——r

, o9
R
UNCLASSIFIED LY S

‘Weer Date frtered)
AD-A210 117 Fiavion race e

PITORE TOVT T[N PO

12. 60vT ACCESSION WO 3 ORECIPIENT'S CATA DL Nom:iik

4. VTITLE (anoSubritie) S TvyPt OF REPOEY & PLEICD [OVIRID

Ada Compiler Validation Summary Report: vergix 16 Fob. 1989 1 16 Feb. 1990

Corporation, VAda-110-15125-1, Version 5.7, HP 9000 Series
300 Model 350 (Host) to MVME-133A-20 (Target),
90216kl .10031

e vluroalzncfbac. REPORT MUMELR

7. AUTHODR() 8 CONTRALT OF GRANTY NumMEfR(s)
WrigfM-Patterson ATB
Davton, OH, USA

0. PERFORMING ORGANIZATION AND ADDRLSS 10. PRDGRAM [EMINT PRZDECT . TASK
AREA & WORK UNIT NUMEiRS

Wright-Patterson AFB
Dayton, OH, USA

11. CONTRD.LING OFFICE Nawi AND ADDRESS 12. RIPORT DATE
Acda ngnt Program Office ¢ Det
United States Department © efense oS
wWashington, DC 20301-3081
14, MONITORING AGENIY NAMI & ADDRESS(!f difterent from Controliing Otice) 15, SECURITY (LASS (oftrisrepon

. UNCLASSIFIED
grlsht-f’gtte;::” AFB Y5e PLLLASSITICATION DOWNIRASING

avton H WRidue .

3 » OH, N/A
16. DISTRIBJTION STATEMINT (of thus Report)

- —r
Approved for public release; distribution unlimitecd. D %
ax
JUN &
17. DISTRIBLTION STATEWMINT (cfthedbrmrartente sz . nB oca 20 1o Heren friom Rego)
~ Y ;w; PR

NILASSIFIED w N
16. SJPFUEWiNTARY NUTES
15. KEYwIRDS (Continue onreverse 5:0¢ if necessan anc identify by block numbper)
Rda Procrarsming lancguage, Aca Compiler Valicdaticn Summary Report, Ace

Ccrpiler Valicdation Capability, ACVC, Valicdation Testing, AZla
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRAZY (Continue Onreverse s:0¢ if necessary and dentfy by diock number)

Verdix Corporation, VAda-110-15125-1, Version 5.7, Wright-Patterson AFB, HP 9000 Series
300 Model 350 under HP-UX, Release 6.2B (Host) to MVME-133A-20 bare machine (Target),
ACVC 1.10.

DD PU 1473 [01vion OF 3 NDv 65 315 OBSO.ETE
1 AN 13 S/N D102-1F-014-860) UNCLASSIFIED

QIPUIL T Yy P, atC V"% 1AL AT Tw'C Pr°! /hnam Nirr Farpraat

Ada Compiler Validation Summary Report:

Compiler Name: VAda-110-15125-1, Version 5.7
Certificate Number: 890216W1.10031
Host: HP 9000 Series 300 Model 350 under
HP-UX, Release 6.2B
Target: MVME-133A-20
bare machine

Testing Completed 16 Feb 1989 Using ACVC 1.10

This report has been reviewed and is approved.

D) ()
— k.
Ada Validation Facility
Steve P. Wilson
Technical Director l—
ASD/SCEL KT
Wright-Patterson AFB OH 45433-6503

-)]
.S ‘ v
A PP —

Kda Validation Organization i
Dr. John F. Kramer —
Institute for Defense Analyses Dist

Alexandria VA 22311 |

Ao

-

o

YT, 2

Ada Joint Program Office
Dr. John Solomond
Director, AJPO
Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-237.0589
88-12~14-VRX

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890216W1.10031
Verdix Corporation
VAda-110-15125-1, Version 5.7
HP 9000 Series 300 Model 350 Host and MVME-133A-20 Target

Completion of On-Site Testing:
16 Feb 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45U433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
washington DC 20301-3081

CHAPTER 1

[N NN
e s & s e
U =W o

N

CHAPTER

NN
.
N -

CHAPTER

w

e & @ s e @ L]
~N N3O ETWN

WwWwwwwwwww
.

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT .

REFERENCES. . ¢« ¢« ¢ ¢ ¢ ¢« « ¢ « + .
DEFINITION OF TERMS
ACVC TEST CLASSES « « ¢« ¢« v « « + .

