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I. INTRODUCTION

This report discusses the work accomplished during the Air Force Office of

Scientific Research Grant AFOSR-86-0142. There were three primary objectives of this

work. The first was to develop a method for estimating the stress intensity factors induced

by temperature gradients in thermo-mechanical fatigue. The second was to use this method

to estimate the importance of the thermal contribution relative to the mechanical

contribution. To do this, we take into account several factors, for example, the dependence

of the stress intensity on the frequency, the crack geometry and the mode of thermal

loading (i.e. heat lamp vs. electric resistance heating). The final goal was to extend the

developed method to composite material applications and perform a preliminary study to

assess the relative importance of thermal transient effects in composite materials. All these

objectives have been met and a detailed discussion follows.

Gas turbine engine components typically undergo complex mechanical and thermal

operating conditions which may give rise to crack propagation and eventual fatigue failure.
Although the role of mechanical loading in fatigue has been investigated, it is of

fundamental importance to understand how cyclic thermal conditions affect crack growth

and fatigue failure. This study is an attempt to estimate the importance of cyclic thermal

loads in thermo-mechanical fatigue.
Laboratory tests are currently used to assess the safe thermomechanical fatigue

limits of engine components. However, there are three aspects of the thermal loading
which potentially vary widely between laboratory simulations and actual in-service

conditions. These are the frequency of the thermal cycle, the symmetry of the temperature

field about the crack axis, and the geometry of the initial crack.
The frequency of the thermal cycle is related to the heating rate which may be

significantly higher or lower in engine environments than in fatigue testing situations.

Currently, heating rates in fatigue testing are limited to a level which is believed to not
induce significant thermal stresses at the crack tip. Consequently, it is unknown how

accurately results of stress intensity testing can be applied to engine fatigue standards.

Determining the variation of the stress field with frequency provides a means of accounting

for the high heating rates in both engine components and lab specimens thus improving the

I
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validity and accuracy of the test method. Further, having a means to account for rapid

thermal cycling also may provide an economic benefit in that it may be possible to increase
the rate at which specimens are cycled.

Test specimens are usually symmetrically heated with respect to the crack axis.

This is a fundamental difference from what happens to engine components in that cracks

are usually subjected to temperature gradients that may induce significant thermal stresses at

the crack tip. The reason is related to the thermal boundary conditions specified along the

axis of the crack tip. The symmetry condition on this axis is identical to the insulation

condition of the open crack: the normal gradient of the temperature is zero. The

antisymmetry condition, on the other hand, is that the temperature itself is zero along this
boundary. This gives rise to a discontinuity in the boundary condition at the crack tip and
results in a thermal field which changes as the crack grows. The effect of this thermal

field/crack interaction is currently unaccounted for in fatigue analysis.
The effect of geometry on stress intensity is also being investigated. Cracks can be

located on the specimen edge or in its center. The important distinction in the crack location

is that the edge cracked component corresponds to a simply-connected region while the

center cracked component corresponds to a multiply-connected region. Thus, an additional

aspect to be investigated is the effect of geometry on stress intensity.

The means for evaluating the importance of each of these phenomena is the stress

intensity factor, K. The stress intensity factor is a quantitative measure of the strength of

the elastic stress field near the crack tip and is of interest because of the general belief that it

is a dominant parameter in controlling crack instability. We can use the standard definitions

of stress intensity factor for thermoelastic problems since it has been shown that the local
behavior of the thermal stresses near the crack tip is the same as the behavior of mechanical
stresses, that of the r-1/2 singularity [1].

The first work dealing with two-dimensional stress fields associated with cracks
was published by Florence and Goodier [2] and Sih [1]. The method of complex

representation of the elastic state was used to derive the theoretical stress intensity factors in
infinite two-dimensional cracked regions subjected to uniform heat flow for both the

symmetric and antisymmetric problems. The expressions derived in [1] for the

thermoelastic crack-tip stress field are identical to those given by Irwin [3] for traction

boundary condition problems. It is noted that the rea! parts of the crack-tip stress field are

identical to the singular terms of the Williams [4] eigenfunction relations.

Several investigators have used stress intensity factors in studying problems of
thermoelastic stress intensity in cracked regions subjected to nonuniform temperature
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fields. Early work of Konishi and Atsumi [5] and of Sekine [6,7,8] used singular integral

equations to estimate the normal thermal stress components on the crack plane in semi-
infinite plates with uniform heat flow perpendicular to the crack. From these solutions the
stress intensity factors were evaluated. This method has also been used by Shail [9] and

Das [10] for determining stress intensity factors in an externally cracked infinite solid for
both even and odd temperature distributions, by Das [ 11] for cracked infinite cylinders with
constant temperature and by Hen-mann and Kuemmerling[ 12] for cracked infinite cylinders
with a point source of heat.

Because of the finite domains of the present analysis, however, solution by these

methods is not appropriate and an alternative way to evaluate the stress intensity factor from
numerically defined stress fields is required. Path independent integrals have been
developed to estimate the stress intensity factors at cracks and notches when numerical
approaches, such as the finite element method, are used to compute singular stress

distributions. The path independent integrals offer the distinct advantage that the errors in
the analysis stem only from the numerical approximations used and not from additional

sources [ 13] and so offer a relatively accurate result with modest computational effort.
Several path independent integrals for thermoelastic stress problems have been

developed. The integral of Gurtin [14] consists of the well-known J-integral for isothermal
stress fields and three additional terms which relate to the temperature field. However, the
development of the integral relies on specifying the temperature field to be symmetric about
the crack axis and zero along the crack surfaces, requirements that are not in general met.
Wilson and Yu [15] have developed an integral similar to the J-integral which consists of

an additional area integral containing, not only the temperature field but also the gradient of
the temperature field. Aoki et a]. [ 16,17,18] have derived another set of path independent
integrals for thermoelastic problems. As in the integral of Wilson and Yu, each of these
integrals require area integration of the gradient of the temperature distribution, implying
that a highly accurate temperature solution near the crack tip is necessary in order to
evaluate the stress intensity factor precisely. Finally, Kuo and Riccardella [19] have

developed line integrals for thermoelastic stress fields which eliminate the need for area
integration but in doing so, restrict the problem to one where no body forces or distributed

heat sources are permitted.

The appropriate integral for our work follows from the development of the H-
integral by Sinclair, Okajima and Griffin [13] and takes into account the Duhamel-
Neumann analogy (for example, [20]) for modeling the thermoelastic problem. The path-
independent integral consists of the H-integral and an additional area integral containing the
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temperature field. Although the derived integral loses some computational efficiency
through calculation of the area integral, it does not require the gradient of the temperature
distribution. Since our temperature distributions are, in general, numerically determined,

calculating thermal gradients would be prohibitively inaccurate.

In our approach to studying thermal fatigue loading, we concentrate on the effect
that the thermal cycle has on thermally induced crack tip stresses. Since any periodic
function can be represented exactly as a Fourier series of harmonic functions, we assume
all thermal cycles are harmonic in time. By this assumption, we can consider the derived

solutions to the harmonic thermal cycles as Fourier components of the true solution to

general thermal cycling cases. The actual solution may be approximated by its fundamental
harmonic or as closely as desired by adding higher frequency components.

Considering only sinusoidal thermal loadings provides the advantage that we can
eliminate time as an explicit variable. Without time as a variable, there is no need to track
stress fields as a function of time. Instead, its role is replaced by the parametrical
dependence of frequency. With this, we can calculate stress intensity factors for sinusoidal
thermal loadings as a function of frequency of the thermal cycle.

The thermal loadings we consider are selected after careful evaluation of fatigue

testing. We choose simple loading conditions which, when combined through linear

superposition, describe more complex loading cases. The goal in our approach is to
develop stress intensity solutions to simple problems that can be combined later to represent

stress intensities of a large variety of fatigue loading cases. With this, we have outlined an
approach to calculating thermal stress intensities as functions of frequency in fatigue

loading. We evaluate the importance of the stress intensity by comparing it to those
induced in mechanical fatigue, for example, the results of Wilson and Warren [21].

We begin in Section 2 by addressing the basic problem of a symmetrically and

uniformly heated center-cracked fatigue specimen, presenting the formulation, a discussion

of the solution methods, and the results of this simple analysis. In Section 3, we consider
extensions of the basic problem. First, we investigate some geometrical variations,
considering both edge-cracked regions and crack- and sample-length scaling. Secondly,
we address the issue of antisymmetric fatigue heating and the importance of Mode II stress
intensity factors. Because specimen heating is often accomplished by applying an electric

potential to the specimen, we investigate this mode of heating in Section 4. Evaluating
electric potential heating is important because it induces a singular heat source at the crack
tip which may serve to give a much different dependence on frequency than the regular
heating fields studied in Sections 2 and 3. In Section 5, we close the analysis of the
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homogeneous linear elastic material by investigating the implications the results obtained

have in actual fatigue testing.

Finally, in the interest of understanding the effects of thermal transients in
composite materials, we extend our approach of fatigue analysis to bimaterial composites.

In Section 6 we discuss the fundamentals of a pilot study performed to investigate the
rudimentary effects of diffusivity and thermal expansion mismatches in bimaterial
composites in which cracks occur normal to the interface. This particular geometry was
selected for initial investigation because of its physical interest: it can correspond to the

problem of a crack turning at or penetrating the interface.

The intent of the composite analysis is to perform a parametrical study to establish
the importance of differences in thermal diffusivity relative to differences in the thermal

expansion and elastic modulus for composite materials. These effects may be especially
important in materials with low diffusivity such as ceramic composites. Our resulting
improvement in understanding these mechanisms should allow the development of

composites with improved durability for high temperature applications.



I. TRANSIENT UNIFORM HEAT SOURCE IN A CENTER CRACKED PLATE

Formulation

In order to investigate the effects of transient thermal loadings on crack tip stress

fields, we formulate the following problem. Our analysis is directly applicable to fatigue

testing so we choose a geometry which represents typical fatigue test specimens. This is

the center-cracked plate pictured in Figure 1. Geometrical symmetry permits analysis of

only the upper right quadrant of the center-cracked plate, the region shaded in the figure.

For simplicity, we assume the plate to be in a state of plane strain. The region, R , of our

analysis, then, is rectangular in the x, y plane and is defined by:

R = {x,y I0<x<W,O y L} (1)

where R is assumed to be homogeneous, isotropic and linear elastic. The boundary of R

is denoted by aR and contains the crack of length a along the line

O<x<a ,y=O (2)

We seek then, the two-dimensional thermoelastic stress vector a = (ax ,ay ,'xy

and displacement vector u = (u, v) satisfying the plane-stmn uncoupled quasi-static

equations of thermoelasticity. These equations are derived by neglecting the effects of

elasticity on the temperature and ignoring the inertial term in the equation of motion. The

result is the degeneration of heat conduction and elasticity into two separate problems.

With these simplifying assumptions, the temperature field is determined solely by

conduction and the stress and displacement fields are computed for each instantaneous

temperature distribution according to the equations of linear thermoelasticity.
The temperature distribution ,T, varies with time, t, and satisfies the planar heat

conduction equation in R :

V2 T (x,y,t)- Tt (x,y,t H ( x,y,t

6
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where V2 is the Laplacian operator in two dimensions, D, the thermal diffusivity, is equal
to the thermal conductivity divided by the heat capacity and the density, and the subscript
following a comma denotes differentiation with respect to that variable. The forcing
function H(x,y,t) is a net distributed heat source per unit area term which takes into account
the effects of radiation and convection from the surface. The boundary conditions imposed
on the temperature field are that the plate is insulated along the right edge and along the
crack faces, and the temperature is symmetric along the y-axis and along the uncracked
portion of the x-axis. Since the conditions of insulation and symmetry are identical (the
normal temperature gradient equals zero) these conditions may be stated:

T,X =0 onx=W (0<y<L)
T,X =0 onx=O (0<y<L) (4)

T,y = 0 on y=0 (0<x<W)

Along the remaining edge of the boundary, a spatially constant temperature is imposed:

T(x,y,t) =eo(t) on y=L (0<x<W) (5)

The equations of uncoupled quasi-static linear thermoelasticity are identical to those
of linear elasticity with the exception of the stress displacement law. This being true, the
str.ss field obeys the equations of equilibrium in the absence of a body force field, which
hold in the region R :

CTx x + TXY 9y = 0

y,y + TxyX = 0 (7)

The stress and displacement vectors must also satisfy the plane-strain stress-displacement

relations in R:

X-= (1-2v) [(1-v)U'x + V ,y ] -3T

- (1-2v) [(l-v)v,y + v u,, ] -x T

• ty =9t(u,y + v ,,)
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where f3 combines material constants in the form, 13 = a E / (1 - 2v ) for the plane strain

case (13 = (x E / (1 - v ) for the plane stress case ) and the constants c.,E,v, and gi

represent the coefficient of linear thermal expansion, the elastic modulus, Poisson's ratio,

and the shear modulus, respectively.
The boundary conditions for the thermoelastic problem are: traction-free conditions

on the upper and right edges of the region and along the crack face,

y =0, r.y=0 on y=L (0<x<W)
oX = 0 , TXY=O on x=W (0<y<L) (9)

ay=0, rxy=0 on y=O (0<x<a )

and symmetry conditions along the y-axis and along the x-axis in the region not containing

the crack,

u=0 and rXY =0 on x=0 (0<y<L)
(10)

v-=0 and Xxy = 0 on y=O (a <x<W). (11)

The means for evaluating the importance of transient temperature fields on crack tip
stress fields is the stress intensity factor, K. The stress intensity factor is a quantitative
measure of the strength of the elastic stress field near the crack tip and is defined for the

crack-opening mode, Mode I, by the relation

K,= lim 27(x-a) oy on y=0
x-4a +  (12)

and for the edge-sliding mode, Mode II, by the relation

K= lir m 27t(x-a ) cxy on y=0X-4& +  (13)

Considering transient temperature fields typically implies that the stress and
displacement vectors, and consequently, the stress intensity factor must be computed at
instantaneous points. Herein we impose a fundamental condition: we consider only

temperature fields which vary sinusoidally in time. In essence, the temperature field,
T(x,y,t), is taken as the sum of harmonic components in which (o is the frequency of the
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excitation and Ts and Tc are the spatially varying magnitudes of their respective

components:

T ( x,y,t) - T (x,y) sin cot + T, (x,y) cos cot (14)

By representing the temperature in this form and considering only harmonic heat sources,
H(x,y,t) = h(x,y) cos cot 1, we benefit in two ways. First, the need for instantaneous
computations is eliminated since time is no longer an explicit variable. This is because we
calculate the stress and displacement fields induced by each of the spatial functions, Ts(x,y)
and Tc(x,y), independently. Then, if Ks and Kc are the resultant stress intensity factors
associated with these fields, respectively, the total stress intensity factor induced by the
temperature field T(x,y,t) is also obtained by harmonic sum:

K ( o,t ) = Ks (co) sin cot + KI (co) cos cot (15)

Secondly, because any periodic function can be represented exactly by Fourier
series of sinusoidal functions, solutions derived with this approach may be considered as
Fourier components of a solution to a more complex periodic temperature profile. This is
important in fatigue studies where actual thermal cycling experiments may not always
utilize sinusoidal temperature fields and the in-service conditions the experiments are
intended to simulate may also be more complex than harmonic functions.

