

OFFICE OF NAVAL RESEARCH

Research Contract N00014-87-K-0014

R&T Code 413a001

Technical Report No. 16

THERMODYNAMICALLY STABLE CONDUCTING FILMS OF INTERMETALLIC PtGa2 ON GALLIUM ARSENIDE

by

Larry P. Sadwick,^{*} Kang L. Wang,^{*} David K. Shuh,[†] Young K. Kim,[†] and R. Stanley Williams[†]

To be published

in

Proc.Mat.Res.Soc. Spring Symp. in San Diego, 1989

University of California, Los Angeles [†]Department of Chemistry & Biochemistry and Solid State Science Center Los Angeles, CA 90024-1569 and ^{*}Department of Chemical Engineering Los Angeles, CA 90024-1594 DTIC ELECTE JUN 2 2 1989

July 1, 1989

Reproduction in whole or part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited

89

6 21 026

UNCLASSIFIED

.

SECURITY CLASSIF CATION OF THIS PAGE

.

			REPORT DOCUM	IENTATION	PAGE			
I REPORT SE UNCLAS	SIFIED	FICATION		16 RESTRICTIVE MARKINGS				
28 SECURITY	CLASSIFICATION	AUTHORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT				
20 DECLASS	A	NGRADING SCHEDU	LÉ	Approved for public release; distribution unlimited				
4. PERFORMIN	IG ORGANIZATI	ON REPORT NUMBE	R(S)	S. MONITORING ORGANIZATION REPORT NUMBER(S)				
N⁄.	A							
5a. NAME OF PERFORMING ORGANIZATION6b OFFICE SYMBOLThe Regents of the(if applicable)University of California				 NAME OF MONITORING ORGANIZATION 1) ONR Pasadena - Administrative 2) ONR Alexandria - Technical 				
62 ADDRESS (Office (U C L A Los Ange	City. State, and Of Contrac , 405 Hil eles, CA	ZIP Code) its & Grants J gard Avenue 90024	Administration	 7b. ADDRESS (City, State, and ZiP Code) 1) 1030 E. Green Street, Pasadena, CA 91106 2) 800 N. Quincy St., Arlington, VA 22217-5000 				
B. NAME OF ORGANIZA Office	FUNDING / SPON TION Of Naval R	vsoring esearch	Bb OFFICE SYMBOL (If applicable) ONR	9 PROCUREMENT NO0014	INSTRUMENT ID	ENTIFICATION N	UMBER	
BC ADDRESS (City, State, and	2IP Code)		10 SOURCE OF F	UNDING NUMBER	\$		
800 N. Arlingto	Quincy Str on, VA 22	eet, 614A:DHE 217-5000	2	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO	
11 TITLE (Incl	ude Security Cl	assification)			ilma of into		DtCo ^D	
UNCLAS	SIFIED:	on galliur	n arsenide		LINS OF INCE		PU342	
12 PERSONAL	AUTHOR(S) I	arry P. Sadw R. Stanlev Wi	ick, Kang L. Wan Lliams	g, David K. S	Shuh, Young	K. Kim and		
13a TYPE OF REPORT13b TIME COVEREDTech. Rept. #16FROM 1988 TO 1939			14. DATE OF REPO 20 June 1	RT (Year, Month, 1 989	Dəy) 15 РА СІ б	COUNT		
16 SUPPLEME	NTARY NOTATI	ION						
17.	COSATI C	ODES	18 SUBJECT TERMS (C	Continue on reverse	if necessary and	l identify by blo	ock number)	
FIELD	GROUP	SUB-GROUP	epitaxial fil	ms - ultra-h	igh vacuum -	chemical	stability -	
 			barrier - Fer	conductors - mi level pin	ning (fraction =	SCHOTTKY	
19. ABSTRACT	(Continue on r	everse if necessary	and identify by block n	umber)				
The f	irst epitaxial	platinum galliu	m two (PtGa ₂) film	s have been gro	own on galliun	n arsenide (G	aAs)(100) by	
co-evapor	ration of the	elements under	ultra-high vacuum (conditions. An	The resulting	evaporator a films and bul	nd a Knudsen	
been char	acterized by	x-ray diffraction	n, Auger electron st	s, respectively.	d x-ray photoe	lectron spect	roscopy. The	
data confi	irm the PtGa	2 stoichiometry	and crystal structure	of the films, ar	nd demonstrate	their chemic	al stability on	
GaAs(10	0). This stud	dy supports the	contention that PtG	a ₂ can be a suit	able, temperati	ure-stable co	ntact material	
on GaAs	substrates.	/						
1								
1								
20 DISTRIBUT	ION / AVAILABI			21. ABSTRACT SE	CURITY CLASSIFIC	ATION		
228 NAME O	F RESPONSIBLE	INDIVIDUAL		226 TELEPHONE (nclude Area Code		MBOL	
R. St.	anley Will:	ians		(213) 825-8	3818	UCLA		
DD FORM 14	473, 84 MAR	83 AF	Redition may be used un All other editions are of	til exhausted. psolete.	SECURITY	CLASSIFICATION	OF THIS PAGE	

