
S E C U R IT Y C L A S S F C A T IO N O F T H IS P A G E E O T . D C M N A I N P G

4 REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

Uncl assified None

cN SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT

"Irt . DCLA~iFCATON/ OWNRADNG CHEULEApproved for public release and sale.
DELSIATOONRDIGSHDL Distribution unlimited.

PERFORMING ORGANIZATION REPORT NUMBER($) S. MONITORING ORGANIZATION REPORT NUMBER(S)

0
rmONR Technical Report No. 15
(N NAME OF PERFORMING ORGANIZATION T6t) OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

University of Utah j (if applicable)

ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
SDepartment of Chemistry
SHenry Eyring Building

*kME OF FUNDINGi/SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT DENTiFICATION NUMBER

Office of Naval Research ________ N00014-89-C-1412
Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS [OKUI

Chemistry Program, Code 1113 PROGRAM PROJECT TASKWOKUI

800 N. Quincy Street ELEMENT NO NO. NO ACCESSION NO

Arlinaton. VA 22217
11, TITLE (include Security Classification)
Quantitative Estimation of Component Amplitude in Multiexponential Data: Application to
Time-Resolved Fluorescence Spectroscopy

12 ERONL UTORS)A. L. Wong and J. M. Harris

13a TYE O REORT11b T~~VERED 114. DAkTE OF REPORT (Year, Month, Day) is. PAGE COUNT
Technical 7FRNl0 T /9 Ji ,~~3

16. SUPPLEMENTARY NOTATION

17 COSATI CODES IS SUB;ECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP I Regression methods for chemical kinetics, uncertainty

I in parameter estimates.
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Attached.

ELEICi
JL 17 198

20 DISTRiBUTiONiAVAILASILiTY OF ABSTRACT 21 ABSTRACT SECUdRITY CLASSIFICATION
OUNCLASSFIEDIUNLIMITED 0 SAME AS RPT 0 DTIC USERS Uncl ass ified

22a NAME OF RESPONSIBLE NOIVIDUAL 22b TELEPHONE (include Area Code) I22c OFF1CE SYMBOL
Dr. Robert J. Nowak (202) 696-4410

DD FORM 1473,84 MAR 83 APR eaton may~ be used until exhiausted SECURITY CLASSIFCATION OF TIS PAGE
Ali other editions are obsolete Uncl assi fied



OFFICE OF NAVAL RESEARCH

Grant No: N00014-89-J-1412

R&T Code 413a005---03

Technical Report No. 15

Quantitative Estimation of Component Amplitude in Multiexponential Data:
Application to Time-Resolved Fluorescence Spectroscopy

Prepared for publication in Analytical Chemistry

by

A. L. Wong and J. M. Harris

Departments of Chemistry and Bioengineering
University of Utah

Salt Lake City, UT 84112

July 1, 1989

Reproduction in whole, or in part, is permitted for
any purpose of the United States Government

* This document has been approved for public release and sale;
its distribution is unlimited.



QUANTITATIVE ESTIMATION OF COMPONENT AMPLITUDES IN MULTIEXPONENTIAL DATA:

APPLICATION TO TIME-RESOLVED FLUORESCENCE SPECTROSCOPY

A. L. Wong and J. M. Harris*

Department of Chemistry
University of Utah

Salt Lake City, UT 84112

ABSTRACT

Quantitative information of individual component contribution from multi-

exponential data is obtained by a reiterative, linear least-squares algorithm.

Uncertainty in the parameter estimates, arising from uncertainty in the data

and overlap in the response, are predicted from first principles. The analysis

method includes weighting to account for the Poisson error distribution arising

from shot-noise limited signals, which increases the accuracy of the amplitude

estimates. While the algorithm is applicable to a variety of kinetic methods,

it is applied in the present work to the analysis of time-resolved fluorescence

decay curves. A fluorescence decay curve, written as a row vector, D, is

decomposed into two factors: A, a column vector containing the amplitude

contribution of each component, and (C], a matrix which contains temporal

behavioral of each component in its rows. The analysis uses linear least-

squares to obtain estimates of A, which increases the efficiency by reducing
For

the number of parameters which are searched. The theory of error in linear i

least-squares allows the uncertainty of the component amplitudes to be i 0

determined from the (C] matrix, derived from best estimates of the temporal on-

behavioral of the sample. D,-. -•.
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BRIEF

The individual component contributions to multiexponential data are estimated

by a reiterative, linear least-squares algorithm, and the amplitude

uncertainties are predicted from first principles.
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Quantitative determination of individual component contributions in

multicomponent spectroscopic data is a common and difficult analytical problem.

