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ABSTRACT

A hybrid experimental / numerical collocation
technique was developed for analysis of two
dimensional, finite body, single-ended crack
problems. Both boundary stress conditions, known a
priori, and interior stress conditions, determined
from a photoelastic model, were used to specify the
loading imposed on the specimen. It was determined
that including the interior stress conditions in
the analysis increases the rate of solution
convergence. Additionally, the interior stress
conditions allowed both the stress intensity

factor (Ky) and the crack mouth opening
displacement to be determined over a wider range of
crack lengths than was possible with boundary
collocation alone. Using the hybrid collocation
technique, a single edge notched tension, SE(T),
specimen, modified by introduction of a semi-
circular cutout in front of the crack, was
developed and characterized. This specimen was
found to produce fixed grip Ky values two times
greater than is possible with a conventional SE(T)
specimen of the same size. This new specimen could
be used to investigate upper transition crack
arrest phenomena with smaller specimens and testing
machine capacities than have been possible
previously.
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CHAPTER 1

INTRODUCTION
1.1  Techniques for Determination of Ky and CMOD for
Fracture Specimens

A ubiquitous problem in fracture mechanics is the
determination of how the opening mode stress intensity
factor (Ky) and the crack mouth opening displacement
(CMOD) vary with crack length for a particular geometric
configuration. One traditional approach to solving this
problem is to perform an experimental compliance
calibration [{1]. While this technique provides the needed
information at any crack length, it is not without its
drawﬁacks. A primary disadvantage is the need to use very
sensitive displacement transducers to accurately measure
the small elastic displacéments imposed on the specimen..
Further, no general information regarding stresses or
displacements is obtained at other than the instrumented
locations. Thus, while a fair degree of effort is
required to conduct the experiment, only very limited

information can be obtained.

Of the other experimental techniques available, many make
use of data obtained from photoelastic experiments.
Ostervig (2] reviewed these methods, which may be broadly

categorized as either deterministic, requiring only as




many experimental datum as unknown parameters, or over
deterministic, requiring more data than unknown
parameters. Of these two classes, over-deterministic
techniques are generally less sensitive to experimental
errors [3]. One over-deterministic technique, referred
to as local collocation, was first developed by Sanford
and Dally [3]):; with further refinements due to Sanford and
Chona [4], as well as Barker, Sanford, and Chona (5].

This method uses experimental data from a region bounded
by a minimum radius of one-half of the model thickness and
a maximum radius on the order of 15% of the specimen width
to determine the coefficients of a modified Westergaard
series expansion. While quite efficient for determination
of Ky at any crack length, this method cannot determine
displacements at locations remote from the data
acquisition region, and thus is not useful for determining

CMOD.

A different general approach to solving these problems is
the use of numerical techniques requiring either
discretization of the entire body (e.g. finite element,
finite difference) or of only the external boundary (e.g.
boundary collocation). To use a boundary collocation
technique, the stress function for the body must be known,
and be representable as an infinite series having each

term defined to within an arbitrary constant. As a result




of this requirement, collation techniques are
computationally more efficient than finite element or
finite difference approaches due to the lower level of
approximation involved. Because this series expansion is,
in the limit, the exact solution to the problem under
consideration, the series coefficients at different crack
lengths can be interpolated to estimate the solution at
any intermediate crack length values. Further, boundary
collocation results can be used to calculate the stress or
strain at any location in the body from a simple,
continuous, algebraic function. Finite element and finite
difference solutions have neither of these

characteristics.

The stress function used in a boundary collocation
solution must explicitly satisfy the boundary conditions
on the crack faces, as well as account for all internally
applied loads. Having satisfied these conditions, the
problem is solved by determining the constants which
approximately satisfy the desired external boundary
conditions. For the single ended crack problem, stress
functions for various internal boundary/internal loading
configurations are well established. Newman [6] applied
the complex potentials due to Kolosov and Muskhelishvili
[7]) to the problem of cracks emanating from holes,

exploiting the applicability of these functions to




multiply connected regions. Sanford and Berger [8)
presented a method for converting the wide variety of
published infinite body Westergaard solutions [9] into
series forms amenable to use in boundary collocation
analysis. In so doing, these authors made available for
computational studies a large class of functions
describing cracks subjected to internal point and
pressure loading. For simpler problems not involving
internal loading or multiply connected domains, either the
Williams stress function [10] (in polar coordinates) or
the modified Westergaard function [11] (in Cartesian

coordinates) is most appropriate.

Boundary collocation methods may be either deterministic
or over-deterministic. Early investigators [12-14]
employed deterministic techniques. This allowed the
stress intensity factor to be determined by simple matrix
inversion, with the reported value being the stabilized K;p
reached as the number of series coefficients, and boundary
conditions, was increased. While an efficient technique,
Kobayashi, Cherepy, and Kinsel [12] noted that the
accuracy of Ky thus determined depended upon the location

of the collocation stations.

In a book concerning numerical solutions to two-

dimensional elasticity problems, Hulbert [15] indicated




that the phenomenon observed by Kobayashi, et al. can be
explained by considering the position of the collocation
stations relative to the maxima and minima of the terms in
the stress function along the external boundary. Unless
collocation stations and extrema coincide, residuals
between stations tend to be quite large. To alleviate
this difficulty, Hulbert developed an over-determined
boundary collocation procedure based on a least squares
minimization of the external boundary residuals over all
of the collocation stations. The first application of
Hulbert's procedure to a fracture problem (known to this
author) was by Newman [6], who compared over-determined
and deterministic collocation for the problem of two
cracks emanating from a circular hole in an infinite plate
stressed normal to the crack line at infinity. 1In that
study, the over-determined solution converged with less
than half the number of series coefficients needed by the
deterministic solution. - Subsequent studies using the
over-determined approach (16,17] have not reported any
difficulties associated with collocation station

placement.

An over-determined boundary collocation approach can be
used to determine the variation of Ky and displacements
remote from tpe crack tip (e.g. CMOD) with crack length.

However, when the crack tip is near an external boundary,




these estimates become quite inaccurate. This shortfall
is illustrated in Figure 1, which compares boundary
collocation results for a single edge notched tension,
SE(T), specimen with other numerical solutions published
in'the literature [13, 18-20). At crack length to
specimen width (a/W) ratios greater than 0.6 and less than
0.3, the normalized stress intensity factor calculated
using boundary collocation deviates from that determined
using a wide variety of other computational techniques.
The cause of this disagreement becomes apparent upon
examination of isochromatic fringe patterns for either
shallow or deep cracks, as shown in Figure 2. For these
extreme cases, the majority of the fringes are confined to
a small - region about the crack tip, indicating that the
stress gradients at the boundary are virtually zero. As
these are the data from which a boundary collocation
solution determines the strength of the crack tip
singularity, inaccurate results would be expected in

either case.

Clearly, neither experimental or numerical methods
employed independently can determine the variation of both
K1 and CMOD over a wide range of crack lengths. The
objective of this research is to develop a hybrid
numerical/experimental technique which can. This

technique combines local collocation, previously presented
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by Sanford and Dally [3], with boundary collocation using
the generalized Westergaard functions, as recently
demonstrated by Sanford and Berger [8). Results will be
presented for a conventional SE(T) specimen and for a
SE(T) specimen modified by placing a stress concentrating
cutout in front of the crack. Rationale for development
and practical use of this new specimen is presented in the

following section.

1.2 Specimen Geometry Investigated

In materials testing, it is frequently of interest to
measure the crack arrest toughness of a material and, in
materials which experience a ductile - to - brittle
toughness transition, determine the variation of this
property with test temperature. Crack arrest toughness is
most frequently quantified in terms of the value of Ky
occurring at crack arrest (Ky,):; Figure 3 shows the
variation of Ky, with temperature for a reactor grade
pressure vessel steel [21]. The rapid increase at high
temperatures is typical of steels tested in this fashion
and denotes the onset, above the temperature of the
vertical asymptote, of fully ductile fracture behavior.
Crack propagation in these experiments is quite rapid;
crack speeds on the order of 1,000 m/s (39,370 in/s) in

high strength steel and 150 to 300 m/s (5,905 to 11,811
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temperature for various reactor grade pressure
vessel steels, after ref. [21].
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in/s) in ARALDITE B have been measured [22]. Provided
that the specimen is sufficiently large to limit
interaction of boundary reflected stress waves with the
moving crack tip, a simple engineering approximation to
Kya may be obtained using static Ky formulas which assume
fixed load point displacement (fixed grips) during the

crack run - arrest event {23].

The American Society for Testing and Materials Standard
Test Procedure for Measurement of Ky,, E1221 [24],
recommends use of a crack-line wedge-loaded compact
tension specimen. The reduction of Ky with increasing
crack length for fixed grip boundary conditions in this
specimen, combined with an upward shift of the ductile -
to -~ brittle transition temperature caused by elevated
crack tip loading rate during the crack arrest experiment,
make this specimen useful only for determining crack
arrest data at low temperature/toughness combinations. To
determine higher Ky, values, SE(T) specimens are
frequently employed [23]. These specimens are subjected
to a linear thermal gradient, cold at small a/W and hot at
large a/W, to create a toughness gradient across the
specimen width. This feature allows the specimen to
arrest cracks at the higher than initiation K values that
are generated ﬁnder fixed grip loading conditions in this

specimen geometry, as illustrated in Figure 4. Better

11
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definition of the upper asymptote of the Ky, -~ temperature
transition curve could be obtained by increasing the
maximum Ky achievable, and by maximizing the portion of
the specimen over which Ky increases with increasing crack
length. To this end, a modified SE(T) specimen of the
type illustrated in Figure 5 will be developed in this

investigation.

