
ort'oio 0O =_!'TE*:;3r0%%,AZ. GV2 ACCESSIONi NO. 3 RiCIPJEN'S CAIA OG hUIR

4. 7ILE (and'Subtitie) 5. TYPE OF REDPOR a PELAO0 COVERED

Ada Compiler Validation Sumrar y eport:Gould- Inc 18 Apr. 19.89 to 18 Apr 1990
APLEX Ada Compiler, Revision 2.2, Gou'd fncore owerN6de
Model 9080 (Host and Target), 890418WI.10069. 6. PLRFORMIN00")R. REPORT NshEtR

7. UTOR8. COTRAC1 OR &RA_*WjMjRs)

Wright-Patterson AFB

Dayton, OH, USA

3. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMEN[. PRC2ElC. TASK

AREA & WORK UVI. UMERS

Wright-Patterson AFB
Dayton, OH, USA

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 1. NU ot Vf
Washington, DC 20301-3081

14. N|ON1ITOR'NG AGEN:Y NAME & ADDRESS(Ifdifferent from Controlihng Office) 15. SECURITv CLASS (of htisreport)
UNCLASSIFIED

Wright-Patterson AFB Sa. EECL AT• D =SSjFr CAT IOh,'DOw% &D] NG
Dayton, OH, USA LN/A

16. DISIRIBJIION SIATEMENI (ofthisRepon)

Approved for public release; distribution unlimited. .

17. DISTRIB,.;T1O, STAI EwihT (of the absirac enTere,n Bock 20 IfoferenT f,o- Report)

UNZLASSIFIED

18. SUPFEM.TAR1 NOTES

19. KE YwDRDS (Continue on reversde if necess ry *nd,dent,fy by blocA number)

Ada Progra.ming language, Ada Compiler Validation Sumary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. AS!RA. I (Continue on reverse side ,f necessary ndident,f) b) block number)

Gould*, Inc., APLEX Ada Compiler, Revision 2.2, Wright-Patterson AFB, Gould/Encore

PowerNode Model 9080 under UTX/32, Revision 2.1 (Host and Target), ACVC 1.10.

89 6 60
DD ILI" 1473 O1110, Of I NOv 65 IS OBSOLETE

I JAX 73 S/N 02-L-01,-S6 UNCLASSIFIED
................................ 9 .

Ada Compiler Validation Summary Report:

Compiler Name: APLEX Ada Compiler, Revision 2.2

CertifLcate Number: 890418W1.10069

Host: Gould/Encore PowerNode Model 9080 under
UTX/32, Revision 2.1

Target: Gould/Encore PowerNode Model 9080 under
UTX/32, Revision 2.1

Testing Completed 18 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility Accession For
Steve P. Wilson NTIS GRA&I

Technical Director DTIC TAB
ASD/SCEL Unannounced [
Wright-Patterson AFB OH 4533-6503 Just i'Ic'tti

/ Distribu -

Ava]i - - ,: sAba Validation Organization Die

Dr. John F. Kramer Dist SD": :
Institute for Defense Analyses

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director, AJPO
Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-256.0589
88-1 1-16-GOU

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890418W1.10069
Gould, Inc.

APLEX Ada Compiler, Revision 2.2
Gould/Encore PowerNode Model 9080

Completion of On-Site Testing:18 April 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: APLEX Ada Compiler, Revision 2.2

Certificate Number: 890418W1.10069

Host: Gould/Encore PowerNode Model 9080 under
UTX/32, Revision 2.1

Target: Gould/Encore PowerNode Model 9080 under
UTX/32, Revision 2.1

Testing Completed 18 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organiza tio~n'N

Dr. John F. Kramer
Institute for Defense Anal y s
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director, AJPO
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .. 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS. 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. • 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation 3-6
3.7.2 Test Method 3-6
3.7.3 Test Site 3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability. (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 18 April 1989 at Fort Lauderdale FL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units a:e used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. The-e tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: APLEX Ada Compiler, Revision 2.2

ACVC Version: 1.10

Certificate Number: 890418W1.10069

Host Computer:

Machine: Gould/Encore PowerNode Model 9080

Operating System: UTX/32
Revision 2.1

Memory Size: 16 megabytes

Target Computer:

Machine: Gould/Encore PowerNode Model 9080

Operating System: UTX/32
Revision 2.1

Memory Size: 16 megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
SHORT INTEGER, LONG INTEGER, and LONG FLOAT in package
STANDARD. (See tests-B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

\2) Assignments for subtypes are performed with the same precision
?3 the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) No exception is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

(5) No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO04A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT.

