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ABSTRACT 

A new class of binary sequences, called Mac sequences, is introduced. These 
sequences can be designed to have an arbitrary length and near-ideal correlation 
properties over a specified range around the peak. A systematic algorithm to gen- 
erate Mac sequences is also presented. 
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1.   INTRODUCTION 

Binary sequences having two-valued correlation are very much sought after. Their applications 

are found in many areas such as error-correcting codes, synchronization, spread-spectrum communi- 
cation, time resolution measurements, ranging, picture transmission, acoustics, radar, and antenna 
design. 

Many sequences are known to have two-valued periodic correlation. Perhaps, the most famous 
of these are maximum-length sequences. Maximum-length sequences [1] have two-valued periodic 

correlations and power spectra. They satisfy linear recursions which are a consequence of Galois 

field theory [2] and are very easily implemented with linear shift registers. Barker sequences [3] 
have correlations less than or equal to 1, except at the origin. Twin-prime (p, p + 2) sequences [4] 
have correlation of p(p + 2) at the origin and —1 elsewhere. Hall sequences [5] and quadratic-residue 
or Legendre sequences [6] also have the same two-valued periodic correlations and power spectra. 

The above sequences have remarkable correlation properties but only come in certain lengths. 
For instance, maximum-length sequences exist only for periods of length pm — 1. Barker codes 

are only known for lengths 1,2,3,4,5,7,11 and 13. Twin-prime sequences only come in lengths 
p(p + 2), where both p and p + 2 are prime. Hall sequences also are of prime length p, with p of 
the form Aq2 + 27. Quadratic residue or Legendre sequences only come in prime lengths p of the 
form p = 4<7 — 1. 

A typical application requires a binary sequence of a specific length and good correlation 

properties over a given region about the peak. In such cases, it is always possible to use the above 

sequences in lengths greater than that required by the application, but this is done at the expense of 
design efficiency or system performance. Also, it is sometimes unnecessary for the ideal correlation 

properties to extend far beyond the peak of the correlation function. This is the case, for example, 
of sequences to be used for fine synchronization of communication systems. 

Here, the question of interest is whether it is possible to trade a restricted interval of ideal 
correlation for a greater generality of sequence length. In other words, is it possible to find a class 
of sequences that exhibit ideal correlation properties over a restricted region around the peak, and 
whose length can be chosen arbitrarily? As shown in this note, the answer is "yes." 

Specifically, this memorandum develops: 

• A dense class of binary sequences, called Mac sequences, having arbitrary length 
and ideal correlation properties over a limited range around the peak. 

• A general algorithm to construct Mac sequences of any length. 

The presentation is organized as follows: 

Section 2 recalls the fundamentals of quadratic residues, upon which Mac sequences are based, 
and Euler's criterion, which will serve in the construction of the desired sequences. The results in 
this section are well known and can be found in [7]. The following sections contain new material. 



Section 3 gives the definition of Mac sequences in terms of core sequences. A few simple 
examples are presented to illustrate the definition. 

Section 4 establishes the sampling properties of core sequences, as well as the correlation 
properties of core and Mac sequences. It also addresses the denseness of the set of Mac sequences. 

Section 5 discusses computational issues involved with the calculation of quadratic-residue 
sequences modulo a large prime number, proposes an algorithm to calculate quadratic residues 
without risk of computer overflow, and develops an easy method to generate Mac sequences. Finally, 
a long Mac sequence is calculated to illustrate the method, and the resulting binary sequence is 
shown to have the desired correlation property. 



2.   REVIEW OF QUADRATIC RESIDUES 

We now recall some of the properties of quadratic residues and refer the reader to [7] for 
additional information. 

2.1     QUADRATIC RESIDUES 

Definition 2.1 An integer n is a quadratic residue modulo a prime number p if the congruence 

y   = n  (mod p) (2.1) 

has an integer solution y.  The existence of such a solution is indicated by 

n = R (mod p) (2.2) 

// there is no solution, then n is a quadratic nonresidue, and we write 

n = N (mod p) (2.3) 

It can be shown [7] that, not counting n = 0, there are exactly (p — l)/2 quadratic residues and 
(p — l)/2 quadratic nonresidues. 

