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1. Introduction

Recently active experiments from rockets and the Space Shuttle have been conducted to
study beam propagation. spaceeraft charging. instabilities. wave emission. and other space
plasma phenomena. There experiments indicate that artificial electron beams with energy of
several ke and currents about 100 mA produce strong plasma heating and electromagnetic
radiation in the whistler frequency range. Although beam-plasma interactions for a finite-
racdius beam system are well known for electrostatic waves. electromagnetic instabilities of
a finite-radins heam system have not been extensively studied because of their complexity.

I this study we focused on the electromagnetic instabilities of a finite-radius electron
heam in a neutralizing background. This report gives the derivation of the electromagnetic
dispersion equation for the finite-radius beam system and documents the numerical code
developed for solving the dispersion equation. Appendix A presents a study of electrostatic

mstabilities of a finite-radius beam system.




I1. Background

Electron beam injection experiments have been conducted from rockets and the Space
Shuttle to study beam propagation. instabilities, wave emission, and other space plasma
phenomena in the ionosphere [Winkler, 1980; Grandel, 1982; Shawhan ¢? al., 1984; Obayashi
et al., 1984]. Experiments have shown that electron beams can gencrate intense waves of
a broad frequency range. For example, during the Spacelab 1 inission, electron beams,
which were fired from the Shuttle with a beam energy up to 8 keV and a beam current up
to 300 mA. produced broadband emissions at frequencies less than the electron cyclotron
frequency (w < .) with both electric and magunetic components [Beghin et al., 1984; Taylor
et al., 1985]. During the Spacelab 2 mission, the Plasma Diagnostics Package (PDP), flying
around the Shuttle at distances of up to 300 meters, again detected broadband emissions
from {2, at about 1 Mz down to 30 kHz while the shuttle emitted an electron beam with a
beam energy of 1 keV" and current of 50 mA [Gurnett et al., 1986]. With both electric and
magnetic components, the broadband emissions Lad a clear funnel shape in the frequency-
time spectrogram similar to the auroral hiss reported by Gurnett et al. [1983]. Using
ray-tracing argument, Gurnett et al. [1986] suggested that the broadband emissions are
whistler mode radiation from the electron beam.

Several studies have attemipted to explain how to produce the hroadband whistle radi-
ation by a several keV electron beam. By calculating the radiated power, Farrell et al.
[1988] proposed that the electron heam generated the radiation through a coherent process.
since the measured wave power is several orders higher than the power expected from in-
coherent Cerenkov radiation. They further suggested that electron bunches created by an
electrostatic beam-plasma instability radiate the whistle mode noise. However, they have
not shown how the electron beam can excite the electrostatic beam-plasma instability below
the cyclotron frequency.

Solving the electrostatic dispersion equation of a finite-size beam for parameters relevant
to the Spacelab experiments. we previously found that the beam-plasma instability can
generate broadband electrostatic beam mode with frequencies helow the electron eyclotron
frequency [Lin and Wong, 1986]. The maximum growth rate of the heam mode in this
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frequency range is about 107%w,.. To explain whistler wave emissions, we suggested that
the broadband electrostatic waves convert to whistler waves at the electron beam edge. Re-
cently, a computer simulation using an electromagnetic particle code showed that a spatially
confined thin electron beam can directly excite whistle mode waves near the resonance cone
through Landau resonance [Omura and Matsumoto, 1988). This simulation also suggested
that bunched electrons could not radiate oblique whistler waves because large amplitude
electrostatic waves destroy the bunching in a short time during the quasilinear phase.

The objective of this study is to investigate the various wave modes that can be excited
by a finite-radius electron beam, with an emphasis on wave frequencies below the electron
cyclotron frequency. To achieve this objective, we solved the electromagnetic dispersion
equation of a finite-radius beam immersed in a uniform background plasma. For compari-
son purposes, we also solved the dispersion equation of a homogeneous beam. The numerical
solutions indicate that a keV electron beam can drive the beam .and whistler modes unsta-
ble, regardless of whether the beam is homogenedus or has a finite-radius. Although the
beam mode is excited for frequencies up to the electron pl=sma frequency, only waves with
frequencies below the electron cyclotron frequency can propagate outside the beam. The
parallel wavenumbers of the whistler waves excited by the finite-radius and the homogenous
electron beams are similar, suggesting that the finite-radius electron beam also excites the
whistler waves near the resonance cone. These results explain that a very narrow electron
beam, such as thosc of the Spacelab experiments, can still excite whistler waves in the

resonance cone.




III. Formulation
A. Basic Equations

This section describes the derivation of the dispersion equation of a finite-radius electron
beam in a uniform cold background plasma. We assume that the ambient magnetic field
B, = B, is in the z-direction and that the electron beam propagates along the magnetic
field.

We consider an electron beam with a density n, and a radius r, centered at the origin
r = 0. We assume the background electrons have a density n, outside the beam and n. =
(no, — np) inside the beam so that the background ions distribute uniformly, as illustrated

in Figure 1. The relevant equations are the fluid equations

On;

- * V- (nV)=0 (1)
av, 5 oU BT (B 4B

and the Maxwell equations

» 108
VXE = —ZE (3)
— 135 47r -
¥V X = z—a——t—-}-:-;e)‘nj‘/j (4)
V-E = 4r3 ¢jn; (5)
i
V-B =0 (6)

where n; and ‘7, are the number density and velocity of species j, respectively. Here the
index j = b, p refers to the beam and background electrons, respectively. For the background
electrons, v,, = 0.

