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1. Introduction

Recently aIctivc ecjperiiuients from rockets and~ the Sp)ace Shuttle have been conducted to

,tll1(lN I eaiiip pg tn Sjparccraft chia rgiiig. istaIilIt iCS. waVe enu11ssion. and other space

)lasinla 1)lieIoil(IUia. rhetrc eXlperiints indlicatc thlat artificial electron beamis wvith energy of

5VIii kvl\ and curren'fts ab~out 100 niA produce stroing plasnia heating and electromagnetic

radliation in the whistler frequency range. Although beam-plasm-a interactions for a finite-

rdhius hea i ssr ii are Wvell known for electrostatic waves. elect romiagnet ic instabilities of

a finite-radius heaii s tu have not been extensively studied because of their complexity.

Ini this study wve focused oni the electromagnetic instabilities of a finite-radius electron

beam in at neutralizing background. This report gives the derivation of the electromiagnetic

-- (i'spersioli equation for the finite-radius beam system and documents the numerical code

delCloped for solving the disp~ersion eqluation. Appendix A presents a study of electrostatic

-instabilities, of a finlite-radiuis beain systemn.



II. Background

Electron beam injection experiments have been conducted from rockets and the Space

Shuttle to study beam propagation, instabilities, wave emission, and other space plasma

phenomena in the ionosphere [Winkler, 1980; Grandel, 1982; Shawhan et al., 1984; Obayashi

et al., 1984]. Experiments have shown that electron beams can generate intense waves of

a broad frequency range. For example, during the Spacelab 1 mission, electron beams,

which were fired from the Shuttle with a beam energy up to 8 keV and a beani current up

to 300 mA, produced broadband emissions at frequencies less than the electron cyclotron

frequency (w < f,) with both electric and magnetic components [Bvghin et al., 1984; Taylor

et al., 1985]. During the Spacelab 2 mission, the Plasma Diagnostics Package (PDP), flying

around the Shuttle at distances of up to 300 meters, again detected broadband emissions

from fQ, at about 1 Mz down to 30 kHz while the shuttle emitted an electron beam with a

beam energy of 1 ke, and current of 50 mA [Gurnett et al., 1986]. With both electric and

magnetic components, the broadband emissions bad a clear funnel shape in the frequency-

time spectrogram similar to the auroral hiss reported by Gurnett rt al. [1983]. Using

ray-tracing argument, Gurnett et al. [1986] suggested that the broadband emissions are

whistler mode radiation from the electron beam.

Several studies have attempted to explain how to produce the roadband whistle radi-

ation by a several keV electron bearn. By calculating the raliated power, Farrell ,t al.

[1988] proposed that the electron beani generated the radiation through a coherent process.

since the measured wave power is several orders higher than the power expected from in-

coherent Cerenkov radiation. They further suggested that electron hunches created by an

electrostatic beam-plasma instability radiate tile whistle mode noise. However, they have

not shown how the electron beam can excite the electrostatic beai-plasma instability below

the cyclotron frequency.

Solving the electrostatic dispersion equation of a finite-size beam for parameters relevant

to the Spacelab experiments, we previously found that the beam-plasma instability can

generate broadband electrostatic beam mode with frequencies below the electron cyclotron

frequency [Lin and Wong, 1986]. The maxinmin growth rate of the bean mode in this
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frequency range is about 10- wp,. To explain whistler wave emissions, we suggested that

the broadband electrostatic waves convert to whistler waves at the electron beam edge. Re-

cently, a computer simulation using an electromagnetic particle code showed that a spatially

confined thin electron beam can directly excite whistle mode waves near the resonance cone

through Landau resonance [Oinura and Matsumoto, 1988]. This simulation also suggested

- that bunched electrons could not radiate oblique whistler waves because large amplitude

electrostatic waves destroy the bunching in a short time during the quasilinear phase.

The objective of this study is to investigate the various wave modes that can be excited

by a finite-radius electron beam, with an emphasis on wave frequencies below the electron

cyclotron frequency. To achieve this objective, we solved the electromagnetic dispersion

equation of a finite-radius beani immersed in a uniform background plasma. For compari-

son purposes, we also solved the dispersion equation of a homogeneous beam. The numerical

solutions indicate that a keV electron beam can drive the beam and whistler modes unsta-

ble, regardless of whether the beam is homogeneous or has a finite-radius. Although the

beam mode is excited for frequencies up to the electron plhtsma frequency, only waves with

frequencies below the electron cyclotron frequency can propagate outside the beam. The

parallel wavenumbers of the whistler waves excited by the finite-radius and the homogenous

electron beams are similar, suggesting that the finite-radius electron beam also excites the

whistler waves near the resonance cone. These results explain that a very narrow electron

beam, such as those of the Spacelab experiments, can still excite whistler waves in the

resonance cone.

-3-



III. Formulation

A. Basic Equations

This section describes the derivation of the dispersion equation of a finite-radius electron

bean in a uniform cold background plasma. We assume that the ambient magnetic field

BO = Bo0 i is in the z-direction and that the electron beam propagates along the magnetic

field.

We consider an electron beam with a density nb and a radius r, centered at the origin

r = 0. We assume the background electrons have a density n, outside the beam and nc -

(n. - nb) inside the beam so that the background ions distribute uniformly, as illustrated

in Figure 1. The relevant equations are the fluid equations
0 nj

+ V.(njvj)=0 (1)

+ Vj. vg = -- ±(E + V (g o + B)) (2)

and the Maxwell equations

i oaB
Vx = (3)

x - LtE 4r7r
c Ot c (4)

3

V.E = 41r Zjnj (5)

V. = 0 (6)

where nj and g are the number density and velocity of species j, respectively. Here the

index j = b, p refers to the beam and background electrons, respectively. For the background

electrons, VoP = 0.

