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Introduction

A frequently encountered class of network polymers consists of polymer

chains crosslinked via a small monomer crosslinker. It is useful to be able to

predict network parameters such as gel point and weight fractions of soluble,

pendant and elastically effective material. Probability models can be developed to

accomplish this, subject to certain simplifying assumptions.

The purpose of this paper is to extend previous probability models of

crosslinking systems to include polymer chains with an arbitrary number of

different types of monomer repeat units, some with reactive sites and others

without. A Markov model of chain growth is assumed. Certain statistical

properties of the polymer chains are needed to compute network parameters of the

crosslinked system. These properties are computed using the classical theory of

finite-state, transient Markov chains; it is not necessary to resort to Monte Carlo

techniques to estimate pioperties of such general chains.

A network model is based on the three simplifying assumptions of Flory 121

and Stockmayer [81: (i) functional sites have equal reactivity, (ii) functional sites

react independently of one another, and (iii) intramolecular reactions do not occur in

the finite species. Using statistical properties of the polymer chains and the

crosslinking monomer, the network model computes gel point a3nd network parameters

such as weight fractions soluble, pendant, and elastically-effective as a function of

conversion. This model shows the effect of unequal rates c" homopropagation and

crosspropagation in the chain-growth reaction on these network parameters.

A Model of Polymer Chain Growth

Polymer chains are formed from several reactants: initiator, I; transfer

agent, TH; monomers, M,., k: 1, 2,. . . m. Chain growth occurs in three stages.

During initiation, the initiator I changes into two activated initiators. I'. The

activated initiator then reacts with an unreacted monomer, M k , resulting in a short

chain consisting of a reacted initiator, [r, and an activated monomer, M.,

k-=1, 2, . . . , m. Chain growth consists of the activated chain-ends reacting with

unreacted monomers. Chain termination can occur in three ways. Termination by

combination occurs when two chains with activated end-moncmers c,:mbinc to form

one completed chain. Termination by disproportionation o curs when two chains



with activated end-monomers terminate but do not combine, resulting in two
completed chains. Termination by transfer occurs when a live chain-end reacts with
a transfer agent, TH; the hydrogen atom completes the chain and the transfer agent
is activated, T. The activated transfer agent T" then initiates a new chain by
reacting with an unreacted monomer. This chain growth reaction can be represented

as

Initiation: I -. 2 ,k d

I* -+- Mj - IrMa ki

T" + M -. TrMa , kti

Growth: -M M -. MrM k Fr

J i J ij

Termination: _Me + _Mr~r , ktc

r ~±-~ r ktd

- TH - _MrH + r, ktr

for i, j = 1, 2. , m, where the k's represent kinetic rates. This, and similar,
chain growth reactions are described by Williams [91, Odian (71, Galbraith, et al. 131,
and others. A system of kinetic equations based on the above scheme with second
order kinetics can be defined and solved (by numerical integration). This yields
concentrations (or numbers) of , r, T, Tr, H, Mk, M , Mr, k = 1, 2, ... ,

as a function of time. This system consists of 3m 4- 7 differential equations.

It is assumed that the above system is stiff: the rate at which activated
initiator is introduced into the system is much less than the rates of chun growth
and termination. This means that the chains initiated during a short time interval
(of length At) will see a constant environment while growing; the salient aspects of
this environment are the concentrations of TII, Mk and M, k= l, 2, . . . , m. This

constant environment and the kinetic growth which depends on just tic last unit of
a live chain lead to a Markov modcl of chain composition for th%. chmins initiated



during the interval. Chains from other intervals will also have Markov models, but

with different parameters. The totality of chains produced will correspond to a

mixture of Markov models. Mixing destroys the Markov property; thus, the

solution approach consists of computing the statistical chain parameters needed for

network analysis for a succession of short time intervals using the Markov model

and parameters for that interval, and then taking the mixture of the chains and

parameters. The number of chains initiated by I" and To during a short interval of

length At can be represented by AIr and ATr, respectively. These values and the

current values of TH, Mk, and Mz uniquely determine the polymer chains initiated

during the time interval.

