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ABSTRACT

A hybrid experimental / numerical collocation
technique was developed for analysis of two
dimensional, finite body, single-ended crack
problems. Both boundary stress conditions, known a
priori, and interior stress conditions, determined
from a photoelastic model, were used to specify the
loading imposed on the specimen. It was determined
that including the interior stress conditions in
the analysis increases the rate of solution
convergence. Additionally, the interior stress
conditions allowed both the stress intensity
factor (KI) and the crack mouth opening
displacement to be determined over a wider range of
crack lengths than was possible with boundary
collocation alone. Using the hybrid collocation
technique, a single edge notched tension, SE(T),
specimen, modified by introduction of a semi-
circular cutout in front of the crack, was
developed and characterized. This specimen was
found to produce fixed grip KI values two times
greater than is possible with a conventional SE(T)
specimen of the same size. This new specimen could
be used to investigate upper transition crack
arrest phenomena with smaller specimens and testing
machine capacities than have been possible
previously.
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CHAPTER 1

INTRODUCTION

1.1 Techniaues for Determination of KI and CHOD fur
Fracture Specimens

A ubiquitous problem in fracture mechanics is the

determination of how the opening mode stress intensity

factor (KI) and the crack mouth opening displacement

(CMOD) vary with crack length for a particular geometric

configuration. One traditional approach to solving this

problem is to perform an experimental compliance

calibration [1]. While this technique provides the needed

information at any crack length, it is not without its

drawbacks. A primary disadvantage is the need to use very

sensitive displacement transducers to accurately measure

the small elastic displacements imposed on the specimen.,

Further, no general information regarding stresses or

displacements is obtained at other than the instrumented

locations. Thus, while a fair degree of effort is

required to conduct the experiment, only very limited

information can be obtained.

Of the other experimental techniques available, many make

use of data obtained from photoelastic experiments.

Ostervig (2] reviewed these methods, which maybe broadly

categorized as either deterministic, requiring only as

1



many experimental datum as unknown parameters, or over

deterministic, requiring more data than unknown

parameters. Of these two classes, over-deterministic

techniques are generally less sensitive to experimental

errors [33. One over-deterministic technique, referred

to as local collocation, was first developed by Sanford

and Dally [33; with further refinements due to Sanford and

Chona [43, as well as Barker, Sanford, and Chona [5].

This method uses experimental data from a region bounded

by a minimum radius of one-half of the model thickness and

a maximum radius on the order of 15% of the specimen width

to determine the coefficients of a modified Westergaard

series expansion. While quite efficient for determination

of KI at any crack length, this method cannot determine

displacements at locations remote from the data

acquisition region, and thus is not useful for determining

CMOD.

A different general approach to solving these problems is

the use of numerical techniques requiring either

discretization of the entire body (e.g. finite element,

finite difference) or of only the external boundary (e.g.

boundary collocation). To use a boundary collocation

technique, the stress function for the body must be known,

and be representable as an infinite series having each

term defined to within an arbitrary constant. As a result

2



of this requirement, collation techniques are

computationally more efficient than finite element or

finite difference approaches due to the lower level of

approximation involved. Because this series expansion is,

in the limit, the exact solution to the problem under

consideration, the series coefficients at different crack

lengths can be interpolated to estimate the solution at

any intermediate crack length values. Further, boundary

collocation results can be used to calculate the stress or

strain at any location in the body from a simple,

continuous, algebraic function. Finite element and finite

difference solutions have neither of these

characteristics.

The stress function used in a boundary collocation

solution must explicitly satisfy the boundary conditions

on the crack faces, as well as account for all internally

applied loads. Having satisfied these conditions, the

problem is solved by determining the constants which

approximately satisfy the desired external boundary

conditions. For the single ended crack problem, stress

functions for various internal boundary/internal loading

configurations are well established. Newman (6] applied

the complex potentials due to Kolosov and Muskhelishvili

[7] to the problem of cracks emanating from holes,

exploiting the applicability of these functions to

3



multiply connected regions. Sanford and Berger [8]

presented a method for converting the wide variety of

published infinite body Westergaard solutions [9] into

series forms amenable to use in boundary collocation

analysis. In so doing, these authors made available for

computational studies a large class of functions

describing cracks subjected to internal point and

pressure loading. For simpler problems not involving

internal loading or multiply connected domains, either the

Williams stress function [10] (in polar coordinates) or

the modified Westergaard function [11] (in Cartesian

coordinates) is most appropriate.

Boundary collocation methods may be either deterministic

or over-deterministic. Early investigators [12-14]

employed deterministic techniques. This allowed the

stress intensity factor to be determined by simple matrix

inversion, with the reported value being the stabilized KI

reached as the number of series coefficients, and boundary

conditions, was increased. While an efficient technique,

Kobayashi, Cherepy, and Kinsel [12] noted that the

accuracy of KI thus determined depended upon the location

of the collocation stations.

In a book concerning numerical solutions to two-

dimensional elasticity problems, Hulbert [15] indicated

4



that the phenomenon observed by Kobayashi, et al. can be

explained by considering the position of the collocation

stations relative to the maxima and minima of the terms in

the stress function along the external boundary. Unless

collocation stations and extrema coincide, residuals

between stations tend to be quite large. To alleviate

this difficulty, Hulbert developed an over-determined

boundary collocation procedure based on a least squares

minimization of the external boundary residuals over all

of the collocation stations. The first application of

Hulbert's procedure to a fracture problem (known to this

author) was by Newman (6], who compared over-determined

and deterministic collocation for the problem of two

cracks emanating from a circular hole in an infinite plate

stressed normal to the crack line at infinity. In that

study, the over-determined solution converged with less

than half the number of series coefficients needed by the

deterministic solution. Subsequent studies using the

over-determined approach (16,17] have not reported any

difficulties associated with collocation station

placement.

An over-determined boundary collocation approach can be

used to determine the variation of KI and displacements

remote from the crack tip (e.g. CMOD) with crack length.

However, when the crack tip is near an external boundary,

5



these estimates become quite inaccurate. This shortfall

is illustrated in Figure 1, which compares boundary

collocation results for a single edge notched tension,

SE(T), specimen with other numerical solutions published

in the literature [13, 18-20]. At crack length to

specimen width (a/W) ratios greater than 0.6 and less than

0.3, the normalized stress intensity factor calculated

using boundary collocation deviates from that determined

using a wide variety of other computational techniques.

The cause of this disagreement becomes apparent upon

examination of isochromatic fringe patterns for either

shallow or deep cracks, as shown in Figure 2. For these

extreme cases, the majority of the fringes are confined to

a small region about the crack tip, indicating that the

stress gradients at the boundary are virtually zero. As

these are the data from which a boundary collocation

solution determines the strength of the crack tip

singularity, inaccurate results would be expected in

either case.

Clearly, neither experimental or numerical methods

employed independently can determine the variation of both

KI and CMOD over a wide range of crack lengths. The

objective of this research is to develop a hybrid

numerical/experimental technique which can. This

technique combines local collocation, previously 'resented

6
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by Sanford and Dally (3], with boundary collocation using

the generalized Westergaard functions, as recently

demonstrated by Sanford and Berger (8). Results will be

presented for a conventional SE(T) specimen and for a

SE(T) specimen modified by placing a stress concentrating

cutout in front of the crack. Rationale for development

and practical use of this new specimen is presented in the

following section.

1.2 Specimen Geometry Investiaated

In materials testing, it is frequently of interest td

measure the crack arrest toughness of a material and, in

materials which experience a ductile - to - brittle

toughness transition, determine the variation of this

property with test temperature. Crack arrest toughness is

most frequently quantified in terms of the value of KI

occurring at crack arrest (Kia); Figure 3 shows the

variation of KIa with temperature for a reactor grade

pressure vessel steel [21]. The rapid increase at high

temperatures is typical of steels tested in this fashion

and denotes the onset, above the temperature of the

vertical asymptote, of fully ductile fracture behavior.

Crack propagation in these experiments is quite rapid;

crack speeds on the order of 1,000 m/s (39,370 in/s) in

high strength steel and 150 to 300 m/s (5,905 to 11,811

9
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in/s) in ARALDITE B have been measured [22). Provided

that the specimen is sufficiently large to limit

interaction of boundary reflected stress waves with the

moving crack tip, a simple engineering approximation to

KIa may be obtained using static KI formulas which assume

fixed load point displacement (fixed grips) during the

crack run - arrest event [23].

The American Society for Testing and Materials Standard

Test Procedure for Measurement of KIa, E1221 [24],

recommends use of a crack-line wedge-loaded compact

tension specimen. The reduction of KI with increasing

crack length for fixed grip boundary conditions in this

specimen, combined with an upward shift of the ductile -

to - brittle transition temperature caused by elevated

crack tip loading rate during the crack arrest experiment,

make this specimen useful only for determining crack

arrest data at low temperature/toughness combinations. To

determine higher KIa values, SE(T) specimens are

frequently employed [23]. These specimens are subjected

to a linear thermal gradient, cold at small a/W and hot at

large a/W, to create a toughness gradient across the

specimen width. This feature allows the specimen to

arrest cracks at the higher than initiation K values that

are generated under fixed grip loading conditions in this

specimen geometry, as illustrated in Figure 4. Better

11
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definition of the upper asymptote of the KIa - temperature

transition curve could be obtained by increasing the

maximum K, achievable, and by maximizing the portion of

the specimen over which K, increases with increasing crack

length. To this end, a modified SE(T) specimen of the

type illustrated in Figure 5 will be developed in this

investigation.

13
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CHAPTER 2

MATHEMATICAL DETAILS

2.1 Generalized Westeraaard Equations

Sanford [11] demonstrated that the generalized form of the

Westergaard equation [25] is an Airy stress function given

by:

* - Re[(z)] + yIm[Z(z)] + yIm[Y(z)] (1)

where

dZ(z) dZ(z)
Z(z) = Z(z) =

dz dz

dY (z)
Y(z) =

dz

z = x + iy

Functions of this kind are useful for solution of finite

body crack problems, provided that functions Z(z) and Y(z)

can be found, such that Re[Z(z)] = 0 on the traction free

surfaces of the crack (i.e. ayy= axy = 0 on the crack

faces) and Im[Y(z)] = 0 along the crack line (i.e. 'xy = 0

on y = 0 for all x). For these problems, the in-plane

stresses may be expressed as follows:

axx = a2f/ay 2 = Re Z - yIm Z' - yIm Y' + 2Re Y (2a)

Uyy = a2#/ax 2 = Re Z + yIm Z' + yIm Y' (2b)

15



Txy = a2 f/axay = -yRe Z' - yRe Y' - Im Y (2c)

where

Y = Y(z)
Z = Z(z)

2.2 Hybrid Collocation

To use eqn. (2) in a collocation solution, Z(z) and Y(z)

must be expressed in series form. For the conventional

SE(T), a single series expansion having its origin at the

crack tip was used [4]. For this specimen, Z(z) and Y(z)

are as follows:

J
Z(z) = E Aj.zj-i/2 (3a)

j=0

M
Y(z) = Z Bm.Zm  (3b)

m=0

where

z = a complex coordinate having its origin at the crack
tip

These series exactly satisfy the stress free crack face

and crack line symmetry conditions; the negative powers of

z below z-1/ 2 having been eliminated to prevent

displacements from becoming unbounded at the crack tip.