The electromagnetic dispersion equation of a finite-radius beam has been derived by

Shoucri and Kitsenko [1968]. Here, we briefly outline the procedure for obtaining the
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dispersion equation. To linearize (1)-(6), we assume

--" 1 B= ,o + 6f

E= 6E

n = nj(r)

where the zeroth order velocity vj is constant and in the magnetic field direction. For the

background electrons, lKp = 0. In the derivation given below, we define Qe = (IejBo)/(mec),

and = (4irnje2 )/rn,. Using the cylindrical coordinates, we represent the perturbed

quantities 6f as

bf = 6f(r)ei(kI
z - /tm 0)

where k1l is the parallel wave number, 0 is the azimuthal angle, and m is an integer. Equa-

tions (1)-(2) then become

i(w,- kj),,oj)biij -+ ik.,, + 12--7-6v e + 6 jr - (7)
r ar +?r Or

-i(w - kjjv', j)it'j = 1 r V 0,jbj B+-6' 8

-i(wO - k11v, 1)6v,9 = - [6'to + Voibir - I 6t;B 0 ] (9)e-
- kv,)b , = ek, (10)m

From (3), we obtain

_ fB, - L, bjEo (11)

C WW

bB .JI6tr + i --6E (12)

Substituting (11) and (12) into (7)-(10), we derive the perturbed velocity quantities as

b,,ir = RjrbEr + Rjob6Eo 4 RjtE, (13)

-5-



bvie = ej,6E, + )jeEe + O.E: (14)

where

ze ( - klivoi) 2

mw (u - kllvoj) 2 - Q2

- eu? (w - kllvo,)
mw (, - kllvoj )2 - Q2

-j -e k11 03) -
2 (u; - kilt')- -l -J

mw (w- kllvoj)2 - Q2 )Or r

e0T = Rj

Oje =Rj
ze 1- + ( )

rnw; (w - klltoj )2 - Q2 [- ar r
i 1

rn w - klloyo

The perturbed current density bU is defined as

6j =- -e(6i,,o + nt) (16)

= .6E (17)

where F is the conductivity tensor. The dielectric tensor is

47rS= 5 - .- , (18)

Substituting (7), (13)-(15) into (18), we get the expression for the dielectric components

Err = W2 ( - k1l-,o) 2

ee= - PQj
LO' (w - k11v,,o) 2 - (F1 ( 0  - 8 mn(21

3= (w-- [(w k _v)-
w2 (w - kllvoj) 2 - "'2 Or r

-6-



-Oj [(W - k11,,o) a( 2 ,) + 2

W(w-k 11u03 )2 - Q2 F r Or PI rP

2 n -2

' 2 2

E, = 1 - _ Ai-'o, )2 2[(w - k 1,, 3 )2 - Q2 ]

1 a 2 0j + f 20 mf2 1021
- O o ' or r r - kit,,) P -r (w - kulv,) r O -r a 'r P1

f-00 = Era

ce = Err

= O -i V QL k1l r

4w 2  A-, - j) Q ~

- B. Normal Components

Suhli and Walker (1954) had expressed the system of equations in terms of the tangential

compounds of the electric and magnetic fields bt. and 6bl. For the axially symmetric

plasma oscillations in a cylindrical geometry, we express below the normal components of

6kE and bb through bk- and 6J 2 .

We first linearize (4) and (6) to obtain
I .M - .L

-6B. ik116B9 = - Z Er3.E. (19)
r C

3

0k1B 6B, = -z--Ze e,6E, (20)
ikl6B Or Z c

1 (" . 6, (21)
r " r c

1 (rbiB.) + i 6B, + ikl16B, = 0 (22)
rO-7

l I I I I1 l IIIl -7-



Substituting (11) and (12) into (19) and (20), we get

(23)

= -9 r (b z

k 'E0, + 8 B

Solving (23), we derive

6E - [(XZI - YZ 2 )6, + (iX m + Y )ABz
XC2 + Y2 r O

1 M - aX 2 + Y2 ( + XZ2), +( - X )b1,

where

X = -- +Irr IL
C W

= WY - ---- rO

C
kc c? kl1c 0

Z, ,fr + ?I

C w r

Given biE and big, 6br and 6Be are deduced from (11) and (12)

6 B = --_ic 6E. - k11 Eoe

To make the derivation of the system of equations easier, we rewrite the expressions of

64/, and 6/E using the following definitions:

a = 1-Z w - kiiV j)2

J 2( k;)t',, j)2 - Q2
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b = -~j~W23kjjv 01(w - kjlv 0j)
Ld2 . - k11v01,)

2 - l

( W- )2 W' [ ( u - k lv )2 J

22 =a( -w[(wj) D21 03
2

(W k 11v0j )

d = Z w[(w - kllzi. )2 Q2(24

fW Sl= -W~kltoj)

W2( - klivo3 )2 -Q2

From these definitions wec get

C

Y=-d
C

where AT11 kllc/w. The expressions for bE,. and bE6 then become

(9. -A -E L--~ I0 L (25)
kllarki rkil ki r

= -t m + /L- -z I-M t -i"j +kflb, (26)

where

r ( k2) 2 _d 2

(b + NI)+ f (a - Nil)
r

d
r N 1
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We can rewrite 5b.6 using (26), as

=N 1(61, x 6E±L) + x V4 .6E x

+NI( k ) kx tiNv

Equations (25) and (26) can be combined into

.5E± = -AV±6E, + x V4.6E,) + k11 B

+ elX V B (28)

k-10



IV. Dispersion Equation

A. System of Equations

We now.' proceed to derive the equations from the tangential components of Maxwell

