
i-o-

-4j

raELE2CTE

'JUL'14 1989~

I -Ir

t" .4.

I. IS

AIIABLE L

jr

-TD -q

s' JPF

89t

ij

Interpolating Polynomials from
Their Values

DTIC
ELECTE

Richard Zippel* U 1

TR 89-963 .

January 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

ljPproved fo0 public release#

DiabiutionUnlimjted

*This work was supported by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-86-K-0591, the Math Sciences Institute contract U03-8300, NSF grant

DMC-86-17355, and ONR contract N00014-86-K-0"281.

The views and conclusions contained in this document are those
of the authors and should not be interpre e d as necessaily
representing the official policies, either expressed or impl.ied,
of the Defense Advanced Research Projects Aqency or the U.S.
Government.

Interpolating Polynomials from Their Values

RICHARD ZIPPEL
Department of Computer Science, Cornell University

Ithaca, New York 14853 U. S. A.

A fundamental technique used by many algorithms in computer algebra is in-
terpolating polynomials from their values. This paper discusses two algorithms
for solving this problem for sparse miultivariate polynomials, an updated version
of a probabilistic one and a new determinstic technique that uses some ideas due
to Ben-Or and Tiwari (1988). In addition algorithms are presented for quickly
finding points that are not zeroes of sparse multivariat polynomials-the zetg
avoidance problem. /t- o // ,

1. Introduction
Mathematical calculations involving polynomials or other symbolic quantities suf-

fer from a problem not found in numerical calculations: intermediate expression swell.

That is, when performed in a straightforward fashion, the intermediate expressions of a

calculation are much larger than the final answer. Fundamentally, this difference is due

to the fact that the amount of space required to represent the product of two floating

point numbers is about as much as for each of the original multiplicands. However,
the space required for the product of two multivariate polynomials can be much larger

than that required for the multiplicands. In fact, even the sum of two multivariate o,
polynomials can be twice as large the summands. This effect is more pronounced with Sc

polynomials with more variables. Thus problems with a few symbolic variables suffer

less from intermediate expression swell than problems with many variables.

Two fundamental approaches to this problem have been suggested. Each generates
one or more simplified computations where some of the symbolic variables are replaced
by numerical values. These simplified problems do not suffer as much from intermediate
expression swell and may be solved more easily than the orginal problem. The two

techniques differ in how they determine the solution of the original problem from the o
solutions to the simplified ones.

The first approach, which we call the modular technique, solves a large number of

simplified problems but uses carefully chosen values for the symbolic variables. These

solutions are then interpolated to recover the variables eliminated in the simplified

Codes
Draft of 15:33 Jan 18, 1989 1 Avail and/or

Dist Specialtt-I1

problems, producing the final answer. In many practical algorithms the resulting in-
termediate expressions do not involve any symbolic variables and there is essentially
no intermediate expression swell. This interpolation technique was first introduced in
the modular GCD algorithm of Brown (1971).

The second approach, which we call Newton's technique, uses the solution to a
single simplified problem as a the initial value for a p-adic solution derived by New-
ton's iteration. (Conversion of a p-adic solution to a solution in the original ring is
rarely difficult.) This is the basic idea behind the polynomial factoring algorithm of
Wang and Rothschild (1975), the EZGCD algorithm of Moses and Yun (1973) and its
successors Wang (1978) and most of the polynomial factoring algorithms now in use.
Both the modular technique and Newton's technique suffer when the answer is sparse
(has relatively few non-zero coefficients). In this case a great deal of effort is expended
computing coefficients that are zero.

Versions of both the modular technique and Newton's technique whose time com-
plexity is probabilistic polynomial were first given in Zippel (1979, 1980). Applications
of these techniques to polynomial factoring and their analysis and extension, have been
presented in a number of papers by von zur Gathen and Kaltofen: von zur Gathen
(1983, 1985), Kaltofen (19 85a, 1985b, 1987) and von zur Gathen and Kaltofen (1985).
The probabilistic nature of these algorithms stems from an assumption about certain
polynomials that arise in the calculation. It is known that the values of these poly-
nomials at certain points are zero. This could happen either if the polynomials were
identically zero or if the points chosen happened to be zeros of the polynomials. The
key assumption of these algorithms is that the polynomials are identically zero. These
algorithms can be made deterministic by choosing points that cannot all be zeroes of
these polynomials. We call this the zero avoidance problem.

Problem. (Zero Avoidance Problem) Given some set of parameters for a polynomial
(number of variables, degree, number of non-zero terms, size of coefficients, etc.) choose
a set of points S such that no polynomial with those parameters vanishes at all of the
points of S.

The original sparse polynomial algorithms used only the number of variables (n) and
degree (d) parameters in choosing the set S. It is easy to show that S must contain
at least (d + 1)" points (see proposition 1 in section 2). To prove that a polynomial is
zero using this set of points would require time exponential in the number of variables.
Thus fast algorithms that use only these parameters are probabilistic. The deterministic
algorithms given here also make use of the number of non-zero terms (T) in choosing
S. It is the information contained in this additional parameter that keeps the size of
S small.

Many of the ideas used to solve the zero avoidance problem can be used to clarify
and simplify certain steps in the modular technique. The particular piece that we
discuss in this paper we call the interpolation problem. Rather than choosing points to
prove that a polynomial is not identically zero, we go further and actually determine
the polynomial itself.

Draft of 15:33 Jan 18, 1989 2

Problem. (Interpolation Problem) Given a set of parameters for a polynomial (num-
ber of variables, degree, number of non-zero terms, size of coefficients, etc.) choose a
set of points S with the following property. For any polynomial P with those param-
eters, P can be determined from S and P(S) quickly, i.e. either polynomial time or
probabilistic polynomial time.

In this paper we present three solutions to the zero avoidance problem, and two
solutions to the interpolation problem. Each is summarized in the following two tables.

Zero Avoidance Problem

Schwartz Zippel Ben-Or Tiwari

Algorithm Type Probabilistic Deterministic Deterministic

Number of Evaluations 1 nT2 T + 1

Chance of error 0 0

Size of Evaluation Points log -d nT log T T log n

The column labeled "Schwartz" corresponds to the probabilistic algorithm pre-
sented by J. Schwartz (1980), and which is intrinsic to Zippel (1979). Since it does not
take into consideration the number of non-zero terms in the P, the parameter T does
not appear. In the third column, labeled "Ben-Or Tiwari," we give the recent results
of Ben-Or and Tiwari (1988). The second column, labeled "Zippel," is a new algorithm
presented here. Though its performance is inferior to that of Ben-Or and Tiwari it
makes use of some new techniques that may be of use in other problems. In particular,
it can be used to solve a variant of the zero avoidance problem for polynomials over
finite fields.

For the interpolation problem a new parameter arises, t the true number of non-
zeroes terms in P. This can be much smaller than the a priori bound on the number
of non-zero terms T.

Interpolation Problem

Zippel Zippel Ben-Or Tiwari

Algorithm Type Probabilistic Deterministic Deterministic

Degree Bounds Yes Yes No

Number of Operations ndt2 ndt2 T T2 (log 2 T + log nd)

Number of Evaluations ndt ndtT 2T

Size of Evaluation Points log A2T 2 T log n log log n T log n log log n

Draft of 15:33 Jan 18, 1989 3

The first column of this table characterizes the author's original probabilistic algo-
rithm updated to include an idea of Ben-Or and Tiwari. The third column corresponds
to the determinsistic algorithm due to Ben-Or and Tiwari (1988). It is unique in that
it does not require a priori bounds on the degrees of the variables that appear in the
result. Notice that the probabilistic algorithm is significantly better than the deter-
ministic one when the bound on the number of terms is not sharp (T > t). The second
"Zippel" algorithm is a new deterministic variant of the probabilistic algorithm whose
dependence on T is not quite so strong as Ben-Or and Tiwari's algorithm. Thus it also
performs especially well when T is not a sharp bound.

