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Abstract

In this note, we present an improved algorithm to Schwartz, Sharir and Siegel's algorithm (8]

for labeling the connected components of a binary image. Our algorithm uses the same bracket

marking mechanism as is used in the original algorithm to associate equivalent groups. The

main improvement of our algorithm is that it reduces the three scans on each line required by

the original algorithm in its first pass into only one scan by using a recursive group-boundary

dynamic tracking technique, while maintaining the computation on each pix-'.I dilring scan qtill

a constant time. This algorithm is fast enough to handle images in real time and simple enough

to allow an easy and very economical hardware implementation.



List of Symbols

m the number of rows of an image

n the number of columns of an image

/-p the row p of an image

IP lower semi-image from row p to row m

r a run in a row defined as a sequence of 1-pixels bounded on both side by O-pixel

Gp partition of a set of runs in Rp
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1 Introduction

The labeling of connected components of a binary image is a fundamental problem in image

analysis. An early method was developed by Rosenfeld and Pfaltz [7] in 1966; it uses a pair of

arrays, one containing the current region label and the other containing its smallest equivalent

label. This algorithm processes an image from top to bottom to compute label equivalences,

storing the result in the arrays. A second pass reassigns each label to its smallest equivalent

label. Lumia, Shapiro and Zuniga [3] improved this method by using a short equivalence table,

which needs to cover only one line. Schwartz, Sharir and Siegel [8] presented an algorithm

which uses bracket marking to associate equivalent groups. This method enables one to

compute the component numbers for each pixel on the fly, by using an relative small auxiliary

bracket table. More interestingly, this algorithm uses mainly pushdown-stack data structures

which allows simple high-speed hardware implementation. In addition to the above mentioned

sequential algorithms, there are parallel algorithms, for example, an logarithmic-time connected

components algorithm for massively parallel computing system (e.g. one processor per pixel)

connected in shuffle-exchange or other similar pattern by Shiloach and Vishkin [9].

In this note we present an improved algorithm to the Schwartz, Sharir, and Siegel's algorithm

[8]. Like the original algorithm, we make two passes over a binary image, with the first pass

sweeping row by row from the bottom to top of the image and the second pass in the opposite

direction. However, our improved algorithm makes only one scan on each line in the first pass,

while the original algorithm needs three scan on each line in the first pass. While not as fast

as the logarithmic-time parallel algorithm [9], the algorithm to be presented is fast enough to

handle images in real time and simple enough to allow an easy and very economical hard,,are

implementation.

The algorithm described in this note has been implemented in hardware [10]. A prototype
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Connected Components Board has been designed and physically implemented by the author

in the Robotics Research Laboratory of New York University. It did not involve any specially

designed VLSI chips and can compute a 512 by 512 binary image in about 300 Ms. A real-time

version of the algorithm in VLSI, which pipelines the two passes of the algorithm, has been

proposed in [10].

In the following, we first review the definitions and details of Schwartz, Sharir, and Siegel's

algorithm [8]. Then, we describe our improved algorithm.

2 The Original Algorithm

Assume that a binary image has m rows and n columns. Some key definitions of the original

algorithm are reviewed as below.

Definition 1: Let 14 be an image row, 1 <p _ m.

(a) A run in Rp is a sequence of 1-pizels (i.e. pizels with gray value 1) of 1p bounded on

both sides by 0-pizel (For simplicity, we add two additional 0-pizels to the left and right-end of

each row of the image, respectively).

(b) The lower semi-image Ip consists of the union of all rows Rj, p 5 j 5 m.

(c) Gp is defined to be the partition of the set of runs in 1, for which two runs are in the

same partition group g E Gp, iff they belong to the same connected component of the lower

semi-image Ip.

The original algorithm consists of two passes. Pass I sweeps through the rows from bottom

to top, during which the groups in Gp_ are calculated inductively from the knowledge of 14

by a simple updating rule. Pass 2 sweeps from top to bottom to a-sign component numbers to

each pixel and outputs this symbolic image.

