
SBeyond Keyframing: An Algorithmic
Approach to Animation0

A. James Stewart DTIC
James F. Cremer E.ECTE

Computer Science Department JUL 141989
Cornell University U D
January 9, 1989

Abstract

The recent explosion of interest in physical system simulation may
soon lead to realistic animation of passive objects, such as sliding blocks
or bouncing balls. However, complex active objects (like human figures
and insects) need a control mechanism to direct their movements. We
present a paradigm that combines the advantages of physical simula-
tion and algoritlunic specification of movement. The animator writes
an algorithm to control the object and runs this algorithm on a phys-
ical simulator to produce the animation. Algorithms can be reused or
combined to produce complex sequences of movements, eliminating the
need for tedious keyframing. We have applied this paradigm to control
a walking biped. The walking algorithm is presented along with the
results from testing with the Newton simulation system.f!

1 Introduction

This paper describes a new paradigm for the control and animation of com-
plex active objects such as the human figure. This approach allows the
animator to control an object through an algorithm which specifies certain
"intuitive" variables as a function of time and of world state. In the case of
human figure walking, the animator might write an algorithm which controls
the acceleration of the figure's center of mass at one point in the animation,
and which controls the angle of the knees at another point. The algorithmic
approach to animation allows this to be done with ease, as demonstrated by
the walking algorithm presented in Section 6.

MMWMmTON STATEVM NA

Apr 01dfo public Teense; 8 0I.-# -,,,.UDistrib_2uti ,Unh:,~

Witkin and Kass [WK881 have combined physical simulation and key-
framing to produce realistic animation of their jumping Luxo lamp. With
their approach the animator uses spacetime constraints to specify several key
points for selected variables. These variables may be positions, velocities,
forces and so on. Combining spacetime constraint equations with the La-
grangian equations of motion and discretizing over time yields a system of
equations that are solved to produce the motion. Since the system is gen-
erally underconstrained (having multiple solutions) a solution can be chosen
to minimize the power, fuel comsumption and so on.

Our algorithmic approach is similar in that the animator can control
accelerations and forces, but differs in that the constraints can be added
or removed "on the fly" as the algorithm sees changes in the world state
which might not be predictable. In the case of human figure walking the
algorithm might, as the foot touches the ground, remove a foot positioning
constraint and add a leg stiffening constraint. The exact point of contact
is not predictable in advance. Additionally, the algorithmic approach frees
the animator from considering the dynamics of impact and other changes in
kinematic relationships, which are handled automatically by the simulation
component of our system. Incorporating impact into the work of Witkin
and Kass would require either guessing the impact points beforehand or
incorporating a "force field" approach as described in Section 2.

Other work on combining control and simulation has been done by Barzel
and Barr [BB881. Their method of dynamic constraints adds fictitious forces
which pull the simulated objects into specified positions. By doing this in tile
framework of a simulation system, the movement of complex physical objects
can be simulated with little work on the part of the animator. A limited form
of control is achieved by attaching forces to points on the object and dragging
these points.

Various other approaches to combine control and physical simulation have
been explored. Wilhelins [Wil871 blends kinematic and dynamic formula-
tions, Isaacs and Cohen !IC871 incorporate inverse dynamics in their simula-
tion system, and Brotman and Netravai [BN88] use dynamics and optimal
control to interpolate between key frames.

Some further insights on control can be gained from examining the current
literature in the field of robotics. While this field deals with controlling real,
physical objects, some of the techniques can be applied to produce simpler
animation. For

Researchers in robotics have taken various approaches to reduce the com- RA&I
plexity of control programs for physical objects. The computed torque CAM

method (see [Cra86I) for robot arms can be viewed as simplifying control ced
by reducing the gripper to a unit mass. The control program can ignore the lion
dynamics of the robot arm, only concerning itself with the position of the

2 Availability Codes

Avail andlor
DIMt Special

_09

end effector as a function of time.
In building his one-legged hopping machine, Raibert [Rai86] partitioned

control along three intuitive degrees of freedom: hopping, forward speed and
body posture. This resulted in surprisingly simple control programs for the
hopping robot. For multi-legged machines, Raibert introduced the idea of a
"virtual leg" which was defined in terms of the robot's physical legs. This
again led to simpfified control programs.