Interpolation Problem

Kaltofen-Yagati Kaltofen-Yagati

Algorithm Type Probabilistic Deterministic

Degree Bounds Yes Yes

Number of Operations ndM(t) log t ndTM(t) log t

Number of Evaluations ndt ndtT

Size of Evaluation Points log d2T2 T log n log log n

Kaltofen and Yagati (1988) have suggested an improved technique for solving the
systems of linear equations that arise in the two interpolation algorithms discussed in
this paper. Their ideas improve the algorithms discussed in the paper to give the per-
formance figures given above. In this table M(t) denotes the complexity of multiplying
two univariate polynomials of degree t. This variant of the deterministic algorithm is
competitive with Ben-Or and Tiwari's algorithm.

In the conclusions we give some comments on how these algorithm impact some of
the original calculations, such as greatest common divisor and factorization problems.

2. Generalities
We let Z denote the rational integers and Z/(m) the integers modulo m. Fq

denotes the finite field with q elements and F; its multiplicative subgroup.
Throughout this paper we assume polynomials are represented as a list of mono-

mials (pairs of exponent-vectors and coefficients) and that monomials with zero coeffi-
cients are omitted. The number of variables in a polynomial is denoted by n. Thus the
exponent vectors are n-tuples. The maximum degree of any variable in the polynomial
is denoted by d. The number of non-zero monomials of the polynomial P is usually
denoted by t or terms(P), for additional preciseness. For a dense polynomial, one
where each monomial has a non-zero coefficient, terms(P) = (d + 1)n. We generally
use capital letters to denote a priori bounds, and lower case letters for the actual value.

Draft of 15:33 Jan 18, 1989 4

Thus T would be used to designate a bound on the number of terms in P, while t
denotes the actual number of non-zero terms present in P.

To minimize the number of subscripts in formulae we use a variant of Laurent
Schwartz's notation. Let X = (X 1 , X 2 ,. .. , X,,) and '= (e 1, e2 ,... e,) be two vectors.
Then we write the usual (inner) dot product as

e.-X = elX1 + e2X 2 +. + e,X,,.

We also extend this notation to exponentiation as follows

X "= (Xl, XC " ,..., XC-) and X e = Xle IX 2.,e 2 -. Xen.

Thus the multivariate polynomial

C1Xje1Xe1 2 .. . XTel" + X 2 e 2X 2 .. Xn2, +... + CXetlXve,2 ... e,....- n +t C2Xe2 " n

would be written
c 1X 1' + c2X 2 + +ctX .

We always use the vector accent when using this notation.

When evaluating algorithms involving polynomials, we need to measure the size
of a polynomial. In this paper we have chosen to use the number of non-zero terms.
Thus an upper bound on the size of a polynomial of n variables, each of degree d, is
(d + 1)n. The number of non-zero terms, however, is often much smaller. Notice that
when establishing that a polynomial P of size O(T) is identically zero, we already know
that P cannot have more than O(T) non-zero coefficients, though we know little about
the exponents.

An alternative measure of the size of a polynomial P is the size of a straight line
program to compute P. This measure was advanced by Kaltofen (1987). The class of
straight line programs of size O(T) contains almost all polynomials with O(T) non-zero
terms and many more. It would be interesting to know if it is possible to extend the
results presented here to this wider class of polynomials.

To prove that a polynomial is zero by considering its value at a number of points
requires some bound on the information content of the polynomial. We begin with a
proposition that establishes a lower bound for our results.

Proposition 1. Let S = {a,} be a set of T - 1 n-tuples. There exists a polynomial
with rational integer coefficients, not identically zero, that contains no more than T
non-zero monomials and that vanishes at every point in S.

Proof: Choose a polynomial with T monomials:

P(X) = CiX + C2 +X2 + CTX T ,

Draft of 15:33 Jan 18, 1989 5

whose coefficients (ci) will be determined later from S. For P to vanish at i;, an
element of S, the cj must satisfy the following linear equation:

cld' + C2 +... + CT =0.

Since these equations are homogenous and there are more undetermined variables than
linear constraints, there is a non-trivial solution to this system of equations. [5

Assume we wish to prove that a polynomial is zero using only its value at points
that we are free to specify. Proposition 1 demonstrates that showing the polynomial
is zero at T points only shows that that the polynomial is either identically zero or
has more than T non-zero terms. Thus if all that is known about a polynomial is the
number of variables, n and degree bounds on those variables, d, we will need (d + 1)n

evaluations to prove that the polynomial is non-zero. This means that there is no
deterministic algorithm that proves a polynomial is zero from its values, and degree
bounds. Additional information is also needed.

For univariate polynomials over the reals, we can show that by choosing the points
carefully, any polynomial with no more than T terms that vanishes at T points is
identically zero.

Proposition 2. Let P(x) be a univariate polynomial with coefficients in Z. The
number of positive real zeroes of P(x) is less than or equal to terms(P) - 1.

Proposition 2 follows immediately from Descartes' rule of signs since the maximum
number of sign changes in the coefficients of P(x) is terms(P) - 1. (For instance, P61ya
and Szeg6 (1976) Part V, Chapter 1, problem 36.) The following corollary is merely a
restatement of the proposition.

Corollary. A univariate polynomial that vanishes at the integers 1, 2,..., T is either
identically zero or has more than T non-zero coefficients.

Using some new techniques we show that O(nT 2) suffices where n is the number
of variables in P in section 5. This is acomplished by finding a specialization of P to
one variable that does not increase the number of non-zero terms and then applying
Proposition 2. The previous best results were that (d+ 1)n+ 1 sufficed, which is optimal
for dense polynomials, but can be exponentially bad for sparse polynomials. In section
6 we give Ben Or and Tiwari's result that T suffices. In light of propositon 1 this is
the best possible.

In the following subsections we prove some of the basic results needed in the sequel.
Section 2.1 gives a simple result on the growth of primes. Section 2.2 gives a number
of results on Vandermonde matrices that are needed later.

2.1 Results from Number Theory
We occasionally use the notation pi to indicate the ith prime. It is is also used to

represent the ith element of the vector if. Our intent should be clear from the context.
In this section we develop a crude estimate for the size of the product of the first N

Draft of 15:33 Jan 18, 1989 6

primes. Rosser and Schoenfeld (1962) have shown that the Nth prime is bracketed by
the following inequaltities

N (log(NlogN) - <pN<N (log(NlogN)-),
where the first inequality holds for N > 2 and the second when N > 20.

For our work we can use the much cruder estimate of

PN < (N + 1)1+,

for some small constant e. This easily follows from the result above and a small amount
of computation for the the small values of N.

By applying Sterling's formula

logN! = (N+ 1) log(N+1)-(N+ 1) + 1log21r+O(NI-)

to the product of the first N primes we have

log (PlP2 PN) = log(N + 1)!1+ '

=(1+E) N+ log(N+2)-(N+2)+ log27r+O(N-1)

This proves the following proposition

Proposition 3. There exists a constant cl such that

log (PIP2"'" PN) < clN log N.