The properties R and N obey the rules of multiplication of signs, with R corresponding to +1 
and N to -1 

R • R = R,   R • N = N • R = N,   N • N = R (2.4) 

In order to simplify the notation, in this report we will use the Legendre symbol   j| , defined 
as follows: 

n 

Pi 

1 if n = R (mod p) 

— 1 if n = N (mod p) 

0       if n = 0      (mod p) 

(2.5) 

One can define a sequence {/n} as ln — Uj . Such sequences (known as Legendre sequences) are 

ternary sequences taking values 1,-1, and 0 at indices congruent to 0 (mod p), and are periodic 
with period p. 



2.2     EULER'S CRITERION 

Euler's criterion is an easy method to check whether a number is a quadratic residue. 

Criterion 2.1 For a prime p and an integer n such that gcd1 {p,n) = 1, n is a quadratic residue 

modulo p if and only if 

n(P-i)/2  s  j  (modp) (2.6) 

It is a quadratic nonresidue if and only if 

n(p-i)/2 =  _j  (morfp) (2.7) 

Proo/: 

Euler's criterion is based on Fermat's famous theorem [7]: 

np_1  =  1  (modp),   if gcd(p,n) = l (2.8) 

which states that if an integer n and a prime p have no common divisor, then p divides np_1 — 1. 

Since np_1  =  1  (mod p), we have 

n(P-i)/2  s  ±1  (modp) (2.9) 

Now, either n is an even power of a primitive root2 g of 1, or it is an odd power. 

If it is an even power, say n  =  g2m, then gm is a solution to the congruence 

y2 = n (modp) (2.10) 

i.e., n is a quadratic residue modulo p. 

If it is an odd power, n is a nonresidue because g2m  (m = 1, 2,...) generates (p—1)/2 quadratic 

residues, so that the remaining integers must be quadratic nonresidues. 

Definition 2.2 A Mac prime p is a prime number such that p — 1 is a nonresidue, hence p — 1 = 
TV  (modp). 

By Euler's criterion, a prime p is a Mac prime if and only if (p — l)/2 is odd, since 

(p_!)(p-D/2    =    (_!)(P-D/2  (morfp) (2.H) 

=    -1,    iff (p-l)/2isodd (2.12) 

1 Greatest common divisor 
2 By definition, the successive powers of a primitive root generate a complete residue system, 

i.e., all integers from 1 to p — 1. 



3.   MAC SEQUENCES 

We proceed to define the set of Mac sequences and illustrate them with a few examples. 

3.1     DEFINITION OF MAC SEQUENCES 

Definition 3.1 Let p be a Mac prime, and let u,v be two arbitrary integers less than p.    The 
(u,p, v) Mac sequence {bn} is a binary sequence of length p + u + v, defined as follows: 

bn — a-n-u    for 0  <   n  <  p + u + v (3.1) 

where 

for n = 0  (mod p) 

otherwise 
(3.2) 

This defines a finite length binary sequence taking values +1 and — 1.   The Mac sequence 
{bn;   0  <  n < p + u + v} can also be expressed as follows: 

/• " n f p - u' 
[       P 
1 
n — u 

[   P    . 
1 

» 
n — u -P] 

P 

for n satisfying 0  < n  <  u 

for n = u 

for n satisfying u < n < u + p 

for n = u + p 

for n satisfying u + p < n  <  u + p + v 

(3-3) 

Note that the sequence {an} is an infinite binary sequence of period p, whereas {bn} is a finite 
binary sequence of length p + u + v. Also, the first u terms and the last v terms of the Mac sequence 
are the last v terms and the first u terms of the core sequence, respectively. In what follows, the 
finite subsequence {an; n  =  0,... ,p — 1} of {an}, defined as: 

n 
IP 

for n  =  0  (mod p) 

for n  =   1,..., p — 1 
(3.4) 

is called the core sequence of {bn}. It is evident from ( 3.1) that the first u terms of {bn} are the 
last u terms of {an}, the last v terms of {bn} are the first v terms of {an}, and that the center 
portion of the Mac sequence is the core sequence. The first u terms and last v terms of the Mac 
sequence {bn} will be called the u-term and v-term extensions. 