UNCLASSIFIED

THERNODYNAMICALLY STABLE CONDUCTING FILMS OF INTERNETALLIC PTGA₂ ON GALLIUM ARSENIDE

Larry P. Sadwick*, Kang L. Wang*, David K. Shuh**, Young K. Kim**, and R. Stanley Williams**

*University of California Los Angeles Department of Electrical Engineering Device Research Laboratory, 7732 Boelter Hall, Los Angeles, CA 90024 **University of California Los Angeles Department of Chemistry and Biochemistry and Solid Science Center, 2080 Young Hall, Los Angeles, CA 90024.

ABSTRACT

The first epitaxial platinum gallium two (PtGa₂) films have been grown on gallium arsenide (GaAs) (100) by co-evaporation of the elements under ultra-high vacuum conditions. An electron beam evaporator and a Knudsen cell were used to produce the platinum and gallium beams, respectively. The resulting films and bulk PtGa₂ have been characterized by x-ray diffraction, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. The data confirm the PtGa₂ stoichiometry and crystal structure of the films, and demonstrate their chemical stability on GaAs (100). This study supports the contention that PtGa₂ can be a suitable, temperature stable contact material on GaAs substrates.

Introduction

The chemistry of metal-semiconductor interfaces ultimately controls the nature of Schottky barrier or Ohmic contact formation [1]. Contact formation on elemental semiconductors is relatively straightforward because of the simplicity of binary phase systems, which have a limited number of reaction products. Transition to compound semiconductor technology has encountered additional difficulty because ternary phase diagrams are significantly more complex and rarely well characterized [2].

In order to employ GAAs based electronic devices for both high reliability and harsh environment applications, chemically stable contacts must be formed at the metal-semiconductor interface. Conventional methods to alleviate temperature induced contact degradation usually involve passivation or interdiffusion barriers [3].

A simple solution to the degradation problem would be the use of an intermetallic compound that is thermodynamically stable to the GaAs surface and that also possesses suitable electronic transport properties [4]. Therefore, the intention of this study was to select and investigate an intermetallic contact on GaAs system chosen from a known ternary phase diagram. The intermetallic compound should exhibit a thermodynamically stable tieline to the GaAs semiconductor. A further consideration is that the intermetallic should be compatible with existing molecular beam epitaxy (MBE) techniques.

On the basis of the Pt-Ga-As ternary phase diagram, as experimentally elucidated by Tsai et. al. [5] and illustrated in Fig. 1, PtGa₂ was selected as a candidate for thin film growth on GaAs (100). The existence of the pseudobinary tieline between PtGa₂ and GaAs implies that the two bulk compounds do not react with each other in a closed system. PtGa₂ is a thermodynamically favored reaction product of the Pt-Ga-As system. Depositing an elemental Pt film on GaAs and then annealing will induce chemical reactions that yield intermetallic compounds of Pt with both Ga and As, accompanied by the subsequent-degradation of the interface [5]. Since PtGa2 is a potential product of such a reaction, it will be much more stable in contact with GaAs than Pt.

Advanced device considerations require that the contacts on GaAs be stable to temperatures in excess of 800° C. The PtGa₂ films are stable up to 450°C in air during long-time anneals; further work involving capping or other equivalent procedures is required to determine if stability above 800°C can be achieved.

Figure 1. Solidus portion of Pt-Ga-As ternary phase diagram at 25 ° C.

