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STUDIES IN STATISTICAL SIGNAL PROCESSING
This is a final report on Contract AFOSR83-0228, for the period of July 1, 1986

and June 30, 1988. Section I provides a brief overview of our work, while the
remaining sections describe in some detail our recent results on efficient factorization
of structured matrices, polynomial zero-location, handling of singularities in the
recursions, and recursive layer peeling.

SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND
DEGREES AWARDED DURING TIS REPORTING PERIOD:

Professor T. Kailath
Graduate Student: R. Ackner
Senior Research Associate: H. Lev-Ari

1. INTRODUCTION

The primary objective of our research is to develop efficient and numerically

stable algorithms for nonstationary signal processing problems by understanding and

exploiting special structures, both deterministic and stochastic, in the problems. We

also strive to establish and broaden links with related disciplines, such as cascade filter

synthesis, scattering theory, numerical linear algebra, and mathematical operator theory

for the purpose of cross fertilization of ideas and techniques. These explorations have

led to new results both in estimation theory and in these other fields, e.g., to new

algorithms for triangular and QR factorization of structured matrices, new techniques

for root location and stability testing, new recursions for orthogonal polynomials on

the unit circle and the real line as well as on other curves, and new approaches to

overcome singularities and ill-conditioning in the recursions. -- (

For several years, the guiding principle in these studies has been the concept of

generalized displacement structure (Lev-Ari and Kailath (1986)), which generalized

and subsumed our earlier work on Toeplitz-oriented displacement structure (Kailath,

Kung and Morf, (1979); see also Lev-Ari and Kailath (1984)). The same notion of
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displacement structure has also emerged from the work of Heinig and Rost

(1984,1987) of East Germany, whose approach and methodology are significantly

different from ours. In particular, they focus only on the problem of inversion of

structured matrices via algebraic methods, while our work has primarily addressed

triangular factorization of such matrices, and our approach is based on a generating

function characterization of matrices. In fact, in the recent Ph.D. research of J.Chun

we were able to reduce the inversion problem for structured matrices to the

factorization of certain block-matrices with structured blocks. This result confirms our

earlier findings (in Lev-Ari(1983), Lev-Ari and Kailath (1984)) on the relation between

efficient inversion and efficient factorization of structured matrices: only some of the

structured matrices that admit an efficient factorization procedure can also be

efficiently inverted.

The generating function approach, which was introduced in the Ph.D. research of

Lev-Ari (1983), also suggests a natural geometric interpretation of the theory, which

allows a number of other interesting developments, e.g., studies of various problems in

system theory, such as minimal realization, Padd approximation, control design, and a

variety of root distribution (stability) problems for polynomials. This approach also

unveils the great flexibility in the computational details of the factorization procedure

for structured matrices. In contrast, the approach taken by Heinig and Rost (and related

work by Lerer, Tismenetsky, Shalom and several other mathematicians), leads to a

single procedure for (the inversion of) every particular type of structured matrices. In

particular, our generating function approach led us to recognize some classical root

location procedures, such as the Schur-Cohn and the Routh-Hurwitz algorithms, as

particular instances of our factorization procedure. Moreover, by exploiting the
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flexibility in our prototype procedure we obtained new alternatives to these classical

algorithms, with reduced computational requirements.

2. FACTORIZATION OF STRUCTURED MATRICES

Our early work on factorization and inversion of Toeplitz and close-to-Toeplitz

matrices led us to the observation that for certain matrices the displacement matrix

VzR:=R-ZRZ*, Z=[8i ij=o

has low rank. In particular, the displacement rank (i.e., the rank of VzR) is 2 for

both Toeplitz matrices and for their inverses. We have shown in previous work

(largely supported by AFOSR) that the displacement concept is a key tool for,

developing fast algorithms of many kinds, including factorization and inversion of

Toeplitz and near-Toeplitz matrices, as well as fast (generalized Levinson and Schur)

algorithms for solving linear systems with such coefficient matrices. Not surprisingly,

these results led naturally to cascade orthogonal structures (generalized lattice filters)

for the prediction of nonstationary processes (Lev-Ari and Kailath (1984)). We have

also found that the same concept is tightly connected to the more general problem of

cascade filter synthesis in network theory and digital filtering as well as to a variety of

inverse scattering problems (some references are Rao and Kailath, (1984, 1985),

Bruckstein and Kailath (1986)).