For data which derive from first-order kinetic reactions, such as time-resolved

fluorescence, metal ion complexation reactions, and the decay of radioisotopes,

component contributions to the observed amplitude are particularly difficult to

retrieve due to the similar temporal behavior of exponential decay curves.

Computational approaches to reaction-rate methods of chemical analysis have

been compared by Wentzell and Crouch (1) for reactions following first-order

and pseudo first-order kinetics, and the computational difficulties commonly

encountered were described. Mieling ahd Pardue (2) have developed a multiple-

linear regression procedure to obtained the amplitudes of sample components

simultaneously reacting at different rates. The method was similar to that

examined by willis et al. (3) to follow complexation kinetics of alkaline earth

complexes. The approach modelled the product concentration as the sum of the

integrated first-order rate law for each component plus any other sources of

product which are time-independent. The expression which is fit to the data is

a sum of an offset and two or three exponentials of known decay constant, where

the amplitudes are extracted by linear regression.

Time-resolved fluorescence spectroscopy, where the decay of intensity

following pulsed excitation is generally obtained by time-correlated single

photon counting techniques, produces data which also follow exponential

relationships (4,5). Most data analysis schemes for time-resolved fluorescence

(6-9) follow an approach similar to the method described above for chemical

kinetics, except that the sensitivity of fluorescence lifetimes to the sample

matrix does not generally allow the decay constants to be known in advance. As

a result, fitting of the data requires a nonlinear least-squares method since



the observed intensity depends exponentially on the unknown decay constants;

these nonlinear parameters appear in argument of the exponential time

dependence.

In nonlinear least-squares, optimal values for each parameter are found by

directly searching a parameter space while minimizing the squared deviations

between theory and experimental results. A sequence of error-reducing steps is

chosen where the best direction is reappraised after each step. A complication

arises with this approach for fitting multicomponent systems, which results in

large increases in computation time and uncertainty in evaluating parameters.

Since each resolvable component in the fluorescence decay signal is described

by an amplitude and a lifetime or decay constant, the number of parameters

which must be optimized grows twice as fast as the number of components in the

system. As a result, a three component systems requires that a six-dimensional

parameter space be searched, which increases the complexity of the optimization

problem and reduces the chances of converging or, the solution.

In this work, we present a more efficient approach to the resolution of

multiexponential data, where the decay constants are unknown. The method

combines a linear regression step to obtain the amplitudes, similar to that

described for multicomponent chemical kinetic data (2,3), within a nonlinear

least-squares algorithm to determine the best fit decay constants. This

approach was first used to resolve multicomponent fluorescence spectra from

emission wavelength-decay time data matrices (10). We have modified the method

to obtain single pre-exponential factors for each component and to account for

the non-homogeneous variance of shot-noise limited da+a. Proper weighting of

the observations is found to significantly influence the accuracy of the

results. The theory of error in linear regression has allowed us to develop an
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analytical expression which predicts quantitatively the precision of

determining individual component contributions. Synthetic data, generated with

multiexponential decay curves, and experimental fluorescence decay transients,

obtained by time-correlated single photon counting, were used to evaluate the

efficiency and accuracy of weighted regression algorithm and its predictions of

the uncertainty for the component amplitudes.

THEORY

Modeling Fluorescence DecayData. In absence of excited state-excited

state interactions, the decay of fluorescence following pulsed excitation

generally follows first-order kinetics where the response of an n-component

sample is given by:

n
dj = : (ai/r) f-eP(-jAt/Ti) * Ij()

i=1

where the intensity, dj, at time interval j is the sum of intensity

contribution of the n fluorophores emitting in the sample. The parameters Ti

and ai are the lifetime and integrated amplitude of the ith component,

respectively, and at is the time interval between data points. The asterisk,

"*", represents the convolution integral (11), and indicates here that the

exponential decay of fluorescence of each component is convoluted with the

normalized instrument response function, Ij. Fluorescence decay data can be

represented as a row vector, 0, of length t where t is the number of time

intervals over which the fluorescence intensity is recorded. This data vector

can be expressed conveniently as a product of a vector and a matrix containing

the amplitude and time dependence of the components:

0=A[C] + R (2)
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where A is a row vector of length n containing the amplitudes or pre-

exponential values of the individual fluorophores in the sample and [C) is an

(n x t) matrix containing the time decay behavior of the excited state

components in its rows. Since the observed data, D, contains error associated

with the observation, there is a difference between the observation and the

theory, given by a vector of residuals, R.

