b)PH 1 2  2 3 i 1 i

In order to avoid singularities for 6t < 0, the quadratic in (4.5b) must be elliptic and of

opposite sign to -i. Since z,f is initially positive, cf. (2.1), it follows from (4.4a) and (4.5b)

that at a first zero

Eill > 0 1 1122 > 0 1 Y133 > 0 v , < <0. (4.6a, b, c,d)

The topology of the characteristics (4.5), shown in figure 3a, can be compared to the

asymmetric case figure 2a, where the separation characteristic develops a cusp at 6t = 0.

In this case, the separation characteristic is constrained by symmetry to remain straight.

Appropriate local scalings near separation can be found using arguments similar to

those of the previous section:

11 = IjtjI 2Ll = 1j5t1P(2 + 1),L , (4.7a)

12 16t1 ,30 2L2 = It I'fo 2(2 ' + 1) L; , (4.7b)

X= I&tfIaaljx = I6tjiaI3#(22 + 1)'X , (4.7c)

Y =,6t I L2 (4.7d, e)
I t#f 2  16 t11 7 032(2 2 + 1) 2' 3

1 - 1 2 - p , H ,7 = ( I22 Ell 1 (4. 7f, g)

3 3 3posHos

The 3 l (~ 111) )3 i13 2 , 2 2= (2 (4.7h, i,j)

(F3y'2l I )z "z ) " (-il0I

The continuity integral becomes

y. L; dL" dL" (4.8a)

= o VL(2X - 3L - L- 3 ) L; VL (2X-3L - L " )

where
L;(X" ) = (.V*) (4.8b)

This can be written as an elliptic integral similar to (3.16),

2 r 1Y-(L-, X- )  - F('Ilm) - F((pI m )  (4.9a)
A 2 A
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where

1 3L 32 + 6
A(X*) = (3(L; 2 + 1)(L( 2 + 3)) , m(X*) = 2 4A 2  (4.9b,c)

V(L*,X*) = 2arctan (AiL 2 + 3) (L I) .L (4.9d)

Note that instead of using L, as the independent variable, there is an advantage in using

L;, as given implicitly by the relation

L*(L,X*)=(L;2 + 1)'I(X*/(L;2 + l )i) , (4.9e)

since at the symmetry line the solution is regular in terms of L2:

Y(L;,0) - 7= (- tarctanL) (4.10)

Contours of the boundary-layer thickness k+ in the C, Z plane are shown in figure

3b. The asymptotic relations for large I and 1ZI, corresponding to (3.18) and (3.19), are

+ 4a --- 1- V/) for 6tli < xj < 1 (4.11)
3423 Y 2 4 3xl

1 a for 16t1 1 << JF < 1 (4.12)

The velocity components and density in the neighbourhood of the stationary point

are given by

~ -16t1 'a,3'(2' + I)1 L, (4.13a)
2 z (22) (4.13b)

( il,p) .(,,p) + 16tI" (( 2102),300(2 + 1)2 L; + ((3 .-A (& )

Hence L* can be interpreted as the velocity component towards the symmetry plane. The

scaled velocity profile, -L*, is illustrated in figure 3c at a number of X* stations, while

contours of L*, and the corresponding vorticity component, dL*/dY*, are illustrated in

figures 3d and 3e respectively. In cross-sections of constant z, the variations in velocity

parallel to the symmetry plane are proportional to L2. L2 velocity-profiles are given in

figure 3f, while figures 3g and 3h illustrate contours of L; and the vorticity dL2/dY*.
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Close to the wall, i.e. as Y --- 0,

3 2 2 Y2 2 f30 1 (4.14a, b)
, (i,p) - (i,P.) - (z2,;2 )/. , (.4

which match to a regular vorticity layer of similar form to (3.24). Similarly a match can be

achieved with a separating layer governed by a Prandtl transformation above the central

inviscid region.

Figure 3i shows the characteristics, i.e. lines of constant z and z, for 5t > 0. Inte-

gration of the continuity equation yields a singularity over a segment -1 < Z < 1 of the

symmetry line X" = 0. Since neither the singularity nor any particles on the symmetry line

leave the symmetry line, the region of inaccessibility remains restricted to the symmetry

line.