Equations

= × VXbkEj. (29)
U)

x , .= D

- ZT6FT + f'e6E9 + EZbE, (30)

Taking the curl of (29), we deduce

LA.6E + i(A/JB! - 6Bz (31)
N11

10 0 a m2

where A_. is the Laplacian operator A_. 5 _--r- --

Taking the curl of (30) and using (28), we deduce (30) to

[-(NI + b)(A + 1) + C2].AlE, + 1 b) .6I3

= kl (a+b+c,)6.E-y Bz] (32)

After rewriting (31) and (32), the system of equations is

AjiE, + C6E,. + £6B = 0 (33)

Aj6B- +P6E, + Q6B, = 0 (34)

where

A(a - N1)(a + h + c)

11 Z

N- Z



p - Ni,-(a+b+c)

Q k(a - N)Z + fY + (b + NI)d(f- d) +C 2

NI Z

and

Y = (b+N1I)d+(a-N1)f

Z = (b+iN1 )(a+b)-c 2(a-Nj)

We next introduce two new variables %P1 and %P 2

%P, = 6E, +IA iA6B (35)

'P2 = 6E,+ZiA2A6B2  (36)

where A1 and A2 are the roots of the quadratic equation

A2 + FA- 1 =0 (37)

The coefficient F is given as

F - {N 14(c - C2) - N2,[a(c, + b - 2c2) + b + (d - f)21

-b(d - f) 2 + (a + b)(ab + f2) - c2(a2 -d2)1/NI,

/(a + b + c)[(b + N)d + f(a- N2) (38)

The coefficient A is determined from the condition that

A2p = -£

Hence

A=- c (39)

-12-



Multiplying (33) by iAA and adding it to (34), we obtain

V=T, + T, = 0 (40)

V±T'2 +T2 T = 0 (41)

with

T2 = IC + iAjAP (42)

TT2 = IC + iA 2AP. (43)

Using (37), (42) and (43), one can !.how that T satisifies the equation

(b + N)(a + b) - (a - N)C 2T _ T 2-2 {-N(2a + 2b + cl + c2)

+ N,[a(2a + b + a + 2c 2) - b2 - (d - f) ] + (a + b)(ab + f 2 )

- b(d-f) 2 -c 2(a 2 -d 2 )} + K(a+b+c)(a- N)-d 2 =0 (44)

where Ko = w/c. In the case of an unbounded plasma and beam, T corresponds to a normal

component of the wave vector K± and to the dispersion equation for an homogenous plasma

and beam.

The components 6E, and bB, are related to the functions Wi and T 2 by

_A 2'P1 - A¢

6EZ = A2 -A 1  (45)A2 - A,

6B. - F2  (46)A A2 - T1

For axially symmetric oscillations, a solution of (40) and (41) in general has the form

T 1,2 = SI,2Jo(TI, 2r) + Gi, 2Yo(Ti, 2r) (47)

where Jo and Y are the Bessel and Neumann functions, respectively. S 1,2 and G1 ,2 are

constants.

-13-



B. Boundary Conditions

The boundary conditions are obtained by integrating Maxwell equations across the beam-

plasma interface from ra - e to ra + e with e -+ 0. The boundary conditions are

(6E ) = 0

(6E9) = 0

(bE,) = 0
(bB,) =(_ 2 b,)-(b - c2 O)(8

(6B) = IIE (48)

i WP~j QkjIVoj E
- 'w(w kj v,,)[(w - kjjvj) 2 - P-'2

- s( _ k j S,)( k,,o) & yoe

The brackets 0 denote the difference in the values across the beam surface. For example,

(bE,) = 6E~'=r,*+o - 6Elr=r._.o

The superscripts 0 and I mean the quantity is evaluated outside and inside the beam,

respectively. The boundary conditions indicate that bE,, bE and 6B, are continuous

at the beam surface but that 6Be is not. Using (45) and (46), we write the boundary

conditions in terms of the functions ' 1 and %P2. The first two boundary conditions mean

that the tangential components of the electric fields are continuous at the interface.

A%I AI*2A2 - A-

K. (102__ (49)
{(A 2 -AI)A T2 4r T Or) =i WPI - %P ) 0

A A2-A = 0
iKo A2 0 O I A, 0 2

((A 2 - AI)A2 (T1o2Or T22o

-14-



Parameters are different inside and outside the beam because density and beam velocity

- are different (see Figure 1).

C. Dispersion Equation

Because electric and magnetic fields should be finite on the Z axis, the functions TI',

inside the beam should be

,= SL.2 Jm (T' ,2r). (50)

The fields outside the beam should be free propagating waves at a large distance (r -- oc):

therefore, the functions %°2 outside the beam are

10,, M°H .TI2r )  (51)
~1,2 = G0 ff(i (Tr (1

where H,)(T°2 r) is the mth order Hankel function of the first kind. S, 2 and G°
2 are

constants.