Both the computed torque method and Raibert's virtual leg demonstrate
that a proper choice of control variables can lead to simplified control pro-
grams. The problem with this approach is that there is often no simple
closed-form mapping of these control variables onto the forces and torques
needed to control the object. In some cases a complete system of equations
must be numerically solved to make this mapping. This is called "inverse
dynamics" and is typically rejected by robotics researchers as being too ex-
pensive to use in real-time control. For the purposes of animation, however,
it is ideal.

This is the basis of our algorithmic approach to control. This approach
advocates the selection of a small set of intuitive variables which are used
by the algorithm in controlling the object. The algorithm constrains these
variable with constraint equations, which, when combined with the standard
Newton-Euler equations of motion, produce a system of equations describing
the motion of the simulated object. The system of equations is maintained
by our general purpose physical simulator, called Newton. The Newton sim-
ulator is responsible for integrating the motion of the simulated objects over
time to produce the animation. As described in the next section, Newton
also automatically updates the system of equations as kinematic relation-
ships in the simulation change (one such change would occur as the biped's
foot touches the ground). Finally, Newton provides an interface to allow the
algorithm to add and remove constraint equations to and from the system
of motion equations.

In the event that the control algorithm underconstrains the motion of

the object, constrained optimization techniques are used to choose a motion
that optimizes some criterion while satisfying the constraints imposed by the
algorithm. Our decision to allow control programs to underconstrain the con-
trolled object - necessitating the use of constrained optimization techniques
- is based on the realization that control algorithms often require many fewer
control variables than there are degrees of freedom in the controlled object.
A robot modeled after the human figure may have as many as two hundred
degrees of freedom [ZeI82!, while the control program for such a robot would
only require twenty or thirty degrees of freedom to accomplish its task. In
programming our walking biped we used at most eleven of its sixteen degrees
of freedom at any given instant.

3

In summary, the algorithmic approach presented in this paper allows the
algorithm to constrain a small set of intuitive variables. The algorithm is
allowed to underconstrain the motion of the object, in which case a motion
is chosen which optimizes some criterion while obeying the constraints. The

Newton simulator incorporates the constraint equations into its automat-

ically maintained system of motion equations and integrates over time to

produce realistic animation.

Section 2 outlines the relevant background of the Newton simulation sys-
tem. Section 3 describes in detail the algorithmic approach, while Section 4

looks at some low-level controllers used by the walking algorithm. Following

this, Sections 5 and 6 outline the biped model and the walking algorithm,

and present results from testing the algorithm.

2 Overview of Newton

The walking algorithm described in this paper has been designed and tested

using the Newton simulation system, part of a large research effort in mod-

eling and simulation at CorneU University. The development of Newton was

inspired by the need for more general-purpose, flexible simulation systems.

Extensive mechanical engineering research has led to many developments

in physical system simulation. The ADAMS [Cha85] and DADS IHL87
systems are examples of large state-of-the-art systems from the mechani-

cal engineering domain. In many ways such systems are very sophisticated:

efficient formulations of mechanism dynamics are supported, fancy numer-

ical techniques for solving equation systems are used, object flexibility and

elasticity are often handled, and so on. Recent work by graphics and ani-

mation researchers [BB88,IC87,MW88,Iah88J in what is termed physically-

based modeling has generally been less sophisticated but has placed greater

emphasis on animation of interesting high-degree-of-freedom mechanisms.

A number of things are still lacking in all of these systems. Typically they
have almost ignored geometric considerations and represented objects simply

as point masses with associated inertias and coordinate systems. Geometric

modeling techniques have matured enough to allow object representations
used by dynamic simulations to include a complete geometric description

usable by a geometry processing module. Furthermore, impact, contact, and

friction are typically handled by current systems in an ad hoc or rudimentary
manner, if at all. In some cases, for instance, any possible impacts must be

specified in advance; in others, a kind of "force field" technique is used, in
which between every pair of objects there is a repelling force that is negligible

except when objects are very close together. In addition, the desire to manip-

ulate high-degree-of-freedom objects suggests that a module for specification
of control algorithms should be a significant part of a dynamics system.

