- 3 1T
. AD-A210 07 e (3

KerURT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT
. Approved for public release.
2b. JECLASSIFICATION / DOWNGRADING SCHEDULE Distribution umlimited.
3 PERFORMING ORGANIZATION REPORT NUMBER(S) S. VMONITORING ORGANIZATION REPORT NUMBER(S)
Technical Report #1
6a. NAME OF 2ERFORMING ORGANIZATION 60. OFFICE SYMBOL | 7a. NAME OF VIONITORING ORGANIZAT.ON
(If applicable)
University of Minmesota Office of Naval Research
6c. ADDRESS (City, State, and ZIP Code) 75. ADDRESS (City, State, and ZIP Code)
Department of Chem. Eng. & Mat. Sci. 800 N. Quincy Street
421 Washingtom -Avenue SE Arlingtom, VA 22217-5000
Mipneapolis, MN 55455
3a2. VAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT iDENTIFICATION NUMBER
ORGANIZATION (if appiicavle)
Office of Naval Research NOO014-88-K-0366
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE QF FUNDING NUMBERS
800 N. Quincy Street PROGRAM PROJECT TASK WORK _NIT
Arlington, VA 22217-5000 ELEMENT NO.  |NO. NO ACCESSION NO
4132029

11. TITLE (Include Secunty Classification)

CALCULATION OF NETWORK PARAMETERS OF CROSSLINKED MARKOVIAN POLYMER CHAINS

12. PERSCNAL AUTHOR(S)
D.R. Miller

13a._"YPE OF EPORT 13b. TIME COVERED 148 DATE OF REPORT [Year. Month, Dayj (15 PAGE COUNT
Incerim oM to May 1989

*6. SUPPLEMENTARY NOTATION

Paper submitted to Macromolekular Chemie

17 COSATI CODES ‘8. SUBLECT TERMS (Continue on reverse if necessary and iaentify by dlock numoer)
FIELD GROUP |  SUB-GROUP *Chain copolymerization, crossliaking, network properties.
| o :
2 .
|

19. ABSTRACLT ‘Continue on reverse !f necessary and identify by plock number)

~Linear copolymer chains form in a chain-addition reaction which includes initiation, «\Q

homopropagation, crosspropagation, and termination by transfer, disproportionation, and &Q/oj
combinaton. Chain growth obeys the Markov property. Multiple types of monomer units 0 Q,CJ .ng
are involved; some types have reactive site, others do not. These chains are then N\

crosslinked by a small monomer crosslinker which may be polydispersed. The resulting v Qv
network consists of soluble, pendant, and elastically effective fractions. Using classical > %
Markov chain analysis techniques, various statistical properties of the polymer chains are
computed. The gel point, weight fractions and other network properties can then be
computed. The effects of unequal rates of homopropagation and crosspropagation can )
observed. = o N
ST P N -\_' ¢ . o4 % ]
- 8 b '\) L A é}' b
20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
@ unCLasSIFIEDAUNLIMITED (T SAME as RPT. (] OTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL
Dr. Joaane Milliken/Dr. Kemneth Wynne | 202-696-4409 )
DD FORM 1473, 3aman 83 APR ecition may be used until exhaustea. ECURITY CLASSIFICATION OF THIS PAGE

All other eaitions are obsolete.




CALCULATION OF NETWORK PARAMETERS OF
CROSSLINKED MARKOVIAN POLYMER CHAINS

Douglas R. Miller
Department of Operations Research
School of Engineering and Applied Science
The George Washington University
Washington, DC 20052

Z

Q3LD745N;
ALITvnd

Accession For

NTIS GRASI 1
DTIC TAB g
Unannounced O
Justificatiosn

By.

_Distribution/

Availl:ibilivy Cages

Linear copolymer chains form in a chain-addition reaction which includes

initiation, homopropagation, crosspropagation, and termination by transfer,

disproportionation, and combination. Chain growth obeys the Markov property.