Later we extended the concept of displacement structure to a very broad family of

structured matrices, including Hankel matrices and their inverses, sums of Toeplitz and

Hankel matrices and several others (Lev-Ari and Kailath, (1986)). The generalized

displacement of a matrix R, is defined as d(Z,Z)R where
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Nd (A,B)R I=2 dk,l Zk R (Z*', (la)

k,1=0

and the asterisk (*) denotes Hermitian transpose (complex conjugate for scalars).

The generalized displacement operator d(Z,Z) is characterized by a (Hermitian)

displacement matrix Jd ,

Jd := (dkt ; O< k, < N) (lb)

The previous notion of displacement corresponds to the particular displacement matrix

J= [ ]:= JT

while the displacement notion used by Heinig and Rost (1984) for Hankel matrices,-

corresponds to the displacement matrix

LJ01:JR

We have shown that efficient factorization procedures for a Hermitian matrix R can

be formulated if, and only if, d (Z,Z)R has low rank, and if the displacement matrix

Jd has inertia (1,1). This means that Jd must have the form

Jt = W - * (2)

where *,i are column vectors of arbitrary length.

The concept of displacement structure and its properties are more conveniently

described in terms of generating functions. The generating function of a matrix R is

a power series in two complex variables, viz.,

R (z,w) := [I z z 2...]IR[1 w W2 ...] (3)
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The displacement d(Z,Z)R of a matrix has the generating function d (z,w)R (z ,w),

where d(z,w) is the generating function of the Hermitian matrix Jd viz.,

N
d(z,w) = i_ dk zk(w*)1 (4)

kJ--O

Thus the generating function of a Hermitian matrix with a displacement structure has

the form

G(z) J G *(w)
R (z,w) = d (w) (5)d (z,w )

where J is any constant nonsingular Hermitian matrix. The triple (d (z ,w ),G (z ),J)

is called a generator of R (z ,w).

We have extended our previous work (Lev-Ari and Kailath (1984)) on efficient

factorization of matrices with displacement structure to accommodate the generalized

displacement d(Z,Z)R, and we have shown (Lev-Ari and Kailath (1986), Lev-Ari,

Bistritz and Kailath (1987)) that efficient factorization of R is possible if there exist

matrix functions Ei (z) and constant matrices Ji (J0 := J) that satisfy the matrix

equation

9 (Z) Ji+1 e1 (W) = 1i - d(z,w) JiMiJi (6a)Oi~z Jil O'(w = i -d(z, j)d( i,w)

for arbitrary , where

Mi := Gi*( i)Ri-l(Ci, i)Gj(ci) = Mi* (6b)

We have also shown that (6) has a solution if, and only if, Ji are all congruent to J

and

d(z,w) = O(z)O*(w) - W(z)W*(w) (7)
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which is the generating function version of (2). The standard choice i = 0 produces

triangular factorizations; other choices are required in root-location and filter synthesis

procedures (see, e.g., Deprettere and Dewilde (1980), Vaidyanathan and Mitra (1984)).

The (nonunique) solution of (6) is

{ I  d(z '')d i ) I}
Oi (z) = - (z,T'i ) Ji Mi Ui (8a)

where U is any constant matrix such that

Ui Ji+1 Ui* = J, (8b)

and ;T is any complex constant such that

d( i ,Ti ) = 0 .(8c)

The factorization of R is obtained via the recursion

(z- i)Gi+l(z) = Gi(z )E,(z) i = 0,1,2,... (9)

where 8i(z) have the form (8). This algorithm requires O (n 2) computations to

factor a structured n x n matrix, in contrast to the conventional LDL* algorithm

which requires 0 (n3) operations to factor an arbitrary n x n matrix.

