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EXECUTIVE SUMMARY

We have demonstrated robust algorithms for generating fits in Optical Measure Theory
(OMT) to radiance data from the TIROS Operational Vertical Sounder (TOVS). These
algorithms generated phsically meaningful fits on 100% of a test set of 45 TOVS radiance
scans, and were successful both on short wavelength (700 cm - 1) and on long wavelength (2250
cm- 1) TOVS data. The resulting OMT temperature profiles exhibit meteorological
characteristics and appear to be suitable for determination of atmospheric structure parameters
chara,-terizing the large-scale vertical temperature structure of the atmosphere, and also suitable
for generation of input data for numerical weather prediction codes.



1. INTRODUCTION

The mathematical difficulties encountered in attempting to invert satellite radiance data to
obtain atmospheric temperature profiles have been of considerable theoretical interest to the
mathematical and satellite meteorology communities. In this report we outline the application of
a new approach to the solution of this problem, Optical Measure Theory (OMT), which has been
invented by Dr. J. I. F. King of the Air Force Geophysics Laboratory (King 1989 ; Leon and
King 1988).

The upwelling radiance is determined by the equation of radiative transfer, which is a
Fredholm integral equation of the first kind, integrating over the Planck function as a function
of height. The mathematical difficulties in carrying out inversions stem from this simple
physical description. Since integration is intrinsically a smoothing operation, the radiance
profile will tend to be smoother, qualitatively speaking, than the atmospheric temperature
profile which generates it. Furthermore, since the solutions of these integral equations are not
unique, many atmospheric temperature profiles (in fact, formally an uncountably infinite set)
can give rise to the same radiance profile, and thus cannot be distinguished on the basis of
radiance observations.

Clearly, a radiance profile has only a limited information content, relative to the problem of
reconstructing the atmospheric temperature profile. (We intend to make this statement
mathematically rigorous in later research by an information theoretical analysis, which will
address the actual information content, in bits, of radiance observations.) Therefore,
construction of an atmospheric temperature profile which replicates the detailed structure of an
in situ radiosonde observation is probably unrealistic, however, extracting information about the
overall morphology of the atmospheric temperature profile is a meaningful objective within the
context of present theoretical developments. We expect that this overall morphological
information concerning the atmospheric temperature profile may be expressed in terms of
"atmospheric structure parameters", such as temperature lapse rates and tropopause temperatures
and pressures, which are meaningful quantities in meteorological research. Furthermore, these
quantities are appropriate input parameters for numerical weather prediction codes, which are in
any event insensitive to the small-scale atmospheric temperature structures which are found in
radiosonde temperature profiles.

OMT has a number of desirable theoretical features that make it especially appropriate as an
approach to the inversion problem. In OMT, a smooth functional form is fit to the radiance
profile; thus, OMT represents one approach for solution of the inversion problem by
regularization, in the sense that the space of possible solutions is restricted by the imposition of
reasonable physical constraints. This restriction of the class of functions used in representing
the radiance profiles is also reflected in a restriction of the class of functions used in the
representation of the atmospheric temperature profiles. In effect, we select the smoothest
possible representation of the radiance profile consistent with the radiance data set at an
appropriate level of confidence. Crudely speaking, this represents a "least information"
representation in the sense that we have imposed a minimum of information not actually present
in the radiance measurements in the process of carrying out our smoothing through a functional
fit to the radiance data. The resulting atmospheric temperature is then also "bias-free" in the
sense that it contains no a priori information concerning the temperature structure of the
atmosphere. Such a representation may fairly be said to have been constructed if the functions
from which the radiance representation is constructed, which we term "basis functions", are
chosen on grounds of fundamental physical principles describing the problem. In fact, in OMT
this choice is made on the basis of the mathematical description of a radiative atmosphere.
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It is important to note that in OMT we have imposed the constraints of functional
smoothness on the radiance data, that is, as close to the instrument as possible. All remaining
transformations in OMT required for the calculation of atmospheric temperature profiles are
strictly one-to-one transformations (and hence information-conserving). OMT is theoretically
advantageous in this regard also because the relation between the theoretical results of OMT and
instrumental characteristics is particularly clear and straightforward in principle.

The functional representation for the atmospheric temperature profiles is calculated from the
radiance profile basis functions by a generalization of the Laplace transform. This
transformation is motivated by realizing that for a large class of atmospheric weight functions,
the equation of radiative transfer may be viewed as an integral transform, specifically a
generalization of the Laplace transform. This observation is one of the crucial theoretical
insights contained in OMT. As a result, the choice of basis function, used in the representation
of the radiance profile and in the representation of the atmospheric temperature profile may not
be made independently; the temperature profile basis functions are (generalized) inverse Laplace
transforms of the radiance profile basis functions. In this sense, OMT may be said to be an
algebra of radiance profiles, since profile-like functional forms are fundamental entities of
OMIT.

','e shall demonstrate in this report how OMT may be used to construct atmospheric
temperature profiles which have an overall morphology characteristic of observed atmospheric
temperature profiles and which may be sued to obtain atmospheric structure parameters suitable
for input to numerical weather prediction codes. In the study reported on here, the radiance
data analyzed were obtained from the TIROS Operational Vertical Sounder (TOVS), however,
the general principles may be applied to other atmospheric sounders, such as on the DMSP
sat1.!ites. We have demonstrated robust algorithms which yield valid OMT solutions from TOVS
radiance data with reasonably high probability. Additional research will improve the
computational efficiency and robustness of OMT and generate further applications in satellite
meteorology and numerical weather prediction.
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2. THEORY

2.1 Introduction and Development of Optical N1easure Theory. In this subsection, we include
for completeness a derivation of Dr. King's OMT (King 1989; King and Leon 1988). In OMT
we attempt to invert the equation of radiative transfer

0o dp
R(P) = J W(p/P)B(p) 1 (I)

0

where R is the observed radiance and B the Planck function. It is convenient to parametrize
this problem in terms of the atmospheric pressure, p, rather than altitude. Equation (1)
represents the radiance observed in a single channel of a radiometer measuring the upwelling
radiance at the top of the atmosphere. I' is a weight function for that channel and P is a
characteristic pressure value for that channel, crudely speaking the centroid of the weight
function. (Our work contains significant new developments in the definition of P, discussed in
Section 2.3.) The weight function is defined to be

ar (2)a In p (2)

where r is the atmospheric transmittance. Thus 11' measures the interaction between the
radiation field and atmospheric material.

