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Abstract

Present day systems, intelligent or otherwise, are limited by the conceptualizations of the

world given to them by their designers. This thesis explores issues in the construction of

adaptive systems that can incrementally reformulate their conceptualizations to achieve

computational efficiency or descriptional adequacy. A detailed account of a special case

of the reformulation problem is presented: we reconceptualize a knowledge base in terms

of new abstract objects and relations in order to make the computation of a given class of

queries more efficient.

Automatic reformulation will not be possible unless a reformulator can justify a shift

in conceptualization. We present a new class of meta-theoretical justifications for a re-

formulation, called irrelevance explanations. A logical irrelevance explanation proves that

certain distinctions made in the formulation are not necessary for the computation of a

given class of problems. A computational irrelevance explanation proves that some dis-

tinctions are not usefd with respect to a given problem solver for a given class of problems.

Inefficient formulations make irrelevant distinctions and the irrelevance principle logically

minimizes a formulation by removing all facts and distinctions in it that are not needed

for the specified goals. The automation of the irrelevance principle is demonstrated with

the generation of abstractions fron .first principles. We also descril the implementation

of an irrelevance reformulator A experimental results that confirm ou theory.
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Chapter 1

Introduction

1.1 The Need for Reformulation

One of the most important hypotheses in the field of artificial intelligence (AI) is the

Physical Symbol System Hypothesis [NS76]: Computation over symbolic representations

is both necessary and sufficient for obtaining intelligent behaviour. Over the last 30 years,

research in Al in this paradigm has concentrated on developing sophisticated methods

of controlling search in the space defined by a fized representation provided by a human

programmer. In this thesis, I investigate the complementary question of how to reduce or

avoid search by changing representations automatically. This is the reformulation question

first introduced in [New65].

The main motivation for reformulation stems from the observation that intelligent

control of search cannot always fix problems caused by a bad representation. A dramatic

example that illustrates this is the mutilated checkerboard problem [McC64]. Suppose

we cut off two diagonally opposite corners of an 8 by 8 checkerboard. Can we cover this

mutilated board by tiles of dimension 1 by 2? The naive formulation of this problem

demonstrates the impossibility of achieving such a covering by trying all possible arrange-

ments. A reconceptualization of this problem uses the fact that the two diagonally opposite

squares are of the same colour and that each tile covers one square of one colour and one

of the other colour. Since there are 30 squares of one colour and 32 of the other, there

is no possible tiling. This reduces the solution that uses exhaustive search to a simple

counting argument. How can a system discover this formulation of the problem? Newell

and Simon pose this question in their Turing Award Lecture in 1975. They go on to add

2



CHAPTER 1. INTRODUCTION 3

that:

The whole process of moving from one representation to another, and of dis-

covering and evaluating representations, is largely unexplored territory in the

domain of problem-solving research. The laws of quantitative structure govern-

tng representations remain to be discovered.

The challenge above remains open even today: the power of most Al systems still lies in

the representations given to them by their human designers. A first step to meeting this

challenge is the theoretical investigation of, and the development of, tools to incrementally

re-design representations-this is the reformulation problem. Automating incremental

reformulations is very important, because it will go far towards relieving humans of the

tedium and inflexibility of programming all possible conceptualizations of the world into

AI systems.

Inspired by the above, the theoretical framework developed in the thesis is designed

to automate the process of redesigning representations, which until now has been done

entirely by humans. Our practical interest is in the design of a completely autonomous

robot that functions well under resource constraints in changing environments. Imagine

a robot with a very detailed theory of the world. If the environment demanded faster

prediction, the robot should build an approximate theory of the world on top of the

more detailed one to allow for efficient computation. Both theories are about the same

phenomena; the abstract theory is a reformulation that makes fewer distinctions and is thus

much more efficient. Conversely, a system with a very crude theory, say about substances,

would do very well to reformulate by introducing distinctions based on states of matter.

A robot designed to pick objects off of an assembly line should reformulate its conceptual

hierarchy of objects to correspond to distinctions made on the basis of graspability.

In the mutilated checkerboard problem, replacing the initial set of distinctions based

on board positions by the more abstract one based on colour (or board positions modulo

2) made the solution of the problem "transparent". Reformulation is the science of remov-

ing irrelevant distinctions and introducing necessary ones to accomplish goals effectively

and efficiently. Our aim in this thesis is to uncover general principles of change of con-

ceptualizations which are notation- as well as domain-independent. We propose a general

methodology for automating reformulations centered around these principles and instan-
tiate it in the context of the specific problem of automating abstraction reformulations for
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computational efficiency 1 .

But first, are there such general principles? And second, are they generative-that is,

will they suggest new reformulations? If one sets out to propose a theory of reformulation

that could generate all the spectacular reformulations in the history of science, it would

appear that the answer, at least to the latter question, is negative. The reformulation

of the geocentric model of planetary motion to the heliocentric one, as well as the fre-

quency domain characterization of time-dependent behaviour by the Laplace transform,

are special-case reconceptualizations that depended on then-undiscovered properties of

problems in those domains. However, these revolutionary transformations account for a

very small percentage of the reformulation phenomena in humans. Most reformulations

are incremental and by comparison with the history of science examples, mundane. For

instance, we conceptualize a road as a line when planning a trip, as a surface when we

cross it, and as a volume when we attempt to dig it2. We move between interval- and

instant-based representations of time fairly easily. These grailarity [Hob85] trasforma-

tions are fairly routine in humans. They are characterized by the incremental refinement

or coarsening of distinctions made in the description of phenomena in order to make the

goals of the agent easy to achieve. This thesis attempts to find invariants in granularity

shifts and state them precisely enough to generate the shifts automatically.

1.2 Towards a Formulation of Reformulation

One of the main difficulties in posing the reformulation question comes from the fact

that reformulation is an ill-understood phenomenon. Also, as with creativity, there is a

mysticism associated with the ability to reformulate. Our first task is to isolate interesting

and useful parts of the phenomenon that permit a relatively intuitive knowledge-based

solution.

When we conceptualize a problem, we first identify the objects, functions and rela-

tions that are needed to state it. These elements represent the distinctions necessary to

describe the domain as well as the goals. Reformulation is about changing distinctions:

changing the objects, functions and relations needed to formulate the problem. Semanti-

cally, reformulation is a shift in conceptualization. Conceptualizations are communicated

'The mutilated checkerboard problem is a compelling example of this.
'This example is thanks to Jerry Hobbs.
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to a machine by writing sentences in an appropriate language. Reformulation is achieved

by changing representations or encodings of conceptualizations.

A reformulation is correct with respect to a set of goals if the answers to the goals

are preserved across the conceptual shift. The answer to the goal of tiling the mutilated

checkerboard is preserved in the new formulation; the reconceptualization in this case is

a correct one. Other standard examples of correct reformulations include the rectangu-

lar to polar coordinate transformations, and the Laplace and Fourier transforms. In all

these cases, the basic primitives used to describe the problem are changed as a result of

the reformulation. This shift in conceptualization causec a reconfiguration of the search

space of solutions to a problem. For example, in the initial formulation of the mutilated

checkerboard problem, there were 62 distinct objects; the reformulation grouped them

into 30 objects of one colour and 32 of another. This regrouping causes the search space

to shrink from size 262 to I. Reformulations are thus for a purpose: all of the conceptual

:az.sformations above lead to formulations that axe computationally effective for certain

classes of queries. A reformulation is called good if it leads to faster solution of the goals.

Before defining reconceptualizations, we provide a formal definition of a conceptual-

ization.

Definition 1 A conceptualization is a triple (0, F, 1?) where 0 is a set of objects called

the universe of discourse; Y, called the functional basis set, is a subset of functions from

on to 0, and I", called the relational basis set, is the subset of relations on *Rm, for n,m

in the set of natural numbers.

We can conceptualize kinship among a set of individuals as in Figure 1.1. A conceptu-

alization makes our ontological commitments explicit. Another conceptualization of the

kinship problem is in Figure 1.2. The canonical language Cc of a conceptualization C has

a distinct symbol name for every object, function and relation in C.

Definition 2 An encoding f of a conceptualization C is a set of sentences in the canonical

language Cc such that C is one of the models of e under Tarskian interpretation.

An encoding of the conceptualization in Figure 1.1 is in Figure 1.3.
We will say that a conceptualization is definable in terms of another if it can be

constructed from the other, along with some background knowledge in the form of another

conceptualization A.
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Objects: the set P of people {A,B,C,D,E,F,G}

Functions: the function Father from P to P, which is the set
{(A,B),(A,C),(B,D),(B,E),(C,F),(C,G)}

Relations: the relation Ancestor, which is the following subset of p 2,
{(A,B),(A,C),(A,D),(A,E),(A,F),(A,G),(B,D),(B,E),(C,F),(C,G) }

the relation SameFamily, which is the set p 2

Figure 1.1: The conceptualization C1

Objects: the set P of people {A,B,C,D,E,F,G}

Relations: the relation FoundingFather, which is the following subset of P 2,
{(A,B),(A,C),(A,D),(A,E),(A,F),(A,G)}

the relation SameFamily, which is the set p 2

Figure 1.2: Another conceptualization C2

a

bc

d e f g

Father(a,b)
Father(a,c)
Father(b,d)
Father(b,e)
Father(c,f)
Father(c,g)
Father(x,y) * Ancestor(x,y)
Ancestor(x,z) A Ancestor(z,y) * Ancestor(x,y)

Figure 1.3: The encoding E, of C,
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Definition 3 A conceptualization C2 is a reconceptualization of C1 with respect to another

conceptualization A if the elements of C2 are definable from C, and A. The definitions of

the elements of C2 in terms of A and C1 constitute the articulation theory between the two

conceptualizations.

In our kinship example, the conceptualization C2 can be constructed out of C, by dropping

the Father and Ancestor relations and introducing the new relation FoundingFather

which is a subset of the Ancestor relation. Since A = 0 here, we have not introduced

any new distinctions in this shift; we simply coarsened the Ancestor distinction. This

reconceptualization is an abstraction. In the mutilated checkerboard problem, the new

object-set of red squares-is definable in terms of the old conceptualizaton and set theory

introduced via -A. When A is non-empty, the new conceptualization makes distinctions

not present in Cl; we shall call such reconceptualizations refinements.

Definition 4 C2 is a correct reconceptualization of C1 with respect to A and the set of

goal relations G if G is definable in C2 only if it is definable in C1 .

A goal relation is definable in a conceptualization when it can be constructed in that con-

ceptualization. In a correct reformulation, G is preserved exactly across the conceptual

shift; G is also already definable in the initial conceptualization. These reformulations

are called deductive. The abstraction of the conceptualization in Figure 1.1 to Figure 1.2

preserves the SameFamily relation; it is an instance of a deductive abstraction reformu-

lation. A reformulation that makes an undefinable goal definable, as in the introduction

of the concept odd-integer in the LeX system [Utg86], is an inductive reformulation.

Definition 5 A set of sentences E 2 in the language L is a re-encoding of E, in the same

language if the two sets of sentences have the same models.

Whereas a description of reformulation at the level of conceptualizations captures cor-

rectness constraints, it is too coarse to model computation. To describe computational

constraints on the solution of the goal, we use an encoding of the conceptualization and

describe its computational properties with respect to a given problem solver. Since our

chief interest in this thesis is in describing and automating reformulations for computa-

tional efficiency, we will define what it means for a reformulation to satisfy computational

constraints.



CHAPTER 1. INTRODUCTION 8

Definition 6 A reformulation C2 of the conceptualization C1 is good with respect to a

problem solver PS and time and space bounds S on the computation of the goal wff g in

Cc2 if there is an encoding e of C2 that allows computation of g using PS within S. The

interpretation of g in C2 is the goal relation G.

The reformulation problem can now be described as follows:

Given

* the initial encoding .1 of the conceptualization C,

* A description of the problem solver PS.

s Correctness constraints: specification of the goal relation G

e Goodness constraints: time and space bounds on the computation

of the goal relation.

Find

@ a correct and good reconceptualization C2 .

Before we proceed with a positive characterization of the space of reformulations for

computational efficiency, it is worthwhile to recount that

Theorem 1 There exist problems whose computational efficiency cannot be improved by

reformulation.

Proof: The Traveling Salesman Problem cannot be made easier to solve by a represen-

tation shift. The only way to improve efficiency is to change the solution criterion - i.e.,

accept a satisficing [Sim82] solution as opposed to the optimal one. 0.

The study of NP-complete problems in theoretical computer science tells us that there

are intrinsically hard problems- no clever representation or control strategy can reduce

the complexity of such problems. The significance of NP-completeness results to reformu-

lation is analogous to the significance of the second law of thermodynamics for physics

and engineering; they tell us what is reasonable to attempt.

We represent formulations as partial logical theories and regard conceptualizations as

their intended models. We modify the notion of a standard first order model to include

not only the objects 0, but also the functions F, and the relations 1. A model is thus the

structure (0, .F, ). In this thesis we examine those shifts in formulation that correspond

to reconceptualizations of their models, and which lead to faster solution of a given goal
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schema. In the traditional AI manner, we ask whether we have in-principle testers and

generators for partial theories and their intended models.

1. Generation: Given a model (O,.F, R), what is the space of possible reconceptualiza-

tions that preserve answers to the goal? Given a partial theory, what is the space of

reencodings of this theory?

2. Recognition: Given two conceptualizations, can we determine whether or not the

goal schema is definable in both? Can we determine whether or not two reencodings

-re equivalent modulo a goal?

In Chapter 2, we consider the generation question 7.t length. To give a flavour of the style

of analysis, let us consider the class of information-losing or abstraction reformulations for

the present. The space of possible reconceptualizations in this case consists of all those

formulations whose conceptual primitives are definable from the given conceptualization.

For a finite conceptualization with n0 objects, the number of definable relations is 0( 2n-).

This space is extremely large even for small values for n0.

With respect to the recognition question too, we have the following mixed bag of

results.

Theorem 2 For finite conceptualizations C, and C2 , and a finite goal relation G, the

problem of determining Definable(G, CI) = Definable(G, C2) is decidable.

Theorem 3 For two encodings E, and E2 , and a goal schema g, the problem of deter-

mining Et I- g = E2 I- g is undecidable.

Proof: In general, it is undecidable whether or not two encodings E, and E2 are equivalent

with respect to a goal schema g. The proof proceeds by reduction to the halting problem

and is in [Shm86]. 0.

The significance of these negative results is that a highly powerful mechanism for

inventing completely novel representations is unlikely to exist. Also as pointed out by

Simon, in Models of Discovery Processes, such a mechanism would have poor psychological

plausibility because it would predict far more novelty than what occurs.

The positive condusions to be drawn are

1. Only abstraction reformulations can be automated at the present, because we have

an in-principle generator for the space of such reformulations.
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Solve(x) ,- Lookup(x)
Solve(x) - Lookup(x#= y) A Solve(y)

Solvc(xAy) -- Solve(x) A Solve(y)
Solve(-'x) -- Thnot(x) (negation by failure)

Figure 1.4: A Simple Depth-First Backward-Chainer

2. Constraints on recognition restrict the form of the new abstraction. In particular,

we will constrain all definitions to be universally quantified Horn formulae.

1.3 An Example

To instantiate the components of this problem, we present an example: this is a refor-

mulation that is familiar to computer scientists - the re-representation cf an equivalence

relation by a partition.

" The initial encoding and conceptualization:

We take the kinship problem conceptualized in Figure 1.1 and its encoding in Fig-

ure 1.3. Notice that the relation Ancestor is defined to be the transitive dosure of

Father. The goal is to determine whether or not two people in P belong to the same

family: two people belong to the same family if they have a common ancestor.

" The Problem Solver:

The problem solver that works on this formulation of the problem is a depth first

backward chainer (e.g., Prolog). The axiomatic specification of the problem solver is

in Figure 1.4. The simple cost model of problem solving actions shown in Figure 1.5

is used to determine how expensive the process of proof construction is in terms

of time and space. The specifics of the time and space cost functions are not very

important; the methodology proposed here works for any well-defined cost model.

" The correctness and goodness constraints.

The correctness constraint is the preservation of the SameFamily relation. The re-

formulation and the present formulation have to behave ideL ically with respect to

this goal-schema. The goodness constraints are:
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Proof-Height(x) = If x in Formulation then cl
Proof-Height(x) = If x4=y in Formulation then c2 + Proof-Height(y)

Proof- Height(xAy) = Max(Proof-Height(x),Proof-Height(y))
Cost (Lookup(Ground Literal)) = c,

Cost(Lookup(xy)) = C2

Figure 1.5: A Cost Model for the Problem Solver

- The new formulation should be able to solve any SameFamily query faster in

the new formulation. In particular, we want these queries to be answered in

0(1) time. Note that in the old formulations, this requires time proportional

to the height of the Father tree.

- The new formulation can only consume as much space as the old formulation.

The answers that we expect are

* The new conceptualization;

The reconceptualization shown in Figure 1.2 satisfies the correctness constraints.

The articulation theory is:

1. The objects map over one to one.

2. The new relation FoundingFather is described intensionally by the following

definition:

Vzy. FoundingFather(z, y) =- Ancestor(z, y) A -,3z.Ancestor(z, x)

* The new encoding:

The encoding shown in Figure 1.6 meets the goodness constraints because the com-

putation of SameFamily can be achieved in constant time using two lookups on the

FoundingFather relation. Also, adding this new relation did not violate the space

requirement.

This is an abstraction reformulation (A = 0). It is also iso-ontic because it did not

change the objects. It is deductive because it preserves the goal relation and causes it to

be computed faster.
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a

bc d e f g

FoundingFather(a,b) FoundingFather(a,c) FoundingFather(a,d) FoundingFather(a,e)
FoundingFather(a,f)
FoundingFather(a,g)
FoundingFather(z,x) A FoundingFather(z,y) ==: SameFamily(x,y)

Figure 1.6: The encoding E2 of C2

1.4 Why Is Reformulation Hard?

The main stumbling block to automated reformulation is the fact that the intended in-

terpretations of terms and symbols is never represented in the system itself. So a system

has no logical basis for changing conceptualizations. A human would find it impossible to

reformulate a description given entirely in terms of gensysms. Unfortunately, our refor-

mulator is in no better position than the human with an uninterpreted description. The

knowledge that is essential for reformulation consists of what the referents of the symbols

are (i.e., the mapping between the ontology or conceptualization and the symbolic encod-

ing), what role each element of the conceptualization plays in the computation of the goal.

as well as the space of possible ways of perturbing the conceptualization. The reasoning

needed to accomplish reformulations consists of means of evaluating the epistemic and

computational consequences of perturbing the conceptualization, and designing encodings

that correspond to a given conceptualization.

To do the above, we need a theory of representation as well as a theory of problem

solving. A theory of reformulation can be seen as a bridge between these two theories.

This viewpoint on reformulation gives us another insight into the difficulties of automating

it. We have no theory of representation, and a fairly weak theory of problem solving

[LJP87,TF85], so the construction of a strong theory of automating reformulations is

impossible at this time. This thesis develops a theory of representation centered around the

idea of definability of conceptual primitives and uses existing theories of problem solving
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to develop a general-purpose weak method for generating abstraction reformulations for

computational efficiency.

1.5 Reformulations from First Principles

Previous attempts at reformulation have articulated the required knowledge in specific

domains in highly compiled forms. The most representative of this class of research is

Mostow's PhD thesis [Mos8l] on the game of Hearts. This thesis attempts to explicate

the origin of the compiled reformulation rules by a first-principles analysis that

* pins down the interpretation of the elements in a conceptualization by providing

properties of the individual elements and constraints between them.

" makes the relationships between conceptualizations and encodings an explicit object

to reason with.

" uses abstract representations of the conceptualization called definability structures,

which allow analysis of the role of a conceptual element in the achievement of a goal.

* uses the properties of the problem solver and abstract representations of the proof

and search spaces generated on particular dncodings of the problem to reconfigure

search spaces to meet computational constraints.

Our approach is to provide a unifying framework and a set of concepts that allow declar-

ative specification of the knowledge that is required for automatic reformulation. Much of

the knowledge about choice of conceptualization is left implicit, and that is why present

day systems cannot change their conceptualizations in a justified way. For instance, the

system cannot determine whether or not a vocabulary item makes the distinction it was

designed for, especially in the face of changing environments. When computational con-

straints are changed, and the system has to realign boundaries, the presence of knowledge

about the role of each conceptual element in the computation of the goal, makes it possible

to evaluate why the present conceptualization fails to meet the constraints and determines

how to fix it so as to achieve them.

The justification-based approach to reformulation makes the knowledge necessary for

reformulation explicit and available for the reformulator to reason with. This knowledge

is articulated as an explanation for a reformulation. There are constraints on the nature
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of this explanation: we construct them so that they can be inverted to generate refor-

mulations. An explanation for a reformulation has two parts: correctness and goodness

proofs. A correctness proof depends only on our theory of representation and it guarantees

that the new formulation preserves a given class of queries with respect to the old one.

A goodness proof shows that the new formulation has better computational properties

than the old one: it requires taking the problem solver and our theory of problem solving

into account. Standard proofs of correctness and goodness are non-generative. We use

meta-theoretical justifications that tie the change in formulation directly to a change in

computational properties. One class of such explanations are irrlevance ezplanations. An

irrelevance explanation proves that certain distinctions in the formulation are not logically

necessary for the solution of a given class of questions.

The crux of this thesis is the transformation of these justifications into generative pro-

cedures for choosing new terms in order to improve system performance. This is done by

meta-theoretic reduction inferences that modify the formulation so that the irrelevance

claims are no longer true of the new formulation. This is guided by a local optimisation

principle called the irrelevance principle whose informal statement is: minimizing distinc-

tions with respect to a set of goals, minimizes computational effort in the solution of these

goals.

The minimization of distinctions irrelevant to the goal requires introducing new terms

that stand for macro-objects in the formulation space and macro-actions in the search

space. The reduction inferences restructure the computation using extra-logical criteria

(e.g., minimize redundant computation) that bring the properties of the problem solver

to bear, and a new formulation is obtained by regressing the restructured computation

through an axiomatized description of the problem solver.

1.6 Claims of the Thesis

The general insights about reformulation and the process of automating it are

1. Reformulation is reconceptualization; a change in the objects, functions and relations

assumed by a formulation. This level of description of the phenomenon captures an

important invariant in the shift.

2. Abstraction reformulations can be automatically generated by the irrelevance prin-

ciple which advises discarding of distinctions irrelevant to the goals at hand.
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3. The irrelevance principle has a computational justification: it leads to the minimiza-

tion of unnecessary computation.

4. Meta-theoretic claims of irrelevance about a formulation are key to the automatic

generation of abstraction reformulations.

5. Meta-theoretic reduction inferences automatically eliminate irrelevance in a formu-

lation.

The specific contributions of the thesis are

1. The development of the calculus of irrelevance that allows stating, verifying and

generating justifications for abstraction reformulations.

2. The formulation of the irrelevance principle and a logical analysis of the meta-

theoretic reduction of a formulation by irrelevance claims.

3. The design of algorithms for reduction that are graph-theoretic compilations of the

reduction process.

4. The design of abstract representations for representations, called definability struc-

tures and the definedness graph, and efficient algorithms that operate on them.

5. Methods for the complete automation of the class of abstractions called elimination

of intermediates.

1.7 Perspectives

1. Knowledge Representation: This thesis provides a semantic account of efficient lan-

guage by describing reformulations for computational efficiency at the level of con-

ceptualizations. The method of irrelevance minimization gives a generative account

of how computational pressures shape representations. A new structure for describ-

ing representations, called definability lattices, is also introduced.

2. Problem Solving: We introduce a new kind of meta-theoretic reasoning called irrele-

vance reasoning that speeds up computation of given queries in a logical formulation

of a problem. It makes use of information about the queries, and the problem-solver

that works on the queries, to determine what aspects of the formulation can be

abstracted to make the computation efficient.
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3. Machine Learning: The origin of new terms for computational efficiency, or skill-

acquisition style of learning, is one of the open problems in machine learning. This

thesis proposes an analytical solution to the problem that uses knowledge about the

problem and the problem solver, as well as the principle of irrelevance to automati-

cally acquire new vocabulary to improve performance.

4. Knowledge Engineering: We introduce the notion of irrelevance that is essential for

knowledge base designers. Many of the justifications for choice of conceptualization

can be formulated in terms of it. By explicitly recording these justifications, the

designer can give the system the ability to modify its conceptualization automatically

in the face of changing environments.

1.8 Reading Guide

This dissertation presents the thesis that representations are not arbitrarily chosen, rather

they are the result of principles of computational economy. The document is organized as

follows. Chapter 2 analyzes the reformulation problem and proposes a methodology for

automating it. It also presents the irrelevance principle that underlies the generation of

abstraction reformulations. The theoretical apparatus necessary for applying this principle

is developed in Chapter 3. Chapter 4 shows how this principle can explain the formation

of abstraction reformulations. While Chapters 3 and 4 provide an espistemologically ad-

equate solution to automating reformulation, Chapter 5 addresses the heuristic adequacy

of our solution. It describes special cases of the theory that are mechanizable and that

cover a large percentage of abstraction reformulations. It also presents some results of

empirical tests that confirm our theory. Chapter 6 restates the main results of the thesis

and contains a discussion of their significance in designing representations. We conclude

with an evaluation of the strengths and weaknesses of our approach and a proposal for

future research on other kinds of reformulation.