Combining Linear and Nonlinear Least-squares. An efficient method of

combining linear least-squares in the analysis of time-resolved fluorescence

decays has been described (10), based on assuming uniform variance in the

residuals, R. Given a time-resolved data vector D, the method decomposes this

matrix into it factors A and [C] which provide obtain quantitative and lifetime

information respectively. In order to carry out this decomposition, a trial

matrix (t] of normalized time decay curves is constructed row by row, by

convolution of the exponential decay of the ith component having an trial

lifetime, ;i, with the measured instrument response, Ij, which includes all

contributions to temporal dispersion from the excitation pulse and detector

response.

Cij = Ij * (1/Ti) exp(j&t/T i ) (3)

This approach requires the assumption that the excited states of each component

decay independently by first-order kinetics. This is an excellent approximation

for dilute solutions and high repetition rate excitation, which result in

infinitesimal concentrations of excited states.

The unweighted, linear least-squares solution for the vector of best

component amplitude estimates A is given by (12,13):

. = D (4)

where (C)' signifies the transpose of [6] and the superscript "-I" represents
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the matrix inverse operation. A modeled data vector 6 is calculated from the

product of the amplitude estimates, A, and the t-ial matrix, [C).

(=[(5)

Optimal parameter values are those which minimize the squared error or chi-

square, X2, determined by sum of the squared difference between the current

model and the observed data:

t
X2 = (1/g2) Z (dlj - dlj) 2 > (1/a2) R R' (6)

j=1

X2 has a lower limit which depends on the residual error in the data, R, which

is assumed in this case to have uniform variance, 02 .

Minimization of X2 requires an algorithm to search the n-dimensional

parameter space of unknown lifetimes. The Nelder Mead SIMPLEX algorithm

(14,15) relies on an iterative procedure which moves a simplex, a geometric

figure having plane faces and n + 1 vertices in an n-dimensional space, where

the vertices represent points at which x2 has been evaluated. The major

advantage of the present algorithm, which adds a linear least-squares step of

Equation 4 into a nonlinear least-squares search, is the reduction in the

number of parameters which must be optimized by the nonlinear search procedure.

This reduction represents a two-fold lowering in the dimensionality of the

search when compared to the more common approach which uses nonlinear least-

squares to search both lifetime and amplitude parameters (5).

Weigh _ji Shot-Noise Limited Data. Application of the linear least-

squares method of Equation 4 and minimization of the unweighted squared error,

Equation 6, both require that the error in the data be described by a

homogeneous error distribution of constant variance (12,13). In the case of

shot-noise limited, fluorescence decay data, typical of time-correlated single
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photon counting experiments (4), the dependence of the signal variance on its

amplitude requires that the above solution be modified to account for

differences in the expected magnitude of the residuals. Regression methods for

single exponential decay data has been shown to be quite sensitive to the

inhomogeneous variance of the observations (16), where the efficiency of

extracting accurate parameter estimates is significantly degraded if weighting

is neglected. The prior information concerning the expected variance of the

individual observations, 62j, required to properly weight the observations is

readily available for fluorescence measurements made by single photon counting

techniques (17), provided that the instrument introduces no excess or

systematic errors. Under such conditions, the counting error is Poisson

distributed, approaching a Gaussian distribution for a large number of counts

(18). The variance, 62j, of the observed data in the jth time interval has an

expected value equal to the mean number of counts for that interval (4).

Although the mean number of counts is not available from single observation, if

the number of counts is sufficiently large (>100), the variance may be

estimated (with <20% error) by the observed number of counts in the time

interval, t2j = dj. Therefore, the best estimate of the standard deviation of

the noise in each channel is simply the square root of the counts in the

respective channel. The correct descripticn of the residual error vector, R,

in Equation 2 is a row of random numbers distributed about a zero mean, with

varying standard deviation equal to the square root of the number of counts in

corresponding element in the observed data vector, 0.