In each row, runs belonging to the same group are associated by a simple mechanism, called
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Figure 1: An example of bracket marking assignment

bracket marking, as follows:

Definition 2: We define four symbols '[L '', '/7" and '["

(a) If r is the leftmost (reap. rightmost) run in its group g, it is assigned marking [(reap.

A%

(b) If r is both leftmost and rightmost run in g, i.e. g consists of a single run r, then r is

assigned the marking 7.

(c) If r lies between the leftmost and rightmost run in its group, it is assigned the marking

ff.

An example is given in Fig 1, where a bracket marking is shown for seven runs in 1P, numbered

from right to left. These seven runs are divided into three groups - (7,4,3,1), (6,5), and (2).

The following lemmas have been proved in [8]:

Lemma 1: (a) the bracket sequence that the proceeding definitions associate with the row 1,

is properly nested, i.e. each right bracket in it is matched (by the well-known stacking algorithm)

to an associated left bracket and vice versa.

(b) The groups into which we have divided the set of all runs in 14 can be reconstructed

from the bracket sequence associated with Rp by applying the following rule: put all runs whose
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associated brackets match into one group. (Note that according to this rule runs with the ']['

marking will link certain runs to their left and certain runs on their right into a single group.)

Lemma 2: Let g and g' be distinct groups of runs in Gp. Then if there are runs z 1 , z 2 in

g, which are to the left and to the right, respectively, of some run z' in g', it follows that all the

runs in g' lie between z1 and z2.

The goal of pass I is to calculate bracket marking from bottom to top row by row. For this

we want a rule telling us how to calculate the groups (or, equivalently, the bracket marking) for

the row Rp,1 given the same information for R. Our aim is just to determine which runs of

/.- 1 have other runs in the same group which lie to their left (resp. right). Note that two runs,

say ri and rj for some i and j, of R1_ belong to a same group if:

(a) both of them overlap with some run of a same group in Rp; or

(b) r, overlaps with a run of a group in Rp, rj overlaps with a run of a different group in 14,

and these two groups in R are then merged together by some run other than ri and rj in R,- 1 .

The original algorithm makes four scans on each image row, two left-to-right, the others

right-to-left. The first two of these scans calculates what is called extended group:

Definition 3: Two runs in RP belong to the same extended group if they are members of

the same connected component of the lower semi-image 'p-i.

Note that every extended group g' of 1. is a union of one or more groups g of 1p, which are

merged together by some runs in P-_ I. The merging of two groups can be in following three

basic ways:

Case (a)

In case (a) (Fig. 2.a), a run of 1P- overlaps with both the leftmost run of group gi and the

rightmost run of group gj of Rp. To introduce an equivalence between two immediately adjacent

brackets ']', '[', we can simply change them both to ']['.
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Figure 2: Three basic ways of merging two groups in calculating extended group.
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Case (b)

In case (b) (Fig. 2.b), the equivalence between group gi and group gi can be introduced

during the scan from right to left as following. We can change 12 from 'J' to '][' and leave 11

unchanged; then we must locate the extreme jeft-hand bracket h2 of group gi (in R,4 ) whose

rightmost bracket is 12, and change h2 from '[' to ']['.

Case (c)

The case (c) is symmetric to the case (b). Hence it can be handled in a similar manner of

the case (b) in an opposite scan from left to right.

It follows that the extended groups of R. can be obtained by making the bracket modifications

described. This modification can be made in two successive passes (over Rp and Rp_ 1 together),

as follows: scan the pixels of 1p and R.- 1 simultaneously, from right to left, holding unmatched

brackets on a stack. Whenever runs of 1P described by successive brackets ']', ']' (call them

12and 11 as before) are found to be in contact with an unbroken run in R.4, change 12 to

']*[', where '*' is an additional 1-bit mark which indicates that the bracket representing the left

end of the group whose right end is 12 must be changed to '][' when encountered during the

stacking/unstacking process. Treat successive pairs of brackets 'i', '[' symmetrically during an

immediately following left-to-right scan.

Once these bracket modifications have been performed, two more relatively straightforward

passes, over R. and R.-I simultaneously, suffice to construct a bracket marking describing the

groups of 14._i.