CONFIGURATION INFORMATION

CONFIGURATION TESTED. « « & « « . .
IMPLEMENTATION CHARACTERISTICS. . .

TEST INFORMATION

TEST RESULTS. ¢ « v &« & & o & o « &
SUMMARY OF TEST RESULTS BY CLASS. .
SUMMARY OF TEST RESULTS BY CHAPTER.
WITHDRAWN TESTS ¢ ¢ &« ¢ & ¢ ¢ ¢ & &
INAPPLICABLE TESTS. « + « ¢« ¢« .« .

TEST, PROCESSING, AND EVALUATION MODIFICATIONS.

ADDITIONAL TESTING INFORMATION. .
Prevalidation . « ¢« ¢« ¢ ¢« ¢ o o
Test Method . . . + « « ¢« ¢« « .
Test Site ¢« ¢ ¢ o v o ¢ ¢« o o o«

DECLARATION OF CONFORMANCE
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

.

.

.

.

U)LAJL,\JU)LA)L'UWUJWW

4 s s
]
EFwWw NN

n N

| L)

]
NIV DY 2 s

]

o ———

- ~ — e o

CHAPTER 1

INTRODUCTION

-

This Validation Summary Report -(USR)} describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability, {ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the wmaximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal 1language constructs and that it identifies and rejects
illegal 1language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

121

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

« To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

+ To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 16 Feb 1989 at Aloha OR.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. 1In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D~139 (Fern Street)
Washington DC 20301-308%

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH U45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-18154, . February 1983 and 1SO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4, ada Compiler Validation Capabilitv User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant ¢to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization, The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this

report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. . A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured using the ACYC. The ACVC
contains both 1legal and 1illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Ciass A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler..
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute succesasfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. C(lass L tests are compiled separately and execution is attempted.
A Class L %ozt passes if it is rclected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the prnacedure THECX_FTLE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The prccedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. 1If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
eéxample, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

o ——~ ~~-

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inappli~able to
the implementation. The applicability of a test to an implementation is
considered each time the implementation 1s validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 1is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: VAda-110-15125.1, Version 5.7

ACVC Version: 1.70

Certificate Number: 890215W1.10031

Host Computer:

Machine: 4P 2097 Zeries 3N Model PRD

Operating System: HelY
Release R.0D

Memory Sicte: ‘h megactvtes

Target Computer:

Machine:
Board: MVME-123A-20
CPU: Motaorola 68020

Operating System: bare machine

Memory Size: 1 megabyte

Communications Network: R3232 Serial Port

CONFIGURATION INFORMATION

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. {(See test D29002K.)

(2) The compiler correctly processes tests containing looo
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(2) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests DBUQOSE..C (3 tests).)

b. Predefinred types.

(1) This implementation supports the additional predefined <ypes
TINY INTEGER, SHORT _INTEGER, and SHORT_FLOAT in packaze
STANDARD. (See tests BB6001T..Z (7 tests).)

2. Expression evaluation.
The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:
(1) None of the default initialization expressions for record
components are evaluated before any value is checked for

membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bita for extra precision and

2-2

CONFIGURATION INFORMATION

uses all extra bits for extra range. (See test C35903A.)

(4) Sometimes CONSTRAINT ERROR 1is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test CU52324.)

(5) NUMERIC_ERROR is raised when a 1literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test CU5252A.)

(6) Underflow is gradual. (See tests C45524A..7Z.)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests CU6C12A..2.)

{2) The method used for rounding to longest integer is round to
even. (See tests CU6012a..2.)

{3) The method used for rounding to integer in static universal
real expressions is round to even. (See test CHADIUA.)

Array types.

An implementation is allowed to raise NUMERIC _ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAY INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises no exception. (See test
C360034.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with INTEGER'LAST + 2 components. (See test
€362024.)

(3) NUMERIC_ERROR is raised when 'LENGTH 1is applied to a null

array type with SYSTEM.MAX_INT + 2 components. (See test
€36202B.)

2-3

S e e e — o e e - .y«

CONFIGURATION INFORMATION

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTZIGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See
test C52103X.)

(5) A packed two~dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match 1in array slice assignments. This implementation
raises NUMERIC_ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised

when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT_ERROR i
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C520134.)

Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests CU3207A and CU3207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated

when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test EU3211B.)

