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Abstract / -

An important geometric matching problem in machine vision and robotics
is to determine whether there exists an affine transformation (a general linear
transformation and a translation) that maps each point of a set A onto a
corresponding point of a set B. In the case of matched caxdinality point
sets, we have developed an cptimal 9(n log n) algorithm for determining the
existence of such a transformation. The method makes use of the fact that
an afine transformation preserves the center gravity of a point set, as well as
the ratios of triangle areas. 1 ,' U 0(/ Y _Si ,

If [4 < iIff then there can be 0(n3) affine transformations from A to B.
In general t.e number of transformations will be much smaller, so we have de-
veloped an output sensitive algorithm that runs in time 0(n 2 log n +tm log n),
where m = IAI, n = IBI, and t depends on the number of transformations.
The method relies on the afline properties that intersection points and length
ratios along a line are preserved. ' .
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1 Introduction

We consider the problem of matching a set of points, A, in the plane to another set,
B, under an affine transformation, where m < n, for m = JAI and n = IBI. That is,
given two planar point sets A and B the problem is to exhibit any two-dimensional
affine transformation, T : A --- B that maps each point of A onto a point of B.
When m < n there are O(n 3 ) possible matches, because each triple of noncolinear
points defines an affine transformation of the plane. In general, however, the
number of matches will be small, and thus we seek an output sensitive algorithm,
that runs in time proportional to the number of transformations from A to B.

The problem of matching planar point sets under an affine transformation
has been considered by a number of researchers in computer vision (e.g., [HUI
[LSW] [TM]), because the image of a planar surface under projection is reasonably
approximated by an affine transformation [Ho]. Related problems of matching
under similarity and congruence have been considered in both the computer vision
and computational geometry literature (e.g., [AMWW] [Ba]). In this paper we
develop new algorithms for the affine matching problem that improve upon the
asymptotic time complexity of existing methods. From a practical point of view
these algorithms are also straightforward to implement.

When two point sets, A and B, are of equal cardinality an algorithm has been
developed by [HT] for determining in average-case linear time whether or not
there exists an afine transformation, T : A --+ B. The worst-case time bound
for the method, however, is quadratic. When the point sets are of unmatched
cardinality, a paper by [HU] presents a naive algorithm that matches a given
triple of points in A against every triple of points in B. Each such match defines
an affine transformation that must be checked to see if it maps all the points of A
to corresponding points of B. This can be done by applying the transformation
to each point of A and then using a range query to search for a matching point of
B. Each range query can be done in O(log n) time (e.g., as in [Ed]), so the overall
running time of the method is O(n 3m log n).

In this paper we present an algorithm for the equal cardinality affine matching
problem that runs in optimal time 1(n log n), and an algorithm for the case where
m < n that runs in time 0(n 2 log n + tm log n), where t is the number of matches
of a given four points in A to any four points in B. In general t is small, but in
the worst case it is O(n 3 ). For example when the points of A form a square and
the points of B are on a regularly spaced grid, there are O(n 3 ) parallelograms in
B each of which matches the points of A.



2 Properties of the Affine Transformation

This section briefly describes several properties of afine transformations that are
used in the algorithms developed below. These properties hold if and only if a
transformation is affne. Derivations of the properties can be found in a number
of standard texts (e.g., [Gal [KI]) and thus are not presented here.

An aMine transformation of the plane, A : 1 ---+ 7 2 can be represented as a
nonsingular 2 x 2 matrix, L, and a translation vector b E 7Z2 , such that

x1 = Lx + b,

for any x E 7Z2 .

Property 1 An affine transformation of the plane is defined uniquely by three pairs
of points. If a, b and c are noncolinear points, and a', b' and c' are corresponding
points, then there exists a unique affine transformation A: 1?? -- * 7 2, mapping each
of the three given points to its corresponding point.

Property 2 Ratios of distances along a line are preserved. If a, b and c are col-

inear points, and A is an affine transformation, then

a - b i _A(a) - A(b)l
lb - ci IA(b) - A(c)I'

where Jxi is the length of segment x.

Property 3 Intersection points are preserved. If c is the point of intersection of
two lines a and b, and A is an affine transformation, then A(c) is the intersection
of the lines A(a) and A(b).

Property 4 The center of gravity of a set of points is preserved. If c is the center
of gravity of a point set, X, and A is an affine transformation, then A(c) is the
center of gravity of the point set X' = {x'lx' = A(x),x E X}.