It is often convenient to parametrize the weight function in terms of a generalized
exponential weight function

= m m 1r

Wm,(P/P) = Wm(x) = -m) x exp(-mx l / m) (3)

where x = p/P and m is a fitting parameter controlling the width of the generalized exponential
weight function, and r denotes the usual r function (King 1985; King, Hohlfeld, and Kilian
1989). This simple functional form captures the essential physical character of atmospheric
weight functions in many cases. (For m = I this formula reduces to a simple exponential
weighting function.) While OMT bay be carried out with completely general weight functions,
for the generalized exponential weight functions of the form given in equation (3) the
derivation is particularly clear.

When we substitute the generalized exponential weight function into the equation of
radiative transfer, we obtain

R(P) = I -m+i) Pfo B(p) exp[-m(p/P)I/ m ]  (4)

For ni - 1, Eq. (4) immediately assumes the character of a Laplace transform,
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R(P) = -1 J'B(D)e-(P]P dp (5)

i.e. PR(P) is the Laplace transform of B(p) with respect to the transform variable I/P. When ni
* 1, the radiance profile and Planck function profile are then related by a generalization of the
Laplace transform defined in terms of the generalized exponential function. All of the useful
analytic properties of the Laplace transform are retained in this generalization of the Laplace
transform utilizing the generalized exponential function kernel.

If a choice of functional form is made for B(p) (or alternatively R(P)), equation (4) then
immediately implies the functional form R(P) (alternatively B(p)) must assume. This
observation is especially pertinent if we note that the Planck function profile of a radiative
atmosphere is exponential in form, i.e.

B(p) = Lekp (6)

with k and L constants (Chandrasekhar 1960). The corresponding (m = 1) radiance profile
function is then,

R(P) = L (7)

This discussion motivates a choice of the functional form by which radiance data is represented
(King 1989; King and Leon 1988),

R(P) = a + bP + l i (8)

where j hyperbolic terms are included. The addition of a linear term of form a + bP (with a
and b constants) was found by King and Leon to be of practical utility in the representation of
radiance data. Generalization to the inclusion of a polynomial of arbitrary order in P is
straightforward. The corresponding Planck function profile obtained by generalized inverse
Laplace transformation (for arbitrary m) of Eq. (7) is

jB(p) = a + bp + Z LiEm(-kp) (9)
i=1

Where E (x) is the generalized exponential function with parameter ni. This new function is
discussecfand its general properties exhibited in the following section.

The choice of an exponential (or generalized exponential form of the Planck function
profile, motivated by the expectation of the real atmospheric acting at least in part as a
radiative atmosphere, indicates that Eq. (8) is a natural choice of functional form for the
representation of radiance data.
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2.2 The Generalized Exponential Function and the Calculation of Atmospheric Temperature
Profiles. In this section we briefly describe some of the properties of the generalized
exponential function introduced in the previous section. The generalized exponential weighting
function, EM(x), has a power series expansion

E(X)= + x + X- + ' + xn + (10)f~n(1) f(n(2) + f(3) + O(n+l)

where the Dlm's are defined in terms of moments of the generalized exponential weight functions
by

dxfnm(n+l) = foo x-- (11)
0

It is apparent that equation (10) represents a generalization of the usual exponential function,
ex, if we write the series expansion of ex using I(n+l) to represent n!,

l x .4. xeX = I 1-- -+  Ix- +  1"2- +  ... + xn l +  ""(12)
- 1l1(2) 1IX3) ~ [(n+l) +(2

and note that I(n) is defined by its integral representation

"(n) = 0o tn '1  e-t dt , (13)

and so E (x) = ex. This motivates the form of equation (9). We plot in Figure I a family of
curves o? E(x) for various values of ni. It is apparent from this plot that variation of ni
controls the stiffness of the resulting Planck function curve.

The definition of the generalized exponential function discussed here is motivated by the
functional form of the generalized weight function Wm(x). However, an empirically obtained
weight function of general form may also be reduced to a collection of moments and a
corresponding function E(x) computed, and so this development of OMT is not restricted simply
to the use of generalized exponential weight functions.

Once a fit has been made to the radiance data on the basis of the form of equation (8),
translation into the form of the Planck function profile given by equation (9) is immediate,
provided that we havc determined rn values for the evaluation of Em(-kp) based on a fit to the
atmospheric weight functions characterizing the instrumental channels used in the fit. A
wavenumber is then chosen (usually the wavenumber of the central channel, to which radiance
measurements are normalized) and the Planck formula,
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B CLA , (14)

exp (?

for a given height (parametrized by its pressure p), may be solved for the temperature at that
height. Here v is the wavenumber, and c1 and c are constants with values, c1 = 1.19107 x 10-6
erg-cm 2/sec.sr and c2 = 1.438858 cm-K, and t in degrees Kelvin. Ihe mathematical
formalism outlined here gives a clear path from the radiance measurements to the specification
of the temperature as a function of height in the atmosphere. It is important to note that the
OMT transformation [of equation (8) to equation (9)1 and the solution of the atmospheric
temperature profile from the Planck function profile are one-to-one transformations, i.e. given
a particular choice of radiance basis functions, as in equation (8), once a fit is made to that
functional form, the atmospheric temperature profile, T = T(h), is uniquely determined.

2.3 Definition of P Values. In work undertaken on Differential Inversion and OMT to date
(King, Hohlfeld, and Kilian 1989) P has been defined as that value of the pressure at which the
weight function achieves its maximum value. We have noted that this definition is not entirely
satisfactory in that some weight functions may have a complicated geometric form, and may in
fact exhibit multiple maxima, particularly if several absorbing chemical species are present.