13
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CHAPTER 2

MATHEMATICAL DETAILS

2.1 Generalized Westergaard Equations

Sanford [11) demonstrated that the generalized form of the

Westergaard equation [25] is an Airy stress function given

by:
® = Re[Z(z)] + yIm[Z(z)] + yIm(¥(z)] (1)
where
dz(z) _ az (z)
2(z) = —mm ; 2(z) = —
dz dz
d¥Y (z)
Y(z) = ——
dz

z = x + iy

Functions of this kind are useful for solution of finite
bod} crack problems, provided that functions Z(z) and Y(z)
can be found, such that Re[Z(z)] = 0 on the traction free
surfaces of the crack (i.e. Oyy = Oxy = 0 on the crack
faces) and Im(Y(z)] = 0 along the crack line (i.e. Txy = 0
ony =0 for all x). For these problems, the in-plane

stresses may be expressed as follows:

Oyx = 328/3y%2 = Re Z - yIm 2' - yIm Y' + 2Re Y (2a)
Oyy = 328/3x2 = Re Z + yIm 2' + yIm Y' (2b)
15




Txy = 32%/3x3y = -yRe Z' - yRe Y' - Im Y (2¢c)
where

Y = ¥(z)

Z = 2Z(2z2)

id Collocatio

To use eqn. (2) in a collocation solution, 2(z) and Y(z)
must be expressed in series form. For the conventional
SE(T), a single series expansion having its origin at the
crack tip was used [4]. For this specimen, Z(z) and Y (z2)

are as follows:

J
2(z) = £ Aj-zj'l/2 (3a)
3=0
M
Y(z) = T Bp-z® (3b)
=0
where
z = a complex coordinate having its origin at the crack
tip

These series exactly satisfy the stress free crack face
and crack line symmetry conditions; the negative powers of
z below z~1/2 having been eliminated to prevent
displacements from becoming unbounded at the crack tip.
For the modified SE(T), an additional series expansion was
needed because the series given in egn. (3) do not allow
stresses or displacements to increase around any point
other than the crack tip. Clearly, this was not the case

16




for the modified SE(T), where stresses also increase quite
rapidly around the base of the cutout. By using a series
expansion that includes negative powers of z, a pole
(location of infinite displacement) was placed in the
solution at the center of the cutout. This pole allowed
the rapid increase of stress around the base of the cutout
to be explicitly accounted for in the mathematical
formulation of the problem. Because there was no material
at the location of the pole, the negative powers could be
included while maintaining single valued displacements for
all points within the specimen. The form suggested by
Newman (6] for this negative power series was used to
satisfy the stress-free crack face and crack line symmetry
conditions. Thus, the series expansions for the modified

SE(T) specimen were as follows:

J U 1 - '
zZ(z) = £ Aj-zj'l/z + £ Cy (4a)
j=0 u=1 JZ: (2-25)Y
M v 1
Y(z) = £ Bpz® + T Dy———— (4b)
m=0 v=1 (z-24)V
where

Zo = the center of the circular cutout

To impose the applied boundary conditions, series
representations of eqn. (2) in real coordinates,
constructed using (3) and (4), are needed. These

]

equations are presented in Appendix A.
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In addition to boundary information, the hybrid
collocation technique requires information regarding
stress or displacement conditions that can be imposed on
the specimen interior. While any experimental method of
sufficient accuracy could be used to determine these
conditions (e.g. photoelasticity, moire interferometry,
speckle interferometry, resistance strain gages),
photoelastic data was used in this investigation. 1In this
way, experimental details were simplified while fringe
patterns were obtained which are sensitive to the non-

singular terms in the series expansion for stress [26].

To use photoelastic data, an equation relating the maximum
shear stress to the measured fringe order (N) is required.
This relationship may be written as follows:

1/2
] (5)

Tmax = [[(axx - Oyy) /212 + Tyy?

N-f,/(2:t) = N-Q
where

fs = photoelastic fringe constant
photoelastic model thickness

£t/ (2-t)

t
Q
In terms of the Westergaard Z(z) and Y(z) functions, eqn.

(5) becomes

18




Tmax = [(-yIm Zz' -~ yIm Y' + Re Y)2

]1/2

+ (-yRe 2' - yRe Y' - Im Y)2 (6)

A series representation of eqn. (6) in real coordinates,

constructed using (3) and (4), is presented in Appendix A.

2:2.1 Solution Procedure

The nonlinear character of eqn. (6) necessitates use of an
iterative solution technique, such as that proposed by
Sanford [26], to determine the unknown series
coefficients. 1In this technique, the sﬁress equations

(Al-A4) are expressed in a homogeneous form

gk (A'g, A'3, - . . , A'g, (7)
B.O' B'l, e e o B'H’
C'oy C'l, « o+« 4, Cl'y,
D'o, D'l' . . . ? D.v, Q) = 0

and expanded as a first order Taylor's series

Ily4y = 9kly +

[ b [ 1 "
ady agyx agx 1
— |AA'g + | /™ |AA'Tq + ... + —— |aA'g +
dA dA dA
| °70 Ji L 1 J; | Y Ji
e - - 1 P~ -
agyx agy agk
— |aB'g + | — [aB'y + ... + | —— |aB'y +
By B4 dBy
- -i - -i L ..i
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- A r - _ -
39k a9k a9k
— |AC'g + — {AC'7 + ... + —— |aC'y +
aCq aCcy aCy
- sy 41 - 43 - <1
r - - - o -
a9k 3gx gk
_— AD'O + — AD'l + ... + —_— AD'V +
dDg aDy J 3Dy ]
Ly . i L i
agy
— |aQ (8)
aQ
LTy
where

Iteration counter

Correction to previous estimate Aj, Bp, Cy, or Dy
Indicator of location in specimen; 0 > k > L
Total number of imposed boundary and interior
conditions

gt

(i gl

By including the photoelastic material parameter, Q, as a
variable in the least squares solution, slight measurement
inaccuracies associated with the model thickness, the
material fringe constant, and the applied load are
automatically accounted for by using a value for Q which
bes; fits the input data. The validity of this auto-
calibration approach can be checked by comparing the best

fit value of Q with the expected value.
To satisfy eqn. (7) in the (i+1)St iteration step, egn.

(8) must be equal to zero. From this observation, eqn.

(8) may be expressed in matrix form as

20




[ - {g} = [H] (8} ] (9)
i

where

(H] L x (J+M+U+V+3) matrix (L > J+M+U+V+3).
Matrix values depend on boundary condition
type and station location.

{A) (J+M+U+V+3) x 1 column vector of corrections
to the current estimates of the unknown
series coefficients.

{g} L x 1 column vector having values described by

eqn. (8).
For the problems under consideration, eqn. (7) may take on
any of the following forms depending upon the position of
the collocation station, k:

g=20 Oxx (10)

9yy =~ 9APPLIED

wwuuwuna

where

OAPPLIED = abPplied value of remote stress

For each of these cases, the partial derivatives necessary

to define the entries in [H] are presented in Appendix B.

Because egn. (9) represents an over-determined system, (A}
must be determined using the method of least squares. For
large matrices, Berger [17]) found that a least squares
solutioh of the normal equations exhibits numefical
instabilities. . To avoid this problem, a least squares

solution based on a QR decomposition of the [H] matrix was

21




employed [27]). Briefly, this involves decomposing [H] as

follows:

[H] = [Q][R) (11) )
where
[R] is upper triangular with a non-zero main .

diagonal
[(Q] has orthonormal columns

Substituting egn. (11) into eqn. (9) gives

{a}-[R] = -[Q] {9} (12)

which can be solved for {A) by simple back substitution.
In this study, LINPACK [28] subroutines were used to

implement the QR decomposition.

To obtain stable values for the series coefficients, eqn.
(9) was solved iteratively using the following procedure!
1. Select the number of photoelastic data and
boundary stations to be used.

2. Provide initial guesses for the Ap' and Bj'
coefficients.

3. Compute (g} and [H) using egqs. (Al-A4) and
(B1-B18), respectively.

4. Compute (A) using eqn; (12).

5. Revise the coefficient estimates using the
{A) values.

6. Repeat steps 3 to 5 until the values of Ky,
the root mean square boundary stress residual
(or), and the root mean square fringe orqer
residual (N,) do not change by less than some

22
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acceptably small value. The error measures
o, and N, are defined as follows:

r 11/2
— 1 m
op = | — T (8x - oyg)? (13a)
nj k=1
F 11/2
— 1
Np = | — T (g - N2 (13b)
np k=1
L 4
where
n = nqg + njp
ny; = number of boundary collocation
stations
n, = number of internal collocation
stations

8x = specified stress boundary
condition at point k
Rx = measured photoelastic fringe order

at point k

ox = computed stress boundary condition
at point k

Nx = computed photoelastic fringe order
at point k

7. Repeat steps 2 to 6, each time including one
or more additional terms in the series
expansion. Use the most recent coefficient
estimates as guesses at step 2 when the new
coefficients are added. Continue to add
terms to the series expansions until both

a. The value of Ky becomes a constant
independent of increasing model order.

b. The values of o, and Np-f;/(2-t) become
small compared to OapprIED

FORTRAN 77 software was used to implement this procedure.
All computations were performed on a MICRO VAX-II in single

precision.
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4.2.2 Numerical Validation and cComparison to Boundary
collocation

Before using the hybrid collocation procedure to analyze
experimental data, it is necessary to demonstrate that the
technique produces correct re?ults. This was accomplished
by numerical simulation of the hybrid solution scheme.

The photoelastic data used in this analysis was
numerically generated from a 100 coefficient boundary
collocation solution. fhe SE(T) specimen considered had a
length to width ratio of 2/1 and a crack tip at 0.51'W,
where W is the specimen width. The specimen was loaded
with a uniform stress perpendicular to the crack line on
the boundary parallel to the crack. To minimize errors
resulting from boundary discretization, 320 boundary
stations were placed on each side of the specimen creating
a total of 1920 applied boundary conditions. A data set
consisting of 132 poiﬁts taken from integer order fringes
was numerically generated from this solution. These
data, as wvell as the boundary data, were used as input to
the hybrid collocation program. To insure comparability
to the boundary collocation result, the total number of
constraints imposed on the model was held constant at

1920.

In Figure 6, the variation of the normalized stress
intensity factor (Kt* = Ky/(0-/W)) and the normalized CMOD

24
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(cMOD* = CMOD-E/(0-W)) with model order for both the
boundary and hybrid collocation techniques are compared
with the result of Tada (9], who gives an empirical
equation fit to the published data available for this
specimen geometry; previously shown in Figure 1.

(Appendix C presents relationships between Ky, CMOD, and
the series coefficients from the collocation solution.)
These data indicate that both techniques have equivalent
accuracy for determination of these parameters at a/W
ratios where both techniques converge; the slight
difference between the converged K;* and cMoD* values
calculated using the two collocation techniques having
occurred due to the limited accuracy of single precision
arithmetic. Further, the hybrid collocation approach
appears to offer an advantage over boundary collocation in
terms of convergence rate; determining stable estimates of
these parameters in models of at most two-thirds the order
required for a stable bouhdary collocation solution. This
accelerated convergence results directly from inclusion of
the photoelastic data, which are influenced by the crack

tip singularity more than the boundary data.

2.2.3 Effect of Random and Systematic Errors in the
Photoelastic Data

As pointed out by Barker, et al. [5), errors inherent to

26




full field optical stress analysis data may either be
systematic or random. Systematic errors result from
inaccuracies in location of the crack tip, while random
errors result from being unable to locate the exact fringe
maxima in a photograph without resorting to sophisticated
image analysis techniques. The degree of resolution
required of experimental measurements can be determined by
imposing both types of errors on the numerically generated
photoelastic data, and observing the effect on the

calculated values of Ky* and cMoD*.

Figure 7 illustrates the effect of a systematic mis-
location of the crack tip along the crack line on
estimates of K;* and CMOD*. These data show that small
errors in crack tip position do not greatly alter either
value. This is because Ki* is proportional to the
magnitude of the stress singularity at the crack tip, and
thus depends on the relative spacing between isochromatic
fringes, which is not dramatically altered by small crack
tip position errors. cMoD*, being a measure of
displacement remote from the crack tip, is also not
strongly influenced. These small inaccuracies can be
eliminated altogether if, during the analysis, the crack
tip is varied slightly from its expected location to
minimize the root mean square error terms, oy and Nr.