The stress intensity factors in (15) are denoted as functions of the frequency.

Eliminating time explicitly requires its role to be replaced by the parametrical dependence on
Co. This is because substitution of (14) into (3) results in coupled equations for Ts and Tc
in which frequency appears as a parameter

V2T. -12- T, - h (x,y) (16)
2 co

V2T, =-A TT

A range of frequencies must therefore be analyzed before a general solution can be

obtained.

If the heat source has a sine component as well, its contribution may be readily computed by introducing a
90 degree phase shift in the solution computed here.
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Problem definition

The goal of this analysis is to form a basis for understanding how transient

temperature fields affect stress fields in a region containing a crack. A desired result would

be to apply solutions to fatigue testing cases so that we can make estimates of the

importance of the thermal field with respect to mechanically induced stresses the specimen

may experience. The trouble with this is that many different variations in loadings are

generally used and it would be impossible to explicitly calculate temperature fields

corresponding to each case. Instead, we choose to use the linearity of the stress and

displacement equations and hence their vector solutions in defining the loading conditions

to be investigated. By carefully choosing specific thermal loading cases and obtaining their

stress field solutions, superposition may be used to represent a variety of cases by linear

combination of the conditions and so more general solutions may be obtained.

In order to define the appropriate loading conditions, we examine fatigue testing a

little more closely. In general, two methods of heating are utilized to cycle specimen
temperatures. These are a heat lamp with forced air cooling, and direct resistance heating
with grip cooling. Grips hold the specimens in place and often extend the width of the

specimen at distances considered remote from the crack. In order to account for heat

conduction out of the crack region, two alternatives are considered. First, it would be

possible to consider conduction conditions on these ends in which the heat flux is
proportional to the temperature at the ends. However, this approach would require varying

the proportionality constant depending on the grip configuration and would consequently

require a number of simulations in order to represent the entire range of possible

conduction conditions found in practice. Instead, we consider the condition in which no

heat sources are applied and the temperature at the end is held spatially constant, varying

only harmonically in time. Then, rather than attempting to apply heat flux proportionality

constants to the test rig configurations, we need only measure the temperature at the grip

location, scale the constant temperature solution appropriately and add it to the solution

corresponding to the proper mode of heating. Thus, only one solution to account for

boundary conduction needs to be obtained for each frequency.

In particular, we will first investigate in detail the case of symmetrically heating a

specimen by heat lamp and cooling it by forced air. In later chapters, other thermal loading

cases will be considered for comparison. This fust method of heating can be modeled by a
sinusoidally varying uniform heat source, H(x,y,t) = ho cos cot , where ho is spatially

constant. So, in addition to the constraints imposed on the stress and displacement vectors
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in Equations (1) through ( 11), the following conditions will be satisfied by the temperature

field:

a. h(x,y) = 0, o(t) = T coscot (17)

b. h(x,y) = ho, 0o(t)= 0 (18)

where ho and To are constants, h(x,y) is the heat source distribution of Equation (16) and
80 (t) is the edge temperature of Equation (5).

With this we have developed an approach for establishing the effect of thermal
transients on the mechanical state of an elastic region containing a crack. The temperature
solutions are spatially one-dimensional and are obtained in closed form. The stress and
displacement fields are numerically calculated with finite element methods. A path
independent integral developed for thermoelastic problems is used to compute the stress
intensity factor.

Solutions to the Temperature Fields

The closed form representation of temperature for the case with temperature varying
as Tocos (cot) on the boundary y=L is derived by standard separation of variables method

and by invoking the Duhamel integral [22]:

(n-1Y2 'snE
T (t(-1) n OS"_-- (2 L sin ct-o)coscot)Tyt)= cos w~t + 4 to nx

TO n=1,3,5 ( + co) (19)

A similar expression for the temperature in which a uniform heat source varying as cos (cot)
is applied internally and the temperature at the end is zero is obtained by variation of
parameters method [22]:

T(yt) D (na)2 _ os sinwl+k Oya2 -2-.E (L_ n 2-L ( sinot +Xcoscan)
hL 2  L n=1,3,5 (+co (20)

in each case, Xn are the eigenvalues,
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AM, n = 1,3,5.... (21)

Figure 2 graphically depicts the temperature field according to (20) for various frequencies.

Solution to the Thermoelastic Stress Fields

The stress and displacement fields are calculated using the finite element method

which is an indirect approach to solving partial differential equations describing a desired

quantity in a continuum. In this case, the desired quantity is the stress/displacement field

and the continuum is the linear elastic solid of the two-dimensional geometry of Figure 1.

In theory, the continuum is divided into a number of 'finite elements'. An approximation

function (algebraic polynomial) is chosen to represent the variation of the desired quantity

at discrete points (nodes) within the element and on its boundary. The number of nodes for

each element determines the order of the polynomial. By using the physical properties of

the continuum and the appropriate physical laws, a set of simultaneous equations is

obtained. Solution of these equations results in a representation of the desired quantity at
nodal locations within the solid.

The ABAQUS finite element code is a packaged program designed for the
numerical modeling of structural response. Its features include its ability to perform linear

and nonlinear stress analyses; static and dynamic analyses; and coupled and uncoupled heat

transfer analyses. Full control of the finite element selection is afforded the user. The code

is capable of handling elements with up to 27 nodes for the three-dimensional stress

analysis case.

The uncoupled thermoelasticity problem can also be handled by ABAQUS, making

it an ideal code for the present work. If the temperatures are specified at the nodal points
within the material and appropriate material constants (including thermal expansion

coefficient) are input, the code will interpolate the nodal temperature field to interior Gauss
integration points to calculate the thermally induced strain field. The stress field is then

determined by the stress-strain relations.

Four-node bilinear elements were chosen for the analyses. In order to check the
spatial convergence of the solution, three grid sizes of uniform refinement were employed:
Ax = 1/6 (coarse mesh), 1/12 (medium mesh), and 1/24 (fine mesh). (A full description of

the grids used in the finite element analysis is contained in Appendix B.) Square elements,
Ax = Ay, were used in all analyses. Uniform refinement of the grid size permits a

quantitative evaluation of how well the solution converges. Moreover, an extrapolated
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value which approximates the result of a grid uniformly finer than the finest used in the

calculation can also be computed. The extrapolation scheme used models the error

distribution in the numerical analysis as

E = K - Kext  -- o Ac  
(2~~~et= eA(22)

where e is the absolute percentage error in the stress intensity solution K (because of the

singularity at the crack tip, this method is inapplicable for determination of stress field

convergence, rather it is extended to the stress intensity solution), Kext is the extrapolated
solution, &0 is the error for the unit grid size, A is the finite element mesh size, and c is a

convergence measure. This extrapolation scheme reduces to a Richardson approximation if

c =1. Uniform refinement implies the grid sizes are scaled proportionally. In this case,

they are reduced by a factor of 2 with each refinement. Thus the extrapolated value can be

derived by algebraic manipulation of the finite element results from the three grids:

KCKF K
Kt Kc +KF -2K c  (23)

Here the subscripts C, M, and F refer to the coarse, medium and fine finite element

solutions, respectively. The solution converges rapidly if c > 1. If c < 0, the solution

diverges. Between these limits, 0 < c < 1, impaired convergence is obtained.

c = -0 .6 9 3 In I C - % ab2 4] ] (24)

Obtaining the Stress Intensity Factor

The finite element analysis results in solutions to the stress and displacement

vectors at discrete points within the solid. In order to assess these results in terms of crack

tip stress fields, stress intensity values are needed. The path independent integral is a

method which calculates stress intensity values from the data acquired in the finite element

and finite difference analyses. It offers the distinct advantage that the errors in the analysis

stem only from the numerical approximations used and not from additional sources (i.e. the

singularity at the crack tip). For this reason, path independent integrals offer a relatively

accurate result with only modest computational effort.[ 13].
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The appropriate integral for the thermoelastic case is developed following Sinclair,

Okajima and Griffin [ 13], taking into account the Duhamel-Neurnann analogy for modeling

thermoelastic problems [20]. In general, the analogy states that the displacements produced

by a temperature T are the same as those produced by a body force equal to -3VT and

normal surface tractions equal to 3T, acting on a body of the same shape but with no

variation in temperature. In essence, the effect of the temperature change is the same as that

obtained by normal surface tractions equal to P3T and body forces equal to -3VT. By

formulating the problem in this way, it is clear that we maintain the exact same

eigenfunctions and eigenvectors as those for bodies with no temperature field (those of

Williams [4]) and we need only develop a new path independent integral which takes into

account body forces proportional to the gradient of the temperaLare. To do this, we

introduce new stress and displacement fields, denoted by the superscript R (for resolved

tractions and body forces) and related to those fields satisfying the equations of

thermoelasticity (7) through (11) by the relations

0l la 0 R P 1T
_=R

Txy TXy (25)

u = uR

v = yR

where 3 is as defined in (8). The new stress field satisfies the equations of linear elasticity

in which the body force and normal surface tractions are supplemented by -3VT and 13T,

respectively. These are the same as those presented earlier with the following exceptions:

the equations of equilibrium in the presence of a body force field:

R RR  + Rx , - 03 Ty 
6 

0

a~R , ~- 0TY = 0

on R, the stress-displacement relations for a homogeneous and isotropic, linear elastic

solid,

F (1-2v) [(1-v)u'X + v Vy ]

x I I I
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YR  (12g [1-v)vy + V u,X  (7+ u - (1 2v (27)

'rxy =1(u,y + V

on R, traction boundary conditions on the crack face, and on the upper and right edges of

the region.

=-P3T , rpx = 0 on y=O (O<x<a)

R=fT R= 0 on y=L (0<x<W) (28)
a R= 13T, tR -0 on x=W (0<y<L)

The superscripts on u and v have been omitted since the displacements compatible with 0 R

are equal to those produced by the original field by the Duhamel-Neumann theorem. We

now have a problem we can handle analytically and, as long as the temperature field is not

more singular than logarithmic behavior, there is no contribution to the stress intensity

factor from the temperature field in the superposition (substituting ay of Equation (25) into

Equation (12)). Thus, the stress intensity factor associated with the original problem is
equal to that associated with the fields oR and u. We turn now to developing the path

independent integral for regions containing body forces.
Following the procedure in Sinclair, et al.,[13] we invoke Betti's reciprocal

theorem in the plane for regions with body forces. For the case with a body force field
equal to -3VT, stress and displacement fields aR and u, respectively, Betti's reciprocal

theorem can be stated

(; u +Xx V * - t; v n xy + -y v -,* u)ny )dS

r

P J(T,xu" +T,yv )dA = 0
A (29)

The starred functions are the complementary eigenfunction stress and displacement fields

satisfying the same field equations, namely the complementary fields contained in Sinclair
et al., specializing X=l/2 and a---t. These fields are given for this special case in Appendix

C. The integration is performed in a counter-clockwise direction along any closed path r in

R. dS and dA refer to line and area elements, respectively, nx and ny are the components
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of the unit outward normal to I and A is the area enclosed by IF. On choosing the contour,

we proceed as in [131 and pick any path which includes the crack faces and an inner

circular arc starting at the crack face above the axis of symmetry and ending on the face
below it (Figure 3). The choice of the crack faces is based on the homogeneous traction

conditions of the complementary eigenfunction stress field along the faces. We take full
advantage of the crack face conditions by substituting the thermoelastic stress field for 0 R

via the relations of (25) since CayR does not generally equal zero on this boundary while cy

is identically zero there. In the limit as the radius of the inner arc tends to zero, the only

contribution of the inner arc to the integral emanates from the singular parts of the stress

fields. Since all stress fields now obey homogeneous crack face traction conditions the
counter-clockwise integration of the inner arc now equals the integration along the outer
path summed with the area integration. By scaling the contribution of the circular arc so

that in the limit, the stress intensity factor is recovered, we obtain the appropriate

expression for K:

K={(Oxu* + trxyv°- a, u- y v) nx +(v+ yu- oy v- u) ny )dS

-f(T,X u" + T,y v" ) dA +13j[(Tu) n,-(Tv) ny] dS
A Zi + Z2

(30)
where 11 and 22 are the outer path and crack face portions,respectively, of the contour F.

This expression is simplified by invoking the divergence theorem to combine the area

integral and the second line integral as a single area integral. Thus, the path independent
integral which defines the stress intensity factor for a body subjected to a temperature T,
satisfying the equations of thermoelasticity (7) through (11), is

K =f((axu* + 'tyv - Cx* u - T;~ v) n.+ (ay v + T,yu* - a;* v - T; u) ny, ) dS

+PfT(u',X + vY)dA
A

(31)

The resulting path independent integral is the sum of an area integral containing the
temperature field and a line integral containing the stress and displacement fields.
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Numerical computation of K requires compatible quadratures to accurately determine the

stress intensity factor. Both the temperature and displacement fields are determined at

nodal locations, while the stress field is most accurate at the interior Gauss integration

points. However, the ABAQUS code does interpolate these stress values to node locations

if so desired and integration was performed using these interpolated nodal values.