For this implementation;

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

(2) NUMERIC ERROR is raised when a null array type with
INTEGER'LAST + 2 components is declared. (See test C36202A.)

(3) NUMERIC ERROR is raised when a null array type with
SYSTEM.MAX INT + 2 components is declared. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See

test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an

implementation may accept the declaration. However, lengths
must match in array slice assignments. This imrlementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is not supported for non-library units.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

2-4

CONFIGURATION INFORMATION

i. Generics

(1) Generic unit declarations, bodies, and subunits can be
compiled in separate compilations. (See tests CA1O12A and
CA3011A.)

(2) If a generic unit body or one of its subunits is compiled or
recompiled after the generic unit is instantiated, the unit
instantiating the generic is made obsolete. The obsolescence
is recognized at binding time, and the binding is stopped.
(See tests CA2009C, CA2009F, BC3204C, and BC3205D.)

J. Input and output

(1) The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes IN FILE and OUT FILE are supported for SEQUENTIAL_10.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUTFILE, and INOUTFILE are supported for
DIRECT 10. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE31O2E and CE37021..K.)

(6) RESET and DELETE operations are supported for SEQUENTIALIO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTI0. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and not deleted
when closed. (See test CE2108A.)

(11) Temporary direct files are given names and not deleted when
closed. (See test CE2108C.)

2-5

CONFIGURATION INFORMATION

(12) Temporary text files are given names and not deleted when
closed. (See test CE3112A.)

(13) More than one internal file c~n be a33ociated with each
external file for sequential files when reading only. (See
tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when reading only. (See tests
CE2107F..H (3 tests), CE2110D, and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when reading only. (See tests
CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 328 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 215
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for eight tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1132 2002 17 23 45 3346

Inapplicable 2 6 314 0 5 1 328

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 197 568 547 247 172 99 161 333 132 36 250 326 278 3346

Inappl 15 81 133 1 0 0 5 0 5 0 2 43 43 328

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15C CD2D11B CD5007B CD50110 ED7004B
ED7005C ED7005D ED7006C ED7006D CD7105A CD7203B
CD7204B CD7205C CD7205D CE2107I CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 328 tests were inapplicable for the reasons indicated:

a. The following 215 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113K..Y C35705K..Y C35706K..Y C35707K..Y
C35708K..Y C35802K..Z C45241K..Y C45321K..Y
C45421K..Y C45521K..Z C45524K..Z C45621K..Z
C45641K..Y C46012K..Z

3-2

TEST INFORMATION

b. C35508I, C35508J, C35508M, and C35508N are not applicable because this
implementation does not support enumeration representation clauses for
BOOLEAN types.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT FLOAT.

d. C45231D, B86001X, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a name
other than INTEGER, LONGINTEGER, or SHORTINTEGER.

e. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 47.

f. C52008B is not applicable because this implementation does not support
a record type with four discriminants of type integer having default
values. The size of this object exceeds the maximum object size of
this implementation and NUMERICERROR is raised.

g. C86001F is not applicable because, for this implementation, the package
TEXT 10 is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXTIO, and hence package REPORT,
obsolete.

h. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

J. CA2009C, CA2009F, BC3204C, and BC3205D are not applicable because they
contain instantiations of generics in cases where the body is not
available at the time of the instantiation. As allowed by AI-00408/07
this compiler creates a dependency on the missing body so that when the
actual body is compiled, the unit containing the instantiation becomes
obsolete.

k. LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for non-library units.

1. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types using less than 32 bits.

m. CD2A52A..D (4 tests), CD2A52G..J (4 tests), CD2A54A..D (4 tests), and
CD2A54G..J (4 tests) are not applicable because this implementation
does not support fixed point types using less than 16 bits.

n. CD2A61I and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types.