The data in Figure 8 shows that if o, and Ny are used to
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calculate a single residual, weighted to reflect the
ratio of internal to boundary collocation stations, this
residual approaches a minimum value as the crack tip
position used in the analysis approaches the correct
location. The formula used to calculate the weighted
residual is as follows:

— — 1/2

(14)

0l
i

n1+n2

To assess the effects of random error on KI* and CMOD*,
maximum random errors of 0.0021-W, 0.0042-W, and 0.0084 W
inches were imposed on the numerically generated
photoelastic data. The new position of each data point

was calculated using the following equations:

X'= X + RAND - ERRORpMaY (15a)

Y'= Y + RAND - ERRORypx (15b)
where

X'and Y = Original coordinates of the datum

RAND = A random number ranging from -1 to +1

ERRORypx = Maximum random error

The results of these analyses are presented in Figure 9.
These data  indicate that maximum random position errors up
to 0.004‘W, e.g. 0.6 mm in a 152 mm wide specimen, do not
appreciably effect the calculated values of these

coefficients.
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2.2.4 Effect of the Ratio of Internal to Boundary

Collocation Stations

When performing a hybrid collocation analysis, an
arbitrary decision must be made regarding the relative
ﬁumbers of collocation stations to be placed in the
interior and on the boundary of the specimen. To
investigate the influence this partitioning might have on
values derived from the analysis, calculations were
performed for various proportions of interior stations to
boundary stations over the range of 1/7.3 to 3/1. The
convergence of Ky* with model order for these various
ratios, as well as for boundary collocation, is shown in
Figure 10. These data indicate that as the percentage of
internal collocation stations are increased, Ki* estimates
at low model orders become progressively better
approximations to the converged solution. This occurs
because the interior stations possess considerable
information regarding the near tip stress gradients.
Inclusion of these data allow the leading series
coefficients to home in on the correct values rapidly
without first reducing the boundary errors to small values
by including a large number of coefficients in the

expansion, as is required for boundary collocation.
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2.3 Fixed Grip Stress Intensity Factor Calibrations

While the intent of this investigation was to determine
the variation of Ky with a/W for two SE(T) geometries
under fixed grip conditions, it was experimentally more
convenient to apply a constant remote stress to the
photoelastic models. However, Paris [29] demonstrated
that a fixed grip Ky calibration can be derived from a
constant stress Ky calibration by determining the relation
between load (P) and load point displacement (Dp) using
Castigliano's theorem. Castigliano's theorem states that
the displacement of a load in its own direction is given
by

aUqp

Dp = (16)

apP
where

Ur = Total strain energy

The total strain energy is the sum of that resulting from
the applied load acting on an uncracked body, as well as
the additional strain energy that results from
introduction of a crack with the load held constant.

Thus,

A JUp

Upr = Uno CcRrRACK * [ da (17)

Jo aA
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where

A = crack area

Noting that the integrand in egn. (17) is the strain
energy release rate (G), egn. (17) may be substituted into
egqn. (16) to give

9UNO CRACK A 3G
+ | — aa (18)

) Jo aP

Dp =

The first term in eqn. (18) is simply the load point
displacement of the uncracked body. Recalling that, for

an opening mode problem in plane stress,

KIZ
Gy = (19)
E
egn. (18) becomes
2 [A 3K
Dp = DpNO CRACK 4 ——.| kg da (20)

E Jo apP

For a tension loaded specimen of constant thickness, where

the constant load Ky calibration is given by
K; = o-/xa - F(a/W) (21)

eqn. (20) may be expressed as

a
= Logs + [ a-F2(a/W) da = H(a) (22)
o W Jo

Leff represents the contribution of the uncracked specimen
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to Dp'E/0. For the conventional SE(T) specimen, this is
simply the distance between the loading points. However,
due to the complex geometry of the uncracked modified
SE(T), Leff could not be determined explicitly. Instead
it was calculated by first using a boundary collocation
approach to generate a series solution for the stresses in
the uncracked body, and then numerically integrating this
solution over the entire body to determine the total
stored strain energy, Up. Legfsf was determined from Ug
using the following equation:

Dp-E 2-E-Up

Legf = ——— = (23)
o Uncracked P</A

P = Applied Load

Values of Lggf for various specimen height to maximum
width ratios are presented in Table 1 for the modified

SE(T) geometry tested.

Equation (22) may be solved for stress and substituted
into egn. (21) to give a constant displacement Kjp
calibration, as follows:

K- /W J/maw - F(a/W)

= (24)
Dp-E H(a)

The calibration shown previously in Figure 4 for a SE(T)
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specimen with L = 2-W was determined in this fashion using

the F(a/W) function reported by Tada [9].
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Table 1: Effective Length for the Modified SE(T) Specimen
Having a Cutout of Radius 20.2% of the Maximum
Specimen Width.

Actual Effective
L/Wnax L/Wnax
1.01 1.34
2.02 2.30
4.03 4.28
38




CHAPTER 3

EXPERIMENTAL TECHNIQUES

As mentioned earlier, photoelastic models were tested to
obtain stresses from the specimen interior for use in the
hybrid collocation analysis. Experiments were conducted
in a dead weight loading fixture; weights being hung on a
lever arm to reduce the required load. A multiple pin
linkage was used to smoothly transfer the single point
load into the models at four equally spaced points. This
insured comparability with the boundary data by producing
constant stress loading across the top of the model.
Tigure 11 shows this linkage, which was constructed to
prevent any moment transfer to the specimen that could
disturb this constant stress boundary condition. The
effectiveness of this approach was confirmed upon initial
loading of the models, when it was observed that the
disturbance of the fringe pattern due to the four pin
loading dissipated a very short distance from the loading

points.

Both models were machined from 1/4-inch thick
polycarbonate material having a nominal fringe constant
(fy5) of 7 kPa-m/fringe (40 psi-in/fringe). The exact
fringe constant was determined for each model by

incrementally loading a uniform section of the material
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and determining the fractional fringe order using Tardy
compensation. The fringe constant was than calculated as
the slope of the line relating the remote stress to the

fringe order, divided by the model thickness.

Photographs were made on 4-inch x 5-inch positive/negative
film through a full field circular polariscope illuminated
with a monochromatic sodium vapor light source. At each
crack length, both light and dark field photographs were
taken. At short and long crack lengths, when the
photographs at a single stress level did not provide an
adequately detailed map of the stress contours,
photographs were taken at multiple stress levels. For
analysis purposes, fringes obtained at different loads
were superimposed by scaling the fringe orders obtained at

the auxiliary loads using the following equation:

PREF
NRer = Naux —— (25)
Paux
where
NRgr = fringe order scaled to the reference load
Nayx = fringe order measured at the auxiliary load
Prgr = reference load
Ppyx = auxiliary load

To obtain digital data from these photographs, the
negatives were placed in a photographic enlarger and
projected onto a digitizing tablet attached to a personal

computer. Enlargement ratios ranging from 2:1 to 5:1 were
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used. Proper alignment of fringes from multiple
photographs was insured by digitizing two stationary
reference points in each photograph. The translation and
rotation necessary to bring these points to identical
locations on each photograph were then applied to all data

obtained from a particular photograph.

Subsequent to scaling and rotating all of the digitized
data at a given crack length, a candidate set of
approximately 200 data was generated. These data were
spaced so that the distance between two adjacent points on
the same isochromatic decreased uniformly with the radial
distance to the crack tip. To determine if any individual
datum in this set had a large degree of error associated
with it, the difference between the measured fringe order
and that calculated from a two term local collocation
solution fit to the data set was calculated. Figure 12
shows a typical plot of this difference (the fringe order
error) as a function of radial distance from the crack
tip. Graphs of this type were used to rapidly locate and
eliminate data having fringe order errors considerably
greater than the set as a whole; in this case all data
having a fringe order error exceeding 0.7 were eliminated.
Following this elimination, data sets ranging in size from
150 values to 220 values remained. Based on the number of

photoelastic data points remaining, the number of boundary
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points was scaled to give a ratio of one internal

condition to every three boundary conditions.
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CHAPTER . 4

RESULTS AND DISCUSSION

To benchmark hybrid collocation results against an
established solution, the variation of Ki* and cMoD* with
crack length were determined for a conventional SE(T)
specimen. The variation of KI* with crack length for this
specimen has been determined by various investigators
using a wide variety of numerical [13, 18-20) and
experimental [14] techniques. CMOD* calibrations have not
received nearly such widespread attention, having been
determined only by Gross, Roberts, and Srawley {30] using
a boundary collocation technique. These previous results,
along with empirical formulas due to Tada [9], are shown
in Figure 13. The Tada formulas will be used to compare
hybrid collocation results to these literature values.
Data obtained from a photoelastic model of a SE(T)
specimen was used in this analysis. The specimen had a
length to width (L/W) ratio of 2/1, which was selected
based on the findings of Gross, Srawley, and Brown [13],
who indicated that L/W ratios exceeding 1.6 have
negligible influence on the calculated K;* values. The

dimensions and material properties of the specimen used
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are given in Figure 14.

In Figure 15, the convergence of K;* with increasing model
order is shown for crack lengths ranging from 0.1 to 0.8
a/W; at crack lengths greater than 0.8:W, either
convergence was not achieved or the RMS error indicated
that the calculated values were not sufficiently accurate.
The kink in the 0.4 a/W curve (Figure 15b) at 40
coefficients indicates the point at which this solution
was allowed to auto-calibrate (see Section 2.2.1) by
calculating Q (f5/2-t) as part of the least squares
solution. Auto-calibration was employed when it reduced
the RMS error, thus providing a solution that better

matched the imposed conditions.

Figure 16 compares the Ky* and cMOD* values determined
from this analysis to the Tada formula, and to values
determined from a boundary collocation analysis. As shown
in Table 2, for crack lengths between 0.1-W and 0.8-'W, the
Kr* and cMOD* values calculated using hybrid collocation
differ from the Tada formula by at most -5.4% and -6.8%,
respectively. The boundary collocation solution has
equivalent accuracy only between 0.2 and 0.6 a/W.

Clearly, inclusion of the data obtained from the
photoelastic model was of considerable help in determining

accurate KI* and cMoD* values for both very short and very
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7.16 kPa*m/fringe
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Figure 14: Dimensions and optical properties of the
conventional SE(T) specimen tested.

All dimensions
in millimeters
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Figure 15: Convergence of dimensionless K calculated using
hybrid collocation with increasing model order
for a conventional SE(T) specimen having the
crack tip at (a) 0.10-W, (b) 0.40-W, and (c)
0.80-W.
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Table 2: Comparison og Hybrid and Boundary Collocation
Kr* and cMOD* Results for a Conventional SE(T)
Specimen with Literature Values.