The electromagnetic dispersion equation of a finite-radius beam has been derived by

Shoucri and Kitsenko [1968]. Here, we briefly outline the procedure for obtaining the




dispersion equation. To linearize (1)-(6), we assume

fi = vest + 80
B = B,;+6B
E = 6E

n, = n(r)

where the zeroth order velocity v, is constant and in the magnetic field direction. For the
background electrons, V,, = 0. In the derivation given below, we define Q. = (le|B,)/(m.c),
and ng = (4mn;e?)/m.. Using the cylindrical coordinates, we represent the perturbed

quantities é f as
6f — 6f7(,r)ei(k“z—wt—m0)

where ky is the parallel wave number, 8 is the azimuthal angle, and m is an integer. Equa-

tions (1)-(2) then become

on;

: . n; 0 -
H(w — kyuv,; )on; = Ta—(rbv_,,) + thyn; 01,- + i T o e+ 6v1,5- (1)
. 1
—i(w — k”va,- )515',- = ,% [ voJ(SBg + bl?]oBe] (8)
- 1 1
—ilw — kyve)Bve = = 6B + Zv,;8B, - —bv},Bo] 9)
' m c c
—i{w — kyuo, )60}, = T—Z—&E, (10)
From (3), we obtain
8B. _ m,p, _ Mg, (11)
c wr w
8By _ hisp , L9,p (12)
c w w Or

Substituting (11) and (12) into (7)-(10), we derive the perturbed velocity quantities as
6v;, = R, 6E, + Rjs6Es+ R,,6E, (13)
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évis = ©,,6E, +0,00E; + O, 6E. (14)
bv;: = Z;0E, (15)

where

e (u.) - k“vo_,- ).2

Bor = e (@ Ty — 12
Rjp = - :1?0 (w f_wk;vf:';":) 02
R = o (w— k,,::-y -z [“" - k"“'”‘":"r - mrﬂ]
0;; = —Rj
0, = R.,'r
O = i k"::V o [“95(?; + (w = kyro, "?]
The perturbed current density éJ is defined as
8] = Y e(8njvo,d +n;év) (16)
= Bf SE (17)
where 0 is the conductivity tensor. The dielcctric tensor is
e, = b, — iga,-, (18)

Substituting (7), (13)-(15) into (18). we get the expression for the dielectric eomponents

2

€r = 1- i)zzl (w-k“v:j)z 2

; w (w—k“v,,j) -Q

w2 Qw - ky,,;)?
o = ~T T

3 w (w-—k"vo_,-) -Q

. 2 .
€, = leﬂl 10] (w__k"voj)é__lr‘_gl

w? (w - k“vo]‘ )2 -2

or r

J
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_ o~ Voj [(w—-kywo,) D, mQ ,
T ‘%‘WQ(W—"‘HUWV—QZ l r 8r(7w”’)+ r P
Vo, 5 m ,
- = - —_ _ k- y
et Z.&[u — I.'”v(,J )2 — 7 (reop,) + e (e ""’J)]
- 1 2
€z = - Z (w — All' o_/) + : wz[(w _ k“l’aJ )2 —- Q?]

- 1 8 , 0 miol N mQ , 0 mQ 10
A R Zo__mhe LY
ror P or r? rlw — kyv,; )w”'J Or  (w — kyv,;)ror

—~— €or = _Er0

g = E,
w2
- _ “pi Yoy 9 k m
“ ; 2w = by, ) - Q2 QB (= Kyuey )2

- B. Normal Components

2
wPJ }

- Suhl and Walker (1954) had expressed the system of equations in terms of the tangential

compounds of the electric and magnetic fields §E, and §B,. For the axially symmetric

plasma oscillations in a cylindrical geometry, we express below the normal components of

6E and 6B through dE. and 4B,.

We first linearize (4) and (6) to obtain

un

'—63 - iklI(SBo = —19—22 6,,’61’?_,
j

) -~ 0 - w -
lk'“éB,- — 5;63, = —ZF;GgJéEJ
10 = m - w -
-5-(r6By) - —B, = —zzz;s,,'éE,
B 19

5788 + 6B, +iksB, =0

(19)

(20)

(21)

(22)




Substituting (11) and (12) into (19) and (20), we get

. Jk2c . =
—i%e,, + z—f}— —i%erg 6F,
) . K¢ ~
—1%€p, —i%egp + i-L OE,

Solving (23), we derive

N 1 N LM a. -
- 1 ~ .m 0 -
50 = [(YZ,+XZQ)5E,+(1Y—;—-—.’(5;)613;}
where
, k2
X = —gfrr-i—i—lﬁ
.C [73)
Y = -Ee,g
c
_ iw k"ca
Z = Ce,.z w Or
: X .
22 = 32692-{-2'—”'62
c r

Given 6E, and §Ey, 6B, and 6B, are deduced from (11) and (12)

6Br = ¥ (T-&E: - klléEg)
w T
- ic (. . Jd -
6By = —--‘; (lk"bE,. - -a—;bE,)

To make the derivation of the system of equations easier, we rewrite the expressions of
6E, and 6E, using the following definitions:

ng(w - k”voj )2

a = 1- Z w?[(w — k”vo,')2 - Q7

J




J

wl ko (w — kyv,;)

b= ~ Z w?{(w — kllv 2 — Q2]
5w = kyvo;)
— “p;
a = Z (w - IL"IUJ) + 3 Q)[(w - k”U 1)2 QZ]
2 kv
) = — “Wp; K)oy 4
! z,: wl(w = kyvo, )2 ~ Q2]

