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Abstract

Military software systems based on distributed heterogeneous computing resources

are being deployed at an increasing rate. Existing networks, distributed operating sys-

tems. and software tools provide the basic elements of a system substrate for applications

development in such environments. To improve programmer productivity, however, it is

necessary to enhance these existing facilities with higher-level programming constructs

oriented toward concurrent programming in the large. The Tool for Large-grain Concur-

rency (TLC). described in this report, provides a basic set of such capabilities. TLC is

based on COMMON LiSP and CLOS (the Common Lisp Object System), translates high-

level functional programs into operations of the underlying systems, and coordinates

concurrent execution of these subsystems on distributed heterogeneous resources. The

usefulness of TLC has been evaluated in the domain of the CAsEs decision support system

of the Fleet Command Center Battle Management Program.
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I. Background

i. I Needs

This work represents an important start, a feasibility demonstration, toward solving two
problems confronting the next generation of distributed systems:

" A general environment for concurrency -exploiting the non-overlapping strengths

of various parallel computer hardware architectures, and,

" A general environment for heterogeneous architectures -providing an effective
software environment for heterogeneous. distributed software and hardware.

Concurrency in the Large

The next generation of distrbuted systems offers the opportunity to capitalize on diverse
parallel computer architectures. Presently, the various classes of hardware architectures
(e.g.. connection machines. vector processors. and medium-grained MIMD machines) are
appropriate primarily for complementary classes of algorithms. Typical C31 systems will

involve a mix from all of those classes of algorithms.

Networking these various parallel processors together is already within the state of

the art. What is needed is an effective means of distributing program segments to the
computer architecture best suited to the algorithms represented by each. Moreover, this

should be accomplished with minimal burden on the person needing the results of the
program. Further automation of the process of distributing code to the appropriate pro-

cessor will minimize programmer burden, which is, at present. substantial in order to use

any parallel processor.

Exploiting Heterogeneity

The opportunity to introduce new hardware and software systems in a military context
normally requires not only its coexistence with existing hardware/software systems. but
also an ability to work in concert with them. Networked. heterogeneous systems will

be the norm. we believe, not the exception. Networking such systems is not a problem.
What is needed is a software environment that facilitates effective use both by the end

user and the programmer.
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The problem in complex distributed applications is to provide a software infrastructure
which

1. supports distribution of program segments to the most suitable parallel processor:

2. insulates the developer from the idiosyncrasies of the underlying systems,-

3. facilitates effective use of the available underlying systems in carrying out higher
level application functions; and

4. provides a modular expandable base for integrating new functionality, hardware,

and software.

1.2 Application Context

We have begun prototyping the type of software needed in a system called Tools for
Large-Grained Concurrency (TLC) in the context of problems arising in DARPA's Fleet
Command Center Battle Mangagement Program (FCCBMP). The FCCBMP environ-
ment is installed at the Pacific Fleet Command Center. Pearl Harbor, Hawaii. and in-

cludes five major hardware technologies (VAX. Symbolics, Encore multiprocessor, SUN.
and Butterfly' multiprocessor), five different operating systems (VMS, Genera. UMAX,
UNIX, and Chrysalis/Mach). application subsystems including Oracle, KnowledgeCraft.
KEE. FRESH. IRUS. OSGP/DNIDS, and numerous Navy engagement and environmental
modc1s. These application subsystems are written in several different languages and use

different representations for basic data types.

We have focussed on a particular application in the FCCBMP the CASES expert

system. CASES provides Navy users with facilities for evaluating the relative warfighting
capabilities of US and USSR forces. Both the need for parallelism and the need to
integrate many heterogeneous subsystems arise in CASES. Concurrency is necessary
because near real-time response is critical. Since the algorithms CASES uses span a broad
range of types. no single parallel computer is ideal for all of the algorithms: a range of
parallel computer architectures is important.

CASES also requires access to subsystems running heterogenous hardware and soft-
ware. No common substrate exists at the operating systems level. therefore alternatives.
such as MACH. do not apply. Figure 1. 1 illustrates some of the major subsystems of the
CASES decision support system in the FCCBMP at CINCPACFLT. which is used as an
illustrative example throughout this document. CASES provides Navy users with facilities
for evaluating the relative wartighting capabilities of US and USSR forces. The sub-
systems in the top hall of the tigure provide services to a Symbolics workstation which
is, at present. both the primary development em, tronment and end user environment for
C.ASES.
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DISTRIBUTED HETEROGENEOUS ENVIRONMENT
FOR THE FCCBMP

Other
VAX Encore Butterfly SUN Symbolics Hardware

SOL DB, Environmental Parallel Engagement FRESHOte
Fortran Models Models Models Expert Server
Models System Functions
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DecisionN S*NNX'N'X

Decsaion Ote

Symbolics

Figure 1.1: C..\SES subsystem..
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1.3 Our Approach

In our approach. a distributed operating system (e.g., CRONUS [SVB*88], running on top
of MACH) provides communication capability among heterogeneous hardware/software
systems. Only a small CRONUS module need be written for each combination of hardware
and resident operating system. TLC then adds to the distributed operating system the
ability to translate a declarative program into processes for the various subsystems.

In either a multiprocessor or multiple computer environment, the application devel-
oper needs a con\,enient means to specify which portions of a computation can proceed
concurrently. The run-time system needs to be able to initiate appropriate subcompu-
tations that proceed in parallel as well as coordinate the processing of asynchronously
received subsystem responses.

In a critical decision support environment such as CASES, new technology (e.g.
database servers, massively parallel processors) can speed the decision making process
and potentially improve it by providing the time to consider more alternatives. Thus,
allowing for new technologies symbiotically with existing capabilities is another impor-
tant characteristic of large application systems. Such systems evolve over time as new
functionality and performance demands ar placed on them. Additional copies of existing
servers as well as new servers must be accommodated. More user interface workstations
may be added to a system that originally supported only single user operation. Finally,
in developing a particular application, one must be aware of potential requirements to
support future applications that rely on the same set of underlying servers.

Part of the desired infrastructure can be provided by existing technology: Operat-
inz ssterns on the constituent hardware provide the mechanisms for managing local
resources. An Ethernet and standard communication protocols (e.g. TCP/IP) provide
mechanisms for reliably passing uninterpreted bits among constituent subsystems. A dis-
tributed operating system, such as CRONUS, can be run on top of this communications
substrate to provide basic support for distributed resource management, remote procedure
calls. and format conversion between heterogeneous data representations. What is not
available at present is an application programming substrate which facilitates concurrent
programming n the large. This is the the goal of TLC.

The focus of the TLC system is large grain concurrency as illustrated in Figure 1.2.
TLC facilitates parallel programming by providing a high-level functional programming
interface to the user. The TLC system translates this declarative program specficiation into
the appropriate "forks" and 'joins" without the programmer having to become involved
at the level of synchronizing individual processes.

4
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PARALLELISM IN COMPUTER SYSTEMS

TIGHTNESS OF PROCESSOR COUPLING
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Figure 1.2: TLC Focus.
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2. S(steni Overvie%

This chapter presents an overview of the TLC system. First, a typical problem of the
type the system is designed to address is presented. Second. an overview of the TLC
svstem architecture which supports that functionality is described.

2.1 .%n Example

In order to better understand the problem and the tools, it may be helpful to examine a
concrete example. Consider the following query. which is typical of those posed to the
CASES system:

Which of the [currently displayedl submarines has the greatest probability

of locating SPA' 1 within 10 hours'!

To answer this query. CASES uses a Navy model called SPASEARCH. SPASEARCH
determines the probability of a particular submarine locating a particular SPA within N
hours. As illustrated in Figure 2.1, the SPASEARCH model (simplified for the purpose
of this exposition) takes three input parameters, Total-time, Travel.time, and Search-rate.
and runs on the Butterfly multiprocessor.

