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1. Introduction

It is common in science and engineering to formulate
mathematical models to describe complex systems. In science
such models mathematically describe the behavior of systems
governed by certain laws and hypotheses. A "law" in this
context is some generally applicable statement, such as
conservation of momentum, that is universally accepted as
true. A hypothesis is an assumption, which we wish to test.
A model in this case is a mathematical solution of a set of
equations which represent the underlying laws and hypotheses,
which are often collectively referred to as a theory. It can
then be used to predict future behavior of such a system.
Comparison of such predictions with observations test the
validity of the model, in particular the underlying
assumptions. An example is NCAR's Thermospheric General
Circulation Model (TGCM)(1). This model is a numerical
solution of a set of equations expressing conservation of
mass, momentum, and energy, in the thermosphere,
incorporating assumptions concerning, for example, the
spatial and temporal distributions of energy and momentum
sources. Tests of the theory (underlying laws and
assumptions) generally consists of "running" the model for a
few test cases for which relevant data are available. Based
on a comparison of results with the data, the theory is
revised and rerun. This procedure hopefully results in
improved understanding of the dynamics of the complex systems
that the theory attempts to describe.

In this report, however, we will be concerned with another
type of model, for example the MSIS 86 thermospheric model (2),
which is used to obtain rapid, yet hopefully sufficiently
accurate, estimates of key parameters which affect the design
and/or operation of a man-made or natural system. These
parameters may be environmental, primarily describing a
system which interacts with the man-made system, or they may
relate to the system itself. Thus, for example, the density
of the atmosphere at the location of a satellite is an
important environmental parameter, since the atmosphere
exerts on the satellite a drag force which is proportional to
the density. The predictions of such models are used in the
design of a system, or to estimate the behavior of the
system. For example, in tracking a satellite, it is usually
necessary to predict its orbit over a period of time, in
order to provide look directions for the tracking equipment.
This requires an estimate of the atmospheric density for the
prediction period.

For some such parameters a copious amount of data is
available. Thus empirical models are set up with a number of
adjustable parameters whose values are determined in least
squares fits to the data. These models may incorporate the
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dynamics of the system, as do the scientific models, but
often in some grossly simplified form, to permit ease of
everyday computational use. We then become concerned with
the accuracy of these models in predicting the behavior they
describe.

1.1 Definition of Accuracy

A dictionary definition of accuracy might be the quality of
being errorless. Since such a quality cannot be
realistically expected of models, we need a more practical
definition. We therefore prefer the phrase "smallness of
error". Thus a model is deemed accurate if the error made in
using it is small. This gets us to the question of just what
do we mean by the term "error".

For any single application of the model, its error may be
simply stated as the difference between the true value of the
quantity that the model is predicting, and the value
predicted by the model. This is usually called the absolute
error. In some cases, for example atmospheric density, it is
often preferable to use the relative error, which is the
ratio of the absolute error to the the quantity predicted by
the model. Relative error is usually preferable in cases
where the quantity in question varies by an order of
magnitude or more over the data set, possibly causing the
absolute errors to be smallest when the quantity being
measured is smallest, thus giving us an unrealistic
assessment of the accuracy of the model for these cases. For
atmospheric density, it has been customary to use the ratio
of the "true" density (as given by a measurement) to the
model density, which is in fact the relative error plus 1.

The error (relative or absolute) of a model is naturally not
the same for all cases. Ideally we would therefore need to
specify the error for each possible instance in which the
model is applied. Since this, of course, is also impossible,
we therefore seek the probability density function which
represents the fact that certain values of the error occur
more frequently than others. The probability that a
continuous variable has a value between x and x+dx is:

f(x)dx

where f(x) is thus the probability density function for the
variable. The function f(x) must be positive, and satisfy

ff(x)dx = 1 (i)

where the integration is over the entire range of x. This
simply states that the probability of the variable taking on
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some value within its range is unity. From the probability
density function we can immediately define two commonly used
measures of error, the mean error

p. = fxf(x)dx (2)

and the standard deviation:

a = [ f(x-p) 2f(x)dx]1 / 2  (3)

A commonly occurring probability density function is the
Gaussian or normal function, which, for mean p. and standard
deviation a is given by:

fg(X) = (21T 2 )-1/ 2exp[-(x-p.)2/(2a 2 )] (4)

The probability density function can in practice be estimated
by comparing the model to the measurements in a properly
constructed, accurate and sufficiently large data set. The
data set is properly constructed if it correctly samples
cases similar to those for which the model user has an
interest, and omits cases that are not similar. For example,
a user who needs to track a satellite which has an orbit at
1000 and 2200 hours local time is interested in the accuracy
of the density model just at those two local times, not at
other times. Therefore the optimum data set for this user
might consist of on-board measurements by sun-synchronous
satellites at 1000 and 2200.