There are some notational conventions we use in this thesis. We will distinguish things

from symbols that represent them. Thus, elements of encodings will be printed in sans-

serif while the elements of conceptualizations will be in bold face. As an example, the

Ancestor relation will be represented by the relation symbol Ancestor. For propositional

letters, we will use lower-case letters. For first-order formulas, we will distinguish between

constants and variables. Constants will be in lower-case, variables in CAPITAL letters.
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The standard connectives (v, A, -', =, =) and the quantifiers (V, 3) will be used.



Chapter 2

The Reformulation Problem

What can we do when we can't solve a problem? We can try to find a new

way to look at it, to describe it in different terms. Reformulation is the most

powerful way to attempt to escape from tohat seems to be a hopeless situation.

- Marvin Minsky, Society of Mind, page 141.

2.1 Introduction

Scientific advances involve not only solving problems but posing them as well. Asking the

right questions is a creative act and solving them is a relatively routine activity, once the

questions axe correctly identified. This chapter attempts to describe the reformulation

phenomenon as precisely as possible and poses the problem of automating it. Previous

approaches to the problem are critically examined and the solution methodology proposed

in this thesis is presented.

A cognitive phenomenon like reformulation can be explained at three different levels

[Pyl84]: the intensional, semantics or knowledge level; the symbolic, syntactic or func-

tional level; and the physical or biological level. An explanation of a phenomenon at the

intensional level appeals to the semantic content of representations in an agent. The reg-

ularities of the phenomenon are captured by principles that mention the agent's goals and

beliefs. In this thesis, we give a semantic account of reformulation as changing distinc-

tions an agent makes in the world, in order to achieve its goals effectively. The symbolic

account explains how these goals and beliefs are encoded and presents the algorithms by

which the behaviour is achieved. Reformulation is realized by changing encodings: the

18
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symbolic account of reformulation is thus a syntactic one of theory change. The physical

account explains how the symbol systems axe actually constructed. A physical account of

reformulation is not provided in this thesis, it would be useful for building a reformulation

device.

2.2 The Semantics of Reformulation: Conceptual Change

Reformulation is reconceptualization. When one conceptualizes a problem, one determines

what objects, functions and relations axe needed for the purpose. The items in a concep-

tualization represent the distinctions for stating and solving the problem. Reformulation

changes distinctions: it restructures our knowledge of the world in terms of new conceptual

elements.

Traditional accounts of reformulation(Kor8O,Mos8l,Mar76aNew65,Len82 have only

provided syntactic methods without the accompanying semantics. This thesis gives mean-

ing to shifts in formulation by examining the shift in conceptualization it entails. By

equating reformulation with reconceptualization we provide a dean Type-I [Mar76b] the-

ory of reformulation; i.e., we separate an account of what reformulation is, from how to

do it. Before we describe what reconceptualizations are, we begin with some intuitions

about, and a formalization of, conceptualizations.

2.2.1 Conceptualizations

A conceptualization[GN871 is a model of the world. It consists of the objects, functions and

relations that are of interest. For example, we can conceptualize kinship among a given

set of individuals as in Figure 1.1. Another conceptualization of the kinship problem that

preserves the SameFamily relation is shown in 'igure 1.2. In the new conceptualization,

the distinction between Father and Ancestor is removed and replaced by the maximal

ancestor or the FoundingFather relation. A full adder can be conceptualized either

at the gate level as in Figure 2.1 or as a unit, as in Figure 2.2. More examples of

conceptualizations are found in [GN871. Note that the items in bold face are relations

in the world. This is our notational convention for the meta-language whose domain of

discourse is the elements in a conceptualization.

We repeat the definition of a conceptualization from Chapter 1 for convenience.

Definition 7 A conceptualization is a triple (0, F, IZ) where 0 is a set of objects called



CHAPTER 2. THE REFORMULATION PROBLEM 20

Objects: the gates: X1, X2, Al, A2, 01
the ports: a, b, c, d, e, f, sum, carry
the values: 0, 1

Functions:
Relations: conn,and, or, xor, value.

Figure 2.1: A conceptualization of a Full Adder

Inl-
-Sum

In-- FullAdder

-- cout
Cin---

Objects: the ports: Inl, In2, Cin, Cout, Sum
Functions:
Relations: and, or, xor, value

Figure 2.2: Another conceptualization of a Full Adder
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A

BE

C

Figure 2.3: Defining Clear in terms of On

the universe of discourse; Y, called the functional basis set, is a subset of functions from

0" to 0, and IZ, called the relational basis set, is the subset of relations on 1Z', for n,m

in the set of natural numbers.

A conceptualization is a structure very similar to a Herbrand model - the only difference is

that a Herbrand model consists of all the functions and relations defined on the Herbrand

universe (0), whereas we want to select particular functions and relations to be members

of a conceptualization.

There is an interesting relationship between the elements in the two conceptualizations of

the kinship problem. We can construct the relation FoundingFather out of the Ances-

tor relation by using standard relational operations [U182]. However, we cannot recon-

struct the Ancestor relation out of the FoundingFather relation. The constructibility

of a conceptual element from a set of such elements can be made precise lising the logical

notion of definability (End66I.

Definition 8 A conceptual element c is definable in terms of a set C of objects, functions

and relation. z 1 , z 2,...,z, written as Definable(c,C) if there exists a first-order formula

0 With non-logical symbols It, a), &2,..., a., for which 1) there is a model of q0 that maps

oi 's to the z, 's and 7 to c. 2) Every model of 0 that maps ai 'a to zi ' also maps y to c.

0 is called the defining formula for c in {ZI,Z2,...z n}

Notice that Definition 8 expresses the construction of c in terms of the elements of

C intenuionally as a formula in a language. Here are a few examples of the use of this

definition.
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Figure 2.3 shows a conceptualization of the blocks world. It consists of the blocks

shown, and two relations Clear whose extension is the set of blocks that have no blocks

on top of them, and the On relation that consists of block pairs (x,y) where x is on top

of y. On = {(A,B), (B,C), (E,F)} and Clear={A,E}. The unary relation Clear is

definable in terms of the binary On relation. The defining formula is

Clear(z) M -3y. On(y, x)

The symbol On is interpreted to be the On relation. Every model of 40 that maps On to

On will have to map Clear to Clear. Note however, that On cannot be defined in terms of

Clear. This is because for a fixed model for Clear, the sentence -'3y. On(y, z) constrains

the set of possible models for On, but does not uniquely determine it.

In our kinship example, the FoundingFather relation is definable in terms of Ancestor,

because we can construct a definition

Vzy. FoundingFather(z, y) - Ancestor(z, y) A -,3z. Ancestor(z, Z)

In all models that Ancestor refers to the Ancestor relation, the symbol FoundingFather

is mapped to the FoundingFather relation.

Both the examples above are instances of defining a new relation in terms of other given

relations. We now address the issue of defining new objects. One way to define a new

object is to reify an existing relation. For instance, we can define the object red to stand

for the predicate Red by introducing a new function from predicates to objects called the

denotation function (McC79] and write

denotes(red, Red)

This would constitute the defining formula for the object red in terms of the relation

Red.

Definition 8 uses first-order defmability, because the formula 0 is a first-order well-

formed formula. In order to define the SetofMissionaries relation from a conceptual-

ization that contains individual missionaries in the Missionaries relation, we need to be

able to define arbitrary subsets of Missionaries. The defining formula 0 is then

SetofMissionaris = {z I Missionary(z)}
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. To see why this is not a pure first-order definition in the sense required by Definition 8,

notice that the above definition can be rewritten as

member(x, SetofMissionaries) = Missionary(z)

There is no set of first-order axioms about member that makes standard set-theoretic

reasoning reproducible inside first-order logic. We need to enrich our notion of a defining

formula in Definition 8 to allow set-theoretic constructions. Then we can construct a

richer class of conceptual elements from a given set.

Here's another example of a concept that is undefinable in a pure first-order system.

The relation Ancestor is the transitive closure of the Father relation. Unfortunately,

there is no first-order well-formed formula that defines the Ancestor relation in terms of

the Father relation. The following

Vzy.Ancestor(z, y) - Father(z, y) V (3z. Ancestor(z, z) A Ancestor(z, y))

constrains the Ancestor relation to be atleast the transitive closure of Father, but does

not fix it to be just the transitive closure. If this definition were interpreted within the

semantics of Prolog (minimal Herbrand models), then the above sentence would constitute

a valid definition for Ancestor under the conditions of Definition 8.

We can extend Definition 8 to cover the definability of an entire conceptualization in terms

of another.

Definition 9 A conceptuaization C2 is definable in terms of a conceptualization C1, writ-

ten as Definable-C(Ci, C2), if Vc E C2. Definable(c, Cz). The set of defining fornlaw

constitutes the articukitin theory between the two conceptualizations.

The conceptualization in Figure 1.2 is definable from that in Figure 1.1. The articulation

theory is the definition of the FoundingFather relation given before.

One of the problems with Definition 8 and thus with Definition 9 (since it hinges on

Definition 8) is that it imposes almost no constraints on the nature of the defining for-

mula 0. For finite conceptualizations, and a conceptual element with a finite extension,

4 could simply be the trivial disjunction of the elements of the extension of that con-

ceptual element. In the case of the kinship problem, we could as well have defined the

FoundingFather relation directly as its extension over a certain universe of people. The

problem with such a 4 is that it needs to change when the universe of discourse changes.



CHAPTER 2. THE REFORMULATION PROBLEM 24

Notice that the universally quantified defining formula provided before for the Found-

ingFather relation is independent of the particulars of the universe of discourse of the

conceptualization.

a To get around this problem, we define the notion of a conceptual scheme that abstracts

away particular individuals in a conceptualization, and preserves the functional and re-

lational structure. We can no longer describe such a conceptualization as in Figure 1.1,

so we use an intensional description via definability claims. For the conceptualization in

Fig 1.1, we have the following scheme:

Definable(Ancestor, {Father, Ancestor})

Def inable( SameFamily, {Ancestor})

Definition 10 A conceptual scheme CS is a pair (S, D) where S is a set of relations and

functions, and V is a set of definability claims of the form Definable(a, b) where a E S and

b C S.

Since the identity of the defining formula 0 is abstracted away in the relation Defin-

able, the set of definability claims that constitute a conceptual scheme rarely pick out

a unique conceptualization (i.e. they are not categorical, except in trivial cases). If on

the other hand, we maintain 4, along with the Definable relation, we .ssentially keep a

recipe for constructing parts of a conceptualization from other parts. For instance Fa.

ther is a base relation in the conceptualization C1 . Given Father and the fact that

Definable-4Father, {Ancestor}, Father(x,y) v3z. Ancestor(xz) A Ancestor(z,y)), we can

construct the extension of the Ancestor relation. Definable.0 is important because it

succintly captures the construction of a conceptualization from its base objects, functions

and relations. Definable-C, on the other hand, compactly describes the construction of one

conceptualization from another. We define Defirable-C-0 as the extension of Definable-C

V that maintains the articulation theory between the two conceptualizations.

2.2.2 Definability Analysis

Since definability is a key notion in our analysis of conceptualizations and reconceptual-

izations, we study its properties in detail.

Observation 1 Definable-C is a reflexive relation.
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This follows directly from the definition of Definable-C. Every conceptualization can be

constructed from itself by the identity map.

Observation 2 Definable-C is a transitive relation.

If we can construct C2 from C1 and the articulation theory is A1 , and if C3 can be con-

structed from C2 using the set of definitions A2, then as long as the names of the elements

in the three conceptualizations are standardized apart, we can construct C3 from C1 by

composing the articulation theories in sequence.

Observation 3 Definable-C is not symmetric.

If C2 is created from C1 by losing information, then it is impossible to recover that in-

formation. This is the case in the abstraction of the conceptual primitive FoundingFather

from the relation Ancestor. Unfortunately, Definable-C is not anti-symmetric either! If

C1 is definable in terms of C2 , and C2 is also definable in terms of C1, then C1 and C2

are only isomorphic and not identical. An example is the (r,O) conceptualization and the

(x,y) conceptualization of the real plane : each conceptualzation can be constructed from

the other, but they are not identical. Observation 3 prevents Definable-Cfrom defining a

lattice structure on conceptualizations.

Theorem 4 Definable-C is a pre-order.

Theorem 4 makes it easy for us to generate the search space of possible primitives for

a conceptualization. Figure 2.2.2 introduces the definability structure which is a set of

conceptualizations ordered by the Definable-C relation. From a given conceptualization C

in a definability structure S, we can construct the upper and lower sets of C both of which

are subsets of S.
S=wc

Upper(C, S) = {c I Definable-C(C, c) A c E S}
Lower(C,S) = {c I Del inabl e.C(c,C)A c E S}

The set Upper consists of conceptualizations that make finer distinctions than C and

can thus be thought of as refinements of C. The set Lower contains conceptualizations

that make coarser distinctions than C, alternatively construed of as the abstractions of C.

Both Upper and Lower are partially ordered by the relation Definable-C. Note that

Upper(C, S)n Lower(C, S) = C u (c I Definable-C(c,C) A Definable-C(C, c)A c E S}
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,A,S

Note: The arrows stand for the Definable- C relation, F for the Father relation, A for the

Ancestor relation, and SF for the SameFamily relation.

Figure 2.4: A Definability Structure
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We can define upper and lower bounds of two conceptualizations in S because of the

existence of the pre-order Definable-C. A conceptualization C1 is a lower bound of the

conceptualizations C, and C2 if it is definable from both of them.

Lower-Bound(C1 ,C2 ) = C1 such that Definable-C(C,Cl) A Definable-C(C1 ,C2)

Similarly, an upper bound of two elements in the lattice is a conceptualization that defines

them both.

Upper-Bound(C1 , C2) = Cu such that Definable-C(C, Cu) A Definable-C(C2, Cu)

We can define greatest lower bounds and least upper bounds in the usual way. In-

formally, a lower bound of two conceptualizations includes at most the distinctions made

in the intersection of the conceptualizations. An upper bound includes at least the dis-

tinctions made in the union of the conceptualizations. A greatest lower bound of two

conceptualizations is an interesting structure, because it is one that preserves just the

distinctions common to both conceptualizations. So the search for a minimal weakening

of two conceptualizations that preserves some relations of interest, is simply the search for

the greatest lower bound.

The definability structure is bounded because we only consider finite conceptualizations;

the topmost node of the lattice represeDts the finest grain of distinctions we can ever

make in the world, and the lowest node is the empty conceptualization: it is definable in

terms of every other node in the structure. We now present an example of how portions

of this structure can be generated from a given conceptual scheme. We start with a

schema consisting of the goal relation SameFamily, and we incrementally introduce finer

distinctions. The generating formula for the first layer of nodes "above" this consist

of two relation-schemas: x and SameFamily where Definabe(x,{SameFamily}). The

relations that satisfy this constraint are what we already know as Father, Ancestor,

and FoundingFather. These x's are called interpolants of SameFamily. We can build

further nodes by constructing interpolants of the newly introduced relations. This is shown

in Figure 2.4.

2.2.3 Reconceptualizations

Definability is an important tool for analyzing the relationship between different concep-

tualizations because it succintly describes how one conceptualization can be constructed

from another. We can now define what we mean by a conceptual shift.'

'This is a restatement of Definition 3 of Chapter 1.



CHAPTER 2. THE REFORMULATION PROBLEM 28

C1 C2

Figure 2.5: Conceptualizations and the World

Definition 11 A conceptualization C2 is a reconceptualization of C, with respect to some

background conceptualization A, if the elements of C2 are definable from C1 and A.

Reformulation is the science of introducing and removing distinctions. It is the ability

to cut the world up into the right pieces for the current goals. The items in a concep-

tualization denote distinctions in the world. The reconceptualization is also about this

world. How do we capture this notion? The denotation relation between the world and

the conceptualization as shown in Figure 2.5 is in the head of the modeler. To get at the

fact that both conceptualizations are about the same world, we rely on the integrity of

the denotation relation between C1 and the world, and then construct C2 out of C1. This

is why definability is an important constraint in our definition of reconceptualization. If

A is the null set, then the new conceptualization is guaranteed to be about the same

world2 , since definable relations and objects can only make existing distinctions coarser

and cannot introduce new ones. Definability captures the notion of retiling a given W or

an abstraction of it. If we wish to introduce distinctions, we enrich W explicitly through

the background knowledge A. For instance, the introduction of the sets of missionaries

and cannibals is done by the introduction of set theory through A.

We notice that according to Definition 5, the conceptualization C2 in Figure 1.2 is a

reconceptualization of C1 in Figure 1.1, with A = 0. This reconceptualization did not

change the objects in the domain of discourse, only the relations on them. It is called an

2or as much about the given world s the original conceptualization was.
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iso-ontic reconceptualization. Since it is the case that

" Definable(Ancestor, {FoundingFather}),

the reconceptualization has lost information; we call it an abstraction. An example of

a reconceptualization that involves changing the objects is the classic missionaries and

cannibals puzzle, first analyzed in [Ama68]. The initial conceptualization of the problem

consists of six individuals: Larry, Curly and Moe (the missionaries), and Huey, Dewey

and Loue (the cannibals). The reconceptualized problem introduces two new objects:

the set of missionaries and the set of cannibals. The introduction of the sets allows us to

change the granularity of the individual-based boat load and unload actions into set-based

load and unload actions. This then allows for efficient computation of the schedule for

transporting people across the river.

Let us study some more cases of conceptual change and see whether they fit our defini-

tion. The change from the geocentric into the heliocentric conceptualization of planetary

motion was an iso-ontic reconceptualization 3 that changed the relations among the mem-

bers of our solar system. Central to the geocentric theory was the relation Orbits-Earth,

whose extension included the sun and all the planets except the earth. The heliocentric

theory grouped the objects somewhat differently, it posited the existence of the Orbits-

Sun relation whose extension included all the planets. Note that being a finite relation,

Orbits-Sun is definable in terms of Orbits-Earth and equality.

Vz. Orbits-Sun(x) _ [z 4 sun A Orbits-Earth(x) I V z = earth

The same phenomena (the astronomical data) was now explained in a simpler way in the

heliocer~ric theory with the new conceptual primitive Orbits-Sun. Conceptual change

(change in the primitives to describe the world) and theory revision (change in what

we say about the world) often go hand-in-hand and it is difficult to separate the two

phenomena. There are atleast three ways in which different conceptualizations of a given

world differfCar87].

1. Inditndual concepts in the system

A pure case of conceptual change occurs in the Fourier and Laplace transformations

as well as rectangular to polar coordinate transforms. Reformulating a description
3we shall treat epicycles as relations and not objects, for this purpose.
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of a 2-D scene expressed in rectangular coordinates into polar coordinates, preserves

the content of the intial description exactly. The distinctions made by the two

conceptualizations are different, they tile the same content space in different ways.

2. The domain of the phenomena accounted for

An example from physics is the wave and particle conceptualizations of light. Each

conceptualization accounted for phenomena the other couldn't. A more mundane

case is the difference in the conceptualization of a leaf by a botanist and by a layman.

The botanist makes many more distinctions than the layman because he needs finer

distinctions to be able to make predictions of interest to him. Yet another case from

the history of science is the shift from the Aristotelian to the Galilean theory of

motion: Aristotle's theory included all changes over time: growth, decay, movement,

etc, whereas Galileo specialized it to cover movement alone [Kuh87].

3. The nature of the ezplanation

The shift to the heliocentric theory made the explanations of astronomical observa-

tions simpler. This is a case where the nature of explanations changed as a result of

the conceptual shift. In our kinship example, an encoding of the reconceptualization

in terms of FoundingFather makes proofs of SameFamily propositions shorter. The

novice-expert conceptual shifts studied in detail by cognitive scientists [CME82] in-

dicate that experts use relations among objects that are definable in terms of those

held by novices. However, possession of these concepts allow them to interpret a

problem situation better and state strategies in a much more perspicuous fashion

than is allowed by the novice's ontology. I

It should be emphasized that identifying the ontological commitments of a theory

(especially scientific ones) is a non-trivial endeavour. Our definition of a conceptual change

allows us compare two given ontologies and assess whether they are about the same reality

by determining their interdefinability.

We shall call a reconceptualization correct with respect to a set of goal relations, if the

goals are preserved in the new conceptualization. More formally,

Definition 12 C2 is a correct reconceptualization of C tvith respect to the set of goal

relations G, if Definable(G,C) if and only if Definable(G,C2).

The kinship reformulation is correct with respect to the goal relation SameFamily

and incorrect with respect to the goal relation Father.
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The search for a correct reconceptualization in the definability structure S is the search

from the given C to one where the goal G is still definable. A principle of economy that

dictates the making of the fewest distinctions would allow us to pick the lowest node in the

definability graph tuat has G deiuable in it. The role of the background conceptualizaLion

A is to help navigate in the space of alternative conceptualizations S, either by directed

addition of distinctions in traversing Upper(C, S), or the directed losing of distinctions

while traversing Lower(C,,S).

We can distinguish several types of reconceptualizations

1. New conceptualization definable in terms of the old one

This class includes abstraction reformulations like the kinship example and the full

adder example. There are two basic types of operations needed to generate them

from a given conceptualization: dropping conceptual elements (e.g., the removal of

the relation Father), and adding definable compounds (e.g., the addition of the

relation FoundingFather). This class of reconceptualizations does not permit the

solution of goals that were unsolvable in the old conceptualization. Often they set

the stage for encoding shifts that permit faster solution of previously soluble goals.

2. New conceptualization consistent with the old one

The operation that generates conceptualizations in this class is the addition of new

conceptual elements that are not definable in terms of the existing primitives. An

example is the addition of epicycles to the Ptolemaic conception of planetary motion.

This addition usually allows for the solution of goals that couldn't be solved before.

The goals that could be solved in the old conceptualization remain solvable and yield

the same answers in the reconceptualization.

3. New conceptualization inconsistent with old conceptualization

An example is the shift from the Ptolemaic to the Galilean conceptualization. Some

of the predictions made by the Ptolemaic theory were no longer made by the Galilean

one. However, the two conceptualization had some common elements: the observed

astronomical data, and the objects in the solar system.

2.2.4 A Knowledge Level Analysis of Reformulation

Until now, we have discussed what a reformulation is, and how to generate the space

of possible reconceptualizations. We now turn our attention to the role reformulation
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plays in an intelligent agent, so as to be able to navigate the definability structure in a

goal-directed manner. Why is reformulation an intelligent thing to do, and under what

conditions should an agent reformulate? To answer these, we perform a knowledge level

Alvsis of a reformulator. This requires us to in turn answer the following.

1. What goals do we ascribe to a reformulator?

2. What other beliefs do we ascribe to it?

3. What is the nature of the background knowledge that together with the rationality

principle generates the appropriate reformulation behaviour?

Note that a reformulation action is somewhat different from a traditional action like

MoveBlock that changes the current state of the world. A reformulation action does not

the change the world, it causes the agent to redescribe the world its head. Because of

this redescription, an agent's actions in the world might be affected. An agent that was

unable to achieve a goal in a previous conceptualization, might be able to achieve it in a

reformulated version; this would be the secondary effect of a reformulation action. Clearly,

all useful reformulations have interesting secondary effects.

The goal of a reformulator is to redescribe the world in terms of primitives (objects,

functions and relations) that would permit the effective solution of a specified class of

problem-solving goals. The beliefs that we attribute to the reformulator include

1. an initial conceptualization of the world.

2. the correctness constraints described by the problem-solving goals.

3. an initial encoding of that conceptualization together with its computational prop-

erties with respect to a given problem solver.

4. the effectiveness constraints imposed by the environment.

Whereas a conceptualization is fine-grained enough to capture correctness constraints,

it is too coarse to model computation. To describe computational constraints on the so-

lution of the goal, we need to introduce the concept of an encoding of a conceptualization.

An encoding is simply a set of sentences in an appropriate language, one of whose models

is the conceptualization. Details of the relationship between the encoding and the con-

ceptualization will be left till Section 3. For now, we will assume that there is a space of
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encodings associated with a conceptualization and that effectiveness constraints are with

respect to computation of the goal relations in an encoding.

The goal of the agent is to be solve its goals within the given correctness and effective-

n,,, 'nstr4ints. The impetus to reformulate arises out of the fact that the agent cannot

mpet these constraints, and thus decides to incrementally reconceptualize the world to

achieve them. The logical problem of reformulation is: what other general beliefs do we

assign to the reformulator that would allow it to deduce the new conceptualization?

To see what is needed, consider the deduction of the new primitive FoundingFather

from the conceptualization C1 in Figure 1.1. The space of reconceptualizations for the goal

relation SameFamily is in Figure 2.4. We will assume that the time and space constraints

on the computation of the goal are met in conceptualizations in which the primitive

FoundingFather occurs4 . The minimality principle of making just enough distinctions to

meet the correctness and goodness constraints dictates the choice of the conceptualization

{FoundingFather, SameFamily}.