Instantaneous Markov Model of Chain Composition

Consider the polymer chains initiated in a short time interval, focusing on

the portion between initiation and termination. Each position can be filled by

different elements. The initiating elements may be I or T. Interior elements may be

Mk, k=l, 2, ... in. The terminating element may be H1, or phantom elements D, or

Ck, k=1, 2, . . . , m, where D represents termination by disproportionation and Ck

represents termination by combination with M*, k=l, 2 .... , m. Let

X = (X0 , X1 X . .. I• XT ) represent the polymer chain; X is a transient Markov

chain with initial distribution .0and transition probablity matrix r(" , ), where

the subscript "r" represents -right". i.e., the chain is envisioned growing to the

right. The initial distrbution is

-(1 = P(X 0  1) = Alr/(AIr + ATr)

7 0(T) -= P(X 0  T) = ATr/(Ar 4_ ATr).

The transition probabilities Pr(u, v) = P(Xi+ 1 = v X1 i = u) are defined for

u {M 1 , • .. ,Mm,I,T} and vE (M. . . . , Mm, H, D, Cl,. , Cm). They are

computed from kinetic rates and te instantaneous concentrations of TH, Nlk, and

M., k=1, , .... , m. For example,

Pr(l, M")A - k~l jlt-1 V.ix Mj t

This model describes polymer chain structure between initiaticn and termination.

3



Now consider the chains which terminate by combination. A chain ending in a

phantom state Ck is actually combined with a chain component ending with Mk.

This component is viewed in the "left" direction, i.e., the structure is seen looking

toward the initiator, rather than away from it. The Markov property still holds

but the index set for the chain is reversed. Let Pe(- , -) be the transition matrix

of the reversed chain, the subscript "e" denoting the direction "left," toward the

initiating units. The reversed transition probabilities Pe(u, v) are defined for

u f (M1, . . . , M m , H) and v f {MI, . . . , Mm, I, -). P, can be computed from 0

and Pr. Feller [I] and Kemeny and Snell (41 are recommended references for the

necessary background on Markov chains.

The initial distribution w0 and the transition matrices Pr and Pg could be

used for Monte Carlo generation of a statistical sample of chains formed during the

current short time interval. Note, however, that chains terminating by combination

have two initiators and in effect will be counted twice; so the statistical sample

must be adjusted accordingly.

The Network Model

The chains produced in the above reaction are crosslinked by reacting them

with a small monomer crosslinker, B. It is assumed that chain monomer-unit- Mk,

k=I. 2, . . . , nf, each- have a reactive site, denoted as an A-site. None of the

other chain units have reactive sites.

Miler and Macosko 151 present a network model for crosslinking polydispersed

chains. Their equation (107) for the gel point is valid for the current systcm:

c = [r(EsFA-l) (EsFB-1)- 1/ 2 ,

where r is the stoichiometric irnbaiante and EsFA equals the expected functionality

of a chain chosen randomly by picking a reactive site. Their analyses is based on

the quantities P(Fout) and P(Fout) which are solutions of the equations:

P(F, utN - - + c -- a (P(FoUt))I Ps(FA-1 =)
f-0

P(F aut) ra1 -- r~x - ra g ( Ps(FB--l--g).
g-0



These equations are also valid for the current system.

For general chains, additional modelling is required for computation of weight

fraction soluble, pendant and elastically-effective. From any repeat unit on a chain,

it is important to know the network structure looking "left" and "right" along the

chain. Let Dj represent the event of pendant (dangling) material to the left, Dr

pendant to the right, and Db - De n Dr pendant in both directions. For a

particular repeat unit M i, the probabilities or these events are

00

P(DdIMi) = " (P(Fout))f P(Fx=-frM)
f-0

for d = r, C, b; where Fr, Fe, Fb are random variables representing the number of

functional sites seen when looking "right," "left," and in "both" directions from a

repeat unit Mi, i-=1, 2 .... m; and from 1, T, and H. For 1=1, 2, . . . , nf, the

monomer units have A-sites; thus

P(M i soluble) - P(Fout) P(DbIMi)

P(M1 pendant) (1 Fut) P(DbIMi)

+ P(F~ut)(P(DrIMI) P(ri IM - P(DbMi))

P(M i effective) = 1 -- P(M i soluble) - PCMi pendant).

For i -= nf 1, . . . , m, the monomer units have no sites; thus

P(M1 soluble' -- P(DbIMi)

P(M i pendant) = P(DriMi) + P(D 'M) - 2P.DbIM)

P(M i effective) = -- P(M i soluble) - P(, pendant).