The boundary conditions give four equations for the four constants S, 2 and G°2. Requir-

ing the determinant of these equations to be zero, we obtain the dispersion equation

D 1i D 12 D 13 D14

D21 D 22 D 23 D24 =0 (52)

D31 D3 2 D33 D34

D41 D 42 D 43 D44

where

i = AJm(Tl'r)
D12 = A'J,,(Tr)

D13 = A0H(1 )(2'r )

D14 = AH('.)(T2r)

D21 = Jm(T1 r)/A'

-15-



D22 = J.(T2 r)/A'

D23 = H')( r)/A0

D 24 = H)( 72r)/A °

D 31 = q'T 1J.(T1r) - pJm,.(Tr)

D2 r P2

= q'T J.(T 'r) - Mp~ H( r)

q2 ( r

D 34 = rH.'(72r) - -p°H.)(rr)
rD4 =gTJ' (T~r) + M wj.(T11,')

D42 = gT2J'(Tj2r) + m wfJ.(T12r)

7

--cA ,

=r) + -mwOH()(Tj r)

D44 N0)r+2~ + Nl)(a r I) + M' -H.[(a -Nl) -dlA,

r

,The dispersion equation (52) contains the variables p, q,, gi, and w, which are defined as

(a - N i)(b + N121) + fd]A, 2 - N 11d/A
Aa (a- N2)2 -d 2

q2,2 = cAT o

912= kjjwAj, 2
gl,2 A2T21

(bW+ ,2=) + 2f(b + N )(a -) + f 2 .d - 1(a - N i2)2  - d i A
WI,2 = (a -N1? 2 -N 1

1(a - N,)(b +N11) + fd 12-d 
1

A (az-N,2) 2 -d 2

where

,W
2(w -k 11v03)((w - kjv2- f2

In general, the variables depend on nj and voj and thus vary from inside the beam to

-16-



outside the beam. We thus use the superscripts I and 0 to distinguish their values inside

and outside the beam, respectively, in Section II.

-17-



V. Description of Numerical Code

This section describes the numerical code EMFBP that solves the dispersion equation

(52). EMFBP contains the main program and the five subroutines FCN, FSBELEC, JHC,

ROOT and DFCN. Although the dispersion equation is quite complicated and requires

double precision to evaluate, the structure of this program is simple. The program computes

the complex roots of the dispersion equation, which is a complex algebra equation, for given

input parameters. The root-solving routine iterates until the error in solving the dispersion

equation is less than a prescribed value, 10'. The program then outputs the root for each

k value.

A. Main Program

The main program primarily reads the input variables, which are listed below:

Table 1. List of Input Variables

variable typical

name definition value

WR2 wpe/ i 3

DR rb/n, 0.1

VB1 V° /C 0
I I

VB2 v;; / c 0

VBB voblc 0

RBA wpera/vob 0.111

KI kjlc/S1 40

DK AklC/0 1

NK number of k mode 10

GR real (Z) 0.33

GI Imaginary (Z) 0.05

The variable WR2 is the ratio of the electron plasma frequency to the electron gyrofrequency.
-18-



As shown in the density model, the variable DR is the ratio of the beam density to the

-. background density outside the beam. The variables VB1 and VB2 are the drift velocities

of the background electrons outside and inside the beam, respectively. In this study, we

- have assumed VB1 and VB2 to be zero. The variable VBB is the beam velocity in the unit

of speed of light. For a 1 keV electron beam, VBB is 0.01. The beam radius defines the

normalized variable RBA; for a beam radius of 2 m and a beam energy of 1 keV, RBA is

0.0111. The main program also reads the initial value of kjlc/fl for solving the dispersion

-- equation. DK is the increment in k1c/fl and NK is the number of times the program solves

the dispersion equation. The program requires an initial guess of the root Z, where Z is

- w/Q. The input variables are contained in a common block /MON/ for passing arguments

to other subroutines.

After reading the input variables, the main program calls the subroutine ROOTF, which

uses Muller's method for solving a complex algebra equation. In ROOTF, the subroutine

calls DFCN for finding the roots and FCN for computing the dispersion equation (52).

B. Computation of the Dispersion Equation

Complex function FCN*16(Z) function computes the dispersion equation (52) for a given

Z and returns the result in a complex value. FCN calls two subroutines FSBELEC and

JHC. The subroutine FSBELEC computes the electron response terms a, b, cl, c2, d, and

f, given in Section III A, and 1, given in Section IV C.

The subroutine JHC computes the mth order Bessel function J,,,(Z) and Hankel function

of the first kind HQ)(Z). The subroutine JHC has input arguments Z and m, where Z is

complex and m is integer. The subroutine computes J,,(Z) and H2)(Z) according to the

expressions given in Handbook of Mathematical Functions [Abramowitz and Segun, 1968].

. For the absolute value of Z less than 15, the routine uses the series expansion to compute

J,n(Z) and H()(Z). For the absolute value of Z greater than 15, the routine uses Hankel's

asymptotic expansion.
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VI. Numerical Results

This section describes the numerical solutions of the dispersion equation for a homoge-

neous beam and for a finite-radius beam. We assumed that the cold electron beam has

a beam energy of 1 keV and a density 1% of the ambient density. nb/(n, + nb) = 0.01.

This assumption was based on the Spacelab 2 experiment parameters, which had a 1-keV.

50-mA electron beam [Gurnett et al., 1986]. The ambient plasma density n, at the Shuttle

altitude is generally near 10' cm - 3 , corresponding to a plasma frequency of 2.85 MHz. Since

the Spacelab 2 measured the electron plasma waves near 3 MHz, we assumed the electron

plasma frequency to be 3 MHz in solving the dispersion equations. We also used we/0e = 3

because the electron cyclotron frequency is about 1 MHz. In solving the dispersion equation

of a finite-radius beam, we assumed the beam radius to be 2.5 m, according to Gurnett et

al. [1986].

Figs. 2 and 3 give the solutions of the dispersion equation for the homogeneous beam.

Fig. 2 shows the wave frequency w, as a function of kc/Q, for various wave normal angles.