A convenient approach to the linear least-squares determination of the

component amplitudes from such data is to multiply both sides of Equation 2 by

a factor (W], such that the product of (R (W]) is a vector of uniform variance.
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[W] A [C] [W) + R [W] (7)

A matrix, (W], which accomplishes this goal is a t-by-t diagonal matrix where

the non-zero elements wjj are:

wjj = l/aj = 1/(dj) 1/ 2  (8)

The elements of the residuals vector, (R (W)), are drawn from a population

having the same variance (equal to unity). The weighted squared error, or chi-

square, also has a simple form, represented as:

tX2 = Z (dj - [> R W] [W]' R' (9)

j=1

which is analogous to Equation 6

The least-squares solution of Equation 7 for the vector of best estimated

component amplitudes takes the same form as Equation 2:

A= D [W] Cw)'(c'dC) [W] [W]'C]')- 1  (10)

Since the diagonal elements of the matrix ((W][W]') are equal to 1/02j = 1/dj,

see Equation 8, then the product (Q IWIN]') = U, which is a unit row vector of

length, t, where the elements are all equal to one. This substitution results

in a simpler form for Equation 10:

A = U [C]'UC) [W] [W]'[C]') -  (11)

It is interesting to note that all of the information about the measured

fluorescence intensity, used to estimate the component amplitudes in

Equation 11, resides only in the product ([W][W]') within the inverse term.

Error Estimation. An additional benefit of a linear least-squares

determination of the component amplitudes is that errors associated with their

estimation can be predicted from first principles. These uncertainties in the

estimated component amplitudes are collected into a variance-covariance matrix,
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(V], the diagonal elements of which are the variances associated with the

amplitude estimates, and the off-diagonal elements are the covariances between

parameter estimates. For a two component system the variance-covariance matrix

is:

2 a 2 ala2 IV(ai)] = 1 ala2  (12)
62 I

a2a
2  82a2

where 62 and a2 are the variance of the individual, estimated amplitudes ofa1  a2

components 1 and 2, respectively, and 82  is the covariance between them.ala 2

For data of uniform variance, where the least-squares amplitude estimates are

given by Equation 5, the variance-covariance matrix is given by (12,13):

(VI = 62 ([C][C]') -  (13)

where 02 (a scalar) is the variance of the data, di, which for shot-noise

limited signals is approximated by the average photon counts in each time

channel averaged over the data vector, 0. The magnitude of the variance and

covariance terms in (V], thus depends proportionally on the uncertainty in the

data multiplied by the correlation in the rows of [C] as reflected in the

inverse of [C] 1C]' (19). Lifetime values of individual components in a

mixture, known prior to the analysis or obtained through a non-linear least-

squares fit of the data, are required to construct [C] using Equation 1.

Confidence bounds on the concentrations estimated using these lifetime values

can then be determined using this expression.

When A is obtained from a weighted linear least-squared method,

Equation 11, the variance-covariance matrix is obtained by evaluating (13):

(VI = ((C] (W](W]'(C]')-1 (14)

The estimated variance, 2 a, and covariance, 2  , of the ith and jth

components depends not only upon the component lifetimes which are used to
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construct [C], but also the particular data set which was observed, since the

diagonal elements of (W][W]' are equal to 1/dj. Unlike linear least-squares

for constant variance data (19), weighted least-squares requires that the error

estimates be evaluated with each observed set of data, even when the component

lifetimes are unchanged, since the relative intensity affects weight of an

observation on the estimated results; see Equation 11.

EXPERIMENTAL SECTION

Modeling and data analyses on synthetic and experimental data were

performed on a DEC 20/60 computer and o Compac 386 PC using FORTRAN.

Subroutines from the IMSL and LINPACK libraries were called in the algorithms.

Synthetic fluorescence decay curves were generated numerically by convoluting a

Gaussian function of desired width with the decay law given in Equation 3.

Random noise vectors, R, were derived from a Gaussian distribution, the mean of

which was zero and standard deviation of which proportional to the square root

of the signal. The final data vector D was obtained according to Equation 2,

by adding the random noise to the fluorescence decay law generated by

Equation 1.

Time-resolved, fluorescence decay curves were experimentally obtained

using a pulsed laser fluorometer shown in Figure 1. Excitation was

accomplished by a mode-locked argon ion laser (Spectra Physics, Model 2000)

synchronously pumping a rhodamine 6G dye laser (Spectra Physics, Model 375).