2
_ w i Qe(w — kyjvo;)
‘= ; w{(w = kyro, ) — Q]

f=- wp, Qe kifvo;
< G7[( — Fyoey)? — 0]

From these definitions we get

i
X = —7“’(a—N,f)
Y = fd
X 3
€.6E, = — (b-—+ f) 6E,
N

6926E: = ;1—( —6— m)

where Ny = kyc/w. The expressions for 61::/', and 6 E; then become
il il

- 0 _ - Jt im £ 0 ¢m
. = A —6E, - ——§E. + =B, —6B,
6E k“ 6r k” r t 11”67' t k‘“ r
N mA ¢ 0 & im (o
- _m ro S
SFE, k“réE + L“ aréE + kv B, + > b aT(SB

where

2.2\ 2
r = (a—ﬁ'c—) - d?

w?

- (a—Nl’L)(blj-N”z)+fd
(b+ Nf)d + f(a - le)
po= -
r

d
& = -Mig

_9_

(24)




¢ = _N“(a—-Nﬁ)

We can rewrite 6B, using (26), as

6B, = Ny(€;x6Ey)+ ff-:-‘il(q, x V,6E.)

iN, (;:“+ 1) (€ x VL8E,) — %Vﬂsz‘,

+£k||'lﬁ(e*“ x V,6B,) — ’-gflcvlaﬁz

Equations (25) and (26) can be combined into

§E. = —AV,6E, + L6 x VLSE) + £ v, 6B,
ky ky ki

iC i
+—(é X V.LéBz)
k“ il

(27)

(28)




IV. Dispersion Equation

A. System of Equations

We now proceed to derive the equations from the tangential components of Maxwell

Equations

§B.

_E9, x 8K, (29)
w

v, x 6B, = oD,
o

= €,6E, + ¢€,46Ep + €,.6E, (30)
Taking the curl of (29), we deduce
- ~ kZ -
pALSE, +i¢AL6B, = i;v—'LéB, (31)
I
. . 19 0 m?
where A, is the Laplacian operator A, = “5Te T

Taking the curl of (30) and using (28), we deduce (30) to

[~(NZ+0)(A+ 1)+ ] ALE, + i(Nf +b)EA LB,

= K |(a+b+ci)8E, ~ —1’{—51@, (32)
]

After rewriting (31) and (32), the system of equations is

AL8E, + K6E, + L6B, = O (33)
AL6B, + PSE, + Q6B, = 0 (34)

where

2(0 - N{f)(a +b+ Cl)

2
L = R
N Z
-11-




By
— L2
P 1N“Z(a+b+61)

2@ NDZ+ 1Y + b+ NS = d) + erd?
" Niz

and

Y = (b+ Nj)d+(a~ NDf
Z = (b+N}a+b) —cla—Nf)

We next introduce two new variables ¥, and ¥,

U, = 6E,+iAASB,
¥, = 6E,+iAASB,

where A, and A; are the roots of the quadratic equation
A? +FA-1=0
The coefficient F is given as

F = {Nj(c1 —c2) — N}[a(er + b — 2¢5) + b + (d — f)?]
—b(d— )’ + (a+ b)(ab + f?) — ca(a® — &*)}/ NNy
/\J(a+b+e)(b+ N+ f(a— N})]

The coefficient A is determined from the condition that

AP =L

Hence

(35)
(36)

(37)

(38)

(39)




Multiplying (33) by iAA and adding it to (34), we obtain

Vi + T3, = 0 (40)
with
T? = K+iMAP (42)
T? = K +iAAP. (43)
Using (37), (42) and (43), one can show that T satisifies the equation
(b+ N2)a+b)—(a~ N,)c; K3
N3 T —TQJ—V%{—-N:(2a+2b+c1+C2)
+ Na(2a+b+ ¢y + 2c3) — b — (d — f)*] + (a + b)(ab + f?)
- Hd~f)* - e’ - )} + Ki(a+b+c)l(a— N -] =0 (44)

where Ky = w/c. In the case of an unbounded plasma and beam, T corresponds to a normal
component of the wave vector K; and to the dispersion equation for an homogenous plasma
and beam.

The components §E, and 6B, are related to the functions ¥, and ¥, by

AT - ALY
$E, = P (45)
t ¥, — ¥,
z 2 4
6B yy—— (46)

For axially symmetric oscillations, a solution of (40) and (41) in general has the form
V12 = $12J0(Th 2r) + G12Yo(Th 27) (47)

where Jp and Y, are the Bessel and Neumann functions, respectively. S;, and G are

constants.

_13_




B. Boundary Conditions

The boundary conditions are obtained by integrating Maxwell equations across the beam-

plasma interface from r, — € to r, + € with ¢ — 0. The boundary conditions are

GE)) = 0
(6Es) = 0
(6B,) = 0
6By) = (—26E) - (2=p 48
(6B0) = (~3-6E.) -~ 450 (48)
: 2 O2
L wip; e Ky Vo SE >
Ny <; w(w = kyvo; (W — kyvos)? = Q2 ¢

2 2.,2
Wos Q. k[ﬂ)oj

?
N <; w(w — kyvo;)(w — kyvo;)? — 93]6B'>

The brackets () denote the difference in the values across the beam surface. For example,
(6Eg) = 6Ezolr=r¢+0 - 6E:II,-___,.¢_0

The superscripts O and I mean the quantity is evaluated outside and inside the beam,
respectively. The boundary conditions indicate that 8E,, 6E; and éB, are continuous
at the beam surface but that 6B, is not. Using (45) and (46), we write the boundary
conditions in terms of the functions ¥, and ¥,. The first two boundary conditions mean

that the tangential components of the electric fields are continuous at the interface.