4

2.1 Newton Architecture

Using Newton, a designer can define complex three-dimensional physical ob-
jects and mechanisms and can represent object characteristics from a wide
range of domains. An object is made up of a number of "models," each
responsible for organization of object characteristics from a particular do-
main. In most simulations the basic domains of geometry, dynamics, and
controlled behavior are modeled. A dynamic modeling system, for example,
is responsible for maintaining an object's position, velocity, and accelera-
tion, and for automatically formulating the object's dynamics equations of
motion. A geometric modeling system is responsible for information about
an object's shape, distinguished features on the object, and computation
of geometric integral properties such as volume and moments of inertia. It
also detects and analyzes object interpenetrations so that an interference
modeling system can deal with collisions between objects.

Newton is composed of three main components: the definition and repre-
sentation module, the analysis module and the report system. The definition
module analyzes high level language descriptions of Newton entities and orga-
nizes the corresponding data structures. The analysis component implements
the top-level control loop of simulations and coordinates the working of vari-
ous analysis subsystems. The report system handles generation of graphical
feedback to users during simulations as well as recording of relevant infor-
mation for later regeneration of animations.

2.2 Dynamic Analysis in Newton

A complex physical object is modeled as a collection of rigid bodies related
by constraints. Newton-Euler equations of motion are associated with each
individual rigid body.' At the time an object is created the equations are of
the form

rni: = 0

J(i ±w x X JW = 0.

where m is the mass, i is the second time derivative of the position (ie. the
acceleration), J is the 3 x 3 inertia matrix, and La and L are the rotational
velocity and acceleration, respectively.

A specification that two objects are to be connected with a spherical
hinge is met by the addition of one vectorial constraint equation and the
addition of some terms to the motion equations of the constrained objects.
For a holonomic constraint such as this one, the second derivative of the
constraint equation can be used along with the modified motion equations

'Newton is capable of using dynamics formulations other than the one outlined here. We
are also working on incorporating non-rigid bodies into the system.

5

to solve for object accelerations and reaction forces. Thus, the equations
above become

mr l =- Fhinge

J1I'i + w1 X Jlw = Cl X Fhing
m 2r 2 =-Fhinge

J2)2 + w2 X J2W2 = C2 X -Fhnge

il +j- x~ XCl + WlX (Wl X C1) =:2 + L2 X C2 + W2 X (W2 X C)

where ci is the vector from object i's center of mass to the location of the
hinge and Fhing is the constraint force that keeps the objects together. Note
that the last equation above is the second time derivative of the holonoinic
constraint equation rl + cl = r 2 + C2 for spherical joints. Other kinds of
hinges commonly used in Newton include revolute or pin joints, prismatic
joints, springs and dampers, and roiling contacts.

If gravity is present during the simulation the system will automatically
add gravitational force terms to the objects' translational motion equations.
The system keeps track of the constraints responsible for the various terms
in the motion equations. Thus, constraints, and their corresponding motion
equation terms, can Se removed at any time without necessitating complete
rederivation of the system of motion equations.

Using this method of dynamics formulation, closed-loop kinematic chains
are handled as simply as open chains. Though the formulation does lead to
a large set of equations, the matrices are very sparse and often symmetric.
Thus, acceptable efficiency is achieved by the use of sparse matrix solution
techniques.

2.3 Event handling, impact and contact

Newton, unlike many other simulation systems (though see [Fea85l), can
automatically and incrementally reformulate the motion equations as excep-
tional events occur during simulations. One kind of exceptional event is a
change in kinematic relationship between objects. Figure 1 shows a block
that was initially sliding along a table top. After some time the edge of
the table is reached and the contact relationship changes from a plane-plane
contact to a plane-edge contact. Still later the contact is broken altogether.
These changing contact relationships are automatically detected by Newton.
The system of motion equations and the related constraint equations are
automatically maintained by Newton to reflect these changing relationships.