The accuracy of the data set, the differences between
measured and true values, is another matter of concern. The
mean value of these errors is often called the systematic
error. Often we have only a poor idea of these errors, since
we cannot obtain an independent measure of them. For
instance, the analysis of on-board satellite accelerometer
drag measurements to yield the atmospheric density relies on
an accurate value for the satellite's drag coefficient.
Since the drag coefficient cannot in practice be measured
under controlled conditions, it must be estimated from a
model, whose accuracy in turn is poorly estimated. This
could result in a roughly constant, and therefore systematic,
but uncertain, error in the resulting "measured" densities.

From a given data set it is customary to compute the sample
mean and standard deviation:

M = Tx 1 /N (5)

s = [X(x 1-M) 2 /(N-I)]11 2  (6)

as estimates of the mean i and standard deviation a given in
Equations (2) and (3).
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The data set must be sufficiently large that the sampling
error in these values, which varies as 1/4N, is small com-
pared to the model errors we are determining. If the data
set meets the conditions of proper sampling, negligible
measurement error, and large sample size, then these
estimates should be sufficiently accurate to meet practical
needs. If the only problem with the data is systematic
error, then the estimate s for the a is not affected, but
the estimate M for p. is.

Another way to specify accuracy is through the use of
confidence limits. Given a probability density function, we
can compute the total probability, the integral of the
probability density function, that the error lies between two
values:

P(a,b) = Jf(x)dx (7)

Often we wish to find the bounds a and b of an interval whose
center is at the mean of the distribution. In this report,
however, we show how to define the confidence limits TD of an
interval whose center is at zero error, such that the
probability P(-&,+&) that the error lies within this interval
is at least equal to some desired value. This specification
has the advantage that it gives the user the desired
"confidence" that the error magnitude is less than the half-
width A of the interval.

We desire some simple parametric specification, accompanied
by a table or simple computational algorithm, which would
allow the user to easily derive confidence limits for any
specified probability. This specification must be applicable
in the presence of uncertain systematic error and non-zero
mean error. We will show that if the probability density
function is Gaussian, with zero or non-zero mean, then a
single parameter nevertheless often suffices to derive
desired confidence limits. For non-Gaussian probability
density functions, a modification of Chebyshev's inequality(3

will allow us to derive from the same parameter an upper
bound to the confidence interval width.

2. Methods

We discuss some simple properties of confidence limits,
given a probability density function which may or may not be
centered about zero. These properties are therefore useful
for the case of non-zero mean error as well as zero mean.
They are applicable to any probability density function, of
which the Gaussian is a special case, which monotonically
decreases with increasing distance from the mean.
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2.1 Properties of Confidence Limits

Let g(x) be a function which decreases monotonically with
increasing absolute value of its argument. Therefore g is an
even fur-ction of its argument x. The Gaussian function for a
variable with zero mean is a special case. We define
P,,('(L) as the probability that a variable whose probability
density is given by g lies within the limits ±L-A (L 0):A{

PAW) = g(x)dx = g(x-A)dx (8)

The second equality expresses the fact that this is also the
probability that the variable whose probability density (pd)
is g(x-A), with mean value A, lies within the limits ±L.

We now show the following:

i) P is an even function of A:

pA = PA(g) (9)

Applying the change of variable s = -x to the expression
immediatly after the first equals sign of Eq. (8), and
using the fact that g is an even function:I -L.A

PA (q)(L) = - g(s)ds
fL.A

LA

=-g(s)ds
-L.A

=P-A(g) (L)

(ii) As a function of A, P has a single maximum at A=0:

PA(9)(L) < P0 (g)(L) (if A*0) (10)

The integral g(x)dx breaks down into the sum:

LL.A

g(x)dx + J(x)dx + g(x)dx
-L*A -

The second term is P0. The difference PA-P0 is the sum
of the first and third terms. We must therefore prove
that this sum is negative. Since g(x) is an even
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function, the first term may be written as:

f: L-gx) dx

Applying the change of variable x = L-s to the first
term in the sum, and x = L+s to the other term, we
obtain

- g(L-s)ds + Fg(L+s)ds

For A positive, these integrals are over positive s.
Then the absolute value of the argument L-s of the first
integrand is less than the absolute value of the argu-
ment L+s of the second integrand. Therefore the first
integrand is larger than the second (both positive),
and the sum is negative, as required for our proof.
For negative A, the result follows from property (i)
just shown above, the invariance of PA under change of
sign of A.