Similar equations hold for I, ' and TI. The above equations can be conbined to

compute overall weight fraction or soluble, pendant, and clastically-effcctivc chlain

material. Using the above equations and the appropriate theory from 151, network

5



weight fractions and gel point can be computed, provided the distributions of

functionality to the right, left, and both directions from each unit are available.

Functionality to the Right and Left

Let Fe equal the functionality to the left of a chain unit, Mi , say. Consider

the Markov chain looking left which ignores Mk without sites (k=nf+l, . . . , in).

Denote the chain by Y = (Y0, Y, . . .* YT); where Y0 equals Mi, the starting

point, and YT equals I or T, the terminations looking left. The transition matrix

Pf(u, v) is defined for u f {M1, . . . , Mm, H) and v f {Mi,. . . , Mn, I, T), and can

be computed from Pe using the concept of absorption probabilities for Markov

chains. The distribution of Fe is related to Y:

P(Ff = f!Mi) = P(Yf+ = I or TIY 0 = Mi),

which can be computed from P Denote this conditional distr.bution as Z(FIMi),

for i=l, . . . , m; and also for H.

Now consider functionality to the right, Fr. This is more complicated

because of the possibility of termination by combination. Let Fr equal the

functionality on the original chain, and let Fc equal the functionality on the

continuation added by termination by combination. Consider the Markov chain

Z = (Z 0 , Z 1, . . , Z T ) of monomer units with functional sites to the right until

termination; the termination state ZT may be H, D, or Ck, k=1, 2, . , m. The

transition matrix Pr(u, v) is defined for u c {MI , . . ., M m, I, T) and

v {M I , . . , Mnf, H, D, C l , . . . , Cm) and can be computed from Pr. The

conditional distribution of Fr given the termination state is related to 2>"

P(F ° = rlMi, Ck ) = P(Zf+ l = Ck!ZO = Mi)/P(Ck M)

where

P(CkiMi) = X P(Zf+ 1  Ck 0 ZO = M i),
f-0

which can be computed from Pr. Denote this conditional distribution as

L(F 'Mi, Ck) for i, k -l, 2, .. . , m; and similarly ror I aoid T, initial statcs.

6



Suppose the additional functionality to th-. right results through termination

with phantom state Ck; this is equivalent to looking left from M k, which may or

may not contain a functional site itself. So

(LO -F E'Mk ) k=1,., nf

L(FrIMCk) = L(Fe ICk) = L(FIM k f+

Combining the functionality of the two parts of the chain to the right gives

m

L(FrIM t ) = 1 L(FrlMi, Ck) L L(FcICk) P(Ck!Mi)
k=1

*- L(FArii, H) P(HIM i) + (F°IM,, D) P(DiMi )

where "*" represents the convolution of probability distributions.

For chains produced in a short time interval, Fr and F1{ arc conditionally

independent given the starting seg-.ent. Thus the sum in both directions is obtained

by convolution:

V(Fb'NM) = (FelM i) * L(FrIMI),

i=I, 2, . ., m.

Mixtures of Polymer Chains

The above probability laws for functionalities to the right, to the left and in

both directions from chain repeat units are for the chains produced in a short

interval of time: (t, t+dt). The probability law for the totality of chains is the

mixture of the laws for the short intervals. Suppose Lt(FxMi) is the law for

chains produced in (t, t+dt) and dMi(t) equals the number of M i monomers reacted in

(t, t+dt). Then , if the reaction runs over (0, S), the probability laws for

functionality are given by

L([:dIMI) I Lt(Fdi%4i)dMI(t)/ dMi(t)
(') 17



for d=r, £, b, and i=l, 2, . . , m. Similar equations hold for 1, H, T. These are

the distributions needed for computation of weight fractions soluble, pendant, and

effective. The distribution of FA- I needed for the gel point is obtained by mixing

L(FbIMi), i=1, nf.

A Computational Example

The following system is a variation of one in [51. Polymer chains have two

types of repeat units: the first has a reactive site, the second does not. Elements

have the following masses: M i = 146; M 2 = 142; 1 50; T :=75;H - I. The

kinetic rates: kd .01; ku u . ti =ti = tr . ktr 8.0;1 0 kI - k2 - 40; kt 1 k
tc tc tc ktc 6.0 ktd = ktd = ktd = ktd = 4. g r gr gr

k11 ktc - kt1 k22 - ' "11 12 - 21 - 22 ' 1 =12 21
k r . 1.0. (This system has equal rates of homopropagation and

22-
crosspropagation.) Moles of initial reactants: I 1.0; TH = -'.U, M 50.0; •M,

- 50.0. The reaction went for a time duration of 1.50 time units. The solution of

the kinetic equations was done in three time intervals, using a simpic-minded

difference equation apnroximation with a step size of 0.001 time units. "'he

resulting chains had a number-average number of 7.43 monomer units and a number-

average functionality of 3.72.