Thus, the knowledge that we attribute to the reformulator include: knowledge of

the space of reconceptualizations, knowledge to determine whether or not a particular

conceptualization and a particular encoding of it, meet the correctness and effectiveness

constraints respectively, as well as knowledge of a principle of economy in the choice of

conceptualizations. This would logically entail a new choice of conceptual elements that

solves for the goal within the given computational constraints.

2.3 A Syntactic Account of Reformulation: Theory Change

A conceptualization is an extensional description of the phenomenon of interest. It is

typically in the head of the programmer; she communicates it to the agent by writing

sentences in a language that is appropriate to that conceptualization. A language is a

set of sentences with a specified syntax and semantics. The syntax of a language defines

the sentences legal in that language. The semantics of a language defines the relationship

between the sentences and the programmer's conceptualization of the world. This rela-

tionship is called an interpretation: it consists of a mapping between the symbols of the

language and the objects, functions and relations in the conceptualization, as well as rules

for determining the truth of sentences composed of these symbols.

'The determination of whether an encoding satisfies some effectiveness constraint is discussed in Section
3.2.
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Father(a,b) Ancestor(a, b)
Father(a, c) Ancestor(a, c)
Father(b, d) Ancestor(b, d)
Father(b, e) Ancestor(b, e)
Father(c, f) Ancestor(c, f)
Father(c, g) Ancestor(c, g)

Ancestor(a, d)
Ancestor(a, e)
Ancestor(a, f)
Ancestor(a, g)

Figure 2.6: The Canonical Encoding for C1

First-order predicate calculus is the language used in this thesis. We could use a

specialized language (e.g. that of trees or graphs, musical scores, flowcharts and electrical

circuits) to encode our conceptualization. However, we take the position expressed in

[Hay8] and expanded in [MG84] that specialized languages can be understood in terms

of their translations into first-order theories. To encode a conceptualization in first-order

predicate calculus, we need to select the non-logical symbols that denote the various

elements of the conceptualization. One such choice is the canonical language introduced

in Section 1.4.

Definition 13 The canonical encoding of a conceptualization C is tn the canonical lan-

guage Cc and lists all the tuples of the functions and the relations.

The interpretation function for canonical encodings is particularly straightforward: it

is a 1-1 map. The canonical encoding for the kinship conceptualization C1 is in Figure 2.6.

An example of a non-canonical encoding that uses a canonical language is in Figure 1.3.

Yet another non-canonical encoding for C1 is in Figure 2.7. Note that the encodings E3 and

El differ on the actual definition of the Ancestor relation. Both encodings however have

the same model: the conceptualization C1. Encoding E 4 of C1 is displayed in Figure 2.8.

E4 differs from both El and E3 in its commitments to which relations are primitive and

which are computed. Whereas, Father is explicitly recorded in El and E3 and Ancestor

is computed in terms of it, E4 makes Ancestor the primitive relation and defines Father

using the Ancestor relation.

The exact relationship between an encoding and a conceptualization can be formalized

using the framework of first-order logic. We will view a conceptualization as a special kind

of a structure (akin to a model, except that we reify functions and relations), and encodings
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a

b c

d e f g

Fatber(a,b)
Father(a,c)
Father(b,d)
Father(b,e)
Father(c,f)
Father(c,g)
Father(x,y) =o Ancestor(x,y)
Father(x,z) A Ancestor(z,y) * Ancestor(x,y)

Figure 2.7: The encoding E3 of C1

Ancestor(a,b) Ancestor(b,d)
Ancestor(a~c) Ancestor(be)
Ancestor(a,d) Ancestor(c,f )
Ancestor(a,e) Ancestor(cg)
Ancestor(a4f) Ancestor(ag)
Ancestor(x,y) A-'3z. Ancestor(x,z) * Father(x,y)

Figure 2.8: The encoding E4 of C1
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as axiomatizations in first order logic. To relate a conceptualization C, and an encoding

E3, we find an interpretation function I from the symbols in E3 to the objects in C1 such

that every sentence in the encoding holds in the conceptualization. For encoding E3 the

interpretation I is:

1(a) = A

I(b) = B

I(c) = C

I(D) = D

(e)= E

I(f) = F

(g)= G

I(Father) = {(A, B), (A, C), (B, D), (B, E), (C, F), (C, G)}

1(Ancestor) = {(A, B), (A, C), (A, D), (A, E), (A, F), (A, G), (B, D), (B, E), (C, F), (C, G)}

An encoding E models a conceptualization C = (0, .F, 1Z) exactly when C satisfies all

the formulae in E in the sense defined below.

A well-formed formula 4) E E holds in a conceptualization C = (0, 7, 1Z) if we can find

an interpretation function I from the set of parameters to items in C such that

1. Every V quantifier symbol is assigned the set 0.

2. Every constant symbol c is assigned an element c1 in 0.

3. Every n-place predicate symbol is assigned the corresponding n-place relation from
R.

4. Every n-place function symbol is assigned the corresponding n-place function in F.

We define the function s that maps individual variables to elements in the set 0.

Now we extend s. to name all terms in C(C). The function that translates a term to the

object it denotes is 7.. It is defined recursively.

1. For each variable z, 7.(z) = s(z).

2. For each constant symbol c, 1o(c) = c1 .

3. If it , t 2 ,. .. ,t, are terms, 0 (f(t 1 , t 2 , . ., t,) = f( 0 (t1 ),S 0(t 2 ),...,11o0t).
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1  2

Figure 2.9: Reconceptualization and Reencoding

For a g E E, C2 J 1Z.,(g) if and only if Ia.,.(C2) g

Now that we have defined how terms denote objects, we can specify how the truth

of formulas is determined. This is done by recursion on the structure of the wel-formed

formulas.

1. Base case: 40 is an atomic formula and is of the form P(t 1 ,t 2,.... tn). We say that

I-- 10 if and only if (!(tl), U(t 2 ),. . . , o(t,)) E P1 .

2. Recursive case 1: 4, is of the form .. if and only if P1,01.

3. Recursive case 2: 4 is of the form 4 A 02.

j=10 if and only if 1=,40 and t0.

Now that we understand the relationship between a conceptualization, and it encoding,

we can state the connections between changes in conceptualization and changes in encoding

more formally. Let IZ,,: C2 -- + C, be the articulation theory between C1 and C2. Recall

that this articulation theory contains the definitions of the elements in C2 in terms of those

in C1. Let 7,y,: El ----+ E2 be the mapping between the encodings E, of C, and E2 of

C2. The two mappings .,em and 1Ioy, are related as shown in Figure 2.9.
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We factor changes in primitives from changes in their encoding. We structure our

search for a good reformulation as a search through the space of conceptualizations guided

by the computational constraints checked in the much denser space of encodings. The

reason that the encoding space is much denser is that not all shifts in encodings correspond

to a shift in conceptualization. For instance, the shift in encoding from El to E 3 or from

E 3 to E 4 cause no change in conceptualization. The differences between these encodings

surface in

1. Choice of which element to store and which to compute

2. The actual definition of an element in terms of the others

These are changes in the symbol level with no accompanying change at the knowledge

level. These shifts do not qualify as reformulations within our framework.

For the three categories of conceptual shifts in Section 2.2.2, we provide encoding shifts

that implement them.

1. New conceptualization definable in terms of the old one

The shift in encoding that achieves this class is the introduction of new terms with

the appropriate definitions and the re-axiomatization of the old encoding using these

new (eliminable) defined terms. A good example of this is the introduction of the

FoundingFather symbol in the encoding El and the re-axiomatization of SameFamily

in terms of it, to generate E2 .

2. New conceptualization consistent with the old one

The encoding shift that accomplishes this is the introduction of new non-eliminable

terms and subsequent re-axiomatization using these terms. The new encoding is a

consistent extension of El.

3. New conceptualization inconsistent with old conceptualization

Implementing this involves dropping and adding new terms as before and re-axiomatizations

that make non-monotonic changes to the encoding.

2.4 A Catalogue of Examples

Reformulation is a diverse phenomenon as the following set of examples indicate. In all

these cases, we note that there is a change in the basic terms used to describe a problem.
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A classic example is rewriting the missionaries and cannibals (M and C) problem [Ama68]

phrased in terms of individuals into a formulation that is based on the cardinalities of the

sets of missionaries and cannibals. This is a reformulation that improves the computational

efficiency of solution of the M and C problem. Other examples are

1. The Copernican theory of planetary motion is a reformulation of the geocentric

theory. Both theories assume the same objects and functions. However the relations

among the objects assumed differ in the two systems. The conceptual shift preserves

the observed data about the motion of the various planets. This reformulation is

akin to a shift of origin in coordinate geometry.

2. Reformulation of a theory in terms of another. In his thesis on reformulation in

1976, Mark [Mar76a, reformulates the managerial problem of hiring in a firm in

terms of Keynesian economics. Minsky argues [Min86 that this is the way humans

understand new things: by casting them in terms of familiar theories. Most engineers

map problems in heat conduction into corresponding problems in analog circuits

since both these domains share the same behavioral abstractions [Gre85].

3. Granularity shifts

(a) Temporal: Shifting between instant and interval representations of time is es-

sential for building efficient planners that deal with time.

(b) Spatial: A road is viewed as a line for the purposes of planning a trip, a surface

when one crosses it and as a volume for digging it. Most reasoners about the

common sense physical world need to be able to shift between these views of

space when appropriate. Jerry Hobbs [Hob85] outlines a scheme whereby we

can capture the connections between the views as logical theories.

(c) Aggregation of objects: the full adder abstraction is an example from digital

circuits. The notion of Thevenin and Norton equivalents in analog circuits is

a reformulation that aggregates a large number of circuit elements into one

lumped parameter.

(d) Equivalence class reformulations: partitioning the integers into odd and even as

in the checkerboard reformulation and the introduction of "d" in propagation

of faults in digital circuits are examples of this phenomenon.
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4. The Aha! Insight reformulations. These include reformulations like the Laplace and

Fourier transforms, the star-delta transformation vin analog circuits, as well as the

polar-rectangular coordinate transformations in which there is no loss of information

across the conceptual shift. These are impossible to automate.

5. Making symmetries explicit

6. Control reformulations: An example is the reformulation that transforms the naive

formulation of the Fibonacci function which has exponential complexity to a tail-

recursive one that is linear. These reformulations are called control reformulations

because they can be equally well implemented by changing the control strategy of a

problem solver while keeping the formulation intact.

7. Change of perspective: these involve changing what constitutes the "figure" and the
"ground" elements in a conceptualization. A good example is the re-conceptualization

of the 8 puzzle where the actions are initially expressed in terms of the tiles, into

one where the actions are expressed in terms of the movements of the blank tile.

8. Data structure reformulations: These cover pure encoding transformations with no

change in conceptualization. Ordering conjuncts in a query, storing a relation in a

hash table instead of a list are examples.

9. Notational variants: a classic example is the reformulation of Roman numerals to

Arabic. These are very hard to discover automatically, because the space of nota-

tional variations is hard to describe.

10. Structure-function reformulations: Minsky's arch example is an instance. If arches

are described in structural terms (blocks, and the support relations between blocks),

it would be difficult for a system to recognize structurally different arches as in-

stances of the same basic concept. If however, arches were described in terms of

the functionally motivated predicates Body and Support which stand for the top and

bottom parts of an arch, recognition would be trivial.

11. Reformulations that cause compression of reasoning chains: these generally do not

involve introducing new objects and include constant folding and loop jamming from

compiler optimisations and computing prejoins in database query optimisations.
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Another example is compiling a rule set for diagnosing a circuit from a description

of its structure and behaviour.

12. Reformulations from an objective to a subjective ontology of the world. Subjective

ontologies have been used by Agre and Chapman [AC87] as well as Brooks [Bro87

to build agents that act in the world in real time. Subjective ontologies are shown

to be reformulations of the objective ontology of the world assumed by the situation

calculus [SW891.

2.5 Taxonomy of reformulations

Reformulations are of two basic kinds: inductive and deductive. Deductive reformulations

lead to the formation of new conceptualizations where a class of goals solvable in the

original formulation is solved faster. Inductive reformulations are those in which the new

conceptualization solves goals that couldn't be solved before. The reconceptualizations in

the missionaries and cannibals problem as well as the kinship reformulation are deductive.

An example of an inductive reformulation is the structure-function example from above.

For deductive reformulations, we can specify correctness constraints, viz., the goals
that need to be preserved across the conceptual shift, as well as the goodness constraints,

viz., the bounds on time and space in computing the goal formulas in an encoding of the

reconceptualization. In inductive reformulations, the clean separation between correctness

and goodness does not obtain. Utility is the chief issue (i.e., what is good is correct).

Inductive reformulations are described in (RS88]. We focus on the problem of automating

deductive reformulations in this thesis.

Deductive reformulations themselves come in three categories: abstractions, refine-

ments and isomorphisms. A reconceptualization C2 of C1 is

1. An Abstraction: if Deflnabke-C(C2,C1 ) and C2 is a correct reformulation of C,

according to Definition 12 with respect to some goals G. The kinship reformulation

of Chapter 1 is an example.

2. A Refinement: if Definable-C(Ci,C2 ) and C2 is a correct reformulation of C1 accord-

ing to Definition 12 with respect to some goals G. Consider the following formulation

of a puzzle called the hermit puzzle. A hermit starts at the bottom of a hill at 8 am

one morning and climbs to the top by 5 pm. He returns to the bottom of the hill the
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next day at 5 pm after starting his journey at the top at 8 am. The goal is to show

that there is some point on the path up the hill that the hermit passed at the same

time but on different days. Introducing another hermit who comes down the hill the

same time that the first one starts makes the solution transparent. The new con-

ceptualization introduced an object into the formulation that cannot be constructed

from the old one: it is thus a refinement reformulation.

3. An Isomorphism: if Definable-C(C2,Cl) and if Definable-C(CA,C2 ) and and C2 is

a correct reformulation of C1 according to Definition 12 with respect to some goals

G. The rectangular to polar coordinate transformation in coordinate geometry is an

instance of an isomorphic reformulation.

This thesis addresses the issue of automating abstraction reformulations for computational

efficiency.

2.6 Automating Reformulation

In any knowledge base, and for any intelligent agent, it is essential to make

the right distinctions in order to be able to organize and cope with the com-

plexities of the real world. In order to know what constitutes a good set of

individuals, categories, attributes and relations, we have to understand how

the possession of for ezample, a category, in one's vocabulary assists in mak-

ing appropriate decisions.

from Lenat et al (eds), The Ontological Engineer's Handbook, 2nd ed.,

Addison-Wesley, 1997, pl.

There are two parts to the reformulation problem: the epistemological part and the

heuristic part. The epistemological part is concerned purely with what constitutes a

correct reformulation of a problem, i.e. what the space of reformulations is. The heuristic

part is concerned with how we can actually generate reformulations. The solution to

the epistemological part is a proposal for a generator of reformulations, the heuristic

part addresses the question of how to tame this generator. Both parts are important for

a satisfactory solution to the problem, but the epistemological part has to be resolved

before the heuristic aspects can be tackled. The role of an epistemological analysis of
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reformulation is to tell us what a reformulation is, and what the logical character of a

reformulation inference is.

2.6.1 Formulating the Automation Problem

Given that reformulation is the process of changing distinctions in the world, and that it

is achieved by changing theories, we can now frame the automation question for deductive

abstraction reformulations.

Given

" An initial conceptualization C, and its encoding El

" Goals G (correctness constraints)

" Problem solver PS: description of behaviour + cost model

" Computational constraints S on solution of goal by PS(goodness constraints)

Produce a new abstract conceptualization C2 and implement it in the encoding E 2 that

meets correctness and goodness constraints.

2.6.2 Previous Work

Much of the earlier work on reformulation has been of an exploratory nature. The most

influential piece of research was that of Saul Amarel in 1968 (Ama68]. Amaxel presented

examples of reconceptualizations and re-encodings for computational efficiency in the mis-

sionaries and cannibals puzzle. He also speculated on methods for their mechanization.

One important shift in this puzzle is the abstraction of the named individuals into ap-

propriate sets. It set the stage for the creation of abstract action operators that make

the solution of the problem very efficient. This reformulation can now be automated by

general methods proposed in this thesis.

The difficulties of automating reformulation deterred research in this area for a long

while. In 1980, Korf (Kor80] attempted to characterize the nature of the information-

processing that occurs during special-purpose reformulations. He defined a set of rewrite

rules on encodings that set up a space of possible re-representations. His theory explained

representation shifts in the Tower of Hanoi puzzle as well as some examples from floor

planning. In 1981, Jack Mostow designed a program that reformulated advice in the game
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Correctness C.

New Formulation that meets correctness and goodness constraints

Figure 2.10: The Transformational Approach to Reformulation
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of Hearts: he devised 400 transformation rules to generate the space of reformulations.

These transformation rules were a set of relational rewrite rules of the form: expl -- exp2

and they were used to generate new encodings from the given one. These rules formed

the generator for the space of encodings and the computational constraints were used as

testers to determine if an appropriate encoding E2 had been found. The architecture

of this solution is sketched in Figure 2.10. The main disadvantage of this approach was

that there were too many rewrite rules even in domains of medium complexity (Hearts)

and the control problems were formidable. They were solved by having the user guide the

reformulation process. Another major disadvantage of the approach was that there was no

principled way of actually generating these rewrite rules from more global considerations.

In 1983, Utgoff [Utg86] attacked the inductive reformulation problem in the context

of the LeX [MTMB82] problem solver. He proposed a method called back-propagation to

refine the concept of integer to odd-integer to make an integration heuristic expressible.

The chief insight in this work was the explicit use of problem-solving goals to guide the

addition of new concepts. The addition of new concepts to an inductive system to make

prediction efficient was studied by Fu & Buchanan [FB85]. This work proposed two

general heuristics and was tested empirically in the domain of medical diagnosis. In 1986,

Richard Keller [Kel87] introduced a scheme for the addition of new concepts into the LeX

problem solver that would make the solution of some queries very efficient. He used a

sophisticated model of problem solving and empirical methods for testing the efficacy of

a given representation against a class of goals.

More recently, there has been a flurry of work on the problem of automatic intro-

duction of new vocabulary to make problem solving and machine learning more efficient.

Most of them focus on very special classes of deductive and inductive abstractions. All of

them pose the reformulation question at the level of encodings. Patricia iddle [Rid88]

under Saul Amarel has attempted to automate the formation of deductive abstractions

of problems formulated in the state-space framework. She has focussed on the creation

of macro-operators that speed up the solution of a class of queries. Mike Lowry [Low88

has developed abstraction methods based upon the theory of abstract data types to syn-

thesize algorithms from specifications. Muggleton [Mug88] has devised a machine learn-

ing scheme that introduces new predicates to make the resulting generalization compact.

Flann [Fla88J reformulates theories expressed in structural terms into functional terms to

make a recognition task more efficient. The novel aspect of this work is the use of examples
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to guide selection of useful functional terms. The generation of functionally useful classes

by induction from problem solving traces is also the theme in Jeff Schlimmer's work on

representation change [SP88].

2.6.3 The Justification Based Approach

Our credo is that automation of reformulations is not possible unless the reformulator can

justify a shift in conceptualization. The hope is that if the justification or explanation

of a reformulation is done at the right level we5 can exploit it to automate the process.

Standard explanations for the correctness and goodness of a reformulation are at too low

a level of detail; they obscure the important aspects of the proof that are needed for

generation. This is the same insight found in the analysis by synthesis work in the domain

of electrical circuits by Sussman(Sus77]. A circuit can be synthesized by writing down the

equations for behaviour in terms of the unknown values and solving for them. This usually

results in huge systems of equations. However, we can use knowledge of the form of the

answer to guide us in setting up the equations cleverly, so they can be easily inverted. As

Sussman puts it: it is knowing what algebra to do that separates a good circuit designer

from a bad one. The explanation framework introduced in this thesis provides a way of

doing algebra on formulations in a clever way.

The justification based approach involves asking the questions: Why is the concep-

tualization C2 a reformulation of C1 ?. Why is E2 a reformulation of E, ? These are

explanation-seeking why questions in Hempel's [Hem65] terms. Our object in doing this

is to articulate the knowledge and the reasoning that goes into deliberate reformulation

so that we can compile it into algorithms for automatic reformulation. But what does an

explanation or a justification for a reformulation look like?

Reformulation can be defined as the process of inferring a new conceptualization and

a new theory in that conceptualization that preserves the goal and that satisfies the given

effectiveness criteria S with respect to a problem solver PS.

I From A, C1, El, g1,S infer C2 , ,92,

This is a non-deductive argument in that the conclusions do not follow syntactically

from the premises. The justification problem then is to find a criterion, which if satisfied

by a reformulation inference, sufficiently establishes the truth of the conclusions. Our

objective is to find general principles which when taken with background knowledge and

&s designers of automated reformulators



CHAPTER 2. THE REFORMULATION PROBLEM 47

added to the premises of the reformulation inference, make the conclusion follow soundly.

The goal of this research is to provide a normative justification for a reformulation

inference and in doing so provide a general form for the background knowledge needed

to draw reformulation conclusions regardless of the specific method used to derive them.

That is, we are interested in enumerating the space of reformulation conclusions starting

from an initial set of premises. Some criteria on the nature of this justification knowledge

are:

" Content

The justification should be a declarative statement of the factors that come into play

in the choice of formulation: what the semantics of that choice are and what role

they play in the problem solving process. Much of this knowledge is left implicit

in present day systems, so when computational constraints are changed, a system

cannot realign conceptual boundaries in a knowledge-based way.

* Generality

The justifications should be domain and problem-solver independent. This does not

mean that they will insensitive to such knowledge, it simply necessitates factoring

out a much of the domain and problem-solver specific information as possible to

facilitate reuse.

" Generative power

The justification should be structured in such a way that it can be used to generate

new formulations. This is akin to the technique of synthesis by analysis in analog

circuit design [Van74]. The justifications then, are not purely explanatory in nature;

they can be run in reverses to suggest the space of possible reformulations that

satisfy the correctness and goodness constraints.

Justifying changes in conceptualization requires that we able to justify conceptual-

izations in the first place. A conceptualization partitions the universe in a certain way.

A justification for a conceptualization articulates the epistemological and computational

consequences of assuming those distinctions. A justification for a change of conceptual-

ization is an explanation for the introduction or removal of some conceptual elements for

the achievement of the given goals with new resource constraints. These justifications are

as suggested by Susman in his work on slices
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Figure 2.12: The Relevance of Irrelevance

thus meta-theoretical. They attempt to answer why the current formulation fails to meet

the specified computational constraints.

Justifications for reformulations that satisfy Definition 12 have two parts to them: the

corr(tness proof that guarantees that the new formulation obtains the same answers on

the given set of goals and the goodness proof that shows that the new formulation has

better computational properties modulo a given problem solver. These explanations in-

voke properties of the current conceptualization as well as the present encoding to explhn

the epistemic and computational role of the distinctions being made. The advantage of

these meta-theoretical justifications is that they tie the change in formulation directly to

a change in computational properties. One class of such explanations are irrelevance jus-

tifications. We then use our knowledge of conceptualizations, encodings, and the problem

solver to redesign the formulation to meet the new constraints.

2.6.4 Irrelevance Justifications

One of the simplest roles a distinction could play is that it has no part or has a dispensible

part in the computation of a set of queries. We then say that the vocabulary term is

irrelevant to the particular set of queries. An irrelevance justification for an abstraction

reformulation explains why some conceptual elements were expendable and why some

distinctions can be collapsed to get more abstract terms. The irrelevance principle states

that a formulation should be changed to eliminate all distinctions irrelevant to the present
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goals. It thus sanctions the inferences that logically minimize distinctions made in a

formulation. Thus, we can integrate momentary objects into appropriate intervals as well

as individual points in space into lines. The compression of particulars into a universal, the

subject of machine learning, is also governed by the same principle: generalization occurs

because we discard distinctions that do not have predictive utility. At the meta-theoretic

level, the irrelevance principle sanctions a move towards conceptualizations and encodings

that make no irrelevant distinctions as in Figure 2.12. The principle simplifies computation

in a theory by making the objects assumed by it as few and as large as is consistent

with the correctness constraints. This ontological economy in describing problems entails

computational savings. We only make distinctions necessary for the purpose at hand. This

informal idea expounded in [Qu!63,Har86] among others is made precise in the succeeding

chapters so that we can design a machine that obeys this principle.

4



Chapter 3

The Theory of Irrelevance

3.1 Introduction

Often, wisdom is knowing what to ignore. An autonomous resource-limited agent with a

very detailed theory of the world should be able to reformulate it to a simpler theory that

allows it to make predictions at the required level of accuracy within the given resource

constraints. Sach an agent has to identify distinctions made in its conceptualization

of the world that are irrelevant to the class of predictions it is designed to make, and

weaken its theory by removing irrelevant distinctions. The theory of irrelevance provides

a logical basis for justified discarding and ignoring of information and the construction of

computationally effective theories from detailed, intractable ones.