2-4

h.

i.

e e e T -

CONFIGURATION INFORMATION

Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Input and output

(1) The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT_IO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes IN FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes 1IN _FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO- (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE2102V.)

(5) Modes IN_FILE and OUT_FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102X and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE31104, and CE31144.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

2-5

S

(1)

(12)

(13)

(14)

(15)

CONFIGURATION INFORMATION

Temporary direct files are
closed. (See test CE2108C.)

Temporary text files are given
(See test CE3112A.)

More than one internal file
external file for sequential
(See tests CE2107A..E, CE2102L,

More than one internal file
external file for direct files

given

names and deleted when

names and deleted when closed.

can be associated with each
files when writing or reading.
CE2110B, and CE2111D.)

can be associated with each
when writing or reading. (See

tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

internal file
text files

More than one
external file for

can be associated with each
when reading or writing. (See

tests CE3111A..E, CE3114B, and CE31154.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 36 tests had been withdrawn because of test errors. The AVF
determined that 329 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A 3 C D E L

Passed 129 1132 1994 17 34 46 3352

Inapplicable 0 6 323 0 0 0 329

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 U6 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 y 5 6 7 8 9 10 11 12 13 14

Passed 199 577 K45 245 172 99 161 332 137 36 252 298 299 3352
Inappl 14 72 135 3 0 0 5 1 0 0 0 77 22 329
Wdrn 0 1 0 0 0 0 0 1 0 0 1 29 4 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

A39005G B97102E BC3009B CD2A62D CD2A63A CD2A63B
CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D
CD2AT3A CD2AT3B CD2AT3C CD2AT3D CD2A76A CD2A76B
CD2A76C CD2AT6D CD2A81G CD2A83G CD2A84M CD2A84N
CD2B15C CD5007B CD50110 CD7105A CD7203B CD7204B
CDT205C CD7205D CE2107I CE3111C CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of Ffeatures that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapolicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 329 tests were inapplicable for the reasons indicated:

a., The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM MAX_DIGITS:

c24113L..Y C35705L..Y C35706L. .Y C35707L. .Y
C35708L..Y c35802L..2 Cus241L, .Y Cus5321L..Y
CU45421L, .Y Clus5521L..2 Cclus524L..2 Clus5621L..2
Cus641L. .Y cu6012L..2

b. C35702B and B86001U are not applicable because this implementation

3-2

TEST INFORMATION

supports no predefined type LONG_FLOAT.

The following 16 tests are not applicable because this implementation
does not support a predefined type LONG_INTEGER:

cus5231C cu45304C cus502C Cl5503C cu45504C
CU45504F C45611C cus5613C clseuc cus631C
cus5632C B52004D C55B07A B55B09C B8600 W
CD7101F

C45531M..P (U4 tests) and CL5532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX_ MANTISSA is less than 47.

C86001F is not applicable for this implementation because, the package
TEXT_IO is dependent upon package SYSTEM. This test recompiles package
SYSTEM, making package TEXT_IO, and hence package REPORT, obsolete.

B86001Y 1is not applicable because this imnlementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CD1009C, CD2A41A..B (2 tests), CD2AL1E, and CD2AU42A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types.

CD2A611 and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

CD2A8Y4B..I (8 tests) and CD2ABUK..L (2 tests) are not applicable
because this implementation does not support size clauses for access
types.

CD2A91A..E (5 tests), CDS5012J, CD5013S, and CD5014S are not applicable
because +this implementation does not support size clauses for tasks or
task types.

The following U42 tests are not applicable because this implementation
does not support an address clause when a dynamic address is applied to
a variable requiring initialization:

CD5003B. .H CD50114..H CD5011L..N CD5011Q
CD5011R CD5012A..1 CD5012L CD5013B
CD5013D CD5013F CD5013H CD5013L
CD5013N CD5013R CD5014T. .X

3-3

aa.

ab.

ac.

ad.

ae.

TEST INFORMATION

CE2102D is inapplicable because this implementation supports CREATE

with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports CREATE

with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F is 1inapplicable because this implementation supports CREATE

with INOUT FILE mode for DIRECT_IO.

CE21021 4is 4inapplicable because this implementation supports CREATE

with IN_FILE mode for DIRECT IO.

CE2102J 1is inapplicable because this implementation supports CREATE

with OUT_FILE mode for DIRECT_IO.