These inputs can be manually supplied or can be provided as the outputs of additional
module runs. Figure 2.1 illustrates the composition of the primitive modules which can
be applied to evaluate SPASEARCH for each of the currently displayed submarines. In
the figure. modules are indicated by boxes and data accesses are indicated without boxes.
Some of the data accesses may be to local information and others may be references to
databases and knowledge bases residing on remote computers. Similarly, some of the
procedures are carried out locally and others need to be run on other processors.

For a given submarine. many of the computations and data accesses are independent
and can be carried out concurrently. For example, the "Time Late" and "Search Rate"
computations and their subcomputations can be carried out m parallel. Similarly, all three
data accesses required by SWEEP could be he concurrent operations. TLC eases the load

SPA 'tands tor SOSLIS Probability Area and repre,.'nt,. ua area ot unceilainty in %.hich a detected cnerni
unit i, located.

6
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EXAMPLE PROBLEM/QUERY

"Which of the [currently displayed) submarines
has the largest probability of locating SPA A

within 10 hours?"

uuen~y: [(A,X,IO)...........,. ......................; -...... .

..... .. ...... 7u 
. . ....:FRESH s 1

Syblc:LAR Distance .Max Sed Searc SWEEP VAX:Sina

Position Position Enviroment Characteristics
Sub x SPA A (GFMPL) SPA A

SPA A

Sensor FOM
Sub x

Figure 2.1: Decomposition of SPASEARCH Model.

7
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on a programmer seeking concurrency. The programmer can realize this concurrency
described by evaluating CONCURRENT-SPASEARCH defined as follows using TLC: Z

(DefFurction CONCURRENT-SPASEARCH(a :: z)
(SPASEARCH (TIME-LATE

(LAR-DISTANCE
(POSITION :-:)
(POSITION 3) ))

SPEED ::)
(SEARCH-RATE
(SEARCH-SPEED :.)
(SWEEP

(ENVIRONMENT-FACTOR a)
(SENSOR-FIGURE-OF-MERIT :x)

(SOGNAL a)))
Z)

2.2 Sstem Architecture

The TLC system consists of three parts:

1. a language for concurrent functional programming,

2. a concurrent virtual machine (VM) supported by heterogeneous distributed systems
integrated via CRONUS. and

3. a translator for compiling TLC functional programs into VM code.

These three components are described in Chapters 3, 4, and Appendix A. respectively.

Figure 2.2 illustrates the integration of TLC into the CASES environment. A CRONUS
kernel is ir, talled on each of the constituent systems. This kernel runs as an application
process and coordinates all CRONUS activity on that host. In addition, a set of CRO-
NUS Object Managers coordinate interactions with local servers modules (e.g. database
servers, expert systems).

CRONUS operates on top of TCP/IP. which handles basic reliable transmission. CRO-
NUS implements canonical data types and provides remote procedure call communication
between applications running on different systems. The TLC VM fields requests for
service from the user and determines if the service can be supported locally or requires a
remote invocation via CRONUS. The TLC VM also enhances the CRONUS RPC mechanism
to support concurrent invocations imultiple outstanding requests).

The TLC translator compiles user written functional programs into code which runs on
the TLC VM (see Figure 2.3). This translation is a two stage process. The tirst phase of

-Chapter 3. page 12. below, provides a complete description of the i I ( luiguage and its en,uitic .
Also. Chapter 4.3.2 contain- a discussion of data level pipelrung by the addition ot sreanoL .
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TLC RUN TIME ARCHITECTURE
(Cases Environment)

FCCM

CrnsCronus Cronus

Mge GEERanage Manage

Sever VynIbo SUN Butterver

Figure 2.2: TLC Integration in CASES Environment.
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TLC PROCESSING

Functional Program

Translation
Phase I

Program Graph Compile
Time

Translation
Phase II

Virtual Machine Code
I

Resources Virtual Machinei

(virtual) Sc&huScheduler

Remote Local Op, Run
Op Doit. Time

Resources Cronus
(actual)

Servers

Figure 2.3: TLC Translation Process.
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the translation maps the source text into an internally represented directed acyclic program
graph tDAG). The DAG explicitly represents the concurrency within the program. This
portion of the translation process is independent of the target VM. The second phase
of the translation process takes the DAG as input and produces VM code that can be
executed. This portion of the translator is dependent on the target VM. The VM that
currently exists is written in CONIMON Lisp. It is possible to envision a VM that is based
on the C language although no effort in this direction currently exists.

The current TLC VM operates in a staightforward manner: It simply executes local
operations directly and passes any non-local operation to CRONLTS for remote execution.
It incorporates neither complex resource management mechanisms nor any higher level
functionalities. such as a high level description system in which to observe its own

behavior or a planning system with which to interact with its environment.

In the future, we anticipate that the VM will be augmented with such mechanisms
to ultimately support a knowledge-based scheduler that will use problem domain specitic
knowledge and run time information (parameter values, machine loading, etc.) to improve
system performance and utilization of resources. For example. the VM code might indi-
cate that the operation SWEEP is to be carried out. Assume that there are two versions
of SWEEP, SWEEP-SERIAL and SWEEP-PARALLEL, which run on uniprocessors and
multiprocessors. respectively. Based on the argument(s) to SWEEP, the intelligent sched-
uler would determine whether SWEEP-SERIAL is adequate or SWEEP-PARALLEL is
more appropriate. Assuming that SWEEP-PARALLEL is needed, CRONUS would deter-
mine which of the available hardware resources capable of running SWEEP-PARALLEL
would be used as the actual server. Additional information on the knowledge-based
scheduler is contained in Chapter 4.3.2, on page 36.

11
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3. The TLC Language

3.1 Oeriew

TLC is an extensible language that supports applications development in dynamically
evolving, heterogeneous environments. Underlying its design is the recognition that
problem solving in such open environments requires a language that

" expresses and exploits the concurrency intrinsic to such systems. and,

" is easily extended to express a variety of algorithmic as well as organizational
needs.

The current TLC compiler accepts as input a functional specification in the form
of an s-expression and produces as output a directed acyclic graph (a DAG) which is
interpreted by the TLC virtual machine and executed across the network. While the DAG
represents a maximally concurrent decomposition of a solution, it is the actual status of
the network and the virtual machine's priorities at the time of execution that determines
how much concurrency is realized. TLC comprises three distinct layers, each addressing
various needs:

The Applications Layer which is of interest to applications developers. Here is where
applications level functions are defined in terms of other high level functions and
organizational issues, such as resource allocation strategies, are implemented,

The Language Development Layer where language designers can extend the TLC lan-
guage in terms of compiler primitives; and,

The Primitive Layer which is where new constructs that differ from the overall se-
mantics of the language, and hence cannot be expressed in terms of the existing
primitives, are implemented.

In the rest of this section. we will concentrate on the applications level, postponing
detailed discussion of the language development and primitive layers to Appendix A.
page 41.

12
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3.2 The Applications Laser

On the surface, TLC syntax is a subset of the syntax of CONMON LISP [Ste84]. It differs
in its fundamental semantics and in its size, however. COMMON LISP is much larger and
specifies a sequential semantics. TLC, on the other hand, is fundamentally concurrent;
sequential execution is regarded as a restricted, degenerate case of concurrency. For
instance. COMMON LISP semantics specifies that fni and fn3. below. are evaluated left to
right, sequentially:

(fnl (f-n2 arq-! ar::-2) (fn3 arg-1 arg-2))

TLC, however, specifies that fn2 and fn3 are evaluated concurrently: That is. fW2 might
precede fn3, may follow it, or may be evaluated at the same time, i.e., in parallel.
Concurrent evaluation is subject to two types of restrictions:

1. Implicit restrictions that originate out of data dependencies. For instance,

(fn. (fn2 arg-. arg-2) arg-3)

restricts the evaluation of fnl to occur after the evaluation of fn2 -although the
evaluation of fr) may proceed concurrently with the evaluation of arg-3; and,

2. Explicit restrictions that are imposed by the programmer by employing a sequential
special form (discussed below) for doing so.

