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Given a convex polygon P and an environment consisting of polygo-

nal obstacles, we find the largest similar copy of P that does not intersect

any of the obstacles. Allowing translation, rotation, and change-of-size,

our method combines a new notion of Delaunay triangulation for points

and edges with the well-known functions based on Davenport-Schinzel

sequences producing an almost quadratic algorithm for the problem.

Namely, if P is a convex k -gon and if Q has n corners and edges then we

can find the placement of the largest similar copy of P in the environment

Q in time 0 ( n ~,_(kn) log n), where 4 is one of the almost-linear func-

tions related to Davenport-Schinzel sequences. If the environment con-

sists only of points then we can find the placement of the largest similar

copyofP intime 0, 2 nC kn)logn). / "
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1. Introduction

Given a pattern and a piece of material containing faults, the goal is to cut out a

piece, geometrically similar to the pattern, that does not contain any of the faults. For

instance, we might wish to cut the largest possible square from a piece of sheet metal that

has some small holes in it. We show that if the pattern is a convex polygon and if the

faults can be represented by polygonal boundaries then such a problem can be solved in

time 0 (k4n A4(kn) log n), where k is the size of the pattern, n is the size of the environ-

ment, and X is one of the almost-linear functions related to Davenport-Schinzel

sequences [ASS].

A number of authors have studied related placement problems using various

assumptions about the object to be placed, the motions allowed, and the environment the

object is to be placed within. We describe some of these results in the following para-

graphs. Assue P is a k -gon that we wish to place in a polygonal environment Q of

size n.

A number of papers [SCKLPS, Ch, AB] allow P to both translate and rotate. In

[SCKLPS] the polygon containment problem is solved in time 0 (kn X6(kn) log kn)

where P is convex and Q is a closed, not necessarily simple, polygonal region of n

edges and corners. Chazelle [Ch] studied the problem for the case where P and Q are

arbitrary simple polygons and showed that the naive algorithm takes time

0 (k 3n 3(k +n) log (k +n )). A more restricted case of the polygon containment problem,

in which both P and Q are convex was also studied by Chazelle, who solved this case in

time 0 (kn2). Avnaim and Boissonnat [AB] present an algorithm where both P and Q

are non-convex, possibly-not-connected polygons that runs in time 0 (k3n 3 log kn) and

is optimal in the worst case.

A different version of the polygon containment problem was studied by Fortune

[Fol], (cf. also (LS] and [CD]): find the largest homothetic copy of P inside Q. In other

words, translation and change-of-size are allowed, but rotation is not. This problem is
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solved for a convex P and an arbitrary polygonal region Q in time 0 (kn log kn) by con-

structing a generalized Voronoi diagram of Q under a convex distance function induced

byP.

In this paper, we allow P to translate, rotate, and change-in-size, thus solving the

most general motion problem. Our polygon P is a convex k-gon and Q is an arbitrary

polygonal environment consisting of n vertices and edges. The problem is that of finding

the largest similar copy of P that can be placed in Q. We solve it in time

0 (k'n X (kn) log n ), and if the environment consists only of n points (no edges) in time

O(k 2n X3(kn) log n).

The correspondence between placement problems and motion planning problems

has been noted before ([AB], [Ch], [LS] and many others). We exploit the results of this

paper to achieve an 0 (k4n X4(kn) log n) algorithm for planning a general motion of a

convex polygonal body amidst polygonal obstacles. Our time bound does not differ by

much from the one achieved by Kedem and Sharir (KS], (O (kn 16(kn) log kn)) for this

problem, even though their algorithm provides a motion plan in which the object is

almost constantly touching the obstacle walls while our algorithm provides a path with

high-clearance. Our results on this problem will be described in a forthcoming paper.

The algorithm we develop, although it involves some constant-time subproblems

that can be tedious to solve, is fairly straightforward. As is often the case, the analysis is

more complicated than the algorithm itself.