Integration using Simpson's rule is based on the use of parabolic arcs rather than
straight lines to approximate the integrand [23] and is accurate to order (Ax) 4 . This

technique uses nodal values of the function. Thus, it is well suited for the evaluation of the

line integral since this approach does not require evaluation of the function near its

singularity, the crack tip.

Solution of the area integral is not as straightforward. Upon evaluation of ui,* , the

area integral becomes (in cylindrical coordinates with the origin at the crack tip)

rI3T l cos- -drd0

(32)

for the Mode I stress intensity factor. The behavior of the complementary eigenfunction

displacement field results in an integrable square root singularity in the integrand in one

coordinate (the other remains nonsingular). Because of this singularity and the fact that the
integrand must be numerically evaluated throughout the area, a quadrature which can

handle this singularity is required. A Gauss-Legendre quadrature was developed following

[24] to approximate the general form of the integral:

b N

f(x)# dx- wi
a (33)

Defining the integral in this manner removes the difficulty in integrating the singularity

since we require f(x) to be regular. If f(x) is a polynomial, this approximation is exact
when used with the proper weights, wi, and abscissas, xi . For this particular square root
weight function, the abscissas are the zeros of the Legendre polynomials , Pn (lx) [25].

Values for the weights and abscissas were calculated for up to 96 interior points and are

tabulated in Appendix D.
For the nonsingular integration (over 0) , standard Gauss-Legendre quadrature is

used. Tabulated values of weights and abscissas for this method are common. Numerical
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results of the area integral using these two Gauss-type quadratures converged rapidly when

tested on several problems:

f(x) = 1.0

f(x) = 1 - 2x

f(x) = 5 - 6x2

f(x) = FX

f(x) = In (x)

With the first three functions, the value converged to the sixth decimal point with only six

interior Gauss points. Convergence on the last two functions was somewhat slower. For

the square root function, the value converged to the fourth decimal point after 48 interior

points; for the logarithmic function, the value converged to the third poir, -after 48 interior

points.

In order to verify the stress analysis and stress intensity calculation techniques, we

perform several test problems. In each of the test problems, static loadings are applied to

center-cracked geometries. The loading conditions for each of these problems are detailed

in Table 1 and include (i) uniaxial tension applied at y=L, no temperature distribution, (ii)

displacements applied on the boundary y=L, no temperature distribution, and (iii) a

spatially constant temperature distribution with the ends fixed from vertical displacement.

Normalized stress intensity factors, taken from the literature are also presented in Table 1

and are exact for infinitely long specimens. Note that width correction factors, taken from

the literature, are also included in the table.

In general, excellent agreement with the quoted values for all test problems is

observed in the results which are listed in Table 2. The calculations were performed in

plane-strain with a Poisson ratio of 0.3. The results are tabulated as normalized stress

intensity factors divided by the appropriate reported solution described in Table 1 such that

an exact value equals unity. The normalized crack length, a/W = 1/3 for all cases listed in

Table 2. The normalizing factor is

K- K
n-a (34)
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where Oo refers to the applied load. For test case (i), Oo is simply the traction applied at

y=L. For test case (ii), co is given by

_ Vo E
I-v 2 L (35)

For test case (iii), ao is given by

aETo
0_ -v (36)

The normalized crack length, afW , for the values quoted is 1/3. In addition, stress

intensity values were obtained for a/W = 1/2 and the accuracy of the results was found to

be consistent with that computed for the shorter crack length.

In addition to the individual values generated by coarse, medium and fine grids, the

extrapolated stress intensity factors obtained by using Equation (23), and convergence

measures from (24) are included in the tables. Further, path independence of the integral
was demonstrated by performing the integration along two different paths: one which takes

advantage of one boundary of the specimen, another which remains in specimen interior.

The paths of integration are illustrated in Figure 4. In each case, the two contours converge

to similar values of the stress intensity factor. The variation of the two paths is of the order

of 20 per cent for the coarse grid and converges to approximately 2 per cent for the fine

grid (less than 1 percent for the extrapolated values). However, slower convergence was

observed with the contour on the boundary, probably due to the difficulty in satisfying the

boundary conditions in the finite element analysis, resulting in relatively large errors along

the portion of the integration path which is on the boundary. For this reason, the interior

contour was selected for all successive calculations.

Numerical Results

Keeping the normalized crack length constant and equal to 1/3, dimensionless stress

intensity factors were computed for dimensionless frequencies ranging from 0 to 8.2 This

range is representative of typical thermal cycle frequencies used in fatigue testing. For

example, the high-strength nickel alloy IN 100 has a diffusivity of 0.00649 in.2/s3. If the

2 The dimensionless frequency, w*, is related to the frequency, co, by the relation w* - co L2 / (D x).
3 For k= 100 Btu in/(ft2 hr OF), p=0.28 lb/in3 ., Cp=O.10 6 cal/g°C and D=k/(p Cp).
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total specimen length is 2 inches (2L = 2 in.), the normalized frequency co*=2.5
corresponds to a real frequency of approximately oi=0.5 cycles/min. Results of the

computations are tabulated in Table 3 for the case with the sinusoidally varying end
temperature and in Table 4 for the case with sinusoidally varying uniform heat source. As
listed, the results are the dimensionless magnitude, K, and phase lag, 0, of the harmonic

stress intensity factor:

= K cos (ot -D)"a E 'to .1 7

(1-v) (37)

where the dimensioning parameter to refers to the end temperature To in Table 3 and the

magnitude of the heat source hoL 2 in Table 4. If Ks and Kc are the dimensionless stress
intensity factors associated with the sin (ct) and cos (ot) components of the temperature

field (Equations (14) and (15)), then the dimensionless magnitude K is obtained by taking
the square root of the sum of the squares of Ks and Kc:

K= 2 2 (38)

and the phase lag, D, is obtained thus:

4) = arctan Ks
(39)

Because the temperature in the vicinity of the crack tip is of interest, Tables 3 and 4
also include the magnitude, TI, and phase, 01, of the dimensionless crack tip temperature:

T = T1 cos (cot -01 )
'TO (40)
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In all cases, the values quoted are obtained from the numerical analyses using the

extrapolation method described previously (23). The convergence of the stress intensity

factors was found to be well behaved.
It is of interest to assess the variation in stress intensity with frequency for the

uniform heating condition in which the stress intensity factor is normalized by the

temperature at the centerline (the crack tip). With this normalization we can observe the

trend in stress intensity with frequency when a specific temperature is maintained within the

sample if the temperature at the end is maintained as zero. These data are plotted in Figure

5. It is noted that the maximum stress intensity occurs for the static case, o = 0.

Using linear superposition we can evaluate the Mode I stress intensity for different

fatigue conditions in which uniform, symmetric, heating is applied. By measuring the

temperature and phase lag at two locations within the sample (for example, at the crack tip

and at a distance L from it), we can derive the stress intensity factor for specific frequencies

of thermal cycle using the data presented in Tables 3 and 4. First consider a specimen that
is uniformly heated and in which the temperature at the crack tip, T1 is measured with

respect to the end temperature, To. The phase lag of the measured crack tip temperature is

then called 01. With this information, we can combine the heat source results with the

boundary temperature results to estimate the contribution of thermal cycling on stress

intensity. To maintain the crack tip temperature at T1 , a sufficient magnitude of the heat is

required at a specific phase lag from the boundary temperature. Since we have analyzed the

temperatures at the crack tip in all the problems, we need only find the magnitude of the
heat source and the phase required to maintain the crack tip at a specific temperature. In

other words, if TIB and DIB are the magnitude and phase of the crack tip temperature in

the case where To is specified on the boundary y=L, and T1H and 01H are the analogous

values in the cases where a symmetric heat source is present, then

T1 cos (ot - 4) ) = TB cos ( x - 01] ) + yTTH cos ( cot - (1H )41)

where y is a scaling factor for the heat source center temperature and Kc is the required

phase lag of the heat source. These two parameters are determined by the measurements T

and 01, and the results presented in Tables 3 and 4:

STl 2 + T i . 2 T, TIB Cos (01 -IIB)

TiH (42)
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and

T1 sin 0-TB 1 sin -1B
K=arctan T1 cos D, - TB Cos 4) - H  (43)

By establishing y and K, the stress intensities may also be found. If Kwt represents

the total dimensionless stress intensity factor in the specimen with crack tip temperature T1

cos (coX - 01) relative to the end temperature, To cos et, then

t+ (KH) 2 + 2YKB KH COS (CIB - OH -ic) (44)

where KB and 4B correspond to the magnitude and phase of the stress intensity with

boundary temperature prescribed and KH and OH are the respective values of the stress

intensity with an applied heat source. For the static case, if the crack tip temperature is
maintained at the same level as the end temperature then the stress intensity is zero since the

temperature is uniform within the plate. This is consistent with Equations (41) through
(44). If T1 = T. and o) = 0 (0 1 = 0), then from (42), y = 0. Since KB is 0 in the static

case, we have Ktot = 0.
Two examples of this type of superposition are considered and results are plotted in

Figures 6 and 7. In these plots, the combined stress intensity , Ktot, is plotted as a

function of TI/To for several frequencies. Two phase lags are illustrated and correspond to

the crack tip temperature in phase and 1800 out of phase with the end temperature. It is

noted that the stress intensity is zero for all frequencies in the uniform heating case when

the crack tip temperature is equal to and in phase with the end temperature. What this says
is that all temperatures in the plate vary according to To cos cot when this constraint is

imposed at both the end of the specimen and at the crack tip. In order for this to occur
numerically, the sum of the phases (iH, 01B and Kc must add to ± 1800 in Equation (44).

(This is true as long as y is non-zero which is the case for nonzero frequency. ) The sum

of OIH and 4)B from Tables 3 and 4 is equal to -900 to the third decimal point for each

nonzero frequency. Determining K from Equation (43) is straightforward and equal to -900

leading to a sum of -1800. These data confirm the accuracy of the numerical values in the

tables.
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Summary of Results

In this section, we have developed a method to estimate the variation of thermal

fatigue stress intensities as a function of frequency for the basic problem of a uniform heat

source in a center-cracked plate. Resulting values of stress intensity were computed for a
range of frequencies and show that the static case, co = 0, gives the strongest stress

intensity. Further, the stress intensity depends on the phase and magnitude of the

temperature at the specimen end relative to the temperature along the centerline. In order to

estimate the stress intensity for specific fatigue test cases, laboratory data, specifically the

relative temperature values, are required.
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Table I
Loading conditions and reported stress intensity solutions for test problems

The plane strain solutions are normalized such that
K = 1

ao4

Test Applied Reported Solutions

Case Conditions (Center crack geometry) Reference

(i)y = ao at y=L K=Fl(a/W)

T=0 F1 (1/3)=1.07 [26]

(ii) v=vo at y=L K= 1.0 [26]

T=0
Vo E

O- (l-V2) L

(i) v--0 at y=L K= 1.0 [261

T=To
aETo

0=- I-V
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Table 2
Results of test problem calculations using center-crack geometry

Reported as normalized stress intensity factor, precise value for Kext is 1.0

Test Integration Coarse Medium Fine

Case Path 4  Grid Grid Grid Kext c

(i) I 0.9280 0.9980 0.9960 0.9955 5.95

B 1.0953 1.0439 1.0224 1.0075 1.23

(ii) I 0.8220 0.9870 0.9796 0.9800 3.95

B 1.0960 1.0330 1.0065 0.9873 1.25

(iii) I 0.8725 0.9883 0.9798 0.9804 3.64

B 1.0910 1.0330 1.0065 0.9841 1.12

4 1 refers to the interior path; B to the boundary path.
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Table 3

Dimensionless stress intensity factor and temperature field results for

center-crack geometry,
end temperature prescribed non-zero,t% =To

K (D T1  1)

(x 10-3) (radians) (radians)

0 0.0 -1.571 1.0 0.0

0.5 47.623 -0.937 0.841 0.716

1.0 69.175 -0.528 0.610 1.202

1.5 76.899 -0.277 0.452 1.532

2.0 79.348 -0.102 0.349 1.784

3.0 78.512 0.139 0.229 2.183

4.0 74.793 0.312 0.163 2.513

8.0 55.627 0.710 0.0577 3.544
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Table 4

Dimensionless stress intensity factor and temperature field results

for center crack geometry, uniform heat source
o = hoL 2

CO* K TI 01

(x 10-3) (radians) (radians)

0 36.125 -3.141 0.5 0.0

0.5 30.391 -2.505 0.421 0.584

1.0 22.071 -2.098 0.307 0.940

1.5 16.359 -1.847 0.229 1.140

2.0 12.657 -1.673 0.179 1.447

3.0 8.358 -1.432 0.122 1.407

4.0 5.980 -1.260 0.0904 1.486

8.0 2.416 -0.864 0.0419 1.592
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Figure 1. Center-Crack Geometry of the posed problem
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2. Magnitude of the temperature field induced by uniform heating5 .

5The dimensionless frequency, cio', is related to the frequency, (o, by the relation W~ a coL2/ (Dx).
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a. Interior Path b. Boundary Path

Figure 4. Integration paths for the test problems. Areas shown represent the

upper quadrant for the center crack geometry.
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Figure 5. Amplitude of the stress intensity normalized by the crack tip temperature

for the uniform heating case.
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1.0
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-a CO* = 0.0
-0-* = 1.0

K I  0.6 .- * = 2.0
aET0  -" * = 4.0

1-v 0.4

0.2

1 2 3 4 5 6 7 8 9 10

Figure 6. Amplitude of the stress intensity as a function of the crack tip temperature. The

temperature at the crack tip, T1, is maintained by uniform heating and is in phase

with the end temperature, To.
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axETo .- co* = 8.0
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Figure 7. Amplitude of the stress intensity as a function of the crack tip temperature and
dimensionless frequency. The temperature at the crack tip, TI, is maintained by

uniform heating and is 1800 out of phase with the end temperature, To.



M. EXTENSIONS OF THE UNIFORM HEAT SOURCE PROBLEM

In this section, we consider several extensions to the uniform heat source problem

formulated and solved in Chapter II. First, because fatigue test specimens am not all
geometrically equivalent to the center-crack geometry, we will investigate some geometrical

differences: edge-crack geometries and plate and crack length scaling dependence, in

particular. Secondly, because specimen heating may not always be symmetric, we will

consider antisymmetric temperature fields which give rise to Mode II stress intensities.
These, when combined linearly with the symmetric heating results, will lead to predictions

of the stress intensity in more general thermal fatigue situations. Differences in problem
formulation and solution will be discussed in the pertinent sections, below.