During the course of a simulation, a variety of events can occur that
require special processing. Newton's event handler is primarily responsible
for detection and resolution of impacts, for analysis of continuous contacts

6

SiMulation

Figure 1: Changing Kinematic Relationships

between objects and corresponding maintenance of temporar'j hinges, special
kinds of hinges that model one sided constraints between objects in contact,
and for handling of events specified by control programs that necessitate
changes in the constraint set. For example, the walking algorithm might tell
the event handler to notify it when the biped's foot touches the ground so
that it can change the constraint equations.

The geometric modeling subsystem is responsible for detecting and an-
alyzing impacts and interpenetrations. In the usual method of handling
impacts, the dynamic analysis module formulates impulse-momentum equa-
tions in a manner completely analagous to the formulation of the basic
dynamics equations, and solves these equations to produce the instanta-
neous velocity changes caused by the impact. The details of Newton's meth-
ods for handling impact, contact and other exceptional events are given in
[ItH87,HII88,CS88,Cre89J.

3 The Algorithmic Approach

In Newton's automatically-generated equations of motion certain quantities
are considered to be unknowns. A system of simultaneous linear equations is
solved at each time step to produce values for the unknowns. These values
are integrated over time to produce the simulated motion. Typically, the
unknowns consist of accelerations and joint constraint forces, while positions,
velocities and joint control torques are knowns.

In the algorithinic approach, the programmer controls "intuitive" quanti-
ties defined as linear combinations of the unknowns. The programmer might,
for example, want to control the acceleration of the center of mass of a biped
without explicitly controlling each component of the biped. To do this, the
algorithm must define the acceleration of the center of mass in terms of the
accelerations of the centers of mass of the primitive components of the ob-

7

procedure initialize

begin
add-equation " f, N n

end

procedure controller(time

begin

=f(time)
end

Figure 2: The Format of an Algorithm

ject. Over the course of execution, the algorithm must supply the desired
acceleration of the center of mass at each point in time.

Figure 2 shows tile format of a control algorithm. For the sake of clarity
the algorithms will be described in a Pascal-like notation2 . Two procedures
are always present: one to initialize the algorithm (called initialize) and
one to be executed repeatedly over the course of the task (called controller).
The controller procedure has access to the complete state of the system.
The algorithm of Figure 2 trivially defines and controls the acceleration of
tile center of mass of an object (the function f must be defined elsewhere).

Defining and controlling a three-dimensional vectorial quantity like the
acceleration of the center of mass has the effect of adding three constraint
equations to the system of simultaneous linear equations that describe the in-
stantaneous motion of the object. By considering joint torques as unknowns
in this augmented system of equations, the system can be solved to produce
motion that satisfies the additional constraint equations. This is a simple
application of inverse dynamics.

For an object with n degrees of freedom the control algorithm can define
and control up to n independent scalar quantities3 . If fewer than n equations
are added the system of motion equations is underdetermined, and many dif-
ferent solutions could satisfy the constraints of the control algorithm. In this
case the algorithm must guide the selection of a solution by providing a
cost function which is quadratic in the unknowns. A standard numerical
optimization technique is used to compute a solution that instantaneously
(for each point in time) niiiizes the cost tunction while obeying the algo-
rithm's constraints. This is different from the approach of Witkin and Kass

2The algorithms are, for now, written in Lisp.
'The additional definitional equations could make the system of motion equations incon-

sistent. This would be an error on the part of the control algorithm.

8

[WK88], who optimize over the whole animation. This reflects tile different
philosophies of the two systems: Witkin and Kass specify all of the infor-
mation beforehand, while we let the control algorithm make decisions during

the animation. Such "on the fly" decisions make it impossible to do global
optimization, but allow much more versatility in the control algorithm by
not requiring a prniori knowledge of impacts and other exceptional events.

In summary, the programmer designs an algorithm in a high-level con-
puter language to control intuitive degrees of freedom of the object. These
degrees of freedom are defined as linear combinations of the unknowns in
the object's equations of motion. An augmented linear system of equations
describes the instantaneous behavior of the object; this system can be solved
to produce the object's configuration at each point in time. If the system
is underdetermined, the algorithm can provide a cost function to guide the
choice of a solution.