Az‘I’l —Al\l’z _
( A?'—AI ) =0
K, 19¥, 19%;\, _
<(A2—A1)A (7‘3 o T2 or )) =0 (49)
i 0, -V,
Ar-a) = °
L SR VY TR VY 7 N
(Ag-A;)A2 T‘Q or Tg’ or




Parameters are different inside and outside the beam because density and beam velocity

are different (see Figure 1).
C. Dispersion Equation

Because electric and magnetic fields should be finite on the Z axis, the functions \I/f'2

inside the beam should be
Ui, =8 3 Im(T,m). (50)

The fields outside the beam should be free propagating waves at a large distance (r — oo);

therefore, the functions ¥9, outside the beam are
‘1’10.2 = G10,2Hr(7:)(Tlo,2r) (51)

where H{)(TZ,r) is the mth order Hankel function of the first kind. S, and G, are
constants.
The boundary conditions give four equations for the four constants S{_z and G?ﬂ. Requir-

ing the determinant of these equations to be zero, we obtain the dispersion equation

Dll D12 Dl3 DM
D21 D22 D23 D24
D31 D32 D33 D34
D4] D42 D43 D44

=0 (52)

where

Dy = Al (T!r)
Dy, = AlJ.(T!r)
Dy = AgHr(r:)(Tlo")
Dy = AHI(TPr)
D, = Jm(Tnlr)/A'

-15-




Dy = Jn(Tjr)/A!

Dy = HY(TPr)/A°

Dy = HY(TPr)/A°

Dy = gT{In(Tir) = Zplin(Tir)
Dy = ¢TjJ(Tjr) - ?P{Jm(T;T)
D = dTPHY(TPr) - “pHY(T)r)
Dy = G?T?HQ)'(T?T)—?P?HS)(T?")
Dy = ggT,'J,',,(T,'r)+?—w;Jm(T,'r)
Do = giT{Jn(Tir) + ~wlJn(T{r)
Dy = gYTPHS(T{r) + “uSHUNTPr)

. m
Dy = Q?T'?HS)'(T?T)‘* 7w‘1’H,(,f)(Tfr)

The dispersion equation (52) contains the variables p;, g;, g, and w;. which are defined as

[(a = Ni)b+ Ni) + fd]Ar2 — Nyd/A

h2 = (a - Nﬁ)2 ~ d?
_
N2 cAT?,
kywA
g2 = L2
cA?T},
wra = (b+ N} +2f(b+ Ni)a - N}) + f2d = l[(a = N|*)? = d’] Ay,
12 = (a—N?)2 - & Ny

1(a— N+ N} + fd
A (a-Npp-d?

where

=-Y wi; kvl
3 w"’(w - k"voj)[(w - k“vo,- )2 — Qg]

In general, the variables depend on n; and v,; and thus vary from inside the beam to

-16~
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outside the beam. We thus use the superscripts I and O to distinguish their values inside

- and outside the beam, respectively, in Section II.

-17~




V. Description of Numerical Code

This section describes the numerical code EMFBP that solves the dispersion equation
(52). EMFBP contains the main program and the five subroutines FCN, FSBELEC, JHC,
ROOT and DFCN. Although the dispersion equation is quite complicated and requires

double precision to evaluate, the structure of this prograin is simple. The program computes

the complex roots of the dispersion equation, which is a complex algebra equation, for given

input parameters. The root-solving routine iterates until the error in solving the dispersion

equation is less than a prescribed value, 10~*. The program then outputs the root for each

k value.

A. Main Program

The main program primarily reads the input variables, which are listed below:

Table 1. List of Input Variables

variable typical
name definition value
WR2 Wpe /2 3

DR my/n. 0.1
VB1 v /e 0
VB2 vk /c 0
VBB vl /c 0
RBA WpeTa/Vob 0.111
Kl kyc/ 40

DK Akyc/Q 1

NK number of ¥ mode 10

GR real (Z) 0.33
GI Imaginary (Z) 0.05

The variable WR2 is the ratio of the electron plasma frequency to the electron gyrofrequency.

-18-




As shown in the density model, the variable DR is the ratio of the beam density to the
background density outside the beam. The variables VB1 and VB2 are the drift velocities
of the background electrons outside and inside the beam, respectively. In this study, we
have assumed VB1 and VB2 to be zero. The variable VBB is the beam velocity in the unit
of speed of light. For a 1 keV electron beam, VBB is 0.01. The beam radius defines the
normalized variable RBA; for a beam radius of 2 m and a beam energy of 1 keV, RBA is
0.0111. The main program also reads the initial value of kyjc/} for solving the dispersion
equation. DK is the increment in kyc/Q and NK is the number of times the program solves
the dispersion equation. The program requires an initial guess of the root Z, where Z is
w/Q. The input variables are contained in a common block /MON/ for passing arguments
to other subroutines.

After reading the input variables, the main program calls the subroutine ROOTF, which
uses Muller’s method for solving a complex algebra equation. In ROOTF, the subroutine
calls DFCN for finding the roots and FCN for computing the dispersion equation (52).