Multiple types of monomer units arc involved; some types have reactive sites,

others do not. These chains are then crosslinked by a small monomer crosslinker

which may be polydispersed. The resulting network consists of soluble, pendant,

and elastically effective fractions. Using classical Markov chain analysis

techniques, various statistical properties of the polymer chains arc computed. The

gel point, weight fractions and other network properties can then be computed. The

effects of unequal rates of homoopropagation and crosspropagation can be observed.
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Introduction

A frequently encountered class of network polymers consists of polymer
chains crosslinked via a small monomer crosslinker. It is useful to be able to
predict network parameters such as gel point and weight fractions of soluble,
pendant and elastically effective material. Probability models can be developed to

accomplish this, subject to certain simplifying assumptions.

The purpose of this paper is to extend previous probability models of
crosslinking systems to include polymer chains with an arbitrary number of
different types of monomer repeat units, some with reactive sites and others
without. A Markov model of chain growth is assumed. Certain statistical
properties of the polymer chains are needed to compute network parameters of the
crosslinked system. These properties are computed using the classical theory of
finite-state, transient Markov chains; it is not necessary to resort to Monte Carlo

techniques to estimate properties of such general chains.

A network model is based on the three simplifying assumptions of Flory (2]
and Stockmayer [8]: (i) functional sites have equal reactivity, (ii) functional sites
react independently of one another, and (iii) intramolccular recactions do not occur in
the finite species. Using statistical properties of the polymer chains and the
crosslinking monomer, the network model computes gel point and nctwork parameters
such as weight fractions soluble, pendant, and elastically-effective as a function of
conversion. This model shows the effect of unequal rates cf homopropagation and

crosspropagation in the chain-growth reaction on these network parameters.

A Model of Polymer Chain Growth

Polymer chains are formed from several reactants: 1mtiator, [; transfer
agent, TH; monomers, Mk' k:=1, 2. . . . m. Chain growth occurs in threce stages.
During 1nitiation, the initiator | changes into two activated imtiators, I*. The
activated inmitiator then reacts with an unreacted monomer, Mk’ resulting in a short
chain consisting of a reacted imtiator, I¥, and an activated monomer, My,
k=1l,2, ..., m. Chain growth consists of the activated chain-ends reacting with
unreacted monomers. Chain termination can occur in three ways. Termination by
combination cccurs when ‘wo chains with activated end-moncmers combine to form

one compieted chain. Termination by disproportionation ovcurs wien two chains




with activated end-monomers terminate but do not combine, resulting in two

completed chains. Termination by transfer occurs when a live chain-end reacts with
a transfer agent, TH; the hydrogen atom completes the chain and the transfer agent
is activated, T*. The activated transfer agent T® then initiates a new chain by

reacting with an unreacted monomer. This chain growth reaction can be represented
as

Initiation: I - 21 kd

'+ M- O™ , ki

T+ M; ~ TTM , ki

Growth: ~Mi'+ M‘j — ~M1;M3 , kngr
Termination: ~M! + - T ~M;MS~ , klt;:

~M{ +~M) - ~M[ + ~MT, kM

~M} = TH - ~MMH + 1, «F
fori, j =1,2. ..., m where the k's represent kinetic rates. This, and similar,
chain growth reactions are described by Williams [9], Odian (7], Galbraith, et al. [3],
and others. A system of kinetic equations based on the above scheme with second
order kinctics can be defined and solved (by numerical integration). This yieids
concentrations {(or numbers) of I, IT LTS T OH, Mk' Ml'(, Ml k=1,2,...,m

as a function of time. This system consists of 3m 4 7 differential equations.

It is assumed that the above system is stiff: the rate at which activated
initiator is introduced into the system is much less than the rates of chain growth
and termination. This means that the chains initiated during a short time interval
(of length At) will see a constant environment while growing; the salicnt aspccts of
this environment are the concentrations of TII, Mk and Mf\,. k--1,2, ..., m. This
constant environment and the kinetic growth which depends on just the last unmit of

a live chain lead to a Markov modcl of chain composition for the chuins initiated
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during the interval. Chains from other intervals will also have Markov models, but

with different parameters. The totality of chains produced will correspond to a
mixture of Markov models. Mixing destroys the Markov property; thus, the
solution approach consists of computing the statistical chain parameters needed for
network analysis for a succession of short time intervals using the Markov model
and paramecters for that interval, and then taking the mixture of the chains and
paramcters. The number of chains initiated by [* and T* during a short interval of
length At can be represented by AI' and ATT, respectively. These values and the

current values of TH, Mk' and Mi uniquely determine the polymer chains initiated
during the time interval.

