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FORWARD

3 This report describes the work performed by Scientific Systems, Inc. from 10/15/88

to 4/30/88 under the Navy Award No. N00014-88-C-0736. The work represents the first

3 of a three-phase project aimed at development of theory, computational techniques and a

commercial grade software for solving decentralized estimation problems in the presence of

correlated sensor noise. Solutions are available for the correlated sensor noise only In

3 this report, the am ailable results have been extended in many directions and the distributed

tracking problem has been solved wtth correlated sensor measurement noise The objective

3 of Phase I effort was to demonstrate the feasibility of a solution technique of this problem.

The problem scenario will be broadened and the results will be analyzed in detail in Phase

£ II.

3 Dr. Keith Bromley was the project d~rector for the Navy. Dr. Shah Mahmood was

the project manager and principal investigator. Dr. Raman K. Mehra was the project

supervisor. Excellent typing and reliable documentation by Mimi Starr is greatly

3 lappreciated.
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SUMMARY
-I

The research proposed under this project is concerned with the problem of accurate

3 target tracking in the SDI environment. The SDI scenario considered in this report is as

follows. Multiple sensors that are possibly located at dispersed geographical locations are

observing a single target. The measurement noises are correlated across the sensors. The

3 local processors attached with the sensors possibly may not have the complete information

of the target model The tracking problem can be solved in two ways first, the sensor

3 measuremeis can be transmitted to a central node where the optimal state can be estimated

conditional on all the measurement history - this is centralized processing Alternatively,

each sensor can process its own measurement locally and send (some function of)

3 processed data to the central node Here it is fused with other incoming data into the global

estimate - this is decentralized processing. The latter is superior to the centralized

processing from the system performance considerations sn the face of node failures

5 There exists a good amount of literature in the area of decentralized estimation in

presence of uncorrelated sensor noise. In this work, the available results have been

I extended to the case of correlated sensor noise under the assumption that the local

I processors have the knowledge of the target model. Each local agent needs to send the

central node only one vector of the dimension of the state. The available results for the

uncorrelated sensor noise have been extended in other directions too. For example, it has

been established that there is a tradeoff between the computational requirements at a node

I and the transmission requirements from this node Using this analysis and by assigning

- rthe major computational load to the local nodes, the complexity of the central node has been

reduced to an adder.

The decentralized estimation problem has been analyzed both in discrete time and in

5 I continuous time domain. It has been proposed that the nonlinear measurement equations

I-=!
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-- -I an be dealt with by a recent technique known as "Mo~dified Cain Extended Kalrnan Filter

- i(MGEKF) more eff~cienty than the conventional Extended Kalman Filter (EKE)
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CHAPTER 1

-IINTRODUCTION AND SUMMARY

5I 1.1 Introduction and Overall Objective of Phase I

-IThis report contains results from the investigations of the project "Optimal Sensor

Configuration and Survivable Processing with Correlated Noise." This is a Phase I effort

SI sponsored by the Naval Research Center of Arlington, Viiginia through Small Business

Innovative Research (SBIR) Program under contract #N00014-88-C-0736. This job was

sponsored by the Navy through the Strategic Defense Initiative Organization (SDIO). This

3work was performed at Scientific Systems, Inc. (SSI), Cambridge, Massachusetts during

the period October, 1988 - Aprl, 1989.

The surveillance, acquisition and tracking function for the Strategic Defense Initiative

(SDI) includes sensing information !or battle management and processing signals and data

for discrimination of threatening reentry vehicles from other objects. As each potential

reentry vehicle is released from its post-boost vehicle, it begins ballistic midcourse flight

3 accompanied by deployment hardware and possibly by decoys. Each credible object must

be accounted for in a birth-to-death track, even if the price is many decoy false alarms.

SInterceptor vehicles of the defense must also be tracked.

3 The research proposed under this project is concerned with the problem of accurate

target tracking in the SDI environment. The problem of tracking boosters and reentry

i vehicles has received much attention in the past. However, the problem has generally been

structured as a single-sensor, single-target problem. The SDI environment is much more

complex, however, in that many targets must be tracked simultaneously. In addition, many

3 sensors may be used to track a single target. Although the use of multiple sensors

--



intuitively allows more accurate aid robust tracking to be attained, it is not yet clear how to

fully exploit this additional capability. In addition, the SDI environment is such that the

sensor observations are subject to noises which are correlated across sensors This further

U complicates the problem.

5Ideally, the problem of target tracking in a multi-sensor environment with limited

communication between the sensors is a distmbuted estimation and detection problem which

Iuses no centralized signal processing. The information available to each sensor consists of

"3 Iits own measurement history and possibly all past messages received from other sensors

In this report we shall refer to this problem also as a distributed tracking problem. The

3 overall objective of this 3-phase project is to obtain a practical solution of the distributed

tracking algorithm for multiple targets under the assumption that the measurement noises

are correlated across the sensors. This report contains Phase I activities and indicates the

-3 feasibility of the proposed technique for solving this problem. Detailed development of the

technique will be carried out in the forthcoming Phase II and finally, these ideas will be

3 commercialized in Phase III.

The overall problem of distributed tracking is indeed a very difficult and complex

one This problem can be decomposed into various subproblems that can be arranged into

4 hierarchical layers according to their complexity as shown in Figure 1.1. Obviously, the

starting point is the centralized processing where raw measurements from all the sensors

are transmitted to a common fusion center for simultaneous processing - this is the lowest

5 layer of the hierarchy.
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multiple targets,

I multiple sensors

I ] ~sensors connected viaa L

[ communicationhlies [

correlated o Ien/or nonlinea
noise meI"- asurments

Sone-target, multiple sensors
distrbuted processing

I

--- I Figure 1.1: Decomposition of the Target Tracking Problem in an SDI
Framework

IOne of the serious criticisms of this technique is that the system is vulnerable to

icatastrophic failure if the central node fails. On the other hand, in the case of distributed

processing, the observed data from each sensor is proecbsed locally. The processed data

Iare then communicated to a centrali "zd coordinator who forms the global estimate. In this

case, the system performance will have a graceful degradation in the event of sensor/node
Ifailure. This is the primary motivation for opting for the distributed processing over the

!centralized one.

Various components of the distributed tracking problem are shown in Figure 1.1.

This figure indicates a systematic approach to the overall solution of the problem. Any

Isubset of the blocks of this figure which are connected by arrows can be combined to form

a meaningful tracking problem. The core of the distrbuted tracking problem is the case of3
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one-target, multiple sensor with distrbuted processing" and is shown at the second layer

-Iof Figure 1 1 In this scenano, time delays due to computation and communication

processes are neglected It is assumed that the sensors are communicating with each other

3 instantaneouslN in a broadcast mode Although this is a hvothencal setting, the analysis of

this case exhibits the structure of the decentralized processing problem. In a realistic

situation the measurements from various sensors will be correlated pnmarily because the

3 sensors are observing the same target through the same atmospheric medium. The

decentralized estimation problem then becomes considerably difficult if the correlation is

i taken into account. The measurement equations which are nonlinear in states also adds

g further complication to this problem. Once the distributed tracking problem is solved for

correlated noise and nonlinear measurement equations, the effect of a realistic

communication channel can then be considered In an SDI framework, direct

communication takes place only between adjacent satellites arranged in a nng structure

about the Earth During this phase of analysis, time delays due to computation and

communication processes must be taken into account if the algorithm is intended for

practical application Finally, the scenario for multiple targets can be analyzed as an

extension of the one-target case.

Because of the time limitations in Phase I, we could not solve all subproblems of

Figure 1 1 We have explored only the basic problem. the case of correlated measurement

3 noise and nonlinear measurement equations as shown in layers 2 and 3 of our

decomposition

1.2 A Simplified Generic SDI Tracking ProblemI
Let us consider an example of a simple SDI tracking problem with one target only -

ths scenario will be broadened to multiple targets in Phase II. Formulation of the

decentralized estimation problem will be motvated through this example. Consider then a

Sii4



U generi. SDI tra.king problem with one target in a ballistic trajectory and three satellite

3 I sensors as shown in Figure 1.2. The sensors are assumed to make time-synchronized

measurements The measurements are taken through one or more of the laser, infrared and

3 radar sensors that are located at appropnate places of .he orbiting satellite stations.

-I
S2

S3 • Satellite 1 ($1)

-- Target

I
__ Ballhstic

3 Trajectory

I

Figure 1.2: A Simplified SDI Tracking Problem

Both active and passive sensors will be considered under the scope of the present

task An active sensor such as a radar measures the range (R), azimuth angle (A) and

elevation angle (E) of the target in a reference frame that is centered at the radar. On the

other hand, a passive sensor such as an infrared sensor produces "bearings only"

-- 5
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I measurements The SDI tracking problem can be formulated in the "measurement

3 coordinate system" where the variables are R, A, E and their derivatives or in the "cartesian

coordinate systems' in which the variables are x, y, z-position of the target and their

I derivatives In the latter case, an inertial reference frame is used.

5 Selecting a Coordinate System

It can be shown that in the Cartesian coordinate system, the dynamical equation for

the target motion is linear whereas the measurement equation is non-linear in states. On the

other hand, in the measurement coordinate system, the dynamical equation is non-linear

whereas the measurement equation is linear in state variable. Therefore in both the

coordinate systems, an extended Kalman filter may be used for state estimation. It is well

3= known that an extended Kalman filter has a bias in its estimates [Jazwinski, 1970]. A

detailed study on this issue was made by Mehra [19711. He observed that this bias is

related to the non-linearities in the equations of motion and the measurement system By

choosing different coordinate systems, one can alter these non-lineanties. In particular, if

one uses me coordinate system in which the measurements are linear, the bias due to

measurement non-lineanty is eliminated This does not necessarily mean that the total bias

is reduced since the bias from other non-lineanties might increase Finally, he has shown

that an extended Kalman filter that uses the measurement coordinate system has less bias

ar'd less rms error than a Cartesian extended Kalman filter that uses the Cartesian

coordinate system This fact certainly favors the use of the range (R), azimuth (A), and

3 elevation (E) angle variables in the SDI tracking problem formulation But Song and

Speyer (1984) has shown that for a class of non-linear measurement equations known as

I 'modifiable functions." the structure of the optimal filter is linear. They have called this

filter a "Modified Gain Extended Kalman Filtet" (MGEKF). Fortunately, many "bearings

only" measurement equations belong to the class of "modifiable functions" and we have

3 found that we can profitably use thts concept to solve the distributed tracking algorithm A

*�-6



linear filter is certainly more attractive than a nonlinear filter. Motivated by these

3 observations, we will use the Cartesian coordinate system throughout this project. In this

coordinate system, the dynamic equation is linear whereas the measurement equation is

nonlinear in states

5 I1.3 Summary of Phase I Activities

The problem of distributed detection and estimation has lately received considerable

attention in the literature Therefore, as a first task in Phase I, relevant publications were

surveyed The usefui results from these papers were collated and several

modifications/exter ions were mnde that are appropriate for the problem at hand Some of

the related works on which the proposed technique heavily relies are:

Speyer (1979) considered the discrete-time distributed estimation problem

assuming that all sensors communicated information to all other sensors in the

network in a broadcast mode. By formulating a linear Gaussian measurement

problem with a Gauss-Markov state equation, he was able to show that the

optimum estimate at each sensor could be obtained using its own Kalman filter.