Property 5 Ratios cf triangle areas are preserved. If a, b and c are noncolinear
points, d, e and f are noncolinear points (not necessarily distinct from a, b, and
c), and A is an affine transformation, then

16abcl IAA(a)A(b)A(c)
lAdefI IAA(d)A(e)A(f)l'

where Ilx is the area of triangle x.
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3 Equal Cardinality Point Sets

In order to develop a method for determining whether there is an affine trans-
formation mapping A to B, where JAI = IBI, we make use of Property 4, that
the center of gravity of a point set is preserved, and Property 5, that the ratios
of areas of any two triangles are preserved. The method consists of two stages.
The first stage (Algorithm 1) is to compute a canonical form of a point set that
is preserved under an affmne transformation. The second stage (Algorithm 2) is to
compare the canonical forms of two point sets for equality.

To simplify the presentation we initially assume that for each point xi E X the
orientation of the segment cxi is distinct, where c is the center of gravity of X.

Algorithm 1 Given a set X of n points in the plane:

1. Compute the center of gravity of X, c.

2. Form the list of segments cxi for each xi E X, determine the orientation of
each segment with respect to some flzed orientation (e.g., the x-axis), and sort
the segments by orientation yielding a circular list of segments.

3. For each pair of successive segments in the circular list, compute the area of the
triangle formed by the two segments. That is, the areas 1Acxix,+lI, denoted
by solid lines in Figure 1.

4. For each pair of segments with one intervening segment in the circular list,
compute the area of the triangle formed by the two segments. That is, the
areas IAcxx,+21, denoted by dashed lines in Figure 1.

5. Compute the pairs of area ratios formed by dividing each area from Step 3 by
the corresponding area from Step 4. That is, the ratio pairs

(, Acxixi+l1 IAcxi+ix,+2I

IAcxixi+21' IAcxixi+2I "

This yields a list of n area ratio pairs.

From Properties 4 and 5 we know that each of the area ratios computed in
Algorithm 1 remains unchanged under an affine transformation of a point set, X.
Thus the list of area ratio pairs computed in Step 5 is a canonical form for X that
is invariant under an affine transformation.

3
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Figure 1: Computing the canonical form: ratios of triangle areas for each pair of
successive segments (e.g., AcxIx 2) and each pair of segments with one segment
intervening (e.g., ACXlX3 ).

When more than one of the segments, cx,, share the same orientation, a simple
modification to the canonical form suffices. For each duplicated orientation choose
some representative point, such as the one farthest from c. For any other segment
at the same orientation, the length ratio of that segment to the representative
segment will be preserved exactly in the case that there is an affine transformation
(by Property 2). Thus the canonical form can be computed by Algorithm 1 for
the representative points, and then augmented with these length ratios. We now
consider how to use the canonical form to determine whether there is an affine
transformation from one point set to another.

Algorithm 2 Given two sets of n poingL in the plane, A and B:

1. Compute the canonical form of A using Algorithm 1.

2. Compute the canonical form of B using Algorithm 1.

3. Compare the two resulting lists of area ratios for circular equality by replicating
the list for B twice and using a string matching algorithm to search for the A
sequence as a substring of the B sequence.
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To establish that Algorithm 2 correctly decides whether or not there is an affine
transformation from A to B we show that the following holds.

Proposition 1 The canonical forms of two point sets A and B are circularly equal
if and only if there exists a unique affine transformation T : A -- B.

From the construction of the canonical form we know that if there is an affine
transformation T : A -- B then the canonical forms for A and B will be circularly
equal (because triangle area ratios axe preserved under an afline transformation).

To show that the converse is also true we will make use of the following two
Lemmas which establish that there is a unique affine transformation from one set
of four points to another exactly when two triangle area ratios are preserved.

Lemma 1 Consider four points in the plane, a, b, c, and d. If the area ratios of

two of the triangles to a third triangle are known, such as

JAabcj

IAabd,

and
IAacdI
IJtabd,

then the location of one of the points is defined uniquely with respect to the other

three.

This follows straightforwardly from the definition of the area of a triangle.

The two known ratios and three known points result in two independent linear
equations in two unknowns for the fourth point.

Lemma 2 Given four points in the plane, a, b, c, and d, and four corresponding
points, a', b', c', and d', such that,

IAabc IXa'bc'I
Iabd IAa'b'd'I

and
IL acdI lAa'cd'IJ abd l I a' ld'I

there exists a unique affine transformation mapping a, b, c, and d to their corre-
sponding points.
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This follows from the previous Lemma, and two of the properties of afine
transformations. We know from Property 1 that the correspondence of a, b, and
c with a', b', and c' defines a unique affine transformation. Given that the two area
ratios, r, and r 2 are known, by Lemma I the position of d' is uniquely defined with
respect to the other three points. In other words there is a unique transformation
mapping a, b, c, and d to a', b', c', and d', respectively. From Property 5 this
transformation is afine because triangle area ratios are preserved.