Dimensionless Stress Intensity Factor, [Ky/(c-/W))

. Hybrid Boundary Tada Hybrid Boundary
a/W Coll. Coll. [9) $ Diff. % Diff.
0.0991 0.647 0.562 0.667 ~2.9% -15.7%
0.2023 1.041 1.044 1.094 -4.8% -4.5%
0.2999 1.563 1.576 1.606 ~-2.7% ~1.9%
0.4013 2.338 2.360 2.375 ~1.6% ~0.6%
0.4977 3.447 3.502 3.508 ~-1.8% -0.2%
0.6007 5.413 5.524 5.570 -2.8% -0.8%
0.7060 9.330 6.608 9.801 ~-4.8% -32.6%
0.7974 18.505 1.026 18.606 -0.5% -94.5%

Dimensionless CMOD, [CMOD-E/(0c:W)]

Hybrid Boundary Tada Hybrid Boundary

a/W Coll. Coll. (9] % Diff. % Diff.
0.0991 0.569 0.480 0.610 -6.7% -21.3%
0.2023 1.364 1.366 1.463 -6.8% -6.6%
0.2999 2.693 2.716 2.769 -2.7% -1.9%
0.4013 5.149 5.202 5.208 -1.1% -0.1%
0.4977 9.548 9.723 9.697 -1.5% 0.3%
0.6007 19.408 19.888  20.040 -3.2% -0.8%
0.7060 44.906 30.402 47.738 -5.9% -36.3%
0.7974 123.265 -1.743 124.120 -0.7% -101.4%
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long cracks. Additionally, Figure 17 illustrates that full
field isochromatic fringe patterns calculated from a hybrid
collocation series expansion matches the experimental data
much better than do boundary collocation fringe patterns.
Fpr cracks deeper than 0.8:W, local collocation can be used
to estimate Ky. Complete 60 coefficient solutions for the
various crack lengths investigated are included in

Appendix D.

As discussed in Section 2.3, the variation of Ki* with
crack length for fixed grip boundary conditions can be
calculated from the data presented in Figure 16a. Because
the hybrid collocation results agree with those previously
reported, the Tada [9) F(a/W) function was used in eqn.
(24) . The results of this calculation is shown in Figure
18 for two different length to width ratios. The modified
SE(T) specimen described in the following section was
developed to increase the maximum Ky achievable in a
tension loaded specimen subjected to fixed grip boundary

conditions.

4.2 Modified SE(T) Specimen

A SE(T) specimen, modified by placing a semi-circular
cutout in front of the crack, was tested and is shown in

Figure 19. Figure 20 compares the convergence of KI* with
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Fringe Constant =
7.02 kPa*m/fringe
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Figure 19: Dimensions and optical properties of the
modified SE(T) specimen tested.
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increasing model order, KI* having been determined using
both boundary and hybrid collocation techniques. These
data again indicate that, for crack lengths at which both
collocation techniques converge to the correct solution,
inclusion of the photoelastic data leads to more rapid

convergence of the hybrid collocation solution.

In Figure 21 and Table 3, the variation of Ky;* with crack
length under fixed load conditions is compared for both
collocation techniques. While it might appear that both
boundary collocation and hybrid collocation give similar
results for crack lengths of 0.4‘W and less, a comparison
of the reconstructed fringe patterns (Figure 22)
demonstrates that the hybrid collocation approach produces
results which more closely match the experimental data.
For longer cracks (0.5'W to 0.7-W), either collocation

technique works equally well, as illustrated in Figure 23.

In contrast with the conventional SE(T), boundary
collocation solutions for this specimen were accurate even
for very long cracks, as can be seen by comparing the
boundary collocation fringe pattern to the actual
photograph at a = 0.90:W (Figure 24). This occurred
because the stress gradient caused by the cutout was
explicitly accounted for in the mathematical formulation

of the problem. For the conventional SE(T) this was not
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Table 3: Comparison of Hybrid and Boundary Collocation KI*
Results for a Modified SE(T) Specimen.

Hybrid Boundary
Collocation Collocation

— Oerr/ = gerr/ .
a/Wpin Kip/(o/W)  ogappl K1/ (o/W)  Oappi % Diff
0.107 0.438% 1.7% 0.325 1.7% 34.8%
0.197 0.744%* 1.5% 0.628 1.6% 18.5%
0.301 1.188%* 2.2% 1.106 1.3% 7.4%
0.402 1.869% 1.8% 1.748 1.0% 7.0%
0.506 2.882%* 2.0% 2.781% 0.7% 3.6%
0.605 4.525%* 1.3% 4.488%* 0.5% 0.8%
0.659 5.978% 3.0% 6.007%* 0.5% ~0.5%
0.704 8.160 8.3% 7.884%* 0.4% 3.5%
0.756 11.221+%* 0.4%
0.805 16.651* 0.4%
0.850 26.151%* 0.4%
0.900 51.242* 0.3%

* Solutions that produce fringe plots
which match the experimental data.
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Figure 24:

Comparison of experimental isochromatic fringe
patterns with those calculated using boundary
collocation for the modified SE(T) specimen at
0.90 W,
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the case, the mathematical formulation requiring that
stresses continuously decrease as the distance from the

crack tip increases.

As was seen for the conventional SE(T), there is a maximum
a/W beyond which the hybrid collocation solution does not
agree well with the experiﬁental results. For the
conventional SE(T), this limit was 0.8-W, while for the
modified SE(T) it was 0.65-Wpin. This lack of agreement
results from insufficient accuracy of the photoelastic
data in these cases, rather than any theoretical
limitations of the hybrid collocation technique. Thé
small physical size of the deep crack fringe patterns
caused the effects of random position errors on the hybrid
collocation solution to be quite large. This, combined
with the considerable influence that these data have on
the solution due to their close proximity to the crack
tip, caused the RMS error to stabilize at a high value,
indicating that these solutions did not match the imposed
conditions well. An experiment in which the photoelastic
fringes were recorded at higher magnifications, and the
small loads applied to the specimen measured more
accurately than was possible with the loading fixture
employed in this study, would most likely produce more

accurate hybrid collocation results.
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In Figure 25, the fixed grip variation of KI* with crack
length is compared for conventional and modified SE(T)
specimens. These data indicate that there are two
advantages to the modified SE(T) specimen design. First,
there is a slight increase in the region of the specimen
over which Ky increases with increasing crack length.
Second, and more significant, there is nearly a factor of
two increase (assuming an initial crack depth of 0.1:W) in
maximum Ky from that achievable with a conventional SE(T)
specimen of the same overall dimensions. This feature
makes the modified SE(T) a useful specimen for
characterization of crack arrest toughness in the upper

transition region.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

A combined experimental/numerical collocation technique
was developed for analysis of finite body, single-ended
crack problems. This technique, referred to as hybrid
collocation, uses stress conditions from the boundary
(known a priori) and from the interior (determined
experimentally) of a cracked specimen to specify the
imposed loading. The variation of the mode one stress
intensity factor, Ky, and the crack mouth opening
displacement, CMOD, with crack length was determined for
two specimen geometries using this technique. One
specimen was a conventional single edge notch tension,
SE(T), while the other was a SE(T) modified by placing a
semi-circular cutout in front of the crack. Based on the
results of these analyses, the following conclusions maj

be drawn:

1. K1 and CMOD were accurately determined between 0.1
and 0.65 or 0.80 a/W when both internal and boundary
stress conditions weré used to specify the loading
imposed on the specimen. This is a much wider range
of crack lengths than can be obtained using boundary

collocation alone.
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Inclusion of stress conditions from the interior of
a cracked specimen causes the calculated Ky and CMOD
values to converge much more rapidly than would be

possible otherwise.

The modified SE(T) specimen can produce Ky values
approximately two times greater than can a
conventional SE(T) specimen of the same size,
assuming an initial crack depth of 0.1-W and fixed
grip boundary conditions. Thus, the modified SE(T)
specimen could be used to investigate upper
transition crack arrest phenomena with smaller
specimens and testing machine capacities than were

previously possible.
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APPENDIX A

SERIES EXPANSIONS OF STRESS AND DISPLACEMENT EQUATIONS

The functions Z(z) and Y(z), given by eqs. (3) and (4) may
be substituted into eqs. (2), and (6) to give expressions

for stress and displacement in series expansion form as

follows:
Ixx =
J .
T Ay’ (r/w))"1/2 [cos[ (3-1/2)8)
j=0
- (j-1/2)-sine-sin[(j-3/2)e}] +
M

z Bm'(r/W)m[z-cos(me) - m-sine-sin[(m-l)e]] +
m=0
wu+1/2 r

Cy'— | cos(8/2) -cos(ue*) - sin(e/2) -sin(ue*)
1 r*u/r

([ ¢ =

u

- u-sine*[cos[G/Z]-sin[(u+1)e*] + sin(e/Z)-cos[(u+1)e*]]

- 1/2-sine[cos(3~e/2)-sin(ue*) + sin(3-6/2)~cos(ue*)] +

Mg

Dy (W/r*)V[z .cos(v8*) - v-sine*-sin| (v+1)e*]J (A1)

v=1
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Oyy =
J .
b Aj'(r/W)3'1/2[cos[(j—1/2)e]
j=o0

+ (j-1/2)~sine-sin[(j-3/2)e]] +

M
z Bm'(r/W)m[m-sine-sin[(m-l)el] +
m=0
U wutl/2

L Cy'———|cos(8/2) -cos(ue*) - sin(e/2)-sin(ue*)

u=1 r*u/r

+ u-sine*[ccs(e/z)-sin[(u+1)e*] + sin(6/2)-cos((u+1)6*]]

+ 1/2-sin8[cos(3~e/2)-sin(ue*) + sin(3-e/2)-cos(ue*)] +

v
z Dv'(W/r*)v{v-sine*-sin[(v+1)e*]] (A2)
v=1

Txy

J .
s _Aj-(r/w)J‘l/z[(j-l/z)-sine-cos[(j-3/2)9]] -
j=0

M
z Bm'(r/W)m{m-sinG-cos[(m—l)e] + sin(me)] +
m=0
wut 1/2

U
I oCoytl—— u-sine*[cos(e/z)-cos[(u+1)9*]

u=1 r*u/r

- sin(e/z)-sin[(u+1)9*]]

+ 1/2-sin6[cos(3-9/2)-cos(ue*) - sin(3-9/2)~sin(ue*)] +

nM<

Dv'(W/r*)v[v‘sin8*~cos[(v+1)8*] + sin(ve*)J (A3)
v=1
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J .
£ - (r/w)JI~1/2 [(j-1/2) -sin@-sin( (j-3/2)9]] +
j=0

M
T Bm'(r/W)m[cos(me) - m-sine-sin[(m-l)e]] -
m=0

U wu+l/2
> Cu'———[u-sine*-
u=1 r*u/r

[cos(e/Z)-sin[(u+1)8*] + sin(6/2)-cos[(u+1)6*]]

1
+ ———————[cos(3-8/2)-sin(ue*) + sin(3-9/2)-cos(ue*)]] +
2sin®
2
v
b Dv'(W/r*)V[cos(ve*) - v~sine*-sin[(v+1)8*]]
v=1

J .
+ > -Aj'(r/W)J'1/2[(j-1/2) -sine-cos[(j-3/2)8]]
j=0

M
- Bm'(r/W)m[m-sine-cos[(m-l)e] + sin(me)}
m=0

0] wu+1/2
+ = CU'T—[u-sine*-
u=1 r'4/r

[cos(e/Z)-cos[(u+1)9*] - sin(e/2)-sin[(u+1)e*]]

1
+ —_— [cos(3-e/2)-cos(u9*) -sin(3-e/2)-sin(ue*)]]
2sineé
2
v
+ = Dv'(W/r*)V[v-sine*-cos[(v+1)e*] + sin(ve*)]
v=1