For the modified SE(T), an additional series expansion was

needed because the series given in eqn. (3) do not allow

stresses or displacements to increase around any point

other than the crack tip. Clearly, this was not the case

16



for the modified SE(T), where stresses also increase quite

rapidly around the base of the cutout. By using a series

expansion that includes negative powers of z, a pole

(location of infinite displacement) was placed in the

solution at the center of the cutout. This pole allowed

the rapid increase of stress around the base of the cutout

to be explicitly accounted for in the mathematical

formulation of the problem. Because there was no material

at the location of the pole, the negative powers could be

included while maintaining single valued displacements for

all points within the specimen. The form suggested by

Newman (6] for this negative power series was used to

satisfy the stress-free crack face and crack line symmetry

conditions. Thus, the series expansions for the modified

SE(T) specimen were as follows:

J U 1
Z(z) = E Aj.zJ -I1 / 2 + E Cu . (4a)

J=O u=l /z.(Z-Zo) u

M V 1
Y(z) = Z Bm.ZM + E DV  (4b)

m=O v=l (Z-Zo)v

where

Zo = the center of the circular cutout

To impose the applied boundary conditions, series

representations of eqn. (2) in real coordinates,

constructed using (3) and (4), are needed. These

equations are presented in Appendix A.

17



In addition to boundary information, the hybrid

collocation technique requires information regarding

stress or displacement conditions that can be imposed on

the specimen interior. While any experimental method of

sufficient accuracy could be used to determine these

conditions (e.g. photoelasticity, moire interferometry,

speckle interferometry, resistance strain gages),

photoelastic data was used in this investigation. In this

way, experimental details were simplified while fringe

patterns were obtained which are sensitive to the non-

singular terms in the series expansion for stress [26].

To use photoelastic data, an equation relating the maximum

shear stress to the measured fringe order (N) is required.

This relationship may be written as follows:

Tmax [[(xx - yy)/2]2 + .XY2]1 / 2

= N-fa/(2.t) = N'Q

where

f= photoelastic fringe constant
t = photoelastic model thickness
Q =f/(2.t)

In terms of the Westergaard Z(z) and Y(z) functions, eqn.

(5) becomes
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Tmax = [(-yIm Z - yIm Y' + Re y)2

+ (-yRe Z - yRe Y' - In y)2] 1/2)

A series representation of eqn. (6) in real coordinates,

constructed using (3) and (4), is presented in Appendix A.

2.2.1 Solution Procedure

The nonlinear character of eqn. (6) necessitates use of an

iterative solution technique, such as that proposed by

Sanford [26], to determine the unknown series

coefficients. In this technique, the stress equations

(A1-A4) are expressed in a homogeneous form

gk (A'0 , A'1 , . . . , A'j, (7)
B'0 , BI1 , . . . ,coo, C'I ,  • . . , COU ,

D'O, D'1 , • . . , D'V, Q) = 0

and expanded as a first order Taylor's series

gki+- gk I i +

&AI'0 + - 'l+ + +
aAo aAl a, j

ii i

89k ~ ]BI + [gk[ -BO0 + 1AB' + + BIM +
8B0  8B1  1
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8 gk agk agk

AC'0 + - AC 1 + + - ACU +
ac0  adC aCU

8g9]k 89k 1agk
AD 0 + AD'+ + +

9DO"  aD 1 J v

agk
(8)

where

i = Iteration counter
A = Correction to previous estimate Ai, Bm, Cu, or Dv
k = Indicator of location in specimen, 0 > k > L
L = Total number of imposed boundary and interior

conditions

By including the photoelastic material parameter, Q, as a

variable in the least squares solution, slight measurement

inaccuracies associated with the model thickness, the

material fringe constant, and the applied load are

automatically accounted for by using a value for Q which

best fits the input data. The validity of this auto-

calibration approach can be checked by comparing the best

fit value of Q with the expected value.

To satisfy eqn. (7) in the (i+l)st iteration step, eqn.

(8) must be equal to zero. From this observation, eqn.

(8) may be expressed in matrix form as
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[ ( g) H]A (9)

where

(H] L x (J+M+U+V+3) matrix (L > J+M+U+V+3).
Matrix values depend on boundary condition
type and station location.

(A) (J+M+U+V+3) x 1 column vector of corrections
to the current estimates of the unknown
series coefficients.

(g) L x I column vector having values described by
eqn. (8).

For the problems under consideration, eqn. (7) may take on

any of the following forms depending upon the position of

the collocation station, k:

g = 0 = Oxx (10)

=yy - OAPPLIED
rxy

= Orr
= 're
= 'max - N'f 0/(2"t)

where

aAPPLIED = applied value of remote stress

For each of these cases, the partial derivatives necessary

to define the entries in [HI are presented in Appendix B.

Because eqn. (9) represents an over-determined system, (A)

must be determined using the method of least squares. For

large matrices, Berger [17] found that a least squares

solution of the normal equations exhibits numerical

instabilities.. To avoid this problem, a least squares

solution based on a QR decomposition of the [HI matrix was
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employed [27]. Briefly, this involves decomposing (H) as

follows:

[H] = (Q].R] (11)

where

[R] is upper triangular with a non-zero main
diagonal

[Q] has orthonormal columns

Substituting eqn. (11) into eqn. (9) gives

(a)-[R] = -[Q].(g) (12)

which can be solved for (&) by simple back substitution.

In this study, LINPACK [28] subroutines were used to

implement the QR decomposition.

To obtain stable values for the series coefficients, eqn.

(9) was solved iteratively using the following procedures

1. Select the number of photoelastic data and
boundary stations to be used.

2. Provide initial guesses for the A0' and B0 1
coefficients.

3. Compute (g) and [H] using eqs. (AI-A4) and
(B1-B18), respectively.

4. Compute (A) using eqn. (12).

5. Revise the coefficient estimates using the
(a) values.

6. Repeat steps J to 5 until the values of KI,
the root mean square boundary stress residual
(Or), and the root mean square fringe or4er
residual (Nr) do not change by less than some
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acceptablxy small value. The error measures
ar and Nr are defined as follows:

1/2
1 n,1 )

ar - l (8k - ak) 2  (13a)
n, k=1

1/2
1 n2

Nr = - (Sk - Nk)2  (13b)
n2 k=1

where

n = n, + n 2
n, = number of boundary collocation

stations
n2 = number of internal collocation

stations
dk = specified stress boundary

condition at point k
Sk = measured photoelastic fringe order

at point k
Ok = computed stress boundary conditionat point k
Nk = computed photoelastic fringe order

at point k

7. Repeat steps 2 to 6, each time including one
or more additional terms in the series
expansion. Use the most recent coefficient
estimates as guesses at step 2 when the new
coefficients are added. Continue to add
terms to the series expansions until both

a. The value of K, becomes a constant
independent of increasing model order.

b. The values of Fr and Nrrfd/(2.t) become
small compared to aAPPLIED .

FORTRAN 77 software was used to implement this procedure.

All computations were performed on a MICRO VAX-II in single

precision.
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2.2.2 Numerical Validation and Comparison to Boundary

Before using the hybrid collocation procedure to analyze

experimental data, it is necessary to demonstrate that the

technique produces correct results. This was accomplished

by numerical simulation of the hybrid solution scheme.

The photoelastic data used in this analysis was

numerically generated from a 100 coefficient boundary

collocation solution. The SE(T) specimen considered had a

length to width ratio of 2/1 and a crack tip at 0.51.W,

where W is the specimen width. The specimen was loaded

with a uniform stress perpendicular to the crack line on

the boundary parallel to the crack. To minimize errors

resulting from boundary discretization, 320 boundary

stations were placed on each side of the specimen creating

a total of 1920 applied boundary conditions. A data set

consisting of 132 points taken from integer order fringes

was numerically generated from this solution. These

data, as well as the boundary data, were used as input to

the hybrid collocation program. To insure comparability

to the boundary collocation result, the total number of

constraints imposed on the model was held constant at

1920.

In Figure 6, the variation of the normalized stress

intensity factor (KI* - Ki/(o.YW)) and the normalized CMOD
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(CMOD* = CMOD-E/(a W)) with model order for both the

boundary and hybrid collocation techniques are compared

with the result of Tada [9], who gives an empirical

equation fit to the published data available for this

specimen geometry; previously shown in Figure 1.

(Appendix C presents relationships between KI, CMOD, and

the series coefficients from the collocation solution.)

These data indicate that both techniques have equivalent

accuracy for determination of these parameters at a/W

ratios where both techniques converge; the slight

difference between the converged KI* and CMOD* values

calculated using the two collocation techniques having

occurred due to the limited accuracy of single precision

arithmetic. Further, the hybrid collocation approach

appears to offer an advantage over boundary collocation in

terms of convergence rate; determining stable estimates of

these parameters in models of at most two-thirds the order

required for a stable bouhdary collocation solution. This

accelerated convergence results directly from inclusion of

the photoelastic data, which are influenced by the crack

tip singularity more than the boundary data.

2.2.3 Effect of Random and Systematic Errors in the

Photoelastic Data

As pointed out by Barker, et al. [5], errors inherent to
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full field optical stress analysis data may either be

systematic or random. Systematic errors result from

inaccuracies in location of the crack tip, while random

errors result from being unable to locate the exact fringe

maxima in a photograph without resorting to sophisticated

image analysis techniques. The degree of resolution

required of experimental measurements can be determined by

imposing both types of errors on the numerically generated

photoelastic data, and observing the effect on the

calculated values of KI* and CMOD*.

Figure 7 illustrates the effect of a systematic mis-

location of the crack tip along the crack line on

estimates of KI* and CMOD*. These data show that small

errors in crack tip position do not greatly alter either

value. This is because KI* is proportional to the

magnitude of the stress singularity at the crack tip, and

thus depends on the relative spacing between isochromatic

fringes, which is not dramatically altered by small crack

tip position errors. CMOD*, being a measure of

displacement remote from the crack tip, is also not

strongly influenced. These small inaccuracies can be

eliminated altogether if, during the analysis, the crack

tip is varied slightly from its expected location to

minimize the root mean square error terms, Or and Nr .

The data in Figure 8 shows that if or and Nr are used to
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calculate a single residual, weighted to reflect the

ratio of internal to boundary collocation stations, this

residual approaches a minimum value as the crack tip

position used in the analysis approaches the correct

location. The formula used to calculate the weighted

residual is as follows:

a= 2 "nj + (r"fa/2"t) 2 .n2= (14)
n, + n2

To assess the effects of random error on KI* and CMOD*,

maximum random errors of 0.0021.W, 0.0042.W, and 0.0084.W

inches were imposed on the numerically generated

photoelastic data. The new position of each data point

was calculated using the following equations:

X'= X + RAND ERRORMAX  (15a)

Y'= Y + RAND ERRORMAx  (15b)

where

X 'and Y = Original coordinates of the datum
RAND = A random number ranging from -1 to +1
ERRORMAX = Maximum random error

The results of these analyses are presented in Figure 9.

These data indicate that maximum random position errors up

to 0.004.W, e.g. 0.6 mm in a 152 mm wide specimen, do not

appreciably effect the calculated values of these

coefficients.
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2.2.4 Effect of the Ratio of Internal to Boundary

Collocation Stations

When performing a hybrid collocation analysis, an

arbitrary decision must be made regarding the relative

numbers of collocation stations to be placed in the

interior and on the boundary of the specimen. To

investigate the influence this partitioning might have on

values derived from the analysis, calculations were

performed for various proportions of interior stations to

boundary stations over the range of 1/7.3 to 3/1. The

convergence of KI* with model order for these various

ratios, as well as for boundary collocation, is shown in

Figure 10. These data indicate that as the percentage of

internal collocation stations are increased, KI * estimates

at low model orders become progressively better

approximations to the converged solution. This occurs

because the interior stations possess considerable

information regarding the near tip stress gradients.

Inclusion of these data allow the leading series

coefficients to home in on the correct values rapidly

without first reducing the boundary errors to small values

by including a large number of coefficients in the

expansion, as is required for boundary collocation.

32



004

S d $4

CO 04

cco r CoI

CV))

C4 Q

C>0 0

i-C4

LO 0 0

oo 0 )

0 vO -A

0 •) 0-

co'

U))
0 0

41

4) 'U.

E E

0 0 0o

to W) U) 044 t

W0

U, r4 5
33 4.)