CE2102N 1is inapplicable because this implementation supports OPEN
IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET
IN_FILE mode for SEQUENTIAL IO.

CE2102P 1is inapplicable because this implementation supports OPEN
OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET
OUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports OPEN
INOUT_FILE mode for DIRECT_IO.

CE2102S is inapplicable because this implementation supports RESET
INOUT_FILE mode for DIRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN
IN_FILE mode for DIRECT IO.

CE2102U is inapplicable because this implementation supports RESET
IN_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports open
OUT_FILE mode for DIRECT_IO.

CE2102W is inapplicable because this implementation supports RESET
OUT_FILE mode for DIRECT_IO.

with

with

with

with

with

with

with

with

with

CE3102E is 1inapplicable because this implementation supports CREATE

with IN_FILE mode for text files.

CE3102F is inapplicable because this implementation supports RESET for

text files.

CE3102G is inapplicable because this implementation supports deletion

of an external file. for text files.

3-4

TEST INFORMATION

af. CE3102I 4is inapplicable because this implementation supports CREATE
with OUT_FILE mode for text files.

ag. CE3102J 1is inapplicable because this implementation supports CPEN with
IN_FILE mode for text files.

ah. CE3102K is inapplicable because this implementation supports OPEN with
OUT_FILE mode for text files.

ai. CE3115A is not applicable because resetting of an external file with
OUT_FILE mode is not supported with multiple internal files associated
with the same external file when they have different modes.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It 1is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 10 tests.

The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

B24009A B33301B B380034 B38003B B38009A B38009B
B41202A B91001H BC 1303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

2.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
VAda-110-15125-1 was submitted to the AVF by the applicant for review. Analysis
of these results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

3-5

TEST INFORMATION

3.7.2 Test Method

Testing of the VAda-110-15125-1 using ACVC Version 1.10 was conducted on-site by
a validation team from the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and software
components:

Host computer: HP 9000 Series 300 Model 350
Host operating system: HP-UX, Release 6.2B

Target computer: MVME-133A-20

Target operating system: bare machine

Compiler: VAda-110-15125-1, Version 5.7

The host and target computers were linked via RS232 serial port contection.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by tHe
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were not 1loaded directly onto the host
computer. The test files were loaded to a Sun 3. The test were accessed via
NFS from the HP 9000 Series 300 Model 350. via NFS.

After the test files were loaded to disk, the full set of tests was compiled and
linked on the HP 9000 Series 300 Model 350; then all executable images were
transferred to the MVME-133A-20 via NFS and run. Results were printed from the
Sequent Symmetry.

The compiler was tested using command scripts provided by Verdix Corporation and
reviewed by the validation team. The compiler was tested using all default
option settings except for the following:

OPTION EFFECT

- suppress generation of warning messages.

Tests were compiled, 1linked, and executed (as appropriate) using two host
computers and a single target computer. Test output, compilation listings, and
Job logs were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-6

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at Aloha OR and was completed on 16 Feb 1989,

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

Verdix Corporation has submitted the following Declaration
of Conformance concerning the VAda-110-15125-1.

g o—~

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE
Compiler Implementor: Verdix Corporation
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OE U5433-6532

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: VAda-110-15125-1, Version 5.7
Host Architecture ISA: HP 9000 Series 300 Model 350
Host 0S and Version: HP-UX, Release 6.2B

Target Architecture ISA: MVME-133A-20
Target Operating System: bare machine

Implementor's Declaration

I, the undersigned, representing Verdix Corporation, have implemented nc
delibderate extensions to the Ada Language Standard ANSI/MIL-STD-1813A in

-

the compiler{s) 1listed in this declaration. I declare that Verdix
Corporation is the owner of record of the Ada language compiler(s) liste:d

-

above and, as such, 1is responsidbie for maintaining said compiler(s) in
confcrmance to ANSI/MIL-STD-1815A. All certificates and registratisns far
Ada language compilerfs) listed in this declaration shall be made onlvy i

the owner's c¢orporate name.

‘. —"

L ! Date:
Verdix Corporation

Stephen F. Zeigler, Vice-President, Ada Products Division

Owner's Declaration

I, the undersigned, represen<ing Verdix Corporaticn, take Tzl
respensibilicy for implementaticsn and maintenance of Yhe A2z comniler o

listed above, and agree ¢ the putiiz disclosure 2f the ©inmal Valizaitio-
Sumzary Repor:. I declare that a.l of the Ada language compilers listed,
and their host/target perforzance, are in compliance with the Ada Languzre

Standard ANSI/MIL-STD-181%A.