2.2 Vandermonde Matrices

Many of the algorithms developed in this paper depend upon known results about
Vandermonde matrices. For compIcteness these results are derived and included in the
following paragraphs. A Vandermonde matrix is a matrix of the form

I k2 k2 ...

in: ... k2 -
(1kn k2 ... knI

where the ki are chosen from some field. Similarly, a system of linear equations of the
form

fof X1 + kX2 + kanX3 + + k-X = W
X, + k2X2 + k 2X3 +.. + kn- 'X n = W2

X, + k,X2 + k X - . k n - X =w

Draft of 15:33 Jan 18, 1989 7

will be called a Vandermonde system of equations.
A matrix where the degrees of each row rise montonically, but not necessarily

linearly, is called a generalized Vandermonde matrix, viz,

We will often use generalized Vandermonde matrices where e1 - 0.
The determinant of a Vandermonde matrix may be computed using the following

device. Multiplying the ith column by k1 and subtract it from the i + 1st column we
get,

/1 0 0 *01 k- k -k k .. k'-

det3 , --

ke k1 k t- . . . k-k-2k}

Expanding by Cramer's rule across the first row and factoring out k - k from each

row we have
det V,1 171' (k - k) detV.-..i

Thus we have:
Proposition 4. The determinant of the Vandermonde matrix is

detge tI (k,-k,).

1 <j:.n

As an immediate consequence we see that the determinant of a Vandermonde matrix
is non-zero if and only if the kn are distinct.

A similar result is true for generalized Vradermonde matrices over the reals, but
the proof is a little trickier. Notice that while proposition 4 applied to Vandermonde

matrices over any field, the following proposition (due to Tiwari) is only valid over the
reals, which has characteristic zero. We know of no similar result for fields of positive

characteristic.
Proposition 5. (Tiwari) The determinant of a generalized Vandermonde matrix is
non-zero if the ki are distinct positive real numbers.

Proof. We will show the matrix is non-singular by induction. A Vandermonde matrix
of order 1 is obviously non-slingrsince we only allow positive entries. Thovgh we

Draft of 15:33 Jan 18, 1989 8
no-zr if th ardsinc poitie rea nubes

do not need the order 2 case for the proof, it is still worth examining. For an order 2
Vandermonde matrix,

det 1 k2 k2kl

Thus the matrix is singular if kl/k 2 is an eth root of unity. This is not possible if the
ki are distinct and positive.

In the general case we consider a matrix of the form

1 kj2 ki k

Replace k1 by the indeterminate Z and consider the number of zeroes of the polynomial

I Zf2 Ze ... Zen

det 1 2 . = al - a2Ze2 + a 3Z13 . aZ" .

k12 *e3 kn

Each coefficients (ai) is a minor of the original matrix and is itself a generalized Van-
dermonde matrix of order n - 1. If k2 , k3 ,..., k, are distinct positive numbers then the
minors are non-zero by induction. The polynomial in Z can only have n - 1 positive
zeroes by propositon 2. But certainly each of k2 , k3 ,..., k, is a zero of the polynomial.
Thus there are no other positive real zeroes. Q

The inverse of a Vandermonde matrix can be computed by the following technique.
Multiply a Vandermonde matrix by a general n by n matrix:

,1 1 1. 1 a12 a13 a1
k2 k2 kn- 1 a21 a22 a23 . a:

kn k2 ... k n- 1 (an, an2 an3 ".. nn.

The jth element of the top row of the product of these two matrices is

ai1 + a21kl + a3jk +-... + a, 1kn - ' = Pj(k).

In fact the product above is

P(k 2) P2 (k2) ... Pn(k2)

P(ka) P(k,) J. P1,. k)/

Draft of 15:33 Jan 18, 1989 9

By choosing the Pj(Z) to be

Z - ki
P3(Z)= II -

1:5i<,n

we see that the product matrix is the identity, and thus the coefficients of the P, are
the columns of the inverse of the Vandermonde matrix. Each of the Pj(Z) can be
computed in O(n) operations from a master polynomial, which itself can be computed
in O(n) operations. Thus the Vandermonde matrix can be inverted in 0(n ') time.

Assume we wish to solve a Vandermonde system of equations like the following:

X, + k1X 2 + k2X 3 +.. + k'X = W

X, + k2 X 2 + k2X 3 + "" + k2 X = w 2 (1)

X, + k.X 2 + k2X 3 + "" + kW X. = w

If recognized as a Vandermonde system, these equations need only consume O(n) space.
They can be solved using O(n) space by the following device.

Define
P(Z)= II (Z- k).

l <i<n

This polynomial contains n + 1 terms. The coefficient of Zn is always 1. The poly-
nomials P(Z)/(Z - ki) can be computed by synthetic division. It is the numerator of
Pj(Z). The value of P(Z)/(Z - kj) at kj is the denominator of Pj(Z). Thus each of
the Pj(Z) can be computed using O(n) space and time. The computation of the Xi is
arranged as follows.

X1 w .coef (P, Z"-) W w, .coef(P, Z-)(ZI)- oe (i = n- .I+ (un Coe7(Pn, Zn))
After each column vector on the right hand side is computed, it is added to the accu-
mulating Xi and its storage may be reused by the following column vector.

This approach can also be applied to transposed Vandermonde systems like fol-
lowing

X + +X2 +X3 + Xn = W1

kiXj + k2X 2 + k3X 3 + ... + k.X. = W2
(2)

knI nX2 n-1I n--1

kI'X, + k -1X2 + k3 X3 +'.. + k Xn =w2

Draft of 15:33 Jan 18, 1989 10

since the inverse of the transpose of a matrix is the transpose of the inverse, we have
the following formula for each of the Xi

Xi = w,. coef(PI, Z°) + w2 " coef(P, Z 1) +.. + w,. coef(PI, Z - I').

We state these results as the following proposition.

Proposition 6. The Vanderrnonde system (1) and the transposed Vandermonde sys-
tem (2) over the field F can be solved in O(n 2) operations over F. Firthermore, the
space required is that of O(n) elements of F. If F = Q and K = max IkiI then the
largest number used will require O(n log K) bits and in total O(n 2 log K) bits of storage
will be required.

3. Dense Interpolation

The general problem we consider in this paper is computing a polynomial from
its values at certain points, whose choice may be part of some higher level algorithm.
These polynomials may be multivariate and their coefficients generally lie in the rational
integers, though occasionally they lie in a finite field. Many of these results can be
extended to more complex fields, but we do not do this here. In this section we assume
we are given the number of variables in the polynomial as well as degree bounds, but
no additional assumptions are made. In particular, we know nothing about the number
of non-zero terms in the polynomial.

3.1 Univariate Dense Interpolation

The simplest form of this problem consists of determining a univariate polynomial
from its values at selected points. The straightforward approach works surprisingly
well. Let

P(Z) =Po + piZ +... +pn-,Zn-1 + pnZn

be the polynomial to be determined. Assume the coefficients are over a field F, and
let zo,... ,z, be the set of distinct evaluation points. From the values of P(zi) =w
we get the following system of linear equations in the unknown pi.

po + plzo + p2z2 +' + Pnzon = wo

po +pz,+p2 z;+'" + pza = w1

PO +PlZn +p2Z +' +PnZ, Wn

This is a Vandermonde system. Since the zi are distinct, the system is non-singular
and its solution can be determined quickly. Let

Q H Zzi

Q(z) = zi -zi

Draft of 15:33 Jan 18, 1989 11

As noted before each Qi can be determined from a master polynomial Q(Z). So P is

O< j _<n O i n Z0 * - Z

ZQ,(Z)w,o<j<n

This is the Lagrange interpolation formula.

3.2 Multivariate Dense Interpolation

As pointed out in the previous section, a polynomial in one variable of degree d
can be determined from its values at d + 1 points using O(d) arithmetic operations.
This result can be extended to multivariate problems.