B. Computation of the Dispersion Equation

Complex function FCN*16(Z) function computes the dispersion equation (52) for a given
Z and returns the result in a complex value. FCN calls two subroutines FSBELEC and
JHC. The subroutine FSBELEC computes the electron response terms a, b, ¢;, ¢;, d, and
f, given in Section III A, and !, given in Section IV C.

The subroutine JHC computes the mth order Bessel function J,,(Z) and Hankel function
of the first kind H{!(Z). The subroutine JHC has input arguments Z and m, where Z is
complex and m is integer. The subroutine computes J,(Z) and H(})(Z) according to the
expressions given in Handbook of Mathematical Functions [Abramowitz and Segun, 1968].
For the absolute value of Z less than 15, the routine uses the series expansion to compute
Jm(Z) and H{M(Z). For the absolute value of Z greater than 15, the routine uses Hankel’s

asymptotic expansion.
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VI. Numerical Results

This section describes the numerical solutions of the dispersion equation for a homoge-
neous beam and for a finite-radius beam. We assumed that the cold electron beam has
a beam energy of 1 keV and a density 1% of the ambient density. n,/(n. + ny) = 0.01.
This assumption was based on the Spacelab 2 experiment parameters, which had a 1-keV.
50-mA electron beam [Gurnett et al., 1986]. The ambient plasma density n. at the Shuttle

altitude is generally near 10° cm—3

, corresponding to a plasma frequency of 2.85 MHz. Since
the Spacelab 2 measured the electron plasma waves near 3 MHz, we assumed the electron
plasma frequency to be 3 MHz in solving the dispersion equations. We also used w./Q. = 3
because the electron cyclotron frequency is about 1 MHz. In solving the dispersion equation
of a finite-radius beam, we assumed the beam radius to be 2.5 m, according to Gurnett et
al. [1986].

Figs. 2 and 3 give the solutions of the dispersion equation for the homogeneous beam.
Fig. 2 shows the wave frequency w, as a function of kc/€Q, for various wave normal angles.
The beam plasma mode has frequencies linearly proportional to kc/Q.. intersecting the
plasma frequency at w./S), = 3, as indicated on the vertical axis. The dashed lines in
Fig. 2 represent the whistle mode, which has frequencies approaching Q. cos8. Fig. 3 gives
the growth rate w; for both the beam plasma and whistler modes. As expected, the beam
plasma mode has a large growth rate, which decreases with angle (solid lines). For example,
the maximum value of w;/S2. is 0.4 for # = 0° and 0.25 for § = 60°. Note that the growth
rate of the beam plasma mode at large angles has dropped sharply at certain kc/f2.. For
example, w;/, for # = 60° drops below 10~2 for kc/f). between 20 and 32, corresponding
to wave frequencies near the electron cyclotron frequency. The decrease in growth rate is
due to the cyclotron resonance interactions of the electron beam. Fig. 3 also shows that the
cold electron beam can excite whistler waves at large normal angles with smaller growth
rates (dashed lines). From Figs. 2 and 3, we note that the frequency of unstable whistler
waves occurs at {2, cos § where the frequency is insensitive to k, suggesting that the electron
beam excites the whistler mode at the resonance cone. Fig. 3 indicates that the growth rate

of the whistler mode is about 0.025%2, for # = 60° and 0.01212, for # = 30°. For 6 = 60°, this
~20-




corresponds to an e-folding time of approximately 6 us. Although the temporal growth rate
of the whistler wave is small in comparison with the beam mode, the spatial amplification
of the whistler wave can be significant because of its small group velocity at the resonance
cone.

Figs. 4 and 5 give the solutions of the dispersion equation of the finite-radius beam. In
solving (52), we restrict our attention to the axially symmetric case (i.e., m = 0) only.
Since we are mainly interested in waves with frequencies below 2., we have neglected the
cyclotronic mode, which has been discussed previously by Le Queau et al. [1981]. Because
the perpendicular wavenumber is no longer a constant, these figures plot the frequency
and growth rate versus the normalized parallel wavenumber kjc/Q.. Like the homogeneous
beam case, the finite-radius electron beam is unstable to the beam plasma mode with
wave frequency w, = kv (Fig. 4). The growth rate is also large when kyc/Q2. > 20,
which corresponds to w, /2, > 1. However, except near the electron plasma frequency, the
solutions indicate that the argument of the Hankel function for the beam mode has its
imaginary part larger than the real part ({Im(T)r)| > (Re(T}r)|) when w,/Q. > 1 (Fig.
4). This means that the waves with frequencies 2, < w < w, are radially confined inside
the beam. The reason for the confinenient is that the ambient plasma outside the beam
does not support a normal mode for 2, < w < w,. For w < Q,, the beam mode has a
smaller growth rate about 0.01€,, but the argument of the Hankel function has a larger
real part than imaginary part. Therefore. the beain mode excited with frequencies below
1, can propagate away from the beam because the ambient plasma has the whistler mode
as its normal mode. The drop in the growth rate at the cyclotron frequency is due to the
cyclotron resonance interactions of the clectron beam, similar to the homogeneous beam
case.

Besides the beam mode, (52) also has solutions for the whistler mode shown in Fig. 5.
This figure indicates that the frequency approaches Q. for large kjc/Q2.. The solutions for
w, [ < 0.02 are near the lower hybrid frequency and thus are not accurate because we have
neglected the ion contributions in (52). Although the real frequency appears as a single

curve, we have actually obtained several unstable biaiches, all with very close frequencies
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but different growth rates. Fig. 2 indicates that the whistler mode for the homogeneous
beam has a frequency for each angle. Therefore, at a given parallel wavenumber, the whistler
mode has a continuous frequency spectrum as the perpendicular wavenumber varies. For
a finite-radius beam, the perpendicular wavelength inside the beam is quantized and thus
the whistler mode has a set of discrete frequencies as shown in Fig. 5. We have plotted
two branches with the largest growth rates, which are smaller than the growth rates of the
beam mode.