These polymer chains were then reacted with a small B, crosslinker. This

monomer was polydispersed, consisting o, b,, 6.3, and B4 units which had weights

168, 478, and 788, respectively, and mole fractions 0.3, 0.4 and 0.3, respectively.

The mass of the reactants: mass of A-chains = 1000.00, mass of B-monomers

600.00. There was a stoichiometric imbalance: r = .862. The site-average

functionalities are Es(FA) -- 7.43 and Es(FB) = 3.20, which gives a gel point: (x,

- 0.286. The weight fractions of soluble, pendant, and elastically effective

material are shown in Figure I by the solid lines and referred to as System I.

In order to investigate the effect of unequal rates of homopropagation and

crosspropag4tion, two additional chains systems were computed. Both systems are

identical to the above system except for chain-growth rates. System II has faster,,r gr gr gr 01

homopropagation: 0 1- k2 - 1.9, k 12 = k21 . System Ill has faster

crosspropagation: klr gr = 0.1, kgr = k -g 1.9. Both of these systems
11 -- .1 12 - 21 -

yielded chains with identical number average length (7.43) and functionality (3.72) as

before. In Systcm II (homopropagation >> crosspropagation) Es(FA) 10.95



and oLc - 0.230, a significant change from'before. In System III (homopropagation

-C crosspropagation) Es(FA) -= 7.00 and cc = 0.296, not much change. The weight

fractions for System I1 are shown in Figure 1. The weight fractions for System II

do not differ much from System I (homopropagation = crosspropagation).

Conclusions

A model based on Markovian chain growth has been developed which shows

that Monte Carlo methods are not required for analyzing crosslinked systems of

such chains. The model has been programmed in WATFIV and runs quite fast (the

examples of the previous section each required 17 seconds to compile and run on an

IBM 4381). Preliminary investigations show that unequal rates of homopropagation

and crosspropagation can significantly affect network parameters. A detailed

description of an extended version of this model and analysis is in preparation 161.

It will include pre-gel molecular parameters, multiple types of unequally reactive

sites on chains, additional chain-forming mechanisms, and other topics.

References

[1] W. Feller, An Introduction to Probability Theory and Its Applications, 3rd Ed.,
Wiley, New York, 1968.

[21 P. J. Flory, Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, NY,
1953.

[31 M. N. Galbraith, G. Moad, D. H. Solomon, T. H. Spurling, Macromolecules 20
(1987), 675-679.

[41 J. G. Kemeny and J. L. Snell, Finite Markov Chains, Van Nostrand, Princeton,
NJ, 1960.

[51 D. R. Miller and C. W. Macosko, Journal of Polymer Science. Polymer
Physics Ed. 26 (1988), 1-54.

[61 D. R. Miller, manuscript in preparation

[7) G. Odian, Principles of Polymerization, 2nd Ed., Wiley-Interscience, New York,
1981.

[81 W. H. Stockmayer, Journal of Chemical Physics, 11 (1943), 45-55; Journal of
Chemical Physics, 12 (1944), 125-131.

[91 D. J. Williams, Polymer Science and Engineering. Prcntice-Hlall, l-nglewood
Cliffs, NJ, 1971.

9 l ~ m ,.m 'mmm,. m ,n~m ,.mmmmlm



zI

-.~ -q -

0i

OO -

0.0 0at 0. 0.3 Oa 0.5 a/. 4~1 0.1 al 1.0

CONVERSION

Figure 1. Weight fractions of soluble, pendant, and effective material for two

different crosslinking systems as a function of conversion. The solid lines

represent System 1, an ideal system (equal rates of chain hiomopropagation and

crosspropagation). The dotted lines represent System 11, a system with much

greater homopropagation rate than crossoropagation rate. The lower curves

represent weight fraction soluble. The differences between the two curves

represent weight fraction pendant. The differences between the upper axis and the

upper curves represent weight fraction of clastically effective material.
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