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1.0 INTRODUCTION

The present work is the continuation of a study of processes leading to

3 the production of negative ions in an optically-pumped plasma. In the prior

reporting period a search had been made for the ion pair production process:

3 Li** + Li** 4 Li + + Li- (1)

which involves the collision of two Rydberg atoms prepared by optical pump-

ing. In spite of a careful search, no evidence was seen for ion pair produc-

3 tion in lithium. Instead, a very high rate was measured for associative

ionization:

Li** + Li** -* Li++ e (2)

I 7 3 -1
Rate constants as high as 5xlO - cm sec -  close to geometric, were

U measured for lithium excited to a principal quantum number of 9. This data,

together with a new model of associative ionization, was reported pre-

3 viously (1 ) and has been published.
(2 )

Negative ions detected in this experiment were deduced to have been

I formed by attachment to vibrationally excited lithium molecules(3 )

Li2 (v*) + e 4 Li + Li (3)

The presence of vibrationally excited molecules was a by-product of optically

3 pumping the Li2 (A-X) transition with off-color light close to the 671 nm

Li(2s-2p) resonance transition. The Li2 (A) state radiatively decays into

vibrationally excited Li2 (X) states, and this route has been used to greatly

enhance Li production in a prior experiment.(4)



I

I One aspect of the experimental data which merited further study was the

3 presence of an extremely rapid rise in Li production with optical pump

intensity (on the Li(2p-Rydberg) transition) at the point where an optimum

existed for Li2 formation.(
2 ) There was not present a similarly large

2

increase in Li+ (i.e. electron density) and it therefore appeared that some

other process could be forming additional Li2 (v*) molecules in this in-

3 tensity range, or possibly even that a different mechanism for Li produc-

tion was coming into play. At lower intensities Li production had close to

3 a second power dependence on (2p-Rydberg) pump intensity in agreement with the

positive ion production, and hence electron production, indicating that at-

tachment was the principal Li formation process. At the steepest part of

m the Li production curve a slope of 4 was measured, on a log-log plot

against (2p-Rydberg) pump intensity.

3 The aim of the present work was to investigate the possibility that an

additional efficient route to Li formation existed in the optically pumped

Iplasma of this experiment. The approach was to continue measurements in the

intensity regime that exhibited the steepest slope dependence of Li on

Li(2p-Rydberg) pump intensity, particularly looking at the time-dependence of

1 Li formation, to look for evidence, for example, of an energy transfer to

Li2 (v*):

Li** + Li2(v=O) # Li3" 4 Li2 (v*) + Li (4)

Another possible mechanism was energy transfer from Li(2p) to Li2 (v*) via

Li(2p) + Li2 (v=o) 4 Li2(v*) + Li(2s) (5)

3 which can occur via the Li2 (A) state because of close energy coincidences of

the Li(2s-2p) transition with Li2 (A-X) transitions.

-
I -2-
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I In the event, repeated experimental difficulties were experienced which

5 prevented the acquisition of significant new data. However a theoretical

effort was mounted which gave increased insight into the role of electron

5 density increases in possibly causing the rapid negative ion increase. This

modeling will be discussed in the following sections.

I
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1 2.0 KINETIC MODEL OF OPTICALLY PUMPED LITHIUM PLASMA

I A kinetic model has been constructed which includes collisional ioniza-

3 tion, photoionization, electron collisions and recombination processes. In

addition to collisional ionization

Li(nl) + Li(nl) 4 Li+ + Li -e (6)

there is also at these low beam temperatures a strong component of associative

I ionization:

Li(nl) + Li(nl) 4 Li+ + e- (7)
2

Rates for processes (6) and (7) are shown in Fig. I as broken and continuous

I curves respectively.

In order to simplify the optical pumping equations it is assumed that at

I all times electron collisions keep the 2p and nl spin-orbit sub-states mixed

among themselves in the ratio of their degeneracies, although this cannot be

true at early times. It may then be shown, taking the case of 3d pumping as

3 an example, that

= Isp (2Sl/2-2 P1/2) (5n2s-n2p) (8)
2p husp

and

3d Ipd (2 P3/2-2 03/2) (2n2p-n3d) (9)I13
d =u hpd

I -4-
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I where I and I are the in-band optical pump intensities on the (2s-2p)"p pd

and (2p-3d) transitions, and usp, Vpd are the transition frequencies.