N'fo ]2

= D% + T2 =[
2t

(A4)
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In all of the above,

>
(W

Aj.wj‘l/z

LW

Cu/wu+l/2

Dy/WY

W specimen width
N photoelastic fringe order

- fg = photoelastic fringe constant
t
(

= specimen thickness

r,8) = right handed polar co-ordinates having an

origin at the crack tip

(r¥,8") = right handed polar co-ordinates having an
origin on the crack line and outside of the
collocated region
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APPENDIX B

PARTIAL DERIVATIVES. FOR THE ([H] MATRIX

The [H] matrix is an array of partial derivatives of the
homogeneous form of the stress equations, found in
Appendix A, taken with respect to the normalized series
coefficients, as well as the value of Q. The equations
for matrix entries associated with locations on the

specimen boundary are given below:

When g = Oyy

ag .
— | = (rpyw)I7/2. [cos[ (3-1/2) 6]

6Aj' Kk

- (j-1/2)sinek-sin[(j-3/2)ek]] (B1)

99
_ = (rk/W)m-[ZCos(mek) - m-sinek-sin[(m-l)ek]] (B2)
3Bp' |k

ag wu+1/2

= — cos(ek/Z)-cos(ue*k) - sin(eyg/2) -

3cy' |k  r*yWry

sin(ue*y) - u-sine*y-

[cos(ek/Z)-sin[(u+1)e*k] + sin(ek/Z)-cos[(u+1)e*k]]

- 1/2-s8inBy -

[cos(3ek/2)-sin(ue*k) + sin(36k/2)-cos(ue*k)] (B3)
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3
I (W/r*k)v[zcos(ve*k) - v-sine*k-sin[(v+1)8*k]]
aDy' |k
(B4)
when g = GYY =~ OAPPLIED
ag .
— | = (rk/ww‘l/2-[cos[(j-l/:z)ekl
aAj' k
+ (j-l/Z)sinek-sin[(j-3/2)ek]] (B5S)
ag
—_ = (rk/W)m-[m-sinek-sin[(m-l)ek]] (B6)
3Bp' |k
ag wu+l/2
—— | = ——|cos(8x/2) ‘cos(ue*y) - sin(8y/2)-
aCy' Ik r*ku./rk

sin(ue*y) + u-sine*y-

[cos(ek/Z)-sin[(u+1)e*k] + sin(ek/Z)-cos[(u+1)e*k]]

+ 1/2-sin6y-

[cos(36k/2)-sin(ue*k) + sin(36k/2)-cos(ue*k)] (B7)

= (W/r*k)v-[v-sine*k-sin[(v+1)e*k]] (B8)

aDy' |k

When g = Txy

3 .

8 = —(ry/wW)I"1/2. [(j-l/Z) -sin@y - cos| (j-3/2)ek]] (B9)
aAj' k

ag _

_— = -(rk/W)m-[m-sinek-cos[(m—l)ek] + 51n(mek)](Blo)
3Bp' |k
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ag wutl/2
= — u-sine*k~
ac,' |k r*Ury
[cos(ek/z) -cos[(u+1)8*x] -sin(€y/2) -sin| (u+1)e*k]]
+ 1/2-8in®6)-
[cos(3ek/2)'cos(ue*k) -~ sin(3ek/2)-sin(u9*k)] (B11)
ag .
—_ = (W/r*k)v[v-sine*k'cos[(v+1)9 k] + sin(ve*k)]
dBy' |k
(B12)
Also, when g = Oyy, oyy, or Tyy.
g
_— = 0 (B13)
aQ k
In all of the above,
As' = A= Wj-l/z
Blljl' = J. m
Cy' = Cu/wu+1/2
Dy' = Dy/WY
W= specimen width, as shown in Figure xx
(r,8) = right handed polar co-ordinates having an

origin at the crack tip

(r*,8*) = right handed polar co-ordinates having an
origin on the crack line and outside of the
collocated region

k = point in model at which equation is defined

None of the preceding equations depend on the current
estimates of the series coefficients, therefore these
entries for [H] need only be calculated at the start of
each iteration. Conversely, eqn. (6) for tp.,, used to
describe the photoelastic data taken from the specimen
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interior, is linearized by the differentiation. As a
result, derivatives of this equation depend on the current

estimates of the series coefficients as follows:

ag -1 .
— | = (/W) I71/2. (3-1/2) -siney-
dA4' [k Tmaxy
[sin[(j-3/2)ek]-ok + cos[(j-3/2)6k]-Tk] (B14)
ag (rx/W)® _ .
E— = ————— | |cos(mBk) =~ m-51nek-sln[(m-1)ek]]~nk
3Bp' |k Tmaxy
- [m-sinek-cos[(m-l)ek] + sin(mek)]-Tk (B15)
= -[u-sine*k- (B16)
aCy' 1k Tmaxy T k™Y/Tk

[cos(ek/Z)-sin[(u+1)e*k] + sin(ek/Z)-cos[(u+1)6*k]]

+ 1/2-sin@y-

[cos(3-9k/2)-sin(ue*k) + sin(3-6k/2)-cos(ue*k)]]-Dk
+ [u-sine*k~
[cos(ek/Z)-cos[(u+1)e*k] - sin(ek/Z)-sin[(u+1)e*k]]

+ 1/2-sin6y-

[cos(39k/2)-cos(u9*k) - sin(36k/2)-sin(ue*k)]]-Tk
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ag 1
— | = ALZHYNE
aby' |k Tmax
k
[cos(ve*k) - v-sine*k-sin[(v+1)6*k]]‘Dk
+ [v-sine*k-cos[(v+1)6*k] + sin(ve*k)]-Tk (B17)
ag
_— = - Ng (B18)
Q |k
where
gk = (D2 + T2)1/2 - Np-fg/(2-t)
J .
Dy = jzo _Aj-(rk/w)J'l/z[(j-l/Z) -sinek-sin[(j-3/2)9kl]

M
+ =z Bm'(rk/W)m[cos(mek) - m-sinek-sin[(m-l)ek]]

m=0

U wutl/2

£ Cy'——|u-sine*y-

u=1 r* Uk

[cos(ek/Z)-sin[(u+l)e*k] + sin(ek/Z)-cos[(u+1)e*k]]

+ 1/2-sin@-

[cos(3ek/2)-sin(ue*k)A+ sin(3ek/2)-cos(ue*k)]

v
+ = Dv'(W/r*k)V[cos(ve*k) - v-sine*k-sin[(v+1)e*k]]
v=1
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+

J .
s _Aj.(rk/w)J‘l/z[(j-l/z)-sinek-cos[(j-B/Z)Gk]]

j=0

M .

z Bm'(rk/W)m[m~sin8k-cos[(m-l)ek] + 51n(mek)]
m=0

U wutl/2

T Cy'l———— u-sine*y-
u=1 r*Y/ry

[cos(ek/Z)-cos[(u+1)e*k] - sin(8y/2) -sin{ (u+1)6*y]
+ 1/2-sinéy- 1

[cos(3-ek/2)-cos(ue*k) - sin(3-ek/2)-sin(ue*k)]

-

DV’(W/r*k)v[v-sine*k-cos[(v+1)8*k] + sin(ve*k)W

ne<

v=1
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APPENDIX C

EQUATIONS RELATING Ky AND CMOD TO SERIES COEFFICIENTS

Opening Mode Stress Intensity Factor, Ky

The opening mode stress intensity factor is defined as

follows:

Ky = lim (/27r - OYY|y=o) (D1)
r-+0

Recalling that
Oyy = Re Z + yIm 2' + yIm Y'! (D2)
eqn. (D1l) reduces to

Ky = lim (/2nr - Re z|y=o) (D3)
r-0

The real part of Z can be expressed as

J .
Re 2 = T Aj'(r/W)J'l/z[COS[(j-1/2)8]] + (D4)
j=0
U wu+1/2
£ Cy'———|cos(8/2) cos(ue*) - sin(8/2) sin(ue*)
u=1 r*V/r

on the crack line (y=0), 8=0° and 6*=180°, so egn. (D4)

becomes
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J U wu+l/2
Re Z = % Aj'(r/W)3'1/2 + T Cy'——— - S(u) (D5)
j=0 u=1 r*3/r

where
S(u) = +1 if u is even
-1 if u is odd
By substituting (D5) into (D3), and taking the limit as r
approaches zero, the relation between Ky and the series

coefficients may be determined to be as follows:

U
K = | Bg' + S(u)- T Cy'(Ww/b)¥ | - J2rW (D6)
u=1

where

b = Wpax - a

For the conventional SE(T) specimen, all of the C,'

coefficients are zero.

Crack Mouth Opening Displacement, CMOD

For plane stress, displacements perpendicular to the crack

line are given by

uy'E = 2-Im 2 - y-(1+v) '[Re 2 + Re Y] + (1-v) Im Y (D7)

where
E = Young's modulus
v = Poisson's ratio

On the crack line, eqn. (D7) reduces to
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Uy'E = 2-Im 2

y

Recalling that, for the conventional SE(T),

[
it
™My

Ay' (z/W)371/2
0

integration gives

zJ+1/2

0 (j+1/2) -wi—1/2

the imaginary part of which is

ri3+1/2

0 (3+1/2) -wi=1/2

J
Im 2 = I Aj' sin[(j+1/2)8]

(D8)

(D9)

(D10)

(D11)

CMOD is typically measured on the crack line at the front

face of the specimen. At this location,

8 = 180°. Thus, egs. (D8) and (D11) give CMOD as

follows:
4 J altl/2
CMOD = — - £ A" : s(3)
E j=0 (5+1/2) -wI~1/2
where
S(j) = +1 if j is 0 or even
-1 if j is odd
a = Crack length

(D12)

An expression for CMOD for the modified SE(T) geometry

could be derived similarly by integrating eqn.
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j or m