In the remaining sections we describe the application of this approach to
the design of a simple walking algorithm.

4 Low-level Controllers

In designing algorithms with Newton we found ourselves frequently using PD
controllers4 and curve-fitting controllers to control the "trajectory" of many
of the defined quantities. In controlling the biped, for example, a quintic
interpolation was used to plot the trajectory of the heel, and a PD controller
was used to orient the foot before it struck the ground. A small library of
these controllers is used in the biped algorithm, and will be described here.

PD controllers are used in the biped algorithm to control orientation,
position and joint angle. Each controller adds an equation to the system
of motion -'Tiatiois which defines the second derivative of the quantity in
terms of the first derivative and the quantity itself. The procedure in Fig-
ure 3 produces accelerations to move an object to within 1% of a position
x-desired within a given time delta-time. The quantities z, v and a are
data structures representing state variables of the controlled object. These
data structures are used by the add-named-equation function to create the
appropriate equation.

Execution of the procedure in Figure 3 causes a named equation to be

'A PD controller (Proportional, Derivative), also known as a "spring and damper" cot.-
troller, relates the second derivative of a variable linearly to the error in the variable's first

derivative and to the error in the variable itself. The equation is ;+ 1 i+ j(z - Zdsa,,rd) = 0
for some appropriate r. PD controllers are used extensively in robotics to move robot joints
into specified positions by calculating the joint acceleration as a function of the position and
velocity errors. A good explanation can by found in [Cras6]. Barzel and Barr [BB881 use a
form of PD controller to achieve their dynamic constraints.

9

procedure position-with-PD(constraint-name, object,

x-desired, delta-time

var z, v, a: quantity

r: real

begin

z = get-position-quantity(object)
v = get-velocity-quantity(object)

a = get-acceleration-quantity(object

r = - delta-time / log(.01)

add-named-equation(constraint-name,
a + v + -L(z - x-desired) 0 ")

end

Figure 3: PD Controller Used in Positioning

added to the system of motion equations. This equation will continue to
affect the motion of the object until it is explicitly removed by the control
algorithm.

A complete list of controllers available to the biped walking algorithm
is shown in Figure 7 at the end of the paper. Those with quintic in their
name do quintic interpolation to achieve the desired position and velocity in
the desired time. Quintic interpolation was chosen over cubic interpolation
to eliminate "jerk" (discontinuous acceleration) from the beginning and end
of the trajectory.

5 The Biped Model

The simulated biped is composed of a torso, two legs with knee joints and two
feet with toe joints. This model was adapted from a description in [McM84
and is shown in Figure 4. The hips and ankles are three degree of freedom
spherical joints, while the knee: ad toes are one degree of freedom revolute
joints, making a total of sixteen degrees of freedom. The biped is about six
feet tall with moments approximating those of a human being.

We hope to improve this model by incorporating joint limits and elas-
tic tendons. McMahon suggests that, during walking, energy is stored in
stretched tendons and is released when the stretched leg swings forward
[McM84I. This idea might be used to simplify the walking algorithm de-
scribed in the next section.

Newton's impact handling capabilities have not yet been extended to

10

line a.?

Simulation

Figure 4: Simulated Biped Model

accurately model the impact of the feet upon the ground. Instead, impact is
simulated by adding an external force and torque to the feet that holds them
level with the ground until they are released with an explicit command from
the control algorithm. This is as though the biped was walking with magnetic
shoes on a steel plate. Very shortly we expect to adapt the algorithm to
incorporate realistic impact.

6 The Walking Algorithm

An abbreviated version of the walking algorithm is shown in Figures 8 and
9, which can be found at the end of this paper. The algorithm cycles
through a set of six states: swing the right leg, land the right foot, lift
the left foot. swing the left leg, land the left foot, lift the right foot and
then repeat the cycle. In the swing phase, a quintic trajectory is plot-
ted for the swing foot with move-heel-to-target, while the stance leg is
stiffened with set-angle-with-PD and the foot is oriented for landing with
orient-with-PD (shown under START in Figure 9). In the landing phase,
the leading leg is stiffened as the foot nears the ground. Following this, the
takeoff phase flexes the trailing leg, causing the trailing foot to lift from the
ground. Once the trailing toe is bent to 10' the flexing constraint is removed
and the swing phase begins for the trailing leg.