Instantaneous Markov Model of Chain Composition

Consider the polymer chains initiated in a short time interval, focusing on
the portion between initiation and termination. Each position can be filled by
different elements. The initiating elements may be | or T. Interior elements may be
Mk’ k=1,2, ..., m The terminating element may be }l, or phantom elements D, or
Ck' k=1, 2, ..., m where D represents termination by disproportionation and Ck
represents termination by combination with ML, k=1,2,..., m. Let
X = (XO, Xl’ X.:, e ey f\'T) represent the polymer chain; X is a transient Markov
chain with initial distribution X, and transition probability matrix P¢(., -), where

the subscript “r” represents “right”, i.e., the chain 1s envisioned growing to the

right. The initial distribution 1s

r) = P(Xy = 1 = alf/al’ + ATH
7(T) = P(Xy = T) = AT/l + ATD.
The transition probabilities Pelu, v) = I’()(i+l = viX; = u) are defined for

u ¢ {Ml’ ey Mm I, T and v ¢ {M.‘, c. s My H, D, Gyl ey, Cm}. They are
computed from kinetic rates and the instantaneous concentrations of TH, Mk’ and

Mi,. k=1,2, ..., m. For example,
i I
Prll, M) = KiIM 1/ ;51 KM )y

‘I'his model describes polymer chain structure between initiaticn and termination.
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Now consider the chains which terminate by combination. A chain ending in a
phantom state Ck is actually combined with a chain component ending \iith Mk‘
This component is viewed in the “left” direction, i.e., the structure is seen looking
toward the initiator, rather than away from it. The Markov property still holds
but the index set for the chain is reversed. Let Pe(- , *) be the transition matrix
of the reversed chain, the subscript “£” denoting the direction “left,” toward the
initiating units. The reversed transition probabilities Pe(u, v) are defined for
ue{My, ..., Mp, Hand vei{M,...,Mp 1 Th P, can be computed from 7
and Pp. Feller {1] and Kemeny and Snell [4] are recommended references for the

necessary background on Markov chains.

The initial distribution % and the transition metrices Py and Py could be
used for Monte Carlo generation of a statistical sample of chains formed during the
current short time interval. Note, however, that chains terminating by combination

have two initiaters and in effect will be counted twice; so the statistical sample

must be adjusted accordingly.

The Network Model

The chains produced in the above reaction are crosslinked by reacting them
with a small monomer crosslinker, Bg. It is assumed that chain monomer-units .Vlk, ,
k=1, 2, ..., nf, each-have a reactive site, denoted as an A-site. None of the

other chain units have reactive sites.

Miller and Macosko (5] present a nctwork model for crosslinking polydispersed

chains. Their equation (107) for the gel point is valid for the current system:
aC = (r(ESFA-l) (EsFB‘l)]—llzy

where r is the steichiometric imbalance and ESFA equals the expected functionality
of a chain chosen randomly by picking a reactive site. Their analyses is based on

the quantities P(Fi"t) and P(Fgm) which are solutions of the equations:
(o %3
BEYY =1 —a +a S (PEQUY PR, —1=0)
=0 )

X0
PERYY =1 — ca + ra T (FFUY)® Pg(Fp - 1 =n).
g~0 '




These equations are also valid for the current system.