Each of the (2S1/2 -
2P1 1 2 ) and (

2SI1 2-2 P31 2) subtransitions is

pumped by intensity Isp and each of ( 2P3 1 2-2D3/2), (2P31 2-2D5/ 2 )

by I pd. The cross sections are

2 2

S 12- 12) = 5xi01 v cm2  (10)

3 o(23/2- 3/2) = 8xlo-l/ cm2  (11)

where T is the beam translational temperature in OK.

Electrons in this plasma have a high probability of gaining energy by

superelastic collisions, as previously demonstrated in a detailed model for

the intense excitation of sodium vapor. ( 5 )  Because of the possible im-

portance of hot electrons in one or multiple step ionization of the 3d state

3 the electrons were accounted separately as two groups, those with energy less

than 1 eV and greater than 1 eV. Energy relaxation of the hot electrons by

e-e collisions becomes important above a cold electron density of - 10 cm-3

3 and this process is included.

Radiation trapping is important on the (2p-2s) transition and can also

3 affect the (3d-2p) transition once the 2p population has risen. A (2p-2s)

trapping factor of 20 was used, as being representative of experimental condi-

m tions in prior work. ( 2 ) The (3d-2p) factor was taken as 3, based on 2p

I densities in a typical simulation. The application of the following results

to scale sizes much greater than or less than 1 cm should include a re-

m appraisal of the effect of radiation trapping.

-6-



Rates used in the simulation are listed in Table 1. Most of the elec-

tron collisional rates are listed as order of magnitude estimates based on theI (6)
analogy with sodium rates and other estimates of Rydberg collisional

rates. (7) The most important contributors to ionization are processes (2)

and (7) above. In order to provide a two-step ionization route from Li(3d)

to Li an intermediate Li(nl) state is included which is g1ven rates appro-

priate for the range 5 < n < 10. Correct treatment of the plasma at densities

exceeding 10I cm-3 would involve the inclusion of many nl states because

a local thermodynamic equilibrium (LTE) is estabished between Li+ and Li

(n > 5). It follows that the evolution of these optically pumped plasmas can-

I not be followed out of the transient regime and into steady state by the

present model.

I
I
I
I
I
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TABLE 1

UIndex Process Rate Ref.

31 Li(2s)+hu4Li(2p) alIs /hu 7 -

2 Li(2p)-*Li(2s)+hu (1/20)*3.72x10 sec

3 Li(2p)4-hv4Li(3d) CA d /hu 7 -I4 Li(3d)4+Li(2p)+hue; (1/3)*7.16xl sc

5Li(2p)4e-4Li(2se .xO7cm3ec-(),6

6 Li(3d)4-e-*Li(2pe 2.5xlO 7 cm 3sec-1  (e)

7 Li(3d)4-e c4Li(2 5)4-e h208c sec- (e)

8 Li(nl)+e *Li(3d)+eh 10- cm 3sec- (e),[7]

9 Li(nl)4-e 4Li + +2e 10 -6cm 3sec - e10c,h' c -l8cm3s -1 (e)
10 Li( 3d) -+Li++e xOc e

11 e +.e -2e (n /1056)sec 1  (e)h 4-c - - 3 -1(e
12 Li +. 2e c4Li(nl)+Li+e c10 cm sec(e

13 Li+ e L6n)xl0 W 7 cm 3sec -1 e,[8]1 13 L4ec'L~14L(p 93 -1
14 Li(3d)+Li(3d)4L1 4Li(2p)+e h 500l cm sec- [2],[9]

115 Li(nl)4-Li(nl)4Li + Li(3d).e h 5x10- cm 3sec- 2,9

16 Li(3d)+Li(3d)-*Li +e- U10-9cm 3 sec- -1 [2]

17 Lin)L~l-L elxlO -7cm 3sec [ 2)

18 Li(nl)4*Li(3d)+hi 106 se-1I (n1=9d) (e)
19 (i +- -+i+Li +2- 0- 6 cm3 se-1 (e)

320 Li 2(v*)+e ch~i -Li(2s) 2xi0-8 cm 3sec- -1 [3]

21 Li2(v*)+e 4L2 (v=o)ie - 109 cm 3 se-1 (e)

I22 Li(3d)+h,-*Li +e col a=6x1018 cm2  [10]

(610 nm)
a -9 18 cm2

(671 nm)

323 L(deh *in)ec0- 6 cm3 sc-1 (e)
24 Li + +Li 4*Li(3d)+Li(2s) 1.5xl10- cm 3sec -1(e),[11]

U -8-
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3.0 APPLICATION OF MODEL TO ASSOCIATIVE IONIZATION EXPERIMENT

In this experiment, (1 ,2 ) the duration of optical pumping was 3 nsec.