The pulse rate of the dye laser output was maintained at 400 kHz by a cavity

dumper (Spectra Physics, Model 454). The 604 nm emission from the dye laser

was frequency doubled with a KOP crystal (Quantum Technology) and subsequently

filtered with a Corning 7-54 UV-transmitting filter. The beam was then

11



directed onto a sample, and fluorescence was detected at a 900 geometry using a

photomultiplier. Data were recorded using Phillips discriminators (Model

6915), LeCroy time-to-amplitude converter and multichannel analyzer (Models

4204 and 3588) controlled by a Leading Edge Model D personal computer via a

GPIB interface.

The samples used were prepared by dissolving naphthalene (Aldrich gold

labeled) in cyclohexane (Omnisolv). To avoid the uncertainty of preparing

multicomponent samples, experimental data of multicomponent systems were

generated by first recording transients of single component samples with

differing fluorescence lifetimes, and then subsequently adding various

transients together to obtain multicomponent fluorescence decay transients.

Different fluorescence lifetimes for the naphthalene samples were obtained by

varying the concentration of oxygen in the sample, which acts as a quencher.

Oxygen was removed by freeze-pump-thawing samples of naphthalene in cyclohexane

to z, base pressure of <15 millitorr. Data sets with different amplitude

parameters were acquired by varying the collection time for individual samples,

thus varying the total number of counts in a given data set. The generation of

multicomponent data sets by adding together transients of single component

systems together not only avoided the uncertainty in sample preparation, but

also guaranteed that the parameters describing the individual component

behavior in those samples were accurately known.

The performance of each data analysis algorithm were compared by

evaluating synthetically generated, fluorescence decay data. The number of

iterations, required to reach a condition where chi-squared was changed by less

than a designated value, was used as a criterion to judge the efficiency of

each method, where an iteration is defined as a successful step in the SIMPLEX

12



algorithm (14). The effects of ignoring proper weighting factors were

determined by comparison of the two linear least-squares algorithms. Equations

4, 11, 13 and 14 were evaluated by solving for A and [V) using correct lifetime

values, and by a simplex search for the lifetimes for 1, 2, and 3 component

systems. The resulting estimates of component amplitudes and uncertainties

obtained by unweighted and weighted least-squares were compared. Initial

starting parameters were kept constant in comparing these methods. The

predictions of amplitude variances given by Equations 13 and 14 were first

evaluated using synthetic data. Comparison of the predicted component

amplitude variance, L2 , to the observed variance, s2a , obtained by fitting N

different synthetic data sets tests the predicting capabilities of this

expression. The observed amplitude variance, s2  , is determined from N least-

squares estimates, Ai' by:

N

s2 = z (ai - ai) 2/N (17)
i=1

where ai is the known or "true" value of the synthetic data set. Different

fluorescence decay data were generated by varying both lifetime and amplitude

parameters and the number of components in each sample. A total of ten

different combinations of fluorescence decay parameters were used to generate

80 sets of data which were analyzed. The criterion used to determine whether

the observed variance for synthetic data determined by Equation 17 could be

statistically distinguished from the value predicted by Equations 13 or 14 is

the F-test (18). The ratio of larger to smaller variance, F, was compared to

the critical level for 95 and 99% confidence.

To assess the capabilities of Equations 13 and 14 to predict the

uncertainty in amplitude estimates from laboratory data, fluorescence decays of

naphthalene dissolved in cyclohexane were also evaluated using two-component
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data sets. The fluorescence lifetime and amplitude were first determined for

the single component vectors which make up these two-component systems using

the weighted least-squares algorithm. Taking these values to represent the

"true" or best estimate of the concentration and lifetime parameters (ai,fi),

we compared the component amplitudes estimated by linear least-squares analysis

of the multicomponent data sets using the "true" lifetime values to build [C).

Results from 10 single component decay transients of naphthalene produced 9

reconstructed multicomponent data vectors which were analyzed, and the accuracy

of the results were compared with the error predictions of Equation 14.

RESULTS AND DISCUSSION

Three methods of quantitative analysis of multicomponent fluorescence

decay data are evaluated in this study, representing two different approaches

to obtaining the fit to a multiexponential model. A direct search approach, in

which both the lifetime and amplitude parameters are optimized using the

nonlinear least-squares (5,18) to minimize the squared differences between the

experimental data and the model, is compared to a second approach in which a

linear least-squares step to determine the amplitudes is carried out within a

nonlinear least-squares search for the optimum lifetimes. This second, linear

least-squares approach is further expanded into unweighted and weighted least-

squares methods, which are also compared.