3.2 Motivations

There is too much information in the world and an intelligent agent has to focus selectively

on it and structure it in effective ways to achieve its goals. An agent thus needs to reason

about what information can be ignored and why. Removing irrelevant information has

important consequences, both computational and epistemic. In Abstrips [Sac74], the

ignoring of preconditions of lower criticality while attempting to achieve an abstract plan

at a certain criticality level, leads to overall efficiency in the planning process. In case-

based expert systems for medical diagnosis, the introduction of additional evidence often

degrades accuracy of performance because the number of spurious matches increases. The

quality of answers and explanations obtainable from a knowledge-based system is improved

51
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if these systems are endowed with the ability to explicitly reason about what to ignore in

a goal-sensitive way.

The theory of irrelevance is a tool for specifying as well as deriving classes of infor-

mation that can be ignored in the context of particular goals. For instance, in Dendral,

there are two classes of mass spectrograph points that are ignored for the purposes of the

structure interpretation task. Scientists have much sharper criteria for the data points

to ignore rather than the data points to include. Specification of irrelevance claims is a

valuable mode of expressing knowledge about a domain.

Another important reason for building the ability to reason about irrelevance into

systems is that we would like to give advice about irrelevance of entities to a problem-

solving system. For example, in the missionaries and cannibals problem, we would like

to tell the problem-solver that the names of the missionaries and cannibals are irrelevant,

and have the system dump the missionaries and cannibals into sets and reason with

the cardinalities of these sets. Amarel indicates this sort of reasoning in his well-known

1968 paper [Ama68]. Removing irrelevant facts and objects from a formulation is an

important method of changing representations. Yet another motivation for reasoning about

irrelevance is the need for problem-solving systems to reason flexibly at varying grain sizes

[Hob85]. These systems require the ability to recognize and ignore detail irrelevant to their

current goals in order to shift to a bigger grain size where those goals can be achieved more

efficiently.

Reasoning about irrelevance is equally important in learning and theory formation.

Minsky explains the role of irrelevance in learning very powerfully in the following excerpt

from the The Society of Mind.

...... we never ever face the same apperance twice of anything. We are

almost certain the nezt time to be looking from a different viewpoint, nearer or

further, higher or lower, in a different colour or against a different background.

So unless our minds simplify away the inessential aspects of each scene, we

could never learn anything.

Reasoning about irrelevance can thus be used as a basis for focusing attention in both

inductive and deductive tasks. In induction, irrelevance claims bias the learner towards

the construction of simpler and computarinally more effective generalizations. In deduc-

tive tasks, irrelevance statements help focus search by identifying unfruitful or redundant

paths. They also help restructure the search space by introducing new primitives.
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3.2.1 Guide to Chapter

To this end, this chapter (which is an extension of [SG87]) introduces meta-level state-

ments about irrelevance that allow us to specify which distinctions in a formulation can be

dispensed with on logical or utilitarian grounds with respect to a given task. We then out-

line the semantics and properties of statements about irrelevance. We present a theoretical

framework for irrelevance and develop a hierarchy of logics that capture different senses of

irrelevance. The logics of irrelevance serve as a language for specifying irrelevance claims

in the world and their associated calculi allow us to draw new irrelevance conclusions

from given ones. We present proofs of irrelevance in the logics. Efficient graph-theoretic

compilations of some of the calculi are also given.

3.3 Informal Semantics of Irrelevance

A fact f is irrelevant to the goal schema g in the context of a set of sentences T, written

as Irrelevant(f,g,T), if perturbing the value of f in T does not affect that of g. Informally,

the following conceptual derivative is calculated.

Irrelevant(f,g,T) =( -T = 0)

This is an exact irrelevance claim. Approximate irrelevance claims are those in which the

above derivative does not equal zero, but some f very close to zero.

Now we present some examples.

1. The Price of Tea in China

Given our current knowledge of economic theory, the price of tea in China is irrelevant to

my writing this thesis. This is an exact irrelevance claim. Even if we changed the value of

the price of tea in China in our theory of the world, the change would not propagate to the

fact about my writing this thesis. The irrelevance claim is a fact about the relationship

between two facts in our theory of the world. There are two possible meanings to this meta-

relation. One, even if we simplified our theory of the world by discarding information about

the price of tea in China, the truth value of the proposition about my writing this thesis

would not be affected. This is the subtractive semantics of irrelevance. Its counterpart is

the additive semantics that says that even if we added information about the price of tea

in China, it would not help us conclude anything more about my thesis writing. Since
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the relations Price-of-Tea and Write-Thesis are logically independent in our theory of the

world, these two interpretations of irrelevance are identical.

2. The H:-brid-pi model

As an example of an approximate irrelevance claim consider the following. For the purposes

of computing the low frequency gain of a transistor using the hybrid-pi model, the base-

emitter and base-collector capacitances are irrelevant. These two components complicate

the analysis of the circuit without providing a commensurate increase in accuracy for

the low frequency case. Under these conditions, we would like to ignore the effects of

the capacitances and simplify the model by dropping them. In the previous example, the

elimination of the Price-of-tea relation did not influence the truth of the proposition about

my thesis: here removing the capacitors causes the value of the gain to change, but not

significantly.

Notice that the irrelevance claim about transistors is a conditional one, it is true only

for frequencies less than 50 Hz. Also, unlike the previous example, an object (a base-

emitter capacitor in the hybrid-pi model) is specified as irrelevant. We now consider what

it means for an object to be irrelevant. A subtractive semantics for object irrelevance is:

even if we removed the object from the model of the theory, we would still be able to solve

for the goal. An additive semantics for object irrelevance is: addition of the object does

not tell us any more about the goal (in particular, it does not make a previously unsolvable

goal solvable). Object irrelevance can be treated as a special case of fact irrelevance; f

would then be the statement that an object with the requisite properties exists.

The irrelevance claim above can be determined by a meta-theoretical analysis of the

equations for calculating the gain using the hybrid-pi model. Under the low frequency

condition, the capacitive terms are second-order effects: an order of magnitude reasoning

over the various terms that contribute to the gain shows that the capacitive terms have a

negligible effect. Proving irrelevance claims is a creative endeavour: in this case the proof

requires doing a sensitivity analysis of the gain equations.

Removing an object from the model entails modifying the theory so that the existence

of the object can no longer be deduced. In model-theoretic terms, this entails modifying

the Herbrand base to exclude the object. In terms of revising the theory, this amounts,

in the simplest case, to removing all references to the object in the theory (akin to dead

code elimination in compiler optimizations). In our example above, we can simplify the

gain equations by this method. In more complicated cases, we have to remove those facts
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that assert that the object exists as well as those that depend on the fact that the object

exists. We continue with more examples.

3. Missionaries and Cannibals

In the missionaries and cannibals puzzle, the solution does not ask for a particular

individual to reach the destination bank ahead of another. In the 3 x 3 problem, there

are 36 possible solutions that differ on the order of the missionaries and cannibals reaching

their destination. This number is derived by using the fact that every permutation of the

missonaries amongst themselves as well as the cannibals amongst themselves transforms

a valid solution into another valid solution. The fact that the order is irrelevant, allows

us to erase the identities of the individuals and clump them into sets. On analyzing

the preconditions of the action operations in this puzzle (load-boat-left, move-boat-from-

left-to-right, etc.), we see that the preconditions only require the cardinalities of the sets

of individuals in each bank and the boat. This gives us the justification to discard all

attributes of the sets except for their cardinality.

Suppose we introduced two new operators Sit-Down and Stand-Up that act on indi-

viduals. Recall that the goal is to find the minimal sequence of actions that achieves the

transfer of the missionaries and the cannibals. We can state the fact that no minimal

sequence of actions to achieve the goal uses these two operators by making the claim that

these operators are irrelevant to the goal. This means, even if the operators are removed,

the same solution would obtain. The irrelevance claim captures an important property of

the problem space intensionally. This particular irrelevance claim can be discovered by a

local analysis of the preconditions of operators in time linear in the number of operators.

4. Abstrips

The essence of the Abstrips approach for controlling search in planning is to use a

means for distinguishing details from essential aspects of the problem space [Sac74I. By

planning in a hierarchy of abstract problem spaces ordered by the amount of detail in them,

and by introducing detail in a top-down fashion, a search space which is exponential in

the number of operators is reduced to one that is polynomial in complexity.

In contrast with all the irrelevance claims above, the claims in Abstrips cannot be

deduced from a description of the most detailed space. The hierarchy embodies knowledge

about what is detail and what isn't at particular points in the planning process, and this

knowledge is expressed in the irrelevance claims. By changing the criteria for what

'which is not expressed in the detailed domain theory!
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constitutes detail, Abstrips can construct abstraction spaces that axe computationally

useful for the task at hand.

For instance, the Turn on the lamp operator is represented in STRIPS notation [Sac74].
Preconditions Type(I, LAMP) A 3rz. (1)

lnroom(ME, rz) A lnroom(l, rx) (2)

Plugged - ln(l)A (3)

Nextto(ME, 1) (4)

Addlist On(I)

Deletelist Off()
The predicates in the preconditions axe ordered in decreasing order of criticality. At

-riticality 1, the predicates of lower criticality (Inroom ..... , Nextto) axe ignored. Translat-

ing this into state space terms, all states that differ purely on the values of the predicates

of lower criticality axe treated as identical. This is the assertional import of the criticality

assignment; it clumps whole subgraphs in the state space graph into a single node.

The information contained in the criticality assignments can be give- a clean semantics

by re-expressing them as irrelevance claims. This also allows us to declaratively specify

the criterion of irrelevance which can change from task to task and permits the automatic

derivation of the required abstraction hierarchy. Abstrips uses the following (procedurally

expressed) criterion to sift detail from the essentials. If a predicate (that expresses a

condition of the world) is easier to achieve than another, it deems the first predicate to

be an irrelevant detail and drops it from consideration.

To formalize the above, we need to enrich our simple definition of irrelevance to include

an ordering criterion. If we have two fact schemas f, and f2 that are irrelevant to the same

goal-schema g, we can impose the "Is-More-Irrelevant-Than" ordering on f, and f2. To

automate the construction of the particular hierachy that the designers of Abstrips chose,

we first define the semantics of this ordering to be ease of achievability. We then construct

the abstraction hierarchy bottom up by dropping the least element of this partial order

first, and proceed iteratively, until all the elements in the order are covered.

For example, suppose we have a theory T with two predicates f, and f2, and we also

know that in the context of achieving goal schemi g, f, is more irrelevant than f2. Then

the irrelevance minimization method would construct a 2 level abstraction hierarchy whose

top level is the theory Ti which ignores fl, and whose bottom level contains T. In effect,

we perform the following inference.
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Description of detailed space + Specification of Is-More-Irrelevant- Than claims for a

given class of problems Mrr The Abstraction Hierarchy.

The irrelevance minimizer guarantees that at each level the abstract theory ignores

detail that is irrelevant for that level as well as the levels above i".

5. Founding Fathers

Consider the following kinship example. We start with trees of Father relations. The

defined relation Ancestor is the transitive closure of the Father relation. The goal is the

SameFamily relation; two people belong to the same family if they have a common an-

cestor. If a simple backward chaining system like Prolog worked on this formulation of

the problem, SameFamily queries would take time proportional to the height of the tree. 2

Suppose we wish to reformulate this problem in order to be able to solve for SameFamily

queries in constant time with O(n) extra space where n is the number of people in the

family trees.

There are two irrelevance claims that allow us to accomplish the reformulation.

1. The distinction between immediate and non-immediate ancestry (i.e., between Father

and Ancestor) is irrelevant to the SameFamily query.

2. The identity of the common ancestor is irrelevant to the SameFamily query.

While the irrelevance claims in Abstrips, collapsed states in the state space into equiv-

alence classes modulo the plan to be achieved at a certain level of abstraction, the claims

in this example identify redundant paths in the search space. If the Ancestor fact corre-

sponding to a given ground Father fact were available in the formulation, there would be

two alternate ways of concluding SameFamily: one that uses Father(x,y) === Ancestor(x,y)

and the ground Father fact, the other that terivinates on the ground Ancestor fact. The

irrelevance claims sanctions the construction of a weakening of the formulation by drop-

ping the Father relation. This is equivalent to relabelling the Father trees as the Ancestor

trees in the formulation. Note that model-theoretically, we get rid of the distinction be-

tween Ancestor and Father. Proof-theoretically, all proofs of Same-Family are shortened

by one step. And in terms of the search space, this relabelling causes all branches that

result from expanding the first axiom in Figure 3.1 are pruned. The irrelevance claim

has a computational impact. To capture this notion precisely, we refine the notion of

irrelevance introduced in the beginning of the chapter as: f is computationally irrelevant

i if they succeed. If not, the interpreter generates an infinite subgoal sequence.
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a

b c

d e f g

Father(a,b)
Father(a,c)
Father(b,d)
Father(b,e)
Father(c,f)
Father(c,g)
Father(x,y) ==€ Ancestor(x,y)
Ancestor(x,z) A Ancestor(z,y) ==. Ancestor(x,y)
Ancestor(zx) A Ancestor(z,y) ==. SameFamily(xy)

Figure 3.1: The Given Formulation

to g in the context of T if the conceptual derivative of g with respect to f in T is zero and

the simplification of T that is constructed has better computational properties.

The second irrelevance claim has a stronger computational impact. It sanctions the

inference that allows us to shortcircuit all the Ancestor links upto the roots of the trees.

In Section 3.5 we will state this irrelevance claim very precisely. This claim leads to the

synthesis of the mazimal Ancestor relation. The mechanics of the theory revision that

accomplishes it is the subject of Chapter 4. The abstract justification for both these

claims is: a fact schema is irrelevant if there exists an alternate fact schema that reaches

the solution without it.

6. Granularity Shifts

The width of the road is irrelevant to the length of the path from SF to LA. This means

that two points that differ only on the width dimension along Rte 101 are in the same

equivalence class with respect to distance from LA. Model-theoretically, this allows us to

project out the width component from the Herbrand base of a theory that treats the road

as a surface. Points on the road in this theory are regarded as elements in R and the

irrelevance claim sanctions the simplification to a theory whose Herbrand base contains

the projection along one coordinate which are elements in IZ. Computationally, this is a

win because we have to compute the length of the line joining SF and LA as opposed to
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computing the average of such lines on the surface connecting SF to LA.

Another example is the coarsening of a discretization: e.g. we may wish to reformulate

a theory which distinguishes between temperatures in the interval [58..60] to one that does

not. This requires treating distinct objects 58,59,60 as elements of a single equivalence

class. The theory in which they occur is modified so that the fact that 58 A 59 A 60 can

no longer be deduced in it.

7. Abstraction in Digital Circuits

We present an example of structural abstraction. The idea behind this is that the spec-

ification of the device should not reflect its internal structure, but only its externally

observable behaviour. Suppose we have the gate level description of a full-adder circuit

as in Figure 2.1. Suppose further, that we deem the exact values of the signal at the

points d, e and f irrelevant. The current theory of the full adder allows us to deduce the

output values at the above mentioned points in the circuit. However, all we care about is

that there ezists a value. We therefore need to weaken the theory to make these values

undeducible. One minimal weakening that accomplishes this without changing the values

of sum and carry, changes the Herbrand base. It introduces a new object called the Full-

Adder FA as in Figure 2.2 which has 3 inputs, a, b and c and outputs sum and carry.

We compress the reasoning chains through d, e, and f in the detailed theory and express

the values of sum and carry entirely in terms of a, b, and c. By changing the assignment

of points in the circuit that we wish to make irrelevant, we can segment the circuit in

goal-sensitive ways to get good abstractions.

8. Macrops

The circuit example above as well as the kinship example are instances of formation of

macroperators in the search space by the elimination of irrelevant intermediate variables

(circuit points in the former and ancestors in the latter). The ignoring of intermediate

states leads to the formation of macroperators and the criterion for ignoring them can

be naturally expressed as irrelevance claims. Macrops are a very fertile area of research

in machine learning [REFJ81,Kor83]. The difference between the macrops constructed in

this thesis and the standard ones in literature is that not only do we reconfigure the search

space by eliminating intermediate steps, we also propagate the change into the formulation

so t0-%t the new formulation does not generate those irrelevant steps.

9. Selective Forgetting

Resource limited agents have limited memory and have to decide which information to
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discard and which to keep. Policies for selective retention of information or forgetting

can be expressed as irrelevance claims. For instance, an agent that lives in a world in

which information obtained at time t becomes irrelevant with respect to its goals at t + 2

could be told it as an irrelevance claim. This would sanction an inference on the part of

the agent to ignore information more than 2 clock ticks old. Throwing away information

can be computationally beneficial in other contexts. In macro-operator formation in a

machine learning system, the accretion of macros slows the system down [FN71,Min88].

The rationale for discarding macros can be phrased in terms of the utility- theoretic version

of irrelevance, called computational irrelevance.

10. Control Reformulations

Here the domain of discourse is over computational objects like proof trees and computa-

tion sequences and the irrelevance daims state the fact that there is wasted computation

going on. Consider the following formulation of the Fibonacci function:

1I if n = I;

Fib(n) = 1 if n = 2;

Fib(n - 1) + Fib(n - 2) if n > 2.

The sequence of subgoals generated by a backward-chaining system like Prolog is:
Fib(5)
Fib(4)Fib(3)

Fib(3)Fib(2)Fib(3)

Fib(2)Fib(1)Fib(2)Fib(3)

Fib(2)Fib(1)Fib(2)Fib(2)Fib(1)
If Fib(n) has already been computed before and has been stored away, it is irrelevant to

compute it again using the definition. This is the structure of the explanation for reformu-

lations that eliminate repeated computation. If the objective is to minimize the number

of compute actions, then compiling this irrelevance claim into the formulation requires

rewriting it so that a Fib value is looked up rather than computed whenever possible.The

new relation introduced by the irrelevance minimizer caches a part of the computation

sequence (e.g. the previous two Fib values at any point in the Fib computation).

The irrelevance claim in this case is a conditional one that says that if there is a stored

value for a Fibonacci computation, then the computation of that value in the context of

any goal is irrelevant. Notice that what is deemed irrelevant in this case is the computation

,.) from the definition. We can express the meaning of this claim in terms of the
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fact based semantics introduced informally in Section 3. To do this we need to distinguish

computed Fib's from stored Fib's.

This reformulation is called a control reformulation because the entities that are

deemed irrelevant are computations. Also the effect of the reformulation, viz., the mini-

mization of repeated computation, can be achieved by changing the problem solver while

keeping the formulation intact. Forward chaining from Fib(1) and Fib(2) on the current

formulation until we obtain the required Fib value is an optimal computation. Control

reformulations can be described by the following equation.
F + PS { F2 + PSI An irrelevance reformulation;

F+ + PS2 ; Meta-level Control of Inference

where F, and F2 stand for the current and the new formulations respectively and PSI

and PS 2 are the given and the modified problem solver. Control reformulations move

knowledge from the interpreter to the formulation itself. They are thus information-

gaining, since the new formulation has compiled control information that was absent in

the old formulation.

3.4 Taxonomy of Irrelevance

There are atleast two axes on which to taxonomize irrelevance : the type of the entity

being deemed irrelevant, and the sense in which that entity is irrelevant to a goal. The

irrelevance claims in the Fibonacci case referred to wasted computation, the claims in the

kinship example referred to facts that could be dispensed with. For each type of f, we

can define the perturbation Af that is legal. The irrelevance claims in the PriceofTea

case and the Hybrid-i" case differ on the exactness of irrelevance: the exact claims (4

= 0) are logical irrelevance claims. Some logical claims are approximate. An approximate

irrelevance claim aserts that ignoring the entity deemed irrelevant is a computationally

beneficial thing to do (irrespective of whether or not is logically correct to do so). The

type of perturbations we are willing to consider include

1. f is a proposition : flip the value of f in the theory

2. f is a set of propositions : fip the value of any f in that set

3. f is an object : remove f from the Herbrand base of that theory

4. f is a set of objects: remove them all from the Herbrand base
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5. f is part of a proof tree or search space : prune that part of proof tree or search

space

6. f is an action: do not perform action

7. f is an argument of a relation: drop that argument

Irrelevance claims can be probabilistic too. This involves attaching probabilities to the

claims: most independence claims in the physical world as well as irrelevance claims in

ill-structured domains like medicine have this flavour. Probabilistic claims will be studied

in the future. In this thesis we limit ourselves to exact irrelevance claims. These are of

two kinds: logical and computational. A logical irrelevance claims allows the discarding of

information and guarantees that the answers to the given set of goals will be unaffected. An

approximate irrelevance claim like the hybrid-7r case, allows the discarding of information

but does not guarantee that the answers to the given set of goals will remain the same. A

special class of logical irrelevance claims are called computational irrelevance claims because

not only do they guarantee that discarding some information preserves the answers to some

goals of interest, but that throwing away some information causes the computation of the

goals to proceed faster.

3.5 Formalizing Irrelevance

Inefficient formulations make irrelevant distinctions. An irrelevance claim expresses a jus-

tification for an abstraction reformulation. It explains why some conceptual elements in

a formulation are expendable and why some distinctions can be collapsed to get more ab-

stract ones. We devise a logic of irrelevance to state irrelevance claims and to derive them

mechanically from the given formulation. We do so by introducing a relation Irrelevant

that takes 3 arguments: f: the thing that is deemed irrelevant, g: the goal and T: the

theory or context in which irrelevance is established.

3.5.1 The need for a meta-theoretical analysis

If we were asked whether or not, zx9 + z aS + z777 + ... + . T1 is divisible by z9 + zx +

z 7 + ... + zI, we have two choices;

1. Perform the actual division. This is a long and computationally expensive process

which results in the generation of the quotient.
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2. Utilize the fact that the quotient was not needed at all, all we wanted was to deter-

mine whether or not the polynomial was divisible. There are sufficient conditions

for divisibility that we can use to determine this property that use easily evaluable

conditions on the forms of the divisor and dividend.

The same motivation underlies the logic of irrelevance; it gives us a way to express

and use information about dependencies between sets of facts in a furmulation without

carrying out the detailed proofs. The logic of irrelevance allows the succint expression of

the fact that some distinctions can be dispensed with on logical or utilitarian grounds,

it also justifies the discarding of distinctions in the form of a proof of irrelevance. The

logic of irrelevance essentially performs a qualitative analysis of proofs of a class of goals

in a formulation - it makes possible intensional reasoning about proofs and about formu-

lations in which they arise, without exhaustively enumerating them. When the domain of

discourse is search spaces, the logic of irrelevance allows us to intensionally reason about

pruning search paths.

3.6 The propositional logic of irrelevance

Here the arguments of the ternary relation Irrelevant are restricted to be propositions or

sets of propositions. We say that f is irrelevant to g in the context of the set of sentences

T, written as Irrelevant(f, g, T), if changing the truth value of f in T does not affect that

of g. The truth value of f in T is changed by constructing a weakening T' of T that no

longer supports the truth of f. First, we define a weakening.

Definition 14 The set T' of sentences in the vocabulary C is weaker than the set T in

the same vocabtdlary, if T T' or equivalently if Deductive-Closure(T') C Deductive-

Cloue(r).

Two classes of weakenings are explored in this thesis. Both use the subset operation. The

first class, called Type 1 weakenings decrease the deductive closure of the set without

changing the Herbrand universe. Type 1 weakenings are characterized by Definition 1.

Type 2 weakenings collapse propositions by constructing equivalence classes of them and

thus Llange the Herbrand base. We study Type 1 weakenings only. The irrelevance claims

described are called weak irrelevance claims.

Definition 15 WI,(f,g,T) T = g and3 T'. T' 1 g and T' K f.
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Example 1 Let TI = {It}. Let T2 = {I,I =: t} where I and t stand for the propositions

that there is lightning and thunder respectively.

Using Definition 15, we can conclude that WI1(I,t,T 1) since we can construct a T'

with the required properties. However, we cannot show that WI1 (1, t, T 2). This is because

the truth of t in T2 does depend on that of I, the conceptual derivative A is not 0 in T2 .

This example shows a very interesting property of WI1 . Even though T, and T 2 are

identical from a model-theoretic viewpoint, the irrelevance judgements in the two sets are

not. Claims about WI 1 are sensitive to the form of T. This precludes describing the

semantics of WI1 using model theory alone. The status of t in the two sets Ti and T2 is

different; in Ti it is a primitive proposition (its justification set is empty), whereas in T 2 it

is a derived proposition (its justification set is the singleton containing 1). This distinction

between primitive and derived t's is lost in the model theoretic accounts of the meaning

of the two sets.

This example brings up an interesting kind of non-monotonicity that WIt possesses.

The irrelevance claims are not preserved across the deductive-closure operation on T.

Example 2 LetT, = {p,p * q} and letT 2 = {p,p :* q,q}.

It is the case that -,Wl 1(p,q, TI) and WI(p,q, T 2) even though T2 is generated from T1

by adding an entailed conclusion. So irrelevance claims of this form are not preserved

across addition of deductively entailed conclusions. However, note that the conditional

irrelevance claim that holds in both sets is q E T => WI 1 (p, q, T). This states that if q

were present in the set T, then p would be irrelevant to q. For T2 the LHS is true and

thus we get W11(p, q, T 2). For T1, we interpret the condition, counterfactually - if q were

added to T1 , then p would be WI 1 to q.

