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This report describes the work performed by Scientific Systems, Inc. from 10/15/88
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commercial grade software for solving decentralized estimation problems in the presence of
correlated sensor noise. Solutions are available for the correlated sensor noise only In
this report, the available results have been extended in many directions and the distributed

tracking problem has been solved with comrelaied sensor measurement noise  The objective

of Phase 1 effort was to demonstrate the feasibility of a solution techmque of this problem.

The problem scenano will be broadened and the results will be analyzed in detail in Phase
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SUMMARY

The research proposed under this preject 1s concerned with the problem of accurate
target tracking 1n the SDI environment. The SDI scenano considered 1n this report is as
follows. Muluple sensors that are possibly located at dispersed geographical locauons are
observing a single target. The measurement noises are correlated across the sensors. The
local processors attached with the sensors possibly may not have the complete information
of the target model The tracking problem can be solved in two ways- first, the sensor
measurementis can be transmitted to a central node where the optimal state can be estimated
conditional on all the measurement history - this 1s centralized processing Alternatively,
each sensor can process 1ts own measurement locally and send (some funcuon of)
processed data to the central node  Here 1t 1s fused with other incoming data into the global
estimate - this 1s decentralized processing. The latter is superior to the centralized

processing from the system performance considerations in the face of node failures

There exists 2 good amount of literature 1n the area of decentralized estimation 1n
presence of uncorrelated sensor noise. In this work, the available results have been
extended to the case of correlated sensor noise under the assumption that the local

processors have the knowledge of the target model. Each local agent needs to send the

central node only one vector of the dimension of the state. lhe available results for the

uncorrelated sensor noise have been extended in other directions too. For example, 1t has
been established that there 1s a tradeoff between the computational requirements at a node
and the transmussion requirements from this node Using this analysis and by assigning
the major computational load to the local nodes, the complexity of the central node has been

reduced to an adder.

The deceniralized estmation problem has been analyzed both 1n discrete ume and in

continuous time domain. It has been proposed that the nonlinear measurement equations




can be dealt with by a recent technique known as "Mouined Cain Extended Kalman Filter

(MGEKF) more ef&ciently than the convenuonal Extended Kalman Filter (EKF)




CHAPTER 1

INTRODUCTION AND SUMMARY

1.1 Introducticn and Overall Objective of Phase 1

This report contains results from the investigations of the project "Optimal Sensor
Configuration and Survivable Processing with Correlated Noise.” This 15 a Phase I effont
sponsored by the Naval Research Center of Arlington, Vitginia through Small Business
Innovative Research (SBIR) Program under contract #N00014-88-C-0736. This job was
sponsored by the Navy through the Sirategic Defense Initiative Organization (SDIO). This
work was performed at Scieniific Systems, Inc. (SSI), Cambridge, Massachusetts during

the period October, 1988 - Apni, 1989.

The surveillance, acquisinon and tracking funcuon for the Strategic Defense Ininative
(SDI) ncludes sensing information for battle management and processing signals and data
for discimination of threatening reentry vehicles from other objects. As each potenual
reentry vehicle is released from 1ts post-boost vehicle, 1t begins ballistic midcourse flight
accompanied by deployment hardware and possibly by decoys. Each credible object must
be accounted for n a birth-to-death track, even if the price is many decoy false alarms.

Interceptor vehicles of the defense must also be tracked.

The research proposed under this project 1s concerned with the problem of accurate
target tracking in the SDI environment. The problem of tracking boosters and reentry
vehicies has recetved much attention in the past. However, the problem has generaily been
structured as a single-sensor, single-target problem. The SDI environment is much more
complex, however, in that many targets must be tracked simultaneously. In addition, many

sensors may be used to track a single target. Although the use of multiple sensors




intuitively allows more accurate and robust iracking to be atiained, it 15 not yet clear how to
fully exploit this addiuonal capability. In addition, the SDI environment is such that the
sensor observations are subject to noises which are correlated across sensors  This further

complicates the problern.

Ideally, the problem of target tracking in a multi-sensor environment with limited
communication berween the sensors is a distributed estimation and detection problem which
uses no centralized signal processing. The information available to each sensor consists of
1ts own measurement history and possibly all past messages received from other sensors
In this report we shall refer to this problem also as a distributed tracking problem. The
overall objective of this 3-phase project 1s to obtain a practical solution of the distributed
tracking algorithm for multiple targets under the assumption that the measurement noises
are correlated across the sensors. This report contains Phase I activities and indicates the
feasibility of the proposed techmque for solving this problem. Detailed development of the
techmque will be camed out in the forthcoming Phase II and finally, these ideas will be

commercialized 1n Phase IIL

The overall problem of distributed tracking 1s indeed a very difficult and complex
one This problem can be decomposed into vanous subproblems that can be arranged into
hierarchical layers according to their complexity as shown in Figure 1.1. Obviously, the
starting pont 1s the centralized processing where raw measurements from all the sensors
are transmutted to a common fusion center for simultancous processing - this is the lowest

layer of the hierarchy.




multiple targets,
multple sensors

sensors connected via
communication hines

correlated sensor
noise

y

one-target, muluple sensors
distnbuted processing

h_.l centralizeo processing

Figure 1.1: Decomposition of the Target Tracking Problem in an SDI
Framework

One of the senous criicisms of this technique is that the system 1s vulnerable to

catastrophic failure if the central node fails. On the other hand, in the case of distributed

processing, the observed data from each sensor is processed locally. The processed data
are then communicated to a centralized coordinator who forms the global esumate. In this
case, the system performance will have a graceful degradation in the event of sensor/node
failure. This 1s the pnmary motivation for opting for the distributed processing over the

centralized one.

Various components of the distributed tracking problem are shown in Figure 1.1.
Ths figure indicates a systematic approach to the overall solution of the problem. Any
subset of the blocks of this figure which are connected by arrows can be combined to form

a meanmngful tracking problem. The core of the distributed tracking problem is the case of




one-target, multiple sensor with distributed processing” and 1s shown at the second layer
of Figure 1 1 In this scenano, time delays due to computation and commumcation
processes are neglected It s assumed that the sensors are communicating with each other
instantaneously 1n a broadcast mode  Although this 1s a hvpothencal setting, the analysis of
this case exhibits the structure of the decentralized processing problem. In a realistic
situdtion the measurements from vanous sensors will be correlated pnmarily because the
sensors are observing the same target through the same atmospheric medium. The
deventralized esumation problem then becomes considerably difficult 1f the correlation 1s
tahen 1nto account. The measurement equations which are nonlinear 1n states also adds
further complication to this problem. Once the distributed tracking problem 1s solved for
correlated noise and nonlinear measurement equations, the effect of a realistic
communication channel can then be considered In an SDI framcv;ork, direct
communication takes place only between adjacent satellites arranged 1n a nng structure
about the Earth  Duning this phase of analysis, time delays due to computation and
comimunication processes must be taken 1nto account if the algorithm 1s intended for
practical applicanon Finally, the scenario for muluple targets can be analyzed as an

eatension of the one-target case.

Because of the ume limutations 1n Phase I, we could not solve all subproblems of
Figure 1 1 We have explored only the basic problem. the case of correlated measurement
noise and nonlinear measurement equations as shown in layers 2 and 3 of our

decomposition
1.2 A Simplified Generic SDI Tracking Problem

Let us consider an example of a simple SDI tracking problem with one target only -
this scenario will be broadened to muluple targets in Phase II. Formulation of the

decentralized esumation problem will be motivated through this example. Consider then a




generiv SDI tracking problem with one target 1n a ballisuc trajectory and three satellite
sensors as shown 1n Figure 1.2. The sensors are assumed to make time-synchronized
measurements The measurements are taken through one or more of the laser, infrared and

radar sensors that are located at appropnate places of «he orbiting satellite stations.

Sateilte 1 (S1)

Ballistic
Trajectory

Figure 1.2: A Simplified SDI Tracking Problem

Both active and passtve sensors will be considered under the scope of the present
task  An active sensor such as a radar measures the range (R), azimuth angie (A) and

elevauion angle (E) of the target in a reference frame thai 1s centered at the radar. On the

other hand, a passive sensor such as an infrared sensor produces "bearings only”




measurements  The SDI tracking problem can be formulated in the "measurement
coordinate system" where the variables are R, A, E and their derivatives or in the "cartesian
coordinate systems' in which the vanables are x, y, z-position of the target and their

derivatives In the latter case, an inertial reference frame is used.
Selecting a Coordinate System

It can be shown that 1n the Cartesian coordinate system, the dynamical equation for
the target motion 1s linear whereas the measurement equation is non-linear in states. On the
other hand, n the measurement coordinate system, the dynamical equation is non-linear
whereas the measurement equation 1s hinear 1n state variable. Therefore in both the
coordinate systems, an extended Kalman filter may be used for state esumation. Itis well
known that an extended Kalman filter has a bias 1n its estimates [Jazwinski, 1970). A
detailed study on this 1ssue was made by Mehra [1971). He observed that this bias 15
related 10 the non-lineanties 1n the equatons of motion and the measurement system By
choosing different coordinate systems, one can alter these non-lineanties. In particular, if
one uses the coordinate system in which the measurements are linear, the bias due to
measurement non-hineanty 1s eliminated This does not necessarily mean that the total bias
15 reduced smce the bias from other non-lineartties mmght increase  Finally, he has shown
that an extended Kalman filter that uses the measurement coordinate system has less bias
and less rms error than a Carntesian extended Kalman filter that uses the Cartesian
coordinate system  This fact certainly favors the use of the range (R), azimuth (A), and
elevation (E) angle vanables 1n the SDI tracking probiem formulation But Song and
Spever (1984) has shown that for a class of non-linear measurement equations known as

‘modifiable functions.” the structure of the optimal filter is linear. They have called this

filter a "Modified Gain Extended Kalman Filtet” (MGEKF). Fortunately, many "bearings

only" measurement equations belong to the class of "modifiable functions” and we have

found that we can profitably use this concept to solve the distributed tracking algorithm A




hinear filter 1s certamly more attractive than a nonlinear filter. Motivated by these
observatons, we will use the Cartesian coordinate system throughout this project. In this
coordinate system, the dynamic equation is linear whereas the measurement equation 1s

nonlinear in states
1.3 Summary of Phase I Activities

The problem of distributed detection and estimation has lately received considerable
attention 1n the luerature Therefore, as a first task in Phase I, relevant publications were
surveyed  The useful results from these papers were collated and several
modifications/exter 1ons were mwde that are appropriate for the probiem at hand Some of

the related works on which the proposed techmque heavily rehes are:

Speyer (1979) considered the discrete-time distributed estimation problem
assumung that all sensors communicaied information to all other sensors in the
network in a broadcast mode. By formulaung a linear Gaussian measurement
problem with a Gauss-Markov state equation, he was able to show that the
opumum estimate at each sensor could be obtained using its own Kaiman filter.
Each sensor sends 1ts local state estimate to each other sensor at each time step
which then constructs the globally optimum state The expense of disiributed
estimation is that an additional data-dependent vector of dimension equal to the
state vector dimension has to be communicated from each sensor to every other
sensor at each ume step. This solution 15 attractive since each sensor computes
the optimal (mimmum variance) state estimate and only a relatively small

amount of communication 15 required between sensors.