MOM



2.3 Fixed Grip Stress Intensity Factor Calibrations

While the intent of this investigation was to determine

the variation of KI with a/W for two SE(T) geometries

under fixed grip conditions, it was experimentally more

convenient to apply a constant remote stress to the

photoelastic models. However, Paris [29] demonstrated

that a fixed grip K, calibration can be derived from a

constant stress K, calibration by determining the relation

between load (P) and load point displacement (Dp) using

Castigliano's theorem. Castigliano's theorem states that

the displacement of a load in its own direction is given

by

8UT
Dp = (16)

aP

where

UT = Total strain energy

The total strain energy is the sum of that resulting from

the applied load acting on an uncracked body, as well as

the additional strain energy that results from

introduction of a crack with the load held constant.

Thus,

UT = UNO CRACK + I A UT dA (17)
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where

A = crack area

Noting that the integrand in eqn. (17) is the strain

energy release rate (G), eqn. (17) may be substituted into

eqn. (16) to give

8UNO CRACK +A 8G
Dp= + - dA (18)

8p Jo aP

The first term in eqn. (18) is simply the load point

displacement of the uncracked body. Recalling that, for

an opening mode problem in plane stress,

KI2
GI = 

(19)
E

eqn. (18) becomes

2 [A 8KI
Dp = DpNO CRACK + -. K, dA (20)

E Jo aP

For a tension loaded specimen of constant thickness, where

the constant load K, calibration is given by

K, = o.,/a F(a/W) (21)

eqn. (20) may be expressed as

Dp"E 2• [a
= Leff +. a-F 2 (a/W) da = H(a) (22)

a w jo

Leff represents the contribution of the uncracked specimen
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to Dp'E/a. For the conventional SE(T) specimen, this is

simply the distance between the loading points. However,

due to the complex geometry of the uncracked modified

SE(T), Leff could not be determined explicitly. Instead

it was calculated by first using a boundary collocation

approach to generate a series solution for the stresses in

the uncracked body, and then numerically integrating this

solution over the entire body to determine the total

stored strain energy, UT. Leff was determined from UT

using the following equation:

Dp-E 2E'UT
Leff = pEI2EU (23)

a Uncracked P2/A

where

P = Applied Load

Values of Leff for various specimen height to maximum

width ratios are presented in Table 1 for the modified

SE(T) geometry tested.

Equation (22) may be solved for stress and substituted

into eqn. (21) to give a constant displacement KI

calibration, as follows:

KI.'J ./raW F(a/W)= (24)
Dp.E H(a)

The calibration shown previously in Figure 4 for a SE(T)
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specimen with L = 2"W was determined in this fashion using

the F(a/W) function reported by Tada (9).
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Table 1: Effective Length for the Modified SE(T) Specimen
Having a Cutout of Radius 20.2% of the Maximum
Specimen Width.

Actual Effective
L/Wmax L/Wmax

1.01 1.34
2.02 2.30
4.03 4.28
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CHAPTER 3

EXPERIMENTAL TECHNIQUES

As mentioned earlier, photoelastic models were tested to

obtain stresses from. the specimen interior for use in the

hybrid collocation analysis. Experiments were conducted

in a dead weight loading fixture; weights being hung on a

lever arm to reduce the required load. A multiple pin

linkage was used to smoothly transfer the single point

load into the models at four equally spaced points. This

insured comparability with the boundary data by producing

constant stress loading across the top of the model.

ligure 11 shows this linkage, which was constructed to

prevent any moment transfer to the specimen that could

disturb this constant stress boundary condition. The

effectiveness of this approach was confirmed upon initial

loading of the models, when it was observed that the

disturbance of the fringe pattern due to the four pin

loading dissipated a very short distance from the loading

points.

Both models were machined from 1/4-inch thick

polycarbonate material having a nominal fringe constant

(f.) of 7 kPa-m/fringe (40 psi-in/fringe). The exact

fringe constant was determined for each model by

incrementally loading a uniform section of the material
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and determining the fractional fringe order using Tardy

compensation. The fringe constant was than calculated as

the slope of the line relating the remote stress to the

fringe order, divided by the model thickness.

Photographs were made on 4-inch x 5-inch positive/negative

film through a full field circular polariscope illuminated

with a monochromatic sodium vapor light source. At each

crack length, both light and dark field photographs were

taken. At short and long crack lengths, when the

photographs at a single stress level did not provide an

adequately detailed map of the stress contours,

photographs were taken at multiple stress levels. For

analysis purposes, fringes obtained at different loads

were superimposed by scaling the fringe orders obtained at

the auxiliary loads using the following equation:

PREF
NREF = NAUX (25)

PAUX
where

NREF = fringe order scaled to the reference load
NAUX = fringe order measured at the auxiliary load
PREF = reference load
PAUX = auxiliary load

To obtain digital data from these photographs, the

negatives were placed in a photographic enlarger and

projected onto a digitizing tablet attached to a personal

computer. Enlargement ratios ranging from 2:1 to 5:1 were
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used. Proper alignment of fringes from multiple

photographs was insured by digitizing two stationary

reference points in each photograph. The translation and

rotation necessary to bring these points to identical

locations on each photograph were then applied to all data

obtained from a particular photograph.

Subsequent to scaling and rotating all of the digitized

data at a given crack length, a candidate set of

approximately 200 data was generated. These data were

spaced so that the distance between two adjacent points on

the same isochromatic decreased uniformly with the radial

distance to the crack tip. To determine if any individual

datum in this set had a large degree of error associated

with it, the difference between the measured fringe order

and that calculated from a two term local collocation

solution fit to the data set was calculated. Figure 12

shows a typical plot of this difference (the fringe order

error) as a function of radial distance from the crack

tip. Graphs of this type were used to rapidly locate and

eliminate data having fringe order errors considerably

greater than the set as a whole; in this case all data

having a fringe order error exceeding 0.7 were eliminated.

Following this elimination, data sets ranging in size from

150 values to 220 values remained. Based on the number of

photoelastic data points remaining, the number of boundary
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points was scaled to give a ratio of one internal

condition to every three boundary conditions.

44



CHAPTER.4

RESULTS AND DISCUSSION

4.1 Conventional SE(T) Specimen

To benchmark hybrid collocation results against an

established solution, the variation of KI* and CMOD* with

crack length were determined for a conventional SE(T)

specimen. The variation of KI* with crack length for this

specimen has been determined by various investigators

using a wide variety of numerical (13, 18-20] and

experimental [14] techniques. CMOD* calibrations have not

received nearly such widespread attention, having been

determined only by Gross, Roberts, and Srawley [30] using

a boundary collocation technique. These previous results,

along with empirical formulas due to Tada [9], are shown

in Figure 13. The Tada formulas will be used to compare

hybrid collocation results to these literature values.Il
Data obtained from a photoelastic model of a SE(T)

specimen was used in this analysis. The specimen had a

length to width (L/W) ratio of 2/1, which was selected

based on the findings of Gross, Srawley, and Brown [13],

who indicated that L/W ratios exceeding 1.6 have

negligible influence on the calculated KI* values. The

dimensions and material properties of the specimen used
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are given in Figure 14.

In Figure 15, the convergence of KI* with increasing model

order is shown for crack lengths ranging from 0.1 to 0.8

a/W; at crack lengths greater than 0.8.W, either

convergence was not achieved or the RMS error indicated

that the calculated values were not sufficiently accurate.

The kink in the 0.4 a/W curve (Figure 15b) at 40

coefficients indicates the point at which this solution

was allowed to auto-calibrate (see Section 2.2.1) by

calculating Q (f,/2-t) as part of the least squares

solution. Auto-calibration was employed when it reduced

the RMS error, thus providing a solution that better

matched the imposed conditions.

Figure 16 compares the KI* and CMOD* values determined

from this analysis to the Tada formula, and to values

determined from a boundary collocation analysis. As shown

in Table 2, for crack lengths between 0.1.W and 0.8.W, the

KI* and CMOD* values calculated using hybrid collocation

differ from the Tada formula by at most -5.4% and -6.8%,

respectively. The boundary collocation solution has

equivalent accuracy only between 0.2 and 0.6 a/W.

Clearly, inclusion of the data obtained from the

photoelastic model was of considerable help in determining

accurate KI* and CMOD* values for both very short and very
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Figure 14: Dimensions and optical properties of the

conventional SE(T) specimen tested.
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Dimensionless SIF, K/(S'W^0.5)

1.0

0.9

0.8

0.7 Tada Formula

0.6
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0.5

(a)
2.5

2.4- Tada Formula

2.3-
2.21.6% Difference
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2.0 -
(b)
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Number of Coefficients

(c)

Figure 15: Convergence of dimensionless K calculated using
hybrid collocation with increasing model order
for a conventional SE(T) specimen having the
crack tip at (a) 0.10.W, (b) 0.40.W, and (c)
0.80-W.
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Table 2: Comparison of Hybrid and Boundary Collocation
KI* and CMOD* Results for a Conventional SE(T)
Specimen with Literature Values.

Dimensionless Stress Intensity Factor, (Ki/(a-j-)]

Hybrid Boundary Tada Hybrid Boundary
a/W Coll. Col. [9] % Diff. % Diff.

0.0991 0.647 0.562 0.667 -2.9% -15.7%
0.2023 1.041 1.044 1.094 -4.8% -4.5%
0.2999 1.563 1.576 1.606 -2.7% -1.9%
0.4013 2.338 2.360 2.375 -1.6% -0.6%
0.4977 3.447 3.502 3.508 -1.8% -0.2%
0.6007 5.413 5.524 5.570 -2.8% -0.8%
0.7060 9.330 6.608 9.801 -4.8% -32.6%
0.7974 18.505 1.026 18.606 -0.5% -94.5%

Dimensionless CMOD, [CMOD.E/(a.W)]

Hybrid Boundary Tada Hybrid Boundary
a/W Coil. Coil. [9] % Diff. % Diff.

0.0991 0.569 0.480 0.610 -6.7% -21.3%
0.2023 1.364 1.366 1.463 -6.8% -6.6%
0.2999 2.693 2.716 2.769 -2.7% -1.9%
0.4013 5.149 5.202 5.208 -1.1% -0.1%
0.4977 9.548 9.723 9.697 -1.5% 0.3%
0.6007 19.408 19.888 20.040 -3.2% -0.8%
0.7060 44.906 30.402 47.738 -5.9% -36.3%
0.7974 123.265 -1.743 124.120 -0.7% -101.4%
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long cracks. Additionally, Figure 17 illustrates that full

field isochromatic fringe patterns calculated from a hybrid

collocation series expansion matches the experimental data

much better than do boundary collocation fringe patterns.

For cracks deeper than 0.8.W, local collocation can be used

to estimate KI . Complete 60 coefficient solutions for the

various crack lengths investigated are included in

Appendix D.

As discussed in Section 2.3, the variation of KI* with

crack length for fixed grip boundary conditions can be

calculated from the data presented in Figure 16a. Because

the hybrid collocation results agree with those previously

reported, the Tada [9] F(a/W) function was used in eqn.

(24). The results of this calculation is shown in Figure

18 for two different length to width ratios. The modified

SE(T) specimen described in the following section was

developed to increase the maximum KI achievable in a

tension loaded specimen subjected to fixed grip boundary

conditions.

4.2 Modified SET) Specimen

A SE(T) specimen, modified by placing a semi-circular

cutout in front of the crack, was tested and is shown in

Figure 19. Figure 20 compares the convergence of KI with
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Fringe Constant
7.02 kPa*m/fringe
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aJ
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P

Figure 19: Dimensions and optical properties of the

modified SE(T) specimen tested.
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increasing model order, KI* having been determined using

both boundary and hybrid collocation techniques. These

data again indicate that, for crack lengths at which both

collocation techniques converge to the correct solution,

inclusion of the photoelastic data leads to more rapid

convergence of the hybrid collocation solution.