The largest number of constraints are applied during the swing phase, as
shown in Table 1. Since the biped has sixteen degrees of freedom (DOF) it
remains underconstrained at all times. A quadratic cost function is therefore
defined (in initialize of Figure 9) in order to fully determines the motion

i1

Constraint Name DOF Constrained Item
TORSO-CONSTRAINT 3 torso orientation in 3 dim
L-KNEE-ANGLE I angle of revolute knee joint
R-HEEL-TRAJ 3 heel acceleration in 3 dim
R-FOOT-ORIENTATION 3 foot orientation in 3 dim
R-TOE-ANGLE 1 angle of revolute toe joint

Table 1: Swing Phase Constraints

0 0 Z 00

'0 0 root eo o0

Figure 5: Walking Cycle

of tile biped. The cost function is a weighted sum of the translational and
angular accelerations, and of the difference between the torso translational
acceleration and some acceleration defined by a function F which tries to
keep the torso mid-way between the two feet.

We found that a cost function which minimizes instantaneous transla-
tional and rotational acceleration usually produces smooth motion. In the
case of the simulated biped, the cost function causes the constrained heel

accelerati.mn to be achieved by a linear combination of small accelerations of
many components of the body, rather than a few large accelerations of those
components which are near the heel. We have observed that the combina-
tion of many small accelerations yields more stable motion than large, local
accelerations.

The walking algorithm was tested with the Newton simulation system.
Figure 5 shows ten frames in which the biped completes a full cycle of the
six phases described above. The full simulation consisted of twenty seconds
of straight-line walking on a flat surface and generated the statistics shown
in Figure 6. The version of the algorithm that produced these statistics had
the biped increase speed at 4.0 seconds, as can be seen on the graphs.

12

6.2,

LIst hee1 P.0I$.. Right heel pl=..

1.9.

66 3 25 7 .5 o @.6 2.5 26 7.5 @6.

l L il

Left heel oelocity () tlight hee1 seloplty ()

2.6 2.6

61.2

0. 5 2 . 6 . 7.5 14.0 6. .2 3.6 7. Is*

T.,,. p..d ca *

Figure 6: Newton Statistical Output

Due to the simplicity of our current biped model, this algorithm is forced
to use too many constraints to achieve the desired motion. In particular,
the trajectory of the liel must be specified. However, if the biped model
were extended to include elastic tendons the number of constraints might be
reduced. In this case, thle swing phase would not have to specify a trajectory
for the heel. Instead, no torque would be appled in the swing leg; it would
be pulled forward by the stored energy of the stretched tendons. This might
approximate the "ballistic walking" described by McMahon[McM84.

We feel that a high-level algorithm should greaily underdetermine the
motion oif the controlled object. Our philosophy is to incorporate iu the
model many "passive elements" - such as springs, dampers and joint limits
- which reduce the number of constraints needed by the control algoritm.
The algorithm then has the job of guiding, rather than forcing, the motion
of the object.

13

7 Summary

We have presented an algorithmic approach to control. This approach allows
tile animator to choose intuitive degrees of freedom by which to control an
object. The control algorithm adds and removes constraint equations "on
the fly" as the world state changes; a priori knowledge of the exact mo-
ment of each state change is not required. With the algorithmic approach,
all consideration of dynamics and impact is left to the Newton simulation
system. The burden on the animator is further reduced by allowing underde-
termined specification of motion through the use of constrained optimization
techniques.

We have presented an algorithm to control a simulated biped, along with
results from its execution on the Newton simulation system. The algorithm
has the advantage of being intuitive, simple to program, and reusable.

Unlike keyframing, the algorithmic approach does not require the anirna-
tor to repeat the work of creating new key frames for every walking sequence.
Unhike keyframing, the algorithmic approach allows various algorithms to be
combined to produce long animated sequences. We believe that in the future,
animating complex physical objects will require a structured, algorithmic ap-
proach similar to that presented in this paper.