The beam plasma mode has frequencies linearly proportional to kc/f,. intersecting the

plasma frequency at we/1e = 3, as indicated on the vertical axis. The dashed lines in

Fig. 2 represent the whistle mode, which has frequencies approaching %1. cos 0. Fig. 3 gives

the growth rate wi for both the beam plasma and whistler modes. As expected, the beam

plasma mode has a large growth rate, which decreases with angle (solid lines). For example,

the maximum value of w,/e is 0.4 for 0 = 0* and 0.25 for 0 = 600. Note that the growth

rate of the beam plasma mode at large angles has dropped sharply at certain kc/Q,. For

example, wi/S), for 0 = 60* drops below 10- 2 for kc/Q? between 20 and 32, corresponding

to wave frequencies near the electron cyclotron frequency. The decrease in growth rate is

due to the cyclotron resonance interactions of the electron beam. Fig. 3 also shows that the

cold electron beam can excite whistler waves at large normal angles with smaller growth

rates (dashed lines). From Figs. 2 and 3, we note that the frequency of unstable whistler

waves occurs at fl, cos 8 where the frequency is insensitive to k, suggesting that the electron

beam excites the whistler mode at the resonance cone. Fig. 3 indicates that the growth rate

of the whistler mode is about 0.025fle for 8 = 60* and 0.0120,) for 8 = 30*. For 8 = 60", this
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corresponds to an e-folding time of approximately 6 ps. Although the temporal growth rate

of the whistler wave is small in comparison with the beam mode, the spatial amplification

of the whistler wave can be significant because of its small group velocity at the resonance

cone.

Figs. 4 and 5 give the solutions of the dispersion equation of the finite-radius beam. In

solving (52), we restrict our attention to the axially symmetric case (i.e., m = 0) only.

Since we are mainly interested in waves with frequencies below %, we have neglected the

cyclotronic mode, which has been discussed previously by Le Queau et al. [1981]. Because

the perpendicular wavenumber is no longer a constant, these figures plot the frequency

and growth rate versus the normalized parallel wavenumber kllc/!Q. Like the homogeneous

beam case. the finite-radius electron beam is unstable to the beam plasma mode with

wave frequency w,, kllvb (Fig. 4). The growth rate is also large when kjC/c1Q > 20,

which corresponds to Wr/Q > 1. However, except near the electron plasma frequency, the

solutions indicate that the argument of the Hankel function for the beam mode has its

imaginary part larger than the real part (1lin(Tr)l > (Re(Tr)() when w,/fQ > 1 (Fig.

4). This means that the waves with frequencies Q, < w < ,o, are radially confined inside

the beam. The reason for the confinement is that the ambient plasma outside the bean

does not support a normal mode for Q, < w < u.,. For , < ,. the beam mode has a

smaller growth rate about 0.012Q,, but the argument of the Hankel function has a larger

real part than imaginary part. Therefore. the beam mode excited with frequ encies below

9, can propagate away from the beam because the ambient plasma has the whistler mode

as its normal mode. The drop in the growth rate at the cyclotron frequency is due to the

cyclotron resonance interactions of the electron beam, similar to the homogeneous beam

case.

Besides the beam mode, (52) also has solutions for the whistler mode shown in Fig. 5.

This figure indicates that the frequency approaches Q, for large kjjc/1Q,. The solutions for

w, /0, < 0.02 are near the lower hybrid frequency and thus are not accurate because we have

neglected the ion contributions in (52). Although the real frequency appears as a single

curve, we have actually obtained .,v.ral unstallc b,,,iches. all with very close frequencies
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but different growth rates. Fig. 2 indicates that the whistler mode for the homogeneous

beam has a frequency for each angle. Therefore, at a given parallel wavenumber, the whistler

mode has a continuous frequency spectrum as the perpendicular wavenumber varies. For

a finite-radius beam, the perpendicular wavelength inside the beam is quantized and thus

the whistler mode has a set of discrete frequencies as shown in Fig. 5. We have plotted

two branches with the largest growth rates, which are smaller than the growth rates of the

beam mode.

For the finite-radius beam case, one cannot easily determine whether the electron beam

excites whistler waves at the resonance cone, since the perpendicular normal vector is not

constant. However, we note that kjjc/fQe is the sane for the finite-radius and homogeneous

beams cases. Fig. 2 indicates that the homogeneous beam excites whistler waves at kllc/Q, =

24 for kc/Ql, = 48 and 9 = 600, whereas the finite-radius beam excites whistler waves for

kllcIQe ranging from 18 to 25, according to Fig. 5. The parallel wavelength, therefore,

suggests that the finite-radius beam also excites whistler waves near the resonance cone.
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VII. Summary

Our numerical calculations indicate that the keV electron beam injected from the Shuttle

with a iarrow radius can directly excite whistler waves propagating at the resonance cone.

This result thus supports the work of Omura and Matsumoto [1988], which showed the

direct excitation of whistler waves by using computer simulations. Although the beam

mode is excited for frequencies up to the electron plasma frequency. only the waves below

the electron cyclotron frequency can propagate outside the beam. As suggested by Farrell et

al. [1988], the electrostatic waves of the beam mode at the whistler frequencies could bunch

electrons, which then radiate whistler waves. However, one cannot rule out the possibility

of mode conversion at the beam edge, as proposed by Lin and Wong [1986]. Electrostatic

waves of the beam mode could convert into whistler waves at the beam edge due to density

discontinuity and propagate away from the beam. Future studies are required to resolve

these questions.

-23-



References

Beghin, C., J. P. Lebreton, B. N. Maehlum, J. Troim, P. Ingsoy, and J. L. Michau, Phe-

nomena induced by charged particle beams, Science, 225, 188. 1984.

Farrell, W. M., D. A. Gurnett, P. M. Banks, R. I. Bush, and W. J. Raitt, An analysis of

whistler mode radiation from the Spacelab 2 electron beam, J. Geophys. Res., 93. 153,

1988.