For general chains, additional modelling is required for computation of weight
fraction soluble, pendant and elastically-effective. From any repeat unit on a chain,
it is important to know the network structure looking “left” and “right” along the
chain. Let DZ represcnt the event of pendant (dangling) material to the left, Dr
pendant to the right, and Db = De N Dp pendant in both directions. For a

particular repeat unit Mi’ the probabilities of these events are

[v.04
POyM) = 5 (PFQUYF P(Fy =11M))

ford = r, £ b; where Fy, FC’ Fb are random variables rcpresenting the number of
functional sites seen when looking “ripht,” “left,” and in “both” directions from a
repcat unit Mi’ i=1,2, ..., mand fromI, T, and H. Fori=1,2, ..., nf, the

monomer units have A-sites; thus
out
P(M; soluble) - P(FA )P(Db|Mi)
out
P(M; pendant) = (] ——P(PA N P(DyIM;)

+ PFQUBPIDLIM,) + P(D, M) — 2P(Dy M)

P(M, effcctive) = 1 — P(M, soluble) — F(M; pendant).
Fori = nf+1,..., m the monomer units have no sites; thus

P(Ml soluble? - P(DbIM))

P(M; pendant) = P(DriM) + P(De}Mi) — 2P-DyiM))

P(M; effective) = ! -- P(M, soluble) — P(M, pendant).

Similar equations hold for I, 7", and II. The above equations can be combined to
ccmpute overull weight fruction of soluble, pendant, and clastically-ceffective chain

matcrial. Using the above equations and the appropriate theory from {5}, network




weight fractions and gel point can be computed, provided the distributions of

functionality to the right, left, and both directions from each unit are available.

Functionality to the Right and Left

Let Fl! equal the functionality to the left of a chain unit, Mi’ say. Consider
the Markov chain looking left which ignores Mk without sites (k=nf+1, ..., m).
Denote the chain by Y = (YO’ Yl’ ey YT); where Yo equals M,, the starting
point, and YT equals | or T, the terminations looking left. The transition matrix
PZ(u, v) is defined for u ¢ (Ml, « ey Mp, H and v € (Ml.. ..y Mnf’ I, T}, and can
be computed from PZ using the concept of absorption probabilities for Markov

chains. The distribution of Fl! is related to Y:

which can be computed from Pg. Denote this conditicnal distr:bution as L(Fe!Mi)'

for i=1, ..., m; and also for H.

Now consider functionality to the right, Fp. This is more complicated
because of the possibility of termination by combination. Let F? equal the
functionality on the original chain_, and let Ff: equal the functionality on the
continuation added by termination by combination. Consider the Markov chain
Z = (ZO, Zl, . ey ZT) of monomer units with functional sites to the right until
termination; the termination state Zy may be H, D, or C,, k==1,2, ..., m. The
transition matrix Pﬁ(u, v) is defined for u ¢ (Ml, eeeyMm, I, T} and
veiMy ... .M H D Cy, ..., Cpland can be computed from Pr. The

conditional distribution of F? given the termination state is related to ¢:

P(FY = MM, C,) = P(Zr,, = C}1Zy = M/P(CL M)
where
. X [}
f=0
which can be computed from PI;. Denote this conditionai distribution as

L(F?iMi, Ck) for i, k==1, 2, ..., m; and similarly for | aad T, initial statcs.




Suppose the additional functionality to th2 right results through termination
with phantom state Ck; this is equivalent to looking left from Mk’ which may or

may not contain a functional site itself. So

LU +FpIM) k=1, ..., nf
L(F,IMp) k=nf+l, ..., m

Combining the functionality of the two parts of the chain to the right gives

m
LF M) = 3 LFPIM;, Cp) * LFFIC,) P(C, IM;)
k=1

+ LF2iM;, H) P(HIM,) + LFRIM,, D) P(DIM))

where “x” represents the convolution of probability distributions.