Geometrical variations

a. Edge-Crack Geometry

In fatigue testing, cracks can be located on the specimen edge or in its center. The
important distinction in the crack location is that the edge-cracked component corresponds

to a simply-connected region while the center-cracked component corresponds to a
multiply-connected region. In our investigation of this geometric variation, we use the

same formulation as that already presented and the edge-crack geometry of Figure 8. The
region R of the analysis is, by symmetry, the upper half of the rectangular plate shaded in
the figure and corresponds to the same region investigated in the center-crack problem:

R fix,yI0<xSW,0<y5L} (45)

A crack of length a is contained on the boundary 0 < x < a along the line y =0.
The boundary conditions along the edge containing the crack are the only variation from the

formulation already presented. The condition on the temperature problem is that the edge
remains insulated which is identical to the condition of symmetry imposed on the center-

crack problem (4). Because of this, the temperature fields for the two geometries are
identical and will not be reiterated here.

35
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The conditions for the stress field, however, are different along the edge containing

the crack. On this boundary, traction-free conditions are imposed:

=X O=0, txy= on x=O (O<y<L) (46)

The remaining conditions, Equations (9) and (11), still hold.

With this, we have the formulation for the edge-cracked geometry. Solution is

accomplished with the same methods described in the previous section: temperature values
at nodal locations are calculated from the closed form temperature fields of Equations (19)
and (20) and are used as input to the finite element calculations. The path independent
integral derived in Equation (31) is again used to calculate the dimensionless stress intensity

factors.

To verify the stress intensity calculations for the edge-cracked geometry several test
problems are again performed. The three static test problems described for the center-crack
geometry are again used in addition to a fourth test case in which is applied a static

temperature distribution proportional to x/W with ends fixed from vertical displacement.
Table 5 contains descriptions of the loading conditions for each of the test problems and
width and bending correction factors taken from the literature. Results of the test cases,
normalized such that an exact value equals unity, are listed in Table 6 for coarse, medium
and fine mesh sizes. The calculations were performed in plane-strain with Poisson's ratio

equal to 0.3. Unless specified, results quoted are for normalized crack lengths of 1/3. In
general, excellent agreement with the quoted values for all test problems is observed for the
fine mesh, with errors of less than two per cent generally observed.

Dimensionless stress intensity factors for the posed edge-crack problem were
computed for the same range of frequencies as the center-crack problem and are tabulated in
Table 7 for the case with sinusoidally varying end temperature and in Table 8 for the case

with sinusoidally varying uniform heat source. Again, the listed values are the
dimensionless magnitude, K, and the phase lag, 4), of the harmonic stress intensity factor.

It is noted that the stress intensity values obtained are much lower than those of the center-

cracked geometry, often by a factor of five. Similar trends of decreasing stress intensity
beyond a dimensionless frequency of about 2.0 are observed.

b. Crack and sample length scaling effects.
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Although nondimensionalizing provides a way to generalize the problem so that

many different sizes of samples can be evaluated with only one calculation, it does not take
into account variations in ratios of crack length and the sample dimensions. In this section,
we investigate the dependence of length scaling on the stress intensity factor by computing

the stress intensity factor as a function of frequency for shorter relative crack lengths,

a/W=1/6, and longer relative sample lengths, L/W = 4.0. For comparison, the case in
which the heat source varies sinusoidally was used in these scaling calculations. Results

obtained by setting the normalized crack length equal to half that used in the original
calculations, are tabulated in Table 9. Results of doubling the relative sample length are

listed in Table 10.
The stress intensity results listed are nondimensionalized by the square root of the

crack length. From Tables 4 and 9, since the values of normalized stress intensity are
nearly the same, it is apparent that the stress intensity factor scales approximately as a1/2

(the crack length normalization factor). Further, this scaling is independent of the
frequency. The a1/ 2 scaling is consistent with stress intensities generated by mechanical

loads.
To assess the effects of scaling the sample length, we compare the results of Tables

4 and 10. Doubling the length of the sample relative to the width apparently reduces the
stress intensity in the sample by a factor of approximately four, (L/W)2 , for the same
temperature value at the crack tip. It is noted, however, that this solution may be particular
to this situation and may not be a general result since, by lengthening the sample, the
temperature constraint at the end y=L would probably be affected as well.

Asymmetrical temperature distributions

The equations and boundary conditions which define the temperature fields are
linear and so the fields themselves may be combined via linear superposition. This implies
that an asymmetric temperature field can be decomposed as the sum of a symmetric field

and an antisymmetric field. If we consider the uniform heat source and the symmetric end
temperature conditions as the symmetric contribution and a linearly varying heat source and

antisymmetric end temperature conditions as the antisymmetric contributions, we can obtain
the coefficients to the first terms in a Taylor series approximation to a more general class of
problems. These antisymmetric fields will be developed and investigated in this section.

The constraints imposed in the formulation of the antisymmetric problem are that

the temperature at the end y=+L is the negative of the temperature at the end yn-L. This
gives the antisymmetric condition of temperature equal to zero along the x-axis, not
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including the crack (a < x < W). Along the crack faces, the condition of insulation (normal

gradient equal to zero) still holds. Thus, a discontinuity in the temperature boundary

conditions occurs at the point x = a, and the temperature fields cannot be obtained in closed
form. In addition, the heat source will be imposed as one that varies linearly in the y-
direction:

h (x,y) = h. Y

0 L (47)

for a constant ho. The coupled equations defining the temperature field (16) are elliptic and

so the fields Ts and Tc may be calculated using finite difference methods as described

below.
The boundary conditions pertaining to the stress field are identical to those of the

symmetric problem with the exception of those along the x-axis in the region a < x < W.

Again, antisymmetric conditions are imposed:

ay =0 and u=0 ony=0 (a<x<W) (48)

The stress field solution will again be obtained numerically using the finite element method

already discussed.

a. The finite difference method
Finite difference methods employ Taylor series expansions to express derivatives of

analytic functions by arithmetic operations. In our analysis we employ representations of
derivatives involving error of order (Ax) 2. When these difference formulas are substituted
into the coupled equations for temperature, a set of linear algebraic equations is obtained.

The method originally chosen for solving these equations was Gauss-Seidel iteration with
an absolute convergence criterion. The iterative method starts with a guess for the
unknown vector and cycles through the equations replacing the solution for the unknowns
until each solution satisfies the convergence criterion. This continues until a change in each
unknown from the previous iteration to the current iteration is less than an acceptable value.
This value was set to be no greater than 10-6. With a criterion this small, however,
convergence was too slow for the two-dimensional fields and with greater values, errors in
the temperatures were unacceptably large. Because of this, an alternate method, Gauss-
Jordan elimination, was selected and used for the more complex temperature fields. This
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technique uses row and column combination until a lower- or upper-triangular array of

equations results. The unknown vector is then solved for directly.

Using Gauss-Jordan elimination provides a further advantage over iteration in that

accuracy of the solution depends only on the grid size used and round-off errors rather than

the additional error associated with iteratively solving the set of algebraic equations with too
large a convergence criterion. In order to check the spatial convergence of the solution,
three grid sizes of uniform refinement were employed in the analysis: Ax = 1/6 (coarse
mesh), 1/12 (medium mesh), and 1/24 (fine mesh). Square elements, Ax = Ay, were used

in all temperature analyses. Uniform refinement of the grid size permits use of the
extrapolation scheme discussed in the finite element section to model the error distribution
in the numerical analysis as

c = T- Text eO Ac  (49)

where e is the error in the temperature solution T at a particular node location, Text is the

extrapolated solution, co is the error for the unit grid size, A is the finite difference mesh

size, and c is the convergence measure.

To verify the numerical solution method, we use several techniques. First, the

closed form one-dimensional representations of the symmetric temperature problem

(Equations (19) and (20)) are compared with the values obtained inputting the appropriate

boundary conditions and forcing function for the symmetric problems. Secondly, a one-

dimensional antisymmetric problem in which the conditions T=O at y=O and T=To at y=L
was formulated and solved in closed form and compared with a numerical solution.

Finally, boundary values for three different known temperature distributions were input to

the code and the resulting numerical solutions compared with the known distributions.
These three temperature distributions and their respective forcing functions are:

T (x,y) h (x,y) 1

hOL 2  4 hoL 2  
(50)

T(x,y) = 1 y. h(x,y) =-3y2

hOL 24 hL2(51)
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T(r, ) = rr sine ; h(r,e) =0
T2 ' (52)

where the spatial variables x and y are normalized to the specimen length, L, r = (x2+y2) 1/2
and O=arctan (x/y). In general, all three verification techniques yielded numerical solutions

which converged rapidly to the desired solutions, within one per cent error for the mesh
sizes 1/6, 1/12 and 1/24.

b. Numerical results
Again the crack length was maintained as W/3 and dimensionless Mode II stress

intensity factors were computed for dimensionless frequencies ranging from 0 to 8 with the
same dimensioning parameters as those in the symmetric problem:

K1  - K cos (ot - 0)
-a E r O 1 -
(1-v) (53)

Results of the computations are tabulated in Table 11 for the case with sinusoidally varying

end temperature and in Table 12 for the case with sinusoidally varying linear heat source 6.
The tables also contain the temperature magnitudes and phase lags (TI and )i) at the

location x = 0, y = 0+ and not at the crack tip since the temperature is constrained to be

zero there.

In general, the stress intensity magnitudes vary much less with frequency than
those of the symmetric problem and are generally much lower at specific frequencies than

the corresponding Mode I stress intensities.

Summary of Results
In this section we considered several extensions to the basic problem formulated

and analyzed in the previous section. First, in considering edge-crack geometries, we
found that the edge-crack region results in stress intensities much lower than the center-

crack region. Secondly, we found that the stress intensity is proportional to a1t 2 . This is
consistent with stress intensities induced by mechanical loads. In a particular problem in
which specimen length scaling was examined, the stress intensity scaled as the inverse of

6The temperature fields for these specific problems were found to converge adequately.
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the square of the length. However, this is not considered a general result since the

temperature constraint at the specimen end would probably change with the scaling.

Finally, antisymmetric temperature fields were evaluated and Mode II stress intensities

calculated. In general, we found these stress intensities to be smaller than the Mode I stress

intensities but in order to evaluate the significance of the Mode II values, representative

cases would have to be evaluated.
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Table 5

Loading conditions and reported stress intensity solutions for test problems

The plane strain solutions are normalized such that

K ,fl

Test Applied Reported Solutions

Case Conditions (Edge crack geometry) Reference

cry = cyo at y=L K=F2 (a/W)

T=O F2 (1/3)=1.7864 [26]

(ii)v=vo at y=L K--G(a/WL/W

T=O G(1/3,2)=1.2467 [27]
v0  E

a 0 - (1-v 2 ) L

(iiu) v=-O at y=L K--G(a/WL 4'W)

T =To G(1/3,2)=1.2467 [27]
otET0

a0O 1-v

(iv) v=-O at y=L K=0.5 [15]
T=2T0 xw

cxETO
Oo I-v
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Table 6

Results of test problem calculations using edge-crack geometry

Reported as normalized stress intensity factor, precise value is 1.0

Test Coarse Medium Fine

Case Grid Grid Grid Kext C

(i) 0.8000 0.9403 0.9660 0.9718 1.17

(ii) 0.8711 0.9808 0.9839 0.9840 2.47

(iii) 0.8510 0.9843 0.9849 0.9850 3.64

(iv) 7  0.9280 0.9746 0.9814 0.9826 1.33

7 aW = 1/2.
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Table 7

Dimensionless stress intensity factor results

for the sinusoidally varying end temperature,

Edge crack geometry

K

(x 10-3) (radians)

0 0.0 -1.571

0.5 9.324 -0.883

1.0 13.504 -0.415

1.5 15.060 -0.107

2.0 15.510 0.125

3.0 15.252 0.481

4.0 14.46 1 0.767

8.0 10.392 1.620



45

Table 8

Dimensionless stress intensity factor results

for the sinusoidally varying uniform heat source,

Edge crack geometry
,ro -- hoL2

K

(x 10-3) (radians)

0 7.072 -3.142

0.5 5.978 -2.448

1.0 4.339 -1.984

1.5 3.618 -1.677

2.0 2.530 -1.447

3.0 1.782 -1.092

4.0 1.336 -0.807

8.0 0.413 0.041
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Table 9

Dimensionless stress intensity factor and temperature field results, a/W =1/6

for the sinusoidally varying uniform heat source,

Center crack geometry

c= h0L2

O*K 0T 1  4

(x 10-3) (radians) (radians)

0 39.801 3.142 0.500 0

1.0 24.326 4.179 0.307 0.940

2.0 13.962 4.596 0.179 1.263

4.0 6.607 -1.287 0.0904 1.486

8.0 2.467 -0.913 0.0419 1.592
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Table 10

Dimensionless stress intensity factor and temperature field results, LW -- 4.0

for the sinusoidally varying uniform heat source

Center crack geometry
'TO = hoL 2

CO* K 0 T1

(x 10-3) (radians) (radians)

0 9.459 3.142 0.500 0.0

0.5 7.956 3.834 0.421 0.585

1.0 5.775 4.297 0.307 0.940

2.0 3.303 4.592 0.179 1.263

4.0 1.541 -0.814 0.0904 1.486

8.0 0.548 0.0282 0.0419 1.592
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Table 11

Dimensionless stress intensity factor and temperature field results

for the antisymmetric problem of sinusoidally varying end temperature,

Center crack geometry

,o=To

K 0 T1

(x 10-3 ) (radians) (radians)

0 34.319 0.0 0.146 0.0

0.5 34.364 0.409 0.144 0.287

1.0 34.484 0.798 0.137 0.564

1.5 34.608 1.151 0.128 0.826

2.0 34.674 1.462 0.118 1.068

3.0 34.492 1.967 0.0972 1.497

4.0 33.901 2.349 0.0793 1.864

8.0 27.141 3.209 0.0373 2.994



49

Table 12

Dimensionless stress intensity factor and temperature field results

for the antisymmetric problem of sinusoidally varying linear heat source,

Center crack geometry.