We start the algorithm by creating an initial Edge Delaunay Triangulation of the

polygonal environment using our convex polygon (P), at some fixed orientation 9, as the

distance function. The Edge Delaunay Triangulation has three types of edges: simple

edges, that connect comers or points of Q; wedges, that connect points or comers of Q

to sides of Q; and ledges, that connect pairs of Q sides. We treat the above features as

generalized triangulation edges. The exact definition of this new notion of the Delaunay

triangulation is dealt with in detail in section 2.
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We observe that in most cases, as 0 varies just slightly, the combinatorial structure

of the triangulation does not change. For each generalized edge in this triangulation, we

determine at which angle 0 this edge will cease to be valid due to interaction with its

immediate neighbors. This can be determined by checking the two triangles directly

adjacent to the edge. We place all the generalized edges in a priority queue, ordered by

the angle 0 at which they are to be eliminated. At each succeeding stage of the algo-

rithm, we determine which edge will be the next to disappear as 0 increases. We then

eliminate that edge from the Delaunay triangulation, add the appropriate new edge, and

update the priority queue information for the new edge and its neighbors. Note that a

new edge can change the priority for its neighbors.

As we update the triangulation, we determine, for each triangle, the range of 0

where the triangle exists. With this information we can determine, in constant time, the

maximumsize of P, for the given range of 0, that can be placed in contact with the three

obstacles that induced the triangle. As triangles are processed we remember the place-

ment for the largest size of P so far. Thus, by the end of the algorithm, we have the

required placement and orientation of the largest similar copy of P.

It is easy to see that the time for this algorithm is bounded by a constant times (the

number of edges eliminated as 0 changes) times (the time to do a priority queue opera-

tion). A priority queue can be implemented to run in time 0 (log m) per operation where

m is the maximum number of items in the queue. Since there are never more than 0 (n)

edges in the queue at any one time, each priority queue operation takes time 0 (log n).

The main contribution of this paper is an analysis proving a bound on the number of

edge changes in the edge Delaunay triangulation as 0 changes. In outline, our analysis

goes as follows. Changes in the combinatorial structure of the triangulation occur only at

critical orientations which we analyze in a manner somewhat similar to [KS]. We

choose a corner of Q and a corner of P and attach these comers to make a hinge. Call

this hinge H. We define a family of functions for this hinge, one function for each
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possible contact in Q. (A contact is a vertex of P against an edge of Q, or an edge of P

against a vertex of Q.) For contact C, fc (0) is the smallest possible size of P such that

P, at angle 0 and retaining hinge H, maintains contact C. We show that the lower

envelope of this family of functions is closely related to the Delaunay triangulation. We

argue that the number of breakpoints on the lower envelope is 0 (Xi(kn)). Hence, over

all kn possible hinges the total number of breakpoints is 0 (kn X(kn )). The number of

critical orientations is shown to be proportional to the number of breakpoints (the exact

proportion depends on k).

The paper is organized as follows. In section 2 we discuss the Edge Delaunay Tri-

angulation. In section 3 we analyze the size functions and their lower envelopes. Sec-

tion 4 deals with the critical orientations where changes occur in the Delaunay triangula-

tion, Conclusions and further research are briefly discussed in Section 5.

2. Edge Delaunay Triangulations

Just as the standard Delaunay triangulation is the dual of the standard Voronoi

diagram the Edge Delaunay Triangulation (EDT) is the dual of the Edge Voronoi

Diagram (EVD). In the literature, the EVD is sometimes called a generalized Voronoi

diagram, but there are so many different possible generalizations of the Voronoi diagram

that it seems worthwhile to use a name that indicates which generalization is meant. For

an EVD, the initial data consists of points and line segments between points, while for a

standard Voronoi diagram, the initial data consists only of points. The initial data items

are called sources. For the EVD there are two kinds of sources: open line segments and

points (including the endpoints of the line segments). The Voronoi region for a given

source is, as for the standard Voronoi diagram, the portion of the plane that is closer to

the given source than to any other source. The resulting Voronoi diagram divides the

plane into regions with boundaries consisting of line segments and segments of parabo-

las. An 0 (n log n) divide-&-conquer algorithm for building the EVD has been
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developed by Yap [Ya]. Fortune's sweepline technique [Fo2] can also be used to build

the EVD in 0 (n log n) time.