In the model runs that follow we employed a 10 nsec duration of optical pump-

ing simply in order to increase the integration stepsize and allow fast turn-

around on a desktop computer. This approximation did not materially affect

the results, which involve a typical timespan of 1 usec for excited state-

I excited state interactions.

In order to review the experimental information we present a typical

plot of Li+, Li2 and Li currents versus optical pump intensity on

the Li(2p-Rydberg) transition (Fig. 2). A constant saturation optical flux is

applied to the Li(2s-2p) resonance transition. We would expect a model to be

able to duplicate the slopes (1.8 and 2.2 for Li2 and Li+ respectively)
42

and the dramatic reduction in Li2 at high pump intensity.2
Figure 3 shows the model performance for the data set in Table 1. By

comparison with the experiment in Fig. 2 we note that the slopes for Li+ and

Li + are of the correct order (2) but do not differ from each other. Also
2

the Li2 current begins to decrease at high intensity, but does not de-

crease dramatically in the way that the experimental data does. A second

model run with process (9) of Table 1 increased by an order of magnitude is

shown in Fig. 4. This time there is a divergence between the Li+ and

Li;+ slopes and a substantial decrease in Li2 at high pump intensity.

3 Apparently the electron avalanche process:

Li(nl) + e- 4 Li4+ + 2e- (12)

I-9-
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can account for many features of the observations. One major discrepancy re-

mains, however. The model Li signal is one order of magnitude too large

relative to Li*. This is a consequence of the relative rates for

processes (6) and (7), which are derived from the Olson calculation (9) and

experiment, (2) respectively. Rather than accept that the ratio of these

rates is incorrect we prefer to believe that the experiment has under-recorded

Li relative to Li+, possibly by the mechanism outlined below.

+ 
.

Li is formed by two principal mechanisms, processes (6) and (12)

above. At low optical pump intensity process (6) dominates. However, Li+

ions formed in the latter process carry additional energy, due to their birth

on a repulsive potential energy curve of the transient Li+ ...Li(N) com-

plex. (2 ) Because of this energy there is the possibility that many of these

Li ions can move outside the acceptance aperture of the time-of-flight mass

spectrometer. A sample calculation (Fig. 5) shows the distribution of energy

increments that Li ions receive in addition to their original kinetic

energy. The net result is that 1000 K Li atoms (3/2 kT=O.013 eV) gain approxi-

mately the same energy again (on average) through ionization via process (6).

This alone accounts for an increase in extracted ion beam divergence of

times, and a decrease in collection efficiency of 2 times at the 0.5 cm aper-

ture of the channeltron ion detector. An additional loss occurs because the

current density of the extracted ion beam is reduced at its source due to

lateral expansion of the ions in the 2 usec before ion extraction. This ef-

Ifect is difficult to quantify, but could be responsible for a further factor
3of two decrease in collected Li+ relative to Li ions. There is2

evidence from the time-dependence of the collected Li4 current that early

I

-13-
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expansion reduces the Li+ signal. Figure 6 shows the Li signal for

0.1 psec and 2 psec extraction delays. There is approximately a factor of two

greater width in the case of immediate extraction, indicating that half the

Li + ions are not collected after a delay of 2 usec. The Li pulse is ex-

tended on its trailing edge principally because of continued ion production

during the 400 nsec duration of the ion extraction pulse.

Overall a factor of 4 inefficiency in Li collection is estimated, and

when this factor is applied to the experimental data of Fig. 2 there is

reasonable agreement at low optical pump intensities with the model prediction

of the Li :Li 2 ratio. At higher intensities it is possible that Li+

extraction is inefficient due to ion space charge.

A further variation of model parameters was considered Runs were made

with the data set in Table 1 modified to have a Li(nl) de-excitation rate of
-5 3 -l

10 cm sec due to electron collisions (process index 8). In thisI
case an electron avalanche does not occur, and Li2 continues to grow with

pump intensity in spite of increasing destruction of Rydberg states. The

Li- +
and Li2 slopes are equal to 2.0.