To -- hoL2

co* K 0 T1

(x 10-3) (radians) (radians)

0 4.117 0.0 0.0122 0.0

0.5 4.054 0.211 0.0120 0.208

1.0 3.878 0.411 0.0115 0.407

1.5 3.629 0.599 0.0107 0.589

2.0 3.335 0.762 0.00986 0.753

3.0 2.757 1.040 0.00815 1.024

4.0 2.263 1.253 0.00669 1.233

8.0 1.111 1.766 0.00327 1.718
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Figure 8. Edge-Crack Geomnetry



IV. DIRECT RESISTANCE HEATING OF A CENTER-CRACKED PLATE

An alternative method for heating fatigue specimens is to apply an electric current
uniformly across the end of the specimens. The major difference between the direct current
and heat lamp methods is that the insulated crack faces permit no current flow and so the
heat source generated by the current is singular at the crack tip although the temperature

remains bounded there. This singularity may induce a different stress intensity behavior

than the regular heat source induced by conventional lamp heating.

Defining the Heat Source

The heat source induced by an electric current flowing in a plate is calculated from
the electric current density vector, I, by the relation

h (x,y) = P- ( I 0 I)k (54)

where p is the electric resistivity and k is the thermal conductivity of the material. Thus, in

order to evaluate the heat source magnitude for the center-cracked plate problem, we must
first determine the resultant electric curent vector in a plate of width W with a center crack

exposed to a far-field electric potential. We approach this problem by taking advantage of
the analogy of fluid flow around an infinite cascade of flat plates and consider the solution
in the rectangular region under investigation. A full description of the derivation of the
electric potential heat source is given in Appendix A. If the electric potential in the plate is
*, it is related to the electric current by the vector expression,

I = .V /p (55)

The electric potential in the region R exposed to a potential drop per unit length of 4O is

derived in Appendix A as:

S IWln [a2+ A2+ + 2A( a cos -- sin-)]2 2 (56)

51
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where

a=cos R- cosh 7C-
2W 2W

= sin- c- sinh TW
2W 2W

aoC = COS-2-W2W (57)

a= 1(c-32 -ct)2 + 4a2132

-2a13
1 arctan 2c

a 2  32 ao2

The heat source is proportional to the square of the gradient of and behaves

assymptotically as 1/r near the crack tip where r is the distance fiom the crack tip. At points
distant from the crack, the heat source magnitude approaches a constant value of 0 .

The temperature fields induced by this heat source are calculated with the finite

difference routine described in detail in the previous chapter. However, the singularity of

the heat source at the crack tip may cause some numerical complications which were not

addressed by the verifications of the finite difference method already described. Because of
this, it is important to evaluate the convergence of the temperature solution with this type of

behavior in the forcing function. To do this, we consider a problem in which the heat

source term varies as 1/r and a closed-form solution is obtainable, and compare the

solution with the numerically determined values in which the appropriate boundary
conditions are input. The problem we consider is the temperature distribution in a cracked

disk, the region of interest readily defined in cylindrical coordinates:

R = {, o 10<r< ,I -c<O<xj (58)

with the crack located along the line 0 = x , 0 < r <.1.

We seek then, the solution to the heat conduction equation with a sinsuoidally

varying heat source which behaves as l/r:

2 T I1O oVrT=- - (cos5)t r (59)
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where the temperature, T = T( r, 0, t ). We constrain the temperature on the disk boundary

to be zero and the crack faces to be insulated. The solution is obtained by separation of

variables technique and is a Bessel function of the first kind, of zero order, in r. The

steady state distribution is found to be:

H+ 2
(60)

where the coefficients, Hn, are defined by Fourier series representation,

I

2 Jo (Xn r) dr

F n [ J , a n ) ] 2 ( 6 1 )

the eigenvalues, Xn , are the zeros of the equation Jo(2Ln) = 0, and JI is the first order

Bessel function of the first kind.

To obtain this temperature distribution numerically, we specialize now to the

geometry of the center-cracked plate and input the appropriate gradients of the above

distribution along the vertical edges and the appropriate temperature values along the top

edge as boundary conditions in the finite difference code. We then check spatial

convergence by performing the finite difference calculations using different mesh sizes.

Four mesh sizes of uniform refinement were employed: 1/12 (coarse), 1/24 (medium),

1/48 (fine), 1/96 (superfine).

Since the crack tip is the singular point of interest, we check convergence of the

solution at that location and perform the analysis for three different frequencies: co = 0, 4,

8. The results of the convergence check are listed in Table 13. The values are normalized

by the exact value from the closed form solution for the cosine temperature component, Tc

and for the sine temperature component, Ts. The results show good convergence with

errors less than 1 per cent for the cosine component and on the order of 2 per cent for the

sine component for the superfine mesh.
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Stress Intensity Results
With the verification of the finite difference method, we can perform stress intensity

calculations with the electric potential heat source as the forcing function in the conduction
equation and the temperature constrained to be zero on the ends. The results of these

calculations are listed in Table 14 for the center cracked problem for the normalized crack
length of 1/3. In order to compare the stress intensity values, we again normalize by the

crack tip temperature. These data are plotted in Figure 9 and show that when a specific
temperature is maintained at the center of the specimen, the stress intensity factor increases
with the frequency. This contrasts with the results of the uniform heat problem in which

the stress intensity decreased when a specific temperature is maintained at the center line

(Figure 5).

The reason for this increase is apparent from the temperature fields generated by the

electric current. The electric potential method of heating gives a temperature field which is
spatially dependent in both x- and y- directions. This is different from the uniform heating
method which gives a one-dimensional temperature field (for the symmetric case). The
gradients in the temperature in the x-direction increase with the frequency as shown in

Figure 10 and the magnitude of the stress intensity is governed by the size of the

temperature gradient.
In order to compare the uniform heat stress intensities with resistance heat stress

intensities for the case of a specified end temperature maintained, we use the superposition
procedure described in Equations (41) through (44) and the data of Table 14 and Table 3.

The two examples considered in Section II for uniform heating are again investigated here.
These are the temperature at the crack tip (i) in phase with the end temperature and (ii) out

of phase with the end temperature. The data of Table 3 are used in conjunction with those

of Table 14 in the superposition and the results are plotted in Figures 11 and 12.
Comparing these results with the similar results obtained in the uniform heat problem, we

observe that there is a difference. First, for the static case where the temperature at the
center is in phase with the end temperature, the uniform heat solution gives zero stress
intensity. This is not the case when the specimen is heated electrically because of the
presence of nor,-,co tc. perature gradients in the x-direction. Secondly, the stress

intensity of electrically heated specimens is observed to increase with the frequency, rather

than decrease as in the uniformly heated specimens.

Unlike the uniform heat problem, with the electric resistance method of heating we
have an opportunity to avoid direct measurement of the temperatures by analytically
estimating the temperature values at the specimen end. For example, we can estimate this
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temperature as the far-field temperature in an equivalently heated long stripS. The far-field

solution in this case is:

T (x,y,t)- o 2D sincot
kW (62)

If this temperature is taken as the end temperature, the stress intensity factor in a cracked
plate with electric current heating can be estimated without directly measuring the plate
temperatures 9 . We again use the superposition equations (41) through (44). The results of
this superposition, where the stress intensities are normalized by the temperature at the

crack tip, are plotted in Figure 13 and show the stress intensity assymptotically approaches
zero as the frequency approaches zero and peaks at a normalized frequency of

approximately 4.0.
It is apparent from Figure 13 that the oscillating stress intensity variation with

frequency behaves differently from the observed monotonic variation of the case when a

zero end temperature is prescribed (as in Figure 5). We can attribute this to the inverse
dependence of the magnitude of the far-field temperature on frequency and to the
importance of the phase lag of the end temperature with respect to the crack tip temperature.
These two effects are manifested in three regions of the frequency, as shown in Figure 13.
At very low frequencies, the end temperature is quite high (from Equation (62)) and the

resulting superposition is similar to the case of a harmonic temperature applied at grips with
no heat source. Since the thermal gradients are small with this mode of heating, the stress

intensity factors are also small.
On the other hand, as the frequency gets large, it is clear from Equation (62) that the

end temperature gets quite small. In this case, the centerline temperature is driven solely by
the electric resistance heat source and the solution approaches that of the resistance heat
source problem with zero end temperature (evidenced by the closeness of the solutions at
frequencies greater than 16). In the middle of the frequency regime, the phase difference

between the end and center temperatures plays an important role. When the temperatures

are out of phase, large thermal gradients exist in the specimen causing the stress intensities

to be quite large.

8This procedure is less accurate but has the advantage that it requires less information than the direct
measurement method. In other words, it is only necessary to know the temperature range over which the
specimen is cycled in order to estimate the stress intensity.
91n practice, the end grips are cooled and consequently the temperatures may be significantly different from
those used in this estimate.
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Crack length scaling
We again investigate how the stress intensity scales with crack length by

performing the above calculations with a normalized crack length of 1/6. The results of the

electric potential stress intensity and crack tip temperature calculations for the case in which

the end temperature is zero are listed in Table 15. The results of the superposition with the

far-field temperature data are shown in Figure 14. Comparing these results with those in

Figure 11 it is evident that the stress intensity again scales approximately as a1 /2 at low

frequencies but the scaling is frequency-dependent. At the higher frequencies (< 8.0), the

stress intensity scales more closely to a factor of a.

Summary of Results

In this section, we evaluated the difference between heat lamp and electric potential

methods of cycling the temperature in a specimen. In general, the stress intensity of

electrically heated specimens increases with frequency rather than decreases as in heat lamp

heated specimens. Further, the scaling of stress intensity with crack length varies with the

frequency, scaling as a1/2 at low frequencies and as a at higher frequencies.
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Table 13

Convergence check of finite difference solution for singular heat source.

Precise value is 1.0

mesh size (0 = 0 c )-

coarse 0.9557 0.9374 1.0273 0.8913 1.0224

medium 0.9720 0.9628 1.0046 0.9400 0.9998

fine 0.98 14 0.9850 0.9904 0.9803 0.9862

superfine 0.9989 1.0017 0.9830 1.0088 0.9793
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Table 14

Dimensionless stress intensity factor and temperature field results

Electric potential heat source, a /W= 1/3
Cy 2 2

Center Crack

(* K 0 T1  (1

(x 10-3) (radians) (radians)

0 34.560 -3.141 0.537 0.0

0.01 34.639 -3.126 0.537 0.0129

0.1 34.365 -2.987 0.533 0.129

0.5 29.207 -2.436 0.453 0.577

1.0 21.536 -1.958 0.330 0.925

1.5 16.381 -1.639 0.247 1.117

2.0 13.135 -1.400 0.193 1.232

3.0 9.513 -1.041 0.132 1.361

4.0 7.614 -0.771 0.098 1.427

8.0 4.685 -0.081 0.046 1.483

16.0 2.964 0.527 0.0225 1.382

32.0 1.778 0.980 0.0126 1.224
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Table 15

Dimensionless stress intensity factor and temperature field results

Electric potential heat source, a /W= 1/6
S22

CO* K 0 T1 01

(x 10-3) (radians) (radians)

0 38.479 -3.141 0.507 0.0

0.01 38.478 -3.127 0.507 0.013

0.1 38.171 -2.995 0.503 0.130

32.435 -2.476 0.427 0.584

1.0 23.695 -2.040 0.311 0.939

2.0 13.899 -1.558 0.182 1.262

4.0 7.146 -1.034 0.092 1.485

8.0 3.500 -0.434 0.042 1.591

16.0 1.840 0.120 0.020 1.574

32.0 1.137 0.505 0.010 1.522
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Figure 9. Stress intensity normalized by the temperature at the crack tip.
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Figure 10. Magnitude of the electric potential temperature field along the x-axis for

different normalized frequencies
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Figure 11. Amplitude of the stress intensity as a function of crack tip temperature and

dimensionless frequency. The temperature at the crack tip, TI, is maintained

by electric protential heating and is in phase with the end temperature, To.
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Figure 12. Amplitude of the stress intensity as a function of crack tip temperature and

dimensionless frequency. The temperature at the crack tip, TI, is maintained

by electric protential heating and is 1800 out of phase with the end temperature,

To .
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Figure 13. Stress intensity normalized by crack tip temperature fora /W= 1/3.

The temperature at the end is taken as the far-field solution of Equation

(62).
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Figure 14. Stress intensity normalized by crack tip temperature for a /W= 1/6. The

temperature at the end is taken as the far-field solution of Equation (62).



V. IMPLICATIONS FOR FATIGUE TESTING

An accurate and computationally efficient method for determining the effect of

cyclic thermal loading on crack tip stress fields has been developed and has been used to

estimate the effect of simple thermal transients on crack tip stress states. The method is

generally applicable since it enables calculation of stress intensity values for any frequency

of the thermal loading, can be used for both singly- and multiply-connected regions, and

gives a dimensionless result that applies to all linear elastic homogeneous materials.

The results of the foregoing analyses indicate that stress intensity factors of cracked

components exposed to thermal fatigue loading conditions have a significant dependence on

the frequency of the thermal cycle. The dependence is greatest for electric potential heating

methods due to the large gradients in temperature induced by the singular heat source. The
fundamental difference in the dependence is that the stress intensity induced by uniform

heating decreases with frequency while the stress intensity induced by electric heating

increases with frequency. In addition, the scaling of the stress intensity with crack length

for electric heating is found to depend, to some extent, on frequency. This contrasts with

uniform heating in which the stress intensity invariably scales as a1t2 .

A primary goal of our analysis is to provide estimates of the thermal contribution to

the stress intensity factor in thermo-mechanical fatigue testing. With these estimates, we

can compare .hermally induced stress intensities to those induced by mechanical loading.

An introduction to these calculations is accomplished by considering the example case

described in Wilson and Warren [21]. Samples of IN100 were thermo-mechanically

fatigued within the temperature range of 300°F - 1000OF at thermal frequencies of 0.5

cycles per minute, (with the specimen dimensions and material data given, this corresponds
approximately to a normalized frequency, (o* = 2.0). The maximum stress intensity occurs

at the critical crack length, roughly one-third the sample width, and has a value of

approximately 80 ksi4(in.). Comparing these data to the data presented in Section II

(uniform heat problem), a normalized value of stress intensity 20% that of the maximum

mechanically induced stress intensity value reported would correspond to about 0.15.