Each sensor sends its local state estimate to each other sensor at each time step

3- which then constructs the globally optimum state The expense of distributed

estimation is that an additional data-dependent vector of dimension equal to the

3 state vector dimension has to be communicated from each sensor to every other

sensor at each time step. This solution is attractive since each sensor computes

I the optimal (minimum variance) state estimate and only a relatively small

amount of communication is required between sensors.

Willsky et. al. (1982) considered a more general case than Speyer (1979) and

formulated the problem in continuous time domain They considered the case

where the local models assumed by various sensors are possibly different than

S7•-
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K ~the true global modc~i They also solved the distributed smoothing problem.

Their results also show that each node must send 2 vectors - its state estimate

and a data-dependent vector to the central coordinator which constructs the

globally optimum estimate.

5 Castanon and Teneketzis (1985) have developed algorithms for distributed

nonlinear estimation and showed that if each sensor sends a set of local

sufficient statistics to each other sensor, each sensor can construct the global

centralized distribution. These results assume that all sensors have the same a

pnon knowledge of system uncertainties, that all (two-way) communication

links are unfailed, and that all communication channels are memoryless and

independent

But the problem with correlated sensor noise was not addressed in these literature.

In Phase I, we have extended the results of Willsky et. al. (1982) to show that only

vector, instead of two, need to be sent to the global coordinator. We have also

developed an expression that shows the effect of initial uncertainty of various sensors.

I Also, we have extended the result of Speyer (1979) to include the case where the local

5 models are not necessarily identical to the global (true) model.

Three schemes have been developed for solving the problem with correlated sensor

noise. The first two of these are straightforward application of the Kalman filter at a central

3 node. In the first scheme, all the sensor data are transmitted to a central node and a Kalman

filter is applied tc. the aggregated data. The second scheme also consists of the centralized

I processing but before the Kalman filter is applied, the sensor measurements are

transformed into new measurements that are uncorrelated across the sensors. Clearly, there

is no advantage of the second scheme over the first. However, the third scheme is truly a

3 decentralized one where the observed data is processed locally and then the processed data

5 8



is sent to the central node where it is fused with the other incoming data into the globally

optimal estimate.

3 We have fond that nonlinear measurement equations can be dealt with in the

distributed tracking problem by utilizing the "modifiable fun tion" concept of Song and

Spe, '1984). In this phase we have successfully applied this concept to the problem of

"bearings only" measurements. In Phase I1, this technique will be extended to the case of

distributed processing

SThe remainder of this report is organized as follows: In Chapter 2, the distributed

processing problem has been described in continuous time domain along the line of Willsky

et. al (1982) and their results have been extended. In Chapter 3, the discrete time version

of the tracking problem has been presented where the results of Speyer (1979) are extended

to include the case of possibly dissimilar global and local models. It will be assumed in

Chapter 2 and 3 that the sensors are uncorrelated. The case of correlated sensor noise will

be dealt with in Chapter 4 where three techniqies will be proposed for solving this

problem The case of nonlinear measurement equations will be dealt with in Chapter 5.

i Finally, conclusions and future recommendations will be given in Chapter 6.

I9
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CHAPTER 2

DECENTRALIZED ESTIMATION: CONTINUOUS TIME CASE

2. 1 Introduction

In an SDI environment a target is tracked by many sensors placed in orbiting satellites

at desired altitudes. These satellites are linked via communication channels. The goal is to

generate the optimal estimate of the state trajectory of the target from these observations.

Clearly, the simplest scheme by which it can be done is to transmit at each instant of time

3 Iall the sensor data to a central coordinator where the optimal trajectory can be computed

conditional on the measurement history. Although this is a simple scheme, it suffers from

I many drawbacks. For example, the communication introduces a finite delay in the

observed data and, in addition, adds to it noise from the communication channel. It may be

recalled that the observed data was, to begin with, already corrupted from the sensor noise.

The most serious criticism of this scheme is that all the computations are done at a central

node and in the event of a failure (soft or hard) of this node, catastrophic failure of the

I system performance takes place This can be avoided if the sensor data is processed locally

to obtain, say, locally optimum state estimate conditional on the observed data oy that

sensor only and then these estimates are sent to the centralized coordinator where the

globally optimum estimate will be reconstructed This scheme is known as "decentralized"

or "distributed" estimation. In this scheme, the system performance will suffer giaceful

degradation in the event of a sensor failure. Moreover, the computational burden is shared

by all the sensors without imposing a heavy workload on the centralized coordinator. In

order to develop redundancy into the system, each sensor should ideally act as a centralized

3_ coordinator in the sense that each sensor will receive the estimate from the other sensors

and generate identical global estimates.

* 10
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A difficult part of the decentralized scheme, however, is the development of a fusion

scheme which combines in an appropnate fashion all the local estimates into a global

3 estimate. The pnmary purpose of this chapter is to formulate this problem for the

continuous time case, review the existing results and finally extend tLt.se results

appropriately.

A practical combining (fusion) algonthm must take into account the communication

delay and the channel noise, but it will make the analysis too complicated. Therefore in

I Phase I, we have considered an ideal situation where the communication delay and channel

noise have been neglected These issues will be dealt with in Phase II In this chapter we

have emphasized the development of a mixing algorithm under the assumption that all

3 sensors are in a broadcast mode and receive information from the other sensors

instantaneously. We have primarily followed the works of Willsky et al. (1982) in the

I development of thts algorithm.

A summary of this chapter is as follows In Section 2.2, the decentralized estimation

scheme is developed under the above simplifying assumptions. Willsky et al. (1982) has

shown that in order to obtain the globally optimum state estimate, each node (sensor) must

3 Isend to the central coordinator its own state estimate. But the structure of the local and

central nodes is complicated. We have extended this result to simplify the computational

3 complexity. In this section we have further assumed that the global model is not

necessanly the same as the local model each sensor (agent) has possibly a different model

I about the target. The global model is the true model of the target. This assumption is

3 relaxed in Section 2.3 where we have assumed that the global model is the same as the local

model. This case was originally analyzed by Spcyer (1979) It is shown in this case that

3 the globally optimal estimate is a linear combination of the local estimate plus a dynamic

I
I ii
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correction that results because of the distributed nature of the algorithm. Finally, some

conclusions are drawn in Section 2.4

2.2 Decentralized Estimation and Transmission Requirements

As mentioned before, the problem of decentralized estimation will be formulated

under the following assumptions:

. The dynamics are evolving in continuous time; the discrete time case will be

analyzed in the next chapter.

I Only one target is to be tracked.

. The target dynamics are linear, but may possibly be ttme varying.

"" The measurement equations are linear in states; the nonlinear equations will be

treated in Chapter 5, using "modifiable function" concept.

* There ts no communication delay

* There is no channel noise.

. The nodes are in a broadcast node, i.e. each node can communicate with all the

other nodes. The nng structure of a realistic sensor configuration will be dealt

with in Phase II.

I The sensors are uncorrelated from each other; the case of correlated sensors will

be analyzed in Chapter 4.I
First, let us fix the terminologies that will be used throughout this report. We assume

a scenario where multiple sensors are observing an SDI target. We also assume that these

sensors are equipped with the data processing capabilities. The sensors are also known as

nodes, local agents or local processors. The target state model is the true model and its

state esttmate is to be computed from the sensor measurements. The true model is also

known as the central or global model. In this section we consider a general case: we

-- 12



I fusion center, also known as a mixing mode where all the local estimates will be combined

to obtain the global estimate. Since all the sensors are in a broadcast mode, each sensor

receives raw observations or processed data from the other sensors. We assume here that

3 each sensor acts as a fusion center and combines the data from the other sensors into a

global estimate. Since each sensor is producing identical global estimates, this scheme

I Jintroduces enough redundancy into the system and makes it robust against sensor failure.

Suppose that there are J sensors. The global and the local models are given in the

following.

Global Model

x(t) =A(t)x(t) + w(t) ; t -> to; (2.1a)

zj(t) =Cj(t)x(t) + v,(t) ; j = 1, 2, ...J (2.1b)

Various statistics relating to the model are:

SI E [x(to)] = •(to), E [(x(to)o- (to)) (x(t0 ) - i(to))T] = (t;

E [w(t)] = 0; E [w(t)wT()] = Q(t)8(t -t)

I E [v,(t)] = 0, E [v,(t)vl(t)] = Rj(t)(t - t)5Rj(t) = RI(t) > 0.

We assume that w(t) is independent of x(t 0 ) and of v,(t) for all j = 1, 2, ..J. It is also

assumed that vs(t) is independent of x(to).

Although the true model is given by (2.1), the sensors may not have the complete

knowledge of it Suppose the j-th sensor is assuming the following model about the target:

this model is also known as the local model.

Local Models

x,(t) = A,(t)x,(t) + w,(t) (2.2a)

13
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3 zj(t) = H,(t)x 1(t) + vj(t); j = 1, 2, ..J (2.2b)

E [x×(to)] =- j(to) ;, E [(x,(to) - Xi(to)) (x,(to) - ij(to))T ] = Z,(to)
E [wj(t)] = 0" E [w(t)wT([)] = Q'(t)8(t -_r)

Ei[v,(t)]= 0; E [v,(t)v•(t)] = Rj(t)8(t - ")8k; R,(t)=RTI(t)>0.

As before, we assume that v,(t) is independent of x,(to) and of w,(t) for all j = 1, 2, ...J.

Notice that the measurement noise process has been assumed to be the same for both global

and local models (2.1) and (2.2). This is a plausible assumption, because whatever the

underlying model is, the sensor is always the same and therefore the sensor noise ought to

be the same too. However, in order to make the problem well posed we need to impose the

following additional relationship between the local and global models:

- Cj(t) = H,(t)M,(t) ; j = 1, 2, ...J (2.3)

where Mj(t) is a time varying matrix of appropriate dimension. Besides the requirement of

(2.3) and that the sensor noise vj(t) are the same, the two models can be totally arbitrary.

General Solution Without Decentralized Considerations

The globally optimal estimate i(t) using all the information is given by

i(t) = E [x(t) I zi(1), z2(Q), ...zj(4) ; t0:5 • 5 t] (2.4a)

where E[o] is the expectation operator and can be implemented at a central node if all the

sensor data zj(t), j = 1, 2, J are sent to this node. In order to evaluate i(t) first define

[z,(tf rc,(,)1 V (t);I2t 1P V C2(t)A1 A

t It c2(t)l v2(t)

v--)- I F

z(t)- = 1 ]i " (2.4b)

O C3(t)j vOjt

14



II
then all the sensor data can be compactly represented as

z(t) = C(t)x(t) + v(t). (2.4c)

The opnm,1 estimate i(t) conditional upon the measurement history is then

i(t) = EN) I z(4), to0: < < t]

which is propagated as

x(t) = A(t)O(t) + Kc(t)Woc(t) (2.5a)

uc(t) = z(t) - C(t)O(t), (2.5b)

KC(t) = P(t)CT(t)R-i(t) . (2.5c)

Here KC(t) is the centralized Kalman gain. The covariance matrix P(t) is the solution of the

Riccati equation

P(t) = A(t)P(t) + P(t)AT(t) + Q(t) - P(t)CT(t)R- 1(t)C(t)P(t). (2.5d)

P(to) = Vt0).

R(t) is the covariance matrix associated with the sensor noise v(t), i.e.