3.2.1 Command and Expression Contexts in TLC

A "purely functional" language provides expression context only: it assumes that the
evaluation of forms are localized phenomena that always return a value. The original
LISP 1.0 [McC60], based on the A-calculus [Chu4l], is an example of such a language:
it provided no semantics or linguistic support for state change operations [Bac78].
What it did provide, however, was an intrinsically concurrent evaluation formalism for
expressing purely functional notions. A-expressions are intrinsically concurrent -we
cannot deduce the order in which they were evaluated based upon the results of their
evaluation.

Because TLC is a general-purpose applications development tool, however, it must
provide support for tractably expressing state change operations. This means that we
are faced with the prospects of tempering the large degree of intrinsic concurrency with
serialization points around state change operators.

1... although proponents of pure functional programming have long been aware of this shortcoming and
have proposed and implemented various stream-based, feedback mechanisms.

13
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Rather than employ a global process-locking scheme, similar to a monitor abstraction.
TLC distinguishes between command and eipression contexts. Expressions are TLC
forms that, as a result of their evaluation, return a value. The COMMON LisP function,
list. is an example of an expression. Invoking list on a number of arguments returns a list
of those arguments. It causes no effects outside of its invocation and returns a predictable
result: It returns a new list with each call.

Commands. on the other hand. do not return "dependable values" as a result of their
evaluation, but instead, cause some "effect." The COMMON LISP function. rplaca. is an
example of a command: It destructively replaces the head of its first argument (which
should be a list) with the second ariument.

Hence, depending upon whether a form appears within expression or command con-
text, different degrees of concurrency might be appropriate. Consider the following
example. where the three subexpressions are evaluated concurrently and the value of the
last. i.e.. the (first x), is returned as the icsult:

... (list :x y)
(rplaca :c y)
(first :c) )

list is an expression, i.e., it does not modify either x or y, but the rplaca does -it
destructively replaces the head of list x with Y. What is actually returned as a result of
executing this code fragment is problematic and depends upon how TLC interprets such
"mixed forms." It remains an open question, at this writing, how to best optimize mixed

forms. i.e.. combinations of commands and expressions. for concurrent evaluation. Some
discussion of these issues is found in Chapter 4.

3.2.2 Input to TL ?

The TLC parser accepts a valid s-expression as input2 and subjects it to the following
parse rules:

" Strings, arrays and quote'ed forms are treated as constant data, and are passed
through:

" Atoms are either numbers or symbols:

- Numbers are passed through:

- Symbols are examined for symbol-rnacro detinitions. If none are found, they
are passed through. otherwise the symbol macro delinition is expanded in
place. and the parser is rccursively invoked on the result.

-That is. what the C, L-i reader ,t.tpt i, on,,idcrLd v:lid input.

14
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" Lists with atomic first elements are interpreted as function calls where the head of
the list is the function spec and the tail its arguments. Function specs may have
the following definitions:

- As a TLC macro, in which case retrieve the macro definition and recursively
parse its expansion, in place:

- As a TLC expression or command, in which case retrieve its parser, apply it
to the input stream and continue: or.

- As a generic function call. This means that it is either something that has a
definition as a TLC function, i.e., it is a TLC lambda form, or it is a CONI-
MON LiSP function. In either event, the reference is left inline and will he
resolved at execution time. Its argument list. however, will be parsed so as
to be evaluated concurrently.

" Finally, when encountering a list of lists in the body of a special form, such as a
let.

( net ((...))
(fnl arg-l arg-2)
(fn2 arg-l arg-2) ... )

parse them all so that they are evaluated concurrently with the value of the last
being returned as the value of evaluating the entire list of forms.

As an example, consider a subcomputation of the concurrent-spa-search, introduced
on page 8. in the previous chapter:

(lar-distance (position ::) (position a))

is parsed such that the subexpressions (position x) and (position a) are evaluated concur-
rently and the far-distance operation is performed at the "join" -as indicated in Figure 3.1.

As a somewhat artificial example of multiple forms occuring within the body of a let
special form, consider

(if (predicate a b)
(let ()

(tnen-finction-. a)
(* hen-finct ion-2 b)
I-)

(let )

w eslse-f nct ic n- a 3

which results in the DAG in Figure 3.2. below.

15
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Too Level Cotnai-

AVI~k, .*. 
. N 7,

Figure 3.1: DAG of a SPASEARCH subcomputation, (LAR-DISTANCE (POS..: N X)
(POSITON A)).

7PREDICATE-F 4 9)
NI MHEC07I~FJV4TP0N

,ORXINGO IONU rIN

(ELSt-I'M 4 (EL SE -N-I a) (99 N.8 (FHEMN-79 A )

I#.gINVo-cNI"Nja77OI001 9G-10NTI.VVAIO7

Figure 3.2: DAG of a conditional with concurrent then and else clauses whose results
are ignored (as indicated by the dashed lines).
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3.3 Application Le el Primitives

The following primitives are available at the applications level: defname, deffunction.
defprocedure. defmacro, for defining top level forms. lambda, named-lambda, command-
lambda, named-command.lambda, for defining intermediate behaviors, and let, let*, if,
and. and*. or. or* and sequential. All, except defname, deffunction, defprocedure. defma-
cro and the various lambda forms,. were defined at the language development level. see
Appendix A. 1. in terms of the diet and dif TLC primitives described in Appendix A.3.1,
page 42.

3.3.1 Augmenting the Top Level En~ironmeni

Because TLC is lexically scoped. let forms may only be used to associate symbols with
definitions in local environments. A defname special form is provided for associating
definitions with symbols at the top level. Its syntax is:

DEFNAME (defname <i4d> <ezoression>)

<id> <symbol>
<expression> <symbol> I <list>

and its semantics i.i to evaluate its <e:pression> in the top level environment and
associate its <izi> with the value returned from the evaluation. defname is similar to the
COMMON Lisp form, defvar, which is used to define "free" variables. i.e.. identifiers at
the top level.

3.3.2 Defining Functional Forms

The deffunction and defprocedure forms are provided for defining functions and proce-
dures, respectively, at the top level. Functions are defined as entities that, upon evaluation,
return a value. Procedures, on the other hand, do not return "dependable- values, but are
instead evaluated for their "effects."

Functional forms are used for expressing modular elements of algorithms -much as
they would be in a functional subset of COMMON Lisp. Recursion is the default control
structure, as of this writing. The familiar Factorial function is represented:

(if (= n 0)

for instance. Alternatively. this could have been expressed in terms of defname and
named-lambda forms:

17
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(DefName Factorial
(named-lambda Factorial (n)

(if (= n 0) ... )))

Note. the "free operators." i.e.. =, * and 1-. are the COMMON LISP functions, left inline.
Their argument lists, however, have been lifted so that any available concurrency is
exploited. In this particular example. however, all operators are either unary or are
consist of simple terms. e.g., (= n 0). Even the (* n (factorial (1- n))) form is done
sequentially because n is simple and is therefore passed through.

Using Lambda Forms to Define Behaviors

Unlike COMMON LISP, TLC supports command as well as expression contexts. hence four.
instead of two. lambda forms exist: command-lambda and named-command-lambda -
which are the command context analogs to lambda and named-lambda. In addition. TLC's
binding scheme supports local behavior definitions, using the lambda forms, without
special enclosing forms. For instance, in COMMON LISP a label or flet is required to
associate symbols with behaviors in a local binding context, whereas any of the let forms
in TLC are acceptable. This means that TLC symbols are dereferenced as functions or
values and not both, as in COMMON Lisp.