In view of the character of equation (1), the equation of radiative transfer, which specifies
the generation of the upwelling radiance based on the distribution of temperature versus height
in the atmosphere, we have begun investigations of more suitable definitions of P based on
moments of the weight function. In particular, if we consider equation (I) for the case of an
isothermal atmosphere, B(p) will be a constant function, and the contributions to R(P) will be
centered about the center of mass of the weight function, i.e. the centroid. This suggests that
the centroid of the weight function ought to be chosen as a value for P, and this definition is
attractive in that it is well defined even for weight functions which have complicated
geometries with multiple maxima. Given the definition of the weight function, as in equation
(2), it is apparent that this definition is equivalent to selection of that pressure value at which r
= 1/2.

At present, this argument is suggestive, rather than rigorous. However, we have noted in
uur research efforts attempting to construct OMT fits to TOVS radiance data, that superior fits,
in the sense of having lower X2 values, were obtained using these P values defined in terms of
the centroid of the TOVS weight functions. Further research will be required during the Phase
II effort to investigate rigorously appropriate definitions of P. This problem is of special
significance for weight functions which have significant values at ground level (and are
therefore truncated at ground level with significant loss of the area under the weight function
curve).

2.4 Development of the Nonlinear Least Squares Nonlinear lyperbolic Algorithm (NLLS

2.4.1 Motivation. Leon and King (1988) have investigated an algorithm for directly fitting a
formula of the form of equation (8) to radiance data, and despite the attractive adaptive
features of that algorithm, the requirements on the accuracy of the radiance values are severe.
This property arises from the character of the Leon and King Nonlinear Hyperbolic Algorithm
(NHA) as an interpolation formula; the solution resulting from the NIIA is constrained to pass
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identically through each of the radiance values. In practice, radiance data are corrupted by
noise (usually with Gaussian statistics) and the requirement of passing through each data point is
unnecessarily stringent under some circumstances.

Furthermore, fitting a formula of the form of equation (8) is a difficult numerical problem.
Fitting a sum of exponential functions to a collection of data is a classical example of an ill-
conditioned fitting problem (Acton 1970). This problem is very similar because e-X and 1/(1 +
x) have very similar shapes over the first octave of their range. Consequently, this problem
may be expected to exhibit similar ill-conditionedness, as is in fact observed.

Motivated by these considerations, we have begun development of a new algorithm for
fitting radiance data to a formula of the form of equation (1) based on nonlinear least squares
techniques (Hohlfeld, Kilian, Drueding, and Ebersole 1988). We have named this algorithm the
NLLS NHA. The intent of the NLLS NHA is to fit as many terms of the formula of equation
(I) as can be supported by the radiance data set, as determined by objective criteria of the
"goodness of fit", such as measures of X2. Ultimately, based on the development of NLLS
NHA techniques, it will be possible to derive measures of the information content of a radiance
data set based on the number of well conditioned terms of the fit which can be obtained.

Nonlinear least squares fitting algorithms operate by the minimization of an appropriately
constructed cost function, usually termed X2 . defined by

x2 = [Y.-.Y(aw..akxi) 12
iX "i (14)

The algorithm seeks to minimize X , by varying the k parameters of the theory. a1, .... ak, and a
total of n measurements have been taken at n values of independent variable, x., to obtain
values of the dependent variable, Y." The description of the model is contained in t'he function
,( a r I... ak ,' ).

Choice of the appropriate algorithm for achieving X2 minimization in a given functional
fitting problem is most readily made on the basis of an investigation of the geometric properties
of the X2 surface. The information required for making such a choice of algorithm is described
below.

2.4.2. Selection of the Levenberp-Marauardt Al2orithm for the NLLS NHA. Work undertaken
earlier in this project has characterized the geometry of the X2 surface generated by attempting
to fit a functional form of the radiance data, as given by equation (8) to radiance data from the
TIROS Operational Vertical Sounder (TOVS). We have found that the characteristic size of the
minima in a and the L's for the positive k portion of the radiance X2 surface is typically of the
order of a few tens in magnitude and the minima in the k's are of the order of unity in
characteristic width. Minima in the radiance X2 surface with k < 0 (see section 3.1) are much
more constrained in L (width < 10) and in k (width < 1/2). Multiple deep minima in X2 exist in
close proximity in this region. (See Figure 2.) The geometry of the X2 surfaces in the
immediate neighborhood of the minima is regular and the ellipses defined by levels of constant
X2 are reasonably well aligned from one level to the next.

In Figure 3 we show the X2 surface generated by comparing the temperature profile
corresponding to the radiances generating Figure 2 against the corresponding radiosonde
observations. It is important to note that the minimum in the temperature X2 surface coincides
with the global minimum in the radiance X2 surface shown in Figure 2, thus confirming our
identification of the correct physical solution in the OMT processing of this radiance scan.

9
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Figure 2: 12 surface of the Optical Measure Theory fit to a radiance orofile. Shown here is a
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parameters are held constant ( a = 20 and b - 45) and two are varied ( Ki ranging from -5 to 5
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Owing to this comparatively well-behaved geometry in the x2 surfaces, we are motivated to
select a comparatively conventional but well-tested algorithm for the X2 minimization in the
NLLS NHA, the Levenberg-Marquardt algorithm. This algorithm is discussed by Press,
Flannery, Teukolsky, and Vetterling (1986), and we reproduce some relevant elements of their
discussion in the following section to motivate our choice of this algorithm for the NLLS NHA.

2.4.3 Development of the Levenbere-Marauardt Aleorithm. We consider here the general
case when a model depends nonlinearly on a set of M unknown parameters ak, k = 1,2,....M.
[The parameters a correspond to the parameters a, b, ki, LI, k2 and L2 in equation (9).] Our
objective is to minimize the X 2 merit function, as defined in equation (14), and thereby to
determine the best-fit parameters for the fit of our model. Since the model is nonlinear, it is
necessary to carry out an iterative solution for our desired parameters. Given trial values for
the parameters, some procedure improving the trial solution is carried out until X2 stops (or
effectively stops) decreasing.