The third scan (left-to-right) identifies all those runs r in R14-. which belong to groups G

containing runs r' lying to the left of r. We still scan the rows R4- 1 and 14 together, and

simultaneously scan the modified bracket marking in Rp. An auxiliary stack S is used to store

left brackets discovered during the scan of R that have not yet been matched. If a run r in Rp
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is currently being scanned, then the bracket on top of S will describe the group containing r.

Stacked brackets have two mark fields: grouphit and old. The bracket on top of S will have

its grouphit mark set to 1 whenever, during the scan of Rp. 1 a pixel in Rp is discovered to be

adjacent to a pixel in Rp_ 1. This records the fact that some run in the group represented by the

top bracket (and all matching brackets) is known to be adjacent to some run of Rp. 1. The old

mark distinguishes between the case in which a group g of RP represented by a stacked bracket

with grouphit = I only has pixels adjacent to the run in Rp_1 that is currently being scanned

(in which case old = 0), from the contrary case in which g is adjacent to a run in Rp,_ that

has already been scanned (in which case old = 1).

The start of each run r of R pushes an associated left bracket on S if the marking of r

is either [ or f, and the end of r pops the top bracket of S if r is marked either ] or 0l. The

marking j[ is handled most efficiently by regarding it as a 'no-op' which simply continues the

bracket currently on the stack. Whenever two adjacent white bits, belonging to runs r' E R-p I

and r E /p respectively are seen, we check whether the top bracket in the stack is grouphit

and old, If this is the case, r' must be connected to some run in Rp- 1, and that run lies to the

left of r'. If not, the bracket's old mark must be zero, since runs in r's group lying to the left

of r do not contact R- 1; but in this case the grouphit mark of this same bracket will already

be set.

The subsequent right-to-left scan performs exactly the mirror image of these actions, i.e.

determines what runs r of Rp- 1 are part of a group extending to their right. This gives us the

bracket marking associated with Rp- .

Since the second scan produces each modified bracket just when this is needed by the third

left-to-right scan, these two left-to-right scans can be combined into one. Thus three scans over

each successive pair of rows suffice to generate the bracket markings in Rp.. 1.
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We then perform a top-to-bottom pass which completes the assignment of connected com-

ponent numbers. To process the groups g of Gp after R14_ 1 has been processed, we simply apply

the following rule: if any run in g touches any run r in P_1, assign each pixel of g the same

component number as that assigned to r. Otherwise g represents a new component; assign a

new component number to its pixels. To do this, we perform a simultaneous left-to-right pass

over R1 and P,.._ during which the parenthesis marking of Rp drives the stacking/unstacking

procedure previously described; during this process each stacked bracket must be marked either

with a zero (indicating no contact yet), or with a nonzero integer defining a component num-

ber. While this is done, a queue giving the component number for each group of RP14 must be

available. Component numbers can be stored at the end of the final run of the corresponding

group of 14.

3 An Improved Algorithm

Our improved algorithm makes also two passes over an image and uses the same bracket marking

mechanism as that of the original algorithm. The major difference of our algorithm from the

original algorithm is that our algorithm reduces the three scans on each row required by the

original algorithm in its first pass into only one scan while maintaining the computation on

each pixel during the scan still in a constant time. The main idea of this improvement is the

following. Instead of first calculating the extended groups of R4 before actually computing

the bracket marking of Rp_1 as is done in the original algorithm, we now directly compute the

bracket marking of R_ in one scan by using a recursive group-boundary dynamic tracking

technique.

Assume that we scan a row from right to left. The connectivity of runs in row 14..I through

links in the semi-image Ip can be classified into three basic cases as follows (refer to Fig. 3):
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Figure 3: Basic cases of connectivity in semi-image Ip: (a) simple chain; (b) a cluster of links is
bound at right end; (c) a cluster links is bound at left end.

(a) Several runs may be linked by a simple chain;

(b) A cluster of links (or arcs) may be bound together on its right end by a single run in row

(c) A cluster of links (or arcs) may be tied together on its left end by a single run in row R.