A comparison of efficiency of the three data analysis methods is

summarized in Table I, where the numbers of iterations required to converge on

the optimal set of fitted parameters are compared. To illustrate the typical

quality of fit, Figure 2 shows an example two-component synthetic data

transient, along with the predicted fit and weighted residuals obtained by the
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weighted linear least-squares algorithm. While all three methods perform

adequately when the initial parameter estimates are close (or equal) to the

true values, the direct search algorithm for amolitudes and lifetimes is much

more sensitive to errors in the initial estimates. Prior information,

therefore, is required for the direct search algorithm to successfully

converge, particularly when the number of components in the sample is greater

than two. For one- and two-component samples, substituting a linear least-

squares determination of the amplitudes, which reduces the number of parameters

to be search by the SIMPLEX algorithm by a factor two, increases the efficiency

of convergence, on average, by about a-factor two. From the results in

Table I, weighting the linear least-squares fit for the Poisson-distributed

error in the data does not appear to systematically affect the efficiency of

convergence. Interestingly, the quality of fits as judged by the chi-square

values (Equation 9) at the optimum as determined by unweighted and weighted

linear least-squares searching show orly slight differences. X2 was

consistently smaller for the weighted least-squares fit by 1.0 to 2.O.

While the rate of convergence and the apparent quality of fit do not

depend strongly on weighting, the accuracy of the amplitudes which are returned

by the analysis are sensitive to proper weighting of the observations. This

behavior is summarized in Table II, where the accuracy of the component

amplitudes which result from unweighted versus weighted least-squares analysis

are compared for one-, two-, and three-component synthetic data sets. The

relative error in the amplitude estimates is 1.9-times greater on average when

A is obtained by unweighted least-squares, Equation 4, rather than by proper

weighting of the photon shot-noise using Equation 11. The largest improvement

provided by properly weighting the data is observed when the fluorescence decay
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is dominated by amplitude from shorter-lived components. Over the fixed 500 ns

observation time, short-lived components result in a greater dynamic range in

the observed fluorescence intensity which creates a correspondingly greater

range of measurement variance in the data. While a 1.9-fold improvement in

amplitude precision provided by weighting the least-squares fit does not seem

too significant, one would need to increase the signal counts by more than

3.5-times to achieve comparable improvements in precision.

An additional advantage of a linear least-squares determination of the

component amplitudes is that the uncertainties of tne parameters may be

predicted from first principles, using.Equations 13 and 14 presented above.

The variance of the amplitudes determined by the diagonal terms of [V] from

these equations were compared with the precision of fitting synthetic data

sets, representing a wide range of concentration and decay time values. These

comparisons are reported in Table III, along with the corresponding values of

the F-statistic used to determine whether there is a systematic difference

between the predictions and the observed uncertainties. Interestingly, both

the unweighted and weighted least-squares methods of estimating the amplitude

precision are equally valid in predicting their corresponding errors, according

to these results. Both algorithms produce several F-values which are outside

the expected bounds for 95% confidence (not unlikely for 16 results), while

both sets of the results are within the 99% confidence bounds. We conclude,

therefore, that while unweighted linear least-squares produced somewhat

inferior results with respect to the amplitude accuracy compared to proper

weighting of the shot noise (see above), amplitude reproducibility can be

predicted reliably using this simpler algorithm.

The principle advantage of unweighted linear least-squares is that the
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variance-covariance matrix depends only on the lifetimes of the components in

CC], scaled by the average variance in the data vector given by the average

number counts in each channel for shot-noise limited data; see Equation 13. As

a result, this method requires that the [V] be evaluated only once for a given

system of component lifetimes, being independent of the relative amplitudes of

the components. By contrast, the weighted least-squares strategy uses the

measured data vector to define the weighting factors in [W], which are included

in the prediction of the amplitude errors in Equation 14. Thus, this equation

must be fully reevaluated, and not just rescaled, for every new observation of

0, even when the lifetimes of the components do not change.