3.2 EXAMPLES OF MAC SEQUENCES 

3.2.1     Example 1: The (3, 7, 2) Mac Sequence 

The (3,7,2) Mac sequence where p = 7, u = 3, v = 2, is generated from the core sequence 
{an;n — 0,...,p — 1}. For p = 7, the quadratic residues are 1,2,4, and the sequence {an;n = 
0,...,6} is 

111-11-1-1 

The u-term and v-term extensions are 1-1—1 and 1 1, respectively. This provides the resulting 
(3,7,2) Mac sequence {bn} 

1-1-1111-11-1-111 

3.2.2    Example 2: The (5,47,4) Mac Sequence 

In a similar fashion, for p = 47, the quadratic residues are 

1     2     3     4     6     7     8     9    12    14    16    17 

18    21    24    25    27   28    32    34   36    37   42 

Thus, the core sequence, {an; n = 0,..., 46} is 

1 1 1 1 1 -1 1 1 1 1 -1 -1 

1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 

1 1 -1 1 1 -1 -1 -1 1 -1 1 -1 

1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 

and the u-term and v-term extensions are 1  —1  —1  —1  — 1 and 1111, respectively. 

The (5, 47,4) Mac sequence is, therefore, equal to 

1   -1 -l   -l   -: L    1       ] L       1 1 1 -1 1 

l   -l   -] L    1    -] L       1 -1 1 1 1 

1   -1 l   -l   -] I    1       ] I    -1 1 1 -1 -1 

-l     l   -] I    1       ] [    -1 -1 -1 -1 1 

1     —1 -l   -l     ] I    1       ] I       1 



4.   PROPERTIES OF MAC SEQUENCES 

We now establish several pertinent properties of the core and Mac sequences. 

4.1    DECIMATION PROPERTY 

Property 4.1   The core sequences {an} defined by equation ( 3.4) reproduce themselves by deci- 
mating with a quadratic residue, i.e., if m is a quadratic residue (modp), then amn — an. 

Proof: 

From equations ( 2.4) and ( 2.5), 

In (4.1) 
run m n ~n~ 

. P - .P . .P. .P. 

since 

4.2 BACKWARD RUNNING PROPERTY 

By similar reasoning, we have the conjugate property: 

Property 4.2 If m is a quadratic nonresidue, then amn — —an. 

In other words, core sequences will reproduce themselves by decimation, except perhaps for 
the sign. 

Corollary 4.1 At the exclusion of the first element (corresponding to ao = 1), the core sequence 
is antisymmetric, i.e., 

a-i  =  -a*  for i = 1,2,... ,p-I (4.2) 

This results from the fact that —1 is a quadratic nonresidue modulo any prime p. 

4.3 CORRELATION OF CORE SEQUENCES 

The cyclic autocorrelation coefficients K{n) of the core sequence {an} are defined for all values 
of n as follows: 

P-I 
K(n) = Yl akak+n (4-3) 

fc=o 



and have the following property. 

Property 4.3   The cyclic autocorrelation coefficients K(n) of the sequence {an} are two-valued, 

i.e., 

K(n) 
p      for n = 0 

— 1    otherwise 
(4.4) 

Proof: 

For n = 0, the coefficient K(n) is equal to 

p-i 

fc=0 

P-I 

fe=0 

and, thus, 

(4.5) 

K(n) = p for n = 0 (4.6) 

For n ^ 0, one can write 

p—l p—l 

k=0 fc=0 

"A' 

.PJ 

/c + n 
P-I 

fc=0 

fc(fc + n) 
(4.7) 

Multiplying each Legendre symbol in the last sum by [^-] = 1, where q is chosen1 so that qn = 

1  (modp), the above sum can be rewritten as 

r 
p 

p—i p—i 

2_, akO-k+n     =     2J 
fc=0 A-   (I 

<7 A; 

P 

g(A: + n) 
P-I 

£ 
fc'=0 

fc'(fc' + 1) 

P 
=    c (4.8) 

where c is now a constant. 

Consequently, the cyclic autocorrelation coefficient K(n) is equal to 

K(n) 
c    for n ^ 0  (mod p) 

p   for n = 0 (mod p) 
(4.9) 

The constant c is now obtained as follows: 

1 q is simply the inverse of n modulo p. 



p—1 p— 1 p—1 

^ K{n) = J2 ak(ak + ••• + afc+p-i) = ^ afc = 1 (4.10) 
n=0 fc=0 fc-0 

since, by virtue of the sequence's antisymmetric property, any successive p elements of a core 
sequence add up to 1. Also, from Equation ( 4.9), 

p—i p—l 

£ K(n) = K(0) + J2 K{n) = p + (p - \)c (4.11) 
n=0 n=\ 

From Equations ( 4.10) and ( 4.11), we conclude that c = —1, i.e., 

K{n) = {P      ^n = 0{rnodp) 
v  '      \ -1   for n^O  (modp) v       ; 

This completes the proof of Equation ( 4.3). 