A special case occurs for separation at the intersection of two symmetry lines, such

as at the apex of an ellipsoid. In that case, in addition to the symmetry in , z is an even

function of C and z an odd one, and the transformations of the Lagrangian coordinate

system (4.2) and (4.3) become trivial. No changes in the leading order singularity structure

occur, since it was already symmetric in z-direction, even though this condition was not

imposed. However, the velocity parallel to the symmetry plane must be antisymmetric,

and the density symmetric (cf. (4.13b):

1/ (22J --* Z1 ,i + a±f~fp2 9/ 2 Z 1) '-;L . (4.15a, b)

In the case of two-dimensionality, where z is independent of C, the coefficient 01 van-

ishes as in the previous subsection, suppressing the decay of the boundary-layer thickness

with z. The flow on the symmetry line can then be written as a one-dimensional problem,

and was studied from an Eulerian standpoint by Banks and Zaturska (1979) and Simpson

& Stewartson (1982a,b). In part 2, Van Dommelen (1989) uses this flow to verify the

Lagrangian analysis numerically to high accuracy. Favourable numerical comparisons with

the singularity structure away from the symmetry line have been obtained by Lam (1988)

for starting flow through a circular pipe.

The existence of this singularity has also been reported by Stern & Paldor (1983),

Russell & Landahl (1984) and Stuart (1987) while studying inviscid models for the growth

of large amplitude disturbances in boundary layers. In fact, because unsteady separation is
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primarily inviscid in its final stages, an alternative approach to that above would be to solve

the inviscid version of (2.3) exactly, and then to examine the possible singularities of the

solutions (see also Van Dornmelen (1981) for the two-dimensional singularity). Note that

although Stuart's (1987) exact, inviscid, symmetry line solutions do not include a parallel

flow in the z-direction, our results are in agreement since the details of the singularity

structure are independent of i( 0, t).

As in section 3 the above singular solution will not remain valid for sufficiently small

16I& because previously neglected pressure gradients will become important (cf. the inter-

active problem for the two-dimensional singularity formulated by Elliott et aL. (1983)).

Further, because the velocity towards the separation line is much smaller in the upper and

lower vorticity layers than in the central layer, it is in the vorticity layers that the effect of

the pressure gradient will be felt first. However, it is the central layer which is responsible

for the growth in boundary-layer thickness; thus it appears that the first asymptotic rescal-

ing does not lead to an 'interactive' effect to smooth out the above singularity. Instead, the

singularity continues to be driven by the flow in the central layer, while significant changes

occur in the upper and lower layers. Similar arguments seem to hold for the singularities

in (c) and (d) below.

(c) Axisymmetric boundary-layer flow with swirl

In axi-symmetric flow, the flow geometry does not depend on and ( individually,

but only on the Lagrangian distance,

0= 2+(2 , (4.16)

from the axis = = 0. The displacement of rings of particles Ly = I? = t = constant from

their original position must remain restricted to a change in physical distance,

r- =i I2 + z2  (4.17)

from the axis, a rotation around the axis, and a shift in vertical position. Hence according

to the theory of orthogonal matrices, the solution must be of the form

X ± 77, )  + 5(e2,,t)( , (4.18a)

28+ 460',7, 0 (4.186)
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where, because of the assumption of regular z and z,

C- z,(0,77,0, t) + 1 ,t (O,, O,t) 2 + ... (4.19a)

-- ,C(O0,?,0,t) + 1XCCC(0,,O,t) 2 + ... (4.19b)

In terms of c and 3 the physical distance from the axis is given by

r2 = (C + s2)e2  (4.20)

The Jacobian J in (2.2) can be written in terms of g and r as

J = (r 2 ),,,y,,, - (r2 ),,y,2. (4.21)

Thus separation occurs at a stationary point for r 2 (L2 ,77,t), and from (4.20) and (4.21) it

occurs on the axis when

(4. 2 2a, b)

A rotation of the Lagrangian coordinate system to diagonalize the second order deriva-

tives of z is not advantageous here, since the axial symmetry would be lost. Instead we

rotate the coordinate system around the symmetry axis,

_ 23''- X12C - 1 +X3kI- =, k2 =77-° , k3 = 2 )+z2 3  (4.23a, b,c)

to eliminate the ir12 -derivative, followed by the shearing transformation

11 = k1 12 = k2 + )- +' + , 13 = k3  , (4.24a, b,c)

to eliminate Y'333 and X3 .