E [v(t)vT(t)] = R(t)S(t - -) (2.6a)

The complexity of the decentralized algorithm depends upon the structure of the R(t)

matrix. Since we are considering the case of uncorrelated sensor noise, various subvectors

Sof v(t) of (2.4b) are uncorrelated. Therefore

3 R(t) = block diag {R,(t)}. (2.6b)

I
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I R(t) will be a "full" matrix if the sensors are correlated. However using the block structure

of R(t) matrix the centralized Kalman filter of Equation (2.5) for the uncorrelated sensor

noise can be written as:I
x A(t) (t) + jKr(t)u;Ct)

j- 1 (2.7a)

1 -"(0 = z,(t) - cj((t)t), (2.7b)

K'(t) = P(t)CT(t)RZ-I(t), (2.7c)

II

P(t) = A(t)P(t) + P(t)AT(t) + Q(t) - I (t)C'T(t)Ri(t)C (OP(t) . (2.7d)
J=i

-NEquation (2.7a) can further be simplified to

x(t) = F(t)i(t)+ + K(t)z,(t)
mj=1 (2.8a)

where

IJ
F(t) = A(t) - P(t)cT)R' (t)C1 (t).

J= 1 (2.8b)

An implementation of Equation (2.8) is shown in the block diagram in Figure 2 1. Notice

that the gain matrices Kjc(t), j = 1, 2, ...J are precomputable and can be stored aprion.

I
I
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Decentralized Estimation Using Local Data Processing

Now consider the local models of Equation (2.2). The optimal estimate x1(t) at the j-

th node (sensor) is construct',d only from the local observation z3(t) from that sensor.

"lo.erefore

,(t) = E [x7(t) I z,(ý), to - 5; t]

which evolves as

x,(t) =A fi t)ýJ(t) + K i (t I (t) (2.9a)

d(t) = z (t) = H (t)i (t)
K'(0) = P,(t)HT tR'(W)

Here K (t) is the decentralized Kalman gain at the j-th node. The error covariance matrix

Pj(t) can be computed from either of the following forms of the Riccati equation:

Pt), = Aj(t)Pj(t) + P,(t)AI(t) + Q)(t) - P1(t)CT(t)-'(t)C1 (t)Pj(t) (2.9b)

(P ] (t)) = -P j'(t)A (t) - AT(t)Pj 't(t)- P t q(t)Q .(t)Pj'I(t)

+ HT(t)Rl(t)H1 (t) (2.9c)

with the initial condition

Pj(to) = '(1to)

Equation (2.9a) further reduces to

x,(t) = Fj(tij(t)+ Ki(t)z j(t) (2. 1 0a)

where

F,) = A,(t) - Pj(t)HT(t)Rj-'(t)Hj(t) = Aj(t) - K (t)H,(t). (2.10b)

17
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I The local estimator for- the j-th node is shown in Figure 2.2.

3 Relationship Between the Local and Global Estimates

3- To find the connection between the two estimates, we will use the relationship

Ci(t) = H/,()Mj(t) between the local and global models. This relationship has been

I describcd earlier in (2.3) However using this relationship, the global estimate of (2.8a)

- ican be written as

( = x(t)=iFt(t) + P(t)MT(t)HT(t)Rt(t)z,(t) . (2.11 a)
J= I

I From (2.10) we also have

3 P,(t)HT(t)R;t(t)zj(t) = ,(t) - F,(t)xj(t) . (2.1 ib)

Using (2.1 ib) in (2.1 la). we obtain as the global estimate

S~x(t) = F(tx(t) + YEGJ(0 [x(t) - F,(tOxJ(t) , (2.12a)

J=1

where

G 3(t) = P(t)Mf(t)Pt(t). (2.12b)

3 By straightforward manipulation, it can be shown that

S(t) = OF(t, (to) -YGj(to)i)(to) +
SL ,=l J 3=lI ==

+ f J 4F(t, t)K(0t) 3(t)d't, (2.13a)I j=t

where OF(t, X) is the transition matrix associated with the dynamics matrix F(t) and

18



I K,(t) = F(t)G,(t) - G6(t) - G,(t)F,(t)

= [P(t)MT(t)P,"'(t)Q,(t)P,'t(t) - Q(t)MT(t)P,-'(t)]+
+ [P(t)MTkt)Af (t)P,-t(t) - PtA~)TtPi~

£P(t)MT(t)P t1(t)] (2.13b)

The indicated inverse of the matrices are assumed to exist. However this is the key

equation relating the local and global estimates. This equation also shows the effect of

initial conditions at various sensors on the global estimate. It is obvious from (2.13a) that

xt) can also be generated dynamically from the following equations:

I I

ý(O = F(t)0(t) + K (t)0i(t) ; E(to) = j(to) - G,(to)•j(to) (2.14a)Ij=i J=l

It) = V(t) + XGJ(t)x3 (t) (2.14b)
J=j

These equations were first established by Willsky et al. (1982). Equations (2.14) clearly

3 reveal the structure of the decentralized estimation: the measurements at the j-th sensor is

processed locally to obtain the optimal estimate i-(t) which is then sent to the centralized

I coordinator, the coordinator then constructs i(t) dynamically according to (2 14). Notice

3 that all the matrices in (2.14) are precomoutable and can be stored aprion. The block

diagram representing these equations are shown in Figure 2.3.

It can be seen from Figure 2.3 that there is a considerable amount of computational

burden at the central node and the stricture of the combining algorithm is rather complex

The computational burden and the complexity of the centralized coordinator can be reduced

i as follows. Define h1(t) as a data dependent vector for the j-th node which evolves as

I h,(t) = F(h,(t) + K(t)ij(t , (2.15a)

" I19
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i with initial condition

I hj(o) = --GO(to)ij(t0 ) (2.15b)

The global estimate then simplifies to
I

I(t) = 0F(t, to)x(tO) + ,[G,(t)xj(t) + hj(t)] . (2.15c)
J=1

This form was first obtained by Speyer (1979) for a simplified case when the global model

is the same as the local model We will discuss this case in the next section. The

implementauon of this form is shown in Figure 2.4. In this scheme, each node j must send

t\,.o vectors - •(t) and hj(t) to the central node which then constructs the global estimate

i(t). Notice also that the computational burden of the central node has been reduced

considerably but only at the expense of the additional complexity and burden at the local

nodes. By simple block diagram manipulation of Figure 2.4, the complexity of the central

node can be reduced further. To see this mathematically, define a node-dependent dynamic

I vector 1j(t) which is generated as:

3 si(t) = F(t)s1 (t) + K2(t)i1(t) ; s,(t0) = --G(to)Xj(to) (2.16a)

11'l(0) =s'(t) + Gj(t)i,(t) (2.16b)

3 Clearly, then the global estimate is given by

J

S•i(t) = (t, to)i(to) + 1',(t) (2.16c)
J=l

I which can be implemented as in Figure 2.5. Notice that in this scheme, only one vector

3 1'lT(t) is to be sent to the central node in contrast to 2 vectors in the earlier scheme of (2.15).

Thus, the transmission requirement has been reduced by 50clo. If i(to) = 0. then the central

i
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-inode is simply an adder, it merely adds the incoming vectors from the various nodes.

Notice also that the complexity and the computational burden of the central node has been

redaced to aummum but only by burdening each of the sensor nodes with these problems.

-I Equation (2.15) can be manipulated further to reduce the complexity of the local

3 processors as follows Define

q,(t) = G,(t)xj(t) + h,(t) (2.17a)

where the evolution of h.(t) with its initial condition is given in Equations (2.15a) and

(2.15b) respectively. Since hj(to) = -Gj(to)ij(to), the initial condition of qi(t) is

3 q,(t0) = 0 (2.17b)

5 The global estimate can be written in terms of qj(t) using (2.15c):

J

I ~i(t) = qiF(t, t0 )i(to) + qYAt).
j=1 (2.17c)

A recursion for q1(t) can be found as follows: Differentiating both sides of (2.17a) gives

Sj(t) = Gj(t)R,•(t) + G,(t)x*(t) + •J(t) . (2.17d)

Using Equations (2.9a) and (2.15a) in the above expression, we get

q 3(t) = [G6(t) 4 Gj(t)Fj(t) + K,(t)]i,(t) + Gj(t)Pj(t)Hk(t)Rj't(t)z,(t)

+ F(t)hj(t). (2.17e)

Finally, using expression for K,(t) from (2.13b) in (2.17e) and simplifying, we have,

i4j(t) = F(t)qj(t) + Kj(t)z,(t) (2.17")
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where Pttt; 1 t.

The decentralized estimation scheme given in (2.17) above is shown Figure 2.6.

This scheme may be compared with the one in Figure 2.5. Notice that the complexity of

the local processor has been reduced and yet the transmission requirement has remained the

same each local processor need to send to the mixing node only one data dependent vector

q,(t) of the dimension of the true (global) state.

An important remark is in order here. The fact that the sensors are uncorrelated has

played a crucial role in developing the decentralized scheme here. It is the block diagonal

structure of the R(t) matrix which has enabled us to decompose the centralized estimation

scheme of (2.5) into additive form of (2.7). The centralized Kalman gain KC(t) can be

partitioned as Kc(t) = [K'(t), K2(t) ... Kc(t)] each block of which corresponds to a sensor.

When the sensors are correlated, i.e. the R(t) mamx is of "full" structure, it is not clear

how to decompose the global estimation problem into various subproblems.

I 2.3 The Special Case of Identical Local and Global Models

3 In this section we consider a special case of the more general formulation of the last

section. Specifically, we assume that the models used by the local processors are identical

to the global model. This case was first examined by Speyer (1979). Under this

3 assumption

,A(t)=A(t), Q,(t)=Q(t) , Cj(t)=H () , Mj(t)=I for allj. (2.17)

In this case, the expression for K)(t) of Equation (2.13b) simplifies to
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I K(t) = P(t)P,-t (t)Q(t)P,-'(t) - Q(t)Ptl(t)

i [P(t)P,' (t) - I] Q(t)Pl'(t) . (2.18)

Since M,(t) = 1, we have set M1(t) = 0 to find the above expression. The other relevant

I variables for this case are

I F(t) = A(t) - P(t)CT(t)R; '(t)Cj(t);

SFI(t) = A(t) - P='(t T(t)R -' (t)C,(t); (2.18b)

G'(0 t) J1(
Kc(t) = P(t)eptlR�(t);

SK ,(,) P,(t)CT(t)R,'(,)

- IAn important consequence of this simplification is that the global estimate of (2.14b) can be

written as

*J
x(t) = ý(t) + P(t)0 P It(t)j(t) (2.19)I j=1

Note that the second term in the expression for i(t) is the usual expression for combining

independent estimates However ix(t) are not independent in general, and ý(t) represents a

dynamic correction for this correlation.

2.4 Summary

In this chapter, we have formulated and solved the decentralized estimation problem

for the continuous time case. We have primarily followed the work of Willsky et al.

5 (1982) to derive the results of this chapter. The assumption that the sensors are

uncorrelated has played a crucial role in developing these algorithms.

23
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I The multisensor data processing problem can be solved in two ways. All the sensor

3 data can be tra;,.smitted to a central node and can be processed for globally optimum

estimates. Alternatively, each sensor data can be processed locally for a locally optimum

estimate which then cai be transmitted to the central node. The central node combines all

the local estimates to obtain the global estimate. The later scheme is the decentrali7ed

estimation and is preferable from the viewpoint of system survivability. In Section 2.2, a

generalized decentralized estimation scheme has been formulated. Here we have assumed

that each of the local processors may possibly have a different model which again is not

3necessarily the same as the global model. Several possible decentralized schemes have

been presented in Figures 2.3 - 2.5. In the scheme of Figure 2.3, the local estimates are

sent to the mixing node which in turn produces the globally optimum estimate dynamically.