_— - Date:
Verdix Corporation
Stephen F. Zeigler, Vice-Presiden:t, Ada Products Divisicn

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the VAda-110-15125~1, Version 5.7, as described in this
Appendix, are provided by Verdix Corporation. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647,
type SHORT_INTEGER is range -32768 .. 32767;
type TINY_INTEGER is range -128 .. 127;

type FLOAT is digits 15 range -16#0.1FFFFFFFFFFFFF# .. 16#0.1FFFFFFFFFFFFF#:

type SHORT FLOAT is digits 6 range -16#0.FFFFFF# .. 16#0.FFFFFF#;

type DURATION is delta 0.001 range -2147U483,5u48 .. 2147483.6U7;

end STANDARD;

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas
1.1. INLINE_ONLY Pragma

The INLINE_ONLY pragma, when used in the same way as pragma INLINE, indicates to the compiler
that the subprogram must always be inlined. This pragma also suppresses the generation of a callable
version of the routine which saves code space. If a user erroneously makes an INLINE_ONLY subpro-
gram recursive a warning message will be emitied and an PROGRAM_ERROR will be raised at run
time.

1.2. BUILT_IN Pragma

The BUILT_IN pragma is used in the implementation of some predefined Ada packages, but provides
no user access. It is used only to implement code bodies for which no actual Ada body can be pro-
vided, for example the MACHINE_CODE package.

13. SHARE_CODE Pragma

The SHARE_CODE pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument This pragma is only allowed
immediately at the place of a declarative ilem in a declarative part or package specification, ar after 2
library unit n a compilation, but before any subsequent compilation unit

When the first argument is a generic unit the pragma applies to all instantiations of that generic. When
the first argument is the name of a generic insiantation the pragma applies only 10 the specified instan-
uation, or overloaded instantiations.

If the second argument is TRUE the compiler will v 10 share code generated for a genenic instantia-
uon with code generated for other instanuations of the same generic. When the second argument 1s
FALSE each instantiation will get a unique copy of the generated code. The extent to which code 1s
shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic uniL

The name pragma SHARE_BODY is also recognized by the implementation and has the same cffect as
SHARE_CODE. It is inciuded for compatability with eariier versions of VADS.

1.4. NO_IMAGE Pragma

The pragma suppresses the generation of the image array used for the IMAGE attribute of enumeration
types. This eliminates the overhead required 10 store the armay in the executable image. An atempt to
use the IMAGE auribute on a type whose image array has been suppressed will result in a compilation
waming and PROGRAM_ERROR raised at run time.

1.5. EXTERNAL_NAME Pragma

The EXTERNAL_NAME pragma iakes the name of a subprogram or variable defined in Ada and
allows the user to specify a different exiernal name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification,

B-2

B

1.6. INTERFACE_NAME Pragma

The INTERFACE_NAME pragma takes the name of a a variable or subprogram defined in another
language and allows it 1o be referenced directly in Ada. The pragma will replace all occurrences of the
variable or subprogram name with an external reference to the second, link_argument. The pragma is
allowed at the place of a declaratve item in a package specification and must apply 1o an object or sub-
program declared earlier in the same package specification. The object must be declared as 2 scalar or
an access type. The object cannot be any of the following:

a loop variable,

a constant,

an inittialized variable,

an array, or

a record.

1.7. IMPLICIT_CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disal-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is
ON.

18. OPTIMIZE_CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies whether the code should be optimized by the compiler. The
default is ON. When OFF is specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas
2.1. CONTROLLED
This pragma is recognized by the implementation but has no effect

2.2. ELABORATE
This pragma is implemented as described in Appendix B of the Ada RM.

23. INLINE
This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to "C’ and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. All parameters must have mode IN. Record and array
objects can be passed by reference using the ADDRESS aturibute.

2.5, LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY_SIZE

This pragma is recognized by the implementation. The implementation does not allow SYSTEM w0 be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. NON_REENTRANT

This pragma takes one argument which can be the name of either a library subprogram or a subprogram
declared immediately within a library package spec or body. It indicates to the compiler that the sub-
program will not be called recursively allowing the compiler to perform specific optimizations. The
pragma can be applied 10 a subprogram or a set of overloaded subprograsm within a package spec or

B-3

package body.