8 Future Work

We will incorporate elastic tendons and joint friction into the Newton simu-
lation system and modify the walking algorithm accordingly. From there we
hope to develop a suite of algorithms to allow a biped to walk, turn. cnilb
stairs, manipulate objects, and so on. [n keeping with the structured ap-
proach presented in this paper we will attempt to combine these algorithms
to have the biped perform compbicated tasks. In carrying an object up a
flight of stairs the high-level algorithm would combine subroutines to pick
tip the object, walk to the stairs, climb the stairs and deposit the object.

Acknowledgements

This work was supported in part by NSF grant DMC 86-17355, ONR grant
N0014-86K-0281 and DARPA grant N0014-88K-0591. Support for James
Stewart is provided in part by U.S. Army Mathematical Sciences Institute
grant U03-8300 and NASA training grant NGT-50327. The Newton system
is being developed in Common Lisp on Symbofics Lisp Machines and can be
used on other machines supporting Common Lisp.

14

References

[BB881 Ronen Barzel and Alan H. Barr. A modeling system based on dy-
namic constraints. In Computer Graphics (SIGGRAPH 88), pages
179-188. ACM, August 1988.

[BN881 Lynne S. Brotman and Arun N. Netravai. Motion interpolation
by optimal control. In Computer Graphics (SIGGRAPH 88), pages
309-315. ACM, August 1988.

[Cha851 M. Chace. Modeling of dynamic mechanical systems. Presented
at the CAD/CAM Robotics and Automation Institute and Inter-
national Conference, Tuscon, Arizona, February 1985.

[Cra86 John J. Craig. Introduction to Robotics: Mechanics and Control.
Addison Wesley, 1986.

[Cre89] James F. Cremer. PhD thesis, Cornell University, in preparation,
1989.

[CS881 James F. Cremer and A. .James Stewart. Using the newton sim-
ulation system as a testbed for control. In Proceedings of the 3rd
IEEE International Symposium on Intelligent Control, 1988.

[Fea85) Roy Featherstone. The dynamics of rigid body systems with multi-
ple concurrent contacts. In 0. D. Faugeras and G. Giralt, editors,
Robotics Research: The Third International Symposium, pages 191-
196. The MIT Press, 1985.

[Itah88j James K. Hiahn. Realistic animation of rigid bodies. In Computer
Graphics (SIGGRAPH 88), pages 299-308. ACM, August 1988.

[HH87; C. M. Hoffmann and J. E. Hopcroft. Simulation of physical systems
from geometric models. IEEE Journal of Robotics and Automation,
RA-3(3):194-206, June 1987.

[HH88] C. M. Hoffmann and .J. E. Hopcroft. Model generation and modifi-
cation for dynamic systems from geometric data. Presented at the
NATO Workshop on CAD-based Programming for Sensor-based
Robots, 11 Ciocco, Italy, July 1988.

[HL87! E. J. Haug and G. M. Lance. Developments in dynamic sys-
tem simulation and design optimization in the center for computer
aided design: 1980-1986. technical report 87-2, University of Iowa,
February 1987.

15

[IC87] Paul M. Isaacs and Michael F. Cohen. Controlling dynamic simu-
lation with kinematic constraints, behavior constraints and inverse
dynamics. In Computer Graphics (SIGCRAPH 87), pages 215-224.
ACM, July 1987.

[McM84] T. A. McMahon. Mechanics of locomotion. The International
Journal of Robotics Research, 3(2):4-28, 1984.

[MW88] Matthew Moore and Jane Wilhelms. Collision detection and re-
sponse for computer animation. In Computer Graphics (SIG-
GRAPH 88), pages 289-298. ACM, August 1988.

[Rai861 M. H. Raibert. Legged Robots That Balance. The MIT Press, 1986.

[Wi1871 J. Wilhelms. Using dynamic analysis for realistic animation of
articulated figures. IEEE Computer Graphics and Applications,
7(6):12-27, 1987.

[WK88! Andrew Witkin and Michael Kass. Spacetime constraints. In Corn-

puter Graphics (SIGGR.4PH 88), pages 159-168. ACM, August
1988.