3IThe structure of the mixing node is complex in this case. The complexity of this node can

be reduced by transfermng some of its computational burden to the local nodes as shown in

Figure 2.4. But in this case, each local node must send 2 vectors to the mixing node. The

transmission requirement of this scheme can be reduced to one vector by adding additional

computations at the local nodes as shown in Figure 2.5. The results of this section show

that the complexity and the computational burden of the central node can be traded by those

of the local nodes. Finally, in Figure 2.6, the complexity of the local processor has been

3 reduced without sacrificing the transmassion efficiency.

I In Section 2.3, a specialized case has been dealt with where the local models are

assumed to be the same as the a global model. This case was first analyzed by Speyer

1 (1979). Under this assumption, considerable simplification occurs in the algorithms and in

the structure of the local and central processors.
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CHAPTER 3I
DECENTRALIZED ESTIMATION: DISCRETE TIME VERSION

3.1 Introduction

The decentralized estimation problem for the continuous time case was analyzed in the

last chapter In this chapter, the corresponding problem for the discrete time case will be

presented. This problem was first analyzed by Speyer (1979), but for the special case of

identical global and local models. In this chapter, we intend to extend his results to a more

general case of non-identical global and local models. Some of these results have already

been submitted before in various progress reports.

The motivation for the decentralized estimation problem and various underlying

assumptions behind the problem formulation have already been presented in Chapter 2 and

will not be repeated here. This chapter will be a brief one; we shall only present the

corresponding results of the Chapter 2 following the same sequence of that chapter. The

purpose of this chapter is twofold: first, for the sake of completeness of this report and

second, to expose some implementation details that are distinct from the continuous time

case. Explanations and interpretation of various results are same as in Chapter 2.

This chapter is organized as follows. In Section 3.2 the decentralized estimation

problem will be formulated and the computational and transmission requirement of each

local processor will be established. As in the last chapter, we assume that each local

3 processor has two alternatives: either it can send the raw observation data to a central

(mixing) node where the globally optimum estimate will be computed or it can process the

3 raw data for the locally optimum (or some kind of) estimate which are then transmitted to a

mixing node. The local estimates are then fused at the mixing node for the global estimate.
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We assume that the local processing is always a superior alternative than the centralized

processing. The reasons are given in Chapter 2. In this section, we shall present several

schemes for local processing corresponding to those in Chapter 2. In Section 3.3, we shall

I simplify the derivations of Section 3.2 for the special case of identical and global models -

this case was analyzed by Speyer (1979). Finally, some conclusions are provided in

Section 3.4.

SI 3.2 Decentralized Estimation and Transmission Requirements

As in the last chapter,, we assume a scenario where multiple sensors are tracking a

single SDI target. These sensors will also be referred to as nodes, local agents or local

processors. The target model is called the global or central model and the goal is to

estimate the target state from all the sensor measurements. In this section, we assume that

the agents may not possibly have the full knowledge of the global model. Instead, these

processors will have their own model (also known as local model) about the target state

which they will use to estimate the target states. These estimates are then transmitted to a

fusion center, also known as the mixing node, where all khe local esulindte are combined to

obtain the global estimate.

Suppose there are J sensors. The global and local models are as follows.

*Global Model

x(i + I) = A(i) x(i) + w(i); i > i0  (3.1a)

Iz,(i) = CO~) x(i) -,- vO~) ; j = 1,2,....J (3. 1b)

Various statistics about this model are as follows:

E [i 0) = 36 0) ; E [x o) - W 0) ) (i 0) - R6 o) 16 0)
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I E [w(i)] = 0; E[w6)wT(m)] =Q(i)8,

E[vj(i)]= 0; E[v(i)vT(m)] = RJ(i)8,m.8k;RJ(i)=RT(i)>0.

We also assume that w(i) is independent of x(io) and of v,(l) for all j=l,2,...J and

v,(i) is independent of x(io).

Local Models

-- x,(i +1) = Aj(i)x)(i) + w,(i) (3.2a)

z,(i)=Hj6 )x,(i)+v (i); j=l,2,...J (3.2b)

E [x,(• o)1=Rj/io) ; E[(xj(i o) - i,(o)) (x,(i o) - ,i( o)) T] = Z'j(1 0)

E[w(i)] = 0; E[w (iwk(m)] = Q j(i)8tm8k

3 E[v.,(i)]= 0; E[v,()vk(m)] = Rj(i)8,mnjk

As before, we assume that vj(i) is independent of xj(io) and of wj(i) for all j and i.

Further, for the well posedness of the problem, we assume the existence of a sequence of

3 matmces (MP()) such that

Cj(i)=H1 (t)M,(i); j=l,2,...J (3.3)

General Solution Without Decentralized Considerations

The globally optimal filtered state using all the information is given by

i(i Ii) = E[x(i) I zA(•), Z2(r), ...zA(•) ; io <- C < 1 (3.4a)

which can be mechanized by a central node if it receives all the sensor data. In order to
A

evaluate x( I i ), define
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I
Z2(i) C,(i) l,(,)

[Z26) Cv V21)
Z(i) = C(i) =j I~ ) =(3.4b)

Then all the sensor data can be compactly written as

z(I) = C(i)x(i) + v(i). (3.4c)

Therefore, the optimal filtered state conditional on the measurement history is

S1(i i) =E[x(i) z() ; i o C:5 i]

which evolves as [Bryson and Ho (1975)]

6 I l )= -(i i -1) + Kc(i )uc(i); (3.5a)

1C() = z(i) - C(i)•(i 1-1); (3 5b)

KC) P(i) I )CT()R-i(.) (3.5c)

i(i +111 )=A(O)i(i I i);

3 where R(i) is the covanance matrix associated with v(i) that has been defined in (3.4b) and

KC(i) is the centralized Kalman gain. The covariance matrix P( I i) is the solution of the

3 Riccan equation and follows from the following recursion:

P-1(i I i ) = P-1(i li-1) + cT(i)R-i(i)C(i ; (3.5d)

P(i + I i ) = A(i)P(i I i )AT (i) + Q(i); (3.5e)

P(i 0 li o -1 ) = 16( o) .

R(i) is defined as
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IE [v(OvT(m)] = R(i08,m" (3.6a)

Since we are considering the case of uncorrelated sensor noise,

3 R(i) = block diag {Rj(i)} (3.6b)

where RJ(i) is defined in (3.1) and (3.2) above.

3 (3.5a) can be simplified further as follows:

i(i +lli +1) = i(i +Ili ) + KC(i +1)[z(i +1) - C(i +1)R6 +lli )] (3.7a)

= F(i +l)i(i I i ) + KC(i +l)z(i +1) (3.7b)

where

F6 ) i )A(6 --1); (3.7c)

IJ
No(i) = I-,P(i I i )CT(i)R•'(i)C,(i) (3.7d)I .1=1

and KC(i) is defined in (3.5c). A block diagram of this centralized scheme is shown in

Figure 3.1.

Using the block diagonal structure of the R(i) matrix, (3.7a) simplifies to

I$
0(i +11i+1) = F6 +1)i(i I ) +XK,(i +1)z,(i +1) (3.8a)

where

K(i) = P(ii )C(i)R-(i) ; (3.8b)
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P-I(i I' ) = P-I(i I i -1) + I ,(i)R-'i(i)C,(i). (3.8c)

I J=j

Notice that using (3.8c), F(i) of (3.7d) can be written as

F(i) = P(ili•I)p-V(I I i -1). (3.8d)

Decentralized Estimation Using Local Data Processing-- I
Now consider the local model of Equation (3.2). The local estimate at the j-th node is

3 given by

(' II) = E[x,() I zj(1 ) ; i o(<5C-< i I; (3.9a)

! which is propagated as

ý,(i I i) = ii-1) + Ki tuj( (3.9b)

KOi(i) z(i) I i -1);

d•(,) --p,(, -,)n (i);(;

i)(i +11 i ) = A&)xj(1 ii).

Here Kjd() is the decentralized Kalman gain associated with the j-th sensor. The error

covariance matrix Pj(i I i ) follows the recursion

P,'(ili) = P,'(i I i -I) + HT(i)Rt'(x)H,(i); (3.9c)

PG(i +11 i ) = A,(i)P(i Ii )A j

PQ~ o li o-I) = Z,6l 0) •

(3.9b) can be simplified further-
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I (i+li +I) = Fj(i +Il)( i I i ) + Kd(. +l)z,(i +1) (3.1Oa)

where

I (i)FF(i )A,(i - 1)

Pj(i) =I - P,( t I i H,H(i)R,-'(i)Hj(i)

IPJ = I I )pjl'( i I i - 1) (3.10b)

m and the last equality has been derived from (3.9c). The local estimator for the j-th node is

shown in Figure 3.2.I
Relationship Between the Global and Local Estimatesm

Using the relationship C3(i)=H3(i)Mj(i) in (3.8a), we have the global estimate asI
(i +1lli +) = F(i +1)i(i I )I

+YP(i 11 i +l)M'(i +l)H(i +l)Rj'(i +1)z,(i +1) (3.11b)
J=I

Rearranging (3.l0a) after substituting the value of Kjd(i + 1) gives

HJTi +1)R,'(i +l)z,(i +1) = P•'(i +11 i +l)[xi(i +11 i +1)

-Fj(i +l)ij(i I i )] (3.1 lb)

Now, using (3.1 lb) in (3.1 la), we get

_ I
- -- xi(i +11l i +I) = F(i +l)i•(i I i ) +J_.P(l +11l i +I) MT(i +I)

J=l
x P•'l1i +11 i +l)[i,(i +11( i +l)-Fj(i +l)ij(i I i ) (3.11ec)

I Since ýJ(i Ii) = A'(-)%(i +11 i ), we have
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= F/i +l)ij(, +I1Ii)I=Pji+1 I i+l)Pjl(i +Il )ij(i+ii i (3.12a)

- I Using (3.12a) in (3.1 Ic) gives the global estimate as

- I (i+1 ',+0)=F(i+l)X(ili)+XP(I +l1 i+I)MuT(i+1)[P;'(1+1I i+1)
Y=1

X ij(i +11l i +1) - Pj-1(i +11l i )ý,(i +11 i A] (3.12b)

This expression suggests that i(i I i ) is of the form

XIiI)= E[P(i I i )P;(ili) (ii I i ) + hi)] (3.13a)

where th(i) is a node-dependent vector of the dimension of the state. This implies

Ij

3 (i +11 i+0 = [PI +11 i+1)MTj(i +1)Pj'(i +11 i +1)ý1(i +11 i +0)
J=1

+ hI(i +1)] (3.13b)

To find a recursion for h1(i +1), (3.13a) is substituted in (3.12b) for x(i i) and then

comparing it with (3.13b), we obtain

h(i( +1) = F(i +1)h (i) + F(i +l)P(i I i )MT(i)pl(i I i )ic(i I,)

-P(i+1 I i+I)MT(i+l)Pl'(i +1 li)i1(i+1 li) (3.13c)

Sipce x1(i I i ) = At-(i)f1 i +11 i ), the above equation can be compactly written as:

hj(i + 1) = F(i +l)h,(i) + Gj(i +l)ii +11 i) (3.14a)

where
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I F( +1) = P:(i ),

= P(i +11 i +I)P-I( +11 i )A(i); (3.14b)

H G(i +1) = P( +li i +I)P-(i +11 i )A(i)P(i Ii )?vl 3T(O)Pj%( 11i)

x A,('i) - P(i +l1i +l)MT(i +l)P'li +lli ). (3.14c)

We have used (3.7c) and (3.8d) in establishing (3.14b) which in turn has been used

to find (3.14c). We have assumed that the inverse for the appropriate matrices exists in the

above expression The initial condition for h,(i) can be evaluated by solving (3.13a) for

I 1= 10.