Definition 15 does not usually specify a unique T'. If there are multiple subsets of

T such that they entail g without entailing f, then we have to choose which one will be

constructed by our automated irrelevance reasoner.

Definition 16 Wl,, (f,g,T) - T g and 3 T'. T' - g and T' V f. where T' is a

maximal subset of T with this property.

One might wonder why we impose the restriction of maximality on T' in this defini-

tion. This requirement is not essential for the determination of irrelevance, it is necessary

however, that the revision of T that we construct be the most conservative one, so that

we do not lose any more information than we need to.
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3.6.1 Some properties of WI1

Whj is intransitive and asymmetric in the general case. It is also non-monotonic with

respect to additions to T.

1. Intransitivity

WIj(f,g,T) A WII(g,h,T) # W1l(f,h,T)

For example, let f, g, and h stand for the following propositions.

f There is a blight on the tea crop in China.

g I am writing my thesis.

h : The price of tea in China is affected.

The general schema for generating intransitive claims is to take two causally related

events and interpose an irrelevant one between them. This property of WI 1 makes

it difficult to propagate irrelevance conclusions directly.

2. Asymmetry
SWII (f ,g, T) 0 W11 (g, f, T)

Let f and g stand for the following propositions.

f Joe sells his stock

g The stock market goes down

T Joe is a very small investor

It is true that Joe's selling his stock has a negligible effect on the market, but the

crash of the market is very relevant to Joe's selling actions!

For the special case when f and g are independent (that is, they can be assigned

truth values in T independent of each other) we can infer the irrelevance of g to f

from the irrelevance of f to g.

3. Non-monotonicity

Suppose we have an irrelevance claim that is true of a set of sentences. We will

show that making consistent additions to that set does not necessarily preserve

the irrelevance claim. We will use Example 1 defined earlier. We showed that

- Wl 1(1,t, T2 ). Now, add T to T2 to construct T3 . Applying Definition 15 again, we

can establish that WI 1(p, q, T3). This is an interesting kind of non-monotonicity:

irrelevance claims are not preserved under deductive closure.
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3.6.2 Towards a proof theory of WI1

The irrelevance claim WIi(f, g, T) states that either f is not necessary for deriving g in T,

or that there are alternative ways of deriving g that do not require f. The claim allows

us to make statements about proofs of g in T without enumerating them. The assertional

import of the claim (i.e. the inference it sanctions) is that it is correct with respect to

preserving g, to simplify T to T' by the subset construction in Definition 15.

Example 3 LetT = {pAq * r, pAq * s, sAtAu = r, p => t,u,p,q}

Notice that there are two ways of concluding r. The shorter proof uses p, q, and p * q.

The longer one uses s as an intermediate conclusion. It is correct to assert in the meta-

theory of T that W1(s, r, T). If we act upon this claim, we would simplify T to the subset

{p A q => r, s A t A u =: r, p => t,u,p,q} and allow only the shorter proof of r to be

concluded. The irrelevance claim is a control hint and the inference it sanctions shuts out

undesired proofs of the goal. Suppose now that we want the longer proof of r to succeed.

In this case, we would make the rule p A q * r be irrelevant to r. The subset construction

in Definition 15 does not achieve the omitting of the rule, which would ensure that the

only proof of r remaining would be the one through s. To do this, we need the WI 2 notion

here.

Definition 17 W12 (f, g, T) - T f= g and 3T'. T' g where T' = T - {f}.

Example 4 Let T = {p, p => q, q}

Is p irrelevant to q? By the subset definition, we can construct a subset T' of T , namely

{p * q, q} that allows us to conclude q without committing ourselves on p. So p is indeed

irrelevant to q. Let us consider the subsets of T and write down the irrelevance claims

that would generate them.
{p,p : q}:W 2(q, q, T)

{p * q,q}:W1 1(p,q,T)

{p,q} :W 2(p = q,q, T)
This points to a limitation of WI1 , it cannot distinguish between stored and derived

propositions. To generate the first subset above, we needed to remove q that was stored

and allow the derived q to survive. WI1 completely purges T of the proposition that is

deemed irrelevant. So we need the weaker version WI 2 which simply removes the irrelevant
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proposition without removing those that derive it and those whose derivation depends on

it. Intuitively, what WI 2 accomplishes is getting rid of f if it occurs explicitly in T, i.e.,

it removes 0-length proofs of f in T. This can be stated precisely as follows.

Theorem 5 Iff is a primitive fact in T (i.e. Support(f,T) = 0), then WI1 (f, g. T) E

TVI 2 (f,g, T) and the T' that results from both constructions are the same.

When f does not occur explicitly in T, then W12(f,g, T) will be true vacuously. All

that WI 2 can do is deem cachedf's irrelevant to the computation of g. WI 1, on the other

hand purges f completely from the formulation. So it removes cached f's as well as blocks

all possible derivations of f in T.

3.6.3 An Axiomatization of WI

The domain of discourse of the logic includes propositional atoms, well-formed formulae

(made from connectives), sets of wffs and proofs. The constants axe taken from the set

P of propositional atoms pl,p2,...,p,,. The connectives are -,, A , V , = , = . The

well-formed formulaes are defined inductively. There are also sets of well-foimed formulae

Sl, S2,..., and sequences of well-formed formulae (also called proofs) P1, P2 ,....

We now define some of the functions.

Consequences : wf" x Set of wffs -- Set of wifs

Antecedents : wf x Set of wffs --. Set of wffs

Intermediates : wff x Set of wffs - Set of wffs

Paths :wif x Set of wffs --. Set of Sequences of wffs

Informally, Consequences finds the consequences of a wff in a set of wffs, both immediate

and derived. Antecedents finds the set of support for a wff in a set of wffs. Intermediates

finds those wffs in a set of wffs that use a given wff as an intermediate in their derivation.

Paths of a wff is a set of proofs for that wff.

These functions are defined inductively.

x E Consequences(x, T).

If y E Consequences(x, T) P, y => z E T then z E Consequences(x, T).

x E Antecedents(xT).

If z E Antecedents(x,T) A y = z E T then y E Antecedents(x, T).

Intermedtates(h, 5) = {f, g f . *h E S A h => *g E S}
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=)* stands for transitive closure under =*.

Theorem 6 WI(f,g,T) is true ezactly when f Antecedents(g,T) or f is not in every

element of Paths(g,T).

The first condition corresponds to there being no directed path from f to g in the graph

representation of T. The second condition is equivalent to saying that there is an alternate

path to g that does not go via f.

3.6.4 Lemmas of WI1

1. W1(f,g,T) A W1(h,g,T) #- W1I(f A h,g,T).

Take an example: Let T = {f,h,f :* g,h =* g}. WI(f,g,T) because we can

construct T1 = {h,f =* g,h * g }. Also, WI(h,g,T) because we can construct

T2 = {f,f => g,h => g}. Now we ask whether WIl(f A h,g,T). Yes, because either

T, or T2 satisfies the requirement that neither f A h nor its negation is entailed in

it.

2. WI(f A h,g,T) * WI(f,g,T) V WI(h,g,T)

To see why this is true: consider the following example. Let T = { fh,f => g, h =>

g}. There are two possible maximal subsets of T that can be constructed to show

that WI 1(f A h,g,T). One of them is TI from the previous example, and the other

is T2. If we only knew WI 1 (f A h,g,T), we couldn't tell whether f was irrelevant

or h was irrelevant. So we can only conclude the disjunction of the individual WI

claims. This implication seems to be an if" one. 1iecause if we can prove g without

f, then we can prove g without f conjoined with h, which is stronger than f itself!

3. WI(f v h,g,T) #- W1(f,g,T) V WI(hg,T)

This can be proved in the following manner:

WI,(f V h,g,T) = W11 (-,(f V h),g,T)

=- WI(-,f A -,h,g,T)

* WI (-,f, g, T) V Wl(-h,g,T)

=> W1 1(f,g,T) V W1 1(h,g,T)

4. WI(f, g, A g2, T) =: WI(f, gl, T) A W1 (f,g 2 , T)
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5. -W1 1 (f, f, T)

Straightforward consequence of the definition of WI1 .

6. fI = f2 => [WII(fl, g, T) * WI,(f 2,g,T)]

Follows directly from the definition of WI1 .

7. 91 - 92 =* [WII(f, gi, T) =* WII(f, g,2, T)]

Follows directly from the definition of WI1 .

8. g E T A f 0 g =- WI,(f,g,T)

If g is in T, then everything except itself is redundant to it.

9. S = {p E TJ f * p } A WIi(APEs p,g,T) * WI f,g,T) when f , g in T

If all facts derivable from f are redundant to g, then f itself is redundant to g.

10. S = {p E T I p* g} A Wih(f,ApES p,T) # WIi(f,g,T) when g #, f in T

Dual of previous lemma.

11. pET A Derives-Only(f,p,T) * W11(f,g,T) when TI=g

If the only role of f is to derive p which already exists in T, then f is redundant for

any goal other than itself.

Since detection of redundancy is undecidable, it is dear that we can never have a

complete axiomatization of WI.

3.6.5 Properties of Proofs in the W 11 calculus

Observation 4 One benefit of promng redundanc/ of some facts in a theory, is that we

can optimize space requirements by simply removing the redundant facts.

A proof of redundancy using the lemmas of WI in the meta-theory of T captures an

important property of the proofs of g in M, without exhaustively enumerating them. A

problem solver that can prove this redundancy claim at the meta-level can prune a large

class of inferences this way. Also if the redundancy statements were made available to

the problem solver, it could compile it into the base level formulation by simply throwing

away those facts that cause the redundancy. This leads to savings in space. To ensure
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that savings in time in proving g result from this pruning, we need to show that the proofs

of g that fail as a result are derivationally more complex than the ones that are retained.

This is captured in our definition of computational irrelevance below. In either case, the

deliberation time for the problem solver will be reduced because the search space of proofs

of g in T is reduced by the removal of redundancy.

Definition 18 Clma(f,g,T) - T = g and 3 T'. T' 1= g (.nd T' 0 f. where T' is a

maximal subset of T with this property and Cost(T' F- g) :_ Cost(T I- g).

Observation 5 CIma(f,g, T) => WImaz(f, g, T).

The computational irrelevance notion folds in a utility measure; it orders logically

irrelevant statements according to their computational impact. Contrast this with an ap-

proximate irrelevance claim that isolates logically relevant but computationally prohibitive

distinctions made in a formulation.

3.6.6 Expressive power and limitations of WI

The WI 1 statements are not reducible; in the sense that every sentence in the extended

language is not reducible to one in the pure propositional calculus. So WI, is more than a

notational convenience, it is a genuine meta-theoretic notion. WI, formalizes reachability

properties in a propositional dependency network of Horn clauses.

The subset construction is a very strong bias in the space of possible abstractions. The

following is the simplest example of irrelevance that the subset definition does not cover.

Example 5 Let T ={-f v g,f v g}.

f is irrelevant to g in T, because there are models of T that have f and g true, and f false

and g true! Thus flipping the value of f in T does not cause that of g to change.

Theorem 7 WI1 provides an aziomatic account of a TMS style dependency analysis.

1. Reachability analysis on inference graph

The propositional logic of irrelevance WI does a pure reachability analysis on the

set of sentences in T. There are three cases of this reachability analysis.
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(a) W12 (p, q, T) if" T - p f= p. p occurs explicitly in T and p is also derivable by

other means in T. This happens when p is cached and the subset construction

allows us to get rid of cached information. This is a construction that reduces

space at the cost of time.

(b) W1(p,q,T) iff T = q and 3T' C T such that T' J= q A T' V p. This happens

when there are two or more proofs of q in T, one that goes through p, and one

that doesn't. The subset construction prunes out that part of the theory that

allows the proof through p to succeed.

(c) Independent(p, q, T): the case where no proof of q uses p. Space savings only.

These three cases take care of optimizations that save space and time without chang-

ing the ontology.

2. Collapsing nodes in inference graph

The previous methods only short-circuit chains of reasoning within an inference

graph while preserving its structure. This operation allows us to treat several nodes

as a unit, effectively generating new objects that stand for equivalence classes of

nodes.

3.6.7 Algorithms for computing WI1

Here we present two basic methods for detecting whether f is irrelevant to g in the context

of a theory T. Assume that f is an atomic fact, we can break f into its constituents by

the rules of the irrelevance calculus and then reduce all testing of irrelevance claims to

proving atomic f's irrelevant.

" Break all ways of concluding f in T. Check if g is still deducible. One way of achieving

this in a Horn clause database is to drop all clauses that have f occurring positively.

If g is still deducible in the resulting database, we conclude that f is irrelevant to g.

" Compute the support set of g in T (i.e. find all ways of proving g in T). This is a

set of justifications for g in T. Drop all justifications that contain f. If the support

set empties after this, then f is not irrelevant to g. Otherwise it is.

The proof-theoretic correlate of these two procedures is immediately obvious. Method 1

foils all proofs of f at the last step (i.e. all premises of may be provable, but the deduction
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of f is not possible because the rule that concludes f from its premises is removed). So if

a proof of g succeeds in the new set of clauses, f does not occur essentially in a proof of

g. Method 2 computes all proofs of g and collects the disjunctive set of justifications. If f

does not occur in all them it again implies that f was not essential to proving g in T.

The first method above can be expressed as the following algorithm.

Algorithm 1 1. Convert T to clausal form. 2. Remove all clauses that have a positive

occurrence of f in them. Call the remaining set T'. 3. Check if T' entails g.

Since every way of concluding f is foiled in this construction, the resulting set T' does not

entail f.

Example 6 T = {a, a A b =: g}

Is a irrelevant to g in this theory? No, because after we drop every positive occurrence

(1 in this case) of a, g is no longer provable. In a sense what this procedure captures is

the fact that if we prevent the concluding of a in T we would still be able to conclude g.

Notice that this works well in Horn databases. But in non-Horn databases, this method

fails.

Example 7 T = {f V g, -,f V g}. We can resolve these two clauses and get g. The truth

value assigned to f does not affect g; g remains true no matter what value we assign to f.

Observation 6 Algorithm I is sound with respect to the WI, definition.

If the algorithm deems that f is irrelevant to g, then so would the definition of Irri.

Observation 7 Algorithm I is not complete with respect to the definition of WI1 .

This algorithm generates one subset of T that does not entail f and checks if g is still

entailed by that subset. There are many subsets of T that do not entail f, and if g is

entailed by one that is not computed by Algorithm 1, then it will not be detected by it.

Observation 8 Algorithm I does not compute maximal T' with the property required by

the definition of WI 1 .

The clause -h V f will be removed even if h is not derivable in T.
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3.7 The first order case

For propositional logic, meta-level proofs of derivability offer no advantage over the base

level proofs. Doing a step in the meta-level corresponds to doing an inference step at the

base-level. For first-order logic, this is not the case and the real power of reasoning at the

meta-level is demonstrated. The propositional definition of irrelevance scales up to the

first order case as follows.

Definition 19 f(x, z) is weakly irrelevant to g(z, y) modulo the set of sentences T, written

as WI(f(x,z),g(x,y), T), if we can construct the set T' such that T' C T and

[Vzy. T k g(x, y) - T' k g(x, y) where [Vz. T' 6 f(x, z)]] and T' is a maximal subset of

T with this property.

We show two examples of first-order irrelevance claims from the kinship example. As

far as SameFamily is concerned, the distinction between immediate and non-immediate

ancestry is irrelevant.

ICI: IVxymn. Ancestor(x, y) E T =: W(Father(x, y), SameFamily(m, n), T)

Further, the identity of the common ancestor is also irrelevant; all that SameFamily seeks

to establish is the existence of a common ancestor. This can be stated as follows:

IC2: Vxyzmn. Ancestor(z, y) E T A Ancestor(y, z) E T A Ancestor(x, z) E T

WI(Ancestor(y, z), SameFamily(m, n), T)

These irrelevance claims can be verified using the calculus of irrelevance presented

below. We have built a meta-level irrelevance reasoner that can prove these claims given

the initial encoding.

Verification of an irrelevance claim using the semantic definition of irrelevance takes

time exponential in the size of T. To make the verification process tractable we generate

lemma.b Lhat satisfy the definition. These lemmas constitute the proof theory for WI. All

variables below are assumed to be universally quantified; x and y are vectors of variables

that are not disjoint.

1. WI(fI(z) A f2(z), g(y), T) I VI(f(z), g(y), T) v WI(f 2(z), g(y), T)

2. WI(f(z),g 1 (y) A g2(y), T) = WI(f(z),g 1(y), T) A WI(f(z),g 2(y), T)
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4. fi(x)= f2(x) *- [WI(f1(x),g(y),T) * WI(f 2(x),g(y),T)]

6. g(y) E T A f (X) $ g(y) =* WI(f(x), g(y), T)

7. S = {P(z) E T I (f(x) =:, P(X)) E T}AWI(AP(--)ESp(x), g(y), T) =:, WI(f (x), g(y), T)

8. S = f{P(y) E T I(P(y) => g(y) E T} A WM Wx, Ap(V)ES p(y), T) *WI(f (z), g(y), T)

9. q(x) E T A Derives - Only(f(x),q(z),T) * WI(f(x),g(x),T) where f(x) * g(z)

The lemmas 1-8 are straightforward extensions of the propositional lemmas. Derives-

Only is a predicate that holds between fact schemas. Derives- Only (f (z),q (z),T) is true of

an encoding T if the only rule that has f(x) on its left-hand-side concludes q(x). Since rules

can be looked up in constant time by our problem solver, this check can be accomplished
very quickly.

Theorem 8 Lemmas I through 9 are sound with respect to the semantics presented in

Definition 4.

Theorem 9 Lemmas 1 through 9 are incomplete with respect to the semantics presented

in Definition 4.

Proof: To complete the aiomatization of WI would require that we identify all the

base cases for proving irrelevance (redundancy). Since detection of redundancy is semi-

decidable, this task is impossible. 0.

3.T.1 Proving Irrelevance Claims

Suppose we wish to prove ICI. We look for a lemnma that matches the condition side of

ICI. One lemma that does that is Lemma 9.

1. q(l) E 7T A Derives - Only(f (1),q(t), T) => WI(f(l), g(s),Tflwheref(l) it g(s)

The unification process yields the following binding list If = Father, q = Ancestor, g=

SamneFamnily,lI = (z, y), s = (m, n)}). After instantiation, we obtain
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2. Ancestor(z, y) E T A Ecrives - Only(Father(x, y), Ancestor(x, y),T) =
WI(Father(x, y), SameFamily(m, n), T)whereFather(x, y) $ SameFamily(m, n).

3. Derives - Only(Father(x, y), Ancestor(z, y), T) follows from a lookup action.

4. Father(z, y) i SameFamily(m, n) follows from deduction over the definability struc-

tures introduced in Section 4.2.1

After the resolution of 3 and 4 against 2, we have

5. Ancestor(x, y) E T * WI(Father(x, y), SameFamily(m, n),T). 0.

The claim above staLes that there are two ways of establishing any SameFamily query: those

that use Ancestor(x,y) alone and those that use Father(x,y) as the terminating point. A

problem solver that can prove this claim at the meta-level has the opportunity to choose

betwoen two classes of paths through the search space. If it prunes out the Father relation,

all proofs of SameFamily get shortened by 1 step and the search space is reduced because

of the removal of nodes that result from the expansion using the Father rule.

As in the propositional case, the pruning alters the base-level formulation so that this

redundancy does not arise. Removal of irrelevant or redundant paths leads to savings

both in space and time especially if the proofs of g that fail as a result of the irrelevance

removal are the ones that are more complex. More importantly, the deliberation time

for the problem solver is reduced because the search space is made smaller by the re-

moval of redundant paths. This notion is made precise in the definition of computational

irrelevance.

Definition 20 f(z,z) is computationally irrelevant tog(z,y) given T, written as CI(f(z,z),g(z,y),T).

if it ts the case that W(f(z,z),g(z,y),T), and the T' that results from the WI construction

is such that AvgCost(T F- g(z,y)) > AvgCost(T' - g(z,y)).

AvgCoat is computed over a given distribution of the goal queries. IC1 and IC2 are

computational irrelevance claims, because the construction of T"s dictated by them result

in shorter chains of reasoning and smaller search spaces. These CI claims can be proven

with the calculus of computational irrelevance, cost models for the problem solver and

knowledge of the initial encoding.

Before we present a proof theory for CI, notice that IC2 would be a valid WI claim if

we replaced the conclusion by WI(Ancestor(z, z), SameFamily(m, n), T). However, this
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claim does not cause reduction in proof height. In general, we have VfgT. CI(f,g,T) *

WI(f,g,T). While WI(f,g,T) states that is it correct to remove f in the context of

deducing g, the CI claim has the additional import that is worthwhile to remove f.

Proof theory of CI

The consequence of the above theorem is that we can construct the CI calculus by selecting

and modifying exactly those lemmas from the WI set that actually reduce cost of proving

g as defined by the cost model. This process is illustrated in the context of adapting

Lemmas 9 and 6 to the CI calculus.

9. q(x) E T A Derives - Only(f(z),q(x),T) => WI(f(z),g(z),T) where f(x) 0 g(z)

The two costs to compare are: height of the proof of g(x) if f(z) were present versus the

height of the proof of g(z) if q(x) were ground instead. Since all proofs that use f(x) have

to go through the expansion via the rule f(z) =# q(x), and since every ground f fact is

r-'olaced by exactly one q fact, the discarding of f meets both our time and space criteria.

Lemma 9 is thus a CI lemma for our problem solver. CI lemmas tune the WI lemmas to

the idiosyncracies of the given problem solver.

As another example, consider Lemma 6.

6. g(y) E T A f(z) 0 g(y) = WI(f(x),g(y),T)

The only cost to consider here is that of storing g(y). If Igf is less than the space

bounds allotted to our problem solver, we would include this as a CI lemma. Notice

that our reformulation cost measures do not include the cost of computing the relation g.

The time and space bounds are on the end product of the reformulation and not on the

computation of the end product. This is because we amortize the cost of reformulation

over all future uses of the new formulation with better computational properties.

3.7.2 Information needed to prove irrelevance

The information needed to demonstrate that a certain class of facts or distinctions are

logically irrelevant to a specified class of goals includes

1. Information about the given encoding

We need to know what relations are represented explicitly/implicitly, the number of

facts in the encoding that match a given form, information about the completeness

of the database for a given relation, as well as information about the stability of the
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Relevant

Weak Irrelevance Implication

Material
Condnl.. . Computational Implication

Independence Irrelevance I
Determinations

x --+ y : x is weaker than y

Figure 3.2: Logics of Relevance and Irrelevance

encoding for a given relation. As an example of the latter, consider the situation

in the kinship example where Father facts can be retracted later. In this case, we

cannot destroy the distinction between Father and Ancestor facts, because doing so

will prevent us from integrating new Father facts as the appropriate Ancestor facts.

Definedness graphs introduced in Chapter 5 maintains dependencies between various

parts of the encoding in a very efficient manner.

2. Information about the conceptualization

Properties of the objects and relations that are encoding independent, e.g., associa-

tivity, commutativity, and symmetry of relations.

3. Information about the goals

We take the goals directly into account in our formulation of irrelevance. The fre-

quency and distribution of queries is an important factor in the determination of

what information can be ignored.

3.8 Related Areas

A formal study of irrelevance reveals that there is interesting substructure in the space of

useful irrelevance inferences. There is a hierarchy of irrelevance logics that is similar to

the hierarchy of logics that capture the notion of relevance [AB75,DR87]. See Figure 3.8.

These logics are not exact duals of each other; many aspects of the relationship between

them remain to be investigated. The statement that f is relevant to g in T conveys the
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information that knowing f in T restricts the space of possibilities for g. The statement

that f is irrelevant to g in M indicates that the value of g is insensitive to the value of

f, in that even if f were changed in T, g would not. In the missionaries and cannibals

puzzle, the names of the missionaries are irrelevant to the scheduling of the boat trips.

This means that even if the names were changed 3, the solution (which does not refer to

the missionaries by name) would not. This irrelevance statement gives us the justification

to modify the formulation in which missionaries are named, to the more abstract one that

uses the cardinality of the set of missionaries.

The two notions of relevance and irrelevance are complementary; one expresses a de-

pendence between two facts and the other captures a one-sided lack of dependence (g being

not dependent on f). However, the normal use of an irrelevance statement is to modify

T while preserving g, the normal use of a relevance statement is to infer restrictions on g

given f: thus the inferences they sanction are not duals.

Su long u they remain distinct from each other!



Chapter 4

Generating Reformulations

4.1 Generation = Discovery + reduction

This chapter describes how to ue irrelevance claims to generate reformulations. The pre-

vious chapter outlined the descriptional import of irrelevance claims - here we discuss their

assertional import, i.e. the inferences that they sanction. We present a framework for the

generation of abstraction reformulations: first, the discovery of appropriate irrelevance

claims in the meta-theory of a formulation, and then the reduction of the formulation

by inferences that minimize irrelevant distinctions. This method of generating abstrac-

tions by minimizing distinctions irrelevant to a given class of goals can be treated as a

first-principles account of abstraction. We discuss the logical character of the reduction

and the discovery processes and analyze their computational complexity. We state the

irrelevance principle which advises minimization of distinctions modulo a goal and show

that it underlies the construction of a large class of abstractions.