2.8. NOT_ELABORATED

This pragma can only appear in a library package specificauon. It indicates that the package will not
be elaborated because it is either part of the RTS, a configuration package or an Ada package thai is
referenced from a language other than Ada. The presence of this pragma suppresses the gencration of
elaborauion code and issues warnings if elaboration code is required.

2.9. OPTIMIZE
This pragma is recognized by the implementation but has no effect,

2.10. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite types. It will
not causes objects o be packed at the bit level.

2.11. PAGE
This pragma is implemented as described in Appendix B of the Ada RM.

2.12. PASSIVE
The pragma has three forms :

PRAGMA PASSIVE:
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied 10 a task or task type declared immediately within a library
package spec or body. The pragma directs the compiler to optimize cerain tasking operations. It is
possible that the statements in a task body will prevent the intended optimization, in these cases a wam-
ing will be generated at compile time and will raise TASKING_ERROR at runtime.

2.13. PRIORITY
This pragma is implemented as described in Appendix B of the Ada RM.

2.14. SHARED
This pragma is recognized by the implementation but has no effect

2.15. STORAGE_UNIT

This pragma is recognized by the implementation. The implemenwation does not allow SYSTEM 10 be
modified by means of pragmas, the SYSTEM package must be rccompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that RANGE_CHECK and DIVISION_CHECK can-
not be supressed.

2.17. SYSTEM_NAME

This pragma is recognized by the implementation. The implementation does not allow SYSTEM 10 be
modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
3.1. P'REF
For a prefix that denotes an object, a program unit, a label, or an entry:

B-4

This attribute denotes the effective address of the first of the storage units allocated to P. For a subpro-
gram, package, task unit, or label, it refers to the address of the machine code associaled with the
corresponding body or statement. For an entry for which an address clause has been given, u refers 10
the corresponding hardware interrupt. The atmibute is of the type OPERAND defined in the package
MACHINE_CODE. The auribute is only allowed within a machine code procedure.

See section F.4.8 for more informadon on the use of this attribute.

(For a package. task unit, or entry, the 'REF auribute is not supported.)

4. Specification Of Package SYSTEM

package SYSTEM s
pragms suppress(ALL_CHECKS):
pragms suppress (EXCEPTION_TABLES);
pragms Bot_slaborated:

typs NAME 13 (HPIOO_CROSS_68000):

SYSTEM_NAME : constanl NAME :e HPIOO_CROSS_68000:;
STORAGE _UNIT : constant :m §;
MEMORY_SIZE : comstant :w 16_777_216;

- System-Depandent Nemed Numbers

MIN_INT : copstianl :m -2 _147_483_648;
MAX_ INT : constant :w 2_147_483_647;
MAX_DIGITS : comstant :s 1§
MAX_MANTISSA : constant = 31

FINE_DELTA : comstsot := 2.0°°(.31);

TIX : constsot := 0.01;
- Othet System-dependent Declarations

subtype PRIORITY is INTEGER rsoge O .. 99:

MAX REC_SIZE : imteger :m 1024,

type ADDRESS is privats;

{unction °>" (A: ADDRESS;
functien ‘<” (A: ADODRESS:
fupction *>="(A: ADDRESS:
fanction “<e*(A: ADDRESS ;
function *-° (A: ADDRESS .
functios "+ (A: ADDRESS ;
fusction °-° (A: ADORESS;

ADDRESS) return BOOLEAN;
ADDRESS) return BOOLEAN:
ADDRESS) return BOOLEAN:
ADDRESS) returs BOOLEAN;
ADDRESS) return INTEGER:
INTEGER) return ADODRESS:
INTEGER) return ADORESS:

- - D X o o

fubction “«° (1. UNSIGNED_TYPES.UNSIGNED_INTEGER) return ADORESS.

function MEMDRY_ADDRESS
(1: UNSIGNED_TYPES .UNSIGNED _INTEGER) return ADDRESS recamea “«"

NO_ADDR : consiapt ADDRESS:
srivate
type ADDRESS 3 oew UNSIGNED_TYPES .UNSIGNED_ INTEGER;
NO_ADOR : consisnt ADDRESS := 0O;
progme BUILT_IN(">°);
pragme BUILT_IN(*<°});
progms BUILT_IN(*>=");
preagma BUILT_ IN(°<a®);
pragmm BUILT_IN(°-°);
pragms BUILT_IN(°+*);

end SYSTEM:

S. Restrictions On Representation Clauses

B-5

5.1. Pragma PACK

In the absence of pragma PACK record components are padded so as lo provide for efficient access by
the target hardware, pragma PACK applied 10 a record ehiminate the padding where possible. Pragma
PACK has no other effect on the storage allocated for record components a record represeniation is
required.