Growth

The PtGa2 films were grown in a MBE chamber with a base pressure of 2 $x \ 10^{-10}$ torr and a deposition pressure of 4 x 10^{-9} torr. The two inch GaAs wafers were introduced via a cryopumped load lock system and mounted on a modified manipulator equipped with radiative heating elements. The samples were cleaned by heating to a temperature of 550°C under an arsenic overpressure obtained from a Knudsen cell to prevent surface decomposition of the GaAs. The platinum was evaporated using a Varian 3 KW electron beam evaporator and the gallium was obtained from a Knudsen cell constructed of a For pyrolytic boron nitride (PBN) crucible with a tantalum heating element. The fluxes of platinum and gallium were initially tuned to the proper PtGa2 can be visually identified by its characteristic stoichiometry. golden color, as PtGa2 is the only Pt-Ga phase that has a band structure similar to that of elemental gold [5,6]. The flux rate from the gallium source was stabilized by temperature control circuits that ensured a constant flux rate for each source power setting. Subsequent depositions have been controlled with a Leybold-Inficon IC-6000 crystal monitor system. To obtain single phase PtGa2 films, the flux ratio of gallium to platinum was adjusted to slightly greater than 2 to 1. Co-evaporation of the PtGa2 ty Codes proceeded with the sample held at substrate temperatures ranging from near and/or room temperature to over 500°C at an epilayer growth of approximately 5 31al microns/hour.

Structural and Chemical Characterization

Powder x-ray diffractometry (XRD) patterns of the films were taken on a Philips diffractometer utilizing a Crystal Logic interface to a DEC VAX Diffraction patterns were obtained by 11/750 mainframe computer. accumulation of data for periods of time upwards of twelve hours to achieve an adequate signal to noise ratio. The thin PtGa2 films were annealed in a tube furnace under both nitrogen and air ambients. The film composition and crystallite orientation was subsequently determined by XRD to ascertain the temperature behavior of the epitaxially deposited material. Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) of the PtGa2 thin films and bulk material were performed in a KRATOS XSAM 800 spectrometer that was equipped with a sample treatment chamber (STC), scanning electron microscope (SEM) and ES300 electron spectrometer. In addition, the sample analysis chamber was equipped with a manipulator capable of heating samples up to 450°C while in the analysis position. The base pressure during sample analysis was 2×10^{-10} torr. The samples were subjected to short, low current, restered 3 KeV ion bombardments until AES revealed no carbon or oxygen contaminants. The samples were then annealed at various temperatures (maximum 450°C) after which AES and XPS data were collected. The XPS data were collected using an aluminum Ka excitation source.

Results and Discussion

The resultant films were specular under both optical and SEM examination and golden in appearance. The films were determined to be $PtGa_2$ by the analytical techniques described above. The range of composition of PtGa2 is very narrow, unlike many other intermetallic compounds which have a wide acceptance range of compositions. Figure 2a shows a powder XRD pattern of an oriented $PtGa_2$ (110) film (as seen by the 220 reflection at 43.3°) which was grown on a GaAs (100) substrate at room temperature. Figure 2b shows the XRD pattern obtained after the sample had been annealed at 200°C in a conventional furnace tube. The PtGa2 peaks are virtually unchanged after subsequent annealing to 400°C as shown in figure 2c. The XRD patterns of figures 2s through c consists of peaks solely due to PtGa2 and GaAs. The peaks at 26.0° , 43.3° and 51.0° are the (111), (220) and ($\overline{3}11$) reflections of PtGa₂, respectively. The peak at 66° is the (400) reflection from the (100) GaAs substrate. The XRD pattern showed no observable change from room temperature to annealing temperatures on the order of 450° C. Above 450° C, a small peak around 42.5° was detected. This peak is most probably due to the formation of a Pt3Ga7 phase which coexists with the PtGa2 phase. At temperatures above $550^{\circ}C$, a sharp decrease in the intensity of the PtGa2 peaks occurred in conjunction with the appearance of peaks due to PtGa and, most likely, PtAs₂.

The electron spectroscopies clearly indicate that the thin film samples have the same stoichiometry and valence band structure as that of a bulk $PtGa_2$ sample. This further served as a verification of the identity and uniformity of the thin $PtGa_2$ films. The stoichiometries were determined by comparisons of the relative peak to peak response of the AES and by the relative peak areas of the XPS data between the thin film samples and a bulk standard. Figure 3 shows the AES signals from a thin film of $PtGa_2$ on GaAs. The electron distribution curves (EDC) determined from the core levels and valence bands are presented in Figs. 4 and 5. In all cases, the thin films produced results that were indistinguishable from the bulk sample.

TWO THETA (DEG.)

Figure 2. XRD pattern of $PtGa_2$ on (100) GaAs. 2a: room temperature, 2b: annealed at 200°C, 2c: annealed at 400°C. All peaks except the (400) GaAs at 66° correspond to $PtGa_2$.