4.2 The Irrelevance Principle

Irrelevance claims, both logical and computational, identify irrelevancies and redundancies

in the formulation of a problem. For instance, in the kinship example that we have used

so far, the first irrelevance claim

I 1: [Vrymn. Ancestor(z, y) E T =*. WI(Father(z, y), SameFamily(m,n),T)

expressed the fact that the distinction between immediate and non-immediate ancestry

79
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represented by the relations Father and Ancestor respectively, is irrelevant to the Same-

Family relation. A reduction inference uses this irrelevance claim to modify the formula-

tion so that it no longer makes this irrelevant distinction.

One modification that a reduction inference can perform is to relabel all Father facts as

Ancestor facts, effectively erasing the distinction between the relations they denote. This

inference is sanctioned by the irrelevance principle whose informal statement is: remov-

ing distinctions irrelevant to a goal schema leads to the construcLion of computationally

tractable theories for that class of goals. Note that this is a local optimisation principle

that justifies hill-climbing in the space of conceptualizations toward reducing distinctions.

The global irrelevance principle states that the best reconceptualization makes the fewest

distinctions consistent with the correctness and goodness constraints given. That is, the

optimal formulation is the one that doesn't make any more distinctions than is logically

or computationally necessary. We will call both these principles representational irrele-

vance principles since their domain of discourse is conceptualizations. We can conceive of

a similar set of principles that talk about computations . erformed by an encoding. The

local version of such a principle advises hill-climbing in the space of encodings toward

fewer computations that is consistent with the correctness and goodness constraints. The

global version of this principle states that the best re-encoding is one that doesn't do any

more computation than is necessary to achieve the goal within the given space constraints.

We shall call these two principles the local and global computational irrelevance principles

respectively. The representational and computational principles are akin to Snell's law fot

computational systems: they propose taking the path of least resistance in the space of

representations and computations.

The representational irrelevance principle is a variation of Quine's principle of indis-

cernibility of identicas [Qui63]. It is re-echoed in Harman's [Har86] principle of clutter

avoidance and Lenat's notion of cognitive economy [LHRK791. Whereas the representa-

tional irrelevance principle outlaws making unnecessary distinctions, the computational

irrelevance principle outlaws unneeded computation. To apply the computational irrel-

evance principle we need to specify an encoding and a problem solver to determine the

computations that are performed. The calculus of computational irrelevance is a declara-

tive way of specifying the distinctions in a formulation that give rise to wasted computation

in a problem solver.

We can state the representational and computational irrelevance principles formally.
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To do that we shall introduce two definitions.

Definition 21 A conceptualization C1 =(01, .Fl, IZ1) makes fewer distinctions than the

conceptualization C2 =(O2, .F2, 7Z2) with respect to the goal relation G , written as Makes-

fewer- distinctions (Cl. C2, G), if Definable(G ,Ci) A Definable(G ,Cj) A Definable- C(Cl, C2).

That is, a conceptualization C1 makes fewer distinctions than C2 in the service of G if

G is definable in both, and if the objects, functions and relations of C1 are constructible

from those of C2.

We wish to find the formulation which makes the fewest distinctions that can compute G

most efficiently. To do that, we need to define a metric on encodings that determines if

one encoding performs less computation than another in the service of the same goal.

Definition 22 Encoding E1 of the conceptualization C1 computes G more efficiently than

encoding E2 of C2 if G is definable in C, and C2, and if the cost of proving the encoding

G1 of G in E, is less than that of proving the encoding G2 of G in E2 with respect

to the given cost metric C on the problem solver PS. We then say that Makes-fewer-

computations(El, E 2, G, C, PS).

The local representational irrelevance principle (LRIP) can be stated as:

LRIP: Makes- f ewer-distinctions(Ci, Ci, G)

=€ Bctter-Conceptualization(Ci, Cj, G)

A conceptualization is better than another if it can express G while making fewer

distinctions. The global representational irrelevance principle states that the best concep-

tualization for G is such that

GRIP: For a given goal G, select C, such that -33C. Better-Conceptualization(C,, C,, G).

Clearly, the Ci that satisfies this constraint is one that contains G alone! This is because in

a world where there are no computational constraints, the best formulation for a problem

is one that directly contains the answers: a giant lookup table for G. To take compu-

tational constraints into account, we modify the LRIP so that not only does a better

conceptualization make fewer distinctions, but that it permits an encoding that makes

fewer computations according to some cost metric C on a problem solver PS.

The modified local representational irrelevance principle (LCRIP) states that
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LCRIP:

VCi Ci  Makes-fewer-distinctions(Ci, Cj, G)

A 3PS. 3C. 3E,. Encoding(Ek,C)

A VEI. Encoding(Ej, Cj) A Makes-fewer-computations(Ek, E, G, C, PS)

= Better- Conceptualization(Ci, C,)

The local computational irrelevance principle (LCIP) states that

L CIP: Makes- fewer-computations(Ei, Ei, G, C, PS) *: Better- Encoding(Ei, Ej, G, C, PS)

An encoding is better than another if it performs fewer computations in the service of G.

The global computational irrelevance principle states that the best encoding for G with

respect to a given problem solver and a cost metric is such that

GCIP: For a given goal G, a problem solver PS and cost metric C, select Ej such that

-BEi. Better-Encoding(Ei, Ej, G, C, PS)

If there are multiple Ei's with this property, we choose one which encodes a conceptu-

alization with the fewest distinctions. This intuition is expressed in the modified LCIP

below.

LRCIP:

VE, Ej 3C. BPS. Makes-fewer-computations(Ei, Ei, G, C, PS)

A 3C4.. Encoding(E,Ck)

A VC1. Encoding(Ej, C) A Makes-fewer-distinctions(Ci,Cj, G)

* Better- Encoding(Ei, Ei, G, C, PS)

How should the search for a good reconceptualization proceed? The irrelevance prin-

ciples provide natural gradients in the space of all conceptualizations. One approach is to

start with the given conceptualization and incrementally remove distinctions to arrive at

one that meets the given correctness and goodness constraints. This is the approach used

in the thesis. A complementary approach is to begin with a conceptualization that has

G alone and incrementally add distinctions to meet the computational constraints. The

problem of determining which distinction to add is significantly harder than the problem
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of determining which to remove, because the number of distinctions that could potentially

be added far exceeds those that can be removed. However, when this condition is violated,

the second approach to traversing the space of conceptualizations is the preferable one.

The irrelevance principles as stated are normative. We can determine whether a partic-

ula.r conceptualization shift or an encoding shift respects the irrelevance principle. Thus,

the conceptual shift in the kinship example that required introducing the new relation

FoundingFather and eliminating Father for solving the goal relation SarneFamily,

obeys the LCRIP. This is because the new conceptualization is definable in terms of the

old one, and thus makes fewer distinctions. Also, it can be encoded to meet the given

time and space constraints. The compression of the transitivity chains in the encoding of

the same example by introducing the new predicate symbol FoundingFather is an encoding

shift that is better for any non-caching, deductive problem-solver under any reasonable

cost metric (proof heights, bize of the search space). This allows us to show that the

encoding shift in the kinship example follows the LCIP. Demonstrating that a particulax

conceptualization or encoding satisfies GRIP or GCIP, is extremely difficult because of

the enumeration over all possible conceptualizations and encodings for G. In this thesis

we focus entirely on satisfying the local versions of the two principles.

The representational and computational irrelevance principles are related; for some

problem solvers and for some classes of encodings, minimizing distinctions while preserv-

ing the goal actually leads to minimizing computation. In fact, CI claims, introduced in

Chapter 3 capture exactly those cases where removing information (minimizing distinc-

tions) leads to removal of unneeded or redundant computation.

4.3 Reduction Inferences

What is the role of the irrelevance principle in generating reformulations? We propose

reduction inferences that operate on encodings of conceptualizations and that use irrel-

evance claims. The task of the reduction inference is to implement the minimization of

distinctions suggested by the LRIP or the minimization of computation as suggested by

the LCIP. Since the irrelevance claims themselves are in the realm of encodings (e.g., IC I),

a reduction inference can operationally interpret a claim of the form c :* WI(f, g, T) to

be: enriching a formulation to make the condition on the left hand side of the claim true,

allows the removal of the facts in it that are specified as irrelevant. This is the situation
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Theory + Meta-theoretic Irrelevance Claim IC
Reduction Inference

New-Theory where IC is not true of the meta-theory of New-Theory

Figure 4.1: The form of a reduction inference

depicted in Figure 2.12. The move at the meta-theoretic level is toward a formulation in

which none of the irrelevance claims can be derived; i.e., a formulation that doesn't make

any of the distinctions deemed irrelevant to the class of goals.

This section describes the mechanics of modifying a formulation using irrelevance

claims. Figure 4.1 describes the form of a reduction inference. We introduce the relation

Reduce that takes a formulation and an irrelevance claim and produces a new formulation

in whose meta-theory the irrelevance claim does not hold.

Definition 23 An irrelevance claim IC of the form c * WI(f,g, T) holds in the meta-

theory of T, if we can apply the T' construction of definition 15 on T augmented to make

c hold.

If the T' constructed is equal to Ti, we say that IC does not hold in the meta-theory

of T. The construction in Definition 15 does not specify T' uniquely, so we constrain

the choice by requiring it to be the largest subset of T that satisfies the definition.

Reduce(IC, WI(f,g,T)) = T' where T' is the largest subset of T that satisfies Defini-

tion 15. Unfortunately, this still does not fix T' uniquely. Consider the following example.

Example 8 Let T={a,b,a * g,b * g}. We can prove that WI(a A b,g,T). If we

reduce T by this claim, we have two candidate T' 's. T1 ' = {a, a * g, b * g} and T 2' =

{b,b * g,a *: g}.

The class of T's and WI claims for which a unique T' can be found is generalized by the

following theorem.2

'It violates the strict subset requirement.
2When the T"s are not unique, the reducer makes a choice which may later be retracted. This issue is

discussed in the implementation of a reduction system. The search space for reduction is a function of the
cardinality of the possible T"s at each point.
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Theorem 10 Reduce(T,IC) produces a unique T' for sets T that have no disjunctions

and for claims IC= WI(f,g, T) that have non-conjunctive f's.

Proof: If T has disjunctions, it might allow multiple derivations of g that don't involve f,
and this would cause multiple T"s to be generated. Since WI(f1 A f 2 ,g, T) =:. WI(fi,g, T)

v WI(f 2 , g, T), conjunctive f's automatically create multiple maximal subsets of T that

derive g without entailing f. 0.

We would like to let reduction inferences change the formulation minimally to remove

irrelevant distinctions. This policy specifies a preference among the formulations that

result by revising a given one to eliminate a distinction: it conservati,,ely picks a theory

that is "closest" to the original theory. The reason that this is a computationally sensible

policy to adopt is that it minimizes the work done by the reduction process itself.

In order to reduce a formulation with respect to an irrelevance claim, we apply the

construction of Definition 15 until the irrelevance claim no longer holds in the meta-

theory of the new formulation. When this happens, the T' returned by the construction

is identical to T.

Theorem 11 The reduction process with respect to a claim IC terminates when

Reduce ( 1,, IC) =T, .

Proof: When this condition obtains, the irrelevance claim IC is no longer true in the

meta-theory and reduction with respect to it has to terminate. 0.

The iterative application of Reduce implements the meta-theoretic movement to the

empty set of irrelevance claims depicted in Figure 2.12. The following theorems also hold.

Theorem 12 Applying Reduce iteratively with respect to a given WI claim until a fix

point of the theory i. reached, produces a new conceptualization that is better as defined

by the LRIP.

Proof: Every reduction by a WI claim removes some fact or a class of facts from a theory.

The theory gets weaker since its deductive closure decreases, and the number of models it

has increases. Each model of the new theory can be created by dropping elements from a

model of the old theory. We can treat conceptualizations as special models which include

the Herbrand base and the named functions and relations on that base. Thus the new

conceptualization can be defined in terms of the old one. Hence the new conceptualization

makes fewer distinctions and is a better conceptualization in the LRIP sense. 0.
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Theorem 13 Applying Reduce iteratively with respect to a given CI claim until a fix point

is reached, produces a new encoding that is better as defined by the LCIP.

Proof: By construction, reduction by a CI claim guarantees that the removal of a fact

or a class of facts from the given encoding causes the goal to be solved faster in the sense

defined by the cost-metric C for a given problem solver PS. So the new encoding performs

fewer computations in the service of the goal schema, and by the LCIP it is a better

encoding. 0.

Depending on whether the reduction process operates directly on the present formula-

tion or on a description of it, we have two modes of reduction: extensional and intensional.

4.3.1 Extensional Reduction

Extensional reduction performs direct surgery on the formulation as dictated by the ir-

relevance claims and generates a new formulation that obeys both the goodness and the

correctness constraints. We give a non-procedural account of the EztReduce action that

achieves the reduction. EztReduce is a special case of Reduce that has the following 1-0

behaviour.

Inputs: * A set of sentences T

9 A set I of meta-theoretical claims of irrelevance in T

with respect to goal schema g

Output: o A new set of sentences T' in whose meta-theory

no element of I can be derived.
This form of reduction is called extensional reduction because it works with the sen-

tences in T and with ground instances of the irrelevance claims. For instance, if we

instantiate IC1 with bindings {z=A,y=B} and call it ICI(A,B) and then compute the

value of EztReduce(T,IC1(A,B)): we will find it equal to be T U {Ancestor(A,B)} -

{(Father(A,B)}. This constitutes one step of the reduction Vrocess that relabels Father

links as Ancestor links throughout the tree. We can use ICI again to reduce T'. The pro-
cess terminates when all Father facts are labelled as Ancestor facts. Then ICI no longer

holds in the meta-theory and the construction in Definition 15 makes no more changes to

the input theory.

Theorem 14 The eieneional reduction process terminates when EztReduce(1,lC)=T.
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Theorem 15 If the irrelevance claim IC ezpressed in prenez normal form has n quanti-

fiers, then the number of extensional reduction steps that need to be performed is bounded

by the product of the domain sizes of the quantifiers.
p

Proof: By construction. ExtReduce has to obtain all ground instances of the claim

before it can perform the reduction, so in the worst case we get the above upper bound.

0.

4.3.2 Intensional Reduction

The input-output specification of intensional reduction IntReduce is as follows:
Inputs: e A description of a set of sentences T

* A set I of meta-theoretical claims of irrelevance in T

with respect to the goal schema g

Output: e A new description of a set of sentences T' in whose meta-theory

no element of I can be derived.
One way to conceptualize intensional reduction is to think of it as limit reasoning (We1861

over extensional reduction. Intensional reduction takes a description of the formulation as

well as the irrelevance claims and produces a description of the reduced formulation that

results after the irrelevance minimization process terminates. We present an example to

clarify this idea.

Suppose that all the Father facts in Figure 1.3 have already been relabelled as Ancestor

facts. Now we want to minimize the formulation using IC2. While the extensional re-

duction process laboriously rewires the family tree by applying EztReduce over and over,

intensional reduction attempts to find a description of the facts left at the end of the

extensional reduction. A description of the Ancestor facts at the start is:

Vu. T I- Ancestor(rooi, u).

We wish to find the description of T' such that Reduce(T',lC2) = T'. Ancestor(root, u)

is shorthand for the formula Ancestor(z, u) A -'3m. Ancestor(m, z).

The reasoning proceeds in two steps.

1. IC2 preserves connectedness to the root.

Yu. T = Ancestor(root, u) * Reduce(T, IC2) Ancestor(root, u)
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2. When the reduction terminates IC2 can no longer be applied.

By examining the preconditions of IC2, we see that the required condition is that

all Ancestor links be one step long; i.e., -,3xyz. Ancestor(x, y) A Ancestor(y, z).

Putting 1 and 2 together, we obtain the fact that all Ancestor links are connected to the

root and that they are all one step long. That is, the remaining Ancestor facts satisfy:

Ancestor(root, y) which is an abbreviation for Ancestor(x, y) A -,3m.Ancestor(m, x) which

is the required definition of the Founding-Father relation!

Mathematical induction was required here because of the recursion on Ancestor. Note

that the description of the initial formulation was used directly as the invariant in the

induction proof. The termination condition was obtained by negating the left hand side

of IC2.

4.3.3 Properties of Reduction

The form of the base level theory

How sensitive are the irrelevance claims to the actual encoding? Suppose we had instead

the following encoding of the kinship problem.

Father(x, y) =: Ancestor(z, y)

Father(z, y) A Ancestor(y, z) =* Ancestor(z, z)

Ancestor(z, z) A Ancestor(z, y) =: SameFamily(z, y)

The irrelevance claims are the same; the reduction procedure has to be sensitive to

the particular encoding. We now show how Reduce transforms the formulation using IC1.

It is dear that all ground Father facts will get replaced by ground Ancestor facts. The

inference sanctioned by IC1 is the replacement of the schema Father(z, y) by the schema

Ancestor(z, y) in the theory. We do the replacement throughout the formulation and ob-

tain the rules Ancestor(z, y) =: Ancestor(z, z) A Ancestor(z, y)

Domain of discourse of the irrelevance claim

The complexity of the reduction inferences is a function of the domain of discourse of

the irrelevance claims. For the kinship example, the irrelevance claims were on particular

classes of facts, already in the formulation. The complexity arose from attempting to

find an intensional characterization of the reduction. For the Fibonacci transformation,

the irrelevance claims refer to repeated computations, and the reduction process has to
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determine the changes to the formulation that ensure that those computations are n6t

redone.

Order of Reduction

When there is more than one irrelevance claim, there is a non-deterministic choice Of

the order of reduction. One natural question to ask is whether the order of reduction of

irrelevance claims makes a difference to the end result; i.e. whether reductions satisfy the

Church-Rosser property. The answer is that in the cases where it is meaningful to reduce

in any order, reductions do not necessarily obey the Church Rosser property. When the

claims are independent, then the order is irrelevant. In our example, if we start with a

database containing Father facts alone, the analysis of the preconditions of IC1 and IC2

show that I1 needs to be applied before IC2. So there is only one order of reduction.

Suppose for instance that the effect of an irrelevance claim [C3 is to take the transitive

reduction of the database and the effect of claim IC4 is to take the transitive closure of a

database, it is clear that the order of reduction makes a significant difference to the end

result.

Termination of Reduction

How can we know that the reduction process terminates? We can reason that the reduc-

tion process terminates on the kinship example by using the fact that the databases are

finite and that the relations are acyclic. Suppose we attempt to reduce a graph denoting

paths between adjacent rooms as in Figure 4.3 with IC2. The reduction process will

not terminate: every possible cycle on three nodes will be generated. Standard methods

of termination reasoning[Man74] can be used to determine non-termination in this case.

However, the fact that termination reduces to the halting problem poses fundamental

limits on inferring termination.

4.3.4 Another Formulation of Irrelevance Minimization

Here we formulate the problem of minimizing irrelevant distinctions in a formulation in

terms of minimizing computational entities like proofs and search spaces. The predicate

Proof(p, g, T) represents the fact that p is a proof of the goal g within the encoding T.

If g is a goal that is defined by a wif with a prefix existential quantifier 3, then we can

define a relation Witness that extracts the value of the existentially quantified variable

3(e.g., SameFamily(z, v) is defined to be true if there ezits a z such that z is the ancestor of both z
and y)
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in a proof of g.

For the kinship example, we have the following property of the proofs of SameFamily.

Vx y Proof(p, SameFamily(x, y), EI) A Witness(p, z) A E, t= Ancestor(z, z') *

3p' z' Proof(p', SameFamily(x, y), E1 ) A Witness(p', z')

We can implement the LCIP by minimizing the number of proofs that a goal schema

has in a given encoding. The proliferation of proofs in E, is caused by the the transitivity

of the Ancestor relation, and the statement above expresses it. If we allow a proof of

SameFamily(x, y) that uses a witness z, we will have to accept all other proofs of the

same fact that cite the ancestors of z as witnesses. To minimize the number of proofs for

each SameFamily fact, we simply pick the "highest" proof and modify the formulation to

eliminate the smaller proofs that cite lower ancestors as witnesses. This transformation in

proof space translates to introducing the FoundingFather relation in the formulation space.

In general, this minimization process introduces new terms that stand for macro-objects

in the formulation space and macro-actions in the search space.

Whereas traditional circumscription minimizes the extents of predicates avd objects

in a theory to construct minimal models of the theory, we minimize the objects, and

extents of predicates in order to minimize computational entities like space, intermediate

computation etc., that result in solving a goal schema within that theory.

4.4 The discovery of irrelevance claims

4.4.1 By being told

This is the easiest way of acquiring them. As we have shown earlier, incorporating irrele-

vance claims into a theory is a non-trivial endeavour. In general, the stronger the impact

of the reduction, the harder it is to discover them automatically. The irrelevance claim

however, can be verified by the irrelevance reasoner.

4.4.2 By derivation in the meta-theory

We use the lemmas of WI and CI to suggest possible irrelevance claims. These lemmas

have the form: Condition on formulation =* WI(fact-.chema,goal-schema,fonrmulation).

We "backward chain" on these lemmas by setting up the goal of proving a certain fact-

schema irrelevant to the given goal-schema. We illustrate this by an example:
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Ance tor(z,,i +2) Ancetr , i+2)

Ance tor(zi, j+j) Ances or(zi+ xi+l)

Figure 4.2: Replacing a subtree by a node in the proof of SameFamily

Take WI lemma 9.

1. q(1) E T A Derives- Only(f(l),q(l),T) *:, WI(f(l),g(s),T) where f(1) $ g(s)

and resolve it against the fact that

2. Derives- Only(Father(x, y),Ancestor(z, y)) which is true of the formulation.

This resolution generates the following binding list {f = Father, I = (x, y), s = (m, n)}.

Given that the goal is SameFamily(a, b), we now verify that Father(x, y) 0 SameFarnily(a, b)

which is easy given the definedness graphs that are introduced in Chapter 5 and obtain

3. Ancestor(x,y) E T =: WI(Father(z,y),SameFamily(m,n),T) which is the required

claim.

Goal-directed derivation of irrelevance claims in the meta-theory is only as good as the

lemmas in the calculus of WI and CI. The ultimate source of irrelevance claims is in

empirical analyses of computational structures as well as statistical correlations between

attributes in the world.

4.4.3 By empirical analyses of proof and search spaces

We can use the declarative specification of the problem solver to construct the symbolic

computation trace for the goal g. In our example, all SameFamily proofs end in Father facts.

The fringe of all these proof trees can be moved up one step closer to the root without

increasing the width of the tree, if the proofs are made to terminate in the corresponding

Ancestor facts. This transformation of the proof tree can be accomplished by relabelling

the Father tree as the Ancestor tree and by getting rid of the Father rule. The proof tree

transformation is a schema for reconfiguring proofs and the irrelevance claim expresses

what the corresponding formulation transformation should be.

The second irrelevance claim results from another generl proof tree transformation that

attempts to reduce the height of a proof. However, this requires that we examine a

portion of the proof tree shown in Figure 4.2. We essentially try to replace a section of

the tree by a single node by the elimination of intermediate variables. In this example,
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there are two ways of achieving it: getting rid of the Ancestor(x,,xi+l) branch, or the

Ancestor(z,+1, z,+ 2 ) branch. The correctness constraint filters out the incorrect branch to

prune, and we thus derive IC2. Proof transformation-schema 2 is a very general schema

for reconfiguring proofs because it also underlies the construction of Thevenin equivalents

of an analog circuit.

For the particular problem solver we are considering, short proofs are preferable to long

ones. Therefore, transformations that influence the height of the proof like the ones above

are very useful for reformulations that improve computational efficiency with respect to

this problem solver. In order to cover more general classes of proof transformations and

search space transformations (e..g., eliminate dead ends), a language for expressing and

manipulating proof transformations is needed.

4.5 Reformulations Justified by the Irrelevance Principle

The kinship example of this thesis is a reformulation of an equivalence relation as a par-

tition; a standard transformation taught to every computer scientist. The method of

irrelevance minimization explains how this transformation can be derived from more gen-

eral considerations.

This section demonstrates that a large number of abstractions and optimisation meth-

ods can be analyzed using the theory of irrelevance. For each example, we write the

meta-theoretic irrelevance claims that justify the abstraction and demonstrate the re-

duction methods used minimize irrelevant distinctions. The examples we consider are:

variants of the kinship example, Thevenin equivalents and tail-recursion optimizations

(e.g. Fibonacci).

4.5.1 Variants of the Kinship Example

Notice that if the goal relation in the kinship example had been the CommonAncestor

relation, which is true of a triple (z, y, z) just when z is the common ancestor of z and

y, then no information in the initial formulation can be proven to be irrelevant to this

goal So the compression of ancestor links cannot be done. This demonstrates that the

abstraction method is sensitive to the goals.

Now we will show how some more variations of the kinship example can be analyzed

using irrelevance. Suppose we have the following formulation of connectivity between
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B

A B

Figure 4.3: A case in which extensional reduction does not terminate

rooms. The relation DConn is a list of pairs of rooms that are directly connected. Conn

is the transitive closure of Dconn. The goal relation is Samecluster: two rooms belong

to the same cluster if they are connected to a common room. This problem is an ablation

of the Founding Fathers example: the Father relation is not symmetric, whereas Dconn

is. An encoding for the SameCluster problem is given below.