It should be noted that Lemmas 1 and 2 only serve to reduce the number of
area ratios that must be considered for four points. If all twelve ratios of the four
triangle areas defined by four points are preserved by a transformation, then it
follows immediately from Property 5 that the transformation must be affine.

Now we return to the problem of showing that if the canonical forms for two
point sets, A and B, are circularly equal, then there is a unique affine transforma-
tion T : A -+ B. The area ratios that make up the canonical form are computed
from overlapping point quadruples, which guarantees a unique affine transforma-
tion as follows. Given two equal canonical forms, the first corresponding quadruple
of points defines a unique affine transformation (by Lemma 2). Each successive
quadruple also defines a unique affine transformation, but that transformation
shares three points with the transformation for the previous quadruple. Thus by
Property 1 the successive transformations must be the same, because they share
three corresponding points.

This completes the proof of Proposition 1, that the canonical forms of two
point sets are circularly equal if and only if there is an affine transformation from
one set to the other. Thus Algorithm 2 determines the existence of an affine
transformation from A to B by comparing the canonical forms of two point sets.

Complexity

The time complexity of Algorithm 1 is O(n log n), as follows. The center of gravity
can be computed in linear time. The next step involves determining a linear num-
ber of segments and angles, and then sorting this list, which takes time O(n log n).
The third, fourth and fifth steps each compute a linear number of quantities, where
computing each quantity is a constant time operation. Thus the sorting operation
in the second step dominates the running time.

Algorithm 2 also requires O(n log n) time, because the first two steps each
invoke Algorithm 1, and the third step can be done in linear time using one of a
number of string matching algorithms. This time bound is optimal, by reduction
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from the problem of deciding whether two planar point sets are congruent, which
is Q(nlogn) [At].

Deciding whether two point sets are congruent can be reduced to the affine
matching problem as follows. To decide if two point sets are congruent, first use
Algorithm 2 to decide if there is an affine transformation from one set to the other.
If there is no afline transformation then there is no congruence, as a congruence is a
restricted form of afline transformation. If an affine transformation does exist, then
use three corresponding points of the two sets (two corresponding segments in the
sorted segment lists from Algorithm 1) to compute the transformation. Computing
the transformation is a constant time operation, requiring the solution of two sets
of three independent linear equations in three unknowns. If the matrix L of the
affine transformation is orthonormal then the transformation is a congruence. If
the matrix is not orthonormal then there is not a congruence. Determining whether
the matrix is orthonormal is also a constant time operation.

4 Unequal Cardinality Point Sets

For any two sets of three points there always exists an affine transformation map-
ping one set to the other, but for sets of more than three points there generally
is no such transformation. In this section we use four selected points of a set A
to identify possible affine transformations from A to B, where IAI < IBI. Each
transformation that maps the four chosen points of A to some four points of B
is then checked by applying the transformation to the remaining points of A and
using range queries to identify corresponding points in B. The method only con-
siders pairs of points in B, rather than quadruples, by making use of the following
result.

Proposition 2 Given four points a, b, c, d, and four corresponding points a', b',
ct , d', where i is the intersection of ab with cd, and i' is the intersection ofa'b' with
c'd', there ezists a unique affine transformation mapping each of the four points to
its corresponding point if and only if

jail -a i'I
Jabi Ia'b'f'

and Icil ICT'I'

Icdl lc'd'l'
where Ilx denotes the length of segment x (see Figure 2).
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Figure 2: For a set of four points, the length ratios to the intersection point. i are
preserved exactly when there is an affine transformation.

From Properties 2 and 3 it follows immediately that if the transformation from
one set of points to the other is affine, then the length ratios to the intersection
point will be preserved. The converse is also true, as follows. Choose three of
the four points, such as a, b, c and a', b', c'. These three points always define a
unique affine transformation, A (by Property 1). Now i' must be the point along
the line a'b' that is specified the ratio ai/ab, and d' must be the point along the
line c'i' that is specified by the ratio ci/cd. Thus d' is defined uniquely given the
affine transformation computed from the other three points, and the length ratios
(that are invariant under an affine transformation).

Using this result, the affine transformations from a set of four points to a set
of n points can be enumerated by considering only pairs of the n points. Given a
set A = {a, b, c, d}, compute the intersection point, i, of the segment ab with the
segment cd. For each pair of points x, and x. in B mark the four points along the
segment xxj that are defined by the four length ratios lail/labi, Icil/IcdI, and the
reverse ratios Ibil/labl and Idil/lcdl (see Figure 3).