4.4    CORRELATION OF MAC SEQUENCES 

The cross correlation C(n) of the (u,p,v) Mac sequence {6n} and its corresponding core se- 
quence {an} is defined as follows: 

P-1 

C(n) = J2akh+n    for 0  <  n < u + v (4.13) 
fc=o 

The offset n can be interpreted as the amount by which the lead term of the core sequence is 
shifted to the right, relative to the lead term of the Mac sequence. 

Property 4.4  The cross-correlation {C(n), 0  <  n  <  u + v} of a (u,p,v) Mac sequence satisfies: 

_.   , p      for n = u , A . M. C{n) = {  F      \ (4.14) 
— 1    for 0  <  n  <  u + v and n ^  u 

In other words, the correlation exhibits a floor at —1 on either side of a peak of size p. This floor 
extends to u to the left of the peak, and v to the right of the peak. 

Proof: 

First of all, for n = u, the coefficient C(u) is equal to p, since 

C(u)    =   aobu + a\bu+i + • • • + ap-ibu+p-i 

=   aoao + a\a\ + • • • + ap_iap_i 

=   K(0)   =   p (4.15) 



For 0  <  n  <  u + v  and re ^  u, we have, using property ( 4.3): 

C(n)    =    a06„ + ai6n+iH \- ap-1bn+p-1 

=    aoan-u + aian_u+i + • • • + ap_ian_u+p_i 

=    K{n-u)   =   -1 

This completes the proof. 

(4.16) 

/>WV\ 
OFFSET 

Figure 4-i.    Generic correlation of a Mac sequence. 

Property ( 4.4) for Mac sequences results in the generic cross-correlation function shown on 
Figure 4-1. At the origin, the peak has value p, and for the first u (v) values to the left (right) 
of the peak, the correlation is —1. Beyond these points, i.e., for n < 0 or n > u + v, the Mac 
sequence has to be extended in order to define the correlation. If we assume that the values beyond 

10 



the Mac sequence are independent Bernouilli random variables, taking values ±1 with probability 
1/2, then it can be shown that, averaged over all Mac sequences and random extensions, the 
correlation coefficient C(n);n < 0 has zero mean and standard deviation y/\ n |/2, and its absolute 
value is upper bounded by 2 | n |. The corresponding statement holds true for n > u + v, i.e., 
the correlation has zero mean, standard deviation y/n — (u + v)/2, and its absolute value is upper 
bounded by 2 | n — (u + v) |. Consequently, the correlation outside of the (u,v) region grows, on 
average, at a rate proportional to half the square root of the distance to the correlation floor. 

4.5    THE CLASS OF MAC SEQUENCES 

By definition, Mac sequences are constructed from Mac primes, i.e., prime numbers which 
satisfy (p — 1)  = N (modp). Table 4-1 shows the lists of all Mac primes less than 3000. 

The set of Mac sequences is dense, i.e., the existence of many Mac sequences having the same 
arbitrary length I = p + u + v. These sequences differ in the values of p, u and v, and the value of 
their correlation coefficients at the origin and beyond the correlation floor. The existence of many 
Mac sequences of the same length follows from subsequent considerations. 

4.5.1     Density of Mac Primes 

Mac primes constitute a dense set, except perhaps for small values of p. Specifically, the 
prime counting function2 II(n) is well known, and simple approximations are available 3 such as 
the "integral logarithm" function, Li [7]: 

IK.)-IK.).jf^ (4.17) 

Similarly, we denote by ^(n) the Mac prime counting function, i.e., ^(n) is the number of Mac 
primes less than n. The average spacing between primes closest to n is approximately Inn, and 
since there are only half as many Mac primes as there are primes,4 the average spacing between 
Mac primes closest to n is approximately 2 In n. Given an a priori number / for the length of a 
Mac sequence, one can always find a Mac prime p within 2In/ of /, on average. For instance, with 
/ = 1300, the average spacing between Mac primes closest to 1300 is 2 In 1300 % 14. In Table 4-1, 
the Mac primes closest to 1300 are 1283, 1291, and 1303, with spacings equal to 9 and 12. Figure 4-2 
represents the exact Mac prime counting function, ^(n), for 1 < n < 3000. 