VOO WUdWNE=O

APPENDIX D
SERIES SOLUTIONS FOR THE CONVENTIONAL SE(T) SPECIMEN

0.202
*
Bp

-7.2098E-01
-2.0736E+00
5.2934E+00
-7.3163E+00
4.0747E-01
3.2306E+01
-1.0836E+02
2.3601E+02
-3.9325E+02
5.2773E+02
-5.7346E+02
4.9158E+02
-2.9982E+02
7.2259E+01
1.0184E+02
-1.6948E+02
1.4071E+02
-7.0201E+01
1.3828E+01
5.6863E+00
4.5461E-01
-9.2807E+00
8.6651E+00
-1.4307E+00
-4.3551E+00
5.0664E+00
-2.8530E+00
7.0404E-01
6.2647E~02
-1.0886E~01

a/W = 0.099 a/W =
Aj* Bm* Aj*
1.0000E+00 =1.0936E+00 1.0000E+00
4.1613E+00 =5.0967E+00 1.7239E+00
3.2563E+00 1.5788E+01 1.0217E+00
-3.2422E+01 =2.7492E+01 -1.0239E+01
1.1156E+02 1.0226E+01 2,9569E+01
~-2.6078E+02 9,9535E+01 -6.2317E+01
4.5325E+02 ~3.7133E+02 9.6680E+01
~-5.9199E+02 8.1517E+02 =-1.0676E+02
5.4392E+02 ~1.3229E+03 5.1227E+01
-2.3867E+02 1.6892E+03 9.8284E+01
-2.4225E+02 -1.7284E+03 -3,3305E+02
6.7980E+02 1.4106E+03 5.8964E+02
-8.5600E+02 -8.9311E+02 -7.7309E+02
7.1030E+02 4.1163E+02 8.0435E+02
-3.7715E+02 -1,1958E+02 -6.7022E+02
6.9823E+01 1.5825E+01 4.3299E+02
7.8695E+01 -3.5837E+00 =-1.9366E+02
" =-7.9138E+01 -7.2312E-01 3.1655E+01
2.3753E+01 1.5467E401 3.2351E+01
1.3579E+01 =-2.1654E+01 -3.0488E+01
-1.9207E+01 1.0584E+01 9,6650E+00
1.3092E+01 4.6526E+00 1.3375E+00
-9.5893E+00 -9.7059E+00 =3.4364E-01
7.5776E+00 4.8889E+00 -2.8151E+00
-3.3889E+00 8.9142E-01 1.9292E+00
-1.3461E4+00 -2.4062E+00 1.4513E+00
3.2496E+00 1.2043E+00 =3.3793E+00
~2.4089E+00 ~-7.6059E~-02 2.9174E+00
9.3212E-01 -1.4897E-01 ~1.3665E+00
-1.7712E-~-01 5.8127E-02 3.5266E-01
The table entries are defined as follows:
As* = A5 / Ap?
Jx _ Jv Ov
Bp = Bp' / Ag
All values are dimensionless.
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a/w 0.300 a/wW 0.401
* *
A Bp* Aj B
0 1.0000E+00 -4.8650E-01 1.0000E+00 -3.0610E-01
1 3.6715E-01 -8.5130E-01 -6.7718E-01 -2.2917E-01
2 =3.2993E-01 2.4607E4+00 -1.0986E+00 1.4291E+00
3 ~-3.9097E+00 -2.7582E+00 -2.3448E+00 -5.8024E-01
4 8.3913E+00 1.8745E+00 1.2781E+00 2.0534E+00
5 -1.8151E+01 6.8837E+00 -6.8017E+00 1.9941E+00
6 2.5377E+01 =2.4792E+01 5.3555E+00 -3.4655E+00
7 -=2.7956E+01 5.7520E+01 -9.4283E+00 1.2728E+01
8 1.1319E+01 -9.9340E+01 3.0767E+00 -1.9117E+01
9 3.1548E+01 1.4157E+02 2.0771E+00 3.1723E+01
10 -1.0732E+02 -1.6482E+02 -2.1728E+01 -3.6226E+01
11 2.0431E+02 1.5463E+02 4,2058E+01 3.9397E+01
12 -3.0211E+02 -1.0330E+02 -7.3042E+01 -2.7545E+01
13 3.6979E+02 2.2207E+01 9.7013E+01 9.7443E+00
14 -3.8601E+02 6.5908E+01 -1.1880E+02 2.0816E+01
15 3.4315E+02 -1.3116E+02 1.2218E+02 -4.9401E+01
16 -2.5889E+02 1.5695E+02 -1.1494E+02 7.6893E+01
17 1.5971E4+02 =-1.4041E+02 9.0401E+01 -8.9606E+01
18 -7.6088E+01 9.8570E+01 -6.3335E+01 9.2682E+01
19 2.1628E+01 -<5.0853E+01 3.2364E+01 -8.0231E+01
20 2.3138E+00 1.4384E+01 -1.1799E+01 6.4566E+01
21 -6.8541E+00 5.6100E+00 -4.3995E+00 -4.3304E+01
22 3.7373E+00 =1.2303E+01 8.2733E+00 2.8325E+01
23 1.8820E-01 1.1150E+01 -1.0587E+01 -1.4328E+01
24 <-1.5036E+00 -8.4198E+00 6.6896E+00 7.9731E+00
25 2.2810E+00 4.9868E+00 -5.2479E+00 -2.6808E+00
26 -1.7978E+00 =2.8297E+00 2.1247E+00 1.4407E+00
27  1.6828E+00  8.6645E-01 -1.4199E+00 -1.3646E-01
28 -8.0591E-01 -1.9133E-0O1 3.3340E-01 1.2421E-01
29 3.5153E-01 -9.6080E-02 -2.0014E-01 5.7419E-02

The table entries are defined as follows:

as*
Jx

Bn

All

Aj' / AO'
Bm' / AO'

values are dimensionless.
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2]

WONOMOHL WO

0.601

B

3.6001E-03
7.0416E-01
2.2385E+00
4.1101E+00
8.1795E+00
1.3164E+01
2.1168E+01
3.2394E+01
4.5558E+01
6.2873E+01
7.6984E+01
9.2060E+01
9.5518E+01
9.4558E+01
7.9684E+01
6.0553E+01

%*

3.7195E+01
1.5468E4+01
2.3049E+00
-6.9066E+00
-5.1372E+00
-4.0012E+00
1.7789E+00
3.1491E+00
4.7947E+00
3.4608E+00
2.4558E+00
1.0576E+00
4.2396E-01
6.0948E-02

a/W = 0.498 a/W =
*
Aj* B, Aj*
1.0000E+00 -1.5347E-01 1.0000E+00
-1.7025E+00 2.1525E-01 -=3.0286E+00
-2.0641E+00 1.3805E+00 -3.8155E+00
-2.9472E+00 1.1079E+00 =-6.0772E+00
-2.6720E+00 3.1370E+#00 -=9.5579E+00
-6.0890E+00 3.3176E+00 -1.5767E+01
~-3.3575E+00 3.6967E+00 -2.2707E+01
-8.9045E+00 7.4711E+00 -3.4923E+01
-5.7514E+00 2.9766E+00 =4.7985E+01
-9.8162E+00 1.3396E+01 -6.5789E+01
-1.1628E+01 1.6443E+00 -8.2745E+01
-6.1526E+00 1.8148E+01 -9.8011E+01
-2.1575E+01 3.0661lE+00 -1.0835E+02
1.7121E+00 1.6632E+01 -1.0636E+02
-3.0529E+01 8.7765E+00 -9,.,8875E+01
9.5937E+00 6.8648E+00 -=7.5205E+01
-3.1053E+01 1.5832E+01 =5.4528E+01
1.1870E+01 -5.5622E+00 =2.5182E+01
-2.1129E+01 1.8170E+01 -9.5147E+00
7.9943E4+00 -1.2155E+01 5.5599E+00
-7.9858E+00 1.4061E+01 6.7931E+00
2.4157E+00 -1.0436E+01 6.4068E+00
-2.4115E-02 7.6479E+00 1.2737E+00
-8.9901E-01 ~5.1049E+00 =2.1906E+00
1.5925E+00 3.0443E+00 -4.1229E+00
-1.4546E+00 =1.2747E+00 =4.17G2E+00
7.3523E-01 8.9608E-01 =2.9327E+00
-7.7747E-01 <-1.1399E-02 -1.6918E+00
1.2097E-01 1.5938E-01 -6.4600E-01
-1.8466E-01 6.2586E-02 -1.9861E-01
The table entries are defined as follows:
*
Ay, = Ay’ / Ao
Bp = Bp' / A
All values are dimensionless.

86




j or m

WSO WNDKHFO

0.797

By

4.1085E-01
3.4905E+00
1.6163E+01
5.6018E+01
1.5517E+02
3.5303E+02
6.7195E+02
1.0806E+03
1.4751E+03
1.7056E+03
1.6515E+03
1.3042E+03
7.8925E+02
3.0390E+02
3.1577E+00
-8.0080E+01

*

-2.6322E+01
4 .9573E+01
7.8488E+01
5.9647E+01
2.8515E+01
1.2183E+01
1.2297E+01
1.6320E+01
1.5196E+01
9.6633E+00
4.1701E+00
1.1925E+00
1.9420E-01
1.5283E-02

a/W = 0.706 a/W =
Aj* Bm* Aj*
1.0000E+00 2.3044E-01 1.0000E+00
-5.3237E+00 1.6747E+00 -8.5695E+00
-8.1816E+00 5.4969E+00 =-1.8683E+01
-1.6810E+01 1.4334E+01 -5.3336E+01
-3.5127E+01 3.3818E+01 -1.4032E+02
-7.0210E+01 7.0840E+01 -3.2061E+02
-1,2993E+02 1.3372E+02 =-6.2899E+02
-2.2067E+02 2.2509E+02 ~1.0585E+03
-3.3804E+02 3.3777E4+02 -1.5283E+03
-4 ,6625E+02 4.5074E+02 -1.8899E+03
-5.7359E+02 5.3184E+02 -1.9875E+03
-6.2591E+02 5.5134E+02 -1.7505E+03
-5.9813E+02 4.9401E+02 -1.2528E+03
-4 .9151E+02 3.7378E+02 -6.8485E+02
-3.3501E+02 2.24295+02 =-2.4778E+02
-1.7315E+02 9.0212E+01 =-4.1449E+01
-4.8662E+01 7.6462E-01 -2.8632E+01
2.0299E+01 -3.5386E+01 =-9.2285E+01
3.6710E+01 -3.2923E+01 -1.3015E+02
2.5109E+01 =-1.4769E+01 <-1.1103E+02
6.1400E+00 1.4619E+00 =-6.2726E+01
-4,6882E+00 7.6598E+00 =2.4355E+01
-7.1099E+00 7.2798E+00 -1.0491E+01
-4,.7013E+00 4.1457E+00 -1.1875E+01
-2.4060E+00 2.5197E+00 =-1.3714E+01
-1.6534E+00 1.8460E+00 =-1.0690E+01
-1.5226E+00 1.5842E+00 =-5.5124E+00
-1.2164E+00 9.4842E-01 -1.8363E+00
-5.8634E-01 3.5592E-01 -3.5020E-01
-1.4347E-01 4.6979E-02 =-2.2129E-02
The table entries are defined as follows:
*
Aj, = Ay / Ao
Bp = Bp' / A
All values are dimensionless.
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SERIES SOLUTIONS FOR THE MODIFIED SE(T)

APPENDIX E

a/Wpin = 0.107

*

*

SPECIMEN

*

Dy

-9.1162E-01
-2.3722E-01
-3.5413E-02
5.5516E-03
5.8998E-03
2.2456E-03
4.8437E-04
2.2580E-05
-2.8842E-05
-1.3648E-05
-3.5194E-06
-5.1438E-07
6.1642E-09
2.7559E-08
8.7353E-09
1.5961E-09
1.4921E-10
-1.2118E-11
-8.1198E-12
-1.8543E-12
-2.7917E-13
-2.9663E-14
=2.0992E-15
=7.6199E-17

a5* Bp Cu

1.0000E+00 =-6.2828E-01
6.3578E-01 -3.9547E-01 1.4598E+00
4.2118E-01 -4.0555E-01 4.2056E-01
5.2095E-01 =-9.3636E-02 9.1156E-02
~3.1333E-01 =-1.0874E-01 8.9042E-03
1.0037E+00 -4.9011E-01 -2.7380E-03
~-1.0151E+00 9.0472E-01 -1.6977E~-03
1.0814E+00 =-1.5588E+00 -4.2341E-04
~5.8534E-01 1.8020E+00 -2.5360E-05
6.2487E~-02 =-1.7512E+00 2.4662E~-05
4.5448E-01 1.3161E+00 1.2034E-05
~6.4185E-01 -8.0554E-01 3.0456E-06
5.8197E-01 3.6542E-01 3.9710E-07
~3.5900E-01 -1.1989E-01 -3.0159E-08
1.5322E-01 2.0711E-02 -=3.1172E-08

-2.5372E-02 =-4.2029E-03 -8.9474E-09
-1.8189E-02 5.7801E-03 -~1.5078E-09
2.0737E-02 -6.4157E-03 -1.0903E-10
~-1.1558E-02 3.4819E-03 2.2299E~-11
5.1096E-03 -1.2925E-03 1.0024E-11
-1.9454E-03 3.1811E-04 2.1321E-12
7.1044E-04 -1.1023E-04 3.1072E-13
-1.9116E-04 3.7923E-05 3.2340E-14
3.2788E~-05 -1.0678E-05 2.2519E-15

8.0605E-17
The table entries are defined as follows:
*

A5, = By’ / Bg!