In summary, the most convincing explanation of the experimental data of

Fig. 2 is the onset of an electron ionization avalanche via process (12). For

completeness the time histories of ion production predicted by the model are

compared with experiment in Figs. 7 and 8. The Li+ density decreases at

late times due to recombination, which is included in the model. Experi-

mentally there are signs of this decrease at higher optical pump intensity.

-15-
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Fig. 8 Model Calculation of Ion Densities as a Function of Delay After Ex-
citation on the Li (2s-2p) and (2p-9d) Transitions, with I W cm-2

and 2 W cm-2 Respectively for a Duration of 10 nsec
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4.0 APPLICATION OF MODEL TO CONTINUOUS OPTICAL PLASMA PRODUCTION

In application of the model to the optical pumping of a supersonic

lithium beam (1 2 ) the interaction time is limited by the transit velocity of
the beam, which is - 3 x lO5 cm sec -1 (Ref. 3). For the purposes of dis-

cussion an optical pump auration of 1 psec is chosen. Two-step excitation to

the Li(3d) state is considered. The electron density at 1 psec is shown as a

lfunction of the two pump intensities in Fig. 9. After 1 psec has elapsed the

3 fractional ionization can reach several percent. Approximately ten times

greater intensity is required on the (2p-3d) transition than on the (2s-2p)

transition in order to reach saturating ionization. The time evolution of the

electron density is shown in Fig. 10. Although initially the hot electrons

I dominate, energy relaxation ensures that more than 97 percent of electrons are

3 cold at 1 psec.

If it is postulated that all the Li2 molecules in the beam (4 percent,

or more, of the total number density) have been optically pumped ( 4 ) to

vibrationally excited states Li2(v*) which have a high rate of attachment,

then high densities of Li can form. In Fig. 11 the Li density is shown

3as a function of Li beam density at time 2 usec after the end of a I usec

period of optical pumping. The increasing beam density is acompanied by in-

creasing plasma and Li density, at the fixed optical excitation intensities

of 0.1 W cm- 2 and 1 W cm - 2 on the 2s-2p and 2p-3d transitions respec-

tively. A limit to Li density is reached due to the mutual neutralization

process

Li+ +.LI - -2L0 (13)

-19-!
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Because of the high beam translational velocity (3 x 105 cm sec I) the

peak Li- density of 2.2xlO I cm- 3 corresponds to a Li- current density

of l1O mA cm-2

It is of interest to minimize the ratio of electrons to Li ions in

order to improve the quality of the extracted ion beam. This may be achieved

by maintaining high Li and hence Li2 (v*) density while reducing the 2p-3d

pump intensity. Figure 12 illustrates that the reduced electron density leads

to a delayed maximum in Li density, the delay exceeding 20 usec in some

I cases. At a beam translational velocity of 3xlO 5 cm sec - l the Li-

density can peak several cm downstream of the excitation region. The actual

peak of Li density occurs when destruction by mutual neutralization equals

5 formation by dissociative attachment. The ratio of electrons to negative ions

can be reduced to about unity without much reduction in Li current density.

I In summary, a plasma density of between 10 1 and 1O1 2 cm- 3 can be

continuously generated in a lithium beam of 10 3-1014 Li atoms cm- 3 by

the use of less than 1 W cm-2 on each of the (2s-2p) and (2p-3d) transi-

m tions. The dominant ionization mechanisms are collisional and associative

ionization of Li(3d) atoms. Negative ions can form at densities up to

11 -3
2 x 10 cm , limited only by mutual neutralization with positive ions

and by the supply of vibrationally excited Li2 molecules. The electron

m density can be reduced to below the negative ion density without much reduc-

m tion in Li current density.
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5.0 CONCLUSIONS

I Several features of the experiments with optically pumped Rydberg atoms

are described well by the kinetic model presented above. In particular it

appears that an electron avalanche can occur at sufficiently high Rydberg

I density (> 10I cm-3 for n=9). The model predicts more Li* than we

observe, but it is possible that Li+ is under-recorded relative to Li2

because of its kinetic energy of formation in the collisional ionization

m process.

The application of the model to a continuously pumped lithium supersonic

beam showed that modest laser powers (< 1 W) were sufficient to maintain a

high fractional ionization. On the hypothesis that continuous optical pumping

also created vibrationally excited Li2 molecules a relatively high Li
-2

current density (10 mA cm ) is projected, produced at up to and exceeding

unity ratio of negative ions to electrons.

I
I
m
I
i
I
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