DConn(x, y) *= Conn(x, y)

Conn(z, y) A Conn(y, z) * Conn(z, z)

Conn(z, X) A Conn(z, y) = SameCluster(z, y)

Conn(z,y) :* Conn(y,z)

The irrelevance claims that are true in the meta-theory of this encoding are:

IC3 Vzymn. Conn(z, Y) E T = WI(DConn(z,y),SameCluster(m,n),T)

Vzyzmn. Conn(z, Y) E T A Conn(y, z) E T A Conn(x, z) E TIC4:ConzzET
WI(Conn(y, z), SameCluster(m, n), T)

IC5: [Vzyzmn. Conn(z, y) E T A Conn(y, z) E T A Conn(z, z) E T =>

15 WI(Conn(z, y), SameCluster(m, n), T)

If we applied extensional reduction to the encoding with the claims IC3 through IC5,

the reduction will not terminate. The condition on the left-hand side of IC4 and IC5

will never be false in the original encoding or its reductions. The lack of directionality in

the DConn facts makes the character of this problem very different from the SameFamily

problem. This is evident in the following statement in the space of proofs. E is the above
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a

b c

d e f g

Father(a,b)
Father(a,c)
Father(b,d)
Father(b,e)
Father(c,f)
Father(c,g)
SameFamily(x,x)
Father(x,y) * SameFamily(x,y)
Father(y,x) = SameFamily(x,y)
SameFamily(z1 ,z2) A Father(z 1 ,x) A Father(z 2,y) = SameFamily(x,y)

Figure 4.4: The encoding Es of C,

encoding.

V y Proof(p, SameCluster(z, y), E) A Witness(p, z) A

E SameCluster(z, z') =: 3p' z' Proof(p', SameCluster(z, y), E) A Witnesa(p', z')

A graph-theoretic interpretation of the reduction is informative. Minimizing the

heights of all proofs of SameCluster(z, y) requires that we minimize the sum of the length

of paths from node z to y for every z and y in the graph. This value is minimized when

all nodes point to a common node. We can do this either by picking a particular node

in the graph, or by introducing a new object to stand for a duster representative. In

the SameFamily problem, the fact that Father was directed provided us with a canonical

representative of the equivalence relation SameFamily.

What if the kinship problem had been formulated entirely in terms of the Father

relation? An encoding that achieves this is shown in Figure 4.4.

The irrelevance claims IC1 and IC2 do not hold directly in the formulation; they

hold counterfactually. This is because, this formulation has no explicit redundancy. The

computation of the SameFamily relation is done by finding the least common ancestor

of two people. In order to reformulate this encoding to meet the computational constraint
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Figure 4.5: Compiling out factored knowledge bases

of solving for Samefamily queries in constant time with 0(n) overhead in space (n=the

number of people), we have to introduce the redundant relation Ancestor. If we interpreted

IC1, counterfactually, we would relabel the Father relation as the Ancestor relation. If

IC2 were treated the same way, we would add the Ancestor links on the left-hand side

of the claim, in order to render Ancestor(y, z) irrelevant. This would have the effect,

atleast extensionally, of generating the maximal ancestor links. The intensional reduction

inferences are non-trivial because the system will have to infer the transitivity of Ancestor

that is hidden in the claim IC2.

4.5.2 Irrelevance and the factoring of knowledge bases

Definition 24 A theory T is factorable if and only if 3TT 2 ... T, such that

* Ui = "= T

* T-T, T
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Figure 4.5 shows a set of sentences T about the colors and shapes of some blocks. Since

the relations Shape and Color are independent in the world, we can factor T into T, and

T2 as shown in the figure. We can derive this factoring as a reduction via an irrelevance

claim that expresses the independence of Shape and Color.

Vx, y, m WI(Shape(x, y), Color(x, n), T) A WI(Color(z, n), Shape(x, y), T)

This irrelevance claim is true in the meta-theory of T. To reduce T to make the

irrelevance claim false, we factor T into T, in whose meta-theory the first conjunct of

the above irrelevance claim is false, and T2 in whose meta-theory the second conjunct of

the claim is false. This reduction inference did not introduce any new terms. It is a pure

efficiency transformation - the new theories are indexed in a manner that allows a forward

chaining problem solver to answer questions about the color of blocks (resp. about shapes)

without deriving irrelevant intermediate facts about their shapes (resp. about colors).

It is useful to look at this transformation from an irrelevance perspective. Reorganizing

a set of facts in a theory in a non-random way to make the solution of a given set of queries

more efficient takes work. There is work involved in

1. Acquiring the appropriate claims of irrelevance. In this case, these claims about the

independence of relations.

2. Reducing the formulation to eliminate irrelevance. In this case, the independence

claims could be incorporated into the theory by factoring.

The factored formulation as well as the original formulation have the same information

content at the base level; which is reflected by the fact that they are equivalent at the

model-theoretic level. However, at the meta-level, different irrelevance claims hold of

them; and this is reflected in the differences in their structural properties. The following

theorem demonstrates the fact that the re-indexing of a theory accomplished by factoring

has computational utility.

Theorem 16 Factoring of theories can be justified by independence claims of the form

WI(p, q, T) A WI(q,p, T). Factoring T into T1 and T2 that satisfies Definition 24 achieves

the reduction of irrelevance.

To make the claims in this section more rigorous, we need to set up a more detailed

model of the problem solver and provide the distribution of queries with respect to which

the irrelevance or independence claims are determined. Then we can demonstrate that
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the re-encoded theory performs fewer computations (or database lookups) to solve the

given set of queries. We can then propose quantitative measures of ease of re-organization

or re-indexing of a theory in terms of the complexity of the discovering the necessary

irrelevance claims and reducing the theory with respect to them.

4.5.3 Applications of LCIP

The computational irrelevance principle states that an encoding that does fewer compu-

tations to achieve a certain goal is better. This is a minimization principle that governs

the way we design representations and optimise computations on those representations.

If we can parameterize a computation we can find the values at which work is minimized

given some cost model of our problem solver. There are three basic ways in which we can

eliminate computation in the service of a goal.

1. Eliminate computations done by an encoding that do not contribute to the goal. An

example is the following

Parent(z, y) =:: Ancestor(x, y)

Parent(X, z) A Ancestor(z, y) * Ancestor(x, y)

Suppose the query is: Ancestor(John,y). Suppose further that we have a forward

chaining problem solver that computes all ancestor facts from the given parent facts

and then projects out the ancestors of John. Rewriting the encoding in the manner

given below ensures that only the relevant ancestors are computed. It involves

introducing a new predicate magic-ancestor of aity one. The method of rewriting is

the magic set method [BR87].

magic - ancestor(John)

magic - ancestor(x) A Parent(z, y) * magic - ancestor(z)

magic - ancestor(z)AParent(x, z)Amagic - ancestor(z)AAncestor(z, y) => Ancestor(z, y)

It can be shown that the magic set method produces encodings that perform fewer

unneeded computations to solve a goal schema. Reformulations generated by this

method thus implement the intent of the LCIP.

This essentially precomputes the rule set so that the parts of the search space that do

not contribute to the goal are removed at compile time. Some relations are pruned

as a result. There is computational savings obtained; because useless computation
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Fib~n)Fib(n)

E ib~n.2 iibn3 i.2.

Figure 4.6: Restructuring a part of the Fibonacci computation

is avoided; also in a system that has to choose between alternate inference steps

valuable decision time at the meta-level has been saved.

2. Eliminating repeated computation

This is done by reifying that computation; introducing a new object that stands for

the value of that computation and looking up the value as opposed to storing it.

There are two cases to analyse here: repeating computation while solving a single

goal as in the computation of Fibonacci or Factorial, and repeating computation

over several instances of solving for a set of related goals, an instance is common

subexpression elimination. The standard formulation of Fibonacci

Fib(O, 1).

Fib(l, 1).

Fib(n - 1, ml) A Fib(n - 2, m2) A m = ml + m2 # Fib(n, m)

run on a depth-first backward chainer produces the computation trace shown in

Figure 4.6. We can show in the meta-theory of this encoding that repeated calls to

Fib(m, -) in the computation of Fib(n, -) where m < n occurs Fib(n-m) times (ex-

cept for Fib(O, -) which occurs Fib(n-2) times). We wish to devise an encoding that

does not perform repeated computation: in effect, an encoding that generates a trace

as in Figure 4.6 when executed by a depth-first backward chainer. The transforma-

tion at the level of proof trees is the conversion of a computation tree into a directed

acyclic graph (DAG) that has common nodes merged. The reformulation problem

is to find the corresponding change in encoding that causes this transformation in

proof space. This situation is depicted in Figure 4.7.

Given
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Figure 4.7: Redesigning formulations by restructuring search spaces

9 A problem solver PS that takes an encoding E of a problem and a goal schema

G and generates a proof P for it. PS(E,G) = P

* Given a standard transformation of P to P' that avoids repeated computation.

Find an encoding E' such that PS(E',G) = P'.

A solution to this requires that we able to correlate changes in proof space with

changes in formulation space. One approach simply maintains a table of proof space

changes and the encoding changes that implement them. For instance, to merge

identical nodes in computation space, we simply create a new object to store that

value. In the Fibonacci case, adding an extra argument to the Fib function achieves

this:

Fib(n, a, b) -= ifn = OthenaelseFib(n - 1, a + b, a)

To find the fibonacci of n, we use the query Fib(n, 1,1).

Another approach requires us to have the inverse function PS- 1 that maps proofs

back to encodings. Then the corresponding encoding change can be deduced from the

change in proofs. Unfortunately, this idea cannot be implemented at the present be-

cause we lack good descriptions of problem-solvers. When these descriptions become

available, this method will be a general-purpose scheme for deducing new encodings

driven by computational constraints.

The changes in proof space can be captured indirectly by the following irrelevance

claim (from Chapter 3).
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IC3: IVxn. Computed(x) = WIA(Compute(x),Factorial(n),T)]

This states that if a value has already been computed, then the action of computing

it is irrelevant with respect to solving a goal. This advises the interpreter to store

a value as soon as it is computed. For the Fibonacci function, the elimination of

unnecessary computation can be achieved either by changing the formulation while

keeping the problem solver (or interpreter) fixed, or by changing the interpreter

itself while keeping the encoding fixed. This latter possibility is implemented by the

reduction method that compiles WIA claims.

3. Eliminate computations that contribute to higher accuracy that we don't care about.

This is the basis for constructing approximations. For instance, the computations

that result from having the base-emitter capacitor in the hybrid-7r model of a tran-

sistor, can be eliminated under low frequency conditions since these computations

only contribute to the higher-order terms in the gain. The two variants of the com-

putational irrelevance principle introduced above can be weakened by weakening the

definition of logically irrelevant computation: if a computation contributes only to

the higher order bits of accuracy we will call it irrelevant. The elimination of re-

peated computation uses an exact match to determine when two computations are

identical. We can relax the criterion to get approximate matches and this would

lead to the elimination of almost equivalent computations.

4.5.4 General Abstractions

A taxonomy of irrelevance abstractions can be constructed based on the reduction frame-

work described in this chapter.

Answer a subset of queries, the same answer needed.

For this class, the irrelevance claims are modulo the subset of queries that need

to be preserved. Reduction by these claims leads to the generation of new defined

relations. The resulting formulation is a specialization of the given formulation tuned

to answering those queries really efficiently. The kinship examples in this chapter

are examples of this.



CHAPTER 4. GENERATING REFORMULATIONS 101

e Same queries, abstract answer suffices

The abstract answers defined an equivalence class of solutions. Irrelevance claims

propagate equivalence on solution space into the formulation. When a certain prop-

erty is deemed irrelevant then all objects distinguishable by that property become

indistinguishable. Abstraction to remove properties has the side-effect of creating

equivalence classes of objects. Examples axe the missionaries and cannibals problem

as well as Abstrips.

* Same queries need to be solved at the same level of detail

Find wasted computation and state it as irrelevance claims. Reducing irrelevance

usually involves introducing a new object or relation to store computation that was

getting repeated before. Examples are Fibonacci, factorial, macrops and compiler

optimisations.

. i • I I I I I



Chapter 5

Techniques for Automating

Irrelevance Analyses

This chapter proposes reformulation techniques that are specializations of the meta-level

irrelevance minimization described in the previous chapters. The two processes that need

to be compiled to provide effective automation of reformulation are

1. Discovery of irrelevance claims.

2. Reduction of formulations by the irrelevance claims.

We analyze various types of irrelevance reformulations and describe the special prop-

erties of the irrelevance claims that allow for the development of tractable algorithms for

the discovery and reduction of irrelevance.

5.1 Intermediate variable elimination

The key idea explored here is optimising computations by eliminating intermediate com-

putation. We recognize intermediate computation and determine if it is irrelevant. These

are stated as computational irrelevance claims in the meta-theory. We then rewrite the

computation so that only endpoints are preserved. This is implemented by reduction

inferences that shortcircuit intermediate computation.

A simple example where reasoning chains can be compressed without violating cor-

rectness constraints is the following.

102
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Example 9 The set T, = {p(x, y) A q(y, z) A r(z, w) :, s(w)} can be reformulated as

follows by introducing a new intermediate relation that eliminates the thread through the

variable y.

T2 = {t(z, z) A r(z, w) > s(w)} where the articulation theory A between T, and T2 is

{p(X, y) A q(y, z) * t(X, z)}.

The correctness proof for this reformulation is trivial. In the first place, T1, A = T2

and T2, A = T1 . Also, it is the case that Vw. T, I- s(w) = T2 J= s(w) for the same

extensional database (same extensions for given predicates p, q and r). The difference

in the two programs surfaces in the efficiency proof. In the proof space, we reduce the

branching factor on the s(w) node by 1 by introducing the pre-computation of the join of p

and q. Essentially, we prevent recomputation of p(z, y) A q(y, z) over various instantiations

of the goal s(w). y is a thread variable that does not occur in the final query. The role

of z is also to act as an intermediary in the computation of s(w). One idea is to deem

all intermediates irrelevant - this will have the effect of minimizing intermediate variable

threading, by precomputing joins of relations and materializing those joins. If only the

endpoints matter, then store them and throw the intermediate stuff away. This is same

idea behind chunking and macrops.

The order of thread variable elimination determines the size of the intermediate re-

lations introduced. The thread variables that we eliminate depend on the queries to be

preserved, the sizes of relation, and the sizes of intermediate relations created. In the

simplest cases, the threads variables are immediately apparent in the encoding. Almost

all of the dynamic programming examples have this property. However, recognition of

irrelevant intermediate computation is far from easy. The recognition that the threading

through Ancestor could be eliminated in the kinship example is a non-trivial one.

We now perform an analysis using irrelevance for thread varibale elimination. There

are two possible analyses.

Analysis 1

Vz E T *: WIA(Compute(z),g,T)

Captures the fact that if a fact x is in the database, the action of computing it is

irrelevant. It assumes that x is an eternal fact (does not change with time). Compute(x)

reifies the search tree for x rooted at x. The search tree for x is expanded using the rules

in T.
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The semantics of this irrelevance claim is: even if the action Compute(x) is not per-

formed, g will be solvable in the T as long as x is in it. It prescribes that the action

Compute(x) be not performed. Instead to obtain the value of x, a lookup in the database

will be performed.

Analysis 2

The irrelevance claim for Example 9 is

t(x, z) E T =: CI(p(z, y),g(m, n), T) A CI(q(y, z),g(m, n), T)

A gross step in the computation (from z to z), renders its component steps computa-

tionally irrelevant. In fact, the irrelevance claim in Analysis 1 is a special case of this; since

the two options: looking up a value and computing it are compared and the gross step

of looking up a stored value (bypassing the computation) renders the steps that compute

the value irrelevant.

The reduction method for this class of abstractions, simply adds the new relation on

the LHS of the irrelevance claim, and removes the component relations from which it is

derived.

The complexity of doing thread variable elimination in cases where the threads are

recursive is best illustrated by the kinship example. Here are some comparisons between

the kinship example and the p-q example. The main similarities are that in both cases

e a new relation is introduced that is definable entirely in terms of the existing rela-

tions.

* a certain class of queries is preserved across the transformation.

e the set of objects is not changed.

* the new relations FoundingFather and t are good islands of pre-computation.

The main differences are

" the new relation FoundingFather is a subset of the given Ancestor relation. So a

problem solver that simply caches Ancestor facts would ultimately obtain the links

that make up the new relation. t is not a subset of an existing relation. The effect

of introducing the relation symbol t cannot be duplicated by caching ground atomic

literals.

" t is a simple macro-operator, whereas FoundingFather is not.

IILP u
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introducing the FoundingFather relation symbol eliminates redundancy in the space of

proofs (now every SameFamily fact has exactly one proof), whereas the introduction

of t does not.

The method of eliminating thread variables can be applied to any state-space problem

formulated as follows.

Legal(sl, s) A Reachable(s, 82) = Reachable(s, S2)

This states that state s2 is reachable from s, if there is a legal move from s, to an

intermediate state s from where S2 is reachable. Now we need to minimize the Reachable

relation while preserving paths of interest to prevent unnecessary intermediate computa-

tion.

5.1.1 Relations to previous work

Comparison to partial evaluation: the general techniques of partial evaluation involve

propagation of constants and unfolding calls by their definitions. Generally, they do not

make short cuts in the computation sequence or change program control to eliminate

redundant computation: both of these are done by the methods to automate irrelevance

reformulations.

Comparison with macrops: justifications for short-circuiting steps in search space or proof

space is implicit in the creation of macrops. The method of irrelevance minimization first

introduces redundant macro steps and then eliminates the constituent micro steps. The

macrops question is: given a state space what are the best short circuits to construct

for solving a given class of goals efficiently? The abstraction problem with irrelevance

minimization is: what steps need to be added and what can be thrown away in the

service of a given class of goals. Note that a system using macrops needs to learn control

knowledge to make the problem solver choose appropriate short circuits. The irrelevance

min*mization method analytically computes this knowledge and compiles it into the base

theory.

5.2 Irrelevance analysis of abstraction in circuits

The aim is to do an irrelevance analysis of some classic abstractions in digital and analog

circuits. As an example from analog circuits, we use the theory of irrelevance to derive the

concept of Thevenin equivalents. This analysis helps to clarify the computational utity
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A B

Figure 5.1: A simple resistive circuit

s iea-c n RAB BBC

Figure 5.2: Proof of the goal IAC

of forming Thevenin equivalents of circuits in terms of the search space transformation

it entails. As an example from digital circuits, we construct the structural abstraction

of a digital device (Sin86]. This reformulation eff&ctively hides detail about intermediate

computation in the circuit.

5.2.1 Thevenin Equivalents

In the simple resistive network of Figure 5.1, the goal is to compute the current IAC

through the voltage source V. The standard method of solution uses Ohm's and KL choff's

laws. The proof tree that solves this goal is in Figure 5.2.

To meet our computational constraint of solving for 'AC in constant time with a con-

stant overhead in space, we decide to shorten proofs of IAC. Terminating the proof at

height 1 satisfies the constraint on time. To make sure that all future instances of proofs
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B9

Figure 5.3: The Thevenin equivalent reformulation

of IAC are 1 step long, we propagate the proof tree transformation into the formulation

by replacing the R 1,R 2 series combination of resistors by the equivalent RAC. The intro-

duction of this new object achieves the effect of reducing the height of the proof for this

and future instances of proofs of JAC on this circuit. This transformation is equivalent to

replacing an entire subtree in the computation by a single node and reifying the value of

the node in a new object.

We can give an account of the introduction of a new object in terms of reduction of

irrelevance. The value of the voltage at the point B is irrelevant to the computation of the

current through the circuit. So we can weaken the initial formulation to make the value

of the voltage at B underivable without affecting the value of IAC. The irrelevance claim

is:

WI(VAB, IAC, T) A WI(VBC, IAC, T)
Reducing the formulation to make these claims underivable in the meta-theory of

the new formulation requires introducing the compound object RAC = RAB + RBC and

rewriting the formulation as in Figure 5.3.

The form of the reduction inference is:

Given:

9 the detailed circuit description

• Ohm's and Kirchoff's laws

* Description of goal schema
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e the irrelevance claims with respect to the goal schema

Find a new abstract description that does not compute the values specified as irrelevant

by the given claims.

5.2.2 Full Adders

Consider a digital device specified as follows: IMP(a, z, y,g) =_ P(a, z, y, z) A P2(y, y,g).

To solve for values of g given values of a, we have to compute the internal values x and

y. However, as far as the output value g is concerned, the value at the intermediate

points is irrelevant and can be abstracted. This requires weakening the theory of the

device by introducing a new predicate that existentially quantifies the internal signals.

New - Pred(a,g)= 3z, y IMP(a, z, y, g). Notice that the new predicate introduced hides

information about the internal structure of the device and preserves its i-o behaviour.

Singh [ain86] calls these abstractions structural abstractions. At the level of proof trees,

this amounts to shortening the proofs to height 0 by essentially precomputing the i-o

behaviour as a table in the relation New-Pred.

In the case of the full adder, shown in Figure 2.1, we can derive the structural ab-

straction that eliminates details of the actual connections between the various gates, by

specifying the values at the internal points, viz., d, e and f irrelevant. To reduce the

theory with respect to these irrelevance claims, we need to weaken it to make the values

at these points underivable in the new theory. The introduction of the new predicate

Full - Adder(a, b, c, sum, carry) .- sum = zor(a, b, c) A carry = ab + bc + ca and removing

the original description of the full adder, makes the values at d,e and f no longer deducible.

There are two major steps in the abstraction: identifying which points in the circuit to

treat as internal points (since sum and carry are the outputs we are interested in, and

a, b and c are the given inputs, all other nodes in this circuit become internal nodes by

elimination), and derivation of the expressions for sum and carry purely in terms of the

givens: which is an algebraic rewrite problem.
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5.3 The Irrelevance theorem prover

5.3.1 The propositional version

We now present an implementation of a propositional logic of irrelevance that allows us to

calculate irrelevancies in time linear in the size of the dependency network. The basic idea

is the following: have a dependency network at a stable configuration with truth values

attached such that each node has values that make it true. We then perturb the network,

by changing some value from true to false, or false to true. Then we propogate the effects

of this through the network with local propagation rules that calculate the partial discrete

derivatives of these propositions.

5.3.2 The Implementation of irrelevance detection by hardware

The basic idea is to convert a set of sentences into a combinatorial circuit so it can answer

questions of the form: is f irrelevant to g in the following manner. We perturb the value

of f in the circuit (if f is an internal point, we have to modify the input appropriately, to

achieve the change a f) and propagate the consequences down to g.

We can do this only if the theory is finite, there are no cyclic dependencies in the

circuit and that there are no recursive rules.

The propagation rules are (fh are inputs to a gate, g is the output)

1. AND: if h = 1 then f(O--+1) g(0--+1)

2. AND: if h = i then f(1-O) *g(1-O)

3. OR : if h = 0 then f(0-+1) : g(0--1)

4. OR: if h = 0 then f(1--+O) * g(l--.0)

5. NOT: if f(1--.0) * g(0--.)

6. NOT: if f(0--1) = g(1--O)

More complicated f's can be reduced to atomic ones and the above propagation methods

applied.
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5.4 The irrelevance reduction system

5.4.1 Extensional Reduction

The extensional reduction algorithm takes the following inputs:

1. A database of facts and rules that describes a problem

2. The goal

3. The irrelevance claims for that goal

and produces a new database of facts and rules that preserves answers to the goal. The

irrelevance claims are no longer true of the new database.

The algorithm is:

Algorithm Reduce

Inputs: Theory T to be reformulated

Irrelevance claims of the form Condition => CI(fgT)

Output: New theory where irrelevance claims are no longer trivially true

Temp-Theory a Emptyset.

T - Input Theory ; initialization

Repeat until T and Temp-Theory are the same

Temp-Theory a T.

Find an irrelevance claim where f unifies with a fact in T.

If it is a conditional claim then

Find augmentation action to make condition true

Perform augmentation action.

Find revision action to make f underivable.

Perform revision action.

End Repeat

Augmentation actions indexed by the form of the condition to be achieved are coded as

condition-action rules. Revision lemmas that prescribe particular delete actions are the as-

sertional component of the irrelevance calculus. We illustrate one step of reduction by ICI

on a database. Suppose T = {Father(A, B), Father(B, C), Father(z, y) =: Ancestor(z, y)}.

IC 1: Vzymn. Ancestor(z, Y) E T * CI(Father(z, y), SameFamily(m, n), T).
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Name ICI (8Z fy)
Condition: Father(&?c ft) in T
Addlist Ancestor(& 8y)
Deletelist : Father(&z ft)

Figure 5.4: The STRIPS operator compiled from Irrelevance Claim 1

If we follow the steps of the algorithm above after the appropriate initializations;

1. We select IC1 with bindings {z = A, y = B).

2. We now have the goal of augmenting the theory to make Ancestor(A, B) E T true.

We use the fact an E-of condition can be made true by adding the fact named in the

condition to the theory. We then perform the action of adding Ancestor(A, B) to T.