Let P(X) be the polynomial to be determined. It is a polynomial in n variables,
X1,. . . , X,, whose coefficients lie in an integral domain R. Each Xi appear~s to degree
no more than di in P. Let f = (d, + 1)(d 2 + 1) ... , the maximum number of terms in
P. Writing P as a sum of monomials using the vector notation we have

P(X) = cXg + +... + CI-

where the Fi run through each possible exponent combination. Choosing e random
n-tuples i and computing the values of P(Zi) gives a system of e linear equations.
In general, this requires 0(e3) operations to solve, and perhaps more important O(2)
space.

There remains the question of solvability of the system of equations. Let M be
an n x n matrix over a field F. M will be singular if and only if det M = 0. Thus
the singular matrices form an algebraic set of codimension 1 in the space of all n x n
matrices. Thus the probability that the system of equations is singular is about 1/#(F).
For probabilistic algorithms this suffices. For deterministic algorithms more analysis is
required. This is done in later sections by choosing the evaluation points carefully.

Several techniques can be used to bring the time requirements down to O(e2).
In particular a recursive technique was used by Brown (1971) in the modular GCD
algorithm. In this paper we use another approach that leads more naturally to the
techniques for dealing with sparse polynomials.

Choose a random n-tuple - This is the initial evaluation point. Denote the values
of the monomials)' by mi. Additional evaluation points are obtained by raising g

to successive powers (starting with 0). Notice that (/3)C = mj. Thus we have the

Draft of 15:33 Jan 18, 1989 12

following system of equations to solve.

1 + 2 +... + ct = P65)

cIm + c2m 2 +... + cImt = P(P)

Clm7 +m2 +." + ctm = P(2)

cIM 1- 1 + +... +_ =~ =

This is the transpose of a Vandermonde system. As discussed in section 2.2, this system
can be solved in 0(1 2) time and 0(1) space.

The key issue in this approach is guaranteeing that the mi are distinct so that the
Vandermonde system will be non-singular. If the coefficient domain, R, is a unique
factorization domain we can do this easily. For instance, assume R is the rational
integers. We choose the components of - to be distinct primes, viz., i- (2, 3, 5,....
By unique factorization each of the mi will be distinct.

If the coefficient domain is a finite field F q, then the problem can be more difficult.
The finite field must be contain at least f elements for the Vandermonde system to be
non-singular. For the dense interpolation technique being discussed, the maximum
value of I is (d + 1)". When q < (d + 1)" the modular interpolation technique can

still be used but elements should be chosen from an algebraic extension of Fq that has
more than (d + 1)' elements. In general, we can solve the system of equations using
conventional (0(1')) techniques.

If the characteristic of F9 is sufficiently large, we can do better. Choose the com-
ponents of -3 to be the rational primes, (2, 3, 5,...). If each of the ni, when computed
in Z, is less than the characteristic of Fq then they will be distinct as elements of Fq.
For this to be the case the characteristic must be greater than

(2 .3 --.. p)d ::z n c,nd ,

by proposition 3.
In the following paragraphs we analyze the hard case: We assume that q is greater

than (d + 1)n , but that the characteristic of Fq is less than ncind . The actual analysis
is staightforward but somewhat lengthy. We consider the following somewhat more
general question since its solution will be of use analyzing the sparse algorithms. Let
{C'i} be a set of T n-tuples where each component is bounded by d. (In the current
case T = (d + 1)n.) What is the probability that for a randomly chosen i E Fn there

is an ei and j such that i -4 = Zrj ?

We begin with an enumeration proposition.

Proposition 7. Let a be a fixed n-tuple where each component is an element of Z/(rm),
c be the common GCD of the ai and m. Let i, be an n-tuple whose components range

Draft of 15:33 Jan 18, 1989 13

over Zm. Then a. x takes on m/c distinct values. These values divide the different i
into m/c classes each containing crm -n different '.

Proof: First we reduce to the case where c = 1. Since 5. £F is a multiple of c for every
:F, 6. XF can take on no more than m/c values, i.e. 0, c, 2c,.... Let ac be one of these
values. Each solution of a.x - a (mod m/c) (3)

gives rise to c' solutions of a. -- ca (mod m). Thus if we can show that (3) has
(m/c)" - 1 solutions, we are finished. The rest of the proof proceeds via a slightly
complicated induction.

Consider the one dimensional case, ax _= b (mod m). Since a and m are relatively
prime, there is exactly one value of x that satisfies the relation for every value of b, as
required by the proposition.

Now assume the proposition is true for all vectors a- of dimension less than n. Let
a be an arbitrary element of Z/(m). We want to show that d *F _ a (rood i) has
m n- 1 zeroes. Without loss of generality we can assume that a, is not zero. If a, and m
are relatively prime then for every choice of a2,..., an there is a unique a, that satisfies
the relation. Thus there are mn - 1 zeroes of the relation as desired.

Assume that a, and m have a GCD of g. The relation has no zeroes if g does not
divide a 2x2 +.'- ax - a. Thus we consider the number of zeroes of

a 2X2 + ... anx, a (mod g).

Notice that a2 ,... ,an cannot have a GCD dividing g. Thus this equation has gn-2

zeroes modulo g. Each is the image of (m/g)n- 1 elements modulo m. Thus there are
mn- 1 /g choices of a 2 ,... ,an. Each one will give rise to g choices for xI giving the
desired result. [Q

Corollary. Let a, m and c be as in the previous proposition. Then there are cnn- I

distinct solutions to a. x= 0 (mod m).

Proof- 0 is always one of the values of a. x since i's components could be all zeroes.

0
This result can now be used to answer the question raised above.

Proposition 8. Let 1, ... , e- be n-tuples where each component is less than d. There
exists no more than

d. T. (T - 1) . (q -) -

2

n-tuples S with components in Fq such that for some i and j X' and X j have the
same values. Equivalently, for at least

(q -1)"-I (q - 1 - d " T " (T- 1)
2)

Draft of 15:33 Jan 18, 1989 14

n-tuples X, X takes on distinct values.

Proof: Let g be a generator of the multiplicative group F*. Then for each n-tuple X
we can assign another n-tuple al such that Xi = ga , assuming no Xi is zero. The ai
are elements of Z/(q - 1). Two monomials X" and ,' have the same value when

That is, when a. (e'i - e-) = 0 (mod q - 1). By the previous corollary there are
c(q - 1)n1 such zeroes, where c is the GCD of the elements of e-i - 4- and q - 1. Since
c < d there are at most d(q - 1)n- i tuples F that cause these two terms to take on the
same value.

There are T(T - 1)/2 distinct pairs of ei, so the maximum number of 1 that cause
a pair of i. - to take on the same value is

d. T (T - 1) (q -1) - 1

2

Since there are only (q - 1)n - i possible F (ignoring those with a zero component),
we have the following corollary.

Corollary. The probability that a randomly chosen X will cause two of the E i to have
the same value is

d.T. (T- 1)

2(q- 1)

If we wish the probability of a collision to be less than e, then for dense polynomials

this means that
(d + 1)2v+i

2e

This is actually quite impractical for polynomials with large numbers of variables and
high degree. Fortunately, many problems are sparse, i.e. T < (d + 1)v, which gives
much better results. This is the topic of the next section.

4. Sparse Interpolation
The purpose of this section is to develop Zippel's sparse interpolation algorithm,

which gives a probabilistic resolution of the interpolation problem. What is presented
is an improvement of the author's orginal results based on some of the ideas first
suggested by Ben-Or and Tiwari. This algorithm is given no information about the
number of non-zero terms in the polynomial being interpolated. Instead it develops an
estimate of the number of terms as each new variable is introduced. As a consequence
its performance depends upon the actual number of non-zero terms in the polynomial
rather than an a priori bound. This probabilistic algorithm tends to be more useful

Draft of 15:33 Jan 18, 1989 15

in practical situations than the deterministic algorithms presented in the following
sections.