From Figure 6, if the centerline temperature is in phase with the far-field temperature, the

temperature at the crack tip would have to be at least twice as great as the magnitude of the

66
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temperature cycle. If the two temperatures were out of phase, however, the centerline

temperature need only be equal to the far-field temperature in order to result in this

magnitude of stress intensity.
By way of a second example, we consider actual thermal fatigue data and

superposition to estimate the stress intensity factor for another case. Practically, the
information required for the superposition and stress intensity calculations can be obtained
by appropriately placing thermocouples to measure the temperature and phase relations at
two locations (at the crack tip and at the specimen grips). We have obtained this

information for titanium sheet samples from the Materials laboratories at the Wright-

Patterson Air Force Base. The experiment consisted of 1.5 by 3 inch center-cracked

specimens (Ti-6 A1-4 V) which were heated by four symmetrically placed lamps at two

frequencies: 2.8 min per cycle (21.4 cycles per hour) and 7.4 min per cycle (8.1 cycles per
hour). Thermocouples placed at both ends of the specimen confirmed the symmetry of the

temperature distribution. The temperature ranges for the two cases at the two locations are

as follows:

Frequency Crack tip Grip location

(cy/hr) Tmin Tmax Tmin Tmax

8.1 2900F 8700F 1100F 230°F
21.4 360°F 8700F 1350F 2250F

In each case, no measurable phase lag was noted. Retesting confirmed consistency of the

results.

We apply this information and the data in Tables 3, 4 and 14 to the superposition

Equations (41) through (44) to evaluate the Mode I thermally induced stress intensity factor

for these particular cases. For example, for the frequency of 8.1 cy/hr, To = 600F and

T] = 2900F.
With the materials data for Ti-6 A1-4 V:

Elastic modulus (E) 16.6 x10 6 psi

Density (p) 0.16 lb/in 3

Coefficient of thermal expansion (a) 5.1 xl0-6 in/in/OF (at 6000F)

Thermal conductivity (k) 72.0 Btu in/ft2/hr/OF (at 6000F)

Heat capacity (Cp) 0.125 Btu/lb/OF
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actual estimates l o of the stress intensities can be made. The measured frequencies

correspond to dimensionless frequencies of approximately 1.5 and 4.0. In order to make a

direct comparison between uniform heating and electric resistance heating, we use the

corresponding information for these frequencies from Tables 3, 4 and 14 to give the

following estimates of the thermal stress intensities induced by the two different modes of

heating:

Frequency Uniform heating Electric heating

8.1 cy/hr 1.76 ksiN(in.) 1.66 ksi(in.)
21.4 cy/hr 1.52 ksiq(in.) 1.93 ksi4(in.)

These values may be compared to a fracture toughness of approximately 30
ksi(in.) for this particular alloy. The results above are consistent with the previous
observation that the dependence of stress intensity factor on frequency is different for the
two modes of heating and indicate that for higher frequencies, much larger errors in the
overall stress intensity calculations may actually be occurring when electric resistance
heating is used to cycle the specimen temperature in thermo-mechanical fatigue.

It is noted that the error from the dynamic temperature distribution contributes only
a part of the total error stemming from the incorporation of thermal cycling in thermo-
mechanical fatigue. This is because the temperature at the center does not oscillate about
the same temperature as the end temperature. In fact, a static temperature gradient, which
we approximate as parabolic in the y-direction, exists in addition to the dynamic oscillations
about this gradient. Since the center of the specimen is measured as hotter than the end of
the specimen, the stress intensity contribution from this static thermal gradient is negative.
We can estimate this contribution using the static data of Table 4 and the materials
information cited above as 12.5 per cent and 15 per cent of the fracture toughness for the
dimensionless frequencies of 4 and 1.5, respectively.

Because the errors stemming from the dynamic part of the temperature distribution
oscillate, they can either amplify or attentuate the total error induced by thermal cycling. In
other words, since the static temperature yields a negative stress intensity and the error in
the dynamic part can be positive or negative, summing the negative errors could give an
overall error as much as about 25 per cent of the fracture toughness value. This means that

10The stress intensity values calculated are estimates in light of the assumption that the higher order terms
in the Taylor's series expansion are considered small in comparison with the first term and the analysis was
performed in plane stwain while plane stress samples were used for testing.
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the load cycle could be significantly lower than what is actually recorded. Further, since

the applied maximum cyclic load often reaches only one-third to one-half the fracture
toughness value, the error in the loading stemming from the cyclic thermal loads could, in
fact, be significantly greater than 25 per cent.

As discussed in Section IV, the electric resistance method of heating gives an

opportunity to avoid direct measurement of the temperatures by analytically estimating the
temperature values at the specimen end as the far-field temperature in an equivalently heated

long strip, Equation (62). If this temperature is taken as the end temperature, the stress

intensity factor in a cracked plate with electric current heating can be estimated without

directly measuring the plate temperatures.
It is interesting to compare this method of estimating thermally induced stress

intensity factors with the method provided in [35], in which it is proposed that a static

model problem be used to estimate the stress intensities induced by direct resistance
heating. The results of this earlier analysis yielded axisymmetric temperature variations in
the vicinity of the crack tip as T(r) = Tb+ Te(l-r) which gives a resulting Mode I stress

intensity factor as

K, = 0.0914 TaE T. I
I -V

where Tb is a constant temperature along a circular boundary at a radius of the half crack

length, a, r is the dimensionless distance from the crack tip (normalized to a ) and Te is a
temperature which is a function of the electrical and thermal conductivities of the specimen,

the applied voltage drop per unit length and the crack length:

92k
With the test data and IN100 materials properties information presented in [35], the Mode I
stress intensity factor at the highest voltage is calculated to be 3.8 ksiq(in.).

We can estimate the Mode I stress intensity with the far-field approximation of the

end temperature described above. If a complete thermal cycle is achieved in one minute
then the normalized frequency corresponding to this rate of heating is approximately 4.

Using the data of Table 14 and the superposition procedure described in Section II, KI is
calculated to be 3.8 ksi(in.). Although a comparison of the model problem estimate with

this result shows a very close correlation for this particular case, the results depicted in
Figure 13 show, in general, the model problem will give results within an order of

magnitude of that predicted with the dynamic analysis discussed here.

It has been shown that, with the results presented, estimates of the thermal
contribution to stress intensity in thermo-mechanical fatigue testing can be derived for a
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wide variety of symmetric loading conditions. However, these calculations are not limited

to symmetric temperature distributions. With the appropriate superposition and

measurements of temperature at several locations within the sample, we can derive both

Mode I and Mode 11 stress intensity values for asymmetric thermal loadings. It is of

interest to evaluate how large the antisymmetric part of the temperature field has to be in

order for the Mode II stress intensity to be significant compared to the Mode I value. In an

example situation of a normalized frequency of 2.0, in order for the Mode I and Mode II

stress intensities to be comparable, the antisymmetric end temperature would have to be

five times greater than the symmetric end temperature and the center temperature five times

less.

Geometrical variations have been investigated. We have found that edge-cracked

specimens result in much lower stress intensity values (by a factor of approximately five)

than the center-cracked specimens. This is probably due to the lack of restraint in bending

that exists in the edge-cracked geometry that does not exist in the center-cracked plate.

In conclusion, the results of this analysis indicate that significant stress intensities

may be induced by thermal fatigue loading. Further, the stress intensity values depend on

the mode of heating used to cycle the specimen. Samples heated by direct resistance

heating are subjected to a singular heat source at the crack tip which results in the stress

intensity factor increasing with frequency. This behavior is opposite that of uniformly

heated specimen and indicates that care should be taken when resistance heating is used at

relatively high frequencies. The results obtained in the preceding sections may be used in

conjunction with experimental data to improve predictions of stress intensity factors in

laboratory fatigue tests and in actual fatigue service environments.



VI. A PILOT STUDY OF COMPOSITE MATERIALS

In the interest of understanding the effects of thermal transients in composite

materials, an appropriate extension of the path independent integral approach is its

application to bimaterial composites in which cracks occur normal to the bimaterial
interface. We select this particular geometry for investigation because of its physical
interest: it can correspond to the problem of a crack in the matrix or in a fiber, turning at or

penetrating the interface between the fiber and the matrix; and because the corresponding

eigenvalues are real. Real eigenvalues permit the interpretation of the eigenfunctions in
terms of standard physical arguments since there is no oscillating singularity at the crack

tip.
The isothermal problem of a composite with a crack normal to the interface has been

studied by Hilton and Sih [28] for the case in which the crack does not extend to the
interface, and by Cook and Erdogan [29] and Gupta [30] for the limiting case where the

crack ends at the interface. In each case, the method of solution uses integral transform
techniques to extract the stress intensity factors for different material combinations.

In our approach, we consider the relative importance of two thermal loading effects,

those induced by dissimilar thermal diffusivities and dissimilar thermal expansions. In
performing these parametric studies we are able to use the same techniques as those

developed for the homogeneous case. Finite difference approximations will be derived for
the temperature fields, which now depend on the ratio of the thermal diffusivities of the two
materials. Finite element approximations will be obtained for the stress and displacement
vectors which now depend on the ratio of the thermal expansions and the elastic moduli of

the two materials. Finally, a path independent integral will be used to extract the stress
intensity factors from the appropriate stress, displacement and temperature fields.

Formulation

In order to investigate the effects of transient thermal loadings on crack tip stress
fields in composite materials, we follow Okajima [31] in formulating the following set of
problems. First we consider the rectangular region in the x, y plane illustrated in Figure

71
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15. By virtue of the symmetry of this configuration, we are able to limit the analysis to the

region R: which is composed of two subregions R I and R 2:

R =R, UR 2 ,

R, = f{(x,y) I-W<x<O,O<y<L (63)

{2 {(x,y)I O<x<W, O<y<L}

Once again we seek the two-dimensional thermoelastic stress and displacement

vectors satisfying the plane uncoupled quasi-static equations of thermoelasticity.

Reiterating the earlier formulation, we have the following equations for bimaterials. First,

the temperature, T(x,y,t) is defined by the heat conduction equation

V 2 T (xyt) = -L- - (x,y,t) - H (x,y,t)D. (64)

on R i, i = 1,2, and boundary conditions which will be discussed later. Secondly, the

stress vector satisfies the plane equations of equilibrium on R in the absence of a body

force field (Equations (7)), and the stress and displacement vectors satisfy the plane-strain

stress displacement relations:

2ti [(1-vi)ux + Viv,y] -i T

(1-2vi)
21i [(lvi ) v IY + Viu , ] - iT

= (-2v 1) 1(65)

xy Ai ( u ,y +" V+x)

on Ri , i = 1,2. The stress and displacement vectors satisfy traction-free boundary

conditions on the outer edges and along the crack face:

TX = lXY = 0 onx --±W,(0<y<L)

y = rxy = 0 ony= L, (-W<x<W) (66)

Cy = rxy = 0 ony=0, (-W<x<O)

and symmetry conditions along the positive x-axis:
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V= xy =0 on y=0,(0<x<W) (67)

Finally, the two regions are considered perfectly bonded and so must obey continuity

requirements at the interface:

lim Cx = lira OX , tim Txy = lira 'Txy (0 < y < L) ,
x -+O" x-< xL-a) (68)

and

lin u= limu, lim v = limv (0<y<L)x -e0 x-v, f x--eO x-,0 (69)

where 0+ implies x > 0, and 0- implies x < 0.

Again, we refer to the stress intensity factor for evaluating the importance of
transient temperature fields on crack tip stresses. Herein we deviate from homogeneous
behavior. For cracked non-homogeneous solids with different elastic moduli the
eigenvalue is no longer equal to 1/2. If we denote X as the singular eigenvalue

characterizing the only singular stress field at the crack tip, the stress intensity factor for

composite materials, K). is defined as

K. =lim 2,/ _ x1"'"  on y=0
x--e0 Y(70)

Evaluation of the eigenvalues and eigenfunctions
In order to determine the eigenvalues for the present case, we refer to the analysis

of Dempsey and Sinclair [32] and specialize to our geometry. Substituting 01= ict2 and

02= x into Equation l-A-4 on page 323 of their analysis, we obtain the transcendental
equation for X as a function of material constants gi and vi, i = 1,2:

sin -- (32 _1) + X(1 -2 -(X+a3)+ 2 1=)

In (71), a and 13 are defined as combinations of ti and vi,
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a 2MI - Im2 t 2 92 - 91
a= m1+±1 lm2  ,13=a-2 j 2 1 I 1 2 (2

2n +tn' 2mI+ 91tlM2 (72)

In plane strain, mi = 4 (1- vi ). The composite material parameters were first defined in this

way by Zak and Williams [33]. It is noted that Equation (71) is identical to the

transcendental equation derived in the analysis of Cook and Erdogan. The limiting values

of a and P are determined by the physical restrictions of vi (0 < vi < 0.5), and gi (0 < gix <
-a). Substituting these values into (72) gives -1 < a < 1, and (a-i) < 43 < (a+l).

Several eigenvalues satisfying (71) for this range of material parameters are shown in

Figure 16.

To determine the eigenfunctions associated with the eigenvalues, we turn to the

work of Williams [4]. The results, best presented in the cylindrical coordinate system (x =

r cos 0, y = r sin 0 ), are reported here.