The following intuitive method for building an EVD can be used to gain an under-

standing of its dual, the EDT. Approximate each line-segment source by placing p

points, equally spaced, along the line-segmenL Determine the standard Voronoi diagram

using the original source points and the approximating points; the original line-segment

sources are ignored. Voronoi boundaries between points along the same line segment are

colored red; all other Voronoi boundaries are colored black. In the limit, as p increases,

the black boundaries give us the EVD.

Note that for each value of p there is a well-defined Delaunay triangulation. Intui-

tively, the EDT is simply the limit of these Delaunay triangulations as p goes to infinity.

(See Fig. 1.) This might seem to imply that the EDT requires infinitely many edges.

Fortunately, as we explain below, such prospective edges appear in simply defined

groups, so that entire groups of such edges can be represented by a simple triangle or tra-

pezoid.

For an EDT, there are three kinds of connections between sources: a simple edge, a

connection between two point sources; a wedge, a connection between a point source

and a line-segment source; and a ledge, a connection between two line-segment sources.

A simple edge is just a straight line between two points. A wedge is a triangle (possibly

a degenerate triangle, i.e., a line-segment) with one vertex at a point and the other two

vertices on a line segment. Intuitively, a wedge is an infinite set of edges connecting a

point source to an infinite set of approximating points on a line-segment source. A ledge

is a trapezoid (possibly a degenerate trapezoid, i.e., a triangle or a line-segment). The

two parallel sides connect a line-segment source (call it a) to another fine-segment

source (call it b). The remaining sides are formed by continuous portions of a and b.

Intuitively, a ledge is an infinite set of (parallel) edges connecting infinitely many

approximating points on a to infinitely many approximating points on b. Note that
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because ledges are trapezoids, an EDT is actually not quite a triangulation.

Note that our EDT differs from another kind of Delaunay triangulation for edges

that has appeared in the literature. This other type of Delaunay triangulation has been

called a generalized Delaunay triangulation [LL] or a constrained Delaunay triangulation

[Che]. Very roughly, the constrained Delaunay triangulation is a cross between the stan-

dard Delaunay triangulation and the visibility graph. The EDT is the dual of the EVD

while the constrained Delaunay triangulation is not (LL].

The remainder of this section consists of a more careful definition of what is meant

by an EDT. We start by defining a D -graph, a first approximation to the EDT of source

graph S. Intuitively, a D-graph is just S with some extra edges and with some extra ver-

tices added to line segments of S.

Definition. Let S be a straight-line planar graph (called the source graph). A straight-

line planar graph G is called a D-graph of S if

(1) each vertex of S appears in G, and

(2) each edge of S appears in G, possibly with extra vertices (called D-vertices)

placed along it.

The edges and vertices in G that correspond to edges and vertices of S are called source

edges and source vertices, respectively. Edges of G that do not correspond to edges in S

are called D -edges. A region of G is called a wedge if it is a triangle with a source

edge on one side and a source vertex as the opposite vertex. A region of G is called a

ledge if it is a quadrilateral with source edges on opposite sides. The quadrilateral can

be degenerate with one edge of zero length.

The following definitions restrict the D-edges to make them into Delaunay edges.

In the following definitions, the meaning of circle depends on the distance function

being used. For instance, an L 1 circle is a square tipped at 450; an L 2 circle is a stan-

dard circle; for a convex distance function, a circle is a shape similar to and at the same



-8-

orientation as the distance-defining convex shape.

Definition. A D-graph, G, has the empty circle property if for each D-edge, e, there is a

circle, C, such that

(1) the endpoints of e are on the boundary of C, and

(2) C is empty (no source vertex or source edge of G intersects the interior of C).

Definition. Let G be a D-graph of the source graph S. G is called an Edge Delaunay

Triangulation (EDT) of S if all of the following hold:

(1) G has the empty circle property,

(2) adjacent wedges of G do not have identical sources;

(3) adjacent ledges of G do not have identical sources; and

(4) G is maximal in the sense that no new D-edges can be added without violating one

of these restrictions.