Two marked points will coincide, one from the ratio lail/labl or its reverse and
the other from the ratio Icil/IcdI or its reverse, when two edges intersect with the
same length ratios as for the intersection of ab with cd. By Proposition 2 this
happens if and only if the four points of B are an affine transformation of the four
points of A. This basic idea can be generalized to an algorithm for matching m
points to n points as follows.
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; bi

dii XXli

la blI X 3 _6

T.abl !dil

Icdl

lcd l .b

dil 2Icdl.

Ibil

Figure 3: Two points specified by the length ratios coincide exactly when there is
an afline transformation.

Algorithm 3 Given two sets A and B of points in the plane, where JAI < lBI:

1. Choose a set of four points of A, a, b, c, and d such that the segments ab
and cd intersect. Compute this intersection point, i.

2. Compute the length ratios jail/lab) and lciI/Jcdi, and the reverse ratios Ibil/lab
and Idil/Icdl.

3. For every pair of points, xi and x, in B, mark the four points along the segment
xixj that are defined by the length ratios from Step 2. For each marked point
note which segment of A (ab or cd) and which two points of B were used to
compute it.

4. Collect all of the marked points from the previous step (along with which seg-
ment and which two points of B correspond to each point) into a list. Sort
this list first by the x location of the marked points, then by the y location,
and finally by whether the point resulted from an ab segment ratio or a cd
segment ratio.

5. Equal marked points will be adjacent in the sorted list of the previous step,
and will be separated into those corresponding to ab segments and those cor-
responding to cd segments. For each pair of equal points that is due to a
different type of segment do the following:

(a) Compute the affine transformation ma , .,,,g the chosen points of .4 to the
points of B that correspond to these marked points.

9



(b) Transform each point of A using the transformation computed in the
previous step, and do a range query to determine if there is a matching
point in B. If all the points of A have matches, then this transformation
is valid and is collected into the result list.

From Proposition 2 we know that a pair of equal points will be considered
in Step 5 exactly when there is an affine transformation from the four chosen
points of A to some four points of B. This transformation is then computed
using the corresponding points, and is checked by transforming every point of
A and determining whether there is a matching point of B. Thus every affine
transformation of the m points of A to some m points of B will be exhibited.

Complexity

The first two steps of Algorithm 3 compute the intersection point and length ratios
for the four chosen points of A, which takes a constant amount of time. The third
step performs O(n 2) constant time operations of marking points along a segment.
The fourth step sorts a list of 0(n 2) points, and thus takes time 0(n 2 log n) which
dominates the running time of the first four steps.

The loop in step 5 is executed once for each pair of equal marked points,
where one point is from an ab segment ratio and the other is from a cd segment
ratio. Two such equal marked points will occur if and only if there is an affine
transformation from the four chosen points of A to some four points of B. Thus
there can be at most 0(n 3 ) iterations of the loop. In general, however, the number
of iterations will be small, because the number of affne matches of four points is
small. Each time around the loop takes O(m) time to transform the points of
A, and then O(m log n) to perform m range queries on the n points of B. Thus
the overall running time of the algorithm is O(n 2 log n + tm log n), where t is the
number of transformations from the four chosen points of A to any four points of
B, and hence in the worst case t is O(n 3 ).

5 Summary

We have considered the problem of determining whether one set of points in the
plane matches another set under an affine transformation. We presented an algo-
rithm for the case where the two points sets are of equal cardinality that decides
whether there is an affline transformation in optimal time ((n log n). When a set
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A of m points is matched against a set B of n points, where m < n, we have
developed a method that exhibits all the affine transformations from A to B (if
any) and runs in time O(n 2 log n + tm log n), where t is the number of matches of
a given four points in A to any four points in B. In general t is small, but in the
worst case it is O(n3 ).

An interesting related problem is matching under an affine transformation
when there is bounded uncertainty in the locations of the points. If the transfor-
mation is restricted to be a congruence, rather than a general afline transformation,
and the cardinality of the two point sets is the same, then an 0(n8 ) algorithm for
approximate matching is given in [AMWW]. The problems of approximate match-
ing under an affine transformation, and of matching unequal cardinality point sets
remain open.

In this paper we have only considered the unequal cardinality matching prob-
lem in which each point of a set A is matched to some point of B. In real-world
machine vision tasks, however, some of the points of A may not be present in B.
Thus, another related question is how to match A to B when there may not only
be "extraneous" points in B, but may also be points of A that are missing from
B.
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