3-3

TEST INFORMATION

o. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable

because this implementation does not support size clauses for access
types using less than 32 bits.

p. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected by

this compiler.

q. AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this compiler.

r. CE2102D is inapplicable because this implementation supports CREATE
with INFILE mode for SEQUENTIAL_10.

s. CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIALIO.

t. CE2102F is inapplicable because this implementation supports CREATE
with INOUTFILE mode for DIRECTIO.

u. CE21021 is inapplicable because this implementation supports CREATE
with INFILE mode for DIRECTIO.

v. CE2102J is inapplicable because this implementation supports CREATE
with OUTFILE mode for DIRECTIO.

w. CE2102N is inapplicable because this implementation supports OPEN with

INFILE mode for SEQUENTIALIO.

x. CE21020 is inapplicable because this implementation supports RESET with

INFILE mode for SEQUENTIALIO.

y. CE2102P is inapplicable because this implementation supports OPEN with
OUTFILE mode for SEQUENTIAL IO.

z. CE2102Q is inapplicable because this implementation supports RESET with

OUTFILE mode for SEQUENTIALIO.

aa. CE2102R is inapplicable because this implementation supports OPEN with

INOUTFILE mode for DIRECTIO.

ab. CE2102S is inapplicable because this implementation supports RESET with

INOUTFILE mode for DIRECTIO.

ac. CE2102T is inapplicable because this implementation supports OPEN with

IN FILE mode for DIRECT 10.

ad. CE2102U is inapplicable because this implementation supports RESET with
INFILE mode for DIRECT IO.

ae. CE2102V is inapplicable because this implementation supports open with

3-4

TEST INFORMATION

OUTFILE mode for DIRECT IO.

af. CE2102W is inapplicable because this implementation supports RESET with
OUTFILE mode for DIRECT IO.

ag. CE3102E is inapplicable because this implementation supports CREATE
with INFILE mode for text files.

ah. CE3102F is inapplicable because this implementation supports RESET for
text files.

ai. CE3102G is inapplicable because this implementation supports deletion
of an external file for text files.

aj. CE31021 is inapplicable because this implementation supports CREATE
with OUTFILE mode for text files.

ak. CE3102J is inapplicable because this implementation supports OPEN with

INFILE mode for text files.

al. CE3102K is inapplicable because this implementation supports OPEN with
OUTFILE mode for text files.

am. CE2107B..E (4 tests), CE2107L, CE2110B, and CE2111D are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for sequential files.
The proper exception is raised when multiple access is attempted.

an. CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable because
multiple internal files cannot be associated with the same external
file when one or more files is writing for direct files. The proper
exception is raised when multiple access is attempted.

ao. CE311B, CE3111D..E (2 tests), CE3114B, and CE3115A are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for text files. The
proper exception is raised when multiple access is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

3-5

TEST INFORMATION

Modifications were required for eight tests.

The following tests were split because syntax errors at one point resulted in

the compiler not detecting other errors in the test:

BA3006A BA3006B BA3007B BA3008A BA3008B BA3013A

At the recommendation of the AVO, the following modifications were made to
compensate for legitimate implementation behavior.

"TTYPE'STORAGE SIZE" in CD2C11A..B was changed to 3072 since the original
value of 1024 was insufficient for this implementation.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
APLEX Ada Compiler was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

3.7.2 Test Method

Testing of the APLEX Ada Compiler using ACVC Version 1.10 was conducted on-site
by a validation team from the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and software
components:

Host computer: Gould/Encore PowerNode Model 9080
Host operating system: UTX/32, Revision 2.1
Target computer: Gould/Encore PowerNode Model 9080
Target operating system: UTX/32, Revision 2.1
Compiler: APLEX Ada Compiler, Revision 2.2

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled,
linked, and all executable tests were run on the Gould/Encore PowerNode Mode!
9080. Results were printed from the from the host computer.

3-6

TEST INFORMATION

The compiler was tested using command scripts provided by Gould, Inc. ano
reviewed by the validation team. The compiler was tested using all default
option settings except for the following:

OPTION EFFECT

-i Enable optimizer and process pragma inline.
-c Produce a compilation listing.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Fort Lauderdale FL and was completed on 18 April 1989.

Three power failures caused some system down time.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

Gould, Inc. has submitted the following Declaration of
Conformance concerning the APLEX Ada Compiler.

A-i

DECLARATION OF CONFORMANCE

Compiler Implementor: Gould/Computer Systems Inc.
Ada Validation Facility: ASD/SIOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: APLEXTM Ada Compiler Revision 2.2
Host Architecture ISA: Gould/Encore PowerNode Model 9080
OS&VER #: UTX/32 Revision 2.1

Target Architecture ISA: Gould/Encore PowerNode Model 9080
OS&VER #: UTX/32 Revision 2.1

Derived Compiler Registration

Derived Compiler Name: APLEXTM Ada Compiler Revision 2.2
Host Architecture ISA: Gould/Encore PowerNode Model 90XX, 60XX

CONCEPT 32/Model 67XX
OS&VER UTX/32 Revision 2.1

Target Architecture ISA: Gould/Encore PowerNode Model 90X.X, 60XX
CONCEPT/32 Model 67XX

OS&VER #: UTX/32 Revision 2.1

A-2TAPLEX is a trademark of Gould Inc.