Sufficiently close to the minimum, we can expect that the X2 function will be approximated
by a quadratic form, which may be written as

x 2(a) - da + L a.D-a (16)

where d is an M-vector and D is an M x M matrix. If the approximation is a good one, we can
jump from the current trial parameters acur to the minimizing ones amin in a single step,

amin = acur + D - 1 . [-VX2 (acur) ] (17)

On the other hand, equation (17) might be a poor local minimization to the shape of the
function we are attempting to minimize at a . In such an instance, all that can be done is to
take a step along the gradient of X , as is done in the steepest descent method for minimization.
In that case the next iteration would be given by

anext = acur - constant x Vx 2(acur) (18)

where the constant is chosen small enough so as to not exhaust the downhill direction.

To use either equation (17) or (18), we must be able to compute the gradient of the X2

function at any set of parameters a. To use equation (4), we also need the matrix D, the second
derivative matrix (Hessian matrix) of the x2 merit function, at any a. In the Levenberg-
Marquardt method, we shall use either the Hessian matrix or the method of steepest descents for
the minimization of X2, depending upon the information that can be extracted by the algorithm
concerning the local geometry of the X2 surface.

12



The model to be fitted is

y = y(x;a) (19)

and the v2 merit function is given by

N ]2N FY.-y(Xi;a) 12
X 2(a) = E (20)

i=1 -'i

The gradient of X2 with respect to the parameters a, which will be zero at the X2 minimum, has
components

ex 2  N fy i-y(xi;a)] ay(xi;a) (21)
ok = 1 k

Taking an additional partial derivative yields

a 2X2 N I [ay(x ;a) ay(xi;a) _ yy(x ;a)a]o =a oa Ly i y(x ; )] (22)

It is conventional to remove the factors of 2 by defining

- - 2a (23)

and

ak! - 2 (24)C~I 2 Oakaa

making [a] = (1/2)D in equation (17), in terms of which that equation can be rewritten as the
set of linear equations

M
C'kI 6al = Pk (25)
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This set of equations is solved for the increments 8ar which are added to the current
approximation to obtain the next approximation to the set of parameters. In the context of
least-squares fitting, the matrix [a], which is equal to one-half times the Hessian matrix, is
usually called the curvature matrix.

Equation (18), the steepest descent formula may be expressed

ba, = constant x A, (26)

Note that the components aki of the Hessian matrix depend both on the first derivatives and
on the second derivatives of the basis functions with respect to their parameters. Many
treatments proceed to ignore the second derivative, without justification, which we shall attempt
to supply here. Second derivatives occur because the gradient [equation (21) already has a
dependence of ay,/Oak, and so the next derivative must simply contain terms involving
82Yi/8a y aL. The second derivative term can be neglected when it is zero (as in linear
regression), or small enough to be negligible when compared to the term involving the first
derivative. It also has an additional possibility of being ignorably small in practice: The term
multiplying the second derivative in equation (22) is [y, - y(x;a)]. For a successful model, this
term should be just the random measurement error of each point. This error can have either
sign, and should in general be uncorrelated with the model. Therefore, the second derivative
terms tend to cancel out when summed over i.

Inclusion of the second-derivative term can in fact be destabilizing if the model fits badly
or is contaminated by outlier points that are unlikely to be offset by compensating points of
opposite sign. From this point on we shall always use as the definition of akl the formula

N I [ay(xi;a) ey(xi;a) ]Q'k1 T_ -(27)

It should be understood that minor (or even major) fiddling with [ca] has no effect at all on
which final set of parameters a is reached, but only affects the iterative route that is taken
getting there. The condition at the X2 minimum, that P k = 0 for all k, is independent of how
[a] is defined.

2.4.4 The Levenberg-Nlarquardt Method. An elegant method has been put forward by
Marquardt (1963) based on an earlier suggestion by Levenberg, which combines smoothly the
inverse-Hessian and steepest descent methods for x minimization, as discussed in the previous
section. The steepest descent method is used far from the X2 minimum, when the geometry of
the X2 is not well modeled by a locally quadratic behavior. Then, as the minimum is
aporoached, the Levenberg-Marquardt algorithm is switched continuously to X2 minimization by
the inverse-Hessian method. The Levenberg-Marquardt method works well in practice, and has
become a standard nonlinear least-squares algorithm (Press, Flannery, Teukolsky, and Vetterling
1986).

Application of the Levenberg-Marquardt method depends upon two observations regarding
the steepest descent and inverse-Hessian methods. Consider the constant multiplier in equation
(26); within the context of a standard steepest descent implementation, we have no information
regarding the magnitude of the constant or about the scale over which it may be applied. No
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information answering these questions is available in the calculation of the gradient of X2, which
tells us only the value of the slope of the X2 surface, not the distance that the slope extends.
Marquardt's first insight is that the components of the Hessian matrix, even if they are not
usable in any precise fashion, give some information regaiding the order-of-magnitude scale of
the problem.

The quantity X2 is dimensionless, i.e. is a pure number. On the other hand, fik has the
dimensions of l/a k' which may be a dimensional quantity (and in fact each component of k
may have different dimensions). The constant of proportionality between and 6a must
therefore have the dimensions of a 2. In the components of [a], the obvious quantity witg these
dimensions is l/ctkk, the reciprocal of the diagonal element, which must be the scale of the
constant for the application of steepest descent. In practice, it is necessary to divide the
constant by some (nondimensional) fudge factor A, with the possibility of setting A >> I to cut
down the step size. In other words, replace equation (26) with

6a1  - , (28)

It is necessary that o be positive, but this is guaranteed by our definition of equation (27),
which was one of the motivations for making that choice.

The second insight in Marquardt's development of this algorithm is that equations (28) and
(28) can be combined if we define a new matrix -1 by the following prescription

a". - f (I + A)

"tjk -- jk (j * k) (29)

and then replace both equations (25) and (28) by

M

Z 1k1 6a, = 6 k (30)

When A is very large, the matrix -t is forced into being diagonally dominant, so that equation
(30) goes over to the form of equation (28). On the other hand, as A approaches zero, equation
(30) goes over to the form of equation (25). What has been accomplished by use of "Y in the X2

Levenberg-Marquardt algorithm is to have the minimization algorithm convert smoothly from
the steepest descent algorithm to the inverse-Hessian minimization algorithm as the minimum in
the X2 surface is approached.