It should be observed that the formulation (8) allows a great flexibility in the

selection of the scalars j , ci and the matrices U . The "universe of choice" has

four distinct dimensions that determine the specific form of an efficient factorization

procedure for a given displacement function d (z ,w) :

(i) Generator Type: If J = JT we say that the generator (G (z) ,J) and the

corresponding recursion are of the scattering-type. This terminology is motivated

by the observation that with J = JT [ _1] we can rewrite (5) as
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u(z)u*(w) -v(z)v*(w)(la
R (z,w) = ZU*W Zv*W (10a)d (z ,w)

and that

R 04 0 supl 1 (lOb)
z E11 u(z)

This means that the ratio v(z)Iu(z) can be interpreted as a (generalized)

scattering function of a passive system. In particular, this ratio is a continuous-

time scattering-function when d(z,w)= z + w* and a discrete-time scattering

function when d (z,w)= - zw*. Similarly, if J = J := [0 1i we say that

the generator (G (z), J) and the corresponding recursion are of the immittance-

type. In this case (5) can be rewritten as

R(z,w) = f (z) *(w) + g(z) f *(z) (11a)
d (z ,w)

which implies that

R 0 = inf {Re (z)} > 0 (11b)
Z, f(z) 

Thus the ratio g (z)lf (z) is positive real in Q+ , which for d (z,w) = 1 - zw*

(respectively z + w*) corresponds to a discrete-time (respectively continuous-

time) impedanceladmittance (= immittance) function. Other choices of J

determine other types.

(ii) Extraction Point: The extraction points { i} can be either on the curve CIO,

defined by d(z,z) = 0, or in one of the (disjoint) domains K1+, fl. In most

applications there is an obvious preference for fixed, real-valued extraction points,

i.e., i = C for all i, where C0 is real. However, in other cases it may be

necessary to use a different (complex-valued) Ci at each extraction step (see,
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e.g., Vaidyanathan and Mitra (1984)). Finally, the choice of Ci affects the

computational complexity of evaluating Gi (i); the best choices from this point

of view are Ci = 0 and (probably next best) Ci = ±1.

(iii) Recursion Depth: The fundamental recursion (9) is a two-term vector recursion.

This means that each step of the recursion relates variables indexed by i and by

i + 1 (hence "two-term") and that there are several functions, combined into a

vector Gi (z) for each index point i. In other words, we can interpret (9) as a

linear vector difference equation of the first order. Such equations can always be

transformed into a single scalar linear difference equation of a higher order. In

particular, if G (z) has two elements (i.e., if J is a 2 x 2 matrix), then (9).,

can be transformed into a scalar linear difference equation of the second order,

also known as a three-term recursion. For instance, the Schur-Cohn is a two-

term recursion for a vector function of length two, while the Bistritz test (see

Bistritz (1984)) is a three-term recursion for a scalar function.

(iv) Recursion Parameters: The scalars {ti) and the matrices (Ui) can be

chosen arbitrarily, subject to the constraints (8b), (8c). It seems, however, that

minimization of computational complexity dictates specific (and, essentially,

unique) choices for these parameters.

Our recent research has identified several choices that result in recursions whose

computational requirements are less than those of known procedures.

In particular, we have constructed computationally-improved alternatives to the

classical Schur (and Levinson) algorithm, and to the Schur-Cohn test, as follows:
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(i) Immir .nce-domain three-term equivalents of the Levinson and Schur recursions

for quasi-Toeplitz matrices with complex-valued elements (Bistritz, Lev-Ari and

Kailath (1987)). This extends our previous results for real-valued quasi-Toeplitz

matrices (Bistritz, Lev-Ari and Kailath (1986)).

(ii) An alternative to the Schur-Cohn algorithm for root-location with respect to the

unit circle; the form of this new recursion is an exact equivalent of the Routh-

Hurwitz algorithm (Lev-Ari (1987)).