TLC lambda expressions are lexically scoped and are first class objects. Their syntax
is similar to the COMMON LISP lambda:

LAM-IBDA-EXPRESSION (<lambda-form> <lambda-arglist> ,:cAd']>)
<lambda-form> lambda I named-lambda I command-lambda

named-command- lambda
<lambda-arglist> (<symbol>*)

<body> <expression>*

but. the entire range of lambda list variables supported bv COMMON LISP are not vet
supported by TLC. The semantics of lambda expressions is similar in many ways to
let (described below): The arguments in the <ambda-arglst> are evaluated and
bound concurrently. and the <e::pressi:n>'s that compise the <body> are evaluated
concurrently with the last being the value returned.

3.3.3 TLC For Decomposing tntermediale Forms

Intermediate forms are statements that are not enclosed in top level forms. such as a
defname or deffunction. Examples of intermediate forms include valhd s-expressions. as
in our earlier example of summing a product and difference, see page 15. above. Because
the current TLC compiler isn't "closed" in the sense of accepting only TLC primitives.

IX
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i.e.. COMMON LISP function calls are left inline and their arguments, if left unqualified,
are lifted, intermnediate level forms may also be compiled.3

The remaining primitives are the basic building blocks of intermediate forms.

Using Let For Controlling Evaluation

T%%o let forms exist for expressing a range of evaluation strategies. They have the same
syntax which is similiar to COMON Lisp:

(<let'-for-r> <let-arm>* <body>)
-armn> (<let_-Vsr> <-::pre331on>) I(
<I~t-frr2> ET I LET*
< e -,.a r><symbol>

<b3,iy> <e-
<e_::pre3 3 on> <symbol> I<list>

and the semantics for each form is:

let evaluates and binds its < et-arm>'s concurrently; and.

let* evaluates and binds its <let-arm>'s sequentially.

Each guarantees the availability of its <Let--:ar>'s hefore processing the <body>. In
this respect. they are similar to the QLISP [GM881 construct, qiet. except for the case
where eager is thie value of its guard:

(qlet INIL <Let--arms>* <booy>)

i s equivalent to let*. and

(-jIet 7 <ie(t-a3rm>* <b'dy>)

is eqwvalent to let. With the addition of euavr evaluation constructs. e.g.. futures I BH771
processing, the complete semantics ofqilet. and a host of other. interesting bii~ding con-
,,tructs. such as Ietrec. ai recursise let (Orm, becomne available.

But *ee pag~e 21. lor at di,,_u''oii it owirolhfig ilhe ev~du~ition ot aruunitrit lidt, to iake in Ac4.00[lt

U, t.ontri

...~ ~ ~ ... . .
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Using If to Control Flow

The syntax and semantics of if is similar to the COMMON LISP special form of the same

name:

<then-z.a:se> <expre3sicn>

<e!se-riause> <e:xpression>

if evaluates its <pre> before either its <then-clause> or <else-clause>.

Combinations of If and Le!

Various degrees of concurrency can be expressed by combining let and if forms. For

instance, using let expressions as the <then-clause> and <else-clause> yields an
if expression with concurrent then and else clauses:

(if <pred>
(let ((ignore (then-clause-l-function . . .

,ignore (then-clause-2-function ...

(t:hen-value (thl-en-_ lau-se-n-funct:..n ...))

let ( oe (else-,:lauise-l-functi.on ... )
(ignore (else-zlause-2-function ...

(else-va-ue (else-clause-n-function ..)
else-value))

The TLC defmacro form could be used to capture this clich6 as a macro definition.
ciF (for concurrent IF). with the following syntax:

:::F :: ( f -L= '"
(then <then-clauses>)

(else <else-clauses>))

,rel> : .: <erpress.cn>
'then-clalises> : <e:pressicn>

e se-:-aises.a : e <e:::rs3 :.

and with the following macro definition:

2o
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(iefmacro ciF (predicate then-clauses else-clauses)
(let ((then-value (last then-clauses))

(else-value (last else-clauses)))
'(if ,predizate

(let , (mapcar ' (lambda (then-clause)
'(ignore ,then-clause))

(butlast then-clauses)))
(let ,(mapcar #' (lambda (else-clause)

'(ignore ,else-clause)
(butlast else-clauses))))))

Alternatively, this new definition could be bootstrapped at the level of compiler primitives,
see Appendix A.l.

3.3.4 Expressing Different Types of Concurrency

Consider the common problem of selecting some element, x. from a potentially large
universe. :., such that P(x). This is the sort of problem that many hope concurrency will
aid in solving. Depending upon the certain criteria, however, concurrency may or may
not offer much advantage over sequential processing.

For instance, if the problem is treated as purely set-theoretic, and no constaints are
placed upon the order of evaluation of the elements of . then an obvious solution would
be to write:

(cr (p ::1) (p ::2) ...

knowing that TLC will specify that the subexpressions, i.e., the (p x,)'s. be evaluated
concurrently. Upon their completion, then, the first non-empty element of the resulting
set is selected.

Such a solution is wasteful and the question naturally arises: If we're asked for an
element, x, why are we creating the set of x such that P(x), rather than just finding an
instance? The maximally concurrent approach of evaluating each (p x,) is appropriate
only if the application requires "all x. such that ... which is not the case.

Protocols do exist, moreover, for controlling concurrency and the mechanisms for
introducing them are being added to TLC as of this writing, see Chapter 4.3.2. page 36.
The idea here being to distribute resource management with the computation. In this
way, numerous subcomputations may be initiatiated and. upon the fulfillment of some

condition, the remaining subcomputations may be gracefully aborted. In addition, various
type of concurrency, e.g., ,,reedv and cooperativc. may likewise be implemented: Some

discussion of these issues is found on page 30, Chapter 4.2.10.

Alternately. an argument for COMMON Lisp's sequential semantics is attractive in the
case where only one candidate. .r, is required and the evaluation of the (p .r, )'s has side
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effects.4 TLC recognizes the need for this type of serialization, when "flow of control"

issues must be taken into account, and provides two compiler level primitives. and* and

or*. as sequential analogs to and and or. see Appendix A. 1.1, page 42.

3.3.5 Sumnmar%: The Current State of TLC

TLC provides a high level representation within which various types of concurrency

may be expressed. The TLC compiler translates this s-expression representation into a

DAG, and it is the responsibility of the VM layer to "interpret" or "execute" this DAG:
This means facilitating computation across the network of available machines, eventuallv

taking into account the specific issues of migrating data in heterogeneous networks,

distributing resource management, and load balancing -i.e., distributing work among a

community of specialized as well as general-purpose architectures.

3.3.6 The Current Implementation

Presently, the TLC VM is based upon COMMON LISP closures, augmented with the
CRONUS instruction set. Many of the fundamental issues, such as migration and load
balancing. are possible only in the context of a more "comprehensive" design. see chap-
ter 4.2.1, page 23. Nevertheless, the current ad hoc scheme demonstrates the utility
of simple communications between heterogeneous computional agents in a potentially
dynamic topology.

3.3.7 Translating TLC

As expected. translation from functionally concurrent trees (which is represented by the
DAG) into nested closures is straightforward and reasonably efficient.

The current implementation includes the primitives and behaviors outlined above. It
is written in COMMON LISP and runs on Symbolics 3600 workstations, running Genera
7.2.

tn large. open-ended ,ystcms. rever~ins an eitect nucht he intractable ,ince he ie,ource t, hared by
many prmcesses.

'22
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4. Future Work

Although TLC can be used in its present state to facilitate concurrent programming in

the large, it is most appropriately viewed as a prototype. There are several directions in
which work on the TLC prototype should proceed. We can categorize these directions as

" applications,

* enhancements,

" and integration.

described in the remainder of this section.