Grandal, B. (Ed.), Artificial Particle Beams in Space Plasma Studies. NATO Adv. Study

Intrum. Set., Ser. B, 79, 704 pp., 1982.

Gurnett, D. A., S. D. Shawhan, and R. R. Shaw, Auroral hiss, Z mode radiation and auroral

kilometric radiation in the polar magnetosphere: DE-1 observations, J. Geophys. Res.,

88, 329, 1983.

Gurnett, D. A., W. S. Kurth, T. Steinberg, P. M. Banks, R. I. Bush, and W. J. Raitt,

Whistler-mode radiation from the Spacelab-2 electron beam. Geophys. Res. Lett., 13,

225, 1986.

Le Queau, D., R. Pellat, and A. Saint Marc, Electrostatic instabilities of a finite electron

beam propagating in a cold magnetized plasma, Phy. Rev., A, 24, 448, 1981.

Lin, C. S., and H. K. Wong, Plasma instabilities of artificial electron beams in the iono-

sphere, SwRI Preprint, 1986. GL-TR-89-0121 (page 35)

Montgomery, D. C., and D. A. Tidman, Plasma Kinetic Theory. McGraw-Hill, New York.

1964.

Obayashi, T., N. Kawashima, K. Kuriki, M. Nagatomo, K. Ninomiya, S. Sasaki, M. Yanag-

isawa, I. Kudo, M. Ejiri, W. T. Roberts, C. R. Chappell, D. L. Reasoner, J. Burch. W.

W. L. Taylor, P. M. Banks, P. R. Williamson, and 0. K. Garriott, Space experiments

with particle accelerators, Science, 225, 195. 1984.

Omura, Y., and H. Matsumoto, Computer experiments of whistler and plasma wave emis-

sions for Spacelab-2 electron beam, Geophys. Res. Lett., 15, 319, 1988.

Shawhan, S. D., G. B. Murphy, P. M. Banks, P. R. Williamson and W. J. Raitt, Wave

emissions from dc and modulated electron beams on STS-3, Radio Sci., 19, 471, 1984.

-24-



Shoucri, M. M., and A. B. Kitsenko, Oscillations of bounded beam-plasma systems in

- - cylindrical geometry, Plaqma Phys., 10, 699, 1968.

Taylor, W. WV. L., T. Obayashi, N. Kawashima, S. Sasaki, M. Yanagisawa, J. L. Burch,

D. L. Reasoner. and W. T. Roberts, Wave-particle interactions induced by SEPAC on

Spacelab-1: wave observations. Radio Sci., 20, 486, 1985.

- Winckler, J. R., The application of artificial electron beams to magnetospheric research,

Rev. Geophy.,.. 18, 659. 19S0.

-25-



Figure Captions

Figure 1. Physical configuration of a finite-radius electron beam immersed in a uniform

plasma.

Figure 2. Frequency of the beam mode (solid curve) and the whistler mode (dashed curve)

at a given wave normal angle 0 as a function of kc/C4.

Figure 3. Growth rate of the beam mode (solid curve) and the whistler mode (dashed

curve) at a given wave normal angle 0.

Figure 4. Frequency and growth rate of the beam mode for a finite-radius electron beam as

a function of kjfC/e-. The parameters are flb/nc = 0.1, Eb = 1 keV, ra = 2 m, and w,/fl = 3.

Figure 5. Frequency and growth rate of the whistle mode for a finite-radius electron beam.

The parameters are the same as those for Figure 4.
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Abstract

The full electromagnetic dispersion equation of a homogeneous beam and the
electrostatic dispersion equation of a finite-size electron beam are solved for
parameters relevant to DC electron beam experiments conducted from the
Space Shuttle. The numerical solutions of the homogeneous dispersion equa-
tion indicate that the electron beam mode with frequency w = kllvb has large
growth rates over a wide range of frequencies and angles, whereas whistler
waves have small growth rates at frequencies near the electron cyclotron
frequency fte. At oblique propagation and at low frequencies (w < 0.10.),
the beam mode is coupled to whistler waves and has a significant electro-
magnetic component. Because of the finite size effects, the electron beam
instability has a minimum growth rate at the electron cyclotron frequency.
Our results do not favor direct excitation of whistler waves in the ionosphere
through linear instabilities of keV electron beamb. To explain whistler wave
emissions during the Shuttle electron beam experiments, it is suggested that
the electron beam first excites broadband electrostatic waves, which are sub-
sequently converted to whistler waves at the beam edge.
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1 Introduction

Different types of waves have been observed in association with the DC elec-
tron beam emission experiments in the Spacelab I and Spacelab 2 missions.
During the Spacelab I mission, broadband emissions at frequencies less than
the electron cyclotron frequency (w < Qe) with both electric and ragnetic
components were detected by wave instruments on board the Shuttle during
the firing of a 5 keV and 300 mA electron beam (Taylor et al., 1985). Dur-
ing the recent Spacelab 2 mission the Plasma Diagnostics Package (PDP)
performed a fly-around of the Shuttle at distances of up to 300 meters while
a DC electron beam with a beam energy of 1 keV and current of 50 mA
was being emitted from the Shuttle. The PDP detected broadband emis-
sions at w < ie with both electric and magnetic components and a narrow
band electrostatic emission near the plasma frequency wp, (Gurnett et al.,
1986). The breadband emissions had a clear funnel shape in the frequency-
time spectrogram, similar to the observations of auroral hiss (Gurnett et al.,
1983). The broadband emission is believed to be caused by whistler-mode
emission from the beam propagating near the resonance cone.