<u>Conclusions</u>

The successful growth on GaAs (100) of an intentionally designed stable intermetallic thin film that is similar to silicides currently employed in standard silicon processing has been demonstrated. The PtGa2 films are chemically stable on GaAs (100) up to 450° C. PtGa2 shows promise as a suitable contacting material for high reliability applications.

The formation of thermochemically stable PtGa2 epilayers on GaAs will provide an interesting system for the investigation into the nature of Schottky barrier formation and subsequent Fermi level pinning at the interface. We believe that chemically stable PtGa2 intermetallics should eliminate many of the possible chemical factors which influence or effect the phenomenon of Fermi level pinning. Work in progress to further understand the PtGa family-GaAs system includes temperature-dependent TEM, transport measurements and the characterization of various intermediate Pt-Ga phases grown by MBE [7].

Figure 3. AES spectra of $PtGa_2$ film. The only observable peaks are due to Ga and Pt. The calculated ratio is Ga:Pt 2:1.

Figure 4. XPS binding energy spectra of PtGa2 film.

Figure 5. Valance band of PtGa2 film which is identical to bulk PtGa2.

Acknowledgements

This work was supported by the office of Naval Research/SDIO, the State of California MICRO program and Hughes Aircraft. RSW received further support from the Alfred P. Sloan and the Camille and Henry Dreyfuss Foundations.

References

- 1. L.J. Brillson, J. Phys. Chem. Solids 44, 703 (1983).
- 2. C.T. Tsai and R.S. Williams, J. Mater. Res. 1, 820 (1986).
- 3. V.L. Rideout, Solid State Electronics 18, 541 (1975).
- 4. J.R. Lince and R.S. Williams, J. Mater. Res. 1, 537 (1986).
- 5. C.T. Tsai and R.S. Williams, unpublished.
- 6. S. Kim, L. Hsu and R.S. Williams, Phys. Rev. B <u>36</u>, 3099, (1987).
- 7. L.P. Sadwick, K.L. Wang, Y.K. Kim, D.K. Shuh and R.S. Williams, unpublished.