4.1 Applications

Our goal has been to develop a tool that will be useful to application programmers.
CASES has been the application domain which has motivated the work to date. We hope
to integrate TLC with the CASES software development environment and incrementally
improve TLC functionality based on actual development activities. We also hope to
identify additional development environments and apply TLC in these domains as well.

4.2 Basic Enhancements

There are number of areas where we already know TLC requires additional work. These
areas are identified and described briefly below.

4.2.1 Need For A More Appropriate \rchitecture

Most existing architectures are based upon the von Ncumann model of computation and
are inappropriate foundations upon which to support computation in distributed, het-

erogeneous systems which are fundamentally open-ended and evolutionary in character.
The current virtual machine layer. described at the conclusion of the previous chapter, is

inadequate in several respects:
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" It does not provide a uniform, extensible substrate upon which to construct more
expressive communications protocols:

" It provides no specific mechanisms for addressing the issues of migration of data
and load balancing of work across machines; and,

" It provides little support for error handling and debugging.

-to name a few. In response to these, and other issues, a more integrated architecture.
called to TLC VM. is under development.

4.2.2 The TLC VAI is Class Based

Written in COMMON Lisp, the VM is a CLOS-based system that implements the necessary
primitives to "bootstrap" TLC programs onto a particular machine.

At the VM level, data is viewed as instances of classes of data. For instance, the
number 4 is a particular instance of the class fitnum. Hence, various behaviors, i.e.,
methods, may be attached to this instance in an extensible, tractable manner -that is.
through the CLOS defclass and defmethod facility. Such class-based systems are portable,
fundamentally extensible and desirable from an open systems perspective.

4.2.3 Shared vs. Local Memory Models

Traditional wisdom has it that programmers think in terms of "shared" memory ... doubt-
less attributed to their von Neumann roots. The approach taken in the design of the TLC
VM is that the programmer's view of memory should be virtual and indifferent to the
underlying architecture. In the most flexible scheme, one where data is migrated freely
between machines, the programmer cannot know at runtime the location of particular data.
Even in the more restricted case where data is asserted to be available on a particular
machine, for reasons of robustness, redundancy must be taken into account.

Nevertheless, for reasons of maintaining arms-length interactions between applica-
tions and enforcing machine-specific data dependencies, a facility must be made available
for programmers to assert and maintain that a class of data is local to a particular ma-
chine. In the current effort, CLOS classes and methods provide this functionality. Such
locality or non-migratability is maintained at the VM level as part of an abstract data
type's class behavior.

For instance, requests to migrate numbers are handled differently than requests to
migrate machine-specific data, such as hash-tables. In the first case. migration is permitted
and the number is packaged in an acceptable manner to CRONUS and migrated to the
requesting host. In the second case, however, the hash-table is not migrated and the
migrate method, instead, insures that accesses to it are handled remotely -that is, the
requests are migrated to the machine hosting the hash-table.
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4.2.4 The Structure of the \ NI

Computation is Task-Based

The fundamental unit of execution is the task which is an ordered pair: 7. , where 7
is some target object which is an instance of a predefined class, and S is a specification
which is an object incorporating a method call and any additional arguments that is being
"sent to" or "invoked upon" the target, 7.

Hence, each task could be thought of as a transmittable closure which is queued for
execution on any of the various dispatchers. Any number of dispatchers may exist on
a given machine. Their behaviors are as follows: Upon a clock tick, or by any other
means available to a particular architecture, dequeue the next task. If there is none,
ask the surrounding dispatchers for spare tasks, i.e., tasks on their work queues that are
migratable to this dispatcher.

Assuming that a task exists, decompose it into its target and specification. If the target
is local. i.e.. is an instance of a local data type, such as numbers, invoke the method-name
from the specification on this instance, passing any additional arguments specified in the
task through to the method call. Otherwise, remotely invoke the method via CRONUS.

A Closer Look at a Task's Components

A task's target can be either a local, COMMON LISP data type or a remote TLC reference
which is represented as an instance of the mailbox class. Mailboxes provide a uniform
unit of addressability at the virtual machine level -pointers perform a similar role in
traditional computer languages. Specifically, mailboxes have resident data, a queue of
incoming requests for that data and a fonard-to slot which is used by the migration
machinery.

Specifications embody information required by the target to perform some action,
i.e., the name of the local method to invoke and additional data with which to invoke it.
Specifications have types as well, they are either requests. replies or complaints. Request
specifications include a

message-name which is a name of the function to be invoked on the target,

args which are additional arguments that are passed to the target:

continuation which is an object that represents the "rest of the computation." In essence,
it is the proxy for the remaining computation and is the object to which any
subsequent replies are sent, and a

resource.mgr which is an object that provides funds for the computation to proceed.
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Hence. requests most closely resemble function calls. For each request. moreover. at least
one reply tor c omplaint) will issue. Reply specifications are similar to requests except
that they contain no continuations -they are sent to continuations in response to the
request. Finally. complaint specitications resemble replies in the current implementation
except that their contents are messages about exceptional conditions and hecone for all
intent and purpose the value of the remaining computation and are passed "up the chain."
Hence. in the absence of an application to "trap" and "handle" the exception, the error
is returned and any necessary systems bookkeeping is performed.

4.2.5 The % N1 l.aitzawe

Unlike the TLC language it supports. the VM language is comprised almost entirely of
commands, i.e.. constructs that, as a result of their evaluation, cause some effect and do
not return dependable values. The only expression defined at the VNI level is create.
which is the VM primitive for creating instances of VM level objects. The VM command
language provides, among other things, the architectural support to effect function calling
in distributed environments where the actual function calling mechanism is distributed
and is better thought of as a common communications protocol of such systems.

Primitives for Supporting Function Invocation

The request command has the following syntax:

REQUEST (request <target> <msg-name> <args>
:continuation <continuation>
:resource-mgr <resource-mgr>
:key <reply-key>)

<target> <cronus-address> I <local-reference>
<msg-name> <symbol>
<reply-key> <crcnus-token>
<args> <symbcl>*

and is interpreted by the VM to mean that a request for some processing, specified by
the <msg-name>, is to he communicated to the <target>. The <resource-mar>
is responsible for providing computational currency and the reply is to be directed to
the <czntinuatir.>. The <reply-key> is currently unused, but will be used to
disambiguate multiple replies.

If the <target,- is a :z_--zerer'n~e-,, i.e.. it is on the dispatcher's nachine.
this is just a funcall of the form:

(fan ail -<msg-name.- <target -lar,-s..)
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whose result is wrapped in a reply command and sent to the <continuation>. Other-
wise, a CRONUS remote procedure occurs and the results are likewise transmitted to the
<continuation>.

<continuation>'s embody the remainder of the computation: Each contains an
environment which provides a context within which its form is to be executed. Transmit-
ting a result to a continuation invokes its form on the incoming message, within whatever
context has been established by its environment and causes control to pass to its siblings.'

reply-to commands are similar, syntactically. to requests except they require no contin-
uations (although the <target> is usually a continuation) and no <msg-name> because
continuations are created with their own local states that embody the original request's
msg-name:

REPLY :: (reply-to <target> <value>

:resource-manager <resource-mgr>

:reply-key <cronus-token>)

As a result of its evaluation, the reply command causes the <value> to be trans-
mitted to the <target>, providing that sufficient resources are available through the
<resource-mgr>. If the target is local, the <target> is funcalled with the <value>
as the argument list, otherwise a CRONUS invocation transmits the <value> to the <tar-
get>. The <reply-key> is used to disambiguate multiple replies directed to the same
continuation.

Reply-to commands, together with requests, are sufficient to capture the notion of tunc-
tion calling or subroutine evaluation in standard computer languages. Although not yet
supported, they enable a function to return multiple values via the use of <reply-key>'s.
They also integrate resource management in a de-coupled, yet extensible manner.