= IV (;) + (+I) f ( X)

i ( + ) b II

CO X-- [x (,+)fi
.2I (,+I) b

Trei= I -2L f, (o);)L]
,F i ().+ I) b (7/3)

= [ - ()L+I) fi (0;2L) + mi gi' (0;X)]

2x (X+1) b

=O '(fi(0;X + lmi (O.-I) gi (00]
2T2-7 X (X+l) b lt i

in R i, i = 1,2. The prime denotes differentiation with respect to 0 and the functions,

fi(0;X) and gi(0;X) are

f2 (O;X) = biIsin (X.+l)0 + bi2cos (X+l)0 + b 3sin ().-1)0 + bi4cos (2-1)0 (74)

gi (0;X.) = [ -b B cos (Xk-1)0 + b R sin (.-1)01I
(75)

g, (8X I I b I O X) + b3 si (I - )
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where b = b22+b24. and the constants bij , i=1,2, j = 1,2,3,4, are determined from the

traction and displacement boundary conditions:

b2l =b23 = 0 (from symmetry)
b24 = 1

b22=B

b1  -L f_ (X + 1)[S2 (4 S2 - 3)-,b 22 + [S2(4XS2 _ Sk+ 1)_7.2+ X)b2 }(6

b 13 {[ 2(2.+1) s2_ 2X] bl, + [2(k+l) _xI] 22h3=2sc(2k+l)

-(2Xs2 -+ 1)b 24 }

b12 =-4 sc b13 - (1- 4 s2) b,4 +2s 2 ( b22 - b)24)
=i -A .b1b b22 +b24)b

b c" (b2 14 b13

for

A -- 
2

B = [(2P+2)X-23+2]s
2 + 2(a-0), 3+ (21Via-1)k 2-(a+l)"

2(0+1)(X+l)s 2 + 2(a-J3)X3 + (3a-213+l)k 2 + (a+l)X (77)

s = sin XX2

C = COS -X
2

Finally, the path independent integral requires the divergence of the displacement

eigenvectors, u i, i=1,2:

VOU- (. Klb (mi -2) [bi3 sin ().-1)0 + bi4 cos ().-1)0]
(78)

The complementary eigenfunctions, ri * and ui , i = 1,2, are obtained by substituting -A

for X and a scaling factor, K;f, for K. in Equations (73) through (77).

We follow the procedure outlined in Section HI for defining the appropriate path

independent integral which extracts the stress intensity factor. By virtue of the continuity
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requirements at the interface, the path independent integral is that of Equation (31) in which

K is replaced by K. and the homogeneous complementary eigenfunctions are replaced by

the complementary functions just developed:

2
I] Kx=£{ J[(oxu*+ vI* - x u  *~ n~

i * i* -

+ 3i fT(ui,x + vi y ) dA}

Ri

where the integration paths, Zi , i = 1,2 , refer to the boundaries not including the crack

faces, of the regions Ri, i =1,2 , respectively. The scaling factors , K%*, are determined

by substituting the eigenfunctions themselves into (79), letting T = 0, and performing the

integration.

To verify the accuracy of the established eigenfunctions and the path independent

integral approach we analyze a check problem which utilizes the most strongly singular

eigenvalue used in the intended application. We follow Okajima [31] in formulating the

check problem which superimposes eigenfunctions, adjusting their participation so that a

reasonable approximation of the boundary conditions used in the application results. The

forms of the superposition are those of (73) with K. being replaced by the constants K),

and C2 corresponding to the eigenvalues XI and X2. Specifically, we choose the material

combination corresponding to the most singular eigenvalue, the combination giving the

ratio of elastic moduli of E2/E 1 = 0.14. The first two eigenvalues associated with this

combination are

X' = 0.2816, X2 = 1.1077 (80)

In combining the first two eigenfunctions to approximate a uniaxial tension loading on the

region of interest, we take the participation of the first eigenvalue field , K). = 1.0 and the

participation of the second, C2 = 0.25. The traction conditions along the edge, then, are

determined as the sum of these two eigenfunctions with the appropriate participation factor.

The loading conditions for the check problem are shown in Figure 17.
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To examine convergence of the solution we perform the analysis on three uniformly

refined grids. A full description of the finite element grids used is contained in Appendix

B. The results of the analysis demonstrate acceptable performance on the test problem.

The value of K). for the coarse, medium and fine grids, are respectively 1.061, 1.029 and

1.018 (the exact value is 1.0).

Problem Definition

The goal of this analysis is to establish the importance of thermal diffusivity

mismatches relative to mismatches in thermal expansion rates. In order to accomplish this,
we pose two problems. In the first we consider the ratio of a.E in each material to remain

unity while the ratio of thermal diffusivity changes. In this case, a frequency dependence
will be established. The eigenvalue will be limited to the case, X = 0.5, since the the elastic

moduli of the materials are equal. The heating conditions imposed are a uniform heat

source varying as hocos(ot) with all edges insulated. Although the static case (cW = 0 )

gives an infinite temperature distribution, we will look at the behavior of the stress intensity

factor as a function of frequency and study the limit as the frequency approaches zero. In
the second problem we consider the ratio of thermal diffusivities of the two materials to be
unity and evaluate the stress intensity factor for several ratios of thermal expansion and
elastic moduli, since it is the combination of these material constants that gives rise to the
magnitude of the thermal stresses in a material. In this problem, no frequency effects will

result since the temperature is uniform throughout the composite. Once these preliminary

relationships are established, we will evaluate the importance of diffusivity mismatches and

expansion mismatches in some currently used composites.
Thus, in addition to the constraints imposed on the stress and displacement vectors

presented in Equations (65) through (71), the following conditions on the temperature field

satisfying Equation (63) will be imposed. First, the edges of rectangular geometry are

taken to be thermally insulated.

T, =0 on x=Oandon x=W, 0<y<L (81)

T,Y=0 on y=0 andony=L, 0<x<W

Secondly, either the heat generation term behaves harmonically and the ratio of thermal
diffusivity varies between 0.1 and 10,

H(x,y,t) = ho cos cot, aE 1/ cz2E2 = 1, 0.1 < DI/ D2 < 10, V1 = V2. (82)
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or the temperature remains uniform throughout the composite and the ratio of product of

thermal expansion coefficient times the elastic modulus varies between the limits 0.1 and

10.

T(x,y,t) = To, DI/ D2 = 1, 0.02 < ojE1/ a 2E2 < 50, V1 = v2. (83)

The limits on the ratios of material constants have been chosen to approximate to first order
those of actual composite materials. Regardless of the material combination, we have taken

Poisson's ratio to be the same in each material and equal to 0.3. This assumption

simplifies the calculations required for determining the eigenvectors since their dependence
is now reduced to one parameter: the ratio of the elastic moduli. In general, for the

composite materials under consideration, Poisson's ratio varies very little between the two

materials, ranging between 0.25 and 0.35.

Thermal Diffusivity Effects

Following the method of solution outlined in Section II, Equations (14) through

(16), we represent the temperature, T(x,y,t) as the sum of harmonic components in which
co is the frequency of the thermal excitation and Ts(x,y) and Tc(x,y) are the magnitudes of

their respective components. The solution to the heat conduction Equation (63) with the
imposed conditions of (81) and (82) for the limiting case, D2 = DI = D, is straightforward:

T(x,y,t) = - sin cot for co * 0, and
(84)

D
T (x,y,t)= - t for CO=0.

(85)

Clearly, Ts and Tc are undefined for the case the frequency is zero and are spatially constant
for values of frequency not equal to zero ( Ts = D/(W2 co), Tc = 0 ). The resulting stress

intensity factors, Ks and Kc, for this limiting case are zero since the plate is not restrained

from uniform expansion.

For the general case of varying D2/DI , the temper=.re solution is more complex.

Finite difference solutions have been obtained for values of D2/Dj = 0.1, 0.5, 5.0, 10.0 for
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a range of dimensionless frequencies from 0.03 to 2.5511. These results are pictured in

Figure 18 in which the temperature field is the amplitude of the harmonic components, T =

(Ts2 + Tc2 ) 1/ 2 and has been normalized by the temperature amplitude at the crack tip, T 1.

Because of the insulation conditions on the y-faces of the plate, no temperature variation in

the y-direction exists and the solutions illustrated in Figure 18 hold for all values of y.

From these figures, a general trend of increasing temperature gradient with frequency is

observed and as the frequency approaches zero, the temperature approaches a flat

distribution. The variation of crack tip temperature with frequency for the different values

of the diffusivity ratio is shown in Figure 19. Here, the dimensionless crack tip

temperature has been normalized by the value hoW2 , ho is the magnitude of the heat source

and W is the plate width. The crack tip temperature tends to increase to an unknown limit

as the frequency approaches zero and its magnitude also increases with the diffusivity ratio.

From these temperature distributions, stress intensity factors were calculated using

the same procedures detailed in Sections 1I and IIl. The finite element method was used to

compute the stress and displacement fields associated with the temperature fields and the

Mode I path independent integral (Equation (31)) was used to calculate the stress intensity

factors from these fields. Uniform grid refinement was used for all calculations. The finite

element grids are shown in Appendix B. Convergence behavior of the results was good

and several paths of integration were used in the computations to demonstrate path

independence. The results of the calculations are shown in Figure 20. In these figures, the

stress intensity factor represented is the amplitude of the harmonic components: K = (Ks2

+ Kc2)"/ 2 and has been nondimensionalized by the crack tip temperature amplitude, TI:

KI
K=

czETi r
1-v (86)

The trend of increasing stress intensity with frequency follows from the temperature

results: increasing thermal gradients with frequency. It is also noted that as the frequency

approaches zero, so does the stress intensity.

Thermal Expansion Effects

II The dimensionless frequency, co , is now normalized by the diffusivity of material 1 and thus is related
to the frequency, co, by the relation co* = w L2/(DI it).
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To investigate the effects of thermal loads in composite materials with mismatches

in thermal expansion and elastic modulus, we first consider static, uniform temperature

fields. Performing this preliminary study enables us to compare the importance of

frequency effects relative to static loading effects since mismatches in expansion and elastic

modulus do not affect the temperature field of the composite. Thus, we take the

temperature in the composite, T(x,y) to be a constant, To, and the heat source, H(x,y) to be

zero. This field satisfies the heat conduction Equation (64) with the conditions of thermally

insulated boundaries (Equations (81)) described in the problem definition. Further, we

vary the ratio of the product of themal expansion and elastic modulus between the limits of

0.02 to 50, as described in (83).

With this temperature field, stress intensity factors were calculated using the finite

element method to compute the stress and displacement fields and the path independent

integral of Equation (79). The case of uniform elastic modulus (E2 = E1 ) is interesting

because the corresponding eigenvalue is 1/2. Results of the stress intensity calculations are

shown in Figure 21 for this case. The results show that the stress intensity factor is

linearly related to the difference in the thermal expansion coefficients of the two materials
and is zero when the expansion coefficients are equal. From these data, the stress intensity

factor is calculated to be

ETo
K =0.28 T (x1 -  2 ) (I 1- 2 )Fna(87)

For the case of equal thermal expansion and varying elastic modulus, no stress intensity

exists since this corresponds to the case of uniform, unrestrained expansion. When the

expansion coefficient is not uniform, however, the stress intensity factor can become quite
large. Results of these calculations are shown Figure 22 along with the eigenvalues

associated with each elastic modulus ratio used in the computations. The stress intensity

values are normalized to the properties of material 1, the material containing the crack, and

the uniform temperature in the plate:

K=E
IE1To/-- al(88
1-v (88)
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From Figure 22, we find that when the thermal expansion coefficient is larger in the
uncracked material (ctl2/a > 1) the normalized stress intensity is greater than zero, in the

crack-opening mode and is less than zero (crack closure) when the coefficient is larger in

the cracked material.

Summary and Discussion of Results

In this section we have extended our approach of estimating thermal fatigue stress

intensity factors to a composite material by performing a pilot study of bimaterial composite

with a crack normal to the interface. Comparing the effects of diffusivity and expansion

from these preliminary studies indicate that frequency effects are an order of magnitude

lower than those induced by variations in elastic modulus and expansion. In order to

investigate this further, we have chosen two composite systems which are currently being

considered for use in thermal fatigue environments. These are composites of titanium with

silicon carbide fibers and glass with silicon carbide fibers. Material properties for titanium,

a high temperature glass trademarked VYCOR, and silicon carbide fibers are listed in Table

16. We consider two separate cases for each composite: the crack located in the matrix (Ti

or glass) and the crack located in the SiC fiber. Ratios of the material parameters and the

associated eigenvalues for these four cases are listed in Table 17. We have combined the

thermal diffusivity problem now with the thermal expansion problem and have calculated

the stress intensity factors induced by cyclic temperature fields where the heat source varies
as h0 cos (ot and the elastic materials properties (E and (x ) are different for the two

materials. Results of these calculations are shown in Figures 23 and 24. The stress

intensity factors in these figures have been normalized by the amplitude of the crack tip

temperature, T1 , and elastic properties of the material with the crack, material 1 (Equation

(88) with To replaced by T1). These figures illustrate that for higher frequencies, the effect

of frequency on the stress intensity amplitude can be quite high. In the composite of

titanium matrix composite, cyclic temperature fields reduce the stress intensity regardless of
the location of the crack while different behavior is observed in the composite with the

glass matrix. In this case, low frequencies cause the stress intensity factor to increase

above the static value. This behavior continues at higher frequencies if the crack is located

in the fiber while the stress intensity decreases at higher frequencies if the crack is located

in the matrix material.

If we consider actual fatigue test frequencies of the order of 1 cycle per minute, the

stress intensity relative to the static value can be estimated. These results are listed in Table

18. The effect at this frequency can be as great as increasing the stress intensity by 18 per
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cent (for glass-SiC systems with the crack located in the SiC) or decreasing the stress

intensity by 45 per cent (for Ti-SiC systems with the crack located in the Ti) or as small as

a 2 per cent decrease (for glass-SiC systems with the crack in the glass).
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Table 16

Material properties for example composites 12

Thermal Thermal Elastic

Material Heat capacity Density Conductivity Expansion Modulus

(Cp) (p) (k) (a) (E)
cal COa 1 s

g "° C g/'cc cm.7C- i 106 ps i

Titanium 0.125 4.50 0.0052 8.5 16.8

Silicon Carbide 0.186 3.22 0.0400 5.0 70.0

VYCOR 0.180 2.18 0.0033 0.75 9.6

12The diffusivity, D, is related to the beat capacity, density and thc'rmal conductivity by the relation, D - k
I (pCP).
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Table 17

Ratios of material properties and the associated elgenvalue for example composites

D 2  C2 E2

MaterialI- Material 2 DIOC E

Ti - SiC 7.23 0.59 4.17 0.6225

SiC -Ti 0.14 1.70 0.24 0.3419

Glass - SiC 7.95 6.67 7.29 0.6538

SiC - Glass 0.13 0.15 0.14 0.2793
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Table 18

Stress intensity increase at a frequency of 1 cycle/min for example composites.