On the theoretical level we have recently established the following fundamental

result: for every d (z,w) of the form (7) and for every (finite) matrix R,

In {d(Z,Z)R) = In {d(Z,Z)[rev R-1 ]} (12)

where the reversed matrix rev R-1 is obtained by transposing R-1 with respect to

the secondary diagonal. Thus the reversal of any matrix Q is formally defined as

rev Q;= 1 Qr I (13a)

where the superscript T denotes the conventional (non-Hermitian) transpose, and

Al: (13b)

1 0

The fundamental result (12) implies that R and rev R-1  have the same

displacement structure. It does not tell us, however, how to relate the parametrizations

of generators of R and of rev R- 1. Such relations are known for Toeplitz matrices

and give rise to the Levinson algorithm and the Gohberg-Semencul formula. They

have been extended by Lev-Ari and Kailath (1984) to close-to-Toeplitz matrices, i.e.,
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to matrices with displacement structure involving d (z ,w) = 1 - zw*.

The proof of the result (12) is based on several observations, including the

following:

(i) Under the constraint (7), the generalized displacement d (Z,Z)R is given by

d(Z,Z)R = O(Z) R 0I*(Z) - xV(Z) R xV*(Z)

(ii) We can assume without loss of generality that O(z) and N(z) do not have

common zeros; if they had, we could simplify d(z,w) by extracting those

common zeros. In particular, we may assume that 0(0) 0.

(iii) As a consequence of (i) and (ii) we conclude that

In {d(Z,Z)R) = In {R-FRF*)

whcre F := 0-'(Z)V(Z), is a lower-triangular Toeplitz matrix whose first column

is determined by the coefficients of the power-series expansion of V(z )/(z).

We have recently shown that our factorization procedure can be extended to matrices

for which the geaeralized displacement R - FRF* has low rank, where F can be

any lo.er triangular matrix; when F is a lower-triangular Toeplitz matrix the new

procedure reduces to the one reported in [Lev-Ari and Kailath (1986)]. The efficiency

of this new factorization procedure depends upon the structure of the matrix F,

because the procedure involves repeated calculation of products between certain

vectors and matrices of the form (F -f ij)(I -f * F)- ', where f ij denotes the

(i,i) element of the matrix F. The computational complexity of such products

dep,;nds upon the structure of F.
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Very recently, Mr. J. Chun has shown how F matrices composed Z of

different sizes can be nicely employed to obtain efficient algorithms for the least-

squares solution of various special systems including, for example, triangular and

orthogonal factorization of composite matrices such as (TIT 2), (TITBIT 3, (TTT)-T.

3. BEZOUTIANS AND EFFICIENT ZERO-LOCATION

One fascinating application of the notion of generalized displacement structure is

the construction of Bezoutian matrices. Originally, such matrices were associated with

stability (and zero-location) tests with respect to the unit circle and the imaginary axis.

We have extended this notion to structured matrices whose generating function has the,

form

B(z,w) = p(z)p* (w)-p (z)[p*(w)]* (14a)
[1 ZlJd[1 w]*

where

[d 0 ] (14b)

and the sharp (#) denotes a suitably defined polynomial transformation. The

remarkable property of such matrices is that most of their elements vanish except the

elements in the leading n xn principal submatrix, where n :=deg p (z). This

submatrix, which we denote by B, has full rank (i.e., rank B = n) when p (z) and

p#(z) are coprime. Furthermore, the inertia of the Bezoutian matrix B (i.e., the

number of its positive, zero and negative eigenvalues) serves to locate the zeros of the

polynomial p (z) with respect to the following partition of the complex plane,

Q. = (z ; d(z,z) > 0)
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1.4 (z ; d(z,z) = 0) (15)

Q_= {z ; d(z,z) <0)

More specifically the inertia of B indicates how many zeros are shared by p (z) and

p#(z) and how many of the remaining zeros are in Q+ and in Q. Our fast

factorization procedure makes it possible to determine the inertia of a Bezoutian matrix

in 0(n 2) operations. For Bezoutians on the imaginary axis and the unit circle our

formulation leads (among other possibilities) to the Routh-Hurwitz and Schur-Cohn

tests, and serves to delimit the family of 0 (n2) polynomial zero-location procedures.