For the finite-radius beam case, one cannot easily determine whether the electron beam
excites whistler waves at the resonance cone, since the perpendicular normal vector is not
constant. However, we note that kc/(QQ. is the same for the finite-radius and homogeneous
beams cases. Fig. 2 indicates that the homogeneous beam excites whistler waves at kyc/Qe =
24 for kc/2. = 48 and 6 = 60°, whereas the finite-radius beam excites whistler waves for
kjc/Q. ranging from 18 to 25. according to Fig. 5. The parallel wavelength, therefore,

suggests that the finite-radius beam also excites whistler waves near the resonance cone.




VII. Summary

Our numerical calculations indicate that the keV electron beam injected from the Shuttle
with a narrow radius can directly excite whistler waves propagating at the resonance cone.
This result thus supports the work of Omura and Matsumoto [1988]. which showed the
direct excitation of whistler waves by using computer simulations. Although the beam
mode is excited for frequencies up to the electron plasma frequency. only the waves below
the electron cyclotron frequency can propagate outside the beam. As suggested by Farrell et
al. {1988], the electrostatic waves of the beam mode at the whistler frequencies could bunch
electrons, which then radiate whistler waves. However, one cannot rule out the possibility
of mode conversion at the beam edge, as proposed by Lin and Wong [1986]. Electrostatic
waves of the beam mode could convert into whistler waves at the beam edge due to density
discontinuity and propagate away from the beam. Future studies are required to resolve

these questions.
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Figure Captions

Figure 1. Physical configuration of a finite-radius electron beamn immersed in a uniform

plasma.

Figure 2. Frequency of the beam mode (solid curve) and the whistler mode (dashed curve)

at a given wave normal angle 8 as a function of kc/SQ..

Figure 3. Growth rate of the beam mode (solid curve) and the whistler mode (dashed

curve) at a given wave normal angle 6.

Figure 4. Frequency and growth rate of the beam: mode for a finite-radius electron beam as

a function of kyc/Q.. The parameters are ny/n. = 0.1, E, = 1 keV, 7, = 2 m, and w,/Q. = 3.

Figure 5. Frequency and growth rate of the whistle mode for a finite-radius electron beam.

The parameters are the same as those for Figure 4. °
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Abstract

The full electromagnetic dispersion equation of a homogeneous beam and the
electrostatic dispersion equation of a finite-size electron beam are solved for
parameters relevant to DC electron beam experiments conducted from the
Space Shuttle. The numerical solutions of the homogeneous dispersion equa-
tion indicate that the electron beam mode with frequency w = kjjvy has large
growth rates over a wide range of frequencies and angles, whereas whistler
waves have small growth rates at frequencies near the electron cyclotron
frequency Q.. At oblique propagation and at low frequencies (w < 0.19,),
the beam mode is coupled to whistler waves and has a significant electro-
magnetic component. Because of the finite size effects, the electron beam
instability has a minimum growth rate at the electron cyclotron frequency.
Our results do not favor direct excitation of whistler waves in the ionosphere
through linear instabilities of keV electron beams. To explain whistler wave
emissions during the Shuttle electron beam expetiments, it is suggested that
the electron beam first excites broadband electrostatic waves, which are sub-
sequently converted to whistler waves at the beam edge.
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1 Introduction

Different types of waves have been observed in association with the DC elec-
tron beam emission experiments in the Spacelab 1 and Spacelab 2 missions.
During the Spacelab 1 mission, broadband emissions at frequencies less than
the electron cyclotron frequency (w < €2.) with both electric and rmagnetic
components were detected by wave instruments on board the Shuttle during
the firing of a 5 keV and 300 mA electron beam (Taylor et al., 1985). Dur-
ing the recent Spacelab 2 mission the Plasma Diagnostics Package (PDP)
performed a fly-around of the Shuttle at distances of up to 300 meters while
a DC electron beam with a beam energy of 1 keV and current of 50 mA
was being emitted from the Shuttle. The PDP detected broadband emis-
sions at w < . with both electric and magnetic components and a narrow
band electrostatic emission near the plasma frequency wp, (Gurnett et al.,
1986). The brradband emissions had a clear funnel shape in the frequency-
time spectrogram, similar to the observations of auroral hiss (Gurnett et al.,
1983). The broadband emission is believed to be caused by whistler-mode
emission from the beam propagating near the resonance cone.

Electron beams are known to radiate whistler waves through sponta-
neous emissions, but the predicted intensity is generally several orders of
magnitude smaller than those observed (Taylor and Shawhan, 1974; Far-
rell et al., 1986). We therefore examined the stimulated emission of waves
through instabilities in the whistler frequency range. Using the experimental
parameters, we solved both the general electromagnetic dispersion equation
for a homogeneous beam and an electrostatic dispersion equation for a finite-
size beam. As expected, the solutions indicate that the beam mode is much
more unstable than the whistler mode. A more surprising finding is that
the oblique beam mode has a significant electromagnetic component at low
frequencies (w < §2.). Based on the instability analysis, mechanisms that
cause artificial electron beams to emit whistler waves in the ionosphere are
suggested.
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2 Instabilities of a Homogeneous Beam

The electromagnetic dispersion equation for the homogeneous beam plasma
system is derived in a representation based on the electrostatic and elec-
tromagnetic potentials rather than the electric field. The potential rep-
resentation is useful for our purposes because it simplifies the separation
of the electrostatic and electromagnetic perturbations. Kinetic effects are
included since electron beams might be thermalized by beam plasma insta-
bilities after propagation. The dielectric tensor used in the calculation can
be transformed into the well known formula of Stix (1962) and is therefore
not given here.