Finally, we note, for the Gaussian:

PA(M)(L) = (erf[(L+A)/(42)]+erf[(L-A)/(cr42)])/2 (11)

3. Results and Applications

As stated previously, sometimes we are not interested in the
deviation of the model error about its mean, but rather we
are interested in the total error, or put another way, the
deviation of the error about zero. Thus we have to deal with
the probability in a region not centered about the mean. In
the previous section we gave some theorems concerning this
situation, and in addition, Eq. (11) for application to a
biased Gaussian, that is, a Gaussian pd with non-zero mean.
We will now demonstrate, for the Gaussian, a rather
surprising result that the probability for occurrence of the
error within a given interval centered about zero is often
approximately equal to that which would be obtained for an
unbiased Gaussian pd with standard deviation equal to the
root mean square (rms) of the mean and the standard deviation
of the original Gaussian pd. We will next demonstrate how
the rms can be used to obtain an upper bound for the
confidence limits for non-Gaussian distributions. These
results allow us to use the rms as a single parameter to
characterize the model error in many cases.
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3.1 Probabilities for a Biased Gaussian

Assume that a data point is taken from Gaussian probability
density with standard deviation a and mean (bias) Ba. Then
Table 1 gives the probability for the occurrence of the value
(y) within the interval

where Ax is the value indicated first column, and B is the
value indicated in the top line. For example, if Ax = .5,
and B = .4, then the probability of occurrence within the
interval ±aAx is 35.58%. If Ax = 1, and B= 0, then the
probability is 68.27%.

Assume that a data point is taken from a Gaussian pd with
standard deviation a and bias Ba. Then Table 2 gives the
probability of occurrence of the value (y) within the
interval

-[a2 + B2a211/2AxN y [a2 + a2B211/2AxN,

where AxN is the value indicated in the first column, and B
is the value indicated in the top line.

Table 2 shows that by modifying a to

rms = [a2 + a2B2]1/ 2  (12)

the probability of occurrence within symmetric intervals is
approximately independent of the bias (B) when B is "small".
For example the probability of occurrence of y within the
interval ±.5rms is 38.29% when the bias is zero, and 38.11%
when the bias is .4a.

3.2 Probabilities for Non-Gaussian Distributions

Chebyshev's inequality states an upper bound for the
probability that the value of a random variable deviates from
its mean by more than a certain amount:

pf I X- I A ) a2/,&2

where ji and a are the mean and standard deviation of the
value of the random variable x, and A is a positive number.
Brunk(3) points out that the proof of Chebyshev's inequality
applies equally well to deviations of the random variable
from any value, if the standard deviation a is replaced by
the square root of the mean square deviation of the variable
from that value.
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The proof uses a step function:

8(t) = 1, t A

=0, t < A

It is seen for z = x - pL that:

z2 a A20(IzI)

since, when z2 is less then A2, the right hand side is zero,
and when z2 equals or exceeds A2 , the right hand side is
equal to A2. Taking mean values:

<z2 > <&20 (zI)> = &2<O(Iz1> = A2P(IzI 1 A)

The first equality follows from the constancy of A, the
second from the definition of the step function. We see
therefore that

Pf[z] A) <z2>/A2

Thus far no use has been made of the property that p. is the
mean value of x. This is done only in the final step of the
proof, substituting a2 for <z2>, the mean squared value of z.
Thus, when considering the deviation from a value other than
the mean, we may replace a2 in Chebyshev's inequality with
the mean square deviation from the selected value. Then
Chebyshev's inequality may be stated in the modified form:

P( Ix - x0I 1 A) <(x - x 0 )2>/A2

for the deviation of x from any value x0 . For our
application to the deviation of errors about zero, the mean
square deviation is simply the rms defined in Eq. (12), with
p. = Ba, since

<X2> = <[(x - L) + A]2>

= <(x - p)2 + 2p.(x - p.) + p.2>

= <(x - )2> + 2p.<(x - I.)> + p.2

= y2 + p.2

We therefore finally state that

P(IxI A) rms2/A2

meaning that the probability that x is outside the interval
[-A, Al] cannot exceed (rms/A)2. Thus the probability, or
confidence, that the error x is within this interval is at
least 1-(rms/A) 2.
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We may use this result to obtain an upper bound for the half
width A of the confidence interval, such that the probability
that the error x is within this interval is at least a
desired value a:

A rms/(l-a)/ 2  (13)

We note that the upper bound given by the right hand side of
Eq. (13) for 68.2% confidence is 1.75 rms, compared to 1.0
rms for Gaussians, as indicated by Table 2. For 95%
confidence the upper bound given by Eq. (13) is 4.47 rms,
compared to 1.96 rms for Gaussians. Futhermore we note that
the interval half-width A from Eq. (13) can never be less
than one rms.