2.4.5 Limitations of the Levenberg-Maruuardt Method. Our development of the NLLS NHA
has reduced the process of obtaining OMT solutions to the process of minimization on an
appropriately defined X2 surface, which we accomplish by the Levenberg-Marquardt method.
However, while the Levenberg-Marquardt method is a relatively sophisticated minimization
technique, it still takes account only of locally defined information on the X2 surface, and each
step in parameter space is made so as to reduce the value of X2 of the solution. Accordingly, it
is possible for the solution to become "trapped" in a local minimum in the X2 surface, and thus
never attain the true global solution. We circumvent this problem in our present research by
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selection of appropriate starting %ectors. moti,;ite, by our analysis of the x2 surface, which

permit us to avoid the local minima, while still not biassiig the solution. This procedure works
with reasonably high probability, but is still somewhat ad hoc, and a more theoretically
satisfactory alternative should be sought.

Simulated annealing (Metropolis ei al. 1953) and neural ne:work techniques (Hopfield and
Tank 1985) have been applied to minimization oroblems in radiative transfer (Jeffrey and
Rosner 1986). These techniques have been shown to Nield true global minima with effectively
unit probability. While tl'ese techniques are coinputationally intensive, being implemented -,ost
effectively in parallel compucr archltevtures, they are of great interest and have potentially
significant applications in the inversiun problem.
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3. ANALYSIS

3.1 New OMT Solutions. Our previous OMT solutions (Hohifeld, Kilian, Drueding, and
Ebersole 1988) exhibited the character of being a reasonable fit at the tropopause and for the
temperature profile in the stratosphere (in the sense of fitting global morphological features of
the temperature profile, rather than accounting for all the details of the radiosonde
observations). However, these initial OMT fits deviated significantly from radiosonde
measurements of the atmospheric temperature in the troposphere, by an amount increasing as
the pressure increases, up to some tens of Kelvins at ground level. All such fits contained a
single hyperbolic term, with a positive value for k .

Subsequent analysis has shown that a negative value for k1 yields significantly improved fits
to both the radiance profile and temperature profile (as measured by the X2 calculation in the
NLLS NHA), particuiarly over the domain of tropospheric pressures. A value of ki less than
zero may initially seem troubling theoretically in that it corresponds to a pole in the OMT
radiance formula

J Li
R(P) = a + bP + I + P (31)

at positive P (i.e. at positive pressure). Here P is the pressure of the maxima of the radiance
channels, suitably normalized (to a pressure of I bar for this work, so that 0 < P ! 1 over the
physical atmosphere). Values of k. such that -1 < k. < 0, correspond to poles in R(A) occurring
below ground level, i.e. in an unobservable region

With the viewpoint that equation (I) constitutes a rational function representation of the
radiances over the observed pressure range, the existence of a pole in the radiance formula for a
value of the pressure at which radiance measurements cannot be obtained is not a cause for
concern.

We note that in the present formulation of OMT, some difficulties arise due to the
truncation of weight functions at ground level (P = 1). This prompts the speculation (albeit a
reasonable one) that the negative ki values obtained in our OMT solutions arise due to this
truncation of the atmospheric weight functions. This motivates an extension of OMT, beyond
its present formulation, which more realistically treats the radiative transfer problem at the base
of the atmosphere. Further research, undertaken during the Phase II effort, should clarify these
important practical and theoretical issues.

3.2 Description of NLLS NIIA Software.

3.2.1 Introduction. We have designed a computerized algorithmic framework to test different
implementations of X2 minimization algorithms. This framework provides several options when
running a algorithm. We look for a set of options which produce a good fit to the radiance data
and are applicable to all available cases. The algorithms for the Non-Linear Least Squares, the
Non-Linear Hyperbolic fitting, and a X2 analysis of a fit to radiance data are written in
FORTRAN. We created a shell program to drive these routines, to report the results, and to
quickly change the methods of implementation. The program runs in two modes, a highly
interactive mode where we chose one scan and make immediate adjustments to our method and
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a batch mode which anal \ :cs Mll ,-mrv; u,-Ang ! .i J. [ he bat .-h itocde also provides the
means of processing the data ,N~h,-n "e deter mine in oytuinal robust reduction procedure using
these algorithms. A spreadl sheet program (usingt, Microsoft Excel' ) gives a more detailed
analysis of the radiance fits, i~nd pros ides grzcphs of such fits. F hc_ :.;ead sheet program does
not run the NHA or NLLS algorithnis, it ,equires intorination on tri L-orstants in OMT used to
represent the radiance cur,,e. Using tlie Microw-Ait W'ifidovs* enVironment we run both the
FORTRAN programi tr interacti:C nmode), omni n,, spread sheet program simultaneously to
Imimediately analyze In detaiil tile rtsults ot r a n;Wg NLI LS- NIIA algorithmns and to view the
graphs of the of the ON1 F fits; %a thle idjus~iut U1 -,ad to our methods.

3.2.2 FORTRAN Proiarani. tke chcose the Le\ eabe~g-NMarquardt method for the NLLS
algorithm (Press, Flannerv, 'Teukoish v and Vetterling, I G5 6). We took thie liasic algorithm from
Press et al. and integrated it wkith thc .shail program, 13FIT. BiIT breiks into six independent
parts; (I) radiance data input, (2,t initialize NIIA fitting, (3) run NIJA fitting, (4) initialize
NLI.S fitting, (5) run NL LS fitting, and (6) output solution piranieters and fitted radiance
prof ites.

The input routine reads a daita file hfich cuin(,iis rno r ration on a particular TOVS scan.
Each TON'S scan provides seveni pairs of P) !_ar and R-.driance values. When BFIT is run
interacti' ely, we choose one TrOYs sc:an to icst in I-at.h inode I3FIT loops; though all scans.

We integrated the origiinal N aerIi~perbolic fitting AlIgorithmn to finish thoroughly
analyzing that method and >,s uscio'>re' . WKhc. funning the NIIA routine, we choose the
number of constants to fit r(e.g , I choice of tour constants determines one constant term, one
linear term, and one hyperboliic terra) aithen decide which channels to fit. The TOVS data
has a total of" se~en channels.