Implementor's Declaration

I, the undersigned, representing Gould/Computer Systems Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSIIMIL-STD-1815A in the
compiler listed in this declaration. I declare that Gould/Computer Systems Inc. is the
owner of record of the Ada language compiler listed above, and as such, is responsible for
maintaining said compiler in conformance to ANSIIMIL-STD-1815A. All certificates and
registrations for Ada language compiler listed in this declaration shall be made only in the
owner's corporate name.

) a l Date: P

Mary F. Ma umber, Senior Manager, Major Corporate Agreements

Owner's Declaration

I, the undersigned, representing Gould/Computer Systems Inc., take full responsibility for
implementation and maintenance of the Ada compiler listed above, and agree to the public
disclosure of the final Validation Summary Report. I further agree to continue to comply
with the Ada trademark policy, as defined by the Ada Joint Program Office. I declare that
all of the Ada language compilers listed, and their host/target performance are in compliance
with the Ada Language Standard ANSIINIL-STD-1815A. I have reviewed the Validation
Summary Report for the compiler and concur with the contents. I also affirm that
thePowerNode computer architectures listed (90XX and 60XX models) herein are of
equivalent architecture to the PowerNode 9080 as described in the documentation which
was submitted with our 1.8 validations.

Date:.

Mary F. comber, Senior Manager, Major Corporate Agreements

A-3
TMAPLEX is a trademark of Gould Inc.

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the APLEX Ada Compiler, Revision 2.2, as described in
this Appendix, are provided by Gould, Inc.. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -(2'31) .. (2"'31)-I;
type SHORT INTEGER is range -(2*1 5) .. (2**15)-1;
type LONG_INTEGER is range -(2**63) .. (2*63)-l;

type FLOAT is digits 6 range -7.23698E+75 .. 7.23698E+75;
type LONG FLOAT is

digits 14 range -7.2370055773320E+75 .. 7.2370055773320E+75;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

B-I

Appendix F.
Implementation-Dependent Characteristics

The Ada language definition allows for certain machine-
dependencies in a controlled manner. No machine-dependent
syntax or semantic extensions or restrictions are allowed. The only
allowed implementation-dependencies correspond to
implementation-dependent pragmas and attributes, certain machine-
dependent conventions as mentioned in Chapter 13, and certain
allowed restrictions on representation clauses.

2 The reference manual of each Ada implementation must include an
appendix (called Appendix F) that describes all implementation-
dependent characteristics. The Appendix F for a given
implementation must list in particular.

3 (1) The form, allowed places, and effect of every implementation-
dependent pragma.

4 (2) The name and the type of every implementation-dependent
attribute.

5 (3) The specification of the package SYSTEM (see 13.7).

6 (4) The list of all restrictions on representation clauses (see 13.1).

7 (5) The conventions used for any implementation-generated name
denoting implementation-dependent components (see 13.4).

8 (6) The interpretation of expressions that appear in address
clauses, including those for interrupts (see 13.5).

9 (7) Any restriction on unchecked conversions (see 13.19.2).

10 (8) Any implementation-dependent characteristics of the input-
output packages (see 14).

B-2

Chapter 1. Introduction

1.6 The compiler detects all errors defined in this section. Unless the
error is fatal, compilation does not stop. However, any error
inhibits the generation of object code.

Error messages contain:

* The line number in the source code where the error was
detected.

* A copy of the erroneous source line with a marker showing the"position of the error.

" Descriptive text indicating the meaning of the error.

• Any additional information which more precisely identifies the
cause of the error (i.e., a symbol or the section number in the
LRM that applies to the source error.)

When an error is detected, the compiler attempts reasonable
recovery actions so syntax and semantic checking can continue.
For example, it may substitute a seemingly reasonable construct for
the one in error. The construct may or may not be the intended
one. If a compilation is aborted, the compiler closes all files that
were opened and accessed during the compilation.

Undeclared identifiers are considered to be errors.

Information is not generated for use in resolving ambiguous
overloads.

B-3

No warning is produced under the following circumstances:
" A construct consumes a large amount of memory or takes a

long time to execute.

" The result of a real expression has less than I significant digit.

" A statement is unreachable.

* Declared entities are not used.

* Variables are uninitialized.