The complete scheme for generating the global estimate from the local ones is

I summarized as follows:

h,(i +) = F(i +l)hj(i) + GJ6 +1)AJ J(i I i) (3.15a)

x i)= E[P(i i i )MT(,)P-I(i I i )A(i I i ) + hj()] (3.15b)

The block diagram corresponding to these equations arc shown in Figure 3.3. Notice

that each of the local processors must send 2 vectors: x(il i ) and hj(i) to the central node.

The transmission requirement can be reduced if some of the computational burden of

the central processor is transferred to the local ones. For example, if we define

H il,(i) = P( ii )MT(i)Pi(i Ii )i(i (3.16a)

then

II
Ii(il i ) =X 1 (i (3.16b)
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i and the ,-th local agent need to send only this vector to the mixing node - thus the

transmission requirement has been reduced to 50%. Since all the variables in (3.16a) are

generated at the node, rlj(i) can be constructed locally at that node. The evolution of tjfi)

can be established as follows:

-- i riM(i +1) = P(i +l1i +I)MT (i + I (i+ll+l)i) + h,(i +1) (3.17a)

I Using the value of h,(i +1) from (3.13c) in this expression and after rearrangement gives

I •jl(i +1) = F(6 +l)[h;(.) + P(i Ii )MjT(i)P•l( l Ii )ij(i I 1I)

+ P(i +11 i +1)MT(i +)[P.-I(i +11i +l)ij(i +11i +1)
i P- pI(i +11li )VI +1 +li A}. (3.17b)!

But the expression in the second pair of brackets is

= [P-(a +1 i +1) h - P(i +11 i +l)K0ki +l)H,(i +1) - P t (i +lli )]ij(i +li

+ Pjl(i +lli +l)Kd(i +l)z(i +I)

-I =K(i +l)z(i +1)

Kc(i +1) = P(i +111 +l)C'T(i +I)R1(i +1) . (3.17c)

Therefore (3.17a) becomes

IJ6 +1) = F(i +l)rlj(i)+ K•(i +l)zjti +1). (3.17d)

3 The initial condition for 1lj(i) is obtained from (3.16a):

Il (i 0) = P(i o Ii )MNT(i o)P' (i o li o)xj(i o 0i o) + hj(i o) (3.17e)

The block diagram of this scheme is given in Figure 3.4. Notice that the explicit

appearance of the local estimator has been totally eliminated. The structure of the central

node is very simple - it simply adds the incoming vectors.
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3.3 The Special Case of Identical Local and Global Models

- -In this section we consider the case examined by Speyer (1979) Specifically, we

assume that the models used by the local processors are identical to the global model That

is,

IA=Aj, Q=Qj,Cj=HJ,Mj=I. (3.18)

5 In this case, the filtered estimate is generated as follows:

hj(i +) =F(i +l)h(i) + G(i +l)A(i)i,(i I i) (3.19a)

- ý(iI i )= [P(i ! i )Pul(i I i )xj(l i ) + hj(i)] (3.19b)
3=1

where, as before,

-- F(i +1) = P(i +11 i +I)P-1(i +111 )Ai)

G(i +1) = P(i +11 i +l)P-t (i +11 i )A(i)P(i I i )P; 1(t i )A-i6)
-P(i +!I I +I)Pj-' (i ýq11 I).

A

The other scheme of generating x(i I i ) using "1(i) remains unchanged in this special case

and is identical to (3.16).

3.4 Summary and Conclusion

The decentralized estimation scheme for the discrete time case has been presented in

this chapter whereas that for the continuous time case was presented in Chapter 2 . In

Section 3 2 the problem has been formulated in a more general setting: here we have

assumed that the local processor models are not necessarily the same as the true global

model except that the sensor noise statistics is same for both the models. The globally

optimum filtered states of the target can be constructed as follows, raw observed data from
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various sensor locations can be transmitted to a central (mixing) node where all the data can

be processed for the global estimate. Alternatively, raw observed data can be processed

locally and then the local estimates are sent to the mixing node where these are combined

into the global estimate. Throughout this report we have emphasized that transmitting

processed data from the sensor locations to a mixing node is supenor to transmitting raw

data. Along this line, we have shown in this section that the globally optimal estimate can

3 be constructed at a central node from two processed data vector from each of the local

processors, these are locally optimum estimate vector and another data dependent vector

that evolves recursively according to Equation (3.14a). This scheme is shown in Figure

3 3. This scheme can be improved further. the transmission requirement can be reduced

by 50% by transferrng some of the computational burden of the central processor to the

I local ones. In this improved scheme, each local processor need to send only one data

vector to the central node, this data vector is generated recursively at the local node

according to Equation (3.17d). This scheme is shown in Figure 3.4. The case of identical

global and local models is dealt with in Section 3.3 - it is observed that much

simplifications do not occur in this case.
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CHAPTER 4

DECENTRALIZED ESTIMATION IN PRESENCE OF CORRELATED

* SENSOR NOISE

* 4.1 Introduction

3 In Chapters 2 and 3, the decentralized estimation problem was solved for the case of

uncorrelated noise. In this chapter, a simpler version of the same problem will be solved

for the case of correlated sensor noise. Because of the importance of this problem, we

have mred to make this a self contained chapter.

The same scenario as that of the previous chapters will be adopted here: multiple

I sensors that are possibly located at dispersed geographical locations are observing a single

SDI target. Attached with each sensor is a data processing capability. A sensor along with

its own data processing capability is also known as a local agent or a local processor. The

3 Itrue state of the target is also known as the global state and the ultimate goal is to obtain the

optimal estimate of this state by utilizing all the sensor measurements. The dynamic model

I of the target state may or may not be available to the local agents. We have discussed in the

previous chapters that the global estimation problem can be solved in two alternative ways.

First, all the sensors can transmit "hieir raw observations to a central node (also known as a

fusion center or mixing node) to form an augmented observation vector and a centralized

Kalman filter can then extract the optimal state from this vector. Alternatively, each local

agent, by utilizing its own model about the global state, can process its own observations

on site to form the local optimal estimate conditional on its measurement history and then

transmit this estimate to the fusion center. In the fusion center, the incoming estimates

3 from various nodes are combined in an appropriate fashion to construct the globally optimal

estimate - this is known as a decentralized or distributed estimation scheme. It has been
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SI mentioned earlier that the latter alternative is superior from the system survivality

considerations In the centralized scheme, the system performance is lost completely in the

event of the central mode failure On the other hand, in the decentralized scheme, a

I graceful degradation of the system performance takes place in the event of a node failure

In order to build an ideal redundancy into the system, each of the local nodes should be

designed as a fusion center in the sense that each node will receive estimates from all other

nodes and generate an identical globally optimal estimate of the state. This can be

mechanized if all the sensors are communicating in a broadcast mode. As in the previous

I chapters, we assume that there is no appreciable transmission or computational delay.

Therefore, after an observation is made in the discrete time case, the nodes will compute the

locally optimal estimate and transmit it before the next observation is made. Furthermore,

we also assume that all the sensors are engaged in time-synchronized measurements For

the continuous time case, we are assuming that computation at and transmission from each

oI node take place instantaneously. We will consider that the SDI target is governed by linear

time varying dynamics and measurement equations.

Recently, there has been a great deal of interest in the decentralized estimation.

I Speyer (1979) first formulated the problem in an LQG framework - he solved the

decentralized estimation as a prelude to a decentralized control problem He assumed that

the global and local models were identical. Willsky et al. (1982) solved the problem for a

more general case of nonidentical global and local models - they have also solved the

distributed smoothing problem in this paper. Recentl•, 'Raslhernpoaur, ?oy andI Lamb

I(1984) have expanded the distributed estimation problem to include collocated and non-

3collocated sensors, and have provided implementation details for the discrete time case. In

all of these works, the authors have assumed that the measurement noise processes are

3 -uncorrelated from sensor to sensor. The primary purpose of this chapter is to develop a

distnbuted estimation algorithm when the sensor noises are correlated. The underlying
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assumption is that the local agents have the full knowledge of the global model and various

statistics of the system.

The organization of this chapter is as follows. In Section 4.2, the important results

about the decentrahzed estimation for the (case of uncorrela,,d sensor noise are reviewed.

5 IThe case of correlated sensor noise in the continuous time domain is presented in Section

43 Several schemes for optimal estimation are presented in this section: some of these

I schemes employ centralized processing algorithms. The last of these schemes is truly a

distributed one. We will consider the continuous time case only, the corresponding results

for the discrete time case will be analyzed in Phase II. Finally, a summary and conclusion

is provided in Section 4 4.

3 4.2 A Review of Distributed Estimation Problem -*n Presence of
Uncorrelated Sensor Noise: Continuous Time Case

In this section we assume that the measurement noises are uncorrelated across the

3 sensors. Suppose that there are J sensors tracking a single SDI target. The dynamic model

of the target and the measurement equations are assumed as follows:

U x(t) = A(t)x(t) + w(t) t t to (4.1a)

I z'(t)= c(t)x(t) + v(t) j = 1,2,...J. (4.1b)

I Various statisti'€ relating to this model are:

E [x(to)] = i(to), E R(x(to) - x(tO) ) (x(to - i(t 0 ))T] = )

- E [w(t)]= 0, E Iw(t)w
T(r)] = Q(t)8(t--tr

E[v1 (t)] = 0, E[vj(t)vT(t)] = RJ(t)8(t-r)SJk, Rj(t) = R•(t) >0
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We also assume that w(t) is independent of x(t0 ) and of vj(t) for all j = 1 ,2 ,..J. It is also

1 assumed that v,(t) is independent of x(t0).

Since the underlying a.sumpuon is that the local processors have the full knowledge

of the global model, the state model at the j-th sensor can be written as

x,(t) = A(t)x,(t) + w(t) (4.2a)

with
i E ( x,(to)] = i,(to). E R(x,(to) - ij(to) ) x,(to) - XP(o) ) T j(to) .

I'The measurement equation and other related statistics are same as above.

SI The globally optimal filtered state conditional on the measurement history of all the

sensors is given by

i(t) = E [x(t) I Zl(Q), Z2(A) ...z() ; tO < <t tU
This estimate is propagated as

S~~x(t) = A(t)i(t) + V ,..•(t) [zJ(t) - Cwti(t I , (4.3a)
i J=i

3! where

K|(t) = p(t) T(t)RI (t) -(4.3b)

- and the estimate error covariance matrx P(t) is the solution of the Riccati equation

5 P(t) = A(t)P(t) + P(t)AT(t) + Qt) - Y.P(t)CT()E(t)Rj(t)p(t)P (4.3c)

-I



-I

P(t0) = Z(t0).I
Clearly the mechanization of (4.3) requires that all the sensor measurements be transmitted

to a central node where x(t) will be generatea We have used the notation K,(t) to imply

that this is the centralized Kalman gain when the sensor noises are uncorrelated.