ABSTRAC	TS DISTRIBUTION LIST, SOL	ID STATE & SURFACE CHEMISI	TRY DL/111	1/6R/S.	TECHNICAL REPORT DISTRIBUT	TTON LIST, CENTRAL
Dr. J. Induscrivitier Comincy & Chem.Expt. O.W. Lass of Technology Prantens, CA 91125	Dr. John Eyler Department of Chemistry University of Florida Gainesville, FL 32611	Dr. Mark Johnson Department of Chemistry Yale University New Haven, CT 06311	Dr. R.E. Smalley Department of Chemistry Rice University, Box 1892 Houston, TX 77251	Dr. N. Winograd Chemistry Dept. Gase Western Res. Univ. University Part, PA 16802	Office of Naval Research Chemistry Div., Code 1113 800 N. Quincy Avenue Artington, VA 22217-5000	Chief of Naval Research Spec. Austanu, Marine Corps Code 00MC 800 N. Quincy Sarest Adington, VA 22217-5000
Dr. Puel G. Burbers Department of Chemistry University of Mianescoa Mianespolit, MN 55455-0431	Dr. James F. Garvey Department of Chemistry State University of New York Buffalo, NY 14214	Dr. Sylvia M. Johnson SRI International 333 Ravenswood Avenue Menio Park, CA 94025	Dr. G.A. Somorjai Chemistry Dept. University of California Berkeley, CA 94720	Dr. A. Wold Chemistry Dept. Brown University Providence, RI 02912	Commanding Officer Naval Weapons Support Center Attn: Dr. Bernard E. Douda Crane, IN 47522-5050	
Dr. Dancas W. Brown Adr. Technology Matis. Inc. 520-B Danbury Road New Millord, CT 05776	Dr. T.F. George Chemistry/Physics Depts. State University of New York Buffalo, NY 14260	Dr. Z.H. Kafafi Optical Sci.Div., Code 6551 Naval Research Laboratory Washington, DC 20375-5000	Dr. G.B. Stringfellow Mats.Science & Engineering University of Utah Salt Lake City, UT 84112	Dr. John T. Yales Chemistry Dept. University of Pittsburgh Pittsburgh, PA 15260	Dr. Richard W. Dristo Naval Civil Engineering Lab Code L-52 Port Hueneme, CA 93043	
Dr. S. Bruckenstein Department of Chemistry State University of NY Baffalo, NY 14214	Dr. Arold Green Quantum Surface Dynamics Br. Naval Weapons Cr.:Code 3817 China Lake, CA 93555	Dr. George H. Morrison Chemistry Dept. Cornell University Ithaca, NY 14853	Dr. Galen D. Stucky Chemistry Dept. University of California Santa Barbara, CA 93106	Dr. E. Yeager Chemistry Dept. Case Western Reserve Univ. Cleveland, OH 41106	Defense Tech. Information Cb. Building 5 Carneron Station Alexandria, VA 22314	
Dr. J. Buder Nevel Research Laboratory Code 6115 Weshington, DC 20375-5000	Dr. R. Hamers IBM Wasson Research Center PO Box 218 Yorktown Heights, NY 10598	Dr. Daniel M. Neum ar Chemistry Department University of California Berkeley, CA 94720	Dr. H. Tachitawa Chemistry Dept. Jackson State University Jackson, MJ 39217		David Taylor Research Center Attn: Dr. Eugene C. Füscher Applied Chemistry Division Annapolis, MD 21402-5067	
Dr. R.P.H. Chang Mark Science & Engineering Northwestern University Evanston, IL, 60208	Dr. Poul K. Hansma Department of Physics University of California Santa Barbara, CA 93106	Dr. D. Ramaker Chemistry Dept. George Washington Univ. Washington, DC 20052	Dr. W. Unertl Surface Science & Technol Lab University of Maine Orono, ME: 04469		Dr. James S. Murday Chemistry Div., Code 6100 Naval Research Laboratory Washington, DC 20375-5000	
Dr. Paul A. Christian Adv. Chesta. Technol., Fed. Systems Eastman Kodak Company Rochester, NY 14650-2156	Dr. C.B. Harris Chemiasy Dept. University of California Berkeky, CA 94720	Dr. R. Reeves Chemistry Dept Renseleer Polytech.Inst. Troy, NY 12181	Dr. R.P. Van Duyne Chemistry Dept. Northwestern University Evanston, 11. 60201		Dr. David Nelson Office of Naval Res. Code 413 800 N. Quincy Street Arlington, VA 22217-5000	
Dr. Richard Cohon Code 6170 Naval Research Laboratory Washington, DC 20375-5000	Dr. J.C. Hemminger Chemistry Dept. University of California Irvine, CA 92717	Dr. A. Reisman Microelectronics Cemer Research Triangle Park No.Carolina, 27709	Dr. David M. Walba Chemistry Department University of Colonado Boulder, CO 80309-0215		Dr. Ronald L. Atkins Chemistry Div., Code 385 Naval Weapons Center China Lake, CA 93555-6001	
Dr. J.E. Demeth IBM Wesson Research Center PO Box 218 Yorkrown Heights, NY 10598	Dr. Roald Hoffmann Chemistry Dept. Cornell University Ithaca, NY 14953	Dr. G. Ruboff IBM Watson Research Cur. PO Box 218 Yorktown Hgts, NY 10598	Dr. J.H. Weaver Chemical Engrg & Matls Sci. University of Minnesota Minneapolis, MN 55455		Dr. Bernadette Eichinger Naval Ships Systems Engr. Station Phila. Naval Base, Code 053 Philadelphia, PA 19112	
Dr. F.J. DiSalvo Department of Oternistry Cornell University Maca, NY 14853	Dr. L. Interante Chemistry Dept. Rentselaer Polytech.Inst. Troy, NY 12181	Dr. Richard J. Saytally Chemisory Department University of California Berkeley, CA 94720	Dr. B.R. Weiner Department of Chemistry University of Puerto Rico Rio Piedras, PR 00931		David Taylor Research Sution Attn: Dr. H. H. Singerman Code 283 Annapolis, MD 21402-5067	
Dr. A.B. Ellis Department of Chemistry University of Wisconsin Madison, W1 53706	Dr. E.A. brene Chemistry Dept. Univ. of North Carolina Chapei Hill, NC 27514	Dr. Robert W. Shaw US Army Research Office Box 12211 Res. Triangle Park, NC 27709	Dr. Robert L. Whetten Chemistry Department University of California Los Angeles, CA 90024		Dr. Sachio Yamamoto Naval Ocean Systems Center Code 52 San Diego, CA 91232	
Dr. M.A. El-Sayed Chemistry Department University of California Los Angeles, 90024-1569	Dr. D.E. Irish Department of Chemistry University of Waterloo ONT N21 3G1, Canada	Dr. S. Sibener James Franck Institute University of Chicago Chicago, IL 60637	Dr. R. Stanley Withtams Dept. of Chemistry University of California 405 Angeles, CA 90024		Carlena Leufroy Office of Naval Research 1030 E. Green Surect Pasadena, CA 91106	

Į