Given a ncmii c r of channels, the Nli,' fi 10rg ..Ao tmprovides a exact fit to those
channels. Ihe algorithm i numnerically unstable k'xAing to its character as an interpolation
algorit!;hm. Consequently, it pm C)', (es %cry different solutions depending on which channels are
chosen, and it cannot determine a ccolution for more than four channels of TOVS data. The
NLLS NHA avoids these difficulties becaust it is not an interpolation algorithm.

UFIT runs thle NLI.S routine according to a script, 1 he sc-ript d&Ierimines which constants
are to be varied and in whlat order. For exam, :e we choose aI starting %ector close to zero
(presumiably a bias-free choice) and we. decide to rclaethe constant and linear term only. The
then algorithm fits the data with no h erbolic terms. IThen we relea.C one hyperbolic term to
see how it corrects the fit. The algorithm's performance also depends on a number of
parameters such as the estimiated errors In the data which weight different channels and the
derivatives of the OMT constants which weight different terms in the cur\ve. BFIT sets these
parameters.

The NLLS is run according to thle script, and it attempts to reduce the global X2 fit to the
radiance data by varying the released constants. It pro'.ides what it determines as the best set
I, OMT constants for thle fit.

BFIT reports the final OMI co! i..mts and provides a X2per degree of freedom analysis of
the OMT radiance curve fit to thle o1r~injl radiance data. This information is logged in a data
file to maintain a record of eac;h niethiod o-lution and performance.
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3.2.3 Spread Sheet Propram. The spread sheet program analyzes one scan in detail. All
information on the scan is extracted from the data files used by the FORTRAN routines and
presented in clear manner in one work sheet. The sheet contains the location and time of the
scan, and lists in table form all information about each channel and the OMT curve match to
that channel. The spread sheet program does several different error calculations in the tables.

We manually enter values for the ONIT constant used to create the radiance curve. If we
change the OMT constants on the work sheet, the spread sheet program immediately recalculates
the OMT radiance curve and the error. A graphics sheet takes information from the work sheet
and creates a graph of the radiance data points and the OMT curve. The graph is automatically
updated when any changes are made on the work sheet. The spread sheet program quickly
presents clear and detailed information on the OMT fit but does not provide information on
how the fit was determined.

3.3 Reduction of TON'S Data to Atmospheric Temperature Profiles usin2 ONIT. We have
readily available a set of 45 TOVS radiance scans, 15 from each of the three latitude zones.
Each scan has corresponding radiosonde observations for comparison with the OMT temperature
profile. These scans have been processed with the NLLS NHA software discussed in previous
reports. (See, for example, tiohlfeld, Kilian, Drueding, and Ebersole 1988.)

Of the total of 45 TOVS scans processed, the complete set has yielded physically meaningful
solutions involving a single hyperbolic term (with coefficients ki and L ) and a linear term with
coefficients a and h. Results of these runs are included in the Appendix. In each of the cases
shown, values of k, were obtained, satisfying -1 < ki _< 0, which corresponds to the new class of
solutions discussed in the previous section.

Low latitude atmospheric temperature profiles exhibit a sharply defined tropopause feature,
as e% idenced by the radiosonde observations for the TOVS scans which we have studied. It is
unrealistic to expect ONIT fits based on only 4 terms to adequately represent such rapid
variations of temperature with altitude. We plan to investigate whether this situation may be
partially ameliorated by addition of a second hyperbolic term, or the addition of some other
term to equation (8).

We have obtained meaningful fits to both long wavelength (667 cm l ) and short wavelength
(2250 cm 1 ) TOVS data. However, as TOVS has only 5 short wavelength channels, we regard
these bits as being less significant statistically than the long wavelength OMT fits.

Examples of NHA NLLS processing of TOVS data to OMT radiance and temperature
profiles are given in Figures 4 through 7. For the TOVS data we have found that nm a I is
appropriate for representing TOVS weight functions and the corresponding representations of
Ea(x).

3.4. Discussion of the Results of TOVS Data Reduction. We have demonstrated that the NLLS
NHA generates OMT fits on 100% of a set of 45 TOVS radiance scans from all latitude zones.
Thus NLLS NHA is a robust algorithm suitable for processing TOVS data on a routine basis.
Further advances in the construction of OMT fits, viewed as minimization problems in
multidimensional parameter spaces, will allow more effective and efficient bias-free
computation of OMT solutions.
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Figure 4: ODtical Measure TheorV radiance fit to TOVS data and temperatuie fit to RAOB data.
This is a representative case of the fits achieved in Zone I by the Non-Linear Least Squares
algorithm using OMT with four parameters for long wavelength data. The Non-linear least
squares algorithm was given an initial vector with a - b - Ki -0 and Li - 10 and gave a
solution with a - 20.23, b - 45.93, Ki - 0.07889 and Li - 12.29 for Zone I Pass 9. This scan
in Zone I was chosen because RAOB data was available up to 10 mb.
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ZONE~jTOVS Radiance Plot
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Figure 5: Optical Measure Theory radiance fit to TOVS data and temperature fit to RAOB data.
This is a representative case of the fits achieved in Zone 2 by the Non-Linear Least Squares
algorithm using OMT with four parameters for long wavelength data. The Non-linear least
squares algorithm was given an initial vector with a - b - Ki 0 and Li - 10, and gave a
solution with a - 19.98, b - 85.54, Ki - 0.1233 and Li - 16.29 for Zone 2 Pass 3. This scan in
Zone 2 was chosen because RAQB data were available up to 10 mb.
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ZONE 3 TOYS Radiance Plot
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Figure 6: Optical Measure Theory radiance fit to TOYS data and temperature fit to RAOB data.
This is a representative case of the fits achieved in Zone 3 by the Non-Linear Least Squares
algorithm using OMT with four parameters for long wavelength data. The Non-linear least
squares algorithm was given an initial vector with a - b - Ki - 0 and L - 10 and gave a
solution with a - 15.40, b - 117.7, Ki - 0.008709 and Li - 18.49 for Zone 3 Pass 12. This scan
in Zone 3 was chosen because RAOB data were available up to 10 mb.
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ZONE1 I TOYS Radiance Plot (Short wave length)
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Figure 7: Optical Measure Theory radiance fit to TOVS data and temperature fit to RAOB data.
This is a representative case of the fits achieved in Zone I by the Non-Linear Least Squares
algorithm using OMT with four parameters for long wavelength data. The Non-linear least
squares algorithm was given an initial vector with a - b = Ki - 0 and Li - 0.1 and gave a
solution with a - -0.02927, b - 0.4591, Ki - 1.1945 and Li - 0.07186 for Zone I Pass 9. This
scan in Zone I was chosen because RAOB data were available up to 10 mb.
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It is highly interesting and scientifically significant that a meaningful OMT fit to the
radiance data which yields a meteorological reasonable temperature profile can be constructed
with just 4 parameters. First of all, this argues that the choice of functional form in equation
(8) was an appropriate choice of the representation of radiance data. Secondly, it is highly
suggestive that the actual information content of the TOVS radiance data is approximately equal
to that which would be generated by 4 statistically independent channels (with relative errors
characteristic of the TOVS radiometer). Such considerations are highly significant for the
design of atmospheric sounders.