If the nodes are allowed to process their own observations locally, the local optimal

estimate evolves as.

xi(t) = A(t)xCt> + Kiu(t) [zj(t> - C1(t)x,(t)] (4.4a)

where

SKý(t) = p i(t)CT(t)Rj| (t) (4.4b)

and the error covariance matrix P,(t) can be computed from the Riccati equation

SP(t) = A(t)P,(t) + Pj(t)AT(t) + Q(t) - Pj(t)CT(t)R t l(t)C,(t)P1 (t) (4.4b)

P1(t0) = - to) .

Here, Kdu(t) stands for the decentralized or localized Kalman gain associated with the j-th

node in presence of uncorrelated sensor noise. The problem of decentralized or distributed
A A

estimation is to reconstruct x(t) in terms of x3(t), j = 1, 2, ..J of (4.4a) Willsky et al.
A

(1982) has shown that x(t) can be constructed at a central node dynarmcally from the local

-3 estimates as follows:

',t(O, = F(t)ý(t) + Z K,(tx 1(t) (4.5a)
j=i
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x(t) = C(t)O+ + P()Pui(t)xj(t) (4.5b)
j=

1

I where

F(t) = A(t) - jP(t)Ck(t)R,1(t)C1(t). (4.5c)
j~i

K1(t) = [P(t)Pj'1 (t) - I]Q(t)Pi'(t). (4.5d)

, A
These equations show that each node j must send to the central node its local estimate xj(t)

I and the associated covariance matrix Pj(t). The structure of the central node can be

3 simplified using Speyer's (1979) form where some of the computational burden of the

central node is transferred to the local nodes. At each node j, a data dependent vector hi(t)

is generated as follows:

3h1(t) = F(t)h1(t) + K,(t)xj(t) (4.6a)

Then, at the central node, the global estimate is constructed as

IIO =t 9: (t, ,ko)(, + [., t)~tP;'(,)x•,/,) + hl/t)].,
j-!

U where OF(t, ZO) is the transttion matrix associated with the dynamics matrix F(t) The

complexity of the central node has been reduced at the expense of higher transmission

requirements - now each node j must send to the central node 2 vectors the locally optimal

Sestimate x1(t) and a data dependent vector hi(t). It has been shown in Chapter 2 that the

transmission requirements can further be reduced to only one data dependent vector.
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The key to the distributed estimation algonthm (4.5) and (4.6) is the fact that the

global estimate x(t) can be decomposed in terms of the locally computed data dependent

vectors as shown in these equations This decomposition has been possible because the

sensor noises are uncorrelated It 's the purpose of the next section to show how this

3I decomposition can be achieved when the sensor noises are correlated across the sensors

4.3 Distributed Estimation with Correlated Sensor Noise: Continuous
Time Case

Consider again the dynamic model (4.1) having the same process noise and initial

condition. But this time we assume that the sensor noises are correlated Specifically we

assume

Erv,(t)]= 0, E [vj(t)vk(t)] = Rik(t)
8
(t-t) (4.7)

As before, we assume that the process noise w(t) is independent of x(t 0) and of vj(t) for all

j = 1, 2, ...J. Also, vj(t) is independent of x(t 0 ). The optimal estimation problem is first

solved for the centralized case, i.e., where the raw measurements from all the sensors are

transrmtted to a central node.

3 A Centralized Solution for the Optimal Estimation Problem

3The optimal filtered estimate is given by

x(t)=E[x(t)lz/(.); t0_<•<t,j= 1,2,..J ]

and can be computed as follows in a straightforward way Define
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]2t 1C2 t) 1v2(t)1
z(t)= . C(t)= v(t) (4.8a)

- CLt t) vL(t)

Then all the sensor measurements can be compactly represented as

z(t) = C(t)x(t) + v(t) (4.8b)

Here v(t) is a white noise process whose covariance matrix is given by

E [v(t)vT(t)] = R(08(t--); R(t) = RT(t) > 0 (4 9a)

where

R(t) = block [RJ(t) ; i, j =1, 2,..J] (4.9b)

Clearly, for the case of uncorrelated sensor noise, R(t) is a block diagonal matrix and

it is this block diagonal structure of the R(t) matrix that has led to the decomposition of the

global estimates as in Equations (4.5) - (4.6) For the correlated sensor noise this is a

"full" matrix. However, irrespective of the structure of this matrix, the optimal filtered

estimate is given by

(t)O=E[x(t) I z(); to:< ::<t]

which can be computed from the standard Kalman filter.

x(t) = A(t)x(t) + K'(t)[z(t) - C(t)(t)] , (4. iOa)

Kec(t) = P(t)CT(t)R-(t) , (4.10b)

l I and the covariance matrix P(t) obeys
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N p(t) = A(t)P(t) + P(t)AT(t) + Q(t) - P(t)CT(t)R-l(t)C(t)P(t) (4.10c)

I P(t0) =

I C(t) and R(t) have been defined in (4.8a) and (4.9p) re-pectively. Here KcC(t) stands for

Ithe centralized Kalman gain for the correlated sensor noise The scheme of (4 10) can be

mechanized at a central node where all the sensor measurements zj(t) are transmitted to

form the aggregate measurement vector z(t)

3 Alternatively, this vector z(t) can be transformed into pseudo-measurement vector z(t)

such that the measurement noise associated with this new vector corresponding to various

i sensors is uncorrelated To obtain z(t), decompose R(t) in such a way that

I R(t) = R"t2(t)RT2(t) (4.1 la)

where Rl12(t) is a positive definite square root of R(t). Then

z(t) = R-112 (t)z(t) (4.11 b)

I = C(t)x(t) + V(t)

I where

C(t) = R-i2(t)C(t) , v(t) = R1 'P2v(t) . (4.1 Ic)

3 Clearly, the covanance matrix A(t) of v(t) is the identity matrix for all t and satisfies

therefore the new measurement noise v(t) is uncorrelated across the sensors. It can be

" 1verified in a straightforward way that the Riccati equations associated with the Kalman

filters for the original form (4.10) and the new measurement coordinate systems (4.11) are

the same Therefore the optimal estimate in the new measurement system is given by

I
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x(t) = A(t)x(t) + ,X c(t) [i'(t) - C,(t)i(t)] ,, (4.12a)Ij
KR(t) = P(tl'(t) (4.12b)

where P(t) is obtained from (4.1Oc) and C,(t) is the j-th submatrix of C(t) corresponding to

the j-th sensor. Similarly, z)(t) is the corresponding j-th subvector of z(t). This scheme

looks the same as for the uncorrelated sensor noise as shown in (4 3), but yet can not be

implemented in a decentralized framework. The reasons are as follows, although C,(t) and

K.c(t) can be computed at the j-th node, but not z(t). In fact Cj(t) and K(c'(t) can be

computed and stored apnori. In order to compute 7,(t), z(t) must be formed first at that

node and therefore must receive the raw observations from all other nodes. Once z(t) is

formed, it is to be multiplied by R-t'(t) and zk(t) is the j-th subvector of the resulting

vector. Our goal is to process the raw observation data locally and then transmit the

processed data to a central node.

Distributed Optimal Estimation

In this section we will show how each node will generate a data dependent vector

from its own observations only and without utilizing data from other sensors. These

vectors from all the nodes will be communicated to a mixing node where these will be

fused into the globally optimal estimate. The main result is presented in the following fact.

Fact 1

U Suppose at each node j, a data dependent vector qj(t) is generated as follows:

-j(t) = F(t)qj(t) + K"(t)zj(t) ; q,(t0 ) = 0, (4.13a)
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where
.hre F(t) = A(t) - K•(t)C(t) 

(4.13b)

and K7c(t) is the j-th submatrix from a compatible decomposition of KC(t) of the form

Kcc(t) = [Kc(t), Kc(t) ..K]c(t)] (4.13c)

Then

x(t) = OF(t, to)(to) + E q,(t). (4.13d)
t=l

Here Kcc(t) is the centralized Kalman gain given in (4.10b) and C(t) is the

measurement matrix associated with the aggregate measurement vector z(t) as shown in

(4.8); Kc7(t) is the appropriate block of KCc(t) corresponding to the j-th sensor and OF(t, to)

is the transition matrix associated with F(t).

This is a simple yet remarkable result. Since the underlying assumption is that the

local agents have the full knowledge of the global model, all the variables of (4.13b) are

available to the j-th processor. KcC(t) can be locally computed or can be transrmitted from a

central coordinator - in either case it can be stored aprion at the j-th sensor The same

comment applies to the construction of F(t). Moreover, each local processor can be

I initialized to zero thus avoiding the requirement of a complicated initial setting. Therefore

i qj(t) is truly a node dependent vector and can be constructed from the observations at that

node only.

An implementation of this scheme is shown in Figure 4.1. It can be seen from this

j -figure that, the node j does not have an impiicit structure of a Kalman filter, neither the

central node has a Kalman filter in it. Each node sends only one data dependent vector qj(t)
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I to the central node - thus the transmission requirement is minimal The structure of the

central node is also quite simple; if x(to) = 0, it -s merely an adder.

Proof
A

The proof is straightforward. We will show that x(t) generated this way i.ideed

I satisfies the standard Kalman filter equations given in (4 10) Clearly, since qj(to) = 0,

I q,(t) = J4F(t, ')K•(0)z,(0)dt (4.14a)

Substituting qj(t) in (4.13d), we get

x(t) = OF(t, to)x(to) + f J F(t. t)K" (T)z3(0t)d'r (4 l4b)

Differentiating both sides,

SI x(t) = F(t)(t) + K"c(t)z1 (t) . (4.14c)
j =l

Finally, rearrangement of this equation gives

3 x(t) = A(t)x(t) + KCC(t) [z(t) - C(t)x(t)] (4.15a)

I which is the same as (4.10). U

There are several interpretations of q%(t). For the case of uncorrelated sensor noise, it

is the locally optimal estimate. When the sensor noises are correlated, qj(t) can be regarded

i as a sub-optimal estimate of the global state as viewed by the local agent This vector will

g be studied in detail in Phase II.
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4.4 Conclusions

The decentralized estimation problem for the correlated sensor noise has been solved

S in this chapter. The underlying idea of the decentralized estimation is that the observations

are processed locally by each node and then the processed data is sent to a central node

where the globally optimal estimate is constructed The problem with uncorrelated sensor

- Inoise has been reviewed first in Section 4.2, because most of these results were used to

derive conesponding results for the correlated sensor noise case. It has been shown in

Section 4.3 that for the later case, each node must generate a data dependent vector q,(t)

which is then transmitted to the central node and fused with similar vectors from other

nodes into the globally optimal estimate. The detailed properties of this vector are yet to be

3 iinvestigated.

We have solved this problem for a special case of identical global and local models

When the models differ, the analysis is very difficult and will be taken up in the

3 forthcoming Phase H.
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Figure 4.1: Distributed Estimation with Correlated Sensor Noise
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CHAPTER 5

DEVELOPMENT AND APPLICATION OF DECENTRALIZED MODIFIED

GAIN EXTENDED KALMAN FILTER TO SDI TRACKING

* 5.1 Introduction

In this chapter, the results of decentralized estimation of the previous chapters are

extended to a special class of nonlinear measurements encountered in the SDI tracking

problem The IR sensors used in the SDI system typically provide information on bearings

of the targets Radar and Laser trackers can provide additional information on range and

range-rate If the motion of the target is descnbed in a rectangular coordinate system, the

above measurements are related nonlinearly to the state variables of the target

The approach used to extend the re-ults of the linear decentralized Kalman Filter to

I the above case is to use Modified Gain Extended Kalman Filters.