Wilisky et. al. (1982) considered a more general case than Speyer (1579) and
formulated the problem in continuous time domain They considered the case

where the local modeis assumed by various sensors are possibly different than




the true global modci  They also solved the distributed smoothing problem.
Therr results also show that each node must send 2 vectors - 1ts state estimate
and a data-dependent vector to the central coordinator which constructs the

globally optimum estimate.

Castanon and Teneketzis (1985) have developed algonthms for distributed
nonhnear estimation and showed that if each sensor sends a set of local
sufficient statistics to each other sensor, each sensor can construct the global
centralized distribution. These results assume that all sensors have the same a
prion knowledge of system uncertainties, that all (two-way) communication
links are unfailed, and that all communication channels are memoryless and

independent
But the problem with correlated sensor noise was not addressed in these literature.

In Phase I, we have extended the results of Willsky et. al. (1982) to show that only
one vector, 1nstead of two, need to be sent to the global coordinator. We have also
developed an expression that shows the effect of inittal uncertainty of various sensors.
Also, we have extended the result of Speyer (1979) to include the case where the local

models are not necessanly idenncal to the global (true) model.

Three schemes have been developed for solving the problem with correlated sensor
noise. The first two of these are straghtforward application of the Kalman filter at a central
node. In the first scheme, all the sensor data are transmitted to a central node and a Kalman
filter is apphied tc the aggregated data. The second scheme alzo consists of the centralized
processing but before the Kalman filter is applied, the sensor measurements are
transformed 1nto new measurements that are uncorrelated across the sensors. Ciearly, there

15 no advantage of the second scheme over the first. However, the third scheme is truly a

decentralized one where the observed data 1s processed locally and then the processed data




1s sent to the central node where it 1s fused with the other incoming data mnto the globaily

optimal esumate.

We have fond that nonlinear measurement equations can be dealt with in the

distributed tracking problem by utilizing the "modifiable fun tion" concept of Song and

Spe, “1984,. In this phase we have successfully applied this concept to the problem of
"bearings only” measurements. In Phase II, this technique will be extended to the case of

distnbuted processing

The remainder of this report is orgamzed as follows: In Chapter 2, the distributed
processing problem has been described in continuous nme domain along the line of Willsky
et. al (1982) and their results have been extended. In Chapter 3, the discrete time verston
of the tracking problem has been presented where the results of Speyer (1979) are extended
to 1nclude the case of possibly dissimilar global and local models. It will be assumed in
Chapter 2 and 3 that the sensors are uncorrelated. The case of correlated sensor noise will
be dealt with in Chapter 4 where three techmqaes will be proposed for solving this
problem The case of nonlinear measurement equations will be dealt with in Chapter 5.

Finally, conclusions and future recommendations wili be given in Chapter 6.




CHAPTER 2

DECENTRALIZED ESTIMATION: CONTINUOUS TIME CASE

2.1 Introduction

In an SDI environment a target 1s tracked by many sensors placed in orbiting satellites
at desired alutudes. These satellites are linked via communication channels. The goal is to
generate the optimal estimate of the state trajectory of the target from these observations.
Clearly, the simplest scheme by which 1t can be done is to transmit at each instant of time
all the sensor data to a central coordinator where the optimal trajectory can be computed
conditional on the measurement history. Although this is a simple scheme, it suffers from
many drawbacks. For example, the communication introduces a finite delay 1n the
observed data and, 1n addition, adds to 1t noise from the communication channel. It may be
recalled that the observed data was, to begin wath, already corrupted from the sensor noise.
The most serious criticism of this scheme 1s that all the computations are done at a central

node and 1n the event of a failure (soft or hard) of this node, catastrophic failure of the

system performance takes place This can be avorded 1f the sensor data is processed locally

to obtain, say, locally optimum state estimate conditional on the observed data vy that
sensor only and then these estimates are sent to the centralized coordinator where the
globally optimum estimate will be reconstructed  This scheme is known as "decentratized"”
or "distributed” estimaucn. In this scheme, the system performance will suffer graceful
Jegradauon 1n the event of a sensor failure. Moreover, the computational burden is shared
by all the sensors without imposing a heavy workload on the centralized coordirator. In
order to develop redundancy into the system, each sensor should ideally act as a centralized
coordinator 1n the sense that each sensor will receive the estimate from the other sensors

and generate idenncal global estimates.




A difficult part of the decentralized scheme, however, 1s the development of a fusion
scheme which combines in an appropniate fashion all the local estimates into a globat
estimate. The pnimary purpose of this chapter 1s to formulate this problem for the
continuous time case, review the existing results and finally extend th.2se results

appropriately.

A practical combining (fusion) algorithm must take into account the commumcation
delay and the channel noise, but 1t will make the analysis too complicated. Therefore 1n
Phase I, we have considered an ideal situanon where the communication delay and channel
noise have been neglected These 1ssues wall be dealt with in Phase II In this chapter we
have emphasized the development of a mixing algorithm under the assumption that all
sensors are in a broadcast mode and reczive information from the other sensors
mstantaneously. We have pnimanly followed the works of Willsky et al. (1982) in the

development of thus algorithm.

A summary of this chapter 1s as follows In Section 2.2, the decentralized estmation
scheme 1s developed under the above simplifying assumptions. Wiilsky et al. (1982) has
shown that in order to obtain the globally opimum state ¢sumate, each node (sensor) must
send to the central coordinator 1ts own state estimate. But the structure of the local and
central nodes 1s complicated. We have extended this result to simplify the computational
complexity. In this section we have further assumed that the global model 1s not
necessarily the same as the local model each sensor {(agent) has possibly 2 different medel
about the target. The global model s the true model of the target. This assumption is
relaxed 1n Section 2.3 where we have assumed that the global model is the same as the local
model. This case was onginally analyzed by Speyer (1979) It is shown in this case that

the globally optimal estimate 15 a hinear combination of the local esiimate plus a dynamic




correction that results because of the distributed nature of the algorithm. Finally, some

conclusions are drawn 1n Section 2.4
2.2 Decentralized Estimation and Transmission Requirements
As mentioned before, the problem of decentralized estimation will be formulated

under the following assumptions:

The dynamics are evolving in continuous time; the discrete time case will be
analyzed in the next chapter.

Only one target is to be tracked.
The target dynamics are linear, but may possibly be time varymng.

The measurement equaitons are linear in states; the nonlinear equations will be
treated in Chapter 5, using "modifiable function” concept.

There 1s no communicaton delay
There is no channel noise.

The nodes are 1n a broadcast node, i.e. each node can communicate with all the
other nodes. The ning structure of a realistic sensor configuration will be dealt
with in Phase II.

The sensors are uncorrelated from each other; the case of correlated sensors will
be analyzed in Chapter 4.

First, let us fix the terminologies that will be used throtghout this report. We assume
a scenanio where multiple sensors are observing an SDI target. We also assume that these
sensors are equipped with the daa processing capabilities. The sensors are also known as
nodes, local agents or local processors. The target state model is the true model and its
state estimate 15 to be computed from the sensor measurements. The true model is also

known as the central or global model. In this section we consider a general case: we




fusion center, also known as a mixing mode where all the local estimates will be combined
to obtain the global estimate. Since all the sensors are in 2 broadcast mode, each sensor
receives raw observations or processed data from the other sensors. We assume here that
each sensor acts as a fusion center and combines the data from the other sensors 1nto a
global esumate. Since each sensor is preducing identical global esumates, this scheme

ntroduces enough redundancy into the system and makes it robust against sensor failure.

Suppose that there are J sensors. The global and the local models are given in the

following.
Global Model
x(0=AOxW +wlt); 121 (2.12)

7= COxW+v); j=1,2,.] (2.1b)

Various statistics relating to the mode! are:

E [x(to)] = (tg) : E [(x{t) - X(tg)) (x(tg) — &t = Z(tg) 5
Elw®]=0; Eww'@)=QWs(t~1);
Elv®)=0, Elvvi]l=R08(t~8RM=RI(1)>0.

We assume that w(1) 15 ndependent of x(o) and of v,() for all j =1, 2, ..J. Ttis also

assumed that v,(t) is independent of x(tg).

Although the true model is given by (2.1}, the sensors may not have the complete
knowledge of 1t Suppose the j-th sensor is assuming the following model about the target:

this model is also known as the local model.

Local Modeis

x,(0) = Ax, (0 + wyt) (2.22)
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7,0 =HxO+v); j=1,2,..]

E [xt)) = Xtg) 5 E [(xtg) = %,(tg)) (x,(tg) ~ X,toD") = tg) 5
Elw0i=0: Elww, Wl=Q®st-1);
Elv(0]=0; Elvvw@]=RO8t-18;; RO=R]®>0.

As before, we assume that v).(t) is independent of x,(to) and of wj(t) forallj=1,2,..J.
Notice that the measurement roise process has been assumed to be the same for both global
and local models (2.1) and (2.2). Ths 1s a plausible assumption, because whatever the
underlying model 1s, the sensor is always the same and therefore the sensor noise ought to
be the same too. However, 1n order to make the problem well posed we need to impose the

following additional relationship between the local and global models:
C=HOMW; j=12,.] @.3)

where M(t) 1s a time varying matrix of appropriate dimension. Besides the requirement of

(2.3) and that the sensor noise Vj(t) are the same, the two models can be totally arbitrary.
General Solution Without Decentralized Considerations

The globally optimal estimate x(t) using all the information is given by

X0 =E O | 5®, 2@, .75®: tg<Est] (2.42)

where E[¢] 15 the expectation operator and can be implemented at a central node 1f all the

sensor data z(t), j = 1, 2, ...J are sent to this node. In order to evaluate X(t) first define

zy(1) C,® vyi(®)
z5(1) Ca0) vt

w2l - | cotl - [ vos

24() o) v/




then all the sensor data can be compactly represented as

z(t) = COx(1) + v(1) .