This section has been divided into three subsections. In the first we give a demon-
stration of the algorithm and its benefits. In the subsequent subsections we give a more
formal presentation of its details, and analyze the algorithm's performance.

4.1 Heuristic Presentation

As before we wish to determine the polynomial P(.g) E U X] from its values,
where U is a field with sufficiently many distinct elements. We assume that di bounds
the degree of Xi in P. The sparse interpolation algorithm computes P one variable at
a time. That is, we initially compute P(al, a 2 ,..., a,), then P(X 1 , a2 ,... , a,,), then

P(XI,X 2 ,a3 ,. .. ,a,,) and so on, until we have determined P(X). The introduction of

each new variable is called a stage of the algorithm. We use clues from the polynomial
produced in the preceding stage to minimize the effort required to produce the next
polynomial in the sequence.

The description of the sparse interpolation algorithm becomes rather involved and
it is easy to get bogged down by all the subscripts and variables involved, but it is
fundamentally quite simple. In this section we give an explicit example.

Assume we wish to interpolate a polynomial in three variables, P(X, Y, Z) over
a field, where the degree of each variable is not greater than 5. If the polynomial
were dense, there would 125 different coefficients that would need to be determined.
We assume that most of these coefficients are zero and that P only possesses a few
non-zero monomials. By using one of the dense interpolation schemes of section 3,
we can compute P(X,yo,zo) from P(xo,yo,zo),P(Xz,Yo,Zo),... ,P(x 5 ,yo,zo). Assume
this yields

P(X, Yo, zo) = coX' + c1X + c2.

This is the end of the first stage.
Beginning stage two, we know that P(X, Y, Z) can be written as

P(X, y, Z) = P5(Y, Z)X 5 + P4 (Y, Z)X 4 +"" + Po(Y, Z).

From the first interpolation we know that P5 (X,yo,zo) = co, PI(X,yozo) = Cl,
Po(X, yO, zO) = c2 and that

P4(yo,zo) = P3(yo,zo) = P2(yo,Zo) = 0.

The key step in the sparse interpolation algorithm is to assume that this is true for all
values of Y and Z. That is, that

P4 (Y, Z) = P3(Y, Z) = P2(Y, Z) = 0.

In typical calculations, where Yo and z0 are chosen at random from a large set of
possibilities, this is a good assumption. Proposition 9 below gives a precise measure of
how good an assumption this is.

Draft of 15:33 Jan 18, 1989 16

We now choose a new value for Y, yi, and compute P(X, yl, zo). Without the
assumption of the previous paragraph, this interpolation would require 6 additional
values of P. Instead we assume that P(X, yi, zo) contains only 3 non-zero terms, i.e.,

P(X, y1,zo) = c3X 5 + c4X + C5,

where the c3, c4 and c5 are to be determined. Since there are only three unknowns to
be determined only three new values of P are required.

This process is repeated until we have six polynomials.

coX 5 + ClX + c 2 = P(X, yo,zo)

c3 X 5 + c4X + c 5 = P(X, y1,zo)

c 15 X 5 + C1 6 X + C17 = P(X, Y5, zo)

By the dense interpolation algorithm of section 3, the coefficients of the X 5 terms can
be interpolated to produce a polynomial in Y, and similarly for the linear and constant
terms. Combining these results we have P(X, Y, zo). Notice that we have only needed
6 + 3 + 3 + 3 + 3 + 3 values of P to compute this polynomial. The dense interpolation
scheme would have required almost twice as many evaluation points.

Beginning the third stage, let us assume this gives the polynomial

P(X, Y, zo) = kX 5 + (k2Y 4 + k3Y)X + k4Y 5

= k X 5 + k2XY 4 + k3XY + k4 Y5 ,

where the ki are elements of the ground field. We are now in a position to begin the
process again, but this time introducing the variable Z. To do this we need to calculate
the polynomials P(X, Y, zo), P(X, Y, zl),..., P(X, Y, z%). We assume that those XY-
monomials that did not arise in P(X, Y, zo) have coefficients of zero in P(X, Y, Z).

Thus to compute

P(X,Y, zi) = k5 X 5 + k6XY 4 + k7XY + ksY 5

we only need interpolate four values of P. Thus the additional 5 polynomials only
required 5 x 4 = 20 evaluation points. Without the sparsity assumptions each of the 5

polynomial would have required 36 evaluation points, and 180 in all.

4.2 Formal Presentation
To fix our notation, assume we want to use the sparse interpolation algorithm to

determine a polynomial P(X 1 ,... , X,,) E F[] where we know that each Xi does not
appear to degree higher than d and that there are no more than T non-zero monomials

Draft of 15:33 Jan 18, 1989 17

I i I I

in P. Furthermore, we assume that we can compute the value of P given a value for
X. It is convenient to consider just one stage of the interpolation. The computation of
P(X) being just a sequence of n stages.

Now assume that we have performed the first k - 1 stages of the sparse mod-
ular algorithm and we are about to begin the kth stage. From the previous stage's
computation we have

P(X 1 ,.. .,Xk-1, xko,..., xno) - p 0gXi l + p 20X2 + + PTOX e' T •

The set of exponents of P(X 1 ,..., Xk- zko, ... , xo) is called the skeleton of P, which
we denote by skel P. Since there are no more than T non-zero monomials in P, the
skeleton of P can never have more than T elements.

Throughout this stage, the values of assigned to Xk+ 1,.., Xn will not vary. To
simplify the notation, we will omit them.1 We write

P'(Yo,. . . ,y,) = P(YI,. . . ,Yk,Xk+1,o,... ,Xno).

The computation of P(X 1 ,... ,Xk-.1,Xk) proceeds in two phases. In the first we
determine

P'(X,. .. ,x.k-1, Xkj) = pXi, ' + P2 XV ' +.+ PTj ,

for j = 0,..., d by the following technique:
For each of d + 1 randomly chosen values of Xk, Xkj perform the following. Pick

a random k - 1-tuple denoted by (Y1,..., Yk-1) = ', such that each of g' are distinct.
Since the e'i axe known, verifying that this is the case is easy. Actually finding g is
dicussed in the analysis of the next subsection. This value - allows us to set up the
following (non-singular) system of linear equations

P'(l,...,1,xk,1) = Pl + P2j + "+ PTj

P'(yl,... Yk- 1, ,j) = Plg'o + P2JV, + .. + PT -T
(, ,. .,2_,,kj) =Pljl g + p2,#V + . + pT., 1 F

P'(r ,...,Y-, Xk = P,,g' +P2J"/ + +PTj9 'Y

This is a Vandermonde system of equations and can be solved by the techniques of
section 2 in O(T 2) time while requiring only O(T) space. The result will be a polynomial

P(X1,...- , Xk-1, Xkj, Xk+1,0, • • •, Xn0),

x In practical implementations this may be more than notational. Eliminating the variables that
do not vary at this stage can save significant time when computing the values of P.

Draft of 15:33 Jan 18, 1989 18

for each of the d + 1 values xkj.
In the second phase, we independently interpolate the coefficients of each mono-

mial, using the dense interpolation algorithm. The results of these interpolations can
be combined to produce

P'(X1,..., Xk-l,X) = pl(Xk)X' ' + p2(Xk)X9 2 +. + pT(Xk)X' T .

The dense interpolation yielded the univariate polynomials pi(Xk). This polynomial is
in turn expanded to get

P(XI,. .. ,Xk,xk+l,O,.. .,nO) =P 1oX 4 I+PO 2 " +P '

and we are ready to begin lifting the next variable.

4.3 Analysis

We begin by presenting the probabilistic resolution of the zero avoidance problem.
The following proposition gives a sharp estimate of how difficult it is to avoid the zeroes
of a polynomial given only degree bounds.