Note that if there is an empty circle that goes through 4 sources then there is more than

one possible EDT. In this case all the possible EDTs are equally valid.

It is easy to show that if the number of vertices and edges in the source graph is n

then there ae 0 (n) vertices and edges in the EDT (to see this, imagine shrinking each

line-segment source into a point). The EDT can be built in time 0 (n log n ) by first

building the EVD. For our purposes, since the rest of our algorithm runs in time roughly

O(n2 logn), it may be worthwhile to use a simpler incremental algorithm that runs in

time 0 (n2).

3. Expansion Functions and Their Lower Envelopes

Let P be a convex polygon having k sides, and let Q be a two-dimensional environ-

ment having polygonal boundaries with a total of n comers. We assume there is a refer-

ence point p and a reference vector pq in P, such that a placement of P in the plane can

be represented by the quadruple (x,y ,0,8), where (xy) are the coordinates of p, 0 is the
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orienta .,n of pq, and 8 is the expansion factor of P.

For the rest of this section we discuss a family of functions associated with placing

a particular comer of P on a particular comer of Q. We call this pair of corners the

hinged corner H. We define a contact pair C to be a point contact pair if a side of P

touches a comer of Q, and a side contact pair if a corner of P touches a side of Q. We

define an expansion function EHC (0) to be the minimal expansion factor of P at orienta-

tion 0 so that P is hinged at H and touches Q at the contact pair C. (See Fig. 2).

The functions have the form

cos(a 777 EHC2(O) = c 3 cos (0 + C4)

when C I is a side contact pair, and C 2 is a point contact pair and { ci, i= I ... 4) are con-

stants that depend on the geometry of P and Q at the hinged comer and at the contact

pair. The domain of definition of EHC is a continuous angular interval < i this follows

from convexity of P.

The lower envelope for one hinged corner H is defined as

,H (0) = tn EHC (0).

If a function EHC is on the lower envelope at some 0 then there is an EDT edge between

Q's hinged corner and the element of Q from C; this follows from the definition of

EDT. We call this EDT edge a reported edge (reported as being on the lower envelope).

A breakpoint on the lower envelope occurs where EHCl and EH(C2 intersect. It happens

when P touches simultaneously the hinged cnrner of Q and both the elements of Q from

CI and C2 .

To estimate the number of breakpoints along 'PH we extend the domain of

definition of the functions over the complete range [0,2x) of 0 by (as in [LS]) extending

EHC leftwards from 01 along a ray of some very large negative slope, and rightwards

from 02 by a my of some very large positive slope.



- 10-

Proposition 3.1: Two expansion functions intersect each other in at most 4 points.

Proof: It is easy to see that if both EHC, and EHC, involve point contact pairs, or if both

involve side contact pairs, then they intersect in at most one point in an interval shorter

than x. The ray extensions of these functions may add up to two more intersection points

giving a total of 3 possible intersections. If the functions involve both a side contact pair

and a point contact pair then the functions, not including the ray extensions, intersect at

most twice. To see this, assume CI is the point contact pair and C2 is the side contact

pair. Choose one point on B to be the reference point. We draw the expansion functions

EHCI and EHC2 using polar coordinatws (see Fig. 3). As we vary 0, maintaining touch

with the contact pair C 1, the reference point draws a circular arc. Contact C 2 causes the

reference point to draw a straight line (proof by similarity of triangles). The arc and the

line can intersect at most twice, the ray extensions can add up to 2 more intersections,

giving a total of up to 4 intersections. 0

Proposition 3.2: The number of breakpoints on the lower envelope 'PH is 0 (kn Xj(kn )).

If Q consists only of points then the number of breakpoints on 'FH is 0 (kn X3(kn)).