Electron beams are known to radiate whistler waves through sponta-
neous emissions, but the predicted intensity is generally several orders of
magnitude smaller than those observed (Taylor and Shawhan, 1974; Far-
rell et al., 1986). We therefore examined the stimulated emission of waves
through instabilities in the whistler frequency range. Using the experimental
parameters, we solved both the general electromagnetic dispersion equation
for a homogeneous beam and an electrostatic dispersion equation for a finite-
size beam. As expected, the solutions indicate that the beam mode is much
more unstable than the whistler mode. A more surprising finding is that
the oblique beam mode has a significant electromagnetic component at low
frequencies (w < ie). Based on the instability analysis, mechanisms that
cause artificial electron beams to emit whistler waves in the ionosphere are
suggested.
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2 Instabilities of a Homogeneous Beam

The electromagnetic dispersion equation for the homogeneous beam plasma
system is derived in a representation based on the electrostatic and elec-
tromagnetic potentials rather than the electric field. The potential rep-
resentation is useful for our purposes because it simplifies the separation
of the electrostatic and electromagnetic perturbations. Kinetic effects are
included since electron beams might be thermalized by beam plasma insta-
bilities after propagation. The dielectric tensor used in the calculation can
be transformed into the well known formula of Stix (1962) and is therefore
not given here.

The ambient plasma density n, at the Shuttle altitude is generally near
10 5 cm- 3 corresponding to a plasma frequency of about 2.85 MHz. Since
the electron cyclotron frequency is k.bout 1.0 MHz in the ionosphere, we
chose the ratio w,1/fe = 3 in the calculation for simplicity. The two key
parameters in solving the dispersion equation are nb/N, the ratio of the
beam density nb to the total plasma density N, and Vb/a, the ratio of beam
drift velocity Vb to the beam thermal velocity a. The dispersion equation is
solved for the ratio of nb/N = 0.1 and Vb/a = 10.

Figure 1 shows the normalized wave frequency w/fle and the normalized
growth rate -7/fle of the beam mode as a function of kc/fl, for wave nor-
mal angle 0 - 00, 300 and 600 (solid lines). The parameters nb/N = 0.1
and Vb/a = 10 are used. The electron beam mode is unstable for a wide
frequency range from zero to w = 3.4f ., slightly above the upper hybrid res-
onance frequency (3.20,). The maximum growth rate occurs at w = 2.6fl'
for 9 = 00. Both the wave frequency and growth rate of the beam mode
decrease with 0.

The beam mode not only has a large growth rate but also has a group
velocity in the direction near the magnetic field. For 9 = 300, the angle
between the group velocity and the magnetic field is found to be only about
50 . Therefore, the beam mode can grow to large amplitudes inside the
electron beam.

Figure 1 also shows the frequency and growth rate of whistler waves for
9 = 300 (dotted line). The whistler wave frequency is close to the beam mode
frequency for kc/fl1 < 5. The growth rate of whistler instability is much
smaller than the beam mode instability (note that the whistler growth rate
has been multiplied by a factor of 100 in Figure 1). The instability occurs
at two frequencies, near 0.1 (1, and 0.85 fl.. The growth rate at w = O.fRe
is very small (only about 0.0002f%.) and not presentable in the figure. The
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Cerenkov resonant energy increases with wave number k to a maximum near
kc/fQ = 5 and then decreases with k after kc/Qe > 5. An electron beam
with a beam energy of several keV can resonate with whistler waves at two
wave vectors (near 1 and 10 kc/lfe) and thus excite whistler waves at two
frequencies.

To determine whether the excited wave is electrostatic or electromag-
netic, we plot the ratio of the longitudinal electric field component EL to
the total electric field ET (Figure 2). The ratio EL/ET is 1 for purely
electrostatic waves and 0 for purely electromagnetic waves. Figure 2 shows
that the beam mode is electrostatic for kc/fe > 3 and has a significant
transverse electric field component (EL/ET = 0.6 for kc/fle = 1). For
whistler waves at 0 = 300, EL/ET is about 0.4 at kc/Qe=1 and about 1 at
kc/le =10. Therefore, the unstable whistler waves become electrostatic for
kc/fl, > 10. Since the beam mode is generally believed to be electrostatic,
it is unexpected that the oblique propagating beam mode has a substantial
transverse electric field component at low frequencies. The bottom panel
of Figure 2 indicates that, the dispersion curves of the beam and whistler
modes cross each other at kc/fQ - 1, suggesting that the electron beam
mode couples to whistler 4vaves.

The frequency and growth rate of the beam mode are examined for
various values o f nb/N and Vb/a. The growth rate of the beam mode
decreases as the beam density decreases. At sufficiently low density, the
beam mode ceases to exist and the instability occurs only at frequencies
close to the plasma frequency. The effect of increasing the beam thermal
velocity is similar to that of decreasing the beam density.
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3 Instability of a Finite-size Electron Beam

The electrostatic dispersion equation of a cold electron beam with a finite
radius injected along the magnetic field in a cold uniform plasma has been
derived (Le Queau et al., 1981). The electrostatic dispersion equation is

TA (T) -e°ut H I)(U)

where Jn is the Bessel function of order n and Hn(1) is the Hankel function
of the first kind of order n. The Hankel function is defined in terms of the
Bessel function of the first kind Jn and second kind Yn as H (') = Jn + iYn.
The arguments T and U are defined as T = ki'a and U = k°uta . Here a is
the beam radius; kin and kut are the effective perpendicular wave number
inside and outside the beam respectively. The following definitions are also
used:

k in lin in

ko.ut k Cout /out

W2 l(-el l.2 (w-) ) fo =

1 -W2 (w - k11Vb) 2

IO~ L c(6 0)
out =
11 = 1 e(6 =0)

In the above equations, 6 is defined as nb/N. The equation of Cnll = 0 is theelectrostatic dispersion equation for a homogeneous beam plasma system.