The optim.l estimate x(t) conditional upon the measurement history is then

RO=E{x@M | 28, t<Est]

which 1s propagated as

(V) = AW + KO (2.52)

V() = 2{t) - COX() , (2.5b)

KW = POCTOR™®). @.50)
Here K°(t) 1s the centralized Kalman gain. The covariance matrix P(t) is the solution of the
Riccati equation

P@) = AOPQ) + POAT() + Q) - POCT(OR ™ ()CWPQ) . (2.50)

P(tg) = Z(to) .
R(1) is the covariance matrix associated with the seasor noise v(t), i.c.

E Vv (1)) = RQ)S(t - 1) (2.62)

The complexity of the decentralized algerithm depends upon the structure of the R(t)
matrix. Since we are considering the case of uncorrelated sensor noise, various subvectors

of v(b) of {2.4b) are uncorrelated. Therefore

R(1) = block diag {R (0} .




R(t) will be a "full” matrix if the sensors are correlated. However using the block structure
of R(t) matnix the centralized Kalman filter of Equation (2.5) for the uncorrelated sensor
noise can be written as:

J

30 = ADRO + Y KO ,
=1 (2.72)

V0 =20 - ¢ Ox(), (2.7b)

K =POCTOR '), @7c)
J
B = AP + POATE) + QW - I POCTORIOCWP®D .  (274)

1=t

Equation (2.7a) can further be simplified to

J

1
1
i
i
i
i
i
i
i
E 20 = FORW + K020
i
i
i
]
i
i
I
i
i

3=1 (2.8a)

where
J

F = AW - 9 POCTORHCH .
o (2.8b)

An implementation of Equation (2.8) is shown in the block diagram in Figure 2 1. Notice

that the gain matrices Kj (1), j = 1, 2, ...J are precomputable and can be stored aprion.
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Decentralized Estimation Using Local Data Processing

Now consider the local models of Equation (2.2). The opumal estimate i,(‘) at the j-

th node (sensor) 1s construct>d only from the local observaton zj(x) from that sensor.

Taerefore
5©=Elx0 | &), osEs

which evolves as

2,0 = A %0 + KOV,
W0 =20 = HOX,W,
K =P(OH] R @ .

.

Here Kf(t) 1s the decentralized Kalman gain at the j-th node. The error covariance matrix

P,(1) can be computed from either of the following forms of the Riccati equation:
P,(1)= AP+ PA] 1) + Q1) - PC] (WR(CP,0) (2.9b)

L850 = =B} A0 - ATOP] (0 - P HOQP )

+H (R (OH®

with the initial condition
PJ(IO) = Ej(to)

Equation (2.9a) further reduces to

2,0 = F0x 0+ K@z{0 (2.10a)

F0= A0 - POH] OR OH0 = A - K OHQ . (2.10b)

17




The local estimator for the j-th node is shown in Figure 2.2.
Relationship Between the Local and Global Estimates

To find the connection between the two estimates, we will use the relatonship
C,(1) = H(IM,(t) between the local and global models. This relationship has been
described earlier 1n (2.3) However using this relationshup, the global estimate of (2.8a)
can be written as

J
50 = FORW + Y POMTOHTOR 020 .

)=1
From (2.10) we also have
POHTOR 20 = 5,0 - FORW . (2.11b)

Using (2.11b) in (2.11a), we obtain as the global estimate
]
50 = FORO+ 3 G RO -FOR01, @.12a)

1=1

G, = POM] (OPT'(D) . (2.12b)

By straightforward manipulation, it can be shown that
] ]
X0 = 0¢lt, 1) Rtg)— I, Gtk (t0) |+ DGR

3=1 ;=1

Jo
+ Z LW((, VK, (0% (1)dt, (2.13a)

1=1

where g(t, 7) is the transition matnx associated with the dynamics matrix F(t) and
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K,(0 = FG,0) - G - GF,Q)
= [P(OM] 0P QWP 1) - QM) (P} ()
+ [P(OM] (DAT(OP]'@) ~ POATOM] 0P} (@)
= POM WP} (1) (2.13b)

The indicated inverse of the matrices are assumed to exist. However this 1s the key
equaton relating the local and global estimates. This equation also shows the effect of
imual conditions at various sensors on the global estimate. It is obvious from (2.13a) that

(t) can a!so be generated dynamically from the following equations:
] ]
E0=FOLD + 3 KORW: Hi)=kl)- X Glily)  (214a)

j=1 1=1
]
X0 =80+ ZGJ(I)%(t) (2.14b)
)=1
These equations were first established by Willsky et al. (1982). Equations (2.14) clearly
reveal the structure of the decentralized esumation: the measurements at the j-th sensor is
processed locally to cbtain the optimal esmate ij(t) which is then sent to the centralized
coordinator, the coordinator then constructs x(t) dvnamically according to (2 14). Notice
that all the matrices in (2.14) are precomputable and can be stored aprion. The block

diagram representing these equations are shown in Figure 2.3.

It can be seen from Figure 2.3 that there is a considerable amount of computational
burden at the central node and the structure of the combining algenthm is rather complex
The computatioral burden and the complexity of the centralized coordinator can be reduced

as follows. Define h()asa data dependent vector for the j-th node which evolves as

h(0) = FOh,© + KO0, (2.152)




.-t

.

e

A

L .

L !
‘ i
.

with initial condition
By(o) = =G (1g)x (1) . (2.15b)

The global esumate then simplifies o
]
X0 = 051, WR(t9) + DG, + ) . 2.150)

j=1
This forin was first obtained by Speyer (1979) for a simplified case when the global model
1s the same as the local model We will discuss this case in the next section. The
implementation of this form 1s shown in Figure 2.4. In this scheme, each node j must send
two vectors - ’i,(t) and hy(t) 1o the central node which then constructs the global estimate
X(t). Notice also that the computational burden of the central node has been reduced
considerably but only at the expense of the additional complexity and burden at the local
nodes. By simple block diagram manipulation of Figure 2.4, the complexity of the central
node can be reduced further. To see this mathematically, define a node-dependent dynamic

vector 1(t) which 1s generated as:
$,() = Fs,(0 + KO0 5 5(tg) = ~G,(1g)x,(to) (2.163)
0,0 = 5,0 + G,ux) (2.16b)

Clearly, then the global estimate is given by
I
x(1) = :(, 1o)x () + an(x) (2.16¢)

1=1

which can be implemented as in Figure 2.5. Notice that in this scheme, only one vector

n,(x) 15 10 be sent to the centrai node in contrast to 2 vectors in the earlier scheme of (2.15).

Thus, the transmission requirement has been reduced by 50%. If x(ty) = 0, then the central
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node 1s simply an adder, 1t merely 2dds the mncoming vectors from the various nodes.
Notice also that the complexity and the computational burden of the central node has been

reduced to mimmum but only by burdening each of the sensor nedes with these problems.

Equation (2.15) can be manipulated further to reduce the complexity of the local

processors as follows Define
9,(0) = GOx,() + hy(®) (2.17a)

where the evolution of h.(1) with ats initial condition is given in Equations (2.15a) and

(2.15b) respecuvely. Since hjtp) = -Gj(to)ij(to), the 1nitial condition of q(t) is
qtg)=0 (2.17b)

The global estimate can be written 1n terms of qj(t) using (2.15¢):

]
X0 = 0p(t, R(1) + . q,0) .
1=1 (2.17¢)
A recursion for qj(t) can be found as follows: Differentiating both sides of (2.17a) gives

4,0 = GOR 0+ GORO + 50 . @.17d)

Using Equations (2.9a) and (2.15a) in the above expression, we get

q,(0 =[G,(0 + GWF® + KO0+ G,(t)PJ(x)HJT(t)R,'1 ®z0)
+F@h,(1) . (2.17¢)

Finally, using expression for K’(x) from (2.13b) in (2.17¢) and simplifying, we have,

40 = Fig0 + K0z0) 179
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: e
K (0 = POM;OH] OR; @) .

The decentralized estimation scheme given mn (2.17) above is shown Figure 2.6.
This scheme may be compared with the one 1n Figure 2.5. Notice that the complexity of
the local processor has been reduced and yet the transmission requirernent has remained the
same cach local processor need to send to the mixing node only one data dependent vector

q,(t) of the dimension of the true (global) state.

An important remark is in order here. The fact that the sensors are uncorrelated has
played a crucial role 1n developing the decentralized scheme here. It is the block diagonal
structure of the R(t) mamx which has enabled us to decompose the centralized estimation
scheme of (2.5) into additive form of (2.7). The centralized Kalman gain K°(t) can be
partinoned as K°(t) = [K3(1), K5(t) ... Kj(1)] each block of which corresponds io a sensor.
When the sensors are correlated, 1.e. the R(t) matnx is of "full” structure, it is not clear

how to decempose the global estimation problem into various subproblems.
2.3 The Special Case of Identical Local and Global Models

In this section we consider a special case of the more general formulation of the last
section. Specifically, we assume that the models used by the local processors are identical
to the global model. This case was first examined by Speyer (1979). Under this

assumption

AM=A1, Q=00), CO=H®, Mn=1 foralij. .17

In this case, the expression for K,(x) of Equation (2.13b) simplifies to




K(0) = PP} (0QUP @) - QP (@)
= [P(OP;' () -1 QWP (1) . (2.18)

Since M(1) = 1, we have set 1\./1](1) =0 to find the above expression. The other relevant

vanables for this case are
J
F = AQ - 3 POCTOROC) ;

E1) = A() - POC] OR; 'OC0);
G, = P(t)PJ'l(t) ;

K5 =POCOR 1)

K0 =PCOR @) .

(2.185)

An important consequence of this simplification is that the global estimate of (2.14b) can be

written as
J
50 =E0 + PO Y PTOR0 2.19)

y=1
Note that the second term 1n the expression for x(1) 1s the usual expression for combining
independent esumates However ij(t) are not independent in general, and &(t) represents a

dynamic correction for this correlation.
2.4 Summary

In this chapter, we have formulated and solved the decentralized estimation problem
for the continuous time case. Wc have primarily followed the work of Willsky et al.
(1982) to derive the results of this chapter. The assumption that the sensors are

uncorrelated has played a crucial role in developing these algorithms.




The mulusensor data processing problem can be solved in two ways. All the sensor
data can be transmitted to a central node and can be processed for globally optimum
estimates. Alternatively, each sensor data can be processed locally for a locally optimum
esumate which then cau be transmitted to the central node. The central node combines all
the local estmates to obtain the global estimate. The later scheme is the decentralized
esumation and 1s preferable from the viewpoint of system survivability. In Section 2.2, 2
generalized decentralized estimation scheme has been formulated. Here we have assumed
that each of the local processors may possibly have a different model which again is not
necessanly the same as the global model. Several possible decentralized schemes have
been presented in Figures 2.3 - 2.5. In the scheme of Figure 2.3, the local estimates are
sent to the mixing node which in turn produces the globally optimum estimate dynamically.
The structure of the mixing node is complex in this case. The complexity of this node can
be reduced by transfernng some of 1ts computational burden to the local nodes as shown in
Figure 2.4. Butn this case, each local node must send 2 vectors to the mixing node. The
transmussion requirement of this scheme can be reduced to one vector by adding additional
computations at the local nodes as shown in Figure 2.5. The results of this section show
that the complexity and the computational burden of the central node can be traded by those
of the local nodes. Finally, 1n Figure 2.6, the complexity of the local processor has been

reduced without sacnificing the transmussion efficiency.