The characteristics of the Jacobian are fines of constant distance r from the axis. If

t, is the first time that a singularity forms then i1 1 I- must be negative, or for a suitable

choice of the positive 1 -direction

ill? -> 0 , J < 0 (4.25a, b)

The characteristic lines of constant r in the P,1 2 -plane appear as sketched in figure 4a.
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Appropriate local scalings are

#P* D16 Y* (4.26a, b, c, d)

tj 12~ 6iL 0
2  r IbtjI2a3R* ~t~P

- = ,,,(2)L P1" ' 3o 21)" ' (. =\ ) , (4.26e,f,g,h)
a~~~2 23 )

2 11 '2 = XaIa (1

leading to a continuity integral

f p ;  2dP" /P0 2dP"
Yil +4)" (3P- + pJ3 -P + . , (4.27a)| - JP. V/4R . - (3P- + p.3)

where

P- (R*) =I(R" (4.27b)

This can be written aa the elliptic integral
2 ir 1

Y*(L,R) F(21m) -F(W Im) (4.28a)
A 2 A

where

+ 1)(po 2  )3)4 1 3P*4 + 18P*2 + 18

A(R-) = (3(P 0 + ( +3 , m(R-) 2 - 4A2  , (4.28b, c)

v(L2,R*) = 2arctan ( 1 (P'+3)' 2 (P 0  _ (4.28d)kA,\ kP 1/(.2d

and P 2 is related to L, and R" through the solution of the cubic equation

4R*2 = 9L;'2 P*'  (P" + 3)'P*" (4.28e)

On the axis, (4.28a) simplifies to

Y = 2 4- arctan L) (4.29)

while for large RW, the boundary-layer thickness asymptotes to

y -- F ( i- v 1) for 6tI <Kr < 1 (4.30)
3Y24iy3 2 2. 4 r
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The velocity components in the radial and azimuthal directions, and the density, are

,i ( -IbiI ca ,(Uo + xWo,) , r - 161 2 3  (4 .31a, b,c)

p + 16tI(5 2#0 L2L; + 1 1/32- 2  - (4.31d)

where c = sgn(F23), and

U0 = ( P 2R +  3)P' , = 3P *2R ' (4.32a, b)

are the symmetric and anti-symmetric velocity profiles shown in Figure 4b.

Both the radial and the circumferential velocity profiles depend non-trivially on the

parameter X. However the magnitude of the velocity,

q= Vu2+w2 = 6t2L a3 V 1+ X 2p , (4.33)

does not; contours of q are illustrated in figure 4c. The vorticity components normal to

the velocity and parallel to it are proportional to

Sin, = U* U . + WQ* WO. = _ P* L; (4.34a, b)

v/U; + w;2

SIP = WO= - p*(p*2 + 1) (4.35a, b)tip= /U-,2 2 ;

Contours of these quantities are plotted in figures 4d and 4e respectively.

A match with the sandwich layer adjacent to the wall is again possible, since as Y - 0

2 23'3 2Iyp 3 (4.36a, b, c)

Similarly a match can be achieved with the upper separating layer.

Figure 4f shows the characteristics for 5t > 0. The singular line is the physically

expanding circle R" = 1, but the region of inaccessibility is larger due to particles with

L* j 0 which move radially outward from the singular line at a greater rate.