In Figure 21 and Table 3, the variation of KI* with crack

length under fixed load conditions is compared for both

collocation techniques. While it might appear that both

boundary collocation and hybrid collocation give similar

results for crack lengths of 0.4.W and less, a comparison

of the reconstructed fringe patterns (Figure 22)

demonstrates that the hybrid collocation approach produces

results which more closely match the experimental data.

For longer cracks (0.5.W to 0.7.W), either collocation

technique works equally well, as illustrated in Figure 23.

In contrast with the conventional SE(T), boundary

collocation solutions for this specimen were accurate even

for very long cracks, as can be seen by comparing the

boundary collocation fringe pattern to the actual

photograph at a = 0.90.W (Figure 24). This occurred

because the stress gradient caused by the cutout was

explicitly accounted for in the mathematical formulation

of the problem. For the conventional SE(T) this was not
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Table 3: Comparison of Hybrid and Boundary Collocation KI
Results for a Modified SE(T) Specimen.

Hybrid Boundary
Collocation Collocation

crr/ - Oerr/
a/Wmin KII/(a./W) cGappl KII/(a.1W) aappi % Diff

0.107 0.438* 1.7% 0.325 1.7% 34.8%
0.197 0.744* 1.5% 0.628 1.6% 18.5%

0.301 1.188* 2.2% 1.106 1.3% 7.4%

0.402 1.869* 1.8% 1.748 1.0% 7.0%

0.506 2.882* 2.0% 2.781* 0.7% 3.6%

0.605 4.525* 1.3% 4.488* 0.5% 0.8%

0.659 5.978* 3.0% 6.007* 0.5% -0.5%

0.704 8.160 8.3% 7.884* 0.4% 3.5%

0.756 11.221* 0.4%
0.805 16.651* 0.4%
0.850 26.151* 0.4%
0.900 51.242* 0.3%

*Solutions that produce fringe plots
which match the experimental data.
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Figure 24: Comparison of experimental isochromatic fringe
patterns with those calculated using boundary
collocation for the modified SE(T) specimen at
0.90.W.
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the case, the mathematical formulation requiring that

stresses continuously decrease as the distance from the

crack tip increases.

As was seen for the conventional SE(T), there is a maximum

a/W beyond which the hybrid collocation solution does not

agree well with the experimental results. For the

conventional SE(T), this limit was 0.8-W, while for the

modified SE(T) it was 0.65 .Wmin. This lack of agreement

results from insufficient accuracy of the photoelastic

data in these cases, rather than any theoretical

limitations of the hybrid collocation technique. The

small physical size of the deep crack fringe patterns

caused the effects of random position errors on the hybrid

collocation solution to be quite large. This, combined

with the considerable influence that these data have on

the solution due to their close proximity to the crack

tip, caused the RMS error to stabilize at a high value,

indicating that these solutions did not match the imposed

conditions well. An experiment in which the photoelastic

fringes were recorded at higher magnifications, and the

small loads applied to the specimen measured more

accurately than was possible with the loading fixture

employed in this study, would most likely produce more

accurate hybrid collocation results.
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In Figure 25, the fixed grip variation of KI* with crack

length is compared for conventional and modified SE(T)

specimens. These data indicate that there are two

advantages to the modified SE(T) specimen design. First,

there is a slight increase in the region of the specimen

over which KI increases with increasing crack length.

Second, and more significant, there is nearly a factor of

two increase (assuming an initial crack depth of 0.1.W) in

maximum KI from that achievable with a conventional SE(T)

specimen of the same overall dimensions. This feature

makes the modified SE(T) a useful specimen for

characterization of crack arrest toughness in the upper

transition region.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

A combined experimental/numerical collocation technique

was developed for analysis of finite body, single-ended

crack problems. This technique, referred to as hybrid

collocation, uses stress conditions from the boundary

(known priori) and from the interior (determined

experimentally) of a cracked specimen to specify the

imposed loading. The variation of the mode one stress

intensity factor, KI, and the crack mouth opening

displacement, CMOD, with crack length was determined for

two specimen geometries using this technique. One

specimen was a conventional single edge notch tension,

SE(T), while the other was a SE(T) modified by placing a

semi-circular cutout in front of the crack. Based on the

results of these analyses, the following conclusions may

be drawn:

1. KI and CMOD were accurately determined between 0.1

and 0.65 or 0.80 a/W when both internal and boundary

stress conditions were used to specify the loading

imposed on the specimen. This is a much wider range

of crack lengths than can be obtained using boundary

collocation alone.
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2. Inclusion of stress conditions from the interior of

a cracked specimen causes the calculated KI and CMOD

values to converge much more rapidly than would be

possible otherwise.

3. The modified SE(T) specimen can produce KI values

approximately two times greater than can a

conventional SE(T) specimen of the same size,

assuming an initial crack depth of 0.1.W and fixed

grip boundary conditions. Thus, the modified SE(T)

specimen could be used to investigate upper

transition crack arrest phenomena with smaller

specimens and testing machine capacities than were

previously possible.
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APPENDIX A

SERIES EXPANSIONS OF STRESS AND DISPLACEMENT EQUATIONS

The functions Z(z) and Y(z), given by eqs. (3) and (4) may

be substituted into eqs. (2), and (6) to give expressions

for stress and displacement in series expansion form as

follows:

axx =

j =0

- (j-l/2).sine-sin[(j-3/2)I] +

E Bm#(r/W)mE12cos(me) - m-sinOesin[(m-l)eJ]I +

m=0

U Wu+l/2Fr
zC'l * o0/)csu*) - sin(e/2).sin(ue*)

u=l r r I

- u .sine* [cos[e/2].sin[(u+1)*J + sin(e/2).cosfi(u+l)e*]]

- l/2.sine 1cos(3.e/2).sin(u0*) + sin(3e0/2).cos(ue*)] +

VF1
E \vI(W/r *)vL12-cos(ve*) - vsn* slflL(vJJJ*] (Al)

v= 1
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ayy-

jo+ (j-1/2).sine-sinuij-3/2)eI] +

E BMI(r/W)m Im.sine-sin[(m-1)e]]I +
m= 0

U Wu+1/2 F
E %'l cos(e/2).cos(ue*) - sin(e/2).sin(ue*)

u=1 r*u./r

" u-sine*Ilcos(e/2).sin(u+)e*I + sin(e/2).cos((u+1)e*]]

" 1/2.sine [cos(3.G/2).sin(ue*) + sin(3.e/2).cos(ue*)] +

Vr1
Z Dv' (W/r*)v IVsine*.sin[ (v+1)e*] I (A2)

v=1

Txy

Z -Ajlr/Wij1/2[ij-1/2)sine-cos[(j-3/2)eJ]
j=oII

m0

u Wu+l/2 *o[u1e

rCu, r*ur u-sine* [cos(e/2).cs(+)*

-sin(e/2).sin[(u+1)9*

+ 1/2.sine [cos(3.e/2).cos(ue*) - sin(3.e/2).sin(ue*)j +

V r~
Z~ DVI(W/r*)vjIv-sine*-cos[(v+1)8*I + sin(v*)JI (A3)
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Tmax 2=

Z snsn(m1e]~ A-(r/W)j-1/'2 (j1/2)-sine-sin[(j3/2)e]] +

mO

u Wu+l/2
E Cu'- *U [u-sire*.

u=1 r U/r

co(e/2).sin[ (u+1)e*] + sin(e/2).cos[iu.-)e*)]

+ 2sine [cos(3.e,/2).sin(ue*) + sin(3.e/2).cos(ue*)] +

E=1 vI(W/r *)v cos(v9*) - vsn*.sn(~~*

+ [ -AjI(rW)i1/2(j-1/2)-sine-cos(j-3/2)e]1

- E Bml(r/W)m msine.cos[(m-1)e] + sin(me)]
m=O

U Wu+1/2
+ E c1u' [u-sine*.

u=1 r*u./r

[cos(e/2).cos[(u+1)e*] - sin(e/2).sin[iu+l)e*]]

+ 2sine [cos(3.e/2).cos(ue*) -sin(3.e/2).sin(ue*)]

+ Z Dv'(W/r*)vIv-sine*.cosu(v+1)e] + snv*v= 1

D2 T = INfo] (A4)
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In all of the above,

BA-' = A.wj-1/2EG Z. wm

Cu, c/wU+1/2
Dv' = D/WV
W = specimen width
N = photoelastic fringe order
fa= photoelastic fringe constant
t = specimen thickness
(r,e) = right handed polar co-ordinates having an

origin at the crack tip
(r* right handed polar co-ordinates having an

origin on the crack line and outside of the
collocated region
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APPENDIX B

PARTIAL DERIVATIVES. FOR THE [H] MATRIX

The (H] matrix is an array of partial derivatives of the

homogeneous form of the stress equations, found in

Appendix A, taken with respect to the normalized series

coefficients, as well as the value of Q. The equations

for matrix entries associated with locations on the

specimen boundary are given below:

When g = axx

[=ag k (rk/W)J-i/2. [cos[(j-i/2)k]
8Aj ' k ~k / o ~ I k- (j-i/2)sineksin[(j-3/2)ek]] 

(BI)

ag I = (rk/W)m. 2cos(mk) - m.sinek.sin[(m-l)ek]J (B2)
aBm ' k

ag Wu+ I /2
= - cos(k/2 ) .cos(ue*k) - sin(ek/2).aCu l 'k r* k u.rk

sin(ue*k) - u.sine*k -

[cos(ek/2).sin[(u+l)O*k ] + sin(ek/2).cosl(u+l)e*k]1

- l/2.sinok+

[cOs(3ek/2) sin(ue*k) + sin(3ek/2) cos(ue*k)] (B3)
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agv l = (W/r*k)v[2cos(vO*k) - v-sine*k'sin[ (v+1)e*k)]

aix,' k(B4)

When g ay - 0aPPLIED

ag =(rk/W)j1/24 cos(i1/2)k)

aAj' k

+ (i-1/2)sinek-sin[(j-3/2)ek]] (B5)

=~'l (rk/W)M- [M. sineksin(m-k)] 
(B6)

-g Wu 1 cos(ek/2).cos(u*k) - sin(ek/2).
aCu' k r kulrk L

sin(uek) + u.sinO*k'

[cos(ek/2) .sin[(u+1)O*kJ + sin(Ok/2) .cos[(u+1)e*k]]

+ 1/2-sinek'

[cos(3ek/2) .sin(ue*k) + sirl(3ek/
2) .cos(ue*k)]] (B7)

-g k (W/r*k)v LV. sineO sin[(v+l)e ki] (B8)
aDv' I

When g r-c

ag~ (rkW)j-1/2[ (j1/2)siek&cOs[(j3/2)9k)1I(B9)

aAj'

a~m = lk (rk/W) m- msinek'cos[(m-1)ek) + sin(mek)] (BO)
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ag wU+l/2
=~ u- sine*k .

acu ' k r*ku/rk

[cos(ek/2) .cosCu+l)e*k -sin(e/2) sin[(u+1)e*kJ]

+ 1/2.sinek.