Since the uncertainty in the component amplitudes determined by linear

least-squares can be predicted accurately from first principles by evaluating

(V], this theory can be a powerful tool for modeling errors in the analysis of

multiexponential data. For example, one can predict a priori how the error in

determining the component amplitudes is affected by similerity of lifetimes of

the components. Such a prediction provided by Equation 14 is illustrated in

Figure 3 for a two-component determination, where the relative standard

deviations of the component amplitudes are plotted a function of the ratio of

the decay times for two different component amplitudes. Note that the pre-

exponential factor in Equation 1 is (ai/Ti), so that ai is the total number of

counts independent of the lifetime of emission. The results show the effect of

the time-dependence and relative amplitude of the components on the error in

determining the amplitudes. As the lifetimes approach the same value, the rows

of [C] become identical, and the uncertainty in extracting the amplitudes from

a decay transient increases without bound. As the lifetime ratio increases,

the uncertainty of extracting each component decreases since the time behavior
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of the components becomes more distinguishable.

When the amplitudes of the two components are equal, as shown by the

dashed line of Figure 3, the errors in estimating the amplitudes are virtually

identical. This is a somewhat surprising result, since one might anticipate

that the longer-lived component could be determined with better precision since

its intensity persists for a longer time when the first component has decayed

away. The reason that the two components have equivalent amplitude error,

however, is that the uncertainty of the amplitude determination is dominated by

covariance. That is, the error one encounters in this analysis is related to

partitioning the amplitude of the observed signal between the two components.

Since the actual magnitude of the two amplitudes is the same in this case, the

relative errors are equal. When the amplitude of one of the components is

larger, as shown in the solid lines in Figure 3, the relative uncertainty of

estimating this component decreases due to its proportionally smaller shot-

noise, while the smaller-amplitude component exhibits larger uncertzinty due to

the added background noise from the larger component.

The final goal of this study is to test the data analysis methodology on

laboratory fluorescence decay data. To avoid the uncertainties in preparing

multicomponent samples, experimental data for these systems were generated by

recording transients of single-component naphthalene samples with differing

fluorescence lifetimes as controlled by the partial pressure of oxygen. The

single-component files were subsequently added together to obtain multi-

component fluorescence decay transients having known individual component

behavior. An example of such a transient, its fit to a biexponential model

determined by the weighted least-squares algorithm, and the weighted residuals

from the fit are shown in Figure 4. The relative errors in the component
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amplitudes estimated by the weighted least-squares algorithm are compared to

the relative standard deviation predicted by Equation 14 for 9 data sets, where

the long-lived component amplitude was held constant and the short-lived

component amplitude was varied. The results are plotted in Figure 5, showing

the excellent agreement between the theoretical predictions and the observed

errors. An F-test indicates that all of the observed results fall well within

the 95% confidence limits.

In summary, we have developed an efficient method for resolving

multiexponential data in the case where the decay constants are unknown. The

method adds a linear least-squares step to the nonlinear least-squares search

for the lifetime parameters. The linear least-squares algorithm was

significantly more efficient in determining an optimal set of parameters

compared to the more common, direct search procedure. In cases of three

component data, the linear least-squares algorithm could tolerate over 75%

error in the initial parameter estimates while the latter method would not

converge on a solution unless the initial estimates were very near the true

value. Correctly weighting of shot noise in fluorescence decay data was found

to have a minimal impact on the rate of convergence but significantly improved

the accuracy of the estimated component amplitudes. The linear least-squares

formalism also allows one to predict quantitatively the magnitude of the errors

to expect in the amplitude estimates. This capability can be powerful for

modeling the accuracy of kinetic methods of analysis for multicomponent

samples. While the data and error analysis methods were evaluated using time-

resolved fluorescence decay data, the results are equally valid for optimizing

the analysis and predicting amplitude errors for any method which produces a

first-order kinetic response.
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TABLE I. Number of Iterations Required to Satisfy Convergence Criteria a

Relative Error Direct Search Unweighted Linear Weighted Linear
of Initial Algorithm Least Squares Least Squares
Parameter Algorithm Algorithm
Estimate b

one component system

0% 108 82 98
50% 198 68 86
75% 188 64 62

two component system

0% 177 110 104
50% <50% convergence C 111 122
75% no convergence 144 120

three component system

0% 196 110 120
50% no convergence 160 167

a Each result is an average of fitting 7 decay transients. Convergence was

defined as an accepted SIMPLEX move which did not improve X2 by more than
1 part in 105.

b Relative error of the initial parameter estimate is the difference between

the initial estimate and known value of fitting parameter divided by the
known value.

c Convergence within 250 SIMPLEX moves occurred less than half the time.
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Table II. Relative Error of Amplitude Estimates from Weighted and Unweighted
Least Squares. a

Sample T7 T2  T3 Avg. Amplitude Avg. Amplitude
Error (M), Error (M),
Weighted LS Unweiahted LS