5.2. Size Clauses

For scalar types a representation clause will pack to the number of bits required to represent the range
of the subtype. A size clause applied to a record type will not cause packing of components; an expli-
cit record representation clause must be given to specify the packing of the components. A size clause
applied t0 a record type will cause packing of components only when the component type is a discrete
type. An error will be issued if there is insufficient space allocated. The SIZE atwribute is not sup-
poried for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since default initialization of a variable requires
evaluaton of the variable address elaboration ordering requirements prohibit inititalization of a variables
which have address clauses. The specified address indicates the physical address associated with the
variable.

5.4. Interrupts

Interupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions
Machine code insertions are supported.

The general definition of the package MACHINE_CODE provides an assembly languace interface for
the target machine. It provides the necessary record type(s) needed in the code statement. an enumera-
tion type of all the opcode mneumonics, a set of regster definiions, and a set of addressing mode func-
uons.
The general syntax of a machine code statement is as follows:

CODE_n'(opcode, operand |, operand}),

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate.
The format is as follows:

CODE_N'(opcode, (operand {, operand)));
For those opcodes that require no operands, named notation must be used (cf. RM 4.3(3)).

CODE_0'(op => opcode);

B-6

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).
An operand can only be an entity defined in MACHINE_CODE or the 'REF attribute.

The arguments 10 any of the functions defined in MACHINE_CODE must be stauc expressions, string
literals, or the functions defined in MACHINE_CODE. The 'REF auribute may not be used as an argu-
ment in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses
Address expressions in an address clause are interpreted as physical addresses.

8. Restrictions on Unchecked Conversions
None.

9. Restrictions on Unchecked Deallocations
Nore.,

10. Implementation Characteristics of 1/O Packages

Instannations of DIRECT_IO use the value MAX_REC_SIZE as the record size (expressed in
TORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE is used
instead. MAX_RECORD_SIZE is defined in SYSTEM and can be changed by a program before
instandating DIRECT_IO to provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE_UNIT bis. DIRECT_IO will raise USE_ERROR if
MAX_REC_SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL_IO use the value MAX_REC_SIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE is uscd
instead. MAX_RECORD_SIZE is defined in SYSTEM and can be changed by a program before
instantiating INTEGER_IO to provide an upper limit on the record size. SEQUENTIAL_IO imposes no
limit on MAX_REC_SIZE.

11. Impiementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even near these limits are available 1o every program.

11.1. Line Length

The implementation supports a maximum line length of 500 characters including the end of line charac-
ter.

B-7

pe T~

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS. The maximum
size of a sutically sized record 1ype is 4.000,000 x STORAGE_UNITS. A record Lype or array type
declaration that exceeds these limits will generate a waming message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the main program
is allocated a fixed size stack of 10,240 STORAGE_UNITS. This is the value rewrned by
T'STORAGE_SIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length atmibute the default collection size for an access
type is 100 times the size of the designated type. This is the value returned by T'STORAGE_SIZE for
an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared statically within a
compilation unit. If this value is exceeded the compiler will terminate the compilation of the unit with a
FATAL error message.

B-8

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name . Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 (1..498=>14", 40Q=>'11")
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 (1..898=>'A", 499=>'2')
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.

$BIG_ID3 | (1..249=>'A', 250=>'3', 251..499=>'4")

An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning

Value

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT LIT
An integer 1literal of value 298
with enough 1leading zeroces s8¢
that. it 1is the size of the
maximum line length.

$BIG_REAL_LIT
4 universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING?
A string 1literal which when
catenated with $BIG_STRING2
yields the image of $BIG_ID1.

$BIG_STRING2

A string literal which when

catenated Lo the end of
$BIG_STRING1 yields the image of
$BIG_ID1.
$BLANKS
A sequence of blanks twenty
characters 1less than the size
of the maximum line length.
$COUNT_LAST
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.
$DEFAULT_MEM_SIZE
An integer literal whose value
is SYSTEM.MEMORY_ SIZE.
$DEFAULT_STOR_UNIT
An integer literal whose value

is SYSTEM.STORAGE_UNIT.