2 The number of primes smaller than or equal to n. 
3 At least for values of n less than 100, 000. 
4 This results from the fact that the number of primes for which (p — l)/2 is odd or even is 

about equal, at least for large p's. 

11 
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Figure 4-2.    Mac prime counting function. 

4.5.2     Number of Mac Sequences of a Given Length 

For every Mac prime p, there are (1 + I — p) Mac sequences of length I = p + u + v, where u 
and v are less than p. They correspond to all possible choices of u and v. In addition, for a given 
I, p should be less than / and greater than 1/3, since u and v are by definition less than p. The 
number of Mac primes pj between / and 1/3 is equal to 'iz(l) — Si!(1/3), where ^ is the Mac prime 
counting function defined above. Consequently, the total number M(l) of Mac sequences of length 
/ is equal to: 

*(0 
M(l)=     £    (1 

j=*(l/3) 
I-Pi) (4.18) 

12 



The above expression is plotted on Figure 4-3, and shows that there is a large number of Mac 

sequences of size /. A tooth in the curve arises each time the smallest Mac prime between *(//3) 
and ^(l) is dropped from the sum. 
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Figure 4-3.    Mac sequences of a given length. 

4.5.3     Comparison of Mac Sequences of a Given Length 

For a given length I, the largest Mac prime less than / will lead to the largest correlation peak. 
At the same time, this will restrict the range (u, v) over which the correlation is —1. The choice of 
the best Mac sequence depends on the application considered. For example, in a communication 
system in which a Mac sequence is transmitted to a receiving terminal for the purpose of time 

acquisition, it is desirable to select values of u and v large enough to cover the time uncertainty 
interval. However, if the Mac sequence is transmitted for the purpose of fine-time tracking, it is 

preferable to trade-off a larger correlation peak for smaller values of u and v, since, in this case, the 

L3 



time uncertainty interval is much smaller, and a larger correlation peak will provide better tracking 
in the presence of noise. 

TABLE 4-1. 

Mac Primes Less Than 3000 

7 11 19 23 31 43 47 59 67 71 79 83 
103 107 127 131 139 151 163 167 179 191 199 211 
223 227 239 251 263 271 283 307 311 331 347 359 
367 379 383 419 431 439 443 463 467 479 487 491 
499 503 523 547 563 571 587 599 607 619 631 643 
647 659 683 691 719 727 739 743 751 787 811 823 
827 839 859 863 883 887 907 911 919 947 967 971 
983 991 1019 1031 1039 1051 1063 1087 1091 1103 1123 1151 

1163 1171 1187 1223 1231 1259 1279 1283 1291 1303 1307 1319 

1327 1367 1399 1423 1427 1439 1447 1451 1459 1471 1483 1487 

1499 1511 1523 1531 1543 1559 1567 1571 1579 1583 1607 1619 

1627 1663 1667 1699 1723 1747 1759 1783 1787 1811 1823 1831 

1847 1867 1871 1879 1907 1931 1951 1979 1987 1999 2003 2011 

2027 2039 2063 2083 2087 2099 2111 2131 2143 2179 2203 2207 

2239 2243 2251 2267 2287 2311 2339 2347 2351 2371 2383 2399 

2411 2423 2447 2459 2467 2503 2531 2539 2543 2551 2579 2591 

2647 2659 2663 2671 2683 2687 2699 2707 2711 2719 2731 2767 

2791 2803 2819 2843 2851 2879 2887 2903 2927 2939 2963 

11 



5.   COMPUTATIONAL ISSUES 

The use of definition ( 2.1) to determine whether or not a number n is a quadratic residue 
modulo p requires an exhaustive search for a solution to the congruence: 

y   = n (mod p) (5-1) 

Euler's criterion, on the other hand, provides a more direct way to determine whether a number 
n is a quadratic residue or non-residue modulo p. 

For instance, let p = 1231. Determination of, say, element ag$\ in the core sequence requires 
that one calculate 981615 (mod 1231). Of course, it would be foolish to calculate 981615, a 1839- 
digit number, if we are only interested in the remainder modulo 1231. Instead, we need a general 
algorithm to calculate quadratic residues, and in particular n^p~1^2 (modp). 

5.1     QUADRATIC RESIDUE ALGORITHM 

This algorithm provides a way to calculate, without the risk of computer overflow, the residue 
modulo any prime p of any number n raised to the power (p — l)/2. It can be used equally as well 
with any power. 