Proposition 9. Let k be a field, f E k[X 1,..., X] and the degree of f in each of Xi
be bounded by di. Let Zn(B) be the number of zeroes off, F such that xi E S (a set
with B elements B > di). Then

Z.(B):5 Bn -(B - d)(B -d2) ... (B-d.)

oZ ((d, + d +... + dn)B-I).

Proof- There are at most d values of X, at which f is identically zero. So for any

of these d values of X, and any value for the other X,, f is zero. This comes to

d.Bn- 1. For all other B - d. values of X, we have a polynomial in n - 1 variables.
The polynomial can have no more than Z._(B) zeroes. Therefore,

Zn(B) :5 dBn - 1 + (B -d)Zn_,(B).

Rather than solving this recurrence for Zn, we solve it for Nn = B" - Z '. Since

Z1 is less than or equal to dj, N1 _> (B - dj). This is the basis step of the inductive
proof. Writing the recurrence in terms of Nn we have

B" - N.(B) < d.B"-1 + (B - d.)(B' - I - NI(B))

or
Nn(B) >_ (B - dn)Nn-_(B),

from which the proposition follows. [Q

Polynomials of the following actually have B n - (B - di)... (B - dn) zeroes with
components less than B

f(x,,xn)= IX (X, -X1 ,) ... J(X - Xninj.
0<_i__d, O<i,<d,

Thus the inequality in the proposition cannot be further strengthened. The following

corollary phrases this result as a probability.

Draft of 15:33 Jan 18, 1989 19

Corollary. Let ff,... ,-f, be elements of k[XI, .. . ,X,], where the degree in each
variable is bounded by d. Let 'P(f,... , f,) be the probability that a randomly chosen
point zF is a zero of any of the fi, where xi is an element of a set with B elements. Then

nds
B

Proof- Let f = flf2 ... f,. The degree of each variable in f is bounded by ds. Applying
the previous proposition, we see that the number of zeroes of f is bounded by ndsBn - 1,

for sufficiently large B. Since there are Bn possible i to choose from, we have the
corollary. Q-

This corollary gives the probabilistic solution to the zero avoidance problem. Let
P be an element ef Z[X 1,..., Xn]. Choose a random point in Z n with components less
than B. The probability that this point will be a zero of P is less than

nd

Thus to keep the chance of error below e, using a single evaluation, we must choose

nd
e

Turning now to the sparse modular interpolation algorithm, if all the probabilistic
assumptions hold, the cost of lifting a single variable can be computed as follows. In
phase 1 we compute d + 1 polynomials at a cost of at most t evaluation points each,
requiring O(dt2) time and O(dt) space. The dense interpolation in phase 2 requires
O(d) steps for each coefficient that is interpolated. There are no more than t2 terms
so it takes a total of O(td2) steps. Since n stages need to be performed the total time
requirements are O(ndt(d+ t)), while the maximum space requirement is always O(dt).
Remember that t is the actual number of terms in P, not an a priori bound on the
number of terms in P.

As we shall see, the chance for error in the interpolation depends entirely on the
initial evaluation point (r1o,12o,... ,xno). By performing several interpolations with
different initial points we can decrease the chance of error. This may be appropriate
in practical implementations. Here we use e to denote the chance for error from a
single starting point. We assume P is a polynomial over a finite field, Fq. We want to
determine e as a function of q, d, n and t. In practical implementation, P will most
likely be a polynomial over Z. Then q is chosen to minimize e and still remain efficient.
To convert from a solution in a finite field to one over the integers a coefficient bound is
needed for the solution in Z. In this section we ignore these issues. From a theoretical
point of view, we continue to compute in Z (or Q as necessary), and restrict our random
choices to integers less than q.

Draft of 15:33 Jan 18, 1989 20

There are two sources of potential error in this algorithm. First, the structure
inherited from earlier stages in phase 1 structure may be incorrect. That is, a term
that was assumed to be zero really wasn't zero. To be precise, consider a three variable
problem. Assume the polynomial to be computed is

Pl(Y,Z)Xel +P 2 (y, Z)X 2 +.. + pt(y, Z)XCC,

and the intial evaluation point is (xo, yo, zo). After the single variable interpolation
computed in stage one we have the polynomial

pI(yO,zO)X" +p 2 (yo, zo)X 2 +_.. + p(yo,zo)Xt.

In passing from the one variable case (X) to the two variable case (X, Y), the algorithm
just presented assumes the structure given above is correct. If pi vanished at (Yo, zO)
we would have assumed ei was zero erroneously. At the end of this stage we will have
the bivariate polynomial

ql(zo)(X, Y)h + ql(zo)(X, Y)f- +... + qt(zo)(X, Y) L .

Again, if any of the qi vanish at zo we will get erroneous results. To compute the
exponent vectors correctly, we need to assume that the pi and qi do not vanish at the
initial point (xO, yo, zo). These are the polynomials whose zeroes we must avoid.

At the ith stage of the interpolation process, there are at most t polynomials in
n - i variables whose zeroes must be avoided. The aggregate number of non-zero terms
these polynomials contain must be less than t. The degrees of each polynomial is
bounded by d. So by proposition 9, the chance of the initial evaluation point being the
zero of any of these is

n2 dt
q

Now consider the probability that the Vandermonde systems are singular. These
systems are of rank at most t. By the corollary to proposition 8, the probability that
this system is singular is

d. t. (t - 1) dt2

2(q 1) 2q

At each stage there are d such systems to be solved and there are n - 1 stages in all,
so the probability that one of them will fail is bounded by

nd2t 2

q

Thus we have the following proposition.

Draft of 15:33 Jan 18, 1989 21

Proposition 10. Let P be a polynomial in n variables, each of degree no more than
d and with t (> n) non-zero terms. Assume the coefficients of P lie in a finite field
with q elements. The probability that the sparse interpolation algorithm will give the
wrong answer for this polynomial is less than

nd2t
2

q

The randomly chosen values must be chosen from a set of at least

nd2 t2

e

values for the proabability of error to be less than e.

Since we cannot know the true number of non-zero terms of P before beginning
the algorithm, the random values must be chosen from a set of

nd2T
2

points.

Historical note: This result appeared in two papers simultaneously and inde-
pendently at the EUROSAM '79 conference in Marseille during the summer of 1979.
Schwartz gave the second estimate of proposition 9 while Zippel gave a version of the
first. The proof given here is a simplification and extension of that given in Zippel
(1979).

5. Deterministic Zero Avoidance
As mentioned earlier, proposition 2 shows that univariate polynomials over the

rational integers cannot have many real zeroes. We extend this proposition to one for
a multivariate polynomial in the variables Xi by finding a substitution (Xi '-+ Z e')
that sends a multivariate polynomial into a univariate polynomial. We then apply the
proposition to the univariate polynomial to get our result. The crucial part of the proof
is to show that we can find a substitution such that P(Z') is not identically zero.

Before, proceeding with our version of the bounds, it is instructive to examine the
bound derivable from Kronecker's technique, van der Waerden (1953). We are given
a polynomial in n variables, P(X,... ,X,) where the maximum degree in any one
variable is d and assume there are no more than T non-zero terms in P. Let e be
an integer larger than d. Consider the substitution, Xi F-+ Zi - •'. A monomial X is

mapped to a monomial in Z raised to the power:

el + e21 + e312 + ... + e In1 .

Since each of the ei are strictly smaller than t this mapping is one to one and invertible.