The ambient plasma density n. at the Shuttle altitude is generally near
10%¢m=3 corresponding to a plasma frequency of about 2.85 MHz. Since
the electron cyclotron frequency is «bout 1.0 MHz in the ionosphere, we
chose the ratio wp./Q. = 3 in the calculation for simplicity. The two key
parameters in solving the dispersion equation are ny/N, the ratio of the
beam density ny to the total plasma density N, and V}/a, the ratio of beam
drift velocity V; to the beam thermal velocity a. The dispersion equation is
solved for the ratio of n,/N = 0.1 and V;/a = 10.

Figure 1 shows the normalized wave frequency w/2, and the normalized
growth rate v/, of the beam mode as a function of kc¢/fQ, for wave nor-
mal angle § = 0°, 30° and 60° (solid lines). The parameters n,/N = 0.1
and V3/a = 10 are used. The electron beam mode is unstable for a wide
frequency range from zero to w = 3.4(2,, slightly above the upper hybrid res-
onance frequency (3.292.). The maximum growth rate occurs at w = 2.69,
for § = 0°. Both the wave frequency and growth rate of the beam mode
decrease with 6.

The beam mode not only has a large growth rate but also has a group
velocity in the direction near the magnetic field. For 8§ = 30, the angle
between the group velocity and the magnetic field is found to be only about
5°. Therefore, the beam mode can grow to large amplitudes inside the
electron beam.

Figure 1 also shows the frequency and growth rate of whistler waves for
0 = 30° (dotted line). The whistler wave frequency is close to the beam mode
frequency for kc/Qe < 5. The growth rate of whistler instability is much
smaller than the beam mode instability (note that the whistler growth rate
has been multiplied by a factor of 100 in Figure 1). The instability occurs
at two frequencies, near 0.1 {2, and 0.85 2.. The growth rate at w = 0.19,
is very small (only about 0.000212,) and not presentable in the figure. The
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Cerenkov resonant energy increases with wave number k to a maximum near
ke/Q, = 5 and then decreases with k after ke¢/Q. > 5. An electron beam
with a beam energy of several keV can resonate with whistler waves at two
wave vectors (near 1 and 10 k¢/€,) and thus excite whistler waves at two
frequencies.

To determine whether the excited wave is electrostatic or electromag-
netic, we plot the ratio of the longitudinal electric field component Ey to
the total electric field Er (Figure 2). The ratio EL/ET is 1 for purely
electrostatic waves and 0 for purely electromagnetic waves. Figure 2 shows
that the beam mode is electrostatic for k¢/Q, > 3 and has a significant
transverse electric field component (E.L/Er = 0.6 for kc/Q. = 1). For
whistler waves at 8 = 30°, E/Er is about 0.4 at kc/Q.=1 and about 1 at
kc/Q. =10. Therefore, the unstable whistler waves become electrostatic for
ke/Q. > 10. Since the beam mode is generally believed to be electrostatic,
it is unexpected that the oblique propagating beam mode has a substantial
transverse electric field component at low frequencies. The bottom panel
of Figure 2 indicates that| the dispersion curves of the beam and whistler
modes cross each other at kc/fQ. = 1, suggesting that the electron beam
mode couples to whistler waves.

The frequency and growth rate of the beam mode are examined for
various values o f ny/N and vs/a. The growth rate of the beam mode
decreases as the beam density decreases. At sufficiently low density, the
beam mode ceases to exist and the instability occurs only at frequencies
close to the plasma frequency. The effect of increasing the beam thermal
velocity is similar to that of decreasing the beam density.
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3 Instability of a Finite-size Electron Beam

The electrostatic dispersion equation of a cold electron beam with a finite
radius injected along the magnetic field in a cold uniform plasma has been
derived (Le Queau et al., 1981). The electrostatic dispersion equation is

L) _ e BV W)

T = -
o(T) & g{MW)

(1)

where J, is the Bessel function of order n and H.(.l) is the Hankel function
of the first kind of order n. The Hankel function is defined in terms of the
Bessel function of the first kind J,, and second kind Y,, as H,(.‘) =Jn + 1Y,
The arguments T and U are defined as T = ki'a and U = k{*'a . Here a is
the beam radius; ki" and k3% are the effective perpendicular wave number

inside and outside the beam respectively. The following definitions are also
used:

Moo= ky(-dp/ent
kiut - k"(_eﬁut/etiut)%
mo 1 w:e 6“:‘
R oy s Y PROSY Y S
2 2
fn o= o e Own
L wt o (w-kyW)?
g = P(6=0)

eﬁ“' = eh"(&:O)