3.3 Applications to Atmospheric Density Model Errors

AFGL has collected a substantial data base of in-situ
satellite drag measurements in the lower thermosphere(4). The
densities derived from this data can then be compared with
models such as the previously mentioned TGCM{' ) and MSIS-86(2)
model. With respect to engineering models such as the MSIS-
86, the following statistics have routinely been computed:

M = X ri/N (14)

s = [X (rj-M)/(N-1)]'/ 2/M (15)

where ri is the ratio of the ith measured density to the
density predicted by the model for that case, and N is the
number of measurements. These quantities are similar to the
sample estimates, Eqs. (2) and (3), for the mean and standard
deviation of the model ratio r, except that in the present
case the sample estimate for the standard deviation has been
divided by the mean ratio M. With these two parameters, the
model user may imply that a corrected model obtained by
multiplying the original model by M will have relative errors
with estimated standard deviation s. There are at least two
problems with this approach. One is that the user may need
to know the error in the model itself, rather than in a
corrected version. The second problem is that the data base
may have systematic error, which introduces uncertainty in
the mean M, although not in the standard deviation s. The
following examples will show how to characterize the error in
the model itself (not the corrected model) given that we have
a sample estimate M of the mean ratio, such that a sample
estimate of the mean relative error pL is M-l, where M is
given by Eq. (14), and a sample estimate of the standard
deviation a given by Ms, where s is given by Eq. (15). The
reason for using Ms instead of s is that we are interested
here in the relative error of the original model, not the
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relative error of the corrected model. The factor M is
generally close to one, unless the model is very poor.

3.3.1 Model Developed from a Data Base

We assume that a model has been developed empirically from a
data base. This is generally the case for models such as the
MSIS-86. This data base is then used to "evaluate" the
model. The mean relative model error is found to be zero,
and the standard deviation is found to be 15%.

A. The data had no systematic or random error. The rms is
therefore 15%. If the error distribution is Gaussian, we
may then use column 1 of Table 2, to find the ± error
range for any desired probability. Simply find the row
containing the desired probability in column 2 and
multiply the number in column 1 by 15%. If the distri-
bution is strongly non-Gaussian, we may use Eq. (13) to
find an upper bound for the error range.

B. We find out later that the measurements should have been
10% higher. Therefore, using the hypothetically corrected
data base to evaluate the model obtained on the basis of
the uncorrected data, we would obtain a mean error of 10%
and a a of (15 x 1.1)% = 16.5%. Thus our model error is
characterized by:

rms(%) = (102 + 16.52]1/2 = 19.3%.

C. We find out later that, instead, there was uncertain
systematic error in the data, in the range ± 10%. Then
the total error is the sum of the measured and systematic
errors. Assuming that the latter may be characterized by
a probability density function with zero mean and standard
deviation 10%, we obtain for the total error:

rms = [102 + 152]1/2 = 18.0%

If the probability density functions of both the measured
systematic errors are Gaussian, then the probability
density function of the total error is also Gaussian(3 ),

and we may use Table 2, as above, to determine the
confidence limits for any specified probability. If
either distribution is non-Gaussian, we may use Eq. (13).

There is another view of the systematic error which is
sometimes considered: the systematic error is known
definitely to be within a certain range, but its pd within
that range is unknown. Thus the total error pd may be
biased by some unknown amount, within this range. If the
measured error distribution is Gaussian, then according to
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our results of Section 2.1, property (ii), the probability
P. of occurrence within an interval centered about zero
decreases with the increasing magnitude of the bias A.
Therefore the worst case, within this specification, would
occur if the systematic error had the maximum value, 10%.
Using this worst case we get the same total rms as just
given for the 10% a uncertainty in the systematic error.
The same rms is applicable if the measured error distri-
bution is unspecified or strongly non-Gaussian, since the
modified Chebyshev's inequality applied to this worst case
rms produces the worst case confidence interval.