Step 1: 

Find the binary decomposition of (p — l)/2: 

Llog2(p-l)/2J 

(p - l)/2  = 5Z        "fc2* with "fc = 0 or 1 (5.2) 

where |_ J signifies the integer part. 

Neglecting the terms with ctk — 0 in the above expression, we may write (p — l)/2 as a sum of 
powers of 2: 

M 

(p-l)/2= £2Cm (5.3) 
m=0 

Since (p - l)/2 is odd, CQ — 0, and therefore, 

M 

(p - l)/2 = 1 + £ 2C• (5.4) 
m=l 

Step 2: 

Write nb-W2 as follows: 

15 



M 

n^"1'/2  = n T7 n2Cm    =   n (... (n2).. ,)2 ...(.. • (n2).. .)2 (5.5) 
m=i ' *~ '     " T ' 

c\ squarings CM squarings 

and after each squaring and product, reduce the intermediate result modulo p. 

5.2    MAC SEQUENCE GENERATION 

The following procedure can now be used to generate a Mac sequence of any length, /: 

1. Selection of p,u,v: 

From Table 4-1, select a value of p less than I, and greater than 1/3. As 
previously mentioned, there are many values of p satisfying this requirement. 
Select the parameters u and v so that u + v = I — p. In the context of 
an application, restrictions on these parameters will further limit the available 
choices, as indicated in the previous section. 

2. Generation of the Core Sequence: 

Using the quadratic residue algorithm described above, generate the core se- 
quence, {an; n = 0,... ,p — 1} as follows: 

1       if n  =  0  (mod p) 

1       ifn^"1)/2  =  1  (modp) (5.6) 

-1    ifn'P"1'/2  =  -1  (modp) 

Due to the antisymmetry of the core sequence, it is only necessary to calculate 
the first (p — l)/2 terms. 

3. u-term and v-term Extensions: 

Define the u-term extension as the last u terms of the core sequence, and the 
v-term extension as the first v terms of the core sequence. 

4. Generation of the Mac Sequence: 

Prefix the u-term extension to the core sequence so that it becomes the header 
of the Mac sequence. Similarly, append the u-term extension to the core se- 
quence so that it becomes the tail of the Mac sequence. This will result in the 
desired (u,p,v) Mac sequence. 
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5.3 EXAMPLE OF A MAC SEQUENCE OF LENGTH 1300 

To illustrate the method, we selected an arbitrary number, 1300, and constructed a Mac 
sequence of length I = 1300. Note that there are many Mac sequences of length 1300, as previously 
indicated. We first select, from Table 4-1, a value of p less than / = 1300 and greater than 1/3, say, 
p = 1231 . The values u = 35, and v = 34 were selected so as to satisfy p + u + v = 1300. The 
core sequence was generated using a computer program which uses Euler's criterion, the quadratic 
residue algorithm previously described, and exploits the antisymmetric property of the sequence. 
The core sequence is shown in Table 5-1. It is now simple to see from Table 5-1 that the u-term 
and v-term extensions are as shown in Tables 5-2 and 5-3, respectively. The final Mac sequence 
of length 1300 results from the concatenation of the u-term extension, the core sequence, and the 
v-term extension, in that order. This sequence is shown in Table 5-4 

5.4 CALCULATED CORRELATION 

In Section 4, we proved that the cross-correlation coefficients between the Mac sequence and 
its core sequence satisfy Equation ( 4.14). The cross-correlation function of the above (35,1231, 34) 
Mac sequence was calculated on a computer, and is shown in Figure 5-1 for offsets between —100 
and +100. It satisfies, as expected, the desired two-valued correlation property for Mac sequences. 
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TABLE 5-1. 

Core Sequence of Length 1231 

111-111-111111-111-11-1111-11-1-111-111-111-1 
-11111-111-1111-1-1-11111-1-111-11-1-1-11111-1 
-1-111-11-11-111-1-1111-1-1-11-11-111-1   -1   -1   1   -1   -1 
11111-11-1-11-1-11-11-1-1-111-1-1-11-1-1111-11 

-11-1-11-1-1-111111-1111-1-111-111-111-11-111-1 
1-11-1-1-1-11-111-1-1111-111111-11-1-1 -1 -1 1 -1 -1 