3 In this chapter, a new nonlinear filter, whose structure is similar to that of the

Extended Kalman Filter (EKF), is applied to the estimation problem using a strapdown

seeker. This nonlinear filter is based upon the system nonlineanties being members of a

Sspecial class of functio- ailed modifiable. The essential idea is that the difference

between the nonlinear function at an unknown state and a known state is equal to a linear

3 function in the difference between the unknown and known state operated upon by a mamx

function composed only of the known state and the measurement functions. Thus, this

special class possesses a natural linearity. Although this class is quite small, it does include

-Iseveral of the nonlineanties present in the SDI tracking problem. The theoretical analysis

of centralized estimators containing this type of nonlineanty with interesting applications

are given in Song and Speyer (1984), Safonov and Athans (1978) The theoretical results

show that if no noise inputs are present, the filter, acting as an observer, is globally stable
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I If noise is present, the centralized filter is shown with additional conditions to be

stochastically exponentially bounded The convergence of the estimates to unbiased values

has been indicated mostly by simulation (Song and Speyer, 1984) but for the parameter

identification problem can be shown analytically (Safonov and Athans, 1978',

I Since the class of nonlinear functions that are modifiable may not include all the

nonlineanties present in a state estimation problem, a filter structure involving both

I modifiable and nonmodifiable functions is possible for sophisticated applications such as

SDI Consequently, those nonlinearities which are modifiable are included in the

estimation algorithm in their modifiable form and those that are not modifiable are included

as they would be in a standard EKF. In the SDI tracking problem, the essential or most

important nonlinearities belong to the class of modifiable nonlineanties. The essential,

nonlineanties are the functional forms of the elevation and azimuth angles, the range, and

the range rate formulated in rectangular coordinates The misalignment errors produce

nonlineanties which are included by the linearization method of the standard EKF. The

resulting filter is called the modified gain EKF (MGEKF), since only the gain calculations

are somewhat different from those of the EKF but not the estimator structureI
If both angles and range and range rate are measured, then the anticipated advantages

3 of the MGEKF over the EKF may not be clearly seen since in both schemes the large

number of measurements allows good estimation of the states However, if only angle

information is present which is the case with IR measurements, then it is anticipated that

signc -ant improvement in filter response and stability should be evident in the MGEKF

formulation
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5.2 Modifiable Functions in the SDI Trackin', Problem

The measurements considered here are the elevaton and azimuth angles, range and
S range rate or any subset of these measurements. These measurements are put in modifiable

form first. Then the modification to the gain calculation is given.

Modifiable Form of Measurements

Let

X = (5.1)

-I
denote the SDI target position in inertal coordinate frame and

X =6Ya = T1 >] (5.2)
..B ZB

denote the target position in a body axis system centered at the sensored platform where T

denotes the transformation matrix between the two coordinate frames.

The measurements are given in deterministic form as angle measurement functions:

[ey1 = [Ky KyjI a (YWIXB)I

Se -z KzJ/[ta ( -z ] + [oGJ (5.3)

I
£where GT =[GY, G7]T IS the glint noise state vector

2 - 2 2 (4
range function: R= X+yy+Z (5.4)
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SXVx+ YVy."- ZVz

range rate function' R = R (5.5)

A A

5 where V= [Vs, V5 . Vz] is inerual velocity vector and K Ky, Kyz, K1 'r denotes a

vector sensor scale factor parameters

The measurement function given by (5.3) to (5 5) are represented as the vector

5 function

• I ~z" t ha.., CL., V, K.K) (5.6)

The actual measurement is given by z = z* + v where v is white zero mean Gaussian

noise rhe global exponential boundedness for the stochastic case are obtained by

assuming that certain finite gain operators associated with the additive measurement noise

do not destabilize the system Results of this sort are given in Song and Speyer (1985)

Iwith respect to a constant gain EKF. The results of this chapter extend these results to time

-•varying gain.

5.3 The Definition of a Modifiable Function

The measurement function is modifiable if

3 ~h (X, a, Y. Y,) - h (X, K) V K) V ~* , .. K (5.7)

where N., G, V, K are unknown values but X, V, ., " are estimated values of the state

5I and are thereby known. Note dhat F will be ealuated using z rather than z* in

i.-i plemennng the filter. Furthermore, note that for continuous functions
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F(z*,X,2,• D (h v .K)=(XVG (5.8)•-- I ~ ~a (X, ._, C11 ) -

Therefore, in the limit the MGEKF converges to the EKF, as

I (X, -Q, Y) = (X,, V,L) This should be used as a check on the numerical

3 Iimplementation

5.4 List of Preliminary Functions

The following functions are required in implementing the MGEKF.

ai = tan"B (59)31
e= tan' I -2B (5.10)

-- XB+
.1XT -Y2

H(az, el) = sin az -cos az, 0

sin el cos az, sin el sin az, cos el

I
tanta 0

E= (cos RXB+ sin az Ya

[cosel (XB+YE, -sinceelZY

1 ~0 ]
[] cos 2z R+ sin~Y ___ __V__ HXB

0 -22 (5.13)

cos eI(X B + Y - sn dZiij
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I . ,, ] (5.14) .

cos az - cos aza,= az - (5 15)

sin az - sin az

a 2 = - (5.16) t
* az -az

cos el - cos ei3 e l -i (5.17)t

sin el - sin ci
e2 = el - (5.18) t

cos az = (5.19)

sin az = 2 (5.20)

- cos el = (5.21)-| R

I ~ sinel TI -+ B (5.212)

=V=X-B +Y2B+ ZB (5.23)

-- IF, = "KR EHT- (5.24)

= az,- 10, az, e1i (5.25)

Note cy, Z". and R are replaced by their associated noisy measurements when the MGEKF is3 iimplemented

If (5.15) to 5 20) have numerical difficulty due to division by a small number then approximate as
al = sin0, a2 = cosO. e,=sin'. e.2=cos where 0=(Il'2)(az+az) and €•=(lj2)(el+cl)
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F- { (C o s a z c o s el. sin az.C os. e l, -s in el) .-(X_ c o s el-a •T-' I
R+YBcose1a2,xBcosazeI+Ysina-ze 2 -Z 2 )EHf (5.26)

I FRV = (cos el cos az, cos el sin az, -sin el) T' (5.27)

3R =V F (5.28)

-- 5.5 The Modifiable Forms for the Measurements

3 The measurement function given by Eq. (5.6) is only approxiaiately modifiable. The

approximate modifiable form given by Eq (5.7) is presented below The angular

measurements become approximately modifiable as

3Y - ýFj= FLx:) + _Q- z+ FM(K-K) (5.29)

where

K = K YZ(530)

-iThe range measurement becomes approximately modifiable as

R- R=_ FR(X.- X). (531)

-- The range rate measurement becomes approximately modifiable as

R- P = FRR(X - X) + Fjv(O -Y). (5.32)

l Define an error vector as (note the acceleration error is not included but can be done

3 trivially)
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KI e X_ (5.33)

I Then, the modifiable form is given by Eq. (5.7) where

5 •F = F (z*, X,VGK)

F 0 1 FM]

5IFA 0 0 0 (5.34)
FRR FRV 0 O

and where the elements in the matrix are given in section 4.

5.6 Change in the Update Equation for Gain Cakulation in the MGEKF

The update formulas for the EKF and the gain calculation are the same for the

MGEKF, except that the update equation for the error variance equation when processing a

measurement vector is changed from

P=(I - Kfhx) M (I - Khx) + KfVK, (5.35)

where Kf is the EKF gain, M is the a pnon "error variance" before a measurement is

processed, and P is the postenori "error variance," to

P = (I - KMF) M (I - KMF) + KMVKTM (5.36)

where KNI is the gain of the MGEKF Therefore, the only change in the estimation

algorithms is that hx is replaced by F. Note that F = f(z, X, .V G, 1.), i.e., F is calculated

-- using z rather than z*.

We now extend the above results to the case of distributed filtering for the SDI

tracking problem. The structure of the MGEKF filter is similar to the KF for the linear

5 case.
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5.7 The Local MGEKF

Suppose that tie suite of nonlinear measurements for sensor fusion are

Sz,(k) = g,(x(k)) + v,(k) j = 1 ... , N(k) (5.37)

- where the noiseless measurement is zj* = gj(x) and N(k) is the number of sensors that are

to be combined at time stage k. The number may vary depending upon the punty of the

II current local estimators.

SIt is assumed that all the measurement functions are modifiable functions or at least

approximately modifiable. Thus,

g,(x) - g,(R) = H(zj*, X) (x - .-) (5.38)

let us consider what this means for the local estimator equation

il (k) = R,(k) + K,(k) (z,(k) - g()) . (5.39)

- I x,(k) = ý,(k I k-1) ,

where Kj(k) is the gain of the MGEKF. Note that the estima.or can be represented in terms

of the modifiable function as

ýj(k) = Rj(k) + K,(k)H(zj*, j) (x(k) - R,(k) ) + K,(k)v,(k) (5.40)

I Therefore, the error equations for e,(k) = x(k) - i3 (k) and ej(k) = x(k) - Xi(k) are

- e,(k) = [I - K3 (k)H(zj*,i 3 )J ij(k)- K,(k)v,(k) (5.41)

ij(k+l) = A(k)ej(k) + w(k) (5.42)I
where (5.42) is obtained directly from the dynamic state equation. Note that without any

3 approximation, assuming modifiable nonlineanties, the error equations (5.41) and (5.42)
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I are linear, even in the presence of noise. The essential improvement over the EKF is

making use of this observation in constructing the gain algorithm for KC(k).

In constructing the gain algorithm one consideration was that the estimates should not

be biased It is shown in Song and Speyer (1984) that if the gain is a function of the

5 present measurement, then the estimator is highly biased. To avoid this, the gain was

assumed using HA(k) A Hj(g;(x-(k)), ix(k)) to be of the form

K,(k) = M (k)Fi,(k) [Fl (k)TM1(k)Rl(k) + R,(k) F- (5.43)

I where we have used the notation M1(k) = Pj(k I k-I).In this way, K1(k) is only a function

of past measurements. It should be noted that Hi(k) is essentially the partial of gj with

respect to x evaluated at x = x1(k). In this way, the algorithm is still that of the EKF The

i difference arises in how the matrices P, and Mj are propagated. These will be referred to as

* postenon and a pnon error variances, but it must be remembered that these are not actually

statistics and are really a kand of quasi-variance This statement also applies to the so-called

5 statistical properties of the EKF. The error variances are propagated as

I P(k) = [l - K1 H(z,, R1)]M1(k)[l - K,H,(z1 , i,)]T + K1 (k)Rj(k)K,(k)T (5.44)

M,(k+1) = A(k)P(k)A(k) + Q(k) (5.45)

where we have used the notation P1(k) = Pj(k I k) and M,(k+l) = P)(k+l I k). Note that

ll(z,, x,) is used in the update of P,(k) where the actual measurement is used.