Bn, = Bn' / &g

Cu, = Cu' / Ap'

Dy” = Dy' / Ap'

All values are dimensionless.

88




1.0000E+00
6.6463E-01
4.6861E-01
5.5449E-01
-2.0622E-01
8.6071E-01
-6.5649E-01
6.2063E-01
1.5409E-02
-5.5421E-01
1.0738E+00
-1.1852E+00
1.0340E+00
-6.8367E-01
3.6244E-01
-1.3797E-01
3.6626E-02
~3.0295E-03
-3.9906E-04
2.9015E~-04
-7.9142E-05
3.9290E-04
-2.1392E-04
7.5883E-05

Bn, = Bm' /
Cur = Cu' /
Dy~ = Dy' /
All

a/Wpin =

*

B

-9.0350E-01
-5.9658E-01
-5.5038E-01
-2.1868E-01
-1.4754E-01
-5.7429E-01
8.5101E-01
-1.4942E+00
1.6255E+00
-1.5651E+00
1.1045E+00
-6.2257E-01
2.0227E-01
6.8508E-04
-6.0959E-02
3.6558E-02
-9.5363E-03
-4.4657E-03
4.1005E-03
-1.7128E-03
1.1307E-04
~7.5290E-07
8.4880E-06
~-2.4544E-05

89

0.197

cy”*

1.4123E+00
4.4823E-01
1.1466E-01
1.7467E-02
-1.6558E-03
-2.4495E-03
-1.0353E-03
-2.8210E-04
-4.7514E-05
-3.8628E-07
2.9978E-06
1.2200E-06
2.9766E-07
4.6708E-08
2.9171E-09
-7.5636E-10
-2.7069E-10
-3.7331E-11
4.3038E-13
1.3511E-12
3.1998E-13
4.2369E-14
3.2716E-15
1.1426E-16

values are dimensionless.

D, *

-1.2984E+00
-4.4279E-01
-1.2530E-01
-2.5948E-02
-2.5685E~03
7.8445E-04
4.8414E-04
1.2594E-04
9.5547E~06
-7.4352E-06
-4.3126E-06
-1.3783E-06
-3.0168E-~07
-4.1708E~08
-8.7868E~10
1.3212E-~09
4,.0023E-10
6.2744E~11
3.7864E~12
-7.7727E~13
-2,.5896E~13
-3.7681E~14
-3.0447E~15
-1.0916E~-16

table entries are defined as follows:




j,m,u

WO WO

DV*

=1.0532E+00
-6.5748E-01
~2.9715E-01
-1.0261E-01
=2.7798E-02
-5.5537E-03
~7.7563E-04
=-1.0647E-04
-5.3729E-05
~3.2832E-05
=-1.3436E-05
-3.7293E-06
-6.5080E-07
-2.7249E-08

2.4783E-08

9.5730E-09

1.9818E-09

2.4206E-10

7.6055E-12
-3.5535E-12
~-8.2173E-13
-9.1603E-14
-5.4175E~15
~1.2221E-16

Aj* Bm* cu*

1.0000E+00 =5.7690E-01
5.2146E-01 -~2.4061E-01 1.7146E+00
3.0269E-01 -3.7091E-01 9.7594E~-01
5.1092E-01 1.4796E-01 4.3564E-01

-6.7313E-01 4.1961E-02 1.5406E-01
1.0976E+00 ~5.5809E-01 4.4393E-02

=-1.2426E+00 1.5078E+00 1.0183E-02
7.5939E-01 -2.2783E+00 1.8664E-03
6.5831E-02 2.9778E+00 3.1038E-04

-1.4385E+00 ~2.8849E+00 7.7506E-05
2.5388E+00 2.3684E+00 3.1231E-05

-3.3176E+00 ~=1.3335E+00 1.1536E-05
3.2909E+00 4.0039E-01 3.1036E-06

-2.7807E+00 3.2815E-01 5.2582E-07
1.9111E+00 ~6.0369E-01 1.7264E-08

-1.1150E+00 5.9956E-01 -2.1082E-08
5.0594E-01 -4.1305E-01 -7.5518E-09

-1.7739E-01 2.2978E-01 -1.4058E-09
3.0537E-02 ~-9.4557E-02 -1.2436E-10
4.3291E-03 3.0538E-02 1.0662E-11

-6.7976E-03 -=5.5252E-03 5.7027E-12
1.4948E-03 6.7076E-04 1.0069E-12

~8.4896E~-05 9.2114E-05 1.0251E-13

=-2.1234E-04 7.3781E-05 5.8146E-15

1.3012E-16

The table entries are defined as follows:
R - )

AJ* = AJ' / Ao:

Bn, = Bn' / Ag

Cyi = Cu' / Ag'

Dy” = Dy' / Ap'

All values are dimensionless.
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Dy*

-8.9283E-01
-2.8954E-01
-7.5330E-02
=-1.3977E-02
-8.4608E-04
5.8539E-04
2.9056E-04
7.6623E-05
1.1957E-05
3.3115E-07
-4.1711E-07
=-1.4409E-07
~-3.1747E-08
~6.7833E-09
-1.7517E-09
~-4.5215E-10
~8.7844E-11
~8.8380E-12
9.4828E-13
5.9779E-13
1.3G57E-13
1.7222E-14
1.3750E-15
5.2250E-17

a/Wpin = 0.402
Aj* Bm* Cu*
1.0000E+00 -7.5374E-01
8.1083E-01 -6.2341E-01  1.1891E+00
6.4661E-01 -4.8211E-01 4.0209E-01
4.9112E-01 -4.1112E-01  1.1389E-01
4.3734E-01 -3.0078E-01  2.5993E-02
2.4073E-01 =-2.1380E-01  4.2456E-03
2.9375E-01 -2.3578E-01  2.7957E-04
1.1301E-01 -2.2376E-02 =-9.5535E-05
1.2697E-01 -2.2985E-01 -3.8846E-05
1.3477E-01 8.6770E-02 -6.0497E-06
-6.5599E-02 -1.6988E-01  3.0703E-07
2.0585E-01 5.7307E-02  4.3332E-07
-1.6863E-01 -4.6163E-02  1.3349E-07
1.8991E-01 -2.5603E-02 2.9014E-08
-1.3234E-01  3.8987E-02  6.2141E-09
9.6252E-02 -5.3840E-02 1.5488E-09
-4.8978E-02 4.2769E-02  3.6974E-10
2.1820E-02 -3.0376E-02 6.2007E-11
-4.9936E-03 1.6696E-02  2.8925E-12
-1.0746E-03 -7.5017E-03 -1.9451E-12
1.9777E-03  2.6477E-03 -7.1386E-13
-1.3420E-03 -5.4903E-04 -1.3836E-13
4.6382E-04 6.5385E-05 -1.7221E-14
-1.2848E-04  2.9935E-05 -1.3242E-15
-4.8941E-17
The table entries are defined as follows:
As* = A5 / Ag!
Jx _ pdy ol
Bnt = Bn' / Ag
Cy, = Cu' / Ag'
Dy* = Dy' / Ag'
All values are dimensionless.
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a/Wpin = 0.506

*

*

DV*

-1.0004E+00
-4.0842E-01
-1.3332E-01
-3.5786E-02
-8.3964E-03
-2.0736E-03
-6.7483E-04
-2.5606E-04
-8.8697E-05
-2.4588E-05
-5.0725E-06
-6.7626E-07
-2.5023E-08

9.0289E-09

2.1945E-10
-1.0206E-09
-3.9935E-10
-8.2110E-11
-9.0386E-12

6.6191E-14

2.1868E-13

4.0909E-14

3.8633E-15

1.6452E-16

Ay* By Cu
1.0000E+00 =-8.6877E-01
6.3768E-01 -6.9751E-01 1.0604E+00
4.6606E-01 -4.4611E-01 4.3636E-01
2.6592E-01 -4.0964E-01 1.4478E-01
2.9510E-01 -1.7789E-01 3.9340E-02
-9,1027E-02 -8.5437E-02 9.2281E-03
1.5984E-01 -1.2278E-01 2.1508E-03
-2.3107E-01 2.3346E-01 6.2519E-04
-5.,2236E-02 -1.6883E-01 2.1973E-04
-1.1849E-01 4.0391E-01 7.3931E-05
-3.1337E-01 -1.4543E-01 2.0314E-05
1.0140E-01 3.2512E-01 4.2005E-06
-4,.4678E-01 -8.9718E-03 5.8041E-07
1.9716E-01 1.1953E-01 3.4724E-08
-3.5946E-01 1.0565E-01 -1.7881E-09
1.3142E-01 -1.7380E-02 1.4307E-09
-1.7307E-01 1.0893E-01 1.1648E-09
3.4559E-02 -3.7005E-02 3.6799E-10
-4.4978E-02 5.2943E-02 6.7195E-11
-5.3524E-03 -1.3999E-02 5.9918E-12
-3.5232E-03 1.3024E-02 ~-4.2950E-13
-5.5800E-03 -1.3777E-03 =-2.3722E-13
6.8910E-04 1.1789E-03 ~-3.9328E-14
-1.0013E-03 2.3991E-04 -3.5154E-15
-~1.4435E-16
The table entries are defined as follows:
R - . 0 '
AJ* : AJ' / AO.
ol 2 gm, 4 20,
Cu, = Cu, ; Ro,
v v (0]
All values are dimensionless.
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a/Wpin = 0.605