[Zel82! D. Zeltzer. Motion control techniques for figure animation. IEEE
Computer Graphics and Applications, 2(9):53-59, 1982.

16

position-with-PD(constraint-name, object, xd, At)

posit ion-point-with-PD(constraint-name, object, point-on-object, zd, At

orient-with-PD constraint -name, object, 4d, at)

set-amglo-wivh-PD(constraint -name, joint, 0d. at

position-vxth-quintic(constraint -name, object, zd, tVj, At
position-point-uirh-quintxc(const raiznno, object, point-on-object , Zd ud, At

orient -with-quint ic(constraint -name, object, * d.
4
ds, At

set-angle-vith-quintic(constraint -name, joint, 8d, id~, At

Figure 7: Low-level Controllers'

cnt ti.U-iflaiY = 0.5 s

stride - 0.5 a

direction . (U 0 0)
inside-step-fraction = 20 %~
heel-Y-strike-spood - -0.05 M/s

heel-I-strike-speed - 0.02 M/s
foot-strike-orientation = 100 about (0 0 1)

torso-orientation = -I0* about (0 0 1)

var phase: itart r-suing r-land I-lift 1-takeoff 1-sving 1-land r-lift r-takeoff

procedure move-heeL-to-% argot (constraint -name, foot, other-foot, hip, other-hip

Tar target-K, target-v. hip-to-hip: vector

begin

hip-to-hip a get-position(TORSO, hip)-get-position(TORSO, other-hip

target-z - get-position(other-foot, HEEL) + stride x direction

* iside-step-fraction x hip-to-hip

target-v -heel-Y-strike-speed x (0 1 0) + hool-l-striko-speod x direction

posxion-point-w%%h-quintic(constraint-name. foot, HEEL, target-z, target-v, time-in-air

end

Figure 8: Definitions for the Walking Algorithm

17

procedure initialize

lot F K((,. 0 1 + r,.,.)- ~ +.~#..,g+ i..ot

beg in
quadraticceost = : + 1:2+ 2O(F,..-F)2
phase = START
end

procedure controller(time

beg in
case phase of

START:
phase - R-SWING
orient-with-D TORSO -CONSTRAXN[T. TORSO, torso -orient at ion, 2.0 3
move-h~el-t o-t argt(ft-NEEL-TRAJ, R-IBEEL, i-HEEL, ft-NIP, i-HIP

set-angle-with-PD i-KNEE-ANGLE, L-KNU, 1750, 0.1 s)
orjent-vjth-PO R-FOOT- OIIENTATI ON. ft-FOOT, foot -strike-or ientat ion, time-in-air

set-ang1e-vith-PD ft-TOE-ANGLE, f-TOE-JOINT, 0*, time-in-air

R-SWING:
if distance-%o-t argot (ft-FOOT) < 0.01 a then

phase = R-LANDING
remove-constraxnt(f-HEEL-TRIl
set-angle-uith-PD(ft-KNEE-ANGLE, ft-KNEE, 175*. 0.05 s

R-LANDING:
if heel-has-tonched(R-FOOT) then

phase = L-TAKEOFF
resove-constraints(ft-FOOT-OftIENTATION. ft-TOE-ANGLE, L-KNEE-ANGLE
set-angle-with-PO i-KNEE-ANGLE, L-KNEE, 1600, 0.1 s

L-TAKEOFF:
if joint-angle(i-TOE-JOINT) > 10* then

phase - L-SWING
ressove- constraint (i-KNEE-ANGLE
sove-hel-t *-target (L-EEEL-TRAJ, i-HEEL, ft-HEEL, i-NIP, ft-NIP
orient-ith-O L- FOOT -OftIENTATION, i-FOOT, foot -strike-orient at ion, time-in-air
set-angle-with-PO i-TOE-ANGLE, bL-TOE-JOINT, 180*, time-in-air

Cases L-SWING, L-LANDING, and R-TAKEOFF
are analogous. to the preceding three ease.

end
end

Figure 9: Abbreviated Walking Algorithm

18