Normalized

Composite Crack location Frequency, co* AK

Ti - SiC Ti 23.3 -17%

SiC - Ti SiC 1.24 -45%

Glass - SiC Glass 25.6 -2%

SiC - Glass SiC 1.24 +18%
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Figure 15. Geometry of the composite problem.
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Figure 19. Variation of the crack tip temperature with frequency for the composite problem

for ratios of the diffusivity: D2/Di - 0.1, 0.5, 5,0, 10.0.
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Figure 20. Stress intensity factor variation with frequency and diffusivity ratio.
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VII. CONCLUSIONS AND RECOMMENDATIONS

In conclusion, we have shown that the mathematical techniques presented can be
used to evaluate the stress intensity factors of components subjected to thermal fatigue.
The applicability of the evaluation method has been demonstrated to be quite broad.

Conditions of asymmetric temperature distributions, varying geometries and differing heat
sources can be simulated through the use of this method. Because of the wide range of
applicable conditions, it is possible that we can use these results in laboratory testing
situations to approximate the contribution of the thermal fatigue loading in thermal
mechanical fatigue. Further, we can extend this method to approximate stress intensities in

composite materials. An example is the case of periodically occurring cracks in fibers of a
bimaterial composite.

The results presented indicate that thermal fatigue loading has the potential to cause
significant stress intensities in general cases of thermo-mechanical fatigue, and the method

of electric resistance heating results in increasing stress intensity factors with frequency.
These results are significant enough to warrant some experimental verification of these
data. A much needed set of data is the temperature values (magnitude and phase) at near-
crack and f,-field locations, induced by both the electric resistance and hot lamp heating
methods. With these values one could evaluate the magnitude of the stress intensities

induced in actual applications.
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APPENDIX A

HEAT SOURCE INDUCED BY AN ELEC RIC CURRENT
IN A CRACKED PLATE

Here we present the derivation of a heat source in a cracked plate induced by electric
potential heating. The derivation follows the method of Loitsyanskii [34] who developed

the solution to the analogous problem of irrotational flow of an incompressible fluid with
no circulation flowing past an infinite cascade of plates (see Figure A1). The solution to
the complex velocity of the fluid is derived in [34] and the main points are reiterated here.
Upon integration of the velocity we acquire the complex potential of the fluid. The electric
potential in the cracked plate is analogous to the real part of the complex potential. Once the
real part of the complex potential is found, the heat source is obtained by taking the square
of the gradient of the electric potential.

We consider the complex coordinate, z=x+iy. According to the geometry of Figure

A 1, the edges of the plates which impede fluid flow are located at positions in the complex

plane:

z = a ± 2kW, z = -a ± 2kW, k = 0,1,2... (Al)

We know the complex velocity of flow past a single plate in an infinite medium is

V(z) = u. - i v.. z

7Z2 a 2(A2)

where u.0 and v.. are the far-field components of the applied velocity in the x and y

directions, respectively.

If there are 2K + 1 plates, then z in the numerator of (A2) is relaced by the product

II (z+2kW) = zI J (z2 - 4k 2 W )

k-ic k=l (A3)
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Replacing similar expressions for (z+ a ) and (z- a ) in the denominator, taking the limit as
ic--0, and considering the identity

K2

urn 1-ri 2W~i
k=1 (A4)

gives the resulting complex velocity of fluid flowing around an infinite cascade of plates:

sin -C

V(z) = u. - i v2W
V/Cos 2 ha. _cos

2 7[_Z
2W 2W (A5)

The complex potential, 0 (z) , is obtained by integrating the complex velocity:

4)(z) =V(z) dz = uoz "-" v00 log [Cos " + Cos 2 n-Z _cos:2" ' +C (6

2W 2[ W ' I+co5 2 W~~ 2W_ (M

We take the constant of integration to be zero without loss of generality.

The complex potential can be written as the sum of real and imaginary parts which
represent the velocity potential and stream function, respectively:

(z) = 0 (x,y) + i V (x,y) (A7)

In the electric potential analog to the flow problem, the velocity potential, 0, is the electric

potential and I = -V 0/p (where p is the electrical resistivity) is the current. The electric
potential, then, is obtained by finding the real part of Equation (A6) when the far-field
velocity components are replaced by the potential drop, 0o, across the plate length. If the

current flow is assumed normal to the crack this gives u. = 0 and v. = o/2L.

* (x,y) = 2W Re[ log (cos- + ws l- - cos
2L 2W + 2W - (A)

Obtaining the real part of the above expression requires some algebra. We write



103

Z=cos- - + Cos - CQs 2 -S2 K Rei 9
2W 2W 2W (A9)

Then

log (Z) = In R + i 8 (A10)

To find R, we invoke the trigonometric identity,

cos 7:z = cos 71x cs Y sin x sinh -= a - i
2W 2W 2W 2W 2W (All)

where a and 13 are introduced for brevity. In addition, we introduce ao:

cosW = (A12)

Then

Z =a- i 3+ (a-i 3 ) ao (A13)

Letting

~ 2e i' I  (a- - o (A14)

then the square root portion of (A 13) is equal to ± q i  ., for

(a- -4)2 + 4 a2 p2 , ar=tan 2ap
2 p2 _- 0  (A15)

Combining these expressions gives
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Z = a-i ±J e~ -n=Re i e (A16)

Since R2 is equivalent to the sum of the squares of the real and imaginary parts of Z, In (R)
is equal to

In (R)=-In{ [Re (Z)] 2 +Im(Z)] 21

2 (A 17)

where

Re(Z) =aTI 4 Cos
2 (A18)

and

Im (Z) =-3+ sin T2 (A19)

Thus, the electric potential solution is given by:

* -2. In  a2+3 2+ +2,+ 2 (a cos s - )sin ]x 2L 2 2(A20)

The plus sign in ± gives solutions for positive y (+) while the minus sign results in
solutions for negative y (-), the solution being symmetric about the y-axis.

We obtain the heat source term in the heat conduction equation by taking the square
of the gradient of the electric potential and multiplying by the electrical conductivity and
dividing by thermal conductivity:

k k" 1 x) + ( T-(A21)
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We express the partial derivatives in closed form and compute the heat source with the aid

of a computer for specific points. Near the crack tip, the heat source behaves
assymptotically as 1/r where r is the distance from the tip of the crack. Consistent with the

condition that the complex velocity approaches a constant velocity in the far-field, the heat

source also approaches a constant value at far-field points.
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APPENDIX B

GRIDS FOR FINIM ELEMENT ANALYSIS

Here we present the grids used in the finite element analysis. The number of
elements and degrees of freedom for the homogeneous grids are listed in Table B 1.
Figures BI through B3 illustrate the grids used in the homogeneous problems. Table B2
lists the number of elements and degrees of freedom for the grids used in the composite

analysis and the grids are illustrated in Figures B4 through B6.
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Table B 1

Finite element grids for the homogeneous problems.

Grid Number of elements Degrees of freedom

coarse 72 182

medium 288 750

fine 720 1562
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ty

x

Figure Bi1. Finite element grid for homogeneous stress analysis, coarse.
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x

Figure B2. Finite element grid for homogeneous stress analysis, medium.



x

Figure B3. Finite elemnent grid for homogeneous stress analysis, fine.
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Table B2

Finite element grids for the composite problems.

Grid Number of elements Degrees of freedom

coarse 64 162

medium 256 578

fine 352 794
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x

Figure B4. Finite element grid for composite analysis, coarse.
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Figure B5. Finite element grid for composite analysis, medium.
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Figure B6. Finite elemrent grid for composite analysis, fine.



APPENDIX C

COMPLEMENTARY EIGENFUNCTIONS FOR A CRACK.

Here we present the complementary eigenfunctions for the crack in an elastic plane.
The eigenfunctions, established in polar co-ordinates with the origin at the crack tip, are
taken from Sinclair et al. [13] and are specialized to the crack geometry. The symmetric

forms are:

2 2 24 (1+

e312 [T -I+1 Co +1 1 o
"0'I0 2O 2 3- 2 2
.L r-I/

S2(1+i) '"

Vt 9 r3'± sin + 1sin
-n ( +) 122 2

=2 (l+)21021
Theanisymericcopleenaryfildsar gienby
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sin2 0 + K) sin 3e
S21 (1+2)

in Cos 9- + 4 -KCos.]

where

K 3- 4v

in plane strain, and

3-v

in plane stress.



APPENDIX D

WEIGHTS AND ABSCISSAS FOR THE GAUSS-TYPE QUADRATURE

I

f2 .)dx = if~j
0 i

xi wi

n=l 1 0.333333333333 2.000000000000

n=2 1 0.115587109997 1.304290309725
2 0.741555747146 0.695709690275

n=3 1 0.056939115967 0.935827869145
2 0.437197852751 0.721523146096
3 0.869499394918 0.342648984758

n=4 1 0.033648268067 0.725367566757
2 0.276184313872 0.627413291756
3 0.634677476235 0.444762068907
4 0.922156608492 0.202457072581

n=5 1 0.022163568807 0.591048449430
2 0.187831567652 0.538533438620
3 0.461597361496 0.438172725032
4 0.748334628387 0.298902698301
5 0.948493926288 0.133342688617

n=6 1 0.015683406607 0.498294091627
2 0.135300011655 0.466985073077
3 0.344942379427 0.406334853446
4 0.592750127732 0.320156657087
5 0.817428013267 0.213878651991
6 0.963461278703 0.094350672773

n=8 1 0.009027377026 0.378901220910
2 0.079300559811 0.365206830090
3 0.209779368616 0.338313038790
4 0.381771053397 0.299191977633
5 0.570635820162 0.249257942511
6 0.749317378547 0.190317023365
7 0.892221974214 0.124507047877
8 0.978914210162 0.054304918824
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n=10 1 0.005856308437 0.305506774261
2 0.051886393980 0.298345972945
3 0.139656240743 0.284192218637
4 0.260985093682 0.263377276898
5 0.404564284766 0.236389063923
6 0.557011314600 0.203860239634
7 0.704117292400 0.166553483153
8 0.832171652087 0.125344096668
9 0.929241876580 0.081202859601
10 0.986304414519 0.035228014278

n=12 1 0.004103285523 0.255876390693
2 0.036526421504 0.251674912694
3 0.099251890030 0.243340945856
4 0.188176807259 0.231011336107
5 0.297484581452 0.214888540232
6 0.420025381681 0.195237304208
7 0.547783818960 0.172380323064
8 0.672403257001 0.146692962822
9 0.785732486514 0.118597169831
10 0.880359134936 0.088554877635
11 0.950095757826 0.057062777258
12 0.990397602845 0.024682459600

n=16 1 0.002333630564 0.193080177029
2 0.020872147684 0.191277440159
3 0.057258441734 0.187688798162
4 0.110136769181 0.182347757392
5 0.177536897897 0.175304186009
6 0.256947517675 0.166623848454
7 0.345409811309 0.156387791574
8 0.439627699909 0.144691588218
9 0.536090655003 0.131644445553
10 0.631204502056 0.117368186957
11 0.721425343258 0.101996118525
12 0.803391614274 0.085671796045
13 0.874049370825 0.068547725826
14 0.930766209806 0.050784130618
15 0.971430051691 0.032548789462
16 0.994535210151 0.014037220019

n=24 1 0.001 048475472 0.129475393625
2 0.009409911669 0.128932328872
3 0.025992648096 0.127848477169
4 0.050518761473 0.126228384573
5 0.082577199139 0.124078846320
6 0.121630668223 0.121408878332
7 0.167024640562 0.118229679397
8 0.217998322465 0.114554584201
9 0.273697405472 0.110399007400
10 0.333188384403 0.105780378970
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11 0.395474202728 0.100718071108
12 0.459510963069 0.095233316985
13 0.524225422743 0.089349121713
14 0.588532981170 0.083090165887
15 0.651355857686 0.076482702132
16 0.711641155150 0.069554445130
17 0.768378506728 0.062334455666
18 0.820617010337 0.054853019417
19 0.867481167625 0.047141521679
20 0.908185562375 0.039232320915
21 0.942048039521 0.031158631446
22 0.968501196288 0.022954469158
23 0.987102203204 0.014655107803
24 0.997543524928 0.006306692105

n=48 1 0.000264932423 0.065101228985
2 0.002382707518 0.065032237428
3 0.006609282769 0.064894327428
4 0.012926746332 0.064687645137
5 0.021308325370 0.064412409588
6 0.031718499509 0.064068912464
7 0.044113151374 0.063657517789
8 0.058439753552 0.063178661542
9 0.074637591201 0.062632851194
10 0.092638019352 0.062020665173
11 0.112364753820 0.061342752247
12 0.133734194491 0.060599830842
13 0.156655779610 0.059792688273
14 0.181032369576 0.058922179916
15 0.206760658608 0.057989228301
16 0.233731612547 0.056994822130
17 0.261830930934 0.055940015234
18 0.290939531402 0.054825925452
19 0.320934054339 0.053653733451
20 0.351687385674 0.052424681471
21 0.383069195575 0.051140072011
22 0.414946490776 0.049801266445
23 0.447184178188 0.048409683585
24 0.479645637414 0.046966798172
25 0.512193299734 0.045474139317
26 0.544689231106 0.043933288878
27 0.576995716721 0.042345879784
28 0.608975844627 0.040713594309
29 0.640494085946 0.039038162280
30 0.671416869237 0.037321359255
31 0.701613146562 0.035565004632
32 0.730954948851 0.033770959729
33 0.759317928231 0.031941125805
34 0.786581884998 0.030077442054
35 0.812631277024 0.028181883545
36 0.837355709413 0.026256459134
37 0.860650402358 0.024303209342
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38 0.882416635207 0.022324204200
39 0.902562164861 0.020321541070
40 0.921001616744 0.018297342462
41 0.937656846722 0.016253753851
42 0.952457272490 0.014192941582
43 0.965340173199 0.012117091008
44 0.976250956557 0.010028405486
45 0.985143394070 0.007929108677
46 0.991979831560 0.005821463636
47 0.996731426993 0.003707921578
48 0.999379104174 0.001593584131