In Secnion 2.3, a specialized case has been dealt with where the local models are
assumed to be the same as the a global model. This case was first analyzed by Speyer
(1979). Under this assumption, considerable simplification occurs in the algonthms and in

the structure of the local and central processors.
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CHAPTER 3

DECENTRALIZED ESTIMATION: DISCRETE TIME VERSION

3.1 Introduction

The decentralized estimanon problem for the continuous time case was analyzed in the
last chapter In this chapter, the corresponding problem for the discrete time case will be
presented. This problem was first analyzed by Speyer (1979), but for the special case of
1dentical global and local medels. In this chapter, we mntend to extend his results to a more
general case of non-identical global and local models. Some of these results have already

been submitted before in various progress reports.

The motvation for the decentralized estimation problem and vanous underlying
assumptions behind the problem formulation have already been presented 1n Chapter 2 and
will not be repeated here. This chapter will be a brief one; we shali only present the
corresponding results of the Chapter 2 following the same sequence of that chapter. The
purpose of this chapter is twofold: first, for the sake of completeness of this report and
second, to expose some implementation details that are distinct from the continucus time

case. Explanations and interpretation of various results are same as in Chapter 2.

This chapter is organized as follows. In Section 3.2 the decentralized estimation
problem will be formulated and the compuiational and transmission requirement of each
local processor will be established. As in the last chapter, we assume that each local
processor has two alternatives: either it can send the raw observation data to a central
(mixing) node where the globally optimum estimate will be computed or it can process the
raw data for the locally optimum (or some kind of) estimate which are then transmitted to &

mixing node. The local estimates are then fused at the mixing node for the giobal estimate.
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We assume that the local processing is always a superior 2ltemative than the centralized
processing. The reasons are given in Chapter 2. in this section, we shall present several
schemes for local processing corresponding to those n Chapter 2. In Section 3.3, we shall
simphfy the denvations of Section 3.2 for the special case of identical and global models -
this case was analyzed by Speyer (1979). Finally, some conclusions are provided in

Section 3.4.
3.2 Decentralized Estimation and Transmission Requirements

As in the last chapter, we assume a scenario where multiple sensors are tracking a
single SDI target. These sensors will also be referred to as nodes, local agents or local
processors. The target model is called the global or central model and the goal is to
estimate the target state from all the sensor measurements. In this section, we assume that
the agents may not possibly have the full knowledge of the global model. Instead, these
processors will have their own model (also known as local model) about the target state
which they will use to estimate the target states. These esttmates are then transmitted to a
fusion center, also known as the mixing node, where all ihe local estiunates are combined to

obtam the global estimate.
Suppose there are J sensors. The global and local models are as follows.
Global Mode!
x(i+ 1) =A0) x@) + w); i 21
z()= C,i) x( + v,(i) s 1=12,..
Various statistics about this model are as follows;

Elx(ig=%Gg); Ellxig) -~ &(ig) ) (x(ig) — X1y RES )




Efw@=0; Elwi)w (m)]=QW3,
Elv1=0; EvOvim)]=R 08, ,8,; RH=R()>0.

We alsc assume that w(i) 1s independent of x(ig) and of VJ(I) for all j=1,2,...J and

v,(1) is independent of x(ig).
Local Models
x,(i+1) = A i)x,(0) + wi)
2= HWx @ +vdD; j=1.2,.]
Elx0l=%(ig): Ellxio)=%ao) (xfig %)) =L
E w0l =0; Elw®wy(m)]=Q)3, 8y
Elv=0; Elvvim)] =R, ndx

As before, we assume that vj(i) 1s independent of xj(io) and of wj(i) forall j and i.

Further, for the well posedness of the problem, we assume the existence of a sequence of

matrices {Mj(l)} such that
Ci)=HOM@); j=12..]
General Solution Without Decentralized Considerations
The globally optimal filtered state using 21l the information is given by
x(i 1i) = Elx() 1 2y(0), 2,(0), .z(0) 5 ig<lsi ] (3.42)

which can be mechanized by a central node if it receives all the sensor data. In order to

A
evaluate x(111 ), define




() G vi®
Zz(i) C2(i) VZ(l)

wiy= * |, C= s vy =

z ,.(l) C ;(i) v ,'(1)

Then all the senisor data can be compactly wnitten as
2(1) = C()x () + v(i).
Therefore, the opumal filtered state conditional on the measurement history is
(1) = Elx() | #0) ;195 i)
which evoives as [Bryson and Ho (1975)]
X6 =G -1 + KG 0 ;
() =20) - ClH)xG11-1);
K°G)=PG1)CTOR™) |
xG+11)=AGxGE11);

where R(1) 1s the covanance matnx associated with v(i) that has been defined 1n (3.4b) and
K*() 1s the centralized Kalman gain. The covariance matrix P(1! i) is the solution of the

Riccan equation and follows from the following recursion:
Pl =P a1i-D+ CTORIGCH ;
PG+ 11)= AWPG 1 1JATG) +QG);
Pliglig=-1=E(g).

R(i) is defined as




E [vi)vT(m)l = RG)S, ,, - (3.62)

Since we are considering the case of uncorrelated sensor noise,
R(i) = block diag {R,()} (3.6b)
where R,(i) is defined in (3.1) and (3.2) above.

(3.54) can be simplified further as follows:

< £ +11 +1) = RG+1h) + K 4120 +1) = CG +DRG +16)] (.72)
. =FE+Dx0 1)+ KG +1)zG +1) (3.7b)
where
5
FG)=FG)AG~1); (3.7¢)
FG) =1~ PG11CTORHCH (3.7d)
=1

and K®(1) 1s defined in (3.5c). A block diagram of this centralized scheme is shown in

Figure 3.1.

Using the block diagonal structure of the R(i) matrix, (3.7a) simplifies tc

. ¥
: RG+11141) = FG+DRG 1) + 3 KSG +1)z,i +1) (3.82)
K Fl
where
‘ K50 =P(i 11 )C R (); (3.8b)




H
P =P 1 -+ Y, CORTGICH .
)=1
Notice that using (3.8¢), F(i) of (3.7d) can be wntten as
F@)=PG 11 )P G -1).

Decentralized Estimation Using Local Data Processing

Now consider the local model of Equation (3.2). The local estimate at the j-th node is

given by
%01 =Elx0) | 20 igsE<il;
which 1s propagated as
X1 =X 1i=1)+ K);
Wi =70 - HOxali-1);
KXW =P 1DH OR'0);
Xi+111)=A0Wxa011).

Here K}’(x) is the decentralized Kalman gain associated with the j-th sensor. The error

covariance matrix P(i 11 ) follows the recursion
PlG11) =P G 1i-D + HORTORG) ;
Pi+11i)= AWPG1ATM +QM;
Pliolic-D=E0g).

(3.9b) can be simplified further:




X3+ +1) = Fa+DR, 1) + K20 +1)z,i +1) (3.10a)

F(0) +F )AG-1)
F)=1-P (111, HOR DH®
=P(1)P]N(ili-1) (3.10b)

and the last equality has been derived from (3.9c). The local estimator for the j-th node is

shown in Figure 3.2.
Relationship Between the Global and Local Estimates

Using the relatonship C,(i)=HJ(i)MJ(i) in (3.8a}, we have the global eshmate as

XG+11i +1) = FG +1)%0 1)

J
+ 3 P41 +DMIG +DHTG+DR; MG +1)z,6+1)  (3.11b)
1

Rearranging (3.10a) after substituting the value of K]’(i + 1) gives

HIG+DRM G +Dz+1) = PG +1 1 +DIR G +1i +1)
-Fi+Dx,i1i)] @G.11p)

Now, using (3.11b) in (3.11a), we get
J

x(i+1 Ii+1)=F(i+1)i(iH)+2P(x +11i +1)M;r(i+l)
F1
x PTG 11+ DIRGE 11 +D-FG DR 1) (.11¢)

Since )‘c,(i 1i)= A;’(i);(,(x +111), we have




Fi+DX G 11)=FG+DA (G +11)
=EG+Dxa+1ii)
=P+ +DPT G+ X +11).

Using (3.12a) in (3.11c) gives the global estimate as
b

RG+111+D) =FGHDRG 1D + D PO+ H+DMIG+DIP G +11141)
=l

X X0 +117 1) = PG+ G +11)]. (3.12b)

This expression suggests that x(i | i ) is of the form
]
2011)= 3 (PG1MIGPT 61X G1)+ b)) (3.132)

=1

where hj(i) is a node-dzpendent vector of the dimension of the state. This implies

J
RG+11i+1)= 3 [PG+1 1 +DMIG+DPT G +1+DAG +11i41)
!
+h+1)] (3.13b)

A
To find a recursion for hy(i +1). (3.13a) is substituted in (3.12b) for x(i1i) and then

comparing it with (3.13b), we obtain

hi+1)=FG +Dhy(D) + FG +DPG 1 M] PG 11)R G 1)
— PG +1H +DMG+DP] G +1 1R +11H) (3.130)

Since i,(i li)= A,'l(i)ﬁj(i +11i ), the above equation can be compactly written as:

by + D =FG +Dhyi) + G +1x,G +111) (3.142)




F( +1) = FG +DAG),
=PG +11i +DPQ+111)AG); (3.14b)

GG +1) =P +1i i +DP™ (1 +11 JAQRG 1 M P; M 1)
x AT = PG +11i+1M] G +DP] G+ ). (3.14¢)

We have used (3.7¢) and (3.8d) in establishing (3.14b) which in turn has been used
to find (3.14c). We have assumed that the inverse for the appropnate matrices exists in the

above expression  The initial condition for h}(l) can be evaluated by solving (3.13a) for

1= 1p.

The complete scheme for generating the global esumate from the local ones 1s

summarnzed as follows:

hyGi +1) = FG +Dhi) + G +DA @G 1) (3.153)
J

%611)= PG 1IMIOP G116 1) +h () (3.15b)
¥l :

The block diagram corresponding to these equations are shown in Figure 3.3. Notice

A
that each of the local processors must send 2 vectors: x(i i ) and h,(@) 10 the central node.