Proof: Since each pair of expansion functions for a single hinge can intersect at most 4

times, it follows from the definition of X (see, for instance, [At], [Ass], or [SCKLPS])

that the size of the lower envelope for this hinge is 0 (X(kn )). Thus, over all possible

hinges, the number of lower-envelope breakpoints is 0 (kn Wt(n )). If Q consists only

of points then the functions involve only point contact pairs, and the number of break-

points on the lower envelope for one hinge is 0 (X3(kn)) and the total number of break-

points is 0 (kn X3(kn )). 0

4. Critical Orientations

In this section we prove a bound on the number of critical orientations that can

occur as 0 varies. By definition, a critical orientation is an angle at which the combina-

torial representation of the EDT changes. We make use of the functions defined in the
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previous section. For a fixed 9, these functions report, by means of the lower envelopes,

some, but not all of the edges in the EDT; the lower envelopes define a subgraph of the

EDT consisting of the reported edges. We show that the number of changes in the EDT

is bounded by a constant that depends on k, times the number of changes in this sub-

graph. We know, from the previous section, that the number of changes in this subgraph

is 0 (kn .3(kn )) for the points case and 0 (kn X4(kn)) for the general case.

In order to illuminate the main ideas behind our technique, we initially restrict our-

selves to the special case in which the environment Q consists only of points. We start

with a lemma showing the relationship between the reported edges and the full EDT.

Lemma 4.1: If Q consists only of points then, for a fixed 0, every EDT edge is either a

reported edge or a diagonal in a convex I -gon, 1 < k, whose sides are reported EDT

edges.

Proof: Let p, q e Q be the ends of an arbitrary EDT edge (see Fig. 4). By the definition

of the EDT there is an empty circle (in the shape of P) that touches points p and q mak-

ing contacts C. and C. respectively. In an attempt to bring P to a position where a

corner of P touches either p or q we slide P, maintaining contacts C. and Cq, while

shrinking or expanding P as necessary. If we get to a position where a corner of P

touches p or q, then, by definition, pq is a reported edge and we are done. If we do not

succeed in touching a corner of P to either p or q then there must be points in both

translational directions that stop P (i.e., some side s, of P touches a stopping point r e Q

creating contact C,). There are now two new pairs of contacts, C,, and Cr, and C. and

C,. We continue the process with each of these new pairs. The process terminates

because if two contacts correspond to adjacent sides of P then P can be translated and

shrunk, while maintaining the contacts, to show that the c orresponding edge is a reported

edge of the EDT. Thus we get at most k stopping points that describe a convex polygon.

0
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Lemma 4.1 implies that the subgraph of the EDT formed by the reported edges con-

sists of cells of size at most k.

To study the number of changes in the EDT, we examine one such change in detail.

A change occurs whenever there is a free placement of P that makes 4 contacts with obs-

tacles of Q. These 4 contacts correspond to two prospective EDT edges, each edge con-

necting a pair of contacts that are opposite each other. These are the edges that are

changing at this critical orientation; as 0 increases one edge is eliminated and the other

replaces it.

Theorem 4.1: For Q consisting only of points, the number of critical orientations of the

EDT is 0 (k 2n X3(kn )).

Proof: Assume first that P is a quadrilateral. A change in the EDT corresponds to either

a change within a cell or a change of a cell boundary. The changes of a cell boundary are

reported by the breakpoints. We will estimate the number of changes within a cell. We

define the life-span of a cell to be the range of 0 where there is no change in the cell's

boundary. We want to count the number of times that the diagonals of the cell inter-

change in the EDT during the life-span of the cell. By using similarity and the sine law,

we can determine the number of orientations at which a shape similar to P touches all 4

stopping points that bound the cell. For a given set of 4 stopping points there are either

no such orientations, one such orientation, or P can be made to touch at all orientations

(infinitely many such orientations). In the first case there is no change of diagonals, and

in the second there is exactly one such change. In the last case, if P touches all four

points at every orientation, then either choice of edge makes a valid EDT; thus, in this

case, no change is necessary (i.e., this is not really a critical orientation). Ihus, for any

cell, if there is a diagonal change then the old diagonal disappears and does not reappear

during the life-span of the cell.

A similar statement holds when P is a k-gon. In this case each cell is also a k-gon

referred to as a k-cell. For any pair of diagonals we can restrict our attention to the
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corresponding four boundaries of the k-cell. We can then use the technique outlined for

the 4-cell above to show that if there is a diagonal change then the old diagonal does not

reappear during the life-span of the cell.