{1..289=>"A", 250=>'4', 251..499z=>'A")

(1..496=>'0", 497..499=>n298")

(1..483=>10"', 494,.499=>"H69,0E1™)

(12> ', 2,.200=>'AY, 201ad>twr)

(1=> 'mv, 2,.300=>'A', 301=>'1"
302=>'"")

(1..479=>"

")

2147483647

16777216

C~2

-

Name and Meaning

TEST PARAMETERS

Value

$DEFAULT_SYS_NAME
The value of the constant

SYSTEM.SYSTEM_NAME.

$DELTA_DOC
A real literal whose value 1is
SYSTEM.FINE DELTA.

$FIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FIXED_NAME
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT _NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

$GREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION "'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER_THAN_DURATION_BASE LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL_EXTERNAL_FILE NAME1
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAMEZ
An external file name which
is too long.

$INTEGER_FIRST
A universal integer 1literal
whose value 1is INTEGER'FIRST.

HP300_CROSS_68000

0.000000000465612873077392578125

214783647

NO_SUCH_TYPE

NO_SUCH_TYPE

100000.0

10000000.0

99

/ILLEGAL/FILE_NAME/2}]$%2102C.DAT

/ILLEGAL/FILE_NAME/2}]CE2102C*.DAT

-2147483648

c-3

TEST PARAMETERS

Name and Meaning

Value

$INTEGER_LAST
A universal integer 1literal
whose value is INTEGER'LAST.

$INTEGER_LAST_PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST «+ 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW_PRIORITY :
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
Maximum input line length
pernitted by the implementation.

$MAX_INT
A universal integer 1literal
whose value is SYSTEM.MAX INT.

$MAX_INT_PLUS_1
A universal integer 1literal
whose value is SYSTEM.MAX_INT«+1.

$MAX_LEN_INT_ BASED_LITERAL
A universal integer based
literal whose value is 2#114
with enough 1leading 2zeroes in
the mantissa to be $MAX IN LEN
long. -

2147483647

2147483648

-100000.0

-10000000.0

31

15

499

2147483647

2147483648

(1..2=>"2:n,3,,4962>10",4597..499=>"11:")

Name and Meaning

TEST PARAMETERS

Value

$MAX_LEN_REAL_BASED LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading =zeroes in the
mantissa to be $MAX_IN LEN long.

$MAX_STRING_LITERAL
A string literal of size
$MAX_IN_LEN, including the quote
characters.

$MIN_INT
A universal
whose value is

integer 1literal
SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL:;"™ as the only statement in
its body.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.
$NAME_LIST
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG_BASED_INT

A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation

for SYSTEM.MAX INT.

$NEW_MEM_SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT_MEM_SIZE. If there is
no other value, then use
$DEFAULT_MEM_SIZE.

(1..32>"16:", 4, ,495=>10",
496..499=>"F E:")

(1=> ' 2,.498=>'a" UQgg=>rnr)

-2147483648

32

TINY_INTEGER

HP300_CROSS_68000

16#FFFFFFFD#

16777216

C-5

TEST PARAMETERS

Name and Meaning

Value

$NEW_STOR_UNIT
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

$NEW_SYS_NAME
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS_NAME. Ir
there is only one value of that
type, then use that value.

$TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK
A real literal whose wvalue is
SYSTEM.TICK.

HP300_CROSS_68000

32

0.01

c-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 36 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

B97102E: This test contains an unintended 1illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends onj; by AI-00256, the
illegality need not be detected until execution is attempted (line
95y,

CDh2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be U0
(line 137).

CD2A63A..D, CD2A66A..D, CD2AT3A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

CD24A81G, CD2A83G, CD2ABUM..N, and CDS0110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines T4, 85,
85, 96, and 58, respectively).

P

WITHDRAWN TESTS

CD2B15C and <CD7205C: These tests expect that a 'STORAGE_SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram

(line 303).

CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK --particular instances of change may be leas (line 29).

CDT7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA_ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it 1is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

CE3111C: This test requires certain behavior, when two files are
agsociated with ¢the same external file, that is not required by the
Ada standard.

CE3301A: This test contains several calls to END_OF_LINE and
END_OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD_INPUT (lines 103, 107, 118,
132, and 136).

CE3411B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUT ERROR 1is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