In the above equations, & is defined as n;/N. The equation of cfl" = 0 is the
electrostatic dispersion equation for a homogeneous beam plasma system.
Using the same parameters as the homogeneous beam, we solved Equa-
tion (1) numerically. The beam radius e is assumed to be 2.5 m, which is
reasonable for the Spacelab 2 experiment (Gurnett et al., 1986). Equation
(1) contains solutions for three modes: Cerenkov, cyclotronic, and surface
modes (Le Queau et al., 1981). Figure 3 shows that the growth rate for
the cyclotronic branch is quite large (7/Q2, = 0.25) and the growth rate
of the Cerenkov branch is about one third of the cyclotronic branch. The
surface branch has the smallest growth rate among the three branches. As
a comparison, the frequency and growth rate of the beam mode for the
homogeneous beam plasma system at & = 0° are also plotted in Figure 3




(dotted lines). The frequency of the Cerenkov branch is close to the beam
mode frequency. Note that the finite-size effects reduce the growth rate for
k”vb/w,,, <1

For a finite-size beam plasma system, the transverse wave numbers are
quantized. We found that the transverse wave length outside the beam
(27 /kS¥!) is about one hundred times the beam radius for the cyclotronic
branch. Due to lack of space, the results will be discussed separately.

The growth rate at frequencies below Q. is very small but interesting.
Figure 4, which presents the growth rate in the logarithm scale versus the
normalized frequency w/wp., shows the instability extending to frequencies
below ., = 0.33w,.. The growth rate has a minimum at w = €, and
increases with decreasing frequency to a local maximum around w = 0.25wp..
Although the normalized growth rate ¥ /w,. is only about 1073 for w < Q,,
the wave amplitude can still grow to twenty times in one milisecond.
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4 Discussion

The full electromagnetic dispersion equation is solved for parameters rele-
vant to electron beam experiments from the Space Shuttle. The numerical
solutions indicate instabilities for the electron beam and whistler modes.
The electron beam mode with frequency w = kyvy has large growth rates
over a wide range of frequencies and angles, whereas whistler waves have
small growth rates at frequencies near the electron cyclotron frequency. At
oblique propagation and at low frequencies (w < 0.1Q.), the beam mode
has a significant electromagnetic component. The dispersion curve for the
beam and whistler modes crosses each other, suggesting that the two modes
can be easily coupled.

The electromagnetic dispersion relation for a finite-size electron beam is
very difficult to solve. We have thus examined the finite-size beam effects in
the electrostatic limit. The numerical solutions of the finite-size beam dis-
persion equation confirm the solutions of electromagnetic dispersion relation
of a homogeneous beam, but also exhibit a new and interesting feature.

Our numerical solutions of the finite-size beam dispersion equation agree
with the work of Le Queau et al. (1981) when we use their parameters.
However, Le Queau et al. (1981) solved the dispersion equation only for fre-
quencies above the electron cyclotron frequency §1.. We obtained numerical
solutions below the electron cyclotron frequency and found that the instabil-
ity in fact extends to frequencies below ¢l with 4 minimum and negligible
growth rate at w = ,. This result may expla.ixﬁ the Spacelab 2 observa-
tions, which show no wave emission near . (see Figure 1 of Gurnett et al.,
1986). Since the beam mode of a homogeneous beam has a large growth
rate near w = §), (see Figure 3), the gap of wave emissions near 2. cannot
be interpreted without invoking finite-size effects.

The present study is motivated by new experimental results from Space-
lab 1 and 2 (Taylor et al., 1985; Gurnett et al., 1986). In particular, the
remote sub-satellite observations during the Spacelab 2 experiment indi-
cate broadband emissions at frequencies less than the electron cyclotron
frequency and narrow band emissions near the electron plasma frequency.
The broadband emissions below the electron cyclotron frequency are sug-
gested to be whistler waves propagating near the resonance cone (Gurnett
et al., 1986). Because the whistler mode instability occurs at oblique prop-
agation with a small growth rate, it is unlikely that the artificial electron
beams fired from the Space Shuttle excite whistler waves directly. However,
whistler waves can be generated by other nonlinear processes such as para-
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metric decay of the beam mode into the whistler mode. Beating of two high
frequency plasma waves can also produce electrostatic waves at frequencies
below the electron cyclotron frequency (La Queau et al. , 1981). The present
work suggests another mechanism of generating whistler waves by the di-
rect coupling of the beam and whistler modes. Mode conversion is known
to occur easily when the medium has a density gradient and the dispersion
curves of two modes are crossed (Stix, 1965). Therefore, our interpretation
of whistler wave emissions by artificial electron beams is that the beam mode
at frequencies below the electron cyclotron frequency is converted into the
whistler mode at the edge of the electron beam.
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Figure Captions

Figure 1 Frequency and growth rate of the electron beam for § = 0°,30°
and 60° as a function of kc/, (solid lines). The frequency and growth
rate of whistler waves are also plotted as dotted curves for comparison.

Figure 2 The ratio of the longitudinal to the transverse electric field versus

ke/Q. (top panel). The dispersion curves of the beam and whistler
modes are plotted in the bottom panel.

Figure 3 Frequency and growth rate of plasma instabilities of a finite-size
elelctron beam as a function of k"vb/Qpe. The curves denoted by
1 are the Cerenkov mode. The surface mode is represented by the
curves with the numeral 2 and the cyclotronic mode is represented
by the curves with the numeral 3. The frequency and growth rate of

the electron beam mode for a homogeneous beam are also plotted as
dotted lines.

Figure 4 Normalized growth rate of a finite-size beam in the logarithm
scale as a function of the normalized frequency w/wp,. The figure
shows that the growth rate has a minimum at the electron cyclotron
frequency and the instability extends to frequencies below the electron
cyclotron frequency.
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