Another method of handling the systematic error, when it
is known to lie within a definite finite range, is to add
the maximum absolute value of the systematic error to the
rms random measurement error. This is the approach
suggested by Cameron (5 ). It is clear that our result,
using the rms of the systematic and random errors, yields
tighter confidence limits.

3.3.2 Model Compared With Independent Data Base

A. The mean ratio is 1.0, the standard deviation is 15%, and
there is no systematic or random measurement error. Then
the rms is the same as in 3.3.1 A, 15%.

B. Same as A, except that the mean ratio is 1.1. Then,
following our discussion in Sections 3.1 and 3.2,

rms = [102 + 1521]/2 = 18.0%.

C. Same as B, except that the data has uncertain systematic
error, and therefore an uncertainty in the mean error,
within 10%. If this uncertainty is characterized by a
probability density function with zero mean and standard
deviation 10%, then the overall pd (measured + systematic
error) is characterized by:

o = [102 + 152]1/2 = 18.0%

IL = 10%

For this biased distribution we may again define an
effective rms

rms = [a2 + jj2 11/ 2 = 20.6%

If if we take the second approach, mentioned above, for
the systematic error, namely that we know only that it is
in the interval ±10%, then, taking the worst case, as we
did previously, we get a distribution whose mean is the
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sum of the measured mean and the largest possible bias

value:

= 10% + 10% = 20%

The standard deviation is as measured, 15%. Then, we
obtain, for the rms:

rms = [202 + 152]1/2 = 25%

D. Same as C, except that the data has random error of 5%.
In this case, we know that the measured a, estimated by s,
is the standard deviation for the sum of two independent
unbiased random errors: the true model (random) error
(true value - model value) and the measurement error
(measured value - true value). Then it is evident that
the true model random error has the standard deviation

a = [152 - 52] 1/2 = 14.1%.

Then we obtain for the rms, assuming that the systematic
error uncertainty is charactized by 10% standard deviation
and zero mean:

rms = [14.12 + 102 + 102]11/2 = 20.0%

For the second view of systematic error, assuming the
worst case value of 10%:

rms = (14.12 + 202] 1/2 = 24.5%

For Gaussian distributions we must caution that, for the
conservative worst case systematic errors assumed in the
last two examples, the biases obtained were larger than
one sigma (1.33a in example C, and 1.4u in example D).
For biases this large, Table 2 indicates moderate decrease
in the probability of occurrence within intervals smaller
than the rms, relative to the probabilities of occurrence
in the same intervals for zero bias. At one rms, the
probability has decreased from 68.2% to approximately
63%. However, it is seen that this trend eventually
reverses as the interval increases.

4. Discussion and Conclusions

We have attempted to find a minimal set of parameters to
describe model accuracy. It is hoped that, in most
situations, such information would provide the potential user
with all that he needs to know to assess the impact, on his
situation, of any error in the model.
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We have approached the problem from the standpoint of
confidence limits, the bounds of an interval, centered about
zero, for which the error has a desired probability of
occurring. This requires determination of the probability
density function for the error. We have stated two useful
properties of a certain class of biased probability density
functions which include the Gaussian. For the Gaussian
itself we have shown that this probability often can be
calculated from a single parameter, the rms of the mean and
standard deviation, even when the mean is non-zero. Using a
modification of Chebyshev's inequality, we have also found
the minimum probability of occurrence for any distribution
of specified mean and standard deviation. This leads to
confidence limits considerably larger than those obtained for
Gaussian distributions.

Finally we have applied these results to atmospheric density
model evaluations, which are carried out by comparing the
predictions of the model with measurements in a large data
base. We have considered contamination of the data by random
and/or systematic measurement errors. Although
the relevant error sources are often Gaussian, this is
not always the case. Marcos, et. al., have found occasional
departures from the Gaussian in their evaluations(6). In
addition to the mean and standard deviation, two additional
parameters, called skewness and kurtosis, were used by them
to characterize these cases. If the skewness is zero, then
the function is still symmetric about its mean, so that we
may still be able to apply the two properties mentioned in
Section 2. This would not be the case if the skewness is
non-zero, for this would indicate that the function is not
symmetric about its mean. Such a function cannot therefore
depend only on the absolute value of the difference between
its argument and the mean, and therefore cannot fall into the
class of functions discussed there. However if these depar-
tures are small, and we need to decide just what "small" is,
these results may still be applicable. Although Chebyshev's
inequality could be applied to these cases, it is evident
that confidence limits considerably closer to those for
Gaussian should be obtainable. Therefore we should look for
methods to extend to near-Gaussians the results obtained here
for Gaussians.
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