Handling Exceptional Conditions

Besides the anticipated reply, exceptional conditions arise and require some mechanism to
ensure system robustness. To this end, the complain-to command exists. It has the same
syntax as reply-to. Its semantics is somewhat different, however. All continuations are
created with some "default" exception handling code, thus the reception of a complaint.
unless otherwise provided for, causes the object that received the complaint to return a
standard message with the keyword. :aborted, as the first element and with the specific
exception as the rest of the message. In addition, any local bookkeepping, such as mailbox
queue management. is performed at this point.

'Because continuations embody local envLronments. I Ai. trv ien.vtrve computations can be expres,;ed as
localized phenomena, i.e., with a continuation enihodvlng each ;ice. Thi, must be compared and contrasted
with the more global. von Neumann notions ot free variables which would quickly become a Lommunication.,
bottleneck in the general case.
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Again, for generality's sake. complain-to's behavior is implemented as a CLOS method
specializable for particular classes of objects. Hence, machine designers can tailor ex-
ception handling to include arbitrarily complex behaviors.

4.2.6 Create Provides V\I Lebel Instantiation

The only expression provided at the VM level is create: its syntax is:

CREATE (create <id> :args <arg-pairs>
:resource-mor <resource-mgr>)

<arg-pairs> (<keyword> <synboL>)*

and its sematics is to create an instance of class of object denoted by <ii> and to initialize
it accorrding to the <arg-pairs>. The <resource-mrrg> is checked for necessary funds
before the process is begun. From the user's perspective, create is atomic.

create is not used to make instances of btiltin COMMON LISP data types such as strings
or fixnums. Instead, it is used to create instances of VM specific classes: For instance,
programmers might need to define a new class of data, such as migratable hash-tables,
for a particular application. This provides a logical place to bootstrap such functionality
within the mechanism of the VM.

4.2.7 Primities for Supporting. Communications Protocols

Function invocation, as expressed in terms of request and reply commands, constitutes a
simple communication protocol. Other, more subtle and complex protocols are needed.
however. For instance, some primitive VM level commands are necessary to support
communications forwarding. When a reference is found to be non-local or is determined
to have been migrated for reasons of locality, for instance, some protocol has to be in
place for ensuring that the communication finds its target. To this end. a forward-to
primitive exists:

FrORWARD-TO (fcrward-to <czonus-address> <task>)
<task> <task-object>

Its semantics is to transmit the <task>. as an opaque object, to the <:rz nus-address>

4.2.8 Primlives to Support I)elelaiimi

Delegation is a communication protocol whereby an object may receive a message and
delegare some or all of the processing to a group ol objects in a manauieral or vitpero v
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manner. This makes it possible to describe complex behaviors, such as inheritance and
recursive invocations on an object that is locked. Hence, a delegation protocol, where a
specification may be received by the target and delegated, in whole or in part, is desirable.
A VM primitive, delgate, must be added with the following syntax and semantics:

DELE:3A TE ::(delegate <ciient> <msg>)

<slent> '<zronus-address>
<msg> (<msg-name> <args>)

<.ns-name> <id>
<args> :<atom*>

delegate sends a <msg> to its <client> in such a manner that the reply from the
<client> is not queued on the delegatee. That is. message delivery is tightly coupled,
resembling a phone-call as opposed to a mail delivery.

4.2.9 Primities to Support State Change

The update and replace commands provide localized and global state change, respectively.

UPDATE (update <cronus-address> <index> <value>)
<inde:x> : integer

and.

REPLACE (replace <cronus-address> <cronus-address>)

express two very different notions:

In the first case. update. the <cronus-address> and the object that it references
remains unchanged. That is. if <2ronus-address> points to an object, J,, after execut-
ing the update instruction it points to the same object, J,. except that some state change
local to 0, has been effected.

In the case of replace, however, the object dereferenced by the <cronus-address>
is different. In some sense, this is semantically equivalent to changing the value-cell of
a free variable with the COMMON LisP setq construct.

For debuggability. previous references, in the case of replace instructions. may be
saved away in order to provide some reconstructive history keeping mechanism. Hence,
communications arriving at a replaced object frluw its forward-to links as a matter of
course. Just how long these chains can grow without impacting upon storage and per-
formance is an open question and good fodder for future research.
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Maintaining a history of update instructions is more difficult: Unlike replace the
reference remains unchanged from an outside observer's perspective. Perhaps some
method of saving the history of communications processed on this object is feasible -in
this way browsing the order of update commands reveals the order of state changes on
this object.

4.2.11) Primitikes for \lanaint, Resources

That the <resour:ce-mg.-> is a required component of each command that effects pro-
cessing, viz. request, reply-to and complain-to, or storage, create, provides a powerful
resource control tool. Because these <resource-mgr>'s are instances of a class of
objects. called the resource-manager-class, their behaviors are likewise specializable and
extensible. Although the default behavior for instances of resource-manager-class is primi-
tive. as of this writing, arbitrarily complex behaviors are possible. Consider the following
potential scenarios:

Competitive Concurrency

Here numerous tasks are spawned concurrently. Each <resource-mqr> spawns sibling
managers and allocates a portion of its computational resources to its siblings. Siblings
allocate their resources recursively2 and must ask their immediate parents for more when
they are depleted.

The "top level" resource manager is controlled by a "managerial process" that reviews
the work undertaken on each of its immediate branches. Hence, a competitive environ-
ment is set up where immediate siblings may be rewarded with more processing resource
depending upon the top level manager. Upon sucessful either completion or abandonment
of the top level task, resources are cut off via the top level resource manager and the
sibling computations, upon subsequent requests for more funds, are gracefully aborted.

Cooperative Concurrency

Here a similar situation is established as in the case for competitive concurrency. except
that siblini nodes share resources through interaction with their parents.

For example, two tasks are concurrently spawned to perform a computation which

requires partitioning a large set into mutually exclusive subsets. In this case. candidates
failing one criterium pass the other. Moreoever. if these are computationally expensive
predicates, it is more efficient for one sibling task to "reward" its counterpart with a
percentage or its computational resources upon receipt of a valid candiate.

-Thai is.. eac-h ,ihing beconies a parent Ahen requested to spawn s'ubtask, ,nd ,o on.

3()
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4.2.11 The Translation Process

The TLC compiler produces a DAG whose nodes are continuations. Continuations are
objects that embody environments which provide a context and forms, i.e., segments of
code to be executed within that context. Moreover, continuations maintain pointers to
their parent and sibling continuations. Thus, from any node within the DAG, the entire
computation may be reconstructed.

Each continuation represents a task, i.e.. a target. specirication pair. The translation
process is thus staightforward:

Begin by parsing the top level s-expression using the parse rules outlines in Chap-
ter 3.2. page 13. This results in a parse-tree representation of the user's input where each
leaf is either an atomic constituent, such as a number of symbol, or is a simple expression
of the form:

(Fn <arg-'_> <arg-2> ... <arg-n>)

where each <arg-i> is atomic.

Simple expressions, such as funcalls with atomic arglists. can be represented as direct
requests. All that is required. at this point, is to make sure that the references to the parent
continuations exists before they are required to be compiled. For instance,

(car (:cr :xl)

will result in the chain of continuations shown in the following diagram:

CO: Top Level

V"

Ji C: (car .xl

Recall that each continuation. , in this chain contains an environment object as
well. Environments are built upon two layers:

a bindings layer which is a list of symbol-value pairs3 which are local to this particular
subform. For instance, bindings for x. in the previous example. are determined
by looking r up in ,^ 's environment. This is the intention of the rf in the next
continuation box -to demonstrate that the reference to x in that case is not the
same .r as in the previous, hence the "'7;" and.

Known in Li- parlance as an aai ,t twt,,t kt.. Altemaive repreentatlon, cOUld uI i calily he Chosen.
Balanced trees, tor instance, could he used tor larve cnviiomelents. In the urT.nt implemcnt.tion the dCtault
top level environment is a hash-table.