For chains produced in a short time interval, F¢ and F(’ arc conditionally

independent given the starting segment. Thus the sum in both directions is obtained

by convolution:

Mixtures of Polymer Chains

The above probability laws for functionalities to the right, to the left and in
both directions from chain repcat units are for the chains produced in a short
interval of time: (t, t+4-dt). The probability law for the totality of chains is the
mixture of the laws for the short intervals. Suppose L;(F¢x M) is the law for
chains produced in (1, t+dt) and dM.l(t) equals the number of Mi monomers reacted in
(t, t+dt). Then , if the reaction runs over (0, S), the probability laws for

functionality are given by
S S
Lt(FdiMi)dM!(t)/] di,(v)

0




for d=r, €, b, and i=1, 2, ..., m. Similar equations hold for |, H, T. These are
the distributions needed for computation of weight fractions soluble, pendant, and

effective. The distribution of FA—I needed for the gel point is obtained by mixing
I(FbIMi), l=l, e e oy nf-

A Computational Example

The following system is a variation of one in [5]. Polymer chains have two
types of repeat units: the lirst has a reactive site, the second does not. Llements
have the following masses: Ml = 146; M2 = 142; 1 =50; T =75 H = 1. The
kinetic rates- k4 = 01 kY = k¥ = 2.0 k}i i = 4.0; kiF = k¥ = 8.0;

1 2
tc td

K = K5 = k3§ = k5 = 6.0 k(] = k5 = Kk§] = K55 = 4.0 kf] = &§) - k]
k2‘ = 1.0. (This system has equal rates of homopropagation and
crosspropagation.) Moles of initial reactants: I = 1.0; TH = 2.U: My == 50.0; M~
= 50.0. The reaction went for a time duration of 1.50 time umits. The solution of
the kinetic equations was done in three time intervals, using a simpic-minded
difference equation aporoximation with a step size of 0.001 time umits. The

resulting chains had a number-average number of 7.43 monomer units and a number-

average functionality of 3.72.

These polymer chains were then rcacted with a small Bg crosshinker. This
monomer was polydispersed, consisting of B,, By, and B, units which had weights
168, 478, and 788, respectively, and mole fractions 0.3, 0.4 and 0.3, respectively.
The mass of the reactants: mass of A-chains = 1000.00, mass of B-mcnomers =
600.00. There was a stoichiometric imbalance: r = .862. The site-average
functionalities are Ey(F,) = 7.43 and E(F3) = 3.20, which gives a gel point: ag
= 0.286. The weight fractions of soluble, pendant, and elastically effective

material are shown 1n Figure 1 by the solid lines and referred to as System |[.

In order to investigate the effect of uncqual ratcs of homoprcpagation and
crosspropagation, two additional chains systems were computed. Both systems are
identical to the above system except for chain-growth rates. System [l has faster
homopropagation: Tl = k%l;; = 1.9, k12 kgr = 0.1. System lll has faster
crosspropagation: k“ = k%; = 0.1, kp K& l = 1.9. Both of these systems
yielded chains with identical number average length (7.43) and functionality (3.72) as

before. In System !l (homopropagation >> crosspropagation) ES(FA) == 10.95

“w




and ag = 0.230, a significant change from before. In System Il (homopropagation
<« crosspropagation) ES(FA) = 7.00 and a¢c = 0.296, not much change. The weight
fractions for System II are shown in Figure 1. The weight fractions for System Il

do not differ much from System | (homopropagation = crosspropagation).

Conclusions

A model based on Markovian chain growth has been developed which shows
that Monte Carlo methods are not required for analyzing crosslinked systems of
such chains. The model has been programmed in WATFIV and runs quite fast (the
examples of the previous section each required 17 seconds to compile and run on an
IBM 4381). Preliminary investigations show that unequal rates of homopropagation
and crosspropagation can significantly affect network paramecters. A detailed
description of an extended version of this model and analysis is in preparation {6].
It will include pre-gel moiecular parameters, multiple types of unequally reactive

sites on chains, additional chain-forming mechanisms, and other topics.
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CONVERSION

Figure 1. Weight fractions of soluble, pendant, and effective material for two
different crosslinking systems as a function of conversion. The solid lines
represent System I, an ideal system (equal rates of chain homopropagation and
crosspropagation). The dotted lines represent System [l, a system with much
greater homopropagation rate than crosspropagation rate. The lower curves
reprcsent weight fraction soluble. The differences between the two curves
represent weight fraction pendant. The diffcrences between the upper axis and the

upper curves represent weight fraction of clastically effective material.
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