The transmission requirement can be reduced if some of the computational burden of

the central processor is transferred to the local ones. For example, if we define

n,) =PGiDM] PG 1R 1) +h@) (3.163)

J
XG11)= 3.n,0) (3.16b)
Fl




and the 3-th local agent need to send only this vector to the mixing node - thus the
transmussion requirement has been reduced to 50%. Since all the variables in (3.16a) are

generated at the node, (i) can be constructed locally at that node. The evolution of n,)

can be established as follows:
1y +1) = PG+ i+ DM G +DP G+ +DXG +1i +1) + b +1) (3.172)

Using the value of hy(i +1) from (3.13c) in this expression and after rearrangement gives

1) +1) = FQ+1)lhy@) + PG 1M PG DR 1))
+ B +11§ +DM]G +DIPTG +1 +DR G 11 +1)
=GR G ). (3.17b)

But the expression in the second pair of brackets is

PIHG+UE+DRG +11 +1) - PTG +111)X,0+11)
= (PTG +1 1) = PG+ + DK +DHG+1) - PTG +1 IR G +11)
+ PG+ +DKYG 1)z, +1)

=K +z(i+1);
KjG+1)= PG +11+1)C] G +DR G +1) .

Therefore (3.17a) becomes
01 +1) =F( +1n,@) + K[ +Dz, +1) . (3.17d)

The mital condition for (1) is obtained from (3.16a):

(i 0= Pli o li M, (i P (i li O (i i o) + hi(i ) (3.17¢)

The block diagram of this scheme is given in Figure 3.4. Notice that the explicit
appearance of the local estimator has been totally eliminated. The structure of the central

node 1s very simple - it simply adds the incoming vectors.
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3.3 The Special Case of Identical Local and Global Models

In this section we consider the case examined by Speyer (1979) Specifically, we
assume that the models used by the local processors are 1dentical to the global model That

18,
A=A, Q=Q,C=H,M/=1.
In this case, the filtered estimate 15 generated as follows:

hy(i+1) = FG +Dh) + GG +DAGR 1) (3.192)

J
XGli)= ZIP(x HOPT DX )+ b)) (3.19b)

=1
where, as before,

F(i +1) = PG +11i +1)P™'a +11)AQ)
GG +1) = PG +11i +DP7 G +111 DAGPG 1P a11)A™0)

- PG+ +DP G+ ).

A
The other scheme of generanng x(1 11) using n,(i) remains unchanged in this special case

and is identical to (3.16).
3.4 Summary and Conclusion

The decentralized estimation scheme for the discrete time case has been presented 1n
this chapter whereas that for the continuous time case was presented in Chapter 2. In
Section 3 2 the problern has been formulated in a more general setting: here we have
assumed that the local processor models are not necessarily the same as the true global
model except that the sensor noise statistics is same for both the models. The globally

optimum filtered states of the target can be constructed as follows. raw observed data from
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various sensor Jocations can be transmutted to a central (mixing) node where all the data can
be processed for the global estimate. Alternatively, raw observed data can be processed
locally and then the local estimates are sent to the mixing node where these are combined
mnto the global estimate. Throughout this report we have emphasized that transmutting
processed data from the sensor locations to a mixing node 1s superior to transmitting raw
data. Along this line, we have shown 1n this section that the globally optimal estimate can
be constructed at a central node from two processed data vector from each of the local
processors, these are locally optimum estimate vector and another data dependent vector
that evolves recursively according to Equation (3.14a). This scheme is shown in Figure
3 3. This scheme can be improved further. the transmission requirement can be reduced
by 50% by transferring some of the computational burden of the central processor to the
local ones. Ir this improved scheme, each local processor need to send only one data
vector to the central node, this data vector 1s generated recursively at the local node
according to Equation (3.17d). This scheme is shown in Figure 3.4. The case of identical
global and local models is dealt with in Section 3.3 - 1t is observed that much

simplifications do not occur in this case.
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CHAPTER 4

DECENTRALIZED ESTIMATION IN PRESENCE OF CORRELATED
SENSOR NOISE

4.1 Introduction

In Chapters 2 and 3, the decentrahized estimation problem was solved for the case of
uncorrelated noise. In this chapter, a simpler version of the same probiem will be solved
for the case of correlated sensor noise. Because of the importance of this problem, we

have tried to make this a self contained chapter.

The same scenarno as that of the previous chapters will be adopted here: multiple
sensors that are possibly located at dispersed geographical locations are observing a single
SDI target. Attached with each sensor is a data processing capability. A sensor along with
1ts own data processing capability 1s also known as a local agent or a local processor. The
true state of the target 15 also known as the global state and the ulumate goal is to obtain the
optimal esnmate of this state by utilizing all the sensor measurements. The dynamic model
of the target state may or may not be available to the local agents. We have discussed in the
previous chapiers that the global estimation problem can be solved in two alternative ways.
First, all the sensors can transmit *heir raw observations to a central node (also known as a
fusion center or mixing node) to form an augmented observation vector and a centralized
Kalman filter can then extract the optimal state from this vector. Aliernatively, each local
agent, by uulizing 1ts own model about the global state, can process its own observations
on site to form the local optimal estimate conditional on 1ts measurement history and then
transmit this estimate to the fusion center. In the fusion center, the incoming estimates
from varnious nodes are combined in an appropriate fashion to construct the globally optimal

estimate - this is known as a decentralized or distributed estimation scheme. It has been
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mentioned earher that the latter alternauve 1s superior from the system survivality
considerations  In the centralized scheme, the system performance is lost completely in the
event of the central mode failure On the other hand, in the decentralized scheme, a
graceful degradation of the system performance takes place in the event of a node failure

In order to build an 1deal redundancy 1nto the system, each of the local nodes should be
designed as a fusion center 1n the sense that each node will receive estimates from all other
nodes and generate an identical globally optimal estimate of the state. This can be
mechamzed 1f all the sensors are communicating 1n a broadcast mode. As in the previous
chapters, we assume that there 1s no appreciable transmission or computational delay.
Therefore, after an observation 1s made 1n the discrete time case, the nodes will compute the
locally optimal estimate and transmut 1t before the next observation is made. Furtherrnore,
we also assume that all the sensors are engaged in ime-synchronized measurements For
the continuous time case, we are assuming that computation at and transmission from eack
node take place instantanecusly. We will consider that the SDI target is governed by linear

ume varying dynamics and measurement equations.

Recently, there has been a great deal of interest in the decentralized estimation.
Speyer (1979) first formulated the problem in an LQG framework - he solved the
decentratized estimation as a prelude to a decentralized control problem He assumed that
the global and local models were idenncal. Willsky et al. (1982) solved the problem for a
more general case of nomdentical global and local models - they have also solved the
distributed smoothing problem in this paper. Recently, Hashemipour, Roy and Lamb
(1984) have expanded the distributed estimation problem to include collocated and non-
collocated sensors, and have provided implementation details for the discrete time case. In
all of these works, the authors have assumed that the measurement noise processes are
uncorrelated from sensor to sensor. The primary purpose of this chapter is to develop a

distributed estimation algorthm when the sensor noises are correlated. The underlying
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assumption 1s that the local agents have the full knowledge of the global model and various

statstics of the system.

The orgamzauon of this chapter is as foliows. In Section 4.2, the important results
about the decentralized estimation for the case of uncorrela.2d sensor noise are reviewed.
The case of correlated sensor noise in the continuous time domain is presenied in Section
4.3 Several schemes for optimal estimation are presented in this section: some of these
schemes employ centrahized processing algorithms. The last of these schemes is truly a
distributed one. We will consider the continuous time case only, the corresponding results
for the discrete time case will be analyzed in Phase II. Finally, a summary and conclusion

1s provided in Section 4 4.

4.2 A Review of Distributed Estimation Problem in Presence of
Uncorrelated Sensor Noise: Continuous Time Case

In this section we assume that the measurement noises are uncorrelated across the
sensors. Suppose that there are J sensors tracking a single SDI target. The dynamic model

of the target and the measurement equations are assumed as follows:

x(1) = A[Wx() + w(t) 121
z(t) = ¢ (Ox() + v/(1) ; j= 12,0
Various statistiz< relating to this model are:
E [x(p) = k(tp), E [(x(tg) - X(tg) ) (x{tg) — X(tg) ") = Zltg) »
Elw0]=0, Elw(dw ()] = Qs

E(v®) =0, Elv(ovi®)] =R®8(-08;, RMO=R]®>0




We also assume that w(t) is independent of x(tp) and of vJ(t) forallj=1,2,.J. Itisalso

assumed that VJ,(t) is independent of x(tg).

Since the underlying assumpuon is that the local processors have the full knowledge

of the global model, the state mode! at the j-th sensor can be written as

(0= Alx, @) + w() ,

Elx il =5%,(t), Elx(to)=%(t0)) (x,{tg) — %,(t))] = tg) .

The measurement equation and other related statistics are same as above.

The globally optimal filtered state conditional on the measurement history of all the

sensors 1s given by
x(®) =E [x() 1 2,(8), 2,(0) .20 ; tx <L <]

This estmate 1s propagated as

J
0= AR + 3, K0 [0~ GO0,

1=1

K§'(0) = POC WR; (1),

and the estmate error covariance mamx P(t) is the solution of the Riccati equaton

J

P(t) = AQP( + POAT®) + Qi - ZP(l)CI(l)R;l(t)CJ(l)P(t)
)=1




P(1g) = E(1g) .

Clearly the mechamzation of (4.3) requires that al! the sensor measurements be transmutted
A
10 a central node where x(t) will be generatca  We have used the notation K,cu(() to mmply

that this 15 the centralized Kalman gain when the sensor noises are uncorrelated.

If the nodes are allowed to process their own observations locally, the local optimal

estmate evolves as.

2,0 = AOX0 + K& 0 - COX W) (4.42)
where
K¥() =P 0C] (R (1) (4.4b)

and the error covanance matix Py(t) can be computed from the Riccati equation

P, = AP0+ POAT( + Q) - POC (R, HIC P (4.4b)
Pj(to) = }:J([O) .