[cos(3ek/2)-cos(ue*k) - sin(3ek/2).sin(ue*k)] (Bl)

ag = (W/r*k)v[v.sine*k. cOs(v+l)*kl + sin(v9*k) ]

aBv' k
(B12)

Also, when g = axx, oyy, or "y,

ag I = 0 
(B13)

aQ k

In all of the above,

A-'' A-wj-I/2
'= B&Wm

Cu' = Cu/WU+l/ 2

Dv' = lv/WV
W = specimen width, as shown in Figure xx
(r,e) = right handed polar co-ordinates having an

origin at the crack tip
(r*,*) right handed polar co-ordinates having an

origin on the crack line and outside of the
collocated region

k = point in model at which equation is defined

None of the preceding equations depend on the current

estimates of the series coefficients, therefore these

entries for (H] need only be calculated at the start of

each iteration. Conversely, eqn. (6) for rmax, used to

describe the photoelastic data taken from the specimen
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interior, is linearized by the differentiation. As a

result, derivatives of this equation depend on the current

estimates of the series coefficients as follows:

ag -
=- (rk/W)) 1/2 (j-l/2)-sinek'

,9j k Tmaxk

[sin[(j-3/2)ek]'Dk + cos[(j-3/2)ek]ITk] (B14)

ag =(rk/W)m csmk- -iesi(mIk] D
Ic k maxk [lo~e)-mie~i~-)iJD

- [m. sinew-cos(m-l)ic) + sin(mei)]lTkc (B15)

ag Wu+1/2 siek B6

aCu' Ik = 7maxk r *k 4rk [-[u.siek B6

[cos(ek/2) .sin[U+l)e*k] + sin(ek/2) .cos[(u+1)e*k)]

+ l/2sinek. 1

[cos(3.ek/2).sinue*k) + sin(3.ek/2)cos(uek)Jp-Dk

+ [u-sine*k'

[cos(ek/y2)cOs[(u+l)e*k] - sin(ek/2).sin(U+l)e*]]l

+ l/2-sinek Tk

[cos(3ek/2) .cos(ue*k) - sin(3ek/2) sin(ue*k)]] T
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-g (W/r *kOv.
8Dv' lk 7max [

[cos(ve*k) - V sinO*k sin[(v+1)e*k]]I Dk

+ IV. sine*k'coslv+1)e*kJ + sin(ve*k)]I.Tk] (B17)

-g -Nk (Bi8)
aQ k

where

9k =(Dk 2 + Tk 2)1/2 - Nk'fG/(2-t)

j=oI

+ E Bm(rk/W)mOlcos(mek) - msineksin(M-1)Ok3]I
M=O

u Wu+1/2  uiik

u=1 r ku/rkL

[cos(ek/2) .sin[(u+1)e*k) + sin(ek/2) .cos((u+1)e*k]1

+ 1/2*sirlek*

[Cos(3ek/2) .sin(ue*k) + sin(3ek/2) .cos(ue*k)]j

Vl
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Z 2o I (rk/W)n M msinek'cOs(m-l)ek] + sin(mek)]

u Wu+1/2
+ E Cul - u-sif *k'

u=1 rku,/rk

[cos(ek/2) 'cos[(u+1)e*k) -sin(ek/2) .sin[(u+1)e*k]1

+ 1/2.:iOk/2 -suek sin(3.ek/2).sin(ue*k)]

+ Z Dv!('Iwt/rk)vv sinek'cos(v+1)0*k) + sin(vek)j
v= 1
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APPENDIX C

EQUATIONS RELATING KI AND CMOD TO SERIES COEFFICIENTS

Opening Mode Stress Intensity Factor, K,

The opening mode stress intensity factor is defined as

follows:

K, = lim (G/2vr- ayyly=o) (Dl)

r- 0

Recalling that

ayy = Re Z + yIm Z' + yIm Y' (D2)

eqn. (DI) reduces to

K, = lim (,/2vr Re ZIy=0) (D3)
r-0

The real part of Z can be expressed as

Re Z = E Aj' (r/W)j-1/ 2 cos (j-/2)] + (D4)
j=0

U Wu+1/2 [
E Cu ' cos(e/2).cos(uO*) - sin(9/2).sin(ue*)u=l r*Ujr

On the crack line (y=0), 9=0 ° and 9"=180 °, so eqn. (D4)

becomes
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J U wU+1/2
Re Z = E Aj'(r/W)J-1 /2 + E Cu  S(u) (D5)j=0 u=l r*U/r

where

S(u) = +1 if u is even
-1 if u is odd

By substituting (D5) into (D3), and taking the limit as r

approaches zero, the relation between K, and the series

coefficients may be determined to be as follows:

UK, = A + S(u). 1 Cu(W/b)u  /2rW (D6)

u=l

where

b = Wmax - a

For the conventional SE(T) specimen, all of the Cu'

coefficients are zero.

Crack Mouth Opening Displacement, CMOD

For plane stress, displacements perpendicular to the crack

line are given by

UY.E = 2.Im Z - y. (l+v).[Re Z + Re Y) + (l-v)'Im Y (D7)

where

E = Young's modulus
v = Poisson's ratio

On the crack line, eqn. (D7) reduces to
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U y'E = 2*Im Z (D8)

Recalling that, for the conventional SE(T),

J

Z Z Aj' (z/W) 3- 1 / 2  (D9)
j=0

integration gives

j z9+i/2
Z= Z Aj' (D10)9=0 (9+1/2) •W9-1/2

the imaginary part of which is

j rj+1/2
Im Z=Z A9 '  sin[(j+i/2)9] (DII)

j=0 (j+i/2).W9 - I /2

CMOD is typically measured on the crack line at the front

face of the specimen. At this location, r = a, and

8 = 180 °. Thus, eqs. (D8) and (DI) give CMOD as

follows:

4 J aj+I /2
CMOD =- * A9 ' SO) (D12)E j=0 (j+i/2) .W9- /

where

S(j) = +1 if j is 0 or even
-1 if j is odd

a = Crack length

An expression for CMOD for the modified SE(T) geometry

could be derived similarly by integrating eqn. (4a).
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APPENDIX D

SERIES SOLUTIONS FOR THE CONVENTIONAL SE(T) SPECIMEN

a/W =0.099 a/W = 0.202

jor m ABM A BM

0 1.OOOOE+00 -1.0936E+00 1.OOOOE+00 -7.2098E-01

1 4.1613E+00 -5.0967E+00 1.7239E+00 -2.0736E+00
2 3.2563E+00 1.5788E+01 1.0217E+00 5.2934E+00

3 -3.2422E+01 -2.7492E 01 -1.0239E+01 -7.3163E+00
4 1.1156E+02 1.0226E+01 2.9569E+01 4.0747E-01
5 -2.6078E+02 9.9535E+01 -6.2317E+01 3.2306E+01
6 4.5325E+02 -3.7133E+02 9.6680E+01 -1.0836E+02

7 -5.9199E+02 8.1517E+02 -1.0676E+02 2.3601E+02

8 5.4392E+02 -1.3229E+03 5.1227E+01 -3.9325E+02
9 -2.3867E+02 1.6892E+03 9.8284E+01 5.2773E+02

10 -2.4225E+02 -1.7284E+03 -3.3305E+02 -5.7346E+02

11 6.7980E+02 1.4106E+03 5.8964E+02 4.9158E+02
12 -8.5600E+02 -8.9311E+02 -7.7309E+02 -2.9982E+02
13 7.1030E+02 4.1163E+02 8.0435E+02 7.2259E+01
14 -3.7715E+02 -1.1958E+02 -6.7022E+02 1.0184E+02
15 6.9823E+01 1.5825E+01 4.3299E+02 -1.6948E+02
16 7.8695E+01 -3.5837E+00 -1.9366E+02 1.4071E+02
17 -7.9138E+01 -7.2312E-01 3.1655E+01 -7.0201E+01
18 2.3753E+01 1.5467E+01 3.2351E+01 1.3828E+01

19 1.3579E+01 -2.1654E+01 -3.0488E+01 5.6863E+00
20 -1.9207E+01 1.0584E+01 9.6650E+00 4.5461E-01
21 1.3092E+01 4.6526E+00 1.3375E+00 -9.2807E+00
22 -9.5893E+00 -9.7059E4-00 -3.4364E-01 8.6651E+00

23 7.5776E+00 4.8889E+00 -2.8151E+00 -1.4307E+00
24 -3.3889E+00 8.9142E-01 l.929AE+O0 -4.3551E+00

25 -1.3461E+00 -2.4062E+00 1.4513E4-00 5.0664E+00
26 3.2496E+00 1.2043E+00 -3.3793E+00 -2.8530E+00
27 -2.4089E+00 -7.6059E-02 2.9174E4-00 7.0404E-01
28 9.3212E-01 -1.4897E-01 -1.3665E+00 6.2647E-02
29 -1.7712E-01 5.8127E-02 3.5266E-01 -1.0886E-01

Note: The table entries are defined as follows:

A- =- 0
- '/ 0Bmn = Bin' / A0'

All values are-dimensionless.
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a/W =0.300 a/W = 0.401

jor m Aj 3M* Aj Bm*

0 1.OOOOE+00 -4.8650E-01 1.OOOOE+00 -3.0610E-01
1 3.6715E-01 -8.5130E-01 -6.7718E-01 -2.2917E-01
2 -3.2993E-01 2.4607E+00 -1.0986E+00 1.4291E+00
3 -3.9097E+00 -2.7582E+00 -2.3448E+00 -5.8024E-01
4 8.3913E+00 1.8745E+00 1.2781E+00 2.0534E+00
5 -1.8151E+01 6.8837E+00 -6.8017E+00 1.9941E+00
6 2.5377E+01 -2.4792E+01 5.3555E+00 -3.4655E+00
7 -2.7956E+01 5.7520E+01 -9.4283E+00 1.2728E+01
8 1.1319E+01 -9.9340E+01 3.0767E+00 -1.9117E+01
9 3.1548E+01 1.4157E+02 2.0771E+00 3.1723E+01

10 -1.0732E+02 -1.6482E+02 -2.1728E+01 -3.6226E+01
11 2.0431E+02 1.5463E+02 4.2058E+01 3.9397E+01
12 -3.0211E+02 -1.0330E+02 -7.3042E+01 -2.7545E+01
13 3.6979E+02 2.2207E+01 9.7013E+01 9.7443E+00
14 -3.8601E+02 6.5908E+01 -1.1880E+02 2.0816E+01
15 3.4315E+02 -1.3116E+02 1.2218E+02 -4.9401E+01
16 -2.5889E+02 1.5695E+02 -1.1494E+02 7.6893E+01
17 1.5971E+02 -1.4041E+02 9.0401E+01 -8.9606E+01
18 -7.6088E+01 9.8570E+01 -6.3335E+01 9.2682E+01
19 2.1628E+01 -5.0853E+01 3.2364E+01 -8.0231E+01
20 2.3138E+00 1.4384E+01 -1.1799E+01 6.4566E+01
21 -6.8541E+00 5.6100E+00 -4.3995E+00 -4.3304E+01
22 3.7373E+00 -1.2303E+01 8.2733E+00 2.8325E+01
23 1.8820E-01 1.1150E+01 -1.0587E+01 -1.4328E+01
24 -1.5036E+00 -8.4198E+00 6.6896E+00 7.9731E+00
25 2.2810E+00 4.9868E+00 -5.2479E+00 -2.6808E+00
26 -1.7978E+00 -2.8297E+00 2.1247E+00 1.4407E+00
27 1.6828E+00 8.6645E-01 -1.4199E+00 -1.3646E-01
28 -8.0591E-01 -1.9133E-01 3.3340E-01 1.2421E-01
29 3.5153E-01 -9.6080E-02 -2.0014E-01 5.7419E-02

Note: The table entries are defined as follows:

A-* A-$ A 0 1
Bm Bin' /A 0 1

All values are dimensionless.