SI1
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a parent layer which is a pointer to the previous environment. This is used to determine
the context for the next reference.

Operationally, a reference to an identifier may be found locally, if available locally, or
might be found in the current environment's parent environment, and so on. Eventually.
the chain ends at the Top Level where either the identifier is found to be a "free reference"
or hound in the glohal environment.

The structure of environments and the definition-use patterns of continuations all
suggest a top down code generation approach -which is what the translation process
currently employs. In summary, the DAG is walked, top-down. and a stream of VM

instructions is generated.

4.2.12 E\panded Set of Canonical Types

Hence the migratability of data and ultimately TLC's general utility is dependent upon
maintaining a rich set of data types: the more classes of data that TLC can manipulate,
the greater its overall power.

But. the current set of canonical data types supported by CRONUS is limited. This set
will need to be expanded as required as TLC evolves. At the present time there is a need
to add a canonical representation of lists to the currently defined types. for instance.

4.2.13 \isualizin ('oncurrenc%

Since the specification of the earliest parallel programming languages, the problem of
observing and debugging computations in parallel environments has assumed greater
importance than it has received attention. The current TLC compiler utilizes the GRAPHER
[Sus881 to help applications developers manipulate the DAG graphically. The GR_,,PH-
FR provides a powerful tool for controlling the representional aspects of the problem.
Figure 4.1 illustrates the DAG of a conditional expression4 with concurrent then and else
arms

(:[' (prelicate a b)
(,-en (then-fr-i a) (then-fn-2 b) a)
(e!Se (ete-fr-L ) (eIse-fn-2 a) t))

as output by the compiler and graphed by the GRIPHER.

.tu,dly. .a cl" exprion,. %luh wa. t£nroduceu in Chapter 3 3.3. page 20.
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Figure 4.1: DAG of a conditional with concurrent Then and Else Clauses.
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Graphical Programming Interface

Although there is no clear requirement for a graphical programming interface at this
point. it may be desirable to investigate the attractiveness of this approach for particular
user environments.

Viewing Computation at the VM Level

The TLC VM differs fundamentally from traditional machines. For one thing, its view
of memory and locality is amorphous. Consequently. global data structures are eschewed
for more localized, ephemeral structures that are as much an emergent property of the
state of the network, coupled with the communications and resource allocation protocols
in place at a particular moment, as the result of static definitions.

This decentralized perspective presents at once a challange and an opportunity to ex-
plore new directions in program definition, observation and debugging. Clearly, existing
technology is inappropriate.

A promising direction is to impose abstract ordering over the tasks. For instance.
request specifications can be paired with their reply analogs, as in the following (hype-
thetical) reconstruction of a recursive Factorial, 7, invoked with an integer argument. A'.
For simplicity's sake, assume that the message, A. is a default method call that causes
function to be invoked. In this abstract trace, we're calling each task invocation an Event,
E. and each requestreply pair a Transaction, Tx.

The following event,

E, = 7 =[Rq: J,,t, NI

is an abstract representation of the top level call: The integer, N, has been sent to 7 as a
request. With the top level request is a continuation, C1, to which a reply will eventually
be directed. 5

The remaining request are now reconstructed,

E2 = 7 Rq: t, C2, N I
E, = . [Rq : M. N 3,V - 21

E,, = 7 [Rq : A, C,,. oI

and eventually the computation "bottoms out." at which point the actual computation
begins. This is manifest as reply specifications. Rp, being sent to the appropriate con-
tinuations. the ,'s:

'For stinplicity', sake the resource-pnqr has been omitted.
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Ell., =C,, [Rp : I1I

E,,. 2= I,, =Rp : 2
E,_.1 ,, [Rp : 61

etc.

Alternately, the same computation could be viewed as a series of transactions.

TxI = E, E,,.,
Tx, = E, Ell."

Tx3 =, E3. E,:,

etc.

which are recursive nestings of complementary request and reply pairs.

A graphical interface that organized and displayed these sets of ordered request/reply
pairs, or transactions, would provide a good starting point for continuing research and
development.

4.2.14 Apparent vs. Actual (;rain Size

Although the TLC language and its virtual machine are designed with large grain, het-
erogeneous systems in mind, they are not defict limited to such applications. With the
addition of intrisincally finer grained primitives, e.g., future and race expressions. a finer
grain of concurrency can be realized. These could be implemented at the primitive level
as provided by the current version of TLC.

4.3 Major Enhancments

Numerous areas are important for longer term research related to TLC. They are identified
and described briefly below:

4.3.1 Kno%, ledge-Based Scheduling

As described in Chapter 3.3.5. the current TLC virtual machine does not apply any
domain knowledge or run time status information in making resource allocation decisions.
Adding such capability is currently viewed as perhaps the highest priority of the major
en.hancments.
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4.3.2 Extensions to Functional Programming

Multiple Schedulers

The single scheduler inherent in the present design is likely to become a bottleneck if the
,;vstem is heavily used. The ability to share the coordination of large numbers of tasks.
i.e.. had balancing, among mutiple schedulers is an important area of investigation.
Some current work in this area has been undertaken by T. Malone em et al in the design
of the ENTERPRISE system [NFGH88I. We feel that this work is appropriate and useful
to our abstraction and are working to provide the mechanisms to support such bid and
ask protocols.

Resource Managment

Resource control must be distributed with the consumer, i.e., the process that is requesting
use of the resource. To this end, a resource manager mechanism, similar to sponsors as
proposed by Manning, Hewitt, et al [Agh86], has been put in place.

Data Level Concurrency

Another type of concurrency that TLC capitalizes on is data concurrency. Recall the
example query from Chapter 2.1, page 8:

2efFz'ac-on ONCURRENT-SPASEA.CH(a :- z)
(SPASEARCH (TIME-LATE

(LAR-DISTANCE
(POSITION x)

(POSITION a)))
(SPEED x)
(SEARCH-RATE
(SEARCH-SPEED x)
(SWEEP
(ENVIRONMENT-FACTOR a)
(SENSOR-FIGURE-OF-MERIT :)
(SIGNAL a)))

Z))

Here. one must sequence over the elements in Displayed-Subs and select the submarine
with the largest value of SPASEARCH. Clearly, response time can be improved by
pipelining the processing of individual submarines rather than completely processing
each submarine in turn. Near term developments include the specification of streams
within TLC and generic operations on them. Thus. with the use of streams, data level
pipelining is available: The system can be computing the LAR distance for submarine 2
at the same time it is computing the Time Late for submarine 1.

30)
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PRIMITIVE MODULES

MODULE NAME MODULE INPUTS MODULE OUTPUT RUNS ON

SPASEARCH Total-time Probability-of-Detection Butterfly
Travel-time
Search-rate

TIME-LATE LAR-distance Time-late Local Symbolics
Max-speed

LAR-DISTANCE Position-1 LAR-distance FRESH Symbolics
Position-2

SEARCH-RATE Search-speed Search-rate Local Symbolics
Sweep-width

SWEEP Environment-factor Sweep-width VAX
Sensor-figure-of-merit

SPA-signal-factor

Figure 4.2: Decision Support System, Overview.

Primitives for Support Load Balancing

A TLC VM is a set of dispatcher objects, some defined locally, others distributed across
the network of computational resources.

4.4 Integration with an Intelligent User Interface

Figure 4.2 illustrates a high level view of a typical decision support system. The module
labeled User Command Interpreter accepts a command or query from the user and outputs
a combination of subsystem operations that when executed properly will address the user
request. The generation of this "program" depends on the User Command Interpreter's
knowledge of subsystem functionality. This program can be used as an input to TLC.