We note that the atmospheric temperature profiles obtained using the NLLS NHA exhibit a
meteorological character and have a smooth form following the general trend of the radiosonde
observations. The solutions we have obtained with -1 < k -< 0 are a significantly better match
to the tropospheric temperatures than our previous set o solutions obtained for k i > 0. It
cannot be expected that an OMT temperature profile constructed from a 4 parameter fit to the
radiance data can match the detailed structure of the radiosonde observations. (In any event,
the radiosonde observations available to us from NOAA may be as much as 3 degrees in latitude
and longitude from the geographic location of the TOVS radiance observations.) However, it
can be seen that we have captured the overall character of the actual atmospheric temperature
profile in the OMT temperature profile. Further research will allow interpretation of the OMT
fit parameters in more direct meteorological terms, such as tropopause temperature and pressure,
and temperature lapse rates.
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4. DIRECTIONS FOR FUTURE RESEARCH

The research undertaken during the Interim Research Period has demonstrated the utility of
viewing the construction of OMT fits as minimization problems in a multidimensional parameter
space, and has shown that these fits exhibit the meteorological characteristics desired.
Furthermore, these algorithms are robust, working on our entire set of available TOVS radiance
data. This represents an important milestone in the process of developing operational OMT
capabilities. Further research tasks directed toward achieving that long-range objective can now
be listed.

o Development of alorithms for global minimization on the radiance X2 surface utilizing
nonlocal information on X geometry and allowing construction of nonlinear cost functions.

* Elucidation of the mathematical relationship between the parameters of the OMT fit and
atmospheric stiuctuie parameters.

* Investigation of new data sets, so as to establish that the results we have obtained are not
unique to the TOVS data set. Investigation of data sets with larger numbers of channels is
particularly crucial.

• The theoretical formulation of OMT should be extended to include properly the effects
of the ground, both in terms of its radiance and in terms of the truncation of atmospheric
weight functions.

9 Analysis of OMT algorithms should be undertaken from information theoretic principles
to determine the information content of available radiance data sets and its bearing of the
determination of the vertical temperature structure of the atmosphere.

In conjunction with the rest of our proposed Phase 11 research effort, considerable progress
can be made leading to operational implementation of OMT algorithms.
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5. CONCLUSIONS

We have demonstrated an implementation of Dr. King's Optical Measure Theory (OMT)
based on mathematical concepts of X2 minimization on multidimensional parameter spaces. This
approach is embodied in our NonLinear Least Squares Nonlinear Hyperbolic Algorithm (NLLS
NHA). We have shown that the NLLS NHA is a robust algorithm for constructing OMT fits to
TOVS radiance data, generating physically meaningful fits on 100% of a test sample of 45 scans.
These fits were obtained both on long wavelength (700 cm' 1) and short wavelength (2250 cm -1 )
TOVS data.

Acceptable fits to the TOVS radiance data were constructed using only 4 parameters in
OMT. Such fits generate OMT temperature profiles with significant meteorological features.
OMT temperature profiles are most appropriately employed in the remote determination of
atmospheric structure parameters and for the determination of input parameters for numerical
weather prediction codes, rather that replicating the small-scale temperature structures seen in
radiosonde observations.
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APPENDIX

Results of Optical Measure Theory NLLS-NHA applied to TOVS long wavelength (700 cm-i) data:

ZONE 1
PASS Parameters Radiance Temperature

a b KI LI Chi Squared Chi Squared
1 21.9897 52.4568 0.0712 18.8208 7.7253 9,6669
2 20.8109 30.8127 0.0764 20.7566 8.2237 12.5141
3 20.1024 36.1872 -0.0332 19.7633 10.9466 22.1108
4 20.6843 31.9178 0.0773 20.6341 8.0789 12.8196
5 20.2016 42.7946 0.0594 19.6847 8.2166 9.0614
6 24.1988 48.5561 0.0172 19.2390 4.6667 12.9135
7 20.0930 41.9466 -0.0228 19.3295 15.4449 25.6887
8 19.7163 42.3897 -0.0266 19.1709 11.9110 20.7560
9 20.2266 46.9303 0.0789 19.2882 8.6948 7.1661

10 21.0559 54.7609 0.0634 18.6387 8.7642 13.6989
11 21.0467 63.2192 0.0519 18.7438 8.3353 17.3833
12 20.6767 5V.3G38 -0.0291 18.8327 10.0275 15.5180
13 20.1630 41.7165 -0.0187 19.3757 16.4502 27.6259
14 20.7280 43.4640 0.0482 19.6211 6.8636 11.6721
15 20.8485 38.0441 -0.0966 19.7211 7.6981 13.1202

ZONE 2

PASS Parameters Radl4nce Temperature
a b K I LI Chi Squared Chi Squared

1 20.0666 60.2691 -0.0134 18.4629 21.3097 14.0864
2 22.7040 46.1479 -0.5861 21.0458 26.5995 16.1779
3 19.9808 85.5354 0.1233 16.2896 24.6734 18.0511
4 23.6784 91.7270 0.0429 14.7176 47.6058 36.3018
6 22.5640 86.1693 0.0529 15.8039 39.4410 32.0148
6 26.4618 92.0344 0.0335 13.7686 49.9676 40.8269
7 24.4512 85.9867 0.0361 15.3968 44.2754 41.8214
8 23.4871 78.6828 0.0443 16.7173 35.0703 23.7176
9 13.9159 42.1279 -0.4681 28.6781 13,5568 10.4029