The general connectivity can be decomposed into these three elementary cases by recursively

considering a subset of consecutive runs in a group as a virtual "single run". For example in

Fig. 1, if we consider runs 4 and 3 as a virtual "single run" denoted by 4-3, the connectivity

between 7, 4-3, and I falls into the elementary case (c). Our algorithm handles the connectivity

problem from inner level to outer level recursively. Thus, at any time, we only have to deal

with one of the three elementary cases defined above; however a run could be a simple run or a

virtual "single run".

We now use two stacks, called siacki and stackf. Stack1 plays a similar role as in the
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original algorithm to trace the bracket marking already computed for RP, while stack2 is used

to dynamically trace group boundaries of Rp_. 1 during the scan. Assume we number each run

in row RP1 from right to left starting from 1, as an example shown in Fig. 1. We still scan

Rp - and Rp together. At each stage of the scan , there is an entry in stack2 for each non-ended

group found so far. Each entry is a pair of integers representing the current right-most and

left-most runs of the corresponding group. In the following we show how this group boundary

information can be updated according to the new knowledge we gain about each group as the

scan continues.

When a run, say rj, of Rp- 1 starts a new group, an entry [rj,rj] is pushed on stack2. The

condition for starting a new group can be easily checked out locally during the scan. Specifically,

when we encounter a new run in row R,.-I, we check if it makes contact with any run in row

R. If it does not, we know that it is the start of a new group containing one isolated run only;

Or it does make contact with some runs in Rp the right-most of which has a ']' marking, we

assume temporarily that a new group starts. (We say 'temporarily' here since initially no link

connects the current run in RP,- to any run to its right on the same row. However this new run

might link to some run to its right indirectly through several arcs. For example in Fig. 3(c),

run 2 links indirectly to run 1 through two arcs.)

Now we describe how a group's boundaries are expended in each of three elementary cases

and when a group is terminated.

Case (a)

In case (a) of Fig. 3, we have entry [1,1] on stack2 after reaching run 1, which means the left

and right boundaries of the current group are both equal to 1. When run 2 is encountered, we

know that it links to its right to the current group represented by the top of stack2 by checking

the top of stack1 and applying lemma 2. So the left bound expands to 2 after run 2, resulting in

12



the top stack entry [1,1] being updated to (2,1]. Similarly, it is then updated to [3,11 when run

3 is reached. When a run of R., with a '[' marking is scanned, the top entry of stack1 is popped

off and also if the group g of RP represented by this popped entry contacts the current group

g' of Rp_ 1 represented by the top entry of stack2, then g' is terminated since there is no more

path in Ip possible to link g' further to its left; hence, its entry on stack2 is popped off.

Case (b)

The situation in case (b) of Fig. 3 is slightly more complicated. We have [1,1] on stack2

after run 1. (Remember that we have two marked entries on stackl after run 1 in row Rp since

it contacts two runs in row ,p both of which have ']' brackets.)

After run 2, the top entry on stack2 becomes [2,1] and the top entry on stackl was popped.

At this point we do not know whether or not to pop the top entry on slack2. While it is

possible, using only local information to determine the start of a new group, this is not the case

for determining the end of the current group. The fact that a run has no more arcs linking it

leftwards does not necessarily mean that the end of this group has been reached. (Note that

run 2 is further linked to run 3 through an indirect path.)

To handle this situation, we introduce an auxiliary field in stackl's entry to indicate whether

the arc associated with a ']' marking in that entry is the outermost (or lowest) arc. For example,

we say arc A is the lowest among the cluster of arcs bounded by run 1 in row Rp in (b) of Fig.

3. The auxiliary bit can be easily set as following. During an unbroken run in row N4-, if one

or more entries have to be pushed onto stackl, the auxiliary field in the first pushed entry is

set to TRUE and the auxiliary fields in all other entries are set to FALSE. If the auxiliary field

in the entry just popped off siackl is FALSE, we know the arc (or link) just ended is not the

outermost (lowest) one, i.e. there is an arc belonging to the same group enclosing this finished

arc, so we don't pop the entry off stack2 because we don't know if the current group in row Rp-
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is finished yet. After reaching run 3 in row Rp, the left bound of current group is expanded to 3,

and the top entry on stacks2 is changed from [2,1] to [3,1]. When the entry on stack1 is popped

off, we see that the auxiliary field is TRUE. So, we can confidently pop the top entry on stack2

off this time because we know that there is no further arc linking this group to any run to its

left.