Here, Kf"(t) stands for the decentralized or localized Kalman gain associated with the j-th
node 1n presence of uncorreiated sensor noise. The problem of decentralized or distributed
estimanon 1s 1o reconstruct Q(t) in terms of ;J(t),_} =1, 2,..Jof (4.42) Willsky et al.
(1982) has shown that ;(l) can be constructed at a central node dynamucaily from the local

esumates as follows:
3
L0 =FOL0 + 3 KOR (4.52)

)=1
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J
20 =L0+ Y PP WX

1=1

J
FO=AQ- 3 POCTOROCH) , @.50)

3=l
K, =[PP} () ~ IQWP (1) . (4.5d)

A

These equations show that each node j must send to the central node its local estimate x (1)
and the associated covariance matrix Pj(t). The structure of the central node can be

simplified using Speyer's (1979) form where some of the computational burden of the

central node is transferred to the local nodes. At each node j, a data dependent vector hj(t)

is gencrated as follows:

0 = FOR ) + K 0x,0)

Then, at the central node, the global estimate 1s constructed as

]
X0 = 0, R () + 3 [PWOP (OX,0) + b 0]

y=1

where Og(t, ip) is the transiion matrix associated with the dynamics matrix F(t) The
complexity of the central node has been reduced at the expense of higher transmission

requirements - now cach rode j must serd to the centrai node 2 vectors  the locally optimal
A
esumate x,(t) and a data dependent vector hy(t). Tt has been shown i Chapter 2 that the

transmussion requirements can further te reduced to only one data dependent vector.
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The key to the distnbuted esumanon algorithm (4.5) and (4.6) 1s the fact that the
global esamate ;(t) can be decomposed 1 terms of the locally computed data dependent
vectors as shown 1n these equations This decomposition has been possible because the
sensor noises are uncorrelated It ‘s the purpose of the next section to show how this

decomposition can be achieved when the sensor notses are correlated across the sensors

4.3 Distributed Estimation with Correlated Sensor Noise: Continuous
Time Case

Consider again the dynamic model (4.1) having the same process noise and intual
condinon. But this ime we assume that the sensor noises are correlated  Specifically we

assume

Elv0]=0, Elvvi(®)] = Ry (81 @.7)

As before, we assume that the process noise w(t) 1s independent of x(tg) and of vj(t) for all
1=1,2,.J. Also, vj(t) 1s independent of x(tp). The optimal estimatior: problem 1s first
solved for the centralized case, 1.e., where the raw measurements from all the sensors are

wransmutted to a central node.
A Centralized Solution for the Optimal Estimation Problem
The opumal filtered estimate 1s given by

xW=EXx®1z0); ©<{<t,j=1,2,.7]

and can be computed as follows in a straightforward way Define




(v (O((9) vy
z5() Cyt) vo(t)
a a
z(t) = s Co=] | vy =

z ,'(:) C ;(:) vyt

Then all the sensor measurements can be compactly represented as

z(t) = C(Ox{@) + v(1)

Here v(t) is a white noise process whose covariance matnix 1s given by

E [vavT(0)) = R(8(~0) ; R@W=R"(t)>0

R = block [R,®; i,j=1,2,..]] (4.9b)

Clearly, for the case of uncorrelated sensor noise, R(t) 1s a block diagonal matrix and
1t1s this block diagonal structure of the R(t) mamix that has led to the decomposition of the
global estimates as in Equations (4.5) - (4.6) For the correlated sensor noise this is a
“full” matrix. However, wrrespective of the structure of this matnix, the optimal filtered

estimate 1s given by
X0 =Ex® | 20 wssa

which can be computed from the standard Kalman filter.

&) = AOX® + KZO)lz() - Cox) , (4.1Ca)

K= = POCTORI®) , (4.10b)

and the covariance matrix P(t) obeys




P() = A(OP() + POAT® + Q) - POCT R ()COP() (4.10c)
P(l()) = 2((0) .

C(1) and R(1) have been defined in (4.8a) and (4.92) re-pectively. Here K°C(t) stands for
the centrahized Kalman gain for the correlated sensor noise  The scheme of (4 10) can be

mechanized at a central node where all the sensor measurements z,(1) are transmitted to

form the aggregaie measurement vector z(t)

Alternauvely, this vector z(t) can be transformed 1nto pseudo-measurement vector z(t)
such that the measurement noise associated with this new vector corresponding to various

sensors is uncorrelated To obtain ;(t), decompose R(t) in such a way that

R =R0R™() (4.11a)

where RI2(t)1s a positive definite square root of R(t). Then

20) = R™2(0)2(0) (4.11b)
= COx(®) + ()

CO =ROCW), =R Pyw). (a.11c)

Clearly, the covanance matnix R(t) of v(1) 1s the identity matrix for all 1 and satisfies
therefore the new measurement noise v(t) 15 uncorrelated across the sensors. It can be
venfied in a straightforward way that the Riccati equations associated with the Kalman
filters for the original form (4.10) and the new measurement coordinate systems {4.11) are

the same  Therefore the optimal estimate in the new measurement system is given by




1
20 = AWRW + R0 G0 - E0R) (4.122)

1=1

K20 =POE0) (4.12b)

where P(t) 15 obtained from (4.10c) and éj(t) is the j-th submatrix of C(1) comresponding to

the j-th sensor. Similarly, ;J(t) 1§ the corresponding j-th subvector of V). This scheme

looks the same as for the uncorrelated sensor noise as shown in (4 3), but yet can not be
mmplemented in a decentralized framework. The reasons are as follows. although 6)(1) and
l.(jc(t) can be computed at the j-th node, but not ;.,(t). In fact éj(t) and f(fc(t) can be
computed and stored apriori. In order to compute %(t), z(t) must be formed first at that
nede and therefore must receive the raw observations from all other nodes. Once z(1) is
formed, it is to be multiplied by R™1(1) and ;J(t) is the j-th subvector of the resulting

vector. Our goal 15 to process the raw observation data locally and then transmit the

processed data to a central node.
Distributed Optimal Estimation

In this section we will show how each node will generate a data dependent vector
from 1ts cwn observations only and without utilizing data from other sensors. These
vectors from all the nodes will be communicated to a mixing node where these will be

fused into the globally optimal estimate. The main result is presented 1n the following fact.
Fact 1

Suppose at each node j, a data dependent vector qy(1) 1s generated as foilows:

q,(0) = Fi0g, (0 + K020 ; qt) =0, (4.132)




F(t) = A(t) - K*(C() (4.13b)

and K)°°(l) 15 the j-th submatrix from a compatible decomposition of K“(t) of the form

K*@ = [K§(, K30 . K5°W] {4.13c)

1
20 = 05(s, )R (tg) + 3, q,(0). (4.13d)

1=1

Here K¢€(t) is the centralized Kalman gain given in (4.10b) and C(t) 1s the

measurement matrix associated with the aggregate measurement vector z(t) as shown in

(4.8); K;°(1) is the appropriate block of K¢2(t) corresponding to the j-th sensor and ¢¢(t, to)

15 the transition matrix associated wath F(t).

This 1s a simple yet remarkable result. Since the underlying assumption is that the
local agents have the full knowledge of the global model, all the variables of {(4.13b) are
available to the j-th processor. K¢(t) can be locally computed or can be transmitted from a
central coordinator - 1n either case it can be stored aprion: at the j-th sensor The same
comment applies to the construction of F(t). Moreover, each local processor can be
mnitialized to zero thus avoiding the requirement of a complicated initial setting. Therefore
qy(t) 1s truly a node dependent vector and can be constructed from the observations at that

node only.

An implementation of this scheme is shown in Figure 4.1. It can be seen from this
figure that, the node j does not have an impiicit structure of a Kalman filter, neither the

central node has a Kalman filter in it. Each node sends only one data dependent vector qy(t)
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to the central node - thus the transmission requirement is mimmal  The structure of the

central node 1s also quite simple; if )‘E((o) =0, it ;s merely an adder.
Proof

A
The proof is straightforward. We will show that x(1) generated this way 1.:deed

satisfies the standard Kalman filter equations given in (4 10) Clearly, since qy(t) =0,

1
qW)= qu)F(t, DK (D)2, (t)dt (4.142)

Substituting g(t) 1 (4.13d), we get

)
t
K0 =0¢(t R0+ Y, [ 05t DK@ (4 14b)
o

)=1

Differentiating both sides,
]
20 = FOXO + DK<z

)=1
Finally, rearrangement of this equation gives

&) = AWXO + K0 (200 - COXO)

which is the same as (4.10). u

There are several interpretations of q(t). For the case of uncomrelated sensor noise, it
15 the locally optimal esumate. When the scnsor noises are correlated, q;(t) can be regarded
as a sub-optimal estimate of the global state as viewed by the local agent  This vector will

be studied in detail in Phase I1.




4.4 Conclusions

The decentralized estimation problem for the correlated sensor noise has been solved

10 this chapter. The underlying idea of the decentralized est:mation is that the observations

are processed locaily by each node and then the processed data is sent to a central node

where the globally optimal estimate is constructed The problem with uncorrelated sensor
noise has been reviewed first in Section 4.2, because most of these results were used to
denve conesponding results for the correlated sensor noise case. It has been shown 1n
Section 4.3 that for the later case, each node must generate a data dependent vector q,(t)
which 1s then transmitted to the central node and fused with simlar vectors from other
nodes 1nto the globally opumal estimate. The detailed properties of this vector are yet to be

investigated.

We have solved this problem for a special case of identical global and local models
When the models differ, the analysis 1s very difficult and will be taken up in the

forthcoming Phase II.
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Figure 4.1: Distributed Estimation with Correlated Sensor Noise




CHAPTER §

DEVELOPMENT AND APPLICATION OF DECENTRALIZED MODIFIED
GAIN EXTENDED KALMAN FILTER TO SDI TRACKING

5.1 Introduction

In this chapter, the results of decentralized esumation of the previous chapters are
extended to a spectal class of nonlinear measurements encountered in the SDI tracking
problem The IR sensors used in the SDI system typically provide information on bearings
of the targets Re:dar and Laser trackers can provide additional information on range and
range-rate If the motion of the target is described 1n a rectangular coordinate system, the

above measurements are related nonlinearly to the state vanables of the target

The approach used to extend the re<alts of the linear decentralized Kalman Filter to

the above case is to use Modified Gain Extended Kaiman Filters.