-1-1-11111111111-1-111-1-1-1111-11-111-1-1-111 
-1 1-1-1-1-1111 -1 -1 1 -1 -1 -1 -11-1-11-11111-11-1-111 
-1-1111-1-1-1-111-1-1-11-1-11111111-11-1-1-1111 
111-11-1-11-11-1-111-11-1-111111-1-111-11111-1 
-1-111-111-1-1-1-11-1-1-1111-111111-11-1-11-111 
1-1-1111111-11-111-111-1-11-1-1-11-1-111-11-11 
-11-11-11111-1111-111111111111-1-1-1-1-11-11-1 
-1   -1   -1   -1   -1   -11-11-11   -1   -111-1-1-11-111   -1   -1   -1   -1   -1   -1   1 

-111-1   -1   1   1-1-1-11-1-1-111-1111   -1   -1-1-1111   -1   -1   -1   1 
-11-111-1-11-111-1-1-1111-11-111-1-111   -1   -1   -1-11- 
11-1-1-1-1-111111-1-1   -1   -1-1-11-1-11111   -1   -1   -1   1   -1   -1 
1-1-1-1-1-11-1111-11-11-11111-111-1-11-11-1111 

1-11-1111-11-1-1111-11-1-11-1-1-11-1-11-1-11-111 
-111-1-1-1-1-11-11-111111-1-11-1-11-111-111-111 
1-111-11-1-1-111-11-1   -1   -11-11   -1   -1   -1-11-11-111   -1 

-11-1-1-1-11-11-11-1-1-11-111111-111-1111   -1   -1   -1 
-111-1111111-1-1-1-1-111111-11-11111-1-111-1-1 
1-11-1-1-1111-1-11-111-1-11-11-1111-1-1-11111-1 
-1-11-1-1111-1111-1-111-1-11-1111111-1-11-1111 
-1-111-11-11-11111111-11-111111-1-1-1-1-1-1-1-1 
-1   -1   -1   1   -1   -1   -1   1-1-1-1-11-11-11-11-11-1-111-1111   -1 
11-1-11-1-11-11   -1   -1   -1   -1   -1-111   -1   -1-11-111-11   -1   -1   -1 
-l-ll-l-l-llll-lllll-l-ll-l-llll-l-l   -1   -11-1-111 
-1   -1   -1-1-111-11-1-111-11-111-11   -1   -1   -1   -1-1-1111   -1 
1-1-1-1-1-1-1-111-1111-1-11111   -1   -1-111-1-111-11 
-1-1-1-11-111-11111-111-1-1-11111-11-1-1111-1-1 
1-11-1-1-1111-1-111-1   -1   -1   -1   -1   -1   -1-1-1-111111-111 
11-11-1-1   -1   -1-11-1-1-111-1-11-11111-11-11   -1   -1   1   -1 
1-1-11   -1   -11-1-111   -1   -1   -1   1-1-1-1-1-1111-111-11-11   -1 
-1-111-1111-1-1111-11-111-111-11-1-1-1-1-111-11 
11-1-11-11-1111-1-1-111-1-11-11-11-1-1111-1-1   -1 

-1111-11-1-111   -1   -1-1-1111   -1   -1   -1   1-1-11   -1   -1   -1-111   -1 
-1   1-1-11-1-111-11   -1   -1   -11-11   -1   -1   1   -1   -1   -1   -1   -1   1-1-11 

-1   -1 

is 



If) 

TABLE 5-2. 

U-term Extension of the (35,1231,34) Mac Sequence 

-1 1 1 -1 -1 1 1 - 1 1 -1 -1 1 1 -1 1 -1 -1 -1 

1 -1 1 -1 - 1 L -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 

TABLE 5-3. 

V-term Extension of the (35,1231,34) Mac Sequence 

1 1 1 -1 1 1 -1 1 1 1 1 1 -1 1 1 -1 1 -1 

1 1 1 -1 1 -1 -1 1 1 -1 1 1 1 1 1 -1 

LU 
DC 

o 
O 

1500 

900 - 

300 - - 

-300 

-100 100 

OFFSET 

Figure 5-1.    Cross-correlation of the (35,1231,34) Mac sequence. 
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TABLE 5-4. 