One Component
100 ns 0.35 % 0.35 %
150 ns 0.32 % 0.46 %

Two Component
100 ns 125 ns 3.4 % 2.1%
100 ns 150 ns 1.1 t 2.0 %

Three Component
75 ns 150 ns 250 ns 1.6 % 1.2%
50 ns 150 ns 250 ns 0.7 % 3.9%

a Average of 4 trials, 500 point synthetic decay transients where &t =

1.0 ns. Lifetimes used in the amplitude determination were the correct
values. Component amplitude factors, ai, ranged from 1.0 x 105 to
3.0 x 105 counts/ns.
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Table III. Component Amplitude Variance Predicted (a2), Observed (s2 ), and

Compared by the F-Test. a

A 1)/A(2) T(1),T(2) a(1) o(2) S2(1) S2 (2) F(1) FL21

Unweighted Linear Least-Squares b

1:1 150,200 0.9294 0.6865 0.6678 0.4917 1.39 1.40

1:1 90,150 0.3850 0.2182 0.7946 0.3466 2.06 1.59

1:1 210,280 0.9942 0.7517 1.3301 0.9679 1.34 1.29

2:3 100,200 0.3206 0.1087 0.2664 0.0857 1.20 1.27

3:7 100,200 0.2393 0.1129 0.1746 0.0625 1.37 1.81

3:7 200,400 0.2501 0.1325 0.0680 0.0413 3.68 3.21

3:7 300,600 0.3367 0.1993 0.1415 0.0548 2.38 3.64

3:7 150,300 0.2284 0.1140 0.2008 0.1190 1.14 1.04

Weighted Linear Least-Squares c

1:1 150,200 0.6160 0.3889 0.7188 0.5361 1.17 1.38

1:1 90,150 0.2539 0.1026 0.6282 0.2497 2.47 2.43

1:1 210,280 0.7601 0.5166 1.4292 1.0096 1.88 1.95

2:3 100,200 0.1828 0.0607 0.1695 0.0409 1.08 1.48

3:7 100,200 0.1945 0.0666 0.0964 0.0325 2.02 2.05

3:7 200,400 0.2245 0.1010 0.0686 0.0531 3.27 1.90

3:7 300,600 0.3156 0.1711 0.2586 0.1073 1.22 1.59

3:7 150,300 0.1967 0.0778 0.1882 0.1119 1.05 1.44

a A total of 10 decay profiles of 500 points were constructed synthetically

for each combination of lifetime and amplitude.
b Component amplitudes found using Equation 4 and variances predicted by

Equation 13.
c Component amplitudes found using Equation 11 and variances predicted by

Equation 14.
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FIGURE CAPTIONS

1. Block diagram of single photon counting fluorometer. PD - photodiode,

PM - photomultiplier, S - sample.

2. Synthetically generated two-component fluorescence decay curve. Decays

constructed from 500 points, where a1 = 1.0 x 105, a2 = 1.5 x 105 ns, T1 = 100,

T2 = 150 ns, and At = 1.0. (a) fitted data, (b) weighted residuals, (c)

histogram of weighted residuals and corresponding Gaussian distribution, having

a zero mean, a unit standard deviation, and an area equal to the total number

of counts.

3. Predicted variance for two-component fluorescence decay curve as a

function of lifetime ratios. Synthetic data constructed from a 500 point

decay, where a, = 2.0 x 105, a2 = 1.0 x 105, and at = 1.0.

4. Experimental two-component fluorescence decay data fit to a biexponential

model. Data derive from two samples of naphthalene, where a1 = 1.39 x 104, a2

= 2.08 x 104, T 1 = 85.5 rs, and T2 = 107.7 ns. (a) fitted data, (b) weighted

residuals, (c) histogram of weighted residuals and corresponding Gaussian

distribution, having a zero mean, a unit standard deviation, and an area equal

to the total number of counts.

5. Relative error in component amplitude from weighted least-squares fitting

of experimental data. The amplitude of Component 1 was held constant, a, =

4.28 x 105 counts, while the a2 was varied as shown. The fluorescence

lifetimes, 71 and T2, were 107.7 ns and 85.5 ns, respectively. Circles and

rectangles are the observed relative errors for single determinations of a1 and

a2, respectively, while the solid lines are the predicted relative standard

deviations from the variance-covariance matrix, Equation 14.
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