Using the same parameters as the homogeneous beam, we solved Equa-
tion (1) numerically. The beam radius a is assumed to be 2.5 m, which is
reasonable for the Spacelab 2 experiment (Gurnett et al., 1986). Equation
(1) contains solutions for three modes: Cerenkov, cyclotronic, and surface
modes (Le Queau et al., 1981). Figure 3 shows that the growth rate for
the cyclotronic branch is quite large ('I/fZe 0.25) and the growth rate
of the Cerenkov branch is about one third of the cyclotronic branch. The
surface branch has the smallest growth rate among the three branches. As
a comparison, the frequency and growth rate of the beam mode for the
homogeneous beam plasma system at 0 = 00 are also plotted in Figure 3
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(dotted lines). The frequency of the Cerenkov branch is close to the beam
mode frequency. Note that the finite-size effects reduce the growth rate for
kllvblwe < 1.

For a finite-size beam plasma system, the transverse wave numbers are
quantized. We found that the transverse wave length outside the beam
(27r/k ut) is about one hundred times the beam radius for the cyclotronic
branch. Due to lack of space, the results will be discussed separately.

The growth rate at frequencies below Qie is very small but interesting.
Figure 4, which presents the growth rate in the logarithm scale versus the
normalized frequency w/wp, shows the instability extending to frequencies
below e = 0.33U;e. The growth rate has a minimum at w = Q, and
increases with decreasing frequency to a local maximum around W = 0.2 5wpe.
Although the normalized growth rate 7/wpe is only about 10- 3 for W < Qe,

the wave amplitude can still grow to twenty times in one milisecond.
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4 Discussion

The full electromagnetic dispersion equation is solved for parameters rele-
vant to electron beam experiments from the Space Shuttle. The numerical
solutions indicate instabilities for the electron beam and whistler modes.
The electron beam mode with frequency w = klvb has large growth rates
over a wide range of frequencies and angles, whereas whistler waves have
small growth rates at frequencies near the electron cyclotron frequency. At
oblique propagation and at low frequencies (w < 0.10e), the beam mode
has a significant electromagnetic component. The dispersion curve for the
beam and whistler modes crosses each other, suggesting that the two modes
can be easily coupled.

The electromagnetic dispersion relation for a finite-size electron beam is
very difficult to solve. We have thus examined the finite-size beam effects in
the electrostatic limit. The numerical solutions of the finite-size beam dis-
persion equation confirm the solutions of electromagnetic dispersion relation
of a homogeneous beam, but also exhibit a new and interesting feature.

Our numerical solutions of the finite-size beam dispersion equation agree
with the work of Le Queau et al. (1981) when we use their parameters.
However, Le Queau et al. (1981) solved the dispersion equation only for fre-
quencies above the electron cyclotron frequency fRe. We obtained numerical
solutions below the electron cyclotron frequency and found that the instabil-
ity in fact extends to frequencies below f1 with minimum and negligible
growth rate at w = fle. This result may explaii the Spacelab 2 observa-
tions, which show no wave emission near Qe (see Figure 1 of Gurnett et al.,
1986). Since the beam mode of a homogeneous beam has a large growth
rate near w - f=e (see Figure 3), the gap of wave emissions near Q,. cannot
be interpreted without invoking finite-size effects.

The present study is motivated by new experimental results from Space-
lab 1 and 2 (Taylor et al., 1985; Gurnett et al., 1986). In particular, the
remote sub-satellite observations during the Spacelab 2 experiment indi-
cate broadband emissions at frequencies less than the electron cyclotron
frequency and narrow band emissions near the electron plasma frequency.
The broadband emissions below the electron cyclotron frequency are sug-
gested to be whistler waves propagating near the resonance cone (Gurnett
et al., 1986). Because the whistler mode instability occurs at oblique prop-
agation with a small growth rate, it is unlikely that the artificial electron
beams fired from the Space Shuttle excite whistler waves directly. However,
whistler waves can be generated by other nonlinear processes such as para-
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metric decay of the beam mode into the whistler mode. Beating of two high
frequency plasma waves can also produce electrostatic waves at frequencies
below the electron cyclotron frequency (La Queau et al., 1981). The present
work suggests another mechanism of generating whistler waves by the di-
rect coupling of the beam and whistler modes. Mode conversion is known
to occur easily when the medium has a density gradient and the dispersion
curves of two modes are crossed (Stix, 1965). Therefore, our interpretation
of whistler wave emissions by artificial electron beams is that the beam mode
at frequencies below the electron cyclotron frequency is converted into the
whistler mode at the edge of the electron beam.
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Figure Captions

Figure 1 Frequency and growth rate of the electron beam for 0 - 00,30'
and 600 as a function of kc/SIe (solid lines). The frequency and growth
rate of whistler waves are also plotted as dotted curves for comparison.

Figure 2 The ratio of the longitudinal to the transverse electric field versus
kc/fl, (top panel). The dispersion curves of the beam and whistler
modes are plotted in the bottom panel.

Figure 3 Frequency and growth rate of plasma instabilities of a finite-size
elelctron beam as a function of kjjb/flp. The curves denoted by
1 are the Cerenkov mode. The surface mode is represented by the
curves with the numeral 2 and the cyclotronic mode is represented
by the curves with the numeral 3. The frequency and growth rate of
the electron beam mode for a homogeneous beam are also plotted as
dotted lines.

Figure 4 Normalized growth rate of a finite-size beam in the logarithm
scale as a function of the normalized frequency w/wpe. The figure
shows that the growth rate has a minimum at the electron cyclotron
frequency and the instability extends to frequencies below the electron
cyclotron frequency.
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