3. Now the goal is to revise the augmented theory to make it not entail Father(A, B).

We use the fact that Father is a primitive relation (it is a source node in the defin-

ability map) and the fact that revising a theory to make a primitive fact underivable

requires simply removing it. We then perform the action of removing Father(A, B).

Note that the reasoning steps required to establish the augmentation and revision methods

are repeated for every instantiation of Father(z, y) in the database. We compile out this

reasoning, by performing them once and for all at the start of the reduction process. The

result is a STRIPS operator that achieves the same effect as theorem proving on the CI

claim: the addlist contains the result of deliberation about the augmentation action and

the deletelist the resulting revision action. The STRIPS operator compiled out of IC1 is

shown in Figure 5.4.

5.5 Search Control Issues

We need abstract representations of encodings to provide good search control for instan-

tiating CI and WI lemmas for the verification and generation of irrelevance claims. We

introduce a structure called a definedneu graph that succintly captures the definability

relationships between the conceptual primitives in a particular encoding.
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Father t [Ancestor $arneFarnilyJ

Figure 5.5: The definedness graph for encoding El of the kinship problem

5.5.1 Definedness Graphs

Definition 25 A definedness graph (VE) of an encoding Ec of a conceptualization C

={O,Y,Z} is a directed AND-OR graph with vertez set V={O,FR} where O,F and R

are elements denoting 0,.F, 1Z respectively, and the edge set E = {(vi, {vj,.. .,vj}) I

vi E V is defined in terms of the elements of {vi,,..., vi, } in Vf).

The defmnedness graph for the encoding E1 of the kinship problem is shown in Fig-

ure 5.5. SameFarnily is defined in terms of Ancestor. Father is a primitive relation symbol

since it is a sink node in the graph. The definedness graph makes it dear that the only role

of Father in this encoding is to define Ancestor. Ancestor itself is grounded in Father. The

recursive part of the definition of Ancestor is captured by the (Ancestor,({Ancestor, Father})

edge. Notice the AND-arc that captures this graphically in Figure 5.5.

Notice that the definability relationship is established in a particular encoding. A

definedness graph hides details of the actual definition, it only preserves the fact that a

particular element in an encoding can be defined in terms of others. If for instance, the

Ancestor relationship had been defined as

Ancestor(z, y) # Father(z, z) A Ancestor(z, y)

we would still have the same definedness graph as above. Thus these graphs are really

abstractions of particular encodings.

The graph-theoretic interpretation of definability in terms of definedness graphs allows

us to construct them given the encodings. The definability checks needed to determine if
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[Father = A n c e st o r  SameFamily

Figure 5.6: The definability map

one conceptualization makes fewer distinctions than another can be translated to path-

finding problems on these graphs. We provide algorithms and complexity results for these

operations.

Theorem 17 The definability graph for Horn clause encodings can be constructed in time

linear in the length of the encoding.

Proof: We give a constructive proof. For every sentence in the encoding of the form

h 4= bi, b2 , .... b,, we add to E the edge (h, B) where B = U.1I if it doesn't exist there.

We add h and the bi's to the vertex set V. This construction looks at every sentence only

once and is thus linear in the size of the encoding. 13.

Suppose we have the encodings of two conceptualizations C, and C2 as well as their

articulation theory A represented as definedness graphs. Figure 5.6 shows an example.

To determine whether an element c in C1 is definable in terms of the elements in C2 we

check whether there is a path from elements in C2 to c in the definability map.

To present the path-finding algorithm, we need to distinguish three types of nodes in

the definedness graph

1. Selfloop-Nodes: vi E V that have an edge (vi, B) where vi E B.

2. And-Nodes: vi E V that have an edge (vi, B) where B is a non-empty, non-singleton

set.

3. Singleton-Nodes: vi E V that have an edge (vi, B) where B is a singleton set.

These are not mutually exclusive categories.
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Theorem 18 When the only cycles in a definedness graph G are those due to selfloop-

nodes, the complexity of determining whether a node c in G is defined in terms of another

set of nodes N in G is polynomial in the number of edges.

Proof: We provide a constructive proof. We start with the set In-Set that initially

contains the elements in N. We add a node vi to this set if it is not already there when

there is an edge (vi, B) in E where B CIn-Set. For an And-node this means that all the

nodes that define it have to present in In-Set. We can add a selfloop-node vi only if there

is an edge (vi, B) in E where vi-1 E B. This requirement guarantees that all recursive

definitions are grounded. The addition of nodes to In-Set stops when c is added to In-Set

in which case we declare that c is defined in terms of N in G, or, no more additions can

be made, in which case c is not defined in terms of N in G. When G has no selfloop-

nodes, this algorithm looks at every edge exactly once and is thus linear in the number

of edges. If there are m selfioop-nodes then the algorithm makes m passes over the edge

list in trying to satisfy the groundedness condition. When there are non-trivial cycles in

the definedness graph (these correspond to mutually recursive definitions), this algorithm

becomes exponential in the number of edges in G. 03.

To see how this algorithm works, consider the problem of determining whether Found-

ingFather can be defined in terms of Father in Figure 5.6. We start with In-Set initialized

to {Father}. Since we have the edge (Ancestor, {Father}) in E, and Father is present in

In-Set, we add Ancestor to In-Set. Since (Ancestor,{Ancestor}) is in E, and the ground-

edness condition for Ancestor is satisfied by the previous edge, we can add Ancestor to

In-Set but it is already there! Using the edge (FoundingFather,{Ancestor}) in E, we can

add FoundingFather to In-Set since Ancestor is already in it. Now the algorithm termi-

nates successfully reporting that FoundingFather has a definition in terms of Father in the

encoding represented by the definedness graph.

The definability map allows us to analyze the conceptualization intensionally. One way

to think about the elements of a conceptualization is as the elements of a basis set. Using

the construction in the theorem above, we can determine if there is redundancy in the

conceptualization itself. If we can define parts of a conceptualization from other parts of it,

we will call that conceptualization redundant. Efficiency issues can be discussed by cutting

the conceptualization by a p-d cut. The items on the p side of the cut will be extensionally

stored in the encoding. The items of the d side will be derived from the extensionally stored

items. Note that the definability analysis is meta to the conceptualization itself. We can



CHAPTER 5. TECHNIQUES FOR AUTOMATING IRRELEVANCE ANALYSES 1115

Given Formulation1C
Proof Tree/Search Space Analyzer Corectness

anI Goodness Constraints

Plausible Irrelevance Facts

Verifier

Correct and Good Irrelevance Claims

Formulation ReducerI
New Term DefinitionsI
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Figure 5.7: The Architecture of a Reformulator

determine a range of encoding shifts by simply defining the possible cuts of the definability

map. Setting this up as a combinatorial optimisation problem is an interesting problem

for future research.

5.6 The Architecture of a Reformulator

The discovery and reduction components are put together as indicated in Figure 5.7.

Only the empirical method of discovery has been programmed: currently the discovery

module takes the given formulation and the correctness and goodness constraints as in-

put and analyzes the computation to generate irrelevance claims that are correct (so the

goal will be preserved in the reformulation) and good (so the computation of the goal
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respects the computational goodness constraints). The reduction process takes the meta-

theoretical irrelevance claims and either performs extensiona reduction to generate the

new formulation directly, or intensional reduction to produce the necessary definitions of

new predicates and objects. A rewrite system then generates the new formulation in terms

of these definitions. At present, the reduction component has been implemented in the

meta-level programming system MRS[Gen83b]. It has been tested on the Founding Fa-

ther example and a few variants of it. The Verifier has succesfully verified the irrelevance

claims presented in this thesis. Extending the capabilities of the verifier requires adding

powerful lemmas to the irrelevance calculus. The discovery component is implemented as

a set of demons that look for regularities in the symbolic computation trace. Extending

the discovery component requires programming in more general-purpose regularity detec-

tors in computational traces. The two proof reconfiguration methods have been used to

generate Thevenin equivalents of analog circuits.



Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

Research in reformulation is purely exploratory in nature because our knowledge is too

poor to even formulate the appropriate questions, let alone solve them. The main con-

tribution of this thesis is a conceptual framework in which relevant questions about re-

formulations for computational efficiency can be phrased and answered. The framework

attempts to combine a way of looking at things that has powerful heuristic value with a

collection of mathematical definitions and theorems that can be used for rigorous deriva-

tion of results. A Type 1 theory that captures regularities in the space of reformulations

has been uncovered. The theory can analyze reformulations by justifying them, and in

some cases generate them. The chief result from the analysis is the development of a 2-step

meta-theoretic method for the automation of abstraction reformulations for computational

efficiency.

1. Generate irrelevance claims that are true of the given formulation with respect to

the given class of goals.

2. Reduce the formulation by the irrelevance principle.

Two general methods for the generation of irrelevance claims have been investigated: de-

riving them in the meta-theory by backward-chaining on the lemmas in the calculus of

irrelevance, as well as by empirical analysis of proof and search spaces. Reduction meth-

ods have been developed that generate a large class of reformulations: the generation

117
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of Thevenin equivalents, the transformation of the Fibonacci computation to tail recur-

sion, several compiler optimizations, encoding variations of the FoundingFather example,

macro-operators and macro-objects.

Effective mechanization of this method has been accomplished on the class of abstrac-

tion reformulations called elimination of intermediates. The irrelevance claims for this

class have a very special form: a gross step in the computation renders an intermediate

step irrelevant. The meta-theoretic irrelevance lemmas of the irrelevance calculus allow

us to generate these claims in a goal-directed fashion. The reductions also have a spe-

cific form: they either involve wholesale removal of relations, or the introduction of new

relations and objects that axe definable in terms of the existing ones.

The theory has been empirically verified by constructing a prototype of a first-principles

reformulator whose architecture is shown in Figure 5.7. It has been tried on the kinship

example and its variants, as well as the generation of Thevenin equivalents of analog cir-

cuits. An interesting empirical fact was that the irrelevance claims used to discover the

FoundingFather relation have the same form as the ones used to derive the concept of a

Thevenin equivalent of a circuit from Kirchoff's and Ohm's laws. Historically, the con-

cept of Thevenin equivalents was discovered almost 100 years after Kirchoff's laws became

known. Our reformulator derived the notion of Thevenin equivalents using the rather

limited set of discovery and reduction methods at its disposal.

This shows that the framework explored in this thesis has the potential to unify dis-

parate abstraction phenomena as instances of a powerful invariant in granularity shifts:

the most economical description is the one that uses concepts of the largest granularity

consistent with the correctness constraints. The ability to generate reformulations from

such basic considerations can have significant impact not only on AI, but also in improving

our current stock of scientific concepts and formulations.

6.2 Evaluation

6.2.1 The nature of irrelevance reformulations

Reformulations involve modifying both conceptualizations (or models) and encodings. The

actual end product of a reformulation is an encoding (or theory) with better computational

properties. The semantics of the theory revision is explained in terms of the effects on

its models. However, not all encoding shifts can be explained in terms of models. If for
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instance, we replace the expression a A b by the expressions b A a, this replacement might

have computational impact, (a might be false most of the time and might be cheaper to

compute), however it does not change the models of the theory. Conjunct orderings of this

form are an instance of theory revision that is not visible at the level of models. This is not

surprising, because models only characterize truth without considering the cost involved in

computing truth values. In sum, reformulations at the encoding level are a description of

the phenomenon at a fairly fine-grained level. The definition of reformulation at the level

of conceptualizations is a coarser grained description. The irrelevance principle states that

minimizing distinctions subject to the correctness constraints leads to the construction of

more efficient theories.

Unfortunately, not all efficiency improvements on theories require minimization of

distinctions. In fact, making algorithms efficient often involves making more distinctions.

For instance, quick sort does clever bookkeeping compared to the simple minded bubble

sort algorithm. The worst case time for both algorithms are the same, and a very fine

grained average case complexity analysis is needed in order to explain why quicksort does

better than bubble sort. This reformulation from bubble sort to quicksort is an encoding

level shift as opposed to a conceptual shift, because both are sorting algorithms at the

specification level. However, we can write irrelevance claims on the computation trace,

the reduction of the formulation by these claims then requires making finer distinctions

rather than removing them.

There are limitations introduced by the specific irrelevance discovery and reduction

methods discussed in this thesis. The subset irrelevance definition is not powerful enough

to explain and generate Type 2 abstractions. The set abstraction in the missionaries and

cannibals is an example of this class. Refinement reformulations that involve introducing

primitives that are not definable in terms of what is known, are impossible to automate

using irrelevance reformulations.

6.2.2 The power of the meta-theoretic approach

The method of irrelevance minimization is an analytical technique for learning new vocab-

ulary terms for the purpose of improving the efficiency of computation. This is done by an

analysis of the task requirements and modifying old representations to meet more specific

goals. The knowledge brought to bear on this process includes that of representations, the

problem solver and the purpose of the representation. The calculus of WI and CI allow



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 120

us intensional specification of the properties of the conceptualization and the computa-

tion. The meta-theoretic irrelevance principle then creates minimal conceptualizations

with encodings that perform minimal computation. The tools for describing conceptual-

izations, proof and search spaces along with the well defined methods of modifying them

in goal-sensitive ways are critical for making this method of reformulation feasible.

6.2.3 Issues in Validation

In his insightful commentary on the field, Marr declared that the goal of AI is to study

useful information processing problems and to propose an abstract account of how to

solve them. A result in Al consists of the isolation of a particular information processing

problem and the statement of a method for solving it.

The problem of reformulating representations to make them computationally efficient

with respect to a set of goals has been isolated. A clean Type 1 theory that describes a

normative principle that governs the class of abstraction reformulations has been discov-

ered. A partial inversion of this principle that generates abstractions automatically has

also been accomplished.

The methodology adopted involved doing theory before practice because the phe-

nomenon was too ill understood to benefit from programming. An attempt to program

would only have led to the development of special methods that work in a specific domain.

The goal of the thesis was to obtain an understanding of the reformulation phenomenon

well enough to make it feasible to suggest good reformulations in a variety of domains.

As is necessary in a ground breaking study, a fruit fly was needed to fuel the research: an

example that was simple enough to do paper and pencil analyses on, and complex enough

to contain the essential difficulties of automating reformulation. The kinship example was

chosen because it satisfied both criteria. Since the introduction of the FoundingFather

relation symbol is a general graph-theoretic transformation, its derivation would apply to

almost any graph search problem, and all formulations of AI problems in the state space

model fit this framework. So generality was not sacrificed.

How is this theory to be validated? To do this, we use the tri-step framework described

in Professor Buchanan's essay on validating Al theories and systems [Buc87]. The theo-

retical and the analytical steps of formulating the problem, and proving that the proposed

solution will work have been carried out. The empirical validation was carried out by

implementing an irrelevance reformulator described in Chapter 5. The implementation of
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has been tested on some small examples in graph theory and analog circuits. The power of

the approach is demonstrated by the fact that the reformulator was able to automatically

synthesize a new conceptual primitive that is beyond the reach of reformulators that are

cliche-based. This is the first existence proof of a first-principles reformulator. The scaling

up of the implementation to tackle larger scale problems will require conceptual advances

in the ability to describe search spaces intensionally. We intend to apply it to describe an

operational amplifier at various levels of abstraction. We also wish to test the applicability

of the method to non-discrete domains: in particular, the discretization of space to make

path planning problems easier to solve.

The analysis of why the method works and the cases where it works is accomplished

theoretically by proving appropriate theorems that establish the limits as well as the

capabilities of the method. However, ablation studies have not been performed. What

happens to the method if any of the conditions specified by the theorems are violated?

This requires the design of good experiments on the implementation; and much thought

requires to be put into the enterprise. This work will be done as a follow-up validation

project.

The quantitative results in this thesis are results on reduction in size (expressed in big-

O terms) of the search space by reduction methods. Some are results on the complexity

of verification of irrelevance claims and the efficiency of irrelevance reasoning. The lack

of good tools for measuring the impact of removal of irrelevant information affects our

ability to be able to make more precise claims at this point. Much of the work has been of

a descriptive rather than prescriptive in nature: the inversion of the normative irrelevance

principle has been achieved on a small class of problems.

Even though this is a formal thesis in the sense defined in [Buchanan87], the theorizing

was done with actual data in mind. Examples of reformulation behaviour that we wanted

to capture included all shifts to formulations of coarser granularity. There is informal

psychological evidence that humans are very good at this. Unfortunately, there is almost

no formal psychological data gathered on reformulation behaviour in humans that is of the

kind investigated in this thesis. Part of it is because the irrelevance principle is compiled

into the human reasoning system and we rarely introspect about it; we simply ignore

detail that is irrelevant to the present goals. However, our robots are not endowed with

this mechanism and this thesis presents an analysis of the mechanism, along with ways of

actually compiling it into the behaviour of robots.
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There is a deep concern for the practical tractability of the reformulation process itself.

Chapter 5 deals exclusively with ways of defining good representations of conceptualiza-

tions. encodings, search and proof spaces and how to use them to compile out special cases

of irrelevance minimization.

6.3 Future Research

Future research plans include extending the theoretical framework by investigating a richer

class of irrelevance claims that form the basis for automating approximation. and inductive

reformulations. The experimental component seeks to test the theoretical methods in

large scale problems in engineering design and planning, with a view to extending the

capabilities of present-day computer-aided design systems.

6.3.1 Theoretical Issues

1. Extensions to the Theory of Irrelevance

Approximations: The choice of primitives to describe a problem is directly re-

lated to their value in the solution of the problem. Abstraction reformulations

can be seen as shifting of the focus of attention of the problem solver from

the irrelevant aspects of the problem to the essential ones. The only abstrac-

tions considered so far were pure deductive ones: the reformulation did not

affect the correctness, only the efficiency of inference. A large class of use-

ful abstractions called approzimatioas trade accuracy for efficiency. A classic

case is the simplification of the hybrid-pi model of a transistor to the base-

emitter model under the low frequency condition. We propose to automate

their construction by relaxing our constraints on the specfication of irrelevance

claims to allow for approximate correctness. We shall then develop lemmas

of approximate irrelevance and reduction schemes that will alter formulations

to minimize approximate irrelevance. Our test bed will be problems in plan-

ning in the blocks-world and simplification of transistor models. The results

that we hope to obtain are general-purpose approximation methods that can

be used across domains to relax models to incrementally trade-off accuracy for

efficiency.
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" Iterative minimization methods: The methods developed in this thesis con-

struct 1-level abstractions (of which FoundingFather is an example). We would

like to extend the methods to develop abstraction hierarchies as in Abstrips.

The levels would correspond to gradual ignoring of information. The basic

method would be the ordered reduction of a formulation by irrelevance claims

as opposed to the simultaneous reduction used in Chapter 4. The development

of techniques to achieve this requires construction of cost models that allow

for the rapid calculation of the effect of reduction by an irrelevance claim to

decide on a good ordering for reduction. Our test bed is Abstrips: we will start

from the most detailed description of the action operations and facts about pre-

conditions (how easy they are to achieve), and construct a hierarchy of action

operators that minimizes planning time for given classes of planning goals.

" Extending the irrelevance claims to specify probabilistic information: many

irrelevance claims in the world are of a probabilistic nature. The claims de-

scribing factors that are irrelevant in a medical diagnosis task are an example.

To allow their specification, we need to examine the semantics of probabilistic

irrelevance. This would be pre-cursor to the development of methods to act

upon these claims.

2. Automating Refinement and Isomorphic Reformalations

The reasoning needed to accomplish reformulations consists of means of evaluating

the epistemic and computational consequences of perturbing the conceptualization

either by the introduction or the removal of a conceptual element. Irrelevance claims

were a particularly nice form of justification because they tied the exclusion of a

conceptual element directly to its computational consequences. Finding further jus-

tifications of this form to automate isomorphic and refinement reformulation is a

logical next step in our theoretical investigations.

e Development of further invariants in the representation-inference tradeoff: The

method of irrelevance minimization allows for the introduction of new con-

cepts that simplify inference to achieve a certain class of goals. This is done

by pruning entire subtrees in the computation. A related method that we

will investigate is the substitution of subtrees by simpler computations and

propagating their effects into the vocabulary for the problem. The concept of
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substitutability will be formalized with an eye to justifying and automating the

class of refinement and isomorphic reformulations.

* Inductive reformulations: the extension of these methods to cover non-deductive

inference is a project begun in [RS88]. Related work on this is done under the

rubrik of the study of bias in machine learning. Non-deductive systems are

very sensitive to the form of the representation chosen for the premises of each

inference. With one representation the system may return the correct solution,

with another it may not, even though they both contain the same information.

Inductive reformulations seek to transform a given representation to one that

maximizes correctness of conclusions with respect to a given problem solver.

Our initial focus for the study of this phenomenon will be reformulation de-

scriptions of to make analogy by similarity (by counting features) work.

* Symmetry reformulations: Symmetry is a general kind of redundancy. If a sys-

tem possesses symmetry, then the behaviour of a subpart can be computed by

knowing the behaviour of a symmetric subpart and the symmetry function. For

redundancy, the symmetry function is the identity function. Using the search

space metaphor, symmetry is said to exist in a search tree if a subtree can be

computed from another subtree plus a translation function. This amounts to

reusing old computation and thus leads to computational efficiency. Automat-

ing symmetry reformulations allows us to generalize the class of irrelevance

reformulations.

3. Improving the Efficiency of Deriving Reformulations

* Reformulation Algorithms: An approach to containing the complexity of the

first-principles reasoning is to compile some of the reduction inferences into

graph-theoretic algorithms. The FoundingFather transformation can be com-

piled down to a standard union-find algorithm. We will investigate classes of

irrelevance minimi ation inferences that can be subject to this kind of compi-

lation.

@ Reduction Lemmas: The complexity of intensional reasoning requires that we

develop reduction lemmas akin to the irrelevance lemmas to speed up the pro-

cess. Work on this as well as on better intensional descriptions of proof and

search spaces is critical to making the approach a practical one.
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6.3.2 Experimental Projects

No amount of theoretical investigations can replace a practical implementation of the

ideas being investigated, and such an implementation is a key part of the research effort

we axe proposing. The prototype irrelevance reformulator built in Chapter 5 automatically

derives the partition representation of an equivalence relation, as well as the concept of

Thevenin equivalents from Kirchoff's and Ohm's laws. This is a capability that no other

AI system possesses. This reformulator is built upon the meta-level reasoning system

MRS [Gen83b,Gen83a,Rus85]. MRS is extensively used in academic and industrial envi-

ronments and provides its users with a variety of knowledge representation and inference

procedures - it is one of the few knowledge representation languages in AI that provide

constructs for describing representations and inference methods. This feature is critical

for the development of the meta-theoretic reasoning methods for reformulation. The pro-

totype reformulator built in this thesis uses MRS and Lisp. The extensions that we plan

to make on this prototype system include:

1. A Reformulation Assistant

The inflexibility of present day design environments is largely due to their inability to

reason with multiple models of a domain at different granularity levels. The theory of

incremental reformulations proposed here can be used to synthesize abstractions of

a detailed model in a goal-directed manner. We intend to test our theory and extend

the available set of reduction lemmas by building a reformulation assistant. This

is a system that accepts irrelevance claims from a domain-expert and synthesizes a

formulation that doesn't make the distinctions specified by the irrelevance claims.

With the advances being made in the technology of manufacturing digital de-

vices it is possible to build systems of unprecedented complexity. Representing,

and reasoning about such systems requires describing them at varying levels of

abstraction to contain the complexity of tasks like diagnosis and test genera-

tion. This places a large burden on the specifier of a system. Also the system

is constrained by the fized abstraction levels provided. The methods provided

in this proposal can be used to synthesize abstraction levels that are tuned to

particular task requirements. We plan to test this idea in the context of the

Helios design environment [Sin86,Gen84]. One of the first projects will be to

take the specification a full adder at the gate level and derive the functional
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specification that abstracts details of the structure so as to make simulating

the circuit extremely efficient. The examples of structural and functional ab-

stractions presented in Chapter 2 of [Sin86] will then be automated: this will

6 be an excellent demonstration of the power of automated reformulation.

9 The abstractions in the digital circuits domain involve moving from discrete to

more discrete descriptions. To test the utility of the theory in abstracting con-

tinuous phenomena: we will explore automatic discretization of space to make

motion planning efficient in collaboration with Bruce Donald at the Computer

Science Department at Cornell University. A first step is the expression of

discretization criteria [LP83,Bro83,Don87] as irrelevance claims and the devel-

opment of special-purpose reduction methods that generate tilings of a given

region in 3-space.

2. Combining First-Principles and Cliched Reformulations

Our prototype reformulator works from first principles. The meta-theoretic reason-

ing required is expensive: we therefore wish to explore an architecture that allows

integration of the use of previously derived reformulations (cliched reformulations)

with the ability to synthesize new ones on demand. This requires generalizing a

newly derived reformulation so as to increase its range of application. For instance,

the FoundingFather reformulation can be generalized to be a useful reformulation for

the computation of any equivalence relation defined in terms of a partially ordered re-

lation. Generalization of this kind can be accomplished by using the well-established

method of explanation-based generalization [MTMS86]. The novel aspect of this use

of EBG is that the explanations formed and generalized are metatheoretical.
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