Indeed, we conjecture that every 0 (n2) procedure corresponds to some specific

choice in the four-dimensional "universe of choice" that we described in Section 2.

4. SINGULAR RECURSIONS

The fundamental recursion step (9) can be carried out if, and only if, the scalar

Ri (Ci, i) does not vanish. Thus, the recursion can be completed (for i = 0,1,..., n)

if, and only if, the matrix R is strongly regular, i.e., all its leading principal minors

do not vanish. Various solutions have been proposed, to overcome recursion

singularities (i.e., the case when R i (i ,Ci) = 0), mostly involving some perturbation of

the data or the recursion parameters. For instance, Vaidyanathan and Mitra (1987)

suggest moving the point i , so that Ri (i , ) * 0 and the recursion can be carried

on. This approach, in addition to being rather ad hoc, cannot be used in applications

that involve predetermined values for (i ), such as the commonly used choice

= 0. There is a variety of similar approaches in the literature.

Our approach to overcome recursion singularities is different and is based on the
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observation that a Hermitian matrix with singular leading principal minors has a

block-triangular factorization of the form R = L D L* where L is lower triangular

with unity diagonal elements and D is a block-diagonal matrix. The sizes of the

blocks in D are determined by the rank-profile of R, i.e., by the variation of the

nullity (-dimension of null space) of the leading principal submatrix R0  as a

function of n. This implies that whenever Ri (i ,C) = 0 it may still be possible to

"jump over" the singularity and compute Gi+,(z) directly from Gj(z) via a

modified version of (9), where v is the size of the block in D whose top left

element occupies the (i,i) position in D.

We have recently derived this modified version of the fundamental recursion (9),.

for two particular examples: the Routh-Hurwitz algorithm and the Schur-Cohn

algorithm. The former involves a generator of the form

where p (z) is a given polynomial (the recursion parameters are

Ci = 0, Tj = j*-, U = J). The latter involves a generator of the form

where p (z ) := zdeg p(z) [p (1/z *)]* (and the recursion parameters are

Ci = 0, ; i = 1, U = J). Our modified recursion carries out the transformation

Gi (z) -+ Gi+v(z) as a sequence of single-step transformations, viz.,

Gi(z) - Gi.,(z) - Gi+2 (z) -+ " -+ Gi+v(z)

where the intermediate generators Gi+k(z) (i < k < V - 1), serve to determine the
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triangular factor L of R column by column, rather than by block-columns (Pal and

Kailath, (1988)).

5. RECURSIVE LAYER PEELING

The fundamental factorization procedure for structured matrices, viz.,

(z - Ci)Gi+1(z) = Gi(z)@i(z)

is, at the same time, also a layer-peeling, procedure. Starting with Go(z), which we

can interpret as boundary data for a layered medium, we identify an elementary layer

with chain-scattering matrix (0(z), then "peel" it off to obtain G t(z), the

boundary data for the rest of the medium (with the first layer removed), and repeat the.

same procedure again and again. Such layer-peeling recursions have been used in

cascade filter synthesis (see, e.g., Dewilde, Vieira and Kailath, (1978); Vaidyanathan

and Mitra (1984)), in inverse scattering (Bruckstein and Kailath (1987)), zero-location

(Lev-Ari, Bistritz and Kailath (1987)), and model-order reduction (see, e.g., Genin and

Kung (1981)).