85



a/W = 0.498 a/W = 0.601

jor m A B Aj *m

0 1.OOOOE+00 -1.5347E-01 1.OOOOE+0O 3.6001E-03
1 -1.7025E+00 2.1525E-01 -3.0286E+00 7.0416E-01
2 -2.0641E+00 1.3805E+00 -3.8155E+00 2.2385E+00
3 -2.9472E+00 1.1079E+00 -6.0772E+00 4.1101E+00
4 -2.6720E+00 3.1370E+00 -9.5579E+00 8.1795E+00
5 -6.0890E+00 3.3176E+00 -1.5767E+01 1.3164E+01
6 -3.3575E+00 3.6967E+00 -2.2707E+01 2.1168E+01
7 -8.9045E+00 7.4711E+00 -3.4923E+01 3.2394E+01
8 -5.7514E+00 2.9766E+00 -4.7985E+01 4.5558E+01
9 -9.8162E+00 1.3396E+01 -6.5789E+01 6.2873E+01
10 -1.1628E+01 1.6443E+00 -8.2745E+01 7.6984E+01
11 -6.1526E+00 1.8148E+01 -9.8011E+01 9.2060E+01
12 -2.1575E+01 3.0661E+00 -1.0835E+02 9.5518E+01
13 1.7121E+00 1.6632E+01 -1.0636E+02 9.4558E+01
14 -3.0529E+01 8.7765E+00 -9.8875E+01 7.9684E+01
15 9.5937E+00 6.8648E+00 -7.5205E+01 6.0553E+01
16 -3.1053E+01 1.5832E+01. -5.4528E+01 3.7195E+01
17 1.1870E+01 -5.5622E+00 -2.5182E+01 1.5468E+01
18 -2.1129E+01 1.8170E+01 -9.5147E+00 2.3049E+00
19 7.9943E+00 -1.2155E+01 5.5599E+00 -6.9066E+00
20 -7.9858E+00 1.4061E+01 6.7931E+00 -5.1372E+00
21 2.4157E+00 -1.0436E+01 6.4068E+00 -4.0012E+00
22 -2.4115E-02 7.6479E+00 1.2737E+00 1.7789E+00
23 -8.9901E-01 -5.1049E+00 -2.1906E+00 3.1491E+00
24 l.5925E+00 3.0443E+00 -4.1229E+00 4.7947E+00
25 -1.4546E+00 -1.2747E+00 -4.1762E+00 3.4608E+00
26 7.3523E-01 8.9608E-01 -2.9327E+00 2.4558E+00
27 -7.7747E-01 -1.1399E-02 -1.6918E+00 1.0576E+00
28 1.2097E-01 1.5938E-01 -6.4600E-01 4.2396E-01
29 -1.8466E-01 6.2586E-02 -1.9861E-01 6.0948E-02

Note: The table entries are defined as follows:

A- A-# A0 1
Bm = E' /A 0'

All values are dimensionless.
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a/W = 0.706 a/W = 0.797

jor m Aj BM A~ * B

0 1.OOOOE+00 2.3044E-01 l.OOOOE+00 4.1085E-O1
1 -5.3237E+00 1.6747E+00 -8.5695E+00 3.4905E+00
2 -8.1816E+00 5.4969E+00 -1.8683E+01 1.6163E+01
3 -1.6810E+01 1.4334E+01 -5.3336E+01 5.6018E+01
4 -3.5127E+01 3.3818E+01 -1.4032E+02 1.5517E+02
5 -7.0210E+01 7.0840E+01 -3.2061E+02 3.5303E+02
6 -1.2993E+02 1.3372E+02 -6.2899E+02 6.7195E+02
7 -2.2067E+02 2.2509E+02 -1.0585E+03 1.0806E+03
8 -3.3804E+02 3.3777E+02 -1.5283E+03 1.4751E+03
9 -4.6625E+02 4.5074E+02 -1.8899E+03 1.7056E+03

10 -5.7359E+02 5.3184E+02 -1.9875E+03 1.6515E+03
11 -6.2591E+02 5.5134E+02 -1.7505E+03 1.3042E+03
12 -5.9813E+02 4.9401E+02 -1.2528E+03 7.8925E+02
13 -4.9151E+02 3.7378E+02 -6.8485E+02 3.0390E+02
14 -3.3501E+02 2.2429E+02 -2.4778E+02 3.1577E+00
15 -1.7315E+02 9.0212E+01 -4.1449E+01 -8.0080E+01
16 -4.8662E+01 7.6462E-01 -2.8632E+01 -2.6322E+01
17 2.0299E+01 -3.5386E+01 -9.2285E+01 4.9573E+01
18 3.6710E+01 -3.2923E+01. -1.3015E+02 7.8488E+01

19 2.5109E+01 -1.4769E+01 -1.1103E+02 5.9647E+01
20 6.1400E+00 1.4619E+00 -6.2726E+01 2.8515E+01
21 -4.6882E+00 7.6598E+00 -2.4355E+01 1.2183E+01
22 -7.1099E+00 7.2798E+00 -1.0491E+01 1.2297E+01
23 -4.7013E+00 4.1457E+00 -1.1875E+01 1.6320E+01
24 -2.4060E+00 2.5197E+00 -1.3714E+01 1.5196E+01
25 -1.6534E+00 1.8460E+00 -1.0690E+01 9.6633E+00
26 -1.5226E+00 1.5842E+00 -5.5124E+00 4.1701E+00
27 -1.2164E+00 9.4842E-01 -1.8363E+00 1.1925E+00
28 -5.8634E-01 3.5592E-01 -3.5020E-01 1.9420E-01
29 -1.4347E-01 4.6979E-02 -2.2129E-02 1.5283E-02

Note: The table entries are defined as follows:

A- A I / A0 1
Bm Bi' / A0'

All values are dimensionless.
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APPENDIX E
SERIES SOLUTIONS FOR THE MODIFIED SE(T) SPECIMEN

a/Wmin =- 0.107
j,m,u*
or v *j u Dv*

0 1.OOOOE+00 -6.2828E-0l
1 6.3578E-01 -3.9547E-01 1.4598E+00 -9.1162E-01
2 4.2118E-01 -4.0555E-01 4.2056E-01 -2.3722E-01
3 5.2095E-01 -9.3636E-02 9.1156E-02 -3.5413E-02
4 -3.1333E-01 -1.0874E-01 8.9042E-03 5.5516E-03
5 1.0037E+00 -4.9011E-01 -2.7380E-03 5.8998E-03
6 -1.0151E+00 9.0472E-01 -1.6977E-03 2.2456E-03
7 1.0814E+00 -1.5588E+00 -4.2341E-04 4.8437E-04
8 -5.8534E-01 1.8020E+00 -2.5360E-05 2.2580E-05
9 6.2487E-02 -1.7512E+00 2.4662E-05 -2.8842E-05

10 4.5448E-01 1.3161E+00 1.2034E-05 -1.3648E-05
11 -6.4185E-01 -8.0554E-01 3.0456E-06 -3.5194E-06
12 5.8197E-01 3.6542E-01 3.9710E-07 -5.1438E-07
13 -3.5900E-01 -1.1989E-01 -3.0159E-08 6.1642E-09
14 1.5322E-01 2.0711E-02 -3.1172E-08 2.7559E-08
15 -2.5372E-02 -4.2029E-03 -8.9474E-09 8.7353E-09
16 -1.8189E-02 5.7801E-03 -1.5078E-09 1.5961E-09
17 2.0737E-02 -6.4157E-03 -1.0903E-10 1.4921E-10
18 -1.1558E-02 3.4819E-03 2.2299E-11 -1.2118E-11
19 5.1096E-03 -1.2925E-03 1.0024E-11 -8.1198E-12
20 -1.9454E-03 3.1811E-04 2.1321E-12 -1.8543E-12
21 7.1044E-04 -1.1023E-04 3.1072E-13 -2.7917E-13
22 -1.9116E-04 3.7923E-05 3.2340E-14 -2.9663E-14
23 3.2788E-05 -1.0678E-05 2.2519E-15 -2.0992E-15
24 8. 0605E-17 -7. 6199E-17

Note: The table entries are defined as follows:

A- A-# A0 1
= Bn' A0 '

=u Cu A0'
DV= Dv' /A 0'

All values are dimensionless.
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a/Wmjn = 0.197

j,m,u * *

or VAiB Cu*

0 1.OOOOE+00 -9.0350E-01
1 6.6463E-01 -5.9658E-01 1.4123E+00 -1.2984E+00
2 4.6861E-01 -5.5038E-01 4.4823E-01 -4.4279E-01
3 5.5449E-01 -2.1868E-01 1.1466E-01 -1.2530E-01

4 -2.0622E-01 -1.4754E-01 1.7467E-02 -2.5948E-02

5 8.6071E-01 -5.7429E-01 -1.6558E-03 -2.5685E-03
6 -6.5649E-01 8.5101E-01 -2.4495E-03 7.8445E-04

7 6.2063E-01 -1.4942E+00 -1.035j:E-03 4.8414E-04
8 1.5409E-02 1.6255E+00 -2.8210E-04 1.2594E-04

9 -5.5421E-01 -1.5651E+00 -4.7514E-05 9.5547E-06

10 1.0738E+00 1.1045E+00 -3.8628E-07 -7.4352E-06
11 -1.1852E+00 -6.2257E-01 2.9978E-06 -4.3126E-06

12 1.0340E+00 2.0227E-01 1.2200E-06 -1.3783E-06
13 -6.8367E-01 6.8508E-04 2.9766E-07 -3.0168E-07
14 3.6244E-01 -6.0959E-02 4.6708E-08 -4.1708E-08

15 -1.3797E-01 3.6558E-02 2.9171E-09 -8.7868E-10

16 3.6626E-02 -9.5363E-03 -7.5636E-10 1.3212E-09
17 -3.0295E-03 -4.4657E-03 -2.7069E-10 4.0023E-10

18 -3.9906E-04 4.1005E-03 -3.7331E-11 6.2744E-11

19 2.9015E-04 -1.7128E-03 4.3038E-13 3.7864E-12

20 -7.9142E-05 1.1307E-04 1.3511E-12 -7.7727E-13

21 3.9290E-04 -7.5290E-07 3.1998E-13 -2.5896E-13

22 -2.1392E-04 8.4880E-06 4.2369E-14 -3.7681E-14

23 7.5883E-05 -2.4544E-05 3.2716E-15 -3.0447E-15

24 1. 1426E-16 -1. 0916E-16'

Note: The table entries are defined as follows:

A- A-' / A0 1
Bm* Bin' / A0'

Dv= Dv' / A0 1

All values are dimensionless.
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a/Wmin = 0.301
j ,m,u***

or v Aj BM* Cu Dv

0 1.OOOOE+00 -5.7690E-01
1 5.2146E-01 -2.4061E-01 1.7146E+00 -1.0532E+00
2 3.0269E-01 -3.7091E-01 9.7594E-01 -6.5748E-01
3 5.1092E-01 1.4796E-01 4.3564E-01 -2.9715E-01
4 -6.7313E-01 4.1961E-02 1.5406E-01 -1.0261E-01
5 1.0976E+00 -5.5809E-01 4.4393E-02 -2.7798E-02
6 -1.2426E+00 1.5078E+00 1.0183E-02 -5.5537E-03
7 7.5939E-01 -2.2783E+00 1.8664E-03 -7.7563E-04
8 6.5831E-02 2.9778E+00 3.1038E-04 -1.0647E-04
9 -1.4385E+00 -2.8849E+00 7.7506E-05 -5.3729E-05

10 2.5388E+00 2.3684E+00 3.1231E-05 -3.2832E-05
11 -3.3176E+00 -1.3335E+00 1.1536E-05 -1.3436E-05
12 3.2909E+00 4.0039E-01 3.1036E-06 -3.7293E-06
13 -2.7807E+00 3.2815E-01 5.2582E-07 -6.5080E-07
14 1.9111E+00 -6.0369E-01 1.7264E-08 -2.7249E-08
15 -1.1150E+00 5.9956E-01 -2.1082E-08 2.4783E-08
16 5.0594E-01 -4.1305E-01 -7.5518E-09 9.5730E-09
17 -1.7739E-01 2.2978E-01 -1.4058E-09 1.9818E-09
18 3.0537E-02 -9.4557E-02 -1.2436E-10 2.4206E-10
19 4.3291E-03 3.0538E-02 1.0662E-11 7.6055E-12
20 -6.7976E-03 -5.5252E-03 5.7027E-12 -3.5535E-12
21 1.4948E-03 6.7076E-04 1.0069E-12 -8.2173E-13
22 -8.4896E-05 9.2114E-05 1.0251E-13 -9.1603E-14
23 -2.1234E-04 7.3781E-05 5.8146E-15 -5.4175E-15
24 1.301!E-16 -1.2221E-16