The User Command Interpreter module incorporates the subsystems commonly re-
ferred to as the man-machine interf'ace (MMIl) and the command processor, both of which
can be quite complex. For example. the MMI might include natural language understand-
ing and the command processor could require a complex problem solver that in the most
general case does program generation. Such systems are active areas of research.
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In the near term, TLC will be used by a software developer to implement decision
support system functionality. At run-time, the decision support system will retrieve and
execute developer written programs based on user command input. Eventually, to the
extent that program generation by the User Command Interpreter becomes available, one
will be able to support a wider range of user commands and generate the programs that
carry them out at run-time. Operation of the TLC is independent of whether it receives
its input from a human or another software module.
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5. Related Work

The work proposed here is related to work being carried out by a number of other
groups. It is most closely related to ongoing work in distributed operating systems[STB86,
BRS*85, JRT84]. MACH and Matchmaker[BRS*85, JRT841 have been used as the basis
for both multiprocessor operating systems and distributed operating systems, however,
the emphasis here has been on integrating systems based on Unix.

AGORA has been implemented on top of MACH to provide a shared memory virtual
machine independent of the underlying hardware configuration.

Cronus[STB861 has been developed with support for heterogeneity a primary design
goal. Because it runs under existing operating systems, it provides a basis for integra-
tion of existing as well as new application subsystems. Although it provides all of the
rudimentary mechanisms that are needed to support concurrency, it does not integrate
them into a set of high level language constructs that facilitate parallel programming.
Distributed operating systems have begun to address some of the issues related to man-
aging replicated resources, however, the schedulers associated with such systems have
not incorporated the domain-related intelligence that we plan to eventually provide our
intelligent scheduler.

Previous work on languages for parallel programming has had to address many of the
same issues related to expressing concurrency that are of concern to us. Languages such
as QLISP [GM881 and Multilisp [Hal86l have defined, implemented, and experimented
with different language extensions and constructs. However, these languages have been
oriented toward medium grain concurrency and have focused on procedural parallelism,
not parallelism associated with pipelining of data. Dataflow languages [Ack82] have
focused on pipelining of data but have been primarily associated with medium or fine
grain parallelism. TLC draws heavily upon the work of Carl Manning [Man87I and
the Message Passing Semantics Group at the Massachusetts Institute of Techonology. It
differs from that effort, however, in its degree of integration, i.e.. in TLC numbers are
not message passing objects, and. again. in its assumptions about grainularity. Our work
incorporates ideas developed by each of these groups to the extent that they apply to
very coarse grain parallelism. In addition, we are also focusing on providing simple
easy-to-understand as well as powerful constructs.

Work on next-generation software development environments is a third general area
where work related to TLC exists. ABE [ELH87, lEF*881, a multi-machine develop-
ment architecture for implementing intelligent systems. is perhaps the most closely related
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work. ABE supports hierarchical modular programming where different types of control
regimes called frameworks (dataflow, blackboard, transaction processing, and procedural)
can be associated with subets of the individual modules. ABE supports the construction
of (domain independent) skeletal systems which can be customized for particular appli-
cations. In contrast to TLC, however, ABE focuses on higher level issues and assumes
that an appropriate distributed operating system subsubstrate exists.

Although not directly related to the proposed activities, there is very interesting work
related to the more global problems of decision support systems going on at several
organizations. Current work at BBN on the backend of the JANUS natural language
system has emphasized decomposing a single user command into a composite command
to multiple underlying systems. Similar work at ISI [PB88] has emphasized the command
processing problem.
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Appendix A. Underlying TLC Layers

.-. TLC: At the Language Designer's Level

Much of the current compiler's work lies in translating user-level forms, such as let
and if, into parse trees of diet and dif forms.' Three forms, defexpression, defcommand
and defmacro forms are provided for bootstrapping application level constructs into the
compiler's primitives, i.e., diet and dif. For instance, let. whose syntax mimics the COM-
MON LISP form by the same name, is defined as:

(DefExpression LET (let-arms let-body)
'(diet , (mapcar ' (lambda (arm)

(let ((let-variable (car arm))
(let-exp (parse (cadr arm))))

'(,let-variable , let-exp)))
let-arms)

,(parse let-body)))

which indicates that its semantics closely mimics that of diet, described on page 42,

below.

Sequential analogs for let, i.e., let*, are available by treating each let.arm as a recur-
sively nested diet arm:

(let* ( (vl <ex-p-l>)
(v2 <exp-2>)

('n <exp-n>)
<body>)

is exactly equivalent to:

(diet ((vl <ez:p-l>))
(diet ((v2 <e:p-2>))

(diet ( (vn <ex:p-n>))
<body>)))

'These are the basic fomis out ot which the compiler builds more complex behaviors. See A.3. l, page
42. below for more complete treatment.
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Finally, the cIF form. which was defined as a macro in Chapter 3.3.3, page 20:

(DefE:-:pression cIF (pred then-clauses else-clauses)
(let ((then-value (parse (last then-clauses)))

(else-value (parse (last else-clauses))))
(parse
'(if ,predicate

(let ,t(mapcar *' (lambda (then-clause)
'(ignore ,(parse then-clause)))

(butlast then-clauses)))
(let ,@(mapcar #' (lambda (else-clause)

'(ignore ,(parse else-clause)))
(butlast else-clauses) ) ) )

A.1.1 Sequencing Evaluation for Flow Of Control

Cases arise in which "oncurrency should be limited, as in "flow of control" problems.
COMMON Lisp, for instance. specifies such an order of evaluation for its boolean oper-
ations, and and or. Sequential analogs are also defined in TLC as compiler primitives.
An example of one is or*:

(DefExpression OR* (&rest subexpressions)
'(if (null subexpressions)

NIL
(parse (if , (car subexpressions)

T
(or* ,@(cdr subeporessions))))))

and* is straightforward and is omitted.

A.2 Present Shortcomings

From an operational perspective, however, both solutions, the simply concurrent case
using or and more constrained, sequential case using OR*, lack a certain elegance and
descriptiveness. What is preferred is some way of saying: Evaluate all of the subex-
pressions concurrently. As soon as one returns a positive result, return that result and
stiffle the on-going computation. In the present state of the language we have no way of
expressing this.

A\.3 TLC: At the Primitive Level

A\.3.1 Internally (enerated Forms

diet and dif are the stuff out of which a spectrum of linguistic entities are formed; users
do not program in terms of these -rather their code is translated into complex nestings
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of these forms. Specificially, the syntax of diet is:

DLET (DLET (<arm>,) <body>)
<arm> (<letvar> <e:pression>)

<letvar> <symbol>

<e:pression> DLET I DIF I <symbol> I <constant>

<constant> <number> I <quote-exp> I <symbol>

<quote-e::p> '<expression>

<body> <ex:pression> I <form>

<form> <e:.pression>*

and its semantics are as follows: Each <arm> is evaluated concurrently, and each
<form> comprising the body is evaluated concurrently. Evaluation of the <body>
is postponed until the value for each <letvar> is available. Hence, a joining contin-
uation is created at the border of each <body>. The value of a diet expression is the
value returned by the last <expression> as it appears in the program text.

Primitive flow of control is provided by dif forms. Its syntax is:

DIF (DIF <pred> <then-arms> <else-arms>)

<pred> <expression>
<then-arms> (then <form>)

<else-arms> (else <form>)

and its semantics are: <pred> is evaluated first. If <pred> returns a non-nil value, the
<then-arms> are evaluated; the <else-arms> are evaluated otherwise. The eval-
uation of the arms entails the concurrent evaluation of the <expression>'s enclosed
by the <form>'s. Without loss of generality, the then and else may be considered
shorthand for diet's, as in:

(dif <pred>
(then <exp-l> <exp-2> <exp-3>)
(else <e::p-l> <exp-2>)

is equivalent to
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(if <preci>
(let ((ignore <exp-l>)

(ignore <exp-2>)
(value <exp-3>))

value)
(let ((ignore <ex.p-l>)

(value <e:-p-2>))
value))
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