In this chapter, a new nonlinear filter, whose structure 1s similar to that of the
Extended Kalman Filter (EKF), 15 applied 1o the esumation problem using a strapdown
seeker. This nonhnear filter 1s based upon the system nonlineanties being members of a
special class of functio~  alled modifiable. The essential 1dea 1s that the difference
between the nonlinear function at an unknown state and a known state is equal to a linear
funcuion 1n the difference between the unknown and known state operated upon by 2 matrix
funcuon composed only of the known state and the measurement functions. Thus, this
special class possesses a natural lineanty. Although this class 1s quite small, it does include
several of the nonlineariues present in the SDI tracking problem. The theoretical analysis
of centralized estimators containing this type of nonlineanty with interesting applications
are given 1n Song and Speyer (1984), Safonov and Athans (1978) The theoretical results

show that if no noise inputs are present, the filter, acting as an observer, 1s globally stable
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If noise is present, the centralized filter is shown with additonal conditions to be
stochastically exponentially bounded The convergence of the estimates to unbiased values
has been indicated mostly by simulation (Song and Speyer, 1984) but for the parameter

1dentification problem can be shown analytically (Safonov and Athans, 1978,

Since the class of nonlinear functions that are modifiable may not include all the
nonlinearities present in a state esumanon problem, a filter structure involving both
modifiable and nonmodifiable functions 1s possible for sophisticated applications such as
SDI  Consequently, those nonlinearities which are modifiable are included in the
estimation algonthm 1n theiwr modifiable form and those that are not modifiable are included
as they would be 1n a standard EKF. In the SDI wracking problem, the essential or most
important nonlinearities belong to the class of modifiable nonlineanties. The essential,
nonlinearties are the funcuional forms of the elevanon and azimuth angles, the range, and
the range rate formulated 1n rectangular coordinates The misalignment errors produce
nonlinearities which are included by the lineanization method of the standard EKF. The
resulting filter 1s called the modified gain EKF (MGEKF), since only the gain calculations

are somewhat different from those of the EKF but not the estimnator structure

If both angles and range and range rate are measured, then the anucipated advantages

of the MGEKF over the EKF may not be clearly seen since in both schemes the large
number of measurements allows good estimation of the states However, if only angle
information 1s present which is the case with IR measurements, then it 1s anticipated that
signe{ “ant improvement 1n filter response and stability should be evident in the MGEKF

formulation




5.2 Modifiable Functions in the SDI Tracking Problem

The measurements considered here are the elevation and azimuth angles, range and
range rate or any subset of these measuremenis. These measurements are put in modifiable

form first. Then the modification to the gamn calculation 1s given.

Modifiable Form of Measurements

AlX
X =1Y (5.1
denote the SDI target postuon 1n ineruial coordinate frame and

A Xp X
X =|Yg|=T|Y 2
B Z; Z (5.2)

denote the target posttion in a body axis system centered at the sensored platform where T

denotes the transformation matrix between the two coordinate frames.

The measurements are grven i determunisuc form as angle measurement functions:

-1
eyl _ |Ky Kyf| wn (WyXp | [Gy
€z KYZ KZ m_l (____-ZB — lGZJ G-3)
¥ X5Yh
where GT =[Gy, G]T1s the glint noise state vector
range function: R=VX+Y*+2Z? = W/X%;+Y§+Z§ , 54
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XVy+ YVy+ 2V
range rate function® R = _Z__R_.E.__._Z (5.5)
. A T, a . 12
where ¥ = [V,, V,. V}' is merual velocity vector and K "'{Ky, Ky Rﬂ denotes a

vector sensor scale factor parameters

The measurement funciion given by (5.3) to (55) are represented as the vector

function

2= h(X, G, V. K) (5.6)

The actual measurement 1s given by z = z* + v where v 1s white zero mean Gaussian
ncise  The global exporential boundedness for the stochastic case are obtained by
assuming that centain finite gain operators assoctated with the additive measurement noise
do not destabilize the system Results of this sort are given 1n Song and Speyer (1985)
with respect to a constant gain EKF. The results of this chapter extend these results to ime

varying gam.
5.3 The Definition of a Modifiable Function

The measurement function is medifiable if

RII<IP

PX.G VK- X Y.GK=FzX G VK

RO X

t

where X, G, ¥, K are unknown values but X v, g, K are esimated values of the siate
and are thereby known. Note hat F will be evaluated using z rather than z* 1n

urplementng the filter. Furthermore, note that for continuous functions




dh
FenRilO= e yp-8La0 69

X, G V.K
Therefore, in the hmit the MGEKF converges to the EKF, as
X,G6, V=& V,& Ths should be used as a check on the numerical

implementation
5.4 List of Preliminary Functions

The following functions are required in implementing the MGEKF.

. z,
Hoaz, el} = sIn az, €05 az, 0
smelcosaz, sinelsinaz, cosel

1
tan o
(cos  Xp+sinaz Y
B}
tzn B
1,
2 /e

_2 -
[coscl X+ YR -simncelZg B

1
[0.] _ coszziai- smzz?n
B 0

i

o A
coscl(Xp+ Yp -sinelZs




-] w——] »
:ﬂ =K [ij -K G (5.18)

a _ COS azZ - COS 2Z
VU aem G 15yt
_sinaz-smaz

A= ——— (5.16) t

_ cos el - cos &
& = el-el (5.17) ¢

_sinel-sinel

el-el

fy

= 2 - 5.19

oS az /Xg A Yg (5.19)

sinaz = Vg | — (5.20)
Xg+ Yp

(5.18) +

M= [0. az, el

* Note £y. £7. and R are replaced by therr associated noisy measurements when the MGEKF 1s
implemented

*1f (5.15) 10 § 20) have numerical dufficulty duc to division by a small number then approximate as
ay = SINB, 3y = C080, ¢;=sIng, &=c05d where 8=(1/2)(az+az) and $=(172)(cl+el)
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Fos {cos az cos el, sin az cos e}, -sin el) - (YB cos el ay \ -1
R™\+ Ypcosela, Xgcosaze, + Ysimaze,-Zey) EHI

(5.26)

Fry = (cos el cos az, cos ¢l sin az, -sin el) 1! 5.27)
}\Vx + YV vyt ZVZ \

—_ O F 3
KR R { (5.28)

5.5 The Modifiable Forms for the Measurements

The measurement function given by Eq. (5.6) 1s only approxtnately mndifiable. The
approximate modifiable form given by Eq (5.7) is presenied below The angular

measurements become approximately modifiable as

H - H = FaD+G-G+FyKD
€y Ey

Ky
K={Ky
Kz
The range measurement becomes approximately modifiable as

R-R=FpX-X).

The range rate measuremerit becomes approximately modifiable as

R-R=FpeX-X)+Frv¥- D). (5.32)

Define an error vector as (note the acceleration error 15 not included but can be done

rivially)




e=X-XV-¥,6-G.K-K)'

Then, the modifiable form is given by Eq. (5.7) where
8t

and where the elements 1n the matrix are given in section 4.
5.6 Change in the Update Equaticon for Gain Calrulation in the MGEKF

The update formulas for the EKF and the gar calculation are the same for the
MGEKEF, c;(cept that the update equation for the error vanance equation when processing a

measurement vector is changed from

P={-Kh)M{I-Kh)+KVK], (5.35)

where Ky 1s the EKF gan, M 1s the a prion "error variance” before a measurement 1s

processed, and P is the postenon "error vartance,” to

P=(1- KyF) M (I - KyF) + Ky VK], (5.36)

where Ky 1s the gain of the MGEKF Therefore, the only change 1n the estimation
algonthms 1s that h, 1s replaced by F. Note that F = f(z, X, V. G, K), 1e., F1s calculated

using z rather than z*.

We now extend the above results to the case of distnibuted filtering for the SDI
tracking problem. The structure of the MGEKEF filter is similar to the KF for the linear

case.




v,

g

5.7 The Local MGEKF

Suppose that the suite of nonlinear measurements for sensor fusion are

z,{k) = g,(x(k)) + v,(k) j=1, ., N(K) (5.37)

where the noiseless measurement 1s z* = g,(x) and N(k) 15 the number of sensors that are
to be combined at time stage k. The number may vary depending upon the punty of the

current local estimators.

It 1s assumed that all the measurement functions are modifiable functions or at least
approximately modifiable. Thus,
g,(x) - g(%) = H(z}*, X} (x - x) (5.38)

let us consider what this means for the local esumator equation

i}(k) = ij(k) + Kj(k) (z}.(k) - gj(ij) ). (5.39)
%,k =%,k 1k=1)
where Kj(k) 15 the gain of the MGEKF. Noue that the estimz.or can be represented in terms

of the modifiabic function as

£,00 = £5) + KOH(*, %) (0 = %00 ) + K kv, K (5.40)

3 . _ .8 -
Therefore, the error equations for cj(k) =x(k) - xj(k) and ej(k) =x(k)— xj(k) are

¢,(k) = [1- K(WH(z*, x)] (k) ~ K (K)v,{k) (5.41)
& (k+1) = AK)e (k) + wik) (5.42)

where (5.42) 15 obtained directly from the dynamic state equation. Note that without any

approximation, assuming modifiable nonlineanues, the error equations (5.41} and (5.42)
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are linear, even 1n the presence of noise. The essential improvement over the EKF 15

making use of this observation in constructing the gamn algorithm for X,(k).

In constructing the gain algonithm one consideration was that the esumates should not
be biased It 1s shown in Song and Speyer (1984) that 1f the gain 1s a function of the

present measurement, then the estimator is highly biased. To avoid this, the gam was

assumed using H (k) A H{g,(X.(k)), %.(k)) to be of the form
s NEX, )

K,(k) = MIB,0 (RO MGRK +R 6 1™ (5.43)

where we have used the notation M,(k) = P (k | k—1).In this way, K,(k) is only a function
of past measurements. it should be noted that l:lj(k) is essentially the partial of g with
respect to x evaluated at x = ;J(k). In this way, the algonithm is sull that of the EKF The
difference arises in how the matnces Py and M, are propagated. These will be referred to as
posteniori and a pnorn error vanances, but 1t must be remembered that these are not actually
statistics and are really a kand of quasi-vaniance This statement also applies to the so-called

statistical properties of the EKF. The error variances are propagated as

P,(K) = [ - KH,(z, HIMKI - KH Gz, %)) +KOREKK (5.44)
M,k+D) = ARPRAG) +Q(k) (549)

where we have used the notation P (k) = P,(k I k) and M (k+1) = P)(k+l 1k). Note that
H/(z;, ;(J) is used in the update of Py(k) where the aciual measurement is used.
Furthermore, 1n the absence of measirement noise Pj(k) reflects the actual error (5.41)

whereas 1n the EKF the associated error vanance does not reflect the actaal error (5 41)

tinally, 115 shown 1n Song and Speyer (1984) that if z,* 15 used rather than z,, then under

reasonable assumptions the error is exponentially bounded in mean square.
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5.8 The Global MGEKF

The local estimates are 1o be combined by the memoryless formula given 1n earlier
chapters. Since the actuul error 1s reflected by (5.44), 1t seems reasonable to combine the
estimates according to the formula for the linear case where the effect of the error size 1s
reflected by P_,(k). At present we have no bounds on the quality of Pj(k) in reflecting the
true error variance, but determining these bounds 1s a subject of additional research. Since
the EKF 1s based upon a local lineanzation, there is no reason to believe that the pseudo-
error vanance reflects the actval error vanance unless the actual error is small. The
question anises as to what estimate 1s best to perform the required local hinearization. Since
the MGEKEF 1s based on a universal hinearization and not a local linearization, this

restriction does not apply.