(35,1231,34) Mac Sequence 

-111-1-11   -1   -11-1-111-11   -1   -1   -11-11   -1   -1   1   -1   -1   -1   -1   -1   1 
-1-11-1-1111-111-111111-111-11-1111-11-1-111-1 
11-111-1-11111-111-1111-1-1-11111-1-111-11-1-1 
-11111-1-1-111-11-11-111-1-1111-1-1-11-11-111-1 
-1-11-1-111111-11-1-11-1-11-11   -1   -1-111   -1   -1   -1   1   -1   -1 
111-11-11-1-11-1-1-111111-1111-1-111-111-111-1 
1-111-11-11-1-1-1-11-111-1-1111-111111-11-1-1-1 
-11-1-1-1-1-11111111111-1-111-1-1-1111-11-111 

-1   -1   -1   11-11-1-1-1-1111-1-11   -1   -1-1-11-1-11-11111   -1 
1-1-111-1-1111-1-1-1-111-1-1-11-1-11111111-11-1 
-1-1111111-11-1-11-11-1-111-11-1-111111-1-111 

-11111-1-1-111-111-1-1-1-11-1-1-1111-111111-11 
-1-11-1111-1-1111111-11-111-111-1-11-1-1-11-1-1 
11-11-11-11-11-11111-1111-111111111111-1-1-1 
-1   -11-11   -1   -1   -1   -1   -1   -1   -11-11-11-1-111   -1   -1-11-111   -1   -1 
-1 -1 -1-11-111-1-111 -1 -1-11-1-1-111-1111 -1 -1 -1 -1 1 

11-1-1-11-11-111-1-11-111-1-1-1111-11-111-1-111 
-1 -1 -1 -11-11-1-1-1-1-111111 -1 -1 -1 -1-1-11-1-11111 
-1 -1-11-1-11-1-1-1-1-11-1111-11-11-11111-111 -1 -1 
1-11-11111-11-1111-11-1-1111-11-1-11-1-1-11-1-1 
1-1-11-111-111-1-1-1-1-11-11-111111   -1   -1   1-1-11-11 
1-111-1111-111-11-1-1-111-11-1-1-11-11-1-1  -1  -1   1 

-11-111-1-11-1-1-1-11-11-11-1-1-11-111111-111-11 
11-1-1-1-111-1111111-1-1-1-1-111111-11-11111-1 
-111-1-11-11-1-1-1111-1-11-111   -1   -11-11-1111   -1   -1 
-11111-1-1-11-1-1111-1111-1-111-1-11-1111111-1 
-11-1111-1-111-11-11-11111111-11-111111-1-1-1 
-1   -1   -1   -1   -1   -1   -1   -1   1   -1   -1   -1   1   -1   -1   -1   -11-11-11-11-11   -1   -1   1 
l-llll-lll-l-ll-l-ll-ll-l-l   -l   -l   -l-lll   -l   -1-11-111 
-1   1-1-1-1-1-11-1-1-1111-11111-1-11-1-1111   -1   -1   -1   -1 
1-1-111-1   -1   -1-1-111-11-1-111-11-111-11   -1   -1   -1   -1   -1 

-1111-11-1-1   -1   -1-1-1-111-1111-1-11111   -1   -1-111   -1 
-111-11-1-1-1-11-111-11111-111-1-1-11111-11-1-1 
111-1-11-11-1-1-1111-1-111-1-1   -1   -1   -1   -1   -1   -1-1-1111 
11-11111-11-1-1-1-1-11-1-1-111-1-11-11111-11-11 
-1   -11-11   -1   -1   1-1-11-1-111   -1   -1   -1   1   -1   -1   -1-1-1111   -1   1   1 

-11-11-1-1-111-1111-1-1111-11-111-111-11-1-1-1-1 
-111-1111-1-11-11-1111-1-1-111-1-11-11-11-1-111 
1-1-1-1-1111-11-1-111   -1   -1-1-1111   -1   -1   -1   1-1-11   -1   -1 

-1-111   -1   -1   1-1-11-1-111-11   -1   -1   -11-11   -1   -1   1   -1   -1   -1   -1   -1 
1-1-11-1-1111-111-111111-111-11-1111-11-1-111 

-111-111   -1 
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6.   CONCLUSION 

A new class of binary sequences, called Mac sequences, has been constructed. These Mac 
sequences exhibit near-ideal correlation properties and can have arbitrary length. Specifically, the 
(u,p, v) Mac sequence has length p + u + v, a correlation with a peak value of p at the origin, and 
equal to —1 over the region —u,+v around the peak. Beyond this region, the correlation is well 
behaved. An algorithm is given which allows easy generation of Mac sequences with the help of a 
small computer. The availability of binary sequences of arbitrary length with near-ideal correlation 
properties allows the Mac sequences to be used in a large variety of applications. 
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