Note: The table entries are defined as follows:

A-= A-' / A 0 '
S B' / A0 '
Cu'=A0uDv* =DV A 0

Dv=Dv' / A0'

All values are dimensionless.
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a/Wmin = 0.402

j ,m,u * * *
or v A.* Cu D

0 1.OOOOE+00 -7.5374E-01
1 8.1083E-01 -6.2341E-01 1.1891E+00 -8.9283E-01
2 6.4661E-01 -4.8211E-01 4.0209E-01 -2.8954E-01
3 4.9112E-01 -4.1112E-01 1.1389E-01 -7.5330E-02
4 4.3734E-01 -3.0078E-01 2.5993E-02 -1.3977E-02
5 2.4073E-01 -2.1380E-01 4.2456E-03 -8.4608E-04
6 2.9375E-01 -2.3578E-0l 2.7957E-04 5.8539E-04
7 1.1301E-01 -2.2376E-02 -9.5535E-05 2.9056E-04
8 1.2697E-01 -2.2985E-01 -3.8846E-05 7.6623E-05
9 1.3477E-01 8.6770E-02 -6.0497E-06 1.1957E-05

10 -6.5599E-02 -1.6988E-01 3.0703E-07 3.3115E-07
11 2.0585E-01 5.7307E-02 4.3332E-07 -4.1711E-07
12 -1.6863E-01 -4.6163E-02 1.3349E-07 -1.4409E-07
13 1.8991E-01 -2.5603E-02 2.9014E-08 -3.1747E:-08
14 -1.3234E-01 3.8987E-02 6.2141E-09 -6.7833E-09
15 9.6252E-02 -5.3840E-02 1.5488E-09 -1.7517E-09
16 -4.8978E-02 4.2769E-02 3.6974E-10 -4.5215E-10
17 2.1820E-02 -3.0376E-02 6.2007E-11 -8.7844E-11
18 -4.9936E-03 1.6696E-02 2.8925E-12 -8.8380E-12
19 -1.0746E-03 -7.5017E-03 -1.9451E-12 9.4828E-13
20 1.9777E-03 2.6477E-03 -7.1386E-13 5.9779E-13
21 -1.3420E-03 -5.4903E-04 -1.3836E-13 1.3057E-13
22 4.6382E-04 6.5385E-05 -1.7221E-14 1.7222E-14
23 -1.2848E-04 2.9935E-05 -1.3242E-15 1.3750E-15
24 -4.8941E-17 5.2250E-17

Note: The table entries are defined as follows:

A;- A-' / A0 1
Bml I m / A0 1

C,*= Cut' / A0 1
Dv= Dv / A0 1

All values are dimensionless.
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i~m~u a/W min = 0.506

or v Aj Bm*cuD

0 1.OOOOE+00 -8.6877E-01
1 6.3768E-01 -6.9751E-01 1.0604E+00 -1.0004E+00
2 4.6606E-01 -4.4611E-01 4.3636E-01 -4.0842E-01
3 2.6592E-01 -4.0964E-01 1.4478E-01 -1.3332E-01
4 2.9510E-01 -1.7789E-01 3.9340E-02 -3.5786E-02
5 -9.1027E-02 -8.5437E-02 9.2281E-03 -8.3964E-03
6 1.5984E-01 -1.2278E-01 2.1508E-03 -2.0736E-03
7 -2.3107E-01 2.3346E-01 6.2519E-04 -6.7483E-04
8 -5.2236E-02 -1.6883E-01 2.1973E-04 -2.5606E-04
9 -1.1849E-01 4.0391E-01 7.3931E-05 -8.8697E-05

10 -3.1337E-01 -1.4543E-01 2.0314E-05 -2.4588E-05
11 1.0140E-01 3.2512E-01 4.2005E-06 -5.0725E-06
12 -4.4678E-01 -8.9718E-03 5.8041E-07 -6.7626E-07
13 1.9716E-01 1.1953E-01 3.4724E-08 -2.5023E-08
14 -3.5946E-01 1.0565E-01 -1.7881E-09 9.0289E-09
15 1.3142E-01 -1.7380E-02 1.4307E-09 2.1945E-10
16 -1.7307E-01 1.0893E-01 1.1648E-09 -1.0206E-09
17 3.4559E-02 -3.7005E-02 3.6799E-10 -3.9935E-10
18 -4.4978E-02 5.2943E-02 6.7195E-11 -8.2110E-11
19 -5.3524E-03 -1.3999E-02 5.9918E-12 -9.0386E-12
20 -3.5232E-03 1.3024E-02 -4.2950E-13 6.6191E-14
21 -5.5800E-03 -1.3777E-03 -2.3722E-13 2.1868E-13
22 6.8910E-04 1.1789E-03 -3.9328E-14 4.0909E-14
23 -1.0013E-03 2.3991E-04 -3.5154E-15 3.8633E-15
24 -1.4435E-16 1.6452E-16

Note: The table entries are defined as follows:

A- A I / A0 1
EBn = ' / A0 1

=u Cut' / A0'
Dv = Dv' / A0'

All values are dimensionless.
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a/Wmin = 0.605

j ,m ,u D v

or v Aj Bm* Cu Dv

0 1.0000E+00 -7.3674E-01
1 7.2458E-01 -6.9146E-01 9.1972E-01 -7.3749E-01
2 7.0325E-01 -6.0521E-01 3.2170E-01 -2.5842E-01
3 6.3304E-01 -5.8121E-01 9.9751E-02 -7.6362E-02
4 5.9852E-01 -4.6911E-01 2.6104E-02 -1.8347E-02
5 4.4068E-01 -4.1333E-01 5.9165E-03 -3.5706E-03
6 4.4532E-01 -3.4803E-01 1.1115E-03 -4.7477E-04
7 2.6995E-01 -2.2277E-01 1.6497E-04 -1.2814E-05
8 2.5393E-01 -2.2828E-01 9.6148E-06 2.3123E-05
9 1.4502E-01 -6.5818E-02 -5.9760E-06 1.2608E-05
10 7.4782E-02 -1.1488E-01 -3.6947E-06 5.1363E-06
11 7.1037E-02 1.6411E-02 -1.3827E-06 1.7479E-06
12 -3.8841E-02 -2.3106E-02 -3.8955E-07 4.8694E-07
13 2.7629E-02 3.1876E-02 -8.2671E-08 1.0549E-07
14 -6.8125E-02 2.3908E-02 -1.2017E-08 1.6006E-08
15 3.0397E-03 1.8949E-02 -7.3759E-10 1.0932E-09
16 -4.6716E-02 2.8844E-02 1.2539E-10 -1.7548E-10
17 -6.5211E-03 6.7807E-03 2.5184E-11 -5.2436E-11
18 -1.8883E-02 1.5565E-02 -6.6911E-12 1.2384E-12
19 -5.7228E-03 1.8188E-03 -4.3496E-12 3.8648E-12
20 -4.4234E-03 4.6379E-03 -1.1754E-12 1.2206E-12
21 -2.2368E-03 4.5616E-04 -2.0461E-13 2.2763E-13
22 -4.6445E-04 6.4400E-04 -2.4271E-14 2.8214E-14
23 -3.9633E-04 9.6397E-05 -1.8495E-15 2.2257E-15
24 -7.0902E-17 8.8060E-17

Note: The table entries are defined as follows:

A- = A / A0
; * n AO'

=U Cu A0 1
U Dv' A0 '

All values are dimensionless.
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a/wmin =- 0.704
jm, u***
or v A ~ Bin Cu

0 1.OOOOE+00 -7.3324E-01
1 7.7585E-02 -6.8181E-01 6.4450E-01 -7.0220E-01
2 2.7303E-01 -5.8148E-01 2.1378E-0l -2.8129E-01
3 2.6665E-01 -5.4397E-01 6.8736E-02 -9.4045E-02
4 2.5653E-01 -4.0898E-01 1.5098E-02 -2.3773E-02
5 1.4381E-01 -3.5145E-01 2.2355E-03 -4.7905E-03
6 1.7134E-01 -2.5957E-01 -1.3483E-04 -4.9193E-04
7 4.3875E-02 -1.5763E-01 -1.6902E-04 2.9001E-05
8 6.4493E-02 -1.3145E-01 -5.4889E-05 2.8140E-05
9 -1.1449E-02 -1.7266E-02 -9.0640E-06 4.3289E-06
10 -1.3519E-02 -4.8358E-02 -2.8994E-07 -3.9094E-07
11 -1.3824E-02 4.4196E-02 2.6750E-07 -3.0647E-07
12 -4.6809E-02 -7.5062E-03 5.3788E-08 -2.7115E-08
13 1.2590E-02 3.8415E-02 -6.1400E-09 1.9870E-08
14 -3.8692E-02 4.5636E-03 -5.3240E-09 8.9813E-09
15 3.3063E-02 9.9427E-03 -1.1333E-09 1.6206E-09
16 -1.7142E-02 6.7354E-03 -4.1817E-11 3.3844E-12
17. 3.0996E-02 -7.1103E-03 3.1020E-11 -6.4749E-11
18 -2.5944E-03 6.7721E-03 4.1177E-12 -1.0362E-11
19 1.6183E-02 -7.6616E-03 -1.7742E-12 2.1441E-12
20 1.2163E-03 5.6169E-03 -8.2860E-13 1.3279E-12
21 4.0379E-03 -2.8111E-03 -1.5021E-13 2.8796E-13
22 5.372SE-04 3.3534E-03 -8.367SE-15 2.8072E-14
23 -4.1192E-04 -1.5948E-04 1.3319E-15 -4.8202E-16
24 -4.8805E-05 1.2849E-03 -1.1572E-16 -1.0203E-16
25 -6.2339E-04 2.1884E-04 -2.1374E-16 1.8095E-16
26 -6.2133E-05 2.7795E-04 -6.33;7E-17 6.6673E-17
27 -1.7415E-04 6.8785E-05 -9.8815E-18 1.1432E-17
28 -6.5614E-06 2.3261E-05 -8.1821E-19 1.0028E-18
29 -1.6153E-05 6.7729E-06 -1.6812E-20 2.0424E-20
30 1.8790E-21 -2.6675E-21

Note: The table entries are defined as follows:

A-* A-' /A 0 1

C*= Cu' A0 1
Dv = DV' A0 1

All values are dimensionless.
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a/Wmin = 0.805

j,m,u***
or v A B Cu D

0 1.OOOOE+00 -9.0172E-02
1 -1.2048E+00 -4.6337E-02 2.5717E-01 -7.1912E-02
2 -5.7400E-01 9.1331E-03 2.1174E-0-1 -2.8955E-02
3 -4.6259E-01 1.6402E-02 9.8757E-03 -1.0938E-02
4 -4.0710E-01 5.4009E-02 -8.6682E-05 -4.1130E-04
5 -3.8164E-01 2.5373E-02 -3.7255E-05 -1.0719E-04
6 -2.8846E-01 1.0398E-02 -1.3813E-04 1.6942E-04
7 -2.5l10E-01 -1.9601E-02 -8.6392E-06 1.1650E-05
8 -1.5405E-01 -5.9004E-02 5.2968E-07 1.9935E-06
9 -1.1058E-01 -6.5854E-02 1.8350E-06 -1.7097E-06
10 -5.1324E-02 -8.8639E-02 3.5020E-07 -2.8304E-07
11 -2.7597E-02 -6.2674E-02 3.1297E-08 -3.2017E-08
12 -1.6440E-02 -6.1272E-02 -1.9372E-08 1.8074E-08
13 -6.7228E-03 -2.7381E-02 -9.3264E-09 7.8295E-09
14 -1.8171E-02 -1.8197E-02 -2.9172E-09 2.5225E-09
15 -8.6618E-03 2.1619E-05 -6.2082E-10 5.3952E-10
16 -1.7786E-02 3.6191E-03 -8.6611E-11 7.4745E-11
17 -5.5368E-03 5.1201E-03 -1.4201E-12 -2.1380E-12
18 -8.l898E-03 5.2002E-03 2.3743E-12 -3.6159E-12
19 -2.2299E-04 1.8361E-03 5.1444E-13 -8.3484E-13
20 -1.1820E-03 2.33234E-03 2.2967E-14 -7.4033E-14
21 1.0665E-03 2.3233E-04 -2.1588E-15 -5.8602E-15
22 3.5043E-04 9.1936E-04 4.0183E-15 -7.1293E-15
23 3.3989E-04 1.2616E-04 2.2350E-15 -3.5604E-15
24 1.2354E-04 3.6003E-04 5.0404E-16 -8.6489E-16
25 -3.2520E-05 8.8618E-05 3.4953E-17 -9.2728E-17
26 3.6539E-06 8.9165E-05 -1.2338E-17 9.2538E-18
27 -3.0797E-05 2.2462E-05 -4.5016E-18 5.3867E-18
28 -1.1757E-06 1.0129E-05 -7.4268E-19 9.9172E-19
29 -5.2821E-06 2.6264E-06 -6.7883E-20 9.6621E-20
30 -2. 8057E-21 4. 1984E-21