10 20.1966 61.0701 0.0021 18.5280 8.7407 15.1631
11 8.8821 33.2692 -0.4956 34.1463 10.5916 15.4403
12 17.8678 40.2948 -0.4735 24.2218 13.1907 7.9540
13 20.1134 76.6693 -0.2322 16.6688 23.4453 477.8820
14 24.7764 91.7628 0.0627 14.0435 42.4881 33.7667
15 18.6541 52.2492 -0.4316 23.9844 20.4876 12.4871

ZONE 3
PASS Parameters Radiance Temperature

a b KI Li Chi Squared Chi Squared

1 17.5488 113.2630 0.0060 17.1666 72.7356 37.8103
2 22.5468 113.6100 0.0106 13.0646 64.9291 44.8249

3 21.6579 113.0420 0.1541 13.9088 67.5030 33.1921

4 20.9456 108.1440 -0.0603 14.3876 68.6499 60.4543
5 21.1345 110.9210 0.0556 14.1233 83.5579 50.9246
6 3.0187 79.4961 -0.4834 33.9501 80.9482 20.4354
7 17,8404 115.7700 -0.0049 16.4167 82.3276 43.6510

8 18.0460 114.8840 0.1531 17.0912 76.9672 40.5942
9 18.0460 114.8840 0.1631 17.0912 75.9672 43.3642
10 22.7688 118.1260 0.1193 12.3443 74.3194 65.5988
11 18.6673 112.6770 0.0669 16.7632 80.9567 47.7336
12 15.3976 117.6640 -0.0087 18.4916 80.4202 37.7834
13 22.3840 118.3220 0.1060 12.5496 66.9086 56.0465
14 20.1937 113.2730 0.2993 16.7100 63.9672 42.1414
15 22.1519 108.6000 -0.0683 13.7462 68.9993 73.7513
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Results of Optical Meaure Theory NLLS-NHA applied to TOVS short wavelength (2250 cm-i) data:

ZONE I
PASS Parameters Radiance Temperature

a b Ki LI Chi Squared Chi Squared
1 -0.0817 0.5680 0.0136 0.1198 14.6169 22.7618
2 -0.0316 0.2224 -0.0609 0.0841 3.62269 15.7897
3 -0.0352 0.2807 -0.0266 0.0856 10.8188 31.4143
4 -0.0334 0.2322 -0.0352 0.0832 4.54404 16.6869
5 -0.0059 0.3429 0.0091 0.0571 9.80052 20.2758
6 -0.0722 0.6662 0.1163 0.1193 16.6156 22.4707
7 -0.0327 0.3440 -0.0110 0.0846 17.8615 40.0358
8 -0.0391 0.3646 -0.0261 0.0807 12.8574 32.0189
9 -0.0293 0.4591 1.1945 0.0719 9.6139 14.3352

10 -0.0806 0.5727 0.1443 0.1171 18.3589 26.0443
11 -0.0804 0.5674 0.1177 0.1160 17.2854 26.3545
12 -0.0307 0.5278 0.0062 0.0663 16.6639 28.3946
13 -0.0360 0.3494 -0.0022 0.0823 19.494 38.5053
14 -0.0965 0.3845 0.0136 0.1423 9.51026 24.4296
15 -0.2357 0.2529 -0.2399 0.2944 11.4666 26.0404

ZONE 2
PASS Parameters Radiance Temperature

a b KI LI Chi Squared Chi Squared
1 -0.1773 0.4908 -0.2828 0.2238 29.3679 39.5405
2 -0.0366 1.1118 -45.3656 0.0745 7.26997 8.8E+16
3 0.0230 1.1199 -13.1211 0.0580 14.9585 61825.1
4 0.0983 1.1626 -9.8580 0.0367 39.7419 3397.62
5 -0.0186 1.2098 82776200 140509 61.1645 3703.7
6 -0.0939 1.2356 -2.8615 -0.0270 79.5673 122.164

7 0.1168 1.0552 -9.2818 0.0246 32.8007 1945.81
8 -0.1175 1.1452 3.4532 0.2170 82.7624 66.6798
9 -0.3895 0.4183 -0.5157 0.4347 29.9299 29.1776
10 -0.1438 0.4388 -0.4682 0.1942 24.3943 43.2193
11 -0.5422 0.2091 -0.5155 0.6007 30.3683 34.7671
12 -0.6453 0.0244 -0.5200 0.7203 32.2153 24.5781
13 0.0460 0.9901 -11.5321 0.0416 12.8681 12380.6
14 0.1019 1.2925 -3.1509 -0.0305 98.6834 129.156
15 -0.8287 0.2311 -0.4774 0.8978 56.7268 39.4245

ZONE 3
PASS Parameters Radiance Temperature

a b KI LI Chi Squared Chi Squared
1 -4.4988 -0.1556 -0.2997 4.5656 178.66 120.195

2 0.0065 1.8417 -14.6069 0.1118 29.4934 647087

3 0.0093 1.7432 -14.3952 0.1058 24.6212 624511
4 0.0187 1.8322 -15.0639 0.1267 28.1215 2195220

5 0.0098 1.8338 -16.9123 0.1503 27.6544 76821500
6 0.0796 1.4105 -3.5775 -0.0234 161.232 112.93
7 -0.0469 1.9996 -20.8580 0.1666 26.67 2.73249E+11
8 -3.8965 0.1130 -0.2960 3.9548 184.67 126.902
9 -3.8965 0.1130 -0.2960 3.9648 184.67 137.046

10 0.0133 1.9180 -13.8175 0.1147 33.5552 262895
11 -0.0260 1.8946 -19.3872 0.1548 24.927 12825400000
12 -0.0752 2.1409 -22.3052 0.1747 27.8821 4.33052E+12
13 0.0119 1.9368 -14.7067 0.1238 30.9584 1080360
14 -4.6701 -0.1795 -0.2986 4.7380 173.639 131.566
15 0.0002 1.9937 -15.1188 0.1320 32.52 2970380
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