Draft of 15:33 Jan 18, 1989 22

Furthermore, we haven't changed the number of non-zero terms in the polynomial,
i.e. terms(P(X)) = terms(P(Z)). By proposition 1, if P(Z) vanishes for T positive
values of Z, then it (and thus P(X)) is identically zero. This would be our desired
proposition if the values chosen for the Xi were small enough. The smallest integer
values we can choose for Z are 1, 2,... IT. Thus the values for Xi are

Unfortunately, the size of the largest substitution, T -
1 is exponential in the number

of variables.
This basic idea can be salvaged by a more flexible choice of exponent substitutions.

Rather than using an invertible substitution, as Kronecker does, we choose one that
merely guarantees that P(Z) is not identically zero if P(k) is not. In light of the results
of Ben-Or and Tiwari the importance of this result is somewhat dimished. However the
technique used to reduce a multivariate polynomial to a univariate polynomial, while
preserving the number of non-zero terms seems quite powerful.

We begin with a definition and some lemmas.

Definition: 1. Let S be a set of n-tuples with components in a ring R. S is said to
be maximally independent if every subset of n elements of S is R-linearly independent.

In our situation, each element of S, , corresponds to a substitution Xi - ZS,.
The following lemma shows that there exist sets of N maximally independent n-tuples
with entries not much larger than N.

Lemma 1. Let S be a positive integer, and p the smallest prime larger than S. There
exists a maximally independent set of S n-tuples with components in Z where each of
the components of the n-tuples is less than p.

Proof: First we show that we can construct arbitrarily large maximally independent
sets of n-tuples. Then by reducing them modulo a prime we get the n-tuples required
by the lemma. Consider n-tuples of the form (1, k, k 2 ,... ,k -). For n of these to be
independent the determinant of the matrix

1 ki k' kn..

1 k2 k ... kn-1

ikn kl .2 -

must not be zero. Since this is a Vandermonde matrix, its determinant is rf>j(ki - kj),
by proposition 3.

Thus if the ki are distinct the vectors they generate will be linearly independent.
In particular if we let Ulk = (1,k,... ,k " - i) then any subset of n of the ffk will be
linearly independent. Furthermore, if we reduce the elements of Ulk by a prime larger
than any of the k, the n-tuples remain maximally independent. Q
Draft of 15:33 Jan 18, 1989 23

Lemma 2. Let L(X) = w-. X be a linear form in the n variables Xi that is not
identically zero. If . are linearly independent n-vectors, then L(1ii) # 0 for
some 2.

Proof- Since the n-tuples i = (Pil,Pi2, ... ,pin) are linearly independent, the matrix

(P1 P12 Pin

A P21 P22 . P2,n

(Pi.Pn2 Pnn/

is non-singular. Denote by 0. the column vector (w 1,..., w,) T . If L vanishes at each
of the n-tuples A3 then

A--=0.

Since A is non-singular, W- must be identically zero. [

Lemma 3. Let Lj(XC) = Xtj • Y be a set of T linear forms in n variables Xi, where
none of the forms is identically zero. There exists a set of (n - 1)- T + 1 n-tuples such
that for one of these n-tuples none of the L, vanish. Furthermore, the components of
these n-tuples can be chosen such that each component is less than 2nT.

Proof: By the previous lemma, each Li can vanish at no more than n - 1 independent
n-tuples. Assuming none of the forms vanish at the same n-tuple, there can only
(n - 1) T n-tuples for which one of the forms vanish. 1'

This Lemma can be extended somewhat to give a estimate of the number of n-
tuples required to ensure that each linear form takes on a distinct value. This is
important enough to justify calling it a proposition.

Proposition 11. Let Lj(X) = A-. be a set of T distinct linear forms in n variables
Xi. There exists a set of

(n-1). T. (T -1) +
2

n-tuples such that each Li takes on a different value for one of them, and where the
components are each less than nT(T - 1).

Proof: Consider the set of forms

Ignoring the diagonal forms (Mi,), which are identically zero, there are T(T - 1)/2
distinct forms up to sign. Li and L, have the same value for some n-tuple, if and only
if Mj vanishes at the same n-tple. By Lemma 3, there exists a set of

(n - 1) . T. (T - 1) +
2

Draft of 15:33 Jan 18, 1989 24

n-tuples such that for one them, none of the Mij vanish, and each has components less
than nT(T - 1). Q

Proposition 12 is proven by applying the same type of reasoning used earlier with
Kronecker's trick, using a sufficiently large, maximally independent set of n-tuples.

Proposition 12. There exists a set of nT 2 n-tuples such that there is no polynomial
with less than T non-zero terms that vanishes at each of the n-tuples. Furthermore,
the absolute value of the components of the n-tuples is less than T2nT, and they have
size O(nT log T).

Proof- Assume P(X 1,... ,Xn) is not identically zero and let the terms of P be

P(X) = ClXeI + C2 X 2 +... + CTXT.

The substitution Xi " Z'" sends this polynomial into

P(Z) -- ClZ" + C2 ZE2ui + - - + CTZET.a

This substitution must be chosen so that P(Z) is not identically zero. This can be
done by requiring that for any i 1

or equivalently (C-i - e1)" i T$ 0.
By Lemma 3, we can choose a set of (n - 1)(T - 1) + 1 maximally independent

n-tuples such that one of them satisfies (e'i - e7 U' 0 0. We can bound the components
of i6 by p where p be the smallest prime larger than (n - 1)(T - 1) + 1. Notice that
p < 2nT.

Each of the n-tuples gives rise to a mapping from P(X) to P(Z). Since P(Z) has

no more than T monomials, we need not try more than T positive integer values for
each T. In particular we can use the values 1, 2,..., T for Z. Thus there exists a set
of (n - 1)(T - 1)T + T < nT2 points that satisfies the requirements of the theorem.
Furthermore, each component of the substitution is bounded by TP < T2T. 0

Proposition 13. There exists a set of nT2 n-tuples, whose components are of size
O(nT log T), such that for every set of polynomials P i E Z[Xi,..., X,] with

terms(Pi) < T,

there is at least one n-tuple where none of the polynomials vanish.

This proposition follows from proposition 12 and the observation that if t1 +-. +
tk = T, then the maximum value of t + ... + t2 is T 2 .

The remaining result in this section is due to Ben-Or and Tiwari (1988). By
using a direct multivariate approach to the zero-avoidance problem, they improve the
O(nT 2) result of proposition 12 for the zero avoidance problem to T, which is best
possible. Ben-Or and Tiwari's main idea for this problem is contained in the following
proposition.

Draft of 15:33 Jan 18, 1989 25

Proposition 14. Let P(X) be a non-zero polynomial in R[,J] with at most T terms
and with monomial exponent vectors e1. Assume there exists an n-tuple Y such that
the 1" are distinct. Then not all of P(P),P(),P(x),... ,P(-T - 1) are zero.

Proof: Denote i by mi. By assumption, each of the mi are distinct. If P vanished
at each of the P then the following system of linear equations would hold.

C +C2 +"-CT =0

clml + c2m2 + + CTMT = 0

T 1 2- Tccm + c2m +..+ T= o

C Ti+ CMTi+ " + CMT1= 0

Since this is a Vandermonde system and we have assumed that the mi are distinct,
the system of equations is non-singular. Thus the ci must all be zero, and P must be
identically zero for all of P(i),P(x2),P(P), ... ,P(- 'T -) to vanish. -

The key then is finding a substitution that keeps the monomials distinct. If P is
a polynomial over a unique factorization domain (such as the rational integers) then
this is relatively easy-we choose the components of £ to be distinct primes. In this
case each of the mi must be distinct by unique factorization. For polynomials over
finite fields estimates of the difficulty in finding such the right initial substitution can
be made form proposition 7, but this leads to a probabilistic algorithm.

The following proposition considers the zero avoidance problem for several poly-
nomials.