£ Furthermore, in the absence of measurement noise Pj(k) reflects the actual error (5.41)

whereas in the EKF the associated enor variance does not reflect the actual error (5 41)

5 1-inally. it is shown in Song and Speyer (1984) that if 7j* is used rather than z,, then under

reasonable assumptions the error is exponentially bounded in mean square.
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5.8 The Global MGEKF

The local estimates are to be combined by the memoryless formula given in earlier

chapters. Since the actual error is reflected by (5.44), it seems reasonable to combine the

estimates according to the formula for the linear case where the effect of the error size is

reflected by Pj(k). At present we have no bounds on the quality of P1(k) in reflecting the

3 true error variance, but determining these bounds is a subject of additional research. Since

the EKF is based upon a local linearization, there is no reason to believe that the pseudo-

3 error variance reflects the actual error vanance unless the actual error is small. The

question arises as to what estimate is best to perform the required local linearization. Since

Ithe MGEKF is based on a universal linearization and not a local linearization, this

3 restriction does not apply.

In developing a global estimate, both P(k) and hj(k) need to be computed. The

I calculation of P(k) should be simply as

N(k)

P(k)-' = M(k)- t + XHA(z,' R)T RJ(k)- IH(zJ, i) (5.46)

where M(k) is propagated using the same propagation formula as for the linear case.

However, it is suggested that during periods where certain sensors are in doubt that this be

calculated with respect to each of the suspect sensors eliminating the other suspect sensors

For example, suppose that the IR sensor is affected by a flare and two signatures are being

tracked It is suggested that (5.46) be calculated for the three situations each of the two

tracks on the IR sensor and without the IR sensor If the IR sensor is eliminated, the

globadl thiiaites atr. ua.Z'czted by the countermeasure. However, when one of the two IR

SI tracks are identified as the flare, the information from the other IR track is now known to

be correct signal, and this information is u3ed to obtain a better estimate than when the IR

9
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-isensor is eliminated. The difficulty expressed here is due to the fact that the error variances

cannot be computed off-line for the nonlinear estimation problem.

Once P(k) is obtained from (5.46) then h,(k) of (5.43) can be computed. Note that

-I both F(k) and G,(k) require the calculation of the global covanances P(k) and M(k). It is

3 again suggested that during periods when anomalies are present that h3(k) be calculated for

each hypothesis and used only when the anomaly is known not to be present in the sensor

3- data as determined by the detection and isolation scheme.
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CHAPTER 6

SUMMARY AND FUTURE RECOMMENDATIONS

6.1 Summary and Findings

S The main goal of this project is to solve the decentralized estimation problem in

presence of the correlated sensor noise in a multisensor environment. This is a three phase

project: Phase 1, Phase II, and Phase III. In Phase I, the feasibility of the underlying

3 techniques will be established. In Phase II, the the problem will be formulated in a more

general setting and the techniques will be developed in details followed by a

commercializauon plan in Phase lIi. The work reported here is the outcome of the Phase I

effort.

The subject problem is a very significant one in an SDI framework. Typically an

I SDI target is tracked by one or more sensors located on different orbiting satellites. The

problem is to estimate the target state from all of these measurements which can be

computed either using centralized or decentralized estimation techniques In a centralized

3 technique, all the sensor measurements are transmitted to a central node and the state is

estimated by utilizing all the information simultaneously. On the other hand, in a

decentral, zed framework, the nodes process the observed data locally and then transmits the

3_ processed data to the central node where these are fused into the globally optimum estimate

The decentralized estimation is superior to a centralized one from system survivability and

computational considerations.

5 In a realistic situation, the sensor noises are correlated because these sensors are

observing the same target through the same atmospheric medium. In this case, the

i decentralized estimation is more difficult than the case of the uncorrelated sensor noise.

There has lately emerged a considerable amount of literature in the area of decentralized
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m estimation, but none of these has addressed the problem with the correlated sensor noise.

In Phase I, we have addressed this issue and found a solution of a simpler version of the

problem under the assumption that the local processors have the full knowledge of the

global model and the system uncertainties The mor. general version of the problem with

non-identical global ano local models, will be analyzed in Phase II. A brief summary of

m this report follows.

Sm An up to date available results in the area of decentralized estimation with uncorrelated

sensor noise have been reviewed in Chapters 2 and 3 Chapter 2 is devoted to the

continuous time case and Chapter 3 to the discrete time case These reviews have put the

5 problem with the correlated sensor noise in the right perspective and exposed the difficulty

in solving it. We have made some non-mvial extensions of the available results which

have also been incorporated into these chapters

The general problem of decentralized estimation with non-identical global and local

models has been presented in Chapter 2 We have followed the works of Willsky et al

(1982) in developing this chapter. The main result is given in Equation (2.14) and is

shown by block diagram of Figure 2.3. This shows that the globally optimal estimate can

be constructed at a central node dynamically from the local estimates But the structure of

the central node in this scheme is complicated. We have reduced this complexity in the

scheme of Equation (2.15) and the corresponding block diagram of Figure 2.4. In this

scheme each node must send 2 vectors - an optimal estimate of the state and another data

3 dependent vector, to the central node. The structure of the central node as well as the

transmission requirement has beer. reduced further in the scheme of Equation (2.16) and

SFigure 2.5. In this scheme some computational burden has been transferred from the

central node to the local nodes and, as a result, each local node needs to send only one data

I dependent vector to the central node. However, in the process, the complexity of the local

3 nodes increases. To remove this drawback, an improved scheme is presented in Equations
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- (2 17) and Figure 2.6. In this final scheme, there is no need of constructing an optimal

filter explicitly at each node and the dynamical equation at that node can be initialized to

zero This last scheme plays an important role in the development of the corresponding

results for the case of correlated sensor noise in Chapter 4.

3 Chapter 3 is the mirror image of Chapter 2 but for the discrete time case. This chapter

is included to expose some implementation details which are distinct from the continuous

3 rtime case. The major results of this chapter are due to Speyer (1979) who solved the

problem with uncorrelated sensor noise and identical global and local models. We have

I extended this result to include the case of dissimilar local and global models. The main

3 result is given in Equations (3.15) and the corresponding block diagram of Figure 3.3 As

in the continuous time case, each node must send 2 vectors to the central node. The

3 transmission requirement and the complexity of the global and local nodes are reduced in

the scheme of Equations (3.17) and Figure 3 4 In this scheme, there is no explicit Kalman

I filter at any node and each node needs to send only one data dependent vector to the central

- Inode.

The subject issue fo this project, i.e. the decentralized estimation problem with

correlated sensor noise is presented in Chapter 4 under the assumption that the local

3 Iprocessors have the full knowledge of the global model Because of the importance of this

problem we have made this a self contained chapter. A bnef review of the case of

3 uncorrelated sensor noise is given in Section 4.2 The correlated sensor noise is dealt with

in Section 4.3. This problem is first solved by transmitting all the sensor data to a central

node and the results are given in Equation (4 10) Next, the technique of decorrelating the

3 measurements from sensor to sensor is demonstrated in Equaton (4 12) In this technique,

the observed data is transformed into "new measurements" so that the data is uncorrelated

3 iacross the sensors, but the solution depends upon the simultaneous availability of all the

data The distributed algorithm is presented in Equation (4.13) and Figure 4.1. This is a
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I remarkably simple algonthm There is no explicit need of constructing a Kalman filter at

the nodes and the initial conditions at the local nodes can be set to zero. Each local node

must send to the global node only one data dependent vector the property of which is yet to

3 •be found out.

In many situations, particularly if the variables are expressed in the cartesian

coordinates, the dynamics equations for the target state is linear but the measurement

eqaations are nonlinear This class of problem is usually solved by using extended Kalman

filters (EKF). In most of the cases, the implementation is based upon ad hoc expansions

and linearization techniques. In this project, we have dealt with a special class of nonlinear

measurements encountered in an SDI tracking problem known as modifiable nonhnearities

The resulting filter is called the modifiable gain EKF (MGEKF) and has been dealt with in

Chapter 5. In the case of bearings only measurements, it is anticipated that significant

improvement in filter response and stabihty will result in the MGEKF formulation in

contrast to that of the EKF. Since this is a new idea, this chapter has been written in a

I tutorial form The main result is given in Section 5.6 - 5.7. The decentralized version of

the results are presented in Equations (5.38) - (5.45). These are the preliminary results and

I will be analyzed in detail in Phase 11.

3 I6.2 Future Recommendations

3 IIt is obvious from the earlier parts of this report that the decentralized estimation

problem in presence of correlated sensor noise is indeed a very difficult one. We have

I solved a very simple version of this problem which assumes linear dynamics and

-I measurement equations, identical global and local models, no computational and

transmission delay, all nodes in broadcast mode etc. Therefore much work remains to be

3 done which will form the basis of Phase II. The future recommendations include but are

not necessarily limited to the following.

7
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1. In a realistic environment, the local processors may not possibly have the

complete knowledge of the global model Therefore the decentralized

estimation problem in presence of the correlated sensor noise must be

formulated for the case of dissimilar glol'al o id local models.

I 2. In Chapter 4, we have solved this problem only for the continuous time case.

This analysis needs to be extended to the discrete time case

3. The IR sensors used in the SDI system typically provide information on

beanngs of the targets. Radar and laser trackers can provide additional

5 Iinformation on range and range-rate In any event, if the motion of the target is

described in a rectangular coordinate system, the above measurements are

related nonlinearly to the state variables of the target. We have proposed in

-•Chapter 5 that bearings only measurements can best be handled in a newly

introduced framework called "modifiable functions." This is a very powerful

I technique and holds a great potential in solving the decentralized estimation

problem with nonlinear measurements. So far the results are available for

I centralized estimation only and we have indicated in Chapter 5 how to proceed

for the decentralized estimation. This problem needs to be formulated and

analyzed in detail.

4 In a realistic situation, there is a delay in transmission from one node to the

3 I other and there is also a delay associated with the computation. In Phase I, we

have assumed these delays to be zero. Time delays due to computation and

5 communication processes must be incorporated in the decentralized estimation

problem.

I
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5. All the results of this report have been derived for one target only. This

5I scenario needs to be broadened to multiple targets in future work

6 We have assumed that all the sensors are at fixed positions in an inertial frame

while the target is moving with respect to this fran.e. But in an actual SDI

scenario, the sensors are located in orbiting satellites and therefore have their

own dynamics. Sensor dynamics must be included in the future formulation of

the decentralized estimation problem.

7 We have assumed that the satellites carrying the sensors are communicating in a

3n broadcast mode. But in practice, it -s more likely that direct communications

will take place only between adjacent satellites arranged in a nng structure about

the Earth and communications will be allowed in either direction. The

decentralized estimation problem needs to be formulated by incorporating the

I communication protocol of a rng structure

3 8. We have argued while establishing the superiority of the decentralized

estimation over the centralized one that loss of the centralized processor could

result in total or at least serious degradation of tracking capability. It will most

3 likel) turn out that dismibuted estimation will result in a more survivable and

less complex tracking system It needs to be investigated how the system

3 Iperformance degrades in the event of one or more sensor failure. Two types of

sensor failure must be considered. soft (degraded) failure and hard failure

Soft failures zai, be modelled via use of statistical measurement noise models,

3 Iwhile hard failures can be modelled by assuming complete loss of

measurement.
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9 Communication failure models should also be included in the decentralized

U estimation problem As in the case of sensor failure, commritcation failure can

also be modelled as either hard or soft A hard failure, for example, could

result from successful jamming or failure of the link to c'er•,e. Soft failures

can be handled using statistical measurement noise models.
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