The classical work of Schur (1917) forms the basis for much of the subsequent

work on layer peeling procedures. Schur's algorithm associates a sequence of so-

called reflection coefficients, all with magnitude bounded by unity, with every passive

scattering function, i.e., a function S(z) that is analytic and bounded by 1 in the

unit disc. In particular, if S(z) is an all-pass function, which means that

IS (eie) = 1 for all 0, then Schur's algorithm produces a finite sequence of

reflection coefficients [ki ; 0 i n), where Ik, I = 1 and 1ki I < I for

0 < i < n - 1. Another property of the algorithm is that starting with a passive
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scattering function it generates a sequence of such functions. This is the essence of

layer peeling: a single step of the Schur algorithm applied to a passive medium leaves

a medium with the same property, which makes it possible to apply the same step

again and again.

In addition to the recursive characterization of passivity via the constraint on the

magnitude of the reflection coefficients, Schur also introduced an operator-norm

characterization of passivity: he proved that for any function f (z) that is analytic in

the unit disc we can construct an infinite lower-triangular Toeplitz matrix whose first

column consists of the coefficients of the power series expansion of f (z), viz.,

fo

fi fo 0
L(f)= f 2 fl (16a)

such that

sup If(z)I 1 1 IIL(f)112  1 (16b)1Z I < 1

where II A 112 denotes the conventional (spectral) norm of a matrix A, i.e.,

IlAx 112
IIA 112 := sup lAX 112 (16c)X IIx 112

and IIx 112 denotes the Euclidean (12) norm of a vector x.

Schur's algorithm has been later applied also to functions with poles in the unit

disc, but only to rational "all-pass" functions, i.e., to functions f (z) of the form

f (Z) P(17a)

p (Z)
where p Wz denotes the conjugate reversal operation, viz.,
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p#(z) = zd e g p(z)[p (/z*)] (17b)

The well known Schur-Cohn test associates with each such functioat a finite sequence

of reflection coefficients, some of which have magnitudes larger than 1. Moreover, it

follows from the properties of Bezoutians on the unit disc that the number of poles of

f (z) = p # (z )/p (z) inside the unit-disc equals the number of singular values of the

matrix L(f ) that are larger than I X I or, equivalently, the number of negative

eigenvalues of the following finite rank matrix,

R := 1% 121- L(f )L*(f ) (18)
It also follows that the so-called Pick matrix

I: X 1~2-f( &)f *(Cj)
---- 0*; ; O<ij _ n (19)

is congruent to R of (18), viz.,

1 ;0 1 0i
12 .1 .2 . 1 . .

and therefore has the same number of negative eigenvalues. The significance of these

results has recently been recognized in the context of approximation and model-order

reduction (see, e.g., Genin and Kung (1981)).

Rational allpass functions of a given degree k are members in the family Hk;,

which consists of all functions with k poles (or less) inside the unit circle, and whose

magnitude is bounded on the unit circle, i.e., sup If(z) I < -. It turns out that the

Assuming p(z) has no zeros at z 0. and applying the algorithm to f (Z)/.
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Schur-Cohn algorithm does not map the family Hk; into itself, except when k=0.

This means that this algorithm does not admit the same layer-peeling interpretation as

the standard Schur algorithm. Nevertheless, we have found that it is possible to

modify the Schur algorithm in such a way that the resulting recursion indeed maps the

family H m into itself and, therefore, admits the same layer-peeling interpretation as

the classical Schur algorithm. In addition, it produces a transmission-line model that is

similar to the one associated with the classical algorithm.

Furthermore, our modified recursion applies to every function f (z ) E Hk", and

not just to allpass functions. Each layer in the resulting transmission line model has an

indicator or 'sign'. While a positive layer maps Hkr into itself, a negative layer maps,

H;* into Hk_I namely, it reduces by one the number of poles within the unit disc.

Therefore, the number of negative layers in the transmission-line model that is

generated by our modified algorithm equals the number of poles that the function

f (z) has within the unit disc. This is the key idea in the construction of efficient

procedures for zero-location and model-order reduction.

This result should have some implications for control systems, where the

underlying systems (linearized about an operating point) are often unstable. We are

exploring these implications and attempting to relate them to results obtained in the

last few years in the active field caled H.-control.
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