j,m,u * * * *
or v A5 Bnm Cu Dy
| 0 1.0000E+00 -7.3674E-01
1 7.2458E-01 -6.,9146E-01 9.1972E-01 -7.3749E-01
2 7.0325E-01 -6.0521E-01 3.2170E-01 -2.5842E-01
3 6.3304E-01 -5.8121E-01 9.9751E-02 -=7.6362E-02
4 5.9852E-01 -4.6911E-01 2.6104E-02 -1.8347E-02
5 4.4068E-01 -4.1333E-01 5.9165E-03 -3.5706E-03
6 4.,4532E-01 -3.4803E-01 1.1115E-03 =4.7477E-04
7 2.6995E-01 -2,2277E-01 1.6497E-04 -1.2814E-05
8 2.5393E-01 -2.,2828E-01 9.6148E-06 2.3123E-05
9 1.4502E-01 -6.5818E-02 -5.9760E-06 1.2608E-05
10 7.4782E-02 ~1.1488E-01 -3.6947E-06 5.1363E-06
11 7.1037E-02 1.6411E-02 -1.3827E-06 1.7479E-06
12 -3.8841E-02 =-2.3106E-02 -3.8955E-07 4.8694E-07
13 2.7629E-02 3.1876E-02 -8.2671E-08 1.0549E-07
14 -6.8125E-02 2.3908E-02 -1.2017E-08 1.6006E-08
15 3.0397E-03 1.8949E-02 -7.3759E-10 1.0932E-09
16 -4.6716E-02 2.8844E-02 1.2539E-10 =1.7548E-10
17 -6.5211E-03 6.7807E-03 2.5184E-11 -5.2436E-11
18 -1.8883E-02 1.5565E-02 -6.6911E-12 1.2384E-12
19 -5.7228E-03 1.8188E-03 -4.3496E-12 3.8648E-12
20 -4.4234E-03 4.6379E-03 =-1.1754E-12 1.2206E-12
21 -2.2368E-03 4.5616E-04 -2.0461E-13 2.2763E-13
22 -4.6445E-04 6.4400E-04 -2.4271E-14 2.8214E-14
23 -3.9633E-04 9.6397E-05 -1.8495E-15 2.2257E-15
24 -7.0902E-17 8.8060E-17
Note: The table entries are defined as follows:

A = As! /Ao'
J J

Bm: = Bml / AQp'

Cy* = Cy' / Ag'

Dy~ = Dy' / Ap'

All values are dimensionless.
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Jlm!u

VWO WNEO

*
A3
1.0000E+00
7.7585E-02
2.7303E-01
2.6665E-01
2.5653E-01
1.4381E-01
1.7134E-01
4.3875E-02
6.4493E-02
=1.1449E-02
-~1.3519E-02
-1.3824E-02
-4.6809E-02
1.2590E-02
-3.8692E-02
3.3063E-02
=1.7142E-02
3.0996E-02
-2.5944E-03
1.6183E-02
1.2163E-03
4.0379E-03
5.3728E-04
-4.1192E-04
-4 .8805E-05
-6.2339E-04
-6.2133E-05
-1.7415E-04
-6.5614E-06
-1.6153E-05

The
As* = a5/
3 3
Bny = Bp' /
Cy, = Cu' /
Dy~ = Dy' /
All

a/Wpin =

*

B

=7.3324E-01
-6.8181E-01
-5.8148E-01
-5.4397E-01
-4.0898E-01
-3.5145E-01
~2.5957E-01
-1.5763E-01
=1.3145E-01
=-1.7266E-02
-4 .8358E-02
4.4196E-02
~7.5062E-03
3.8415E-02
4.5636E-03
9.9427E-03
6.7354E-03
-7.1103E-03
6.7721E-03
-7.6616E-03
5.6169E~03
-2.8111E-03
3.3534E-03
-1.5948E-04
1.2849E-03
2.188B4E-04
2.7795E-04
6.8785E-05
2.3261E-05
6.7729E-06

94

0.704

cyt

6.4450E-01
2.1378E-01
6.8736E-02
1.5098E-02
2.2355E-03
~1.3483E-04
-1.6902E-04
-5.4889E-05
-9.0640E-06
-2.8994E-07
2.6750E-07
5.3788E-08
-6.1400E-09
-5.3240E-09
-1.1333E-09
-4.1817E-11
3.1020E-11
4.1177E-12
=1.7742E-12
-8.2860E-13
=1.5021E-13
-8.3678E-15
1.3319E-15
-1.1572E-16
-2.1371E-16
-6.3337E-17
-9.8815E-18
-8.1821E-19
-1.6812E-20
1.8790E-21

values are dimensionless.

Dy *

-7.0220E-01
-2.8129E-01
-9.4045E-02
-2.3773E-02
~4.7905E-03
-4.9193E-04
2.9001E-05
2.8140E-05
4.3289E-06
=3.9094E-07
=3.0647E-07
-2.7115E-08
1.9870E-08
8.9813E-09
1.6206E-09
3.3844E-12
-6.4749E-11
-1.0362E-11
2.1441E-12
1.3279E-12
2.8796E-13
2.8072E-14
-4.8202E-16
-1.0203E-16
1.8095E~-16
6.6673E-17
1.1432E-17
1.0028E-18
2.0424E-20
-2.6675E-21

table entries are defined as follows:




j,m,u

WOONONLWNKEO

a/Wpin = 0.805

DV*

-7.1912E-02
~2.8955E-02
-1.0938E-02
-4.1130E-04
-1.0719E-04
1.6942E-04
1.1650E-05
1.9935E-06
-1.7097E-06
-2.8304E-07
~3.2017E-08
1.8074E-08
7.8295E-09
2.5225E-09
5.3952E-10
7.4745E-11
-2.1380E-12
-3.6159E-12
-8.3484E-13
-7.4033E-14
-5.8602E-15
=7.1293E-15
-3.5604E-15
-8.6489E-16
-9.2728E-17
9.2538E-18
5.3867E-18
9.9172E-19
9.6621E-20
4.1984E-21

Aj* Bm* Cu*
1.0000E+00 =-9.0172E-02
-1.2048E+00 =-4.6337E~-02 2.5717E-01
-5.7400E-01 9.1331E-03 2.1174E-02
-4.6259E-01 1.6402E-02 9.8757E-03
-4.0710E-01 5.4009E-02 -8.6682E-05
-3.8164E-01 2.5373E-02 -3.7255E-05
-2.8846E-01 1.0398E-02 -1.3813E-04
-2.5110E-01 -1.9601E-02 -8.6392E-06
-1.5405E-01 -5.9004E-02 5.2968E-07
-1.1058E-01 -6.5854E-02 1.8350E-06
-5.1324E-02 -8.8639E-02 3.5020E-07
-2.7597E-02 -6.2674E-02 3.1297E-08
-1.6440E-02 -6.1272E-02 -1.9372E-08
-6.7228E-03 -2.7381E-02 -=9.3264E-09
-1.8171E-02 -1.8197E-02 -2.9172E-09
-8.6618E-03 2.1619E-05 -~6.2082E-10
-1.7786E-02 3.6191E-03 -8.6611E-11
-5.5368E-03 5.1201E-03 -1.4201E-12
-8.1898E-03 5.2002E-03 2.3743E-12
-2.2299E-04 1.8361E-03 5.1444E-13
-1.1820E-03 2.3334E-03 2.2967E-14
1.0665E-03 2.3233E-04 -2.1588E-15
3.5043E-04 9.1936E-04 4.0183E-15
3.3989E-04 1.2616E-04 2.2350E~-15
1.2354E-04 3.6003E~-04 5.0404E-16
-3.2520E-05 8.8618E-05 3.4953E-17
3.6539E-06 8.9165E-05 =-1.2338E-17
-3.0797E-05 2.2462E-05 -4.5016E-18
-1.1757E-06 1.0129E-05 =-7.4268E-19
-5.2821E-06 2.6264E-06 -~6.7883E-20
~-2.8057E-21
The table entries are defined as follows:
A.*___:A.v/Al
J*_ Jl 0|
Bn, = Bn' / Ag
Cy, = Cu' / A¢'
Dy~ = Dy' / Ap'
All values are dimensionless.
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j,m,u

VOO WNNEO

*

a/Wpin = 0.900

*

*

*

Dy

-2.2031E-02
-2.6375E-03
1.2554E-03
2.4941E-03
9.7513E-04
4.2240E-04
9.1591E-05
1.9794E-05
1.1522E-06
-5.8790E-08
-8.7842E-08
3.3796E-09
3.1690E-09
1.3735E-09
1.0752E-10
1.3767E-11
2.1134E-12
2.6555E-12
4.6519E~-13
1.1524E-14
-2.7177E-14
-2.8561E-15
1.0306E-15
4.7873E-16
3.3324E-17
=1.4639E-17
-4.0414E-18
3.0721E-19
2.7775E-19
3.5244E-20
=1.2279E-20
-6.0563E-21
-1.3230E-21
-1.6329E-22
=-1.0743E-23

Ay Bn Cu
1.0000E+00 =-3.8229E-02
-1.0509E+00 =4.1777E-02 2.9119E-01
-3.6156E-01 -4.3898E-02 4.4199E-02
-2.1080E~-01 =4.9209E-02 1.4375E-02
-1.3950E-01 -4.7121E-02 2.0749E-03
-9.5366E-02 =-4.9572E-02 3.7846E-04
-5.9658E-02 =-4.4774E-02 -3.0418E-05
-3.9523E-02 -3.9842E~02 -~5.8906E-06
-2.0892E-02 -3.2008E-02 =2.1287E-06
-1.3461E-02 -~2.2479E-02 8.2486E-07
-6.6722E-03 =-1.4728E-02 2.0860E-07
-5.3149E-03 -6.8668E-03 5.0144E-08
-3.2773E-03 =3.5342E-03 -4.9349E-09
-2.5012E-03 -1.1362E-04 -2.0107E-09
-1.8525E-03 =-1.2974E-04 -4.3702E-10
-8.8103E-04 6.8094E-04 6.5306E-11
-9.2493E-04 -=5.1719E-05 1.7877E-11
-1.3312E-04 1.1189E-04 1.4480E-14
-5.1082E-04 -1.6002E-04 -2.0340E-12
3.6525E-05 -1.1835E-04 -4.2922E-13
-2.4457E-04 -6.6989E-05 -1.6633E-14
7.7075E-05 -9.2092E-05 1.7827E-14
-7.3696E~05 3.6312E-05 2.5194E-15
3.1081E-05 =-1.1712E-05 -4.2062E-16
-3.1628E-05 5.8487E-05 =~2.0495E-16
-1.0077E-05 4.2784E-06 2.0698E-18
-9.7485E-06 1.8565E-05 1.1887E-17
-5.1051E-06 -8.0009E-06 2.1251E-18
3.3415E-06 -2.3622E-06 -3.3479E-19
-6.4579E-~-07 -4.6821E-06 -1.6092E-19
9.5624E-07 -8.5507E-07 =2.9947E-21
-1.5845E~-06 1.0432E-07 1.3559E-20
-6.6401E-07 2.9040E-07 4.8418E-21
-5.1762E-07 1.5834E-07 9,.3433E-22
-6.6561E-08 -1.2036E-08 1.0677E-22
6.4054E-24
The table entries are defined as follows:
As* = AL / Ag'
Jae — 03, 0,
Bnt = Bp' / Ag
Cul = Gl 7 o
Dy = Dy' / Ag
All values are dimensionless.
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