Note: The table entries are defined as follows:

= 4: / A0'
C*= Ci1 /A0

Dv* = Dv' / A0'

All values are dimensionless.
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a/Wmin = 0.900
j,m,u
or v Aj* Bm Cu Dv

0 1.0000E+00 -3.8229E-02
1 -1.0509E+00 -4.1777E-02 2.9119E-01 -2.2031E-02
2 -3.6156E-01 -4.3898E-02 4.4199E-02 -2.6375E-03
3 -2.1080E-01 -4.9209E-02 1.4375E-02 1.2554E-03
4 -1.3950E-01 -4.7121E-02 2.0749E-03 2.4941E-03
5 -9.5366E-02 -4.9572E-02 3.7846E-04 9.7513E-04
6 -5.9658E-02 -4.4774E-02 -3.0418E-05 4.2240E-04
7 -3.9523E-02 -3.9842E-02 -5.8906E-06 9.1591E-05
8 -2.0892E-02 -3.2008E-02 -2.1287E-06 1.9794E-05
9 -1.3461E-02 -2.2479E-02 8.2486E-07 1.1522E-06

10 -6.6722E-03 -1.4728E-02 2.0860E-07 -5.8790E-08
11 -5.3149E-03 -6.8668E-03 5.0144E-08 -8.7842E-08
12 -3.2773E-03 -3.5342E-03 -4.9349E-09 3.3796E-09
13 -2.5012E-03 -1.1362E-04 -2.0107E-09 3.1690E-09
14 -1.8525E-03 -1.2974E-04 -4.3702E-10 1.3735E-09
15 -8.8103E-04 6.8094E-04 6.5306E-11 1.0752E-10
16 -9.2493E-04 -5.1719E-05 1.7877E-11 1.3767E-11
17 -1.3312E-04 1.1189E-04 1.4480E-14 2.1134E-12
18 -5.1082E-04 -1.6002E-04 -2.0340E-12 2.6555E-12
19 3.6525E-05 -1.1835E-04 -4.2922E-13 4.6519E-13
20 -2.4457E-04 -6.6989E-05 -1.6633E-14 1.1524E-14
21 7.7075E-05 -9.2092E-05 1.7827E-14 -2.7177E-14
22 -7.3696E-05 3.6312E-05 2.5194E-15 -2.8561E-15
23 3.1081E-05 -1.1712E-05 -4.2063E-16 1.0306E-15
24 -3.1628E-05 5.8487E-05 -2.0495E-16 4.7873E-16
25 -1.0077E-05 4.2784E-06 2.0698E-18 3.3324E-17
26 -9.7485E-06 1.8565E-05 1.1887E-17 -1.4639E-17
27 -5.1051E-06 -8.0009E-06 2.1251E-18 -4.0414E-18
28 3.3415E-06 -2.3622E-06 -3.3479E-19 3.0721E-19
29 -6.4579E-07 -4.6821E-06 -1.6092E-19 2.7775E-19
30 9.5624E-07 -8.5507E-07 -2.9947E-21 3.5244E-20
31 -1.5845E-06 1.0432E-07 1.3559E-20 -1.2279E-20
32 -6.6401E-07 2.9040E-07 4.8418E-21 -6.0563E-21
33 -5.1762E-07 1.5834E-07 9.3433E-22 -1.3230E-21
34 -6.6561E-08 -1.2036E-08 1.0677E-22 -1.6329E-22
35 6.4054E-24 -1.0743E-23

Note: The table entries are defined as follows:

A* = A'/ A0

Cu. = C' / A0 '
Dv = Dv' / A0 '

All values are dimensionless.

96



REFERENCES

[1] Irwin, G.R., and Kies, J.A., "Critical Energy
Release Rate Analysis of Fracture Strength," Welding
Journal Research Supplement, Vol. 33, pp. 193s-198s,
1954.

[2] Ostervig, C.B., "Stress Intensity Factor
Determination from Isochromatic Fringe Patterns - A
Review," Engineering Fracture Mechanics, Vol. 26,
No. 6, pp. 937-944, 1987.

[3] Sanford, R.J., and Dally, J.W., "A General Method
for Determining Mixed-Mode Stress Intensity Factors
from Isochromatic Fringe Patterns," Engineering
Fracture Mechanics, Vol. 11, pp. 621-633, 1979.

[4] Sanford, R.J., and Chona, R., "Analysis of
Photoelastic Fracture Patterns with a Sampled Least-
Squares Method," Proceedings of the SESA Annual
Spring Meeting, Dearborn, MI, pp. 273-276, May 1980.

[5] Barker, D.B., Sanford, R.J., and Chona, R.,
"Determining K and Related Stress Field Parameters
from Displacement Fields," 1983 SESA Proceedings,
Presented at the spring meeting in Cleveland, OH,
May 1983.

[6] Newman, J.C., Stress Analysis of Simply and Multiply
Connected Regions Containing Cracks by the Method of
Boundary Collocation, MS Thesis, Virginia
Polytechnic Institute and State University, 1969.

[7] Muskhelishvili, N.I., Some Basic Problems of the
Mathematical Theory of Elasticity, P. Noordhoff,
1953.

[8] Sanford, R.J., and Berger, J.R., "An Improved Method
of Boundary Collocation for the Analysis of Finite
Body Opening Mode Fracture Problems," to appear in
Engineering Fracture Mechanics.

[9] Tada, H., Paris, P.C., and Irwin, G.R., The Stress
Analysis of Cracks Handbook, Del Research Corp.,
1973.

[10] William::, M.L., "On the Stress Distribution at the
Base of a Stationary Crack," Journal of Applied
Mechanics, Vol. 24, pp. 109-114, 1957.

97



[11] Sanford, R.J., "A Critical Re-examination of the
Westergaard Method for Solving Opening Mode Crack
Problems," Mechanics Research Communications, Vol.
6, 1979.

[12] Kobayashi, A.S., Cherepy, R.D., and Kinsel, W.C., "A
Numerical Procedure for Estimating the Stress
Intensity Factor of a Crack in a Finite Plate,"
Journal of Basic Engineering, pp.681-684, December
1964.

[13] Gross, B., Srawley, J.E., and Brown, W.F., "Stress-
Intensity Factors for a Single Edge-Edge Notch
Tension Specimen by Boundary Collocation of a Stress
Function," NASA TN D-2395, August 1964.

[14] Srawley, J.E., Jones, M.H., and Gross, B.,
"Experimental Determination of the Dependence of
Crack Extension Force on Crack Length for a Single-
Edge-Notch Tension Specimen," NASA TN D-2396, August
1964.

[15) Hulbert, L.E., The Numerical Solution of Two
Dimensional Problems of the Theory of Elasticity,
Bulletin 198, Engineering Experiment Station, Ohio
State University, 1963.

[16] Newman, J.C., "Crack Opening Displacements in
Center-Crack, Compact, and Crack-Line Wedge-Loaded
Specimens," NASA TN D-8268, July 1976.

[17] Berger, J.R., An Improved Method of Boundary
Collocation for the Analysis of Finite Body Opening
Mode Fracture Problems, MS Thesic, University of
Maryland, 1986.

[18] Benthem, J.P., and Koiter, W.T., "Asymptotic
Approximations to Crack Problems," Methods of
Analysis of Crack Problems, G.C. Shih, ed., January
1972.

[19] Emery, A.F., Walker, G.E., and Williams, J.A., "A
Green's Function for the Stress-Intensity Factors of
Edge Cracks and its Application to Thermal
Stresses," Journal of Basic Engineering, Vol. 88, p.
47, 1966.

[20] Bueckner, H.F., "A Novel Principle for the
Computation of Stress Intensity Factors," ZAMM
(Zeitschrift fur Angewandte Mathemetik und Mechanik)
Band 56, pp. 529-545, 1970.

98



[21] Barker, D.B., Chona, R., Fourney, W.L., and Irwin,
G.R., "A Report on the Round Robin Program Conducted
to Evaluate the Proposed ASTM Standard Test Method
for Determining the Plane Strain Crack Arrest
Fracture Toughness, KIa, of Ferritic Materials,"
NUREG/CR-4996, ORNL/Sub/79-7778/4, January 1988.

[22] Kalthoff, J.F. et al., "Experimental Analysis of
Dynamic Effects in Different Crack Arrest Test
Specimens," Crack Arrest Methodoloay and
Applications, ASTM STP 711, G.T. Hahn and M.F.
Kannenin, Eds., American Society for Testing and
Materials, 1980, pp.109-127.

[23] Naus, D.J. et al., "Crack-Arrest Behavior in SEN
Wide Plates of Quenched and Tempered A 533 Grade B
Steel Tested Under Nonisothermal Conditions,"
NUREG/CR-4930, ORNL-6388, August 1987.

[24] ASTM Standard E-1221, "Standard Testing Procedure
for Determination of Crack Arrest Toughness," Annual
Book of ASTM Standards, Vol 03.01, 1988.

[25] Westergaard, H.M., "Bearing Pressures and Cracks,"
Journal of Applied Mechanics, Vol. 6, pp. 49-53,
1939.

[26] Sanford, R.J., "Application of the Least-squares
Method to Photoelastic Analysis," Experimental
Mechanics, Vol. 20, No. 6, June 1980.

[27] Longley, J.W., Least Squares Computations Using
Orthogonalization Methods, Marcel Dekker, Inc.,
1984.

[28] Dungarra, J.J., Moler, C.B., Bunch, J.R., and
Stewart, G.W., LINPACK Users Guide, Society for
Industrial and Applied Mathematics, 1979.

[29] Paris, P.C., "The Mechanics of Fracture Propagation
and Solutions to Fracture Arrester Problems," Boeing
Co. Document No. D2-2195, 1957.

[30] Gross, B., Roberts, E., and Srawley, J.E., "Elastic
Displacements for Various Edge-Cracked Plate
Specimens," NASA TN D-4232, 1967.

99



INITIAL DISTRIBUTION

OUTSIDE CENTER CENTER DISTRIBUTION

copies 1 011
1 011.5 Caplan

4 NRL 1 17 Krenske
1 173 Beach

1 Code 6000 1 1720.4 Wiggs
1 Code 6380 1 28 Wacker
1 Code 6320 1 2801 Crisci
1 Code 6396 1 2803 Hardy

1 281 Gudas
8 NAVSEA 1 2814 Montemarano

10 2814 Kirk
1 SEA 05R 1 522.1 TIC
1 SEA 05M 1 5231 office Services
1 SEA 05M2
1 SEA 08
1 SEA 55Y
1 SEA 55Y1
1 SEA 55Y3
1 SEA 092

1 NISC Code 369

12 DTIC

101