As we show above, the total number of breakpoints is 0 (kn 13(kn)). As 0 changes,

each breakpoint of the lower envelope of the expansion functions affects up to two cells,

which in turn can contribute up to k new diagonals each. Thus, the total number of criti-

cal orientations is 0 (k2n X3(kn )). 0

The following lemma applies to the general case in which the environment Q con-

sists of points and line segments.

Lemma 4.2: For a fixed 0, every EDT edge is either a reported edge or a diagonal in a

convex I -gon, 1 < 3k, whose sides are either reported EDT edges or segments of source

edges.

Proof: Letp, qeQ be the ends of an arbitrary EDT edge. (In this casep and q can be

either a source point or a portion of a source edge.) As before there is an empty circle (in

the shape of P) with contacts C. and Cq (see Fig. 5). We try to bring P to a position

where there is a hinged corner by sliding P while maintaining contacts C. and Cq,

expanding or shrinking P as necessary. We argue that either edge pq is reported or the

sliding of P is stopped. A stop can be either a point r e Q that stops a side of P, or an

edge r e Q that stops a corner of P. We continue the process with the two new pairs of

contacts. If two contacts are adjacent (on P) then they must correspond to a reported

edge.

The number of Q -edges that can stop vertices of P is bounded by k, and the

number of Q -points that can stop sides of P is also bounded by k. Up to two EDT edges

emanate from each such Q -point, either simple edges or wedges (not ledges). Therefore

1:3k. 0
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Remarks:

1. Note that to preserve the convexity of a cell we consider the innermost boundary of a

wedge to be the boundary of a cell, not the whole wedge.

2. Note that ledges are always unreported EDT edges.

Theorem 4.2: The number of critical orientations of the EDT is 0 (k4n X4(kn)).

Proof: Again we consider pairs of EDT unreported edges. By trigonometrical calcula-

tions it can be shown that no pair of such generalized diagonals can interchange more

than four times. Observe one cell in the arrangement, and look at the contribution of one

change in the boundary of the cell to the number of the unreported diagonals. If one

boundary element is added to the cell it can add 0 (k) new diagonals, which in turn can

interact with 0 (k2) other possible unreported diagonals. A new diagonal and another

diagonal can exchange at most four times in the EDT. Hence one cell change can contri-

bute 0 (k3 ) changes in the EDT. Since there am 0 (kn X(ki )) cell changes, the number

of critical orientations is 0 (k4n X4(kn )). 0

5. Conclusions and further research

We have developed a bound on the number of changes that can occur in an Edge

Delaunay Triangulation as its distance-defining convex shape is rotated. A relatively

straightforward algorithm for finding all the different EDTs that occur is outlined in the

Introduction. The bound we have developed implies that the algorithm runs in time

0 (k4n X(kn)logn) where k is the size of the distance-defining convex shape and n is

the size of the polygonal environment. Note that the big cannons used to develop the

bound are not used within the algorithm itself.

Once a representation for all the different EDTs is available it is simple to solve our

placement problem. (Recall that our goal is to find the largest similar copy of a convex

polygon P that fits within a polygonal environment.) Using P as the distance-defining
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shape, we determine all the changes in the EDT as P is rotated. Each EDT triangle

corresponds to a continuous set of 3-contact placements. Using some geometric calcula-

tions, it can be shown that there are at most three maximal placements of P for a given

triangle (restricted to the lifetime of the triangle). Triangle lifetimes can be determined

as the EDT changes are discovered. Thus, for this technique, the time to place the largest

similar copy of P is determined by the time needed to find all the changes in the EDT as

P is rotated.

We suspect that too many factors of k appear in our bound on the number of

changes that can occur in the EDT. It seems likely that the correct time bound is

0 (kn X. (kn)) for both the special case in which Q consists of points (for which s =3),

and for the more general case, where Q consists of points and edges (for which s=4). An

improvement in this bound would also improve the time bound for the motion planning

algorithm mentioned in the Introduction.
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