Proposition 15. Let PI(X),...,oP.(X) be non-zero polynomials in U[Xl,...-Xn], U
a unique factorization domain and assume that terms P + "'" + terms P, = T. Let i
be a vector of n primes in U. Then for integer j, 0 Sij < T, all of P,(i j) are different
from zero.

Proof- Denote the points {X- ° , X,... , IYT} by S. P cannot vanish at more than terms Pi
elements of S by proposition 5. Since S contains T + 1 points, there must be one for
which none of the P vanish.

6. New Interpolation Algorithm

Using either of the deterministic solutions of the zero avoidance problem given in
the previous section (propositions 13 and 15), it is possible to modify the probabilistic
sparse polynomial interpolation algorithm of section 4 to make it deterministic.

As usual, we wish to interpolate a sparse polynomial with no more than T non-
zero terms, P(,?) E F[X1,..., X,,], from its values. As in the last section we will only
consider the case when F is the rational integers or a finite field of sufficiently large

Draft of 15:33 Jan 18, 1989 26

characteristic. For simplicity our discussion will use F = Z. Thus we can guarantee
that the Vandermonde systems of equations are always non-singular, by using as the
initial starting point: (2, 3, 5,... ,pn), where pn is the nth prime.

The only remaining source of erroneous answers in the probabilistic algorithm of
section 4, is that coefficient polynomials may vanish at the starting point. To be more
precise, assume the starting point of the interpolation is x 0 , X2 0 ,...,XnO. Consider
stage k, where we are introducing Xk. We can write P(X) as

P(Xg) = Pl(Xk+l,. .. , Xn)(Xl,. .. , Xk)" ' +...+ Ptk(Xk+l,...,X,,)(Xl,..., Xk) ' .

If the polynomials Pik do not vanish at the starting point, then skeleton produced at
stage k will be a correct image of skel P. If this is the case we say the starting point
is a stage k good starting point. If the starting point was not good, then the resulting
skeleton will be strictly smaller than the correct one at that stage.

The deterministic version of the sparse modular algorithm assumes that at stage
k - 1, the polynomial it is given has the correct skeleton. It then produces a k variable
polynomial that has the correct skeleton, by ensuring that it has used a starting point
for which none of the Pik vanish. This is easily done by performing the operations of
stage k, T times, using (xk+ 1,0, . ., xao) as the values for the undertermined variables.

Since the total number of terms in Pik not greater than T, by proposition 14, one of
these starting points will be stage k good. Since we know the correct k - 1 skeleton it

is not necessary to repeat lower stages of the algorithm.
Thus this algorithm will require T times more operations than the probabilistic

version. The components of the evaluation points are always primes (or a random
integer for X.). Thus the largest component will be pT, whose size is apr--oximately
O(T log n log log n).

7. Discussion
We have presented new deterministic solutions to both the zero avoidance problem

and the interpolation problem for sparse polynomials. The zero avoidance technique

of proposition 13 reduces multivariate problems to univariate problems. The inter-
polation algorithm presented may have better performance than Ben-Or and Tiwari's

interpolation algorithm if the bound on the number of terms is not sharp.

Unfortunately, these deterministic results do not immediately yield deterministic
algorithms for the multivariate polynomial greatest common divisor (GCD) and fac-
torization problems. For the GCD problem a technique for avoiding the zeroes of the
resultant of the two polynomials is needed. Unfortunately, straightforward estimates

of the number of terms of the resultant are exponential in the number of variables

even if the original polynomials were sparse. For the factorization problem, using the
current techniques, there still remains the need for an effective version of the Hilbert
Irreducibility theorem with good constants. The existing versions give probabilistic
results, von zur Gathen (1983), Heintz and Sieveking (1981) and Kaltofen (1985b).

Draft of 15:33 Jan 18, 1989 27

8. Acknowledgements
This work benefited greatly by discussions with Barry Trager. The one dimensional

version of these ideas, Proposition 2, was suggested by Gregory Chudnovsky. The key
idea in Lemma 1 was suggested by Carlo Traverso. Prasoon Tiwari was very generous
in clarifying his and Ben-Or's results.

This report describes research done jointly at the Artificial Intelligence Laboratory
and the Laboratory for Computer Science of the Massachusetts Institute of Technology.
Support for the Laboratory's artificial intelligence research is provided by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-86-K-0180.

Preparation of this report was supported by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract N00014-
86-K-0591, the Mathematical Sciences Institute under contract U03-8300, the National
Science Foundation through contract DMC-86-17355 and the Office of Naval Research
through contract N00014-86-K-0281.

References

Ben Or, M. and Tiwari, P. (1988). A Deterministic Algorithm for Sparse Multivariate Poly-
nomial Interpolation. STOC '88, 301-309.

Brown, W. S. (1971). On Euclid's Algorithm and the Computation of Polynomial Greatest
Common Divisors. J. ACM 18/4, 478-504.

von zur Gathen, J. (1983). Factoring Sparse Multivariate Polynomials. Proceedings, IEEE
Symposium on the Foundations of Computer Science, 172-179.

von zur Gathen, J. (1985). Irreducibility of Multivariate Polynomials. J. of Computer and
System Sciences 31, 225-264.

von zur Gathen, J., Kaltofen, E. (1985). Factoring Sparse Multivariate Polynomials. J. of
Computer and System Science 31, 265-287.

Heintz, J., Sieveking, M. (1981). Absolute Primality of Polynomials is Decidable in Random
Polynomial Time in the Number of Variables. Lecture Notes in Computer Science, vol.
115, 16-28.

Kaltofen, E. (1985a). Polynomial-Time Reductions from Multivariate to Bi- and Univariate
Integral Polynomial Factorizations. SIAM J. of Computing 14, 469-489.

Kaltofen, E. (1985b). Computing with Polynomials given by Straight-Line Programs I; Great-
est common divisiors. Proceedings, 17th ACM Symposium on Theory of Computation,
131-142.

Kaltofen, E. (1985c). Effective HUbert Irreducibilty. Information and Control 65/3, 123-137.
Kaltofen, E. (1987). Factorization of Polynomials Given by Straight Line Programs..
Kaltofen, E., Yagati, L. (1988). Improved Sparse Multivariate Polynomial Interpolation Al-

gorithms, 88-17, Department of Computer Science, Rensselaer Polytechnic Institute,
Troy, NY,

Moses, J., Yun, D. Y. Y. (1973). The EZGCD Algorithm. Proceedings of ACM Nat. Conf.,
159-166.

P6lya, G., Szeg6, G. (1976). Problems and Theorems in Analysis, Springer-Verlag, New York.

Draft of 15:33 Jan 18, 1989 28

Rosser, J. B., Schoenfeld, L. (1962). Approximate Formulas for Some Functions of Prime
Numbers. Illinois Journal of Mathematics 6, 64-94.

Schwartz, J. T. (1980). Probabilistic Algorithms for Verification of Polynomial Identities.
Journal of the ACM 27, 701-717.

van der Waerden, B. L. (1953). Modern Algebra, F. Ungar Publ. Co., New York.
Wang, P. S.-H., and L. P. Rothschild, L. P. (1975). Factoring Multivariate Polynomials over

the Integers. Math. Comp. 29, 935-950.
Wang, P. S.-H. (1978). An Improved Multivariate Polynomial Factoring Algorithm. Math.

Comp. 32, 1215-1231.
Zippel, R. E. (1979). Probabilistic Algorithms for Sparse Polynomials. Lecture notes in

Computer Science 72: Symbolic and Algebraic Computation, 216-226.
Zippel, R. E. (1980). Newton's Iteration and the Sparse Hensel Algorithm. Proceedings of

SYMSAC'80, 68-72.

Draft of 15:33 Jan 18, 1989 29