Notice that, since the introducing of this auxiliary field, the handling of case (a) should

be modified to include a checking of this auxiliary field in determining the termination of the

current group.

Case (c)

A situation symmetrical to case (b) occurs in case (c). After reaching run 1, we have one

entry, (1,1], on stackf. Note that at the moment after reaching run 2, it is impossible to know

that this run is actually linked to run 1 through an indirect path. So, we have a second entry,

[2,2], on top of stack2. After point z* in run 3 is reached, the top entry of stack2 is updated

from [2,2] to [3,2]. When we reach point z 2 we find that two arcs are bound together. So, the

two top entries on stack2 are merged into one in such a way that the new left bound is the left

bound of first entry on stack2 and the new right bound is the right bound of the second entry

of stack2, resulting a [3,1] on stackS. These operations can be performed in two steps: (1) pop

stack2, (2) replace the left bound of top entry by the left bound of the entry just popped. In

this example, we pop (3,2] off stacki first; then change the left field of top entry - [1,1] to 3 and

get [3,1] as the new top on stacki.

The bracket marking can be effectively encoded by a two-bit binary number as shown in Table

1. The bracket information calculated during pass I is stored in a memory of m x Z x 2 bits,2

called the bracket table. This table is indexed by two row counters, row-countl and row-count',

and two column counters, run.countl and run.countM. Row.countl and run.countl are combined
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Bracket Marking Left Bit Right Bit
[ 0 0

0 1
1 0

Table 1: Bracket Marking Encode Definitions

to access brackets for row Rp- 1 , and row.count2 and run.count2 for those in row Rp. Each entry

in the table has two 1-bit fields, both of which are initialized to zero. Run-counts are set to zero

at the beginning of a row scan and incremented by one every time a new run started.

Now we show how the bracket table can be updated efficiently as the group boundaries

updated dynamically during a scan. There are only two types of group-expanding operations:

(a) the left boundary of the current group expands to include the current scanned run; (b) the

two top most groups on siack2 are merged together. To do each of these operations in constant

time, we must be able to directly index correct columns in a row of the bracket table so that

we can set corresponding bits to l's. The index of the current scanning run is provided by

run.count1 for row 1p-1 and run.countS for row 1P. The boundaries of all non-ended groups

are maintained in stack2 in a properly nested order with the current group on the top. Thus, the

updating of the bracket table's entry in every possible case can obviously be done in a constant

time.

The second pass of our algorithm is same as that of the original algorithm. A full implemen-

tation of out algorithm written in C programming language can be found in [11].

4 Conclusion and Additional Remarks

In this note, we have presented an improved algorithm to Schwartz, Sharir and Siegel's algorithm

[8] for labeling the connected components of a binary image. Our algorithm uses the same
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bracket marking mechanism as is used in thi original algorithm to associate equivalent groups.

The main improvement of our algorithm is that it reduces the three scans on each line required

by the original algorithm in its first pass into only one scan by using a recursive group-boundary

dynamic tracking technique, while maintaining the computation on each pixel during scan still

a constant time. This algorithm is fast enough to handle images in real time and simple enough

to allow an easy and very economical hardware implementation. In fact, a prototype connected

components board has already been designed and implemented by the author [11].

When we want to compute a sequence of input images continuously, it is interesting to

pipeline the two passes of the algorithm in order to get a sequence of continuous output symbolic

images. I some applications, it will be useful to identify the k largest components and/or to

calculate various additive geometric invariants of these components, e.g. their number of pixels,

medians and second moments. These computations can be performed in a variety of ways. One

simple method is to compute these values on the fly during the top-to-bottom (i.e. second)

pass; or separate these computations into an individual stage and place it into the pipeline at

the place after the second pass.
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