In developing a global estimate, both P(k) and hj(k) need to be computed. The
calculation of P(k) should be simply as

N(k)

PO =M™ + D H(z, %) RGIHG, %) (5.46)
1=1

where M(k) 1s propagated using the same propagation formula as for the linear case.
However, 1t 1s suggested that during penods where certain sensors are in doubt that this be
calculated with respect to each of the suspect sensors ehinunating the other suspect sensors
For example, suppose that the IR sensor is affected by a flare and two signatures are being
tracked It 1s suggested that (5.46) be calculated for the three situations  each of the two
tracks on the IR sensor and without the IR sensor If the IR sensor is eliminated, the
globdl coulinates are unalfccted by the countermeasure. However, when one of the two IR
tracks are 1dentified as the flare, the information from the other IR track is now known to

be correct signal, and this information 1s used to obtan a better esiimate than whea the IR
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sensor 1s eliminated. The difficulty expressed here 1s due to the fact that the error variances

cannot be computed off-line for the nonlinear esumation problem.

Once P(k) 1s obtained from (5.46) then h}(k) of (3.43) can be computed. Note that
both F(k) and Gj(k) require the calculaiion of the global covarances P(k) and M(k). Itis
again suggested that during peniods when anomalies are present that hj(k) be calcuiated for
zach hypothesis and used only when the anomaly 1s known not to be present in the sensor

data as determuned by the detection and isolation scheme.




CHAPTER 6
SUMMARY AND FUTURE RECOMMENDATIONS
6.1 Summarv and Findings

The main goal of this project 1s to solve the decentralized estimation problem in
presence of the correlated sensor noise in a multisensor environment. This is a three phase
project: Phase I, Phase II, and Phase III. In Phase I, the feasibility of the underlying
techniques will be established. In Phase 11, the the problem will be formuiated in a more
general setting and the techmques will be developed in details followed by a
commercializaton plan in Phase ITI. The work reporied here 1s the outcome of the Phase I

=ffort.

The subject problem is a very sigmificant one in an SDI framework. Typically an
SDI target 1s tracked by one or more sensors located on different orbiting satelltes. The
problem 1s to esumate the target state from all of these measurements which can be
computed either using centralized or decentralized estimation techmques In a centralized
technique, all the sensor measurements are ransrtted to a central node and the state is
estimated by utilizing all the nformation simultancously. On the other hand, 1n a
decentralized framework, the nodes process the observed data locally and then transmts the
processed data to the central node where these are fused 1nto the globally optimum estimate
The decentralized estumation 1s superior to a centralized one from system survivability and

computiational constderations.

In a realistic situation, the sensor noises are correlated because these sensors are
observing the same target through the same atmospheric medium. In this case, the
decentralized estimation 1s more difficult than the case of the uncorrelated sensor noise.

There has lately emerged a considerable amount of literature 1 the area of decentralized
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estimation, but none of these has addressed the problem with the correlated sensor noise.
In Phase I, we have addressed this 1ssue and found a solution of a simpler version of the
problem uader the assumpuon that the local processors have the full knowledge of the
global model and the system uncertainnes The mor. general version of the problem with
non-idenucal global ana local models, will be analyzed in Phase II. A bnef summary of

this report follows.

An up to date available results 1n the area of decentralized estimation with uncorrelated
sensor noise have been reviewed m Chapters 2 and 3 Chapter 2 1s devoted to the
continuous time case and Chapter 3 to the discrete ume case These reviews have put the
problem with the correlated sensor noise 1n the nght perspective and exposed the difficulty
in solving 1t. We have made some non-tnivial extenstons of the available results which

have also been incorporated 1nto these chapiers

The general problem of decentralized estmation with non-identical global and local
models has been presented in Chapter 2 We have followed the works of Wallsky et al
(1982) 1n developing this chapter. The main result 1s given in Equation (2.14) and 1s
shown by block diagram of Figure 2.3. This shows that the globally optimal esumate can
be constructed at a central node dynamucally from the local estimates  But the structure of
the central node in this scheme is comphicated. We have reduced this complexity 1n the
scheme of Equation (2.15) and the corresponding biock diagram of Figure 2.4. In this
scheme each node must send 2 vectors - an optimal estimate of the state and another data
dependent vector, to the central node. The structure of the central node as well as the
transmission requirement has been reduced further in the scheme of Equation (2.16) and
Figure 2.5. In this scheme some computational burden has been transferred from the

central node to the local nodes and, as a resuli, each local node needs to send only one data

dependent vector to the centrai node. However, 1n the process, the complexity of the local

nodes increases. To remove this drawback, an improved scheme 15 presented 1n Equations
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(2 17) and Figure 2.6. In this final scheme, there 15 no need of constructing an optimal
filter explicitly at each node and the dynamical equation at that node can be initialized to
zero This last scheme plays an important role 1t the development of the corresponding

results for the case of correlated sensor noise in Chapter 4.

Chapter 3 15 the murror image of Chapter 2 but for the discrete time case. This chapter
15 1ncluded to expose some 1mplementation details which are distinct from the continuous
ume case. The major results of this chapter are due to Speyer (1979) who solved the
problem with uncorrelated sensor noise and identical global and local models. We have
extended this result to 1nclude the case of dissimular local and global models. The main
result 15 given 1n Equations (3.15) and the corresponding block diagram of Figure 3.3 As
in the continuous time case, each node must send 2 vectors to the ccntrall node. The
transmission requirement and the complexity of the global and local nodes are reduced in
the scheme of Equations (3.17) and Figure 34 In this scheme, there 1s no explicit Kalman
filter at any node and each node needs to send only one data dependent vector to the central

node.

The subject 1ssue fo this project, 1.e. the decentralized estimation problem with
correlated sensor noise 1s presented in Chapter 4 under the assumption that the local
processors have the full knowledge of the giobal model Because of the importance of this
problem we have made this a self contained chapter. A brief review of the case of
uncorrelated sensor notse 1s given 1n Section 4.2 The correlated sensor noise is dealt with
10 Section 4.3. This problem 1s first solved by transmtting all the sensor data to a central
node and the results are given ir Equation (4 10) Nexi, the technique of decorrelating the
measurements from sensor to sensor 1s demonstrated 1n Equanon (4 12) In this technique,
the observed data 1s transformed 1nto "new measurements” so that the data is uncorrelated
across the sensors, but the solution depends upon the simulianeous availability of all the

data The distributed algorithm 1s presented in Equation (4.13) and Figure 4.1. Thisisa
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remarkably simple algorithm  There 1s no explicit need of constructing a Kalman filter at
the nodes and the 1nitial conditions at the local nodes can be set to zero. Each local node
must send to the global node only one data dependent vector the property of which is yet to

be found out.

In many situations, particularly if the variables are expressed in the cartesian

coordinates, the dynamcs equatiens for the target state is linear but the measurement

equations are nonlinear This class of problem is usually solved by using extended Kalman

filters (EKF). In most of the cases, the implementation 1s based upon ad hoc expansions
and linear1zation techniques. In this project, we have dealt with a special class of nonlinear
measurements encountered in an SDI rracking problem known as modifiable nonlinearities
The resulting filter 1s called the modifiable gain EKF (MGEKF) and has been dealt with 1n
Chapter 5. In the case of beanings only measurements, it 1s anticipated that significant
improvement 1n filter response and stability will result in the MGEKF formulation in
contrast to that of the EKF. Since this is a new 1dea, this chapter has been written in a
tutorial form The main result is given 1n Section 5.6 - 5.7. The decentralized version of
the results are presented i Equanons (5.38) - (5.45). These are the prehminary results and

will be analyzed in detail 1n Phase 1.
6.2 Future Recommendations

It 1s obvious from the earher parts of this report that the decentralized estimation
problem 1n presence of correlated sensor noise 1s indeed a very difficult one. We have
solved a very simple version of this problem which assumes hinear dynamics and
measurement equations, identical global and local models, no computational and
transmassion delay, all nodes in broadcast mode etc. Therefore much work remains to be
dene which vall form the basis of Phase II. The future recommendations include but are

not necessarily limited to the following.




In a realistic environment, the local processors may not possibly have the
complete knowledge of the global model Therefore the decentralized
estimation problem in presence of the correlated sensor noise must be

formulated for the case of dissimilar glo™al 2 1d local models.

In Chapter 4, we have solved this problem only for the continuous ime case.

This analysis needs to be extended to the discrete time case

The IR sensors used in the SDI system typically provide information on
beanings of the targets. Radar and laser trackers can provide additional
information on range and range-rate In any event, if the motion of the target is
descnbed 1n a rectangular coordinate system, the above measurements are
related nonlinearly to the state variables of the target. We have proposed in
Chapter 5 that beanings only measurements can best be handled in a newly
mntroduced framework called "modifiable functions.” This 1s a very powerful
techmque and holds a great potential in solving the decentralized estimation
problem with nonlinear measurements. So far the results are available for
centralized esumation only and we have indicated 1n Chapter 5 how to proceed
for the decentralized estimauon. This problem needs to be formulated and

analyzed in detail.

In a reahistic situation, there is a delay in transmission from one node to the
other and there 15 also a delay associated with the computanion. In Phase I, we
have assumed these delays to be zero. Time delays due to computation and
communication processes must be incorporated in the decentralized estimation

problem.




All the results of this report have been derived for one target only. This

scenano needs 1o be broadened to muluple targets in future work

We have assumed that all the sensors are at fixed positions 1n an nertial frame
while the target 1s moving with respect to this fran.e. But in an actual SDI
scenarno, the sensors are located 1n orbiting sateliites and therefore have their
own dynarnics. Sensor dynamics must be included in the future formulauon of

the decentralized estimation problem.

We have assumed that the satellites carrying the sensors are communicaung 1n a
broadcast mode. But n practice, 1t :s more hkely that direct communications
will take place only between adjacent satellites arranged 1n a ning structure about
the Earth and communicauons will be allowed 1n either direction. The
decentralized estimation problem needs to be formulated by incorporating the

communication protocol of a nng structure

We have argued while estabhishing the supenionty of the decentralized

estimation over the centralized one that loss of the centralized processor could

result in total or at least senous degradation of tracking capability. It will most

likely turn out that distnbuted esumation wall result 1n a more survivable and
less complex tracking system It needs io be investigated how the system
performance degrades 1n the event of one or more sensor faillure. Two types of
sensor failure must be considered. soft (degraded) failure and hard failure
Soft faslures cau be modelled via use of statistical measurement noise models,
while hard failures can be modelled by assuming complete loss of

measurement.




2 I U 20 ERX B Ee Ea e .

Communication failure models should also be included n the decentralized
estimation problem 4s in the case of sensor failure, commanication failure can
also be modelled as either hard or soft A hard failure, for example, couid
result from successful jamming or failure of the hink to coerste. Soft failures

can be handled using stanstical measurement noise models.
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