On the axis itself, the continuity integral is particularly simple:

po Hod77 (4.37)

pH(x2 + X2
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When this integral is expanded to second order, a logarithmic correction to the y-position

is obtained. This and other terms were initially overlooked in Eulerian analyses of the flow

on the axis (Bodonyi & Stewaxtson (1977), Banks & Zaturska (1981)), but in a Lagrangian

approach the logarithmic term follows naturally from the hypothesis that the solution for

the motion parallel to the boundary is regular. (A similar logarithmic term arises in the

symmetric case (b) above, cf. part 2). In fact, from this hypothesis alone, the complete

singularity structure presented by Stewartson, Simpson & Bodonyi (1982) can be recovered

by means of a simple integration of (4.37).

(d) Axisymmetric boundary-layer collision without swirl

Finally, we consider the case of axially symmetric flow when there is no rotation of

the flow about the axis. In the absence of such rotation (4.18) simplifies to

z=_c( 77,t)( (4.38)

No transformations of the Lagrangian coordinate system are needed in this case. It follows

that if a singularity first appears on the axis c must vanish. The contours of constant r

are then identical to those for a symmetric collision (figure 3a), while the Taylor series

coefficients satisfy conditions (4.6a,b,d).

In a similar way to before suitable local scalings are
y.

S= 6tI PI , 12 = I6tIYo PL; , r = 6tj a3'R* , Y O , (4.39a, b,c,d)

1 -= 31 3 1 = 2Op, P= , 0 . = ,poSHo3 X 22

(4.39e, f ,g, h)

leading to a continuity integral
10o r ai" to P" PY " P " 2 dP * a ( 4 .4 0 a )

,Jo R- -/2R * - 3P- - P-3  •p. R x/2R - 3P" - p 3

where
P0(R*) = I(R*) (4.40b)

This solution can be 'reduced' to the form

Y*L p2 (L R(n; r1m) - 1m
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l* (2 - 2n II(n; w 1m) - I F(w I m)

2 2 ctan (P sin(W)
P 0  2A V - msin , W

+ - arctanl sin(2), (4.41a)P 02A V1 - msin2o/W

where ll(n; (pom) is the incomplete elliptic integral of thc third kind, and

A(R) = (3(Po2 + 1)(Po2 +3)) 1 , m(R*) 1 3P 2 +6 3P*' +12
2 4A2  n(R) 2A 6

(4.41b, c, d)

W(;R)= 2arctan (~/P0 + 3) 1~ )) (4.41e)

P*(L;,R*) = (L;* 2- 1)2 I(R/(L;2 ± 1 (4.41f)

On the axis (4.41a) simplifies to

32=2 + arctan L; + L2 21) (4.42)

while for large R* the boundary-layer thickness asymptotes to

Y+V31 1--H7r - 1 V/ 2 F 2 V (4.43)

The velocity and density are given to leading order by

i -Ibftl 1 a ae 1 a'3 + pfl

- , p- p, + jI&tj 2 3o3L2  (4.44a, b)

Sample velocity profiles are illustrated in figure 5a, while contours of P" and the vorticity

dP*/dY* are given in figures 5b and 5c respectively. Again, a match is possible with the

wall layer, since as Y - 0,

._31, 2 , 2 1 30 1 ( .5 ,b
t 

3 ry 3  1 P - Ps + P2 . (4.45a,b)
2 3 36 13!J

5. Discussion
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In this paper we have shown that the description of attached flow past a body using

the classical boundary-layer equations can break down after a finite time due the formation

of a local singularity. In a Lagrangian description the class of singularities is characterized

by a singular continuity equation, but a regular momentum equation. The evidence shows

that such singularities are both mathematically consistent and physically relevant (e.g. Van

Dommelen & Shen 1980a, Van Dommelen 1987, 1989, Lam 1988, Bouard & Coutanceau

1980). The precise structure of the singularity depends on the symmetry of the flow,

and some of the simpler structures have previously been partially or totally described in

Eulerian coordinates by other authors. The purpose of this paper is to provide a unified

theory to facilitate the identification of singularities of the Lagrangian type when they do

occur. This seems especially relevant for the difficult problem of the asymmetric singularity,

where the singular behaviour would have to be deduced from a three-dimensional unsteady

computation.

These singularities occur when a fluid particle becomes compressed in one direction

parallel to the boundary. Conservation of mass then implies that the fluid above this fluid

particle is forced out of the boundary layer in the form of a detached vorticity layer. A

common feature of all the singularities is that the typical length scale in the direction

of compression is O( 16i1l ). However, the the strength of the singularity increases with

the symmetry of the flow; the the boundary layer thickness varies from O(1Ibt[-) for the

asymmetric symmetry to O(It- ") for the axisymmetric singularity without swirl.

Because the singularities take the form of a vertical ejection of fluid from the boundary

layer, we believe that they indicate the onset of separation as hypothesized by Sears &

Telionis (1975). While the present singularity structures do at least seem to describe the

initial genesis of the separating shear layer, within an asymptotically short time interactive

effects which are neglected in the classical boundary-layer formulation must be included

(e.g. Elliott et al., 1983, Henkes & Veldman 1987). At that stage a new asymptotic scaling

must be substituted into the Navier-Stokes equations in order to recover the correct large-

Reynolds-number limit. Knowledge of the precise asymptotic structure of the singularities

is necessary to identify this new scaling, and one of the contributions of this work has been

to identify the full structure of a number of symmetric singularities.

At first sight the symmetric singularities may appear less likely to occur in problems of
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practical importance. However, they have previously arisen in inviscid models of 'transition

to turbulence' in regions where symmetric counter-rotating longitudinal vortices are forcing

the convergence of fluid particles (Stern et al. (1983), Russell et al. (1984), Stuart (1987)).

A three-dimensional extension of the work by Smith & Burggraf (1985), may lead to

an asymptotic description of transition which accounts for viscosity, where the turbulent

bursts are associated with local regions of classical boundary-layer separation (symmetric

or otherwise).

This work was presented in part at the IUTAM "Fluid Mechanics in the Spirit of G.I.

Taylor" Conference, April 1986, Cambridge. The authors acknowledge financial support

from the NASA "Materials Processing in Space" program, the SERC, the AFOSR, and

ICOMP, NASA Lewis.
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Figure 1. Structure of the separating boundary layer, illustrating the asymptotic scalings

in the boundary-layer coordinate system (schematic).

Figure 2. Structure of asymmetric three-dimensional separation: (a) Lagrangian topol-

ogy of vertical lines through the boundary layer near the separation particle;

(b) contours of the scaled boundary-layer thickness k + = 1

in scaled, oblique coordinates; (c) possible actual appearance of contours of

boundary-layer thickness (schematic); (d) contours of the scaled velocity L =

0, ±1, ±2... in scaled coordinates; (e) -L velocity-profiles; (f) contours of the

scaled vorticity dL4/dY* = 0, ±1, ±2,...; (g) topology of vertical lines through

the boundary layer for times beyond the first singularity.

Figure 3. Structure of symmetric three-dimensional separation: (a) Lagrangian topol-

ogy of physically vertical lines; (b) contours of boundary-layer thickness Y+ =

31 7 ,.,1; (c) -L; velocity-profiles; (d) contours of L =--, ,1, 1,...;

(e) contours of dL*/dY* = 0, ±1, ±2,...; (f) L2 velocity-profiles for flow par-

allel to the symmetry plane; (g) contours of L*- = 0, ±1, ±2,...; (h) contours

of dL /dYS = 1,2,3,...; (i) Lagrangian topology of physically vertical lines

beyond the first singularity.

Figure 4. Structure of axi-symmetric separation with swirl: (a) Lagrangian topology of

physically vertical lines; (b) the velocity profiles of the two components -U*

and W ; (c) contours of the scaled absolute velocity P* = 0, 2,i,1 ,...; (d)

contours of the scaled vorticity component normal to the flow velocity f, =

0, ±1,± 2,...; (e) contours of the scaled vorticity component parallel to the

velocity SIP = 0, -1, -2,...; (f) Lagrangian topology of physically vertical lines

beyond the first singularity.

Figure 5. Structure of axi-symmetric separation without swirl: (a) P" velocity-profiles;

(b) contours of P *= 0, i,1, 11,...; (c) contours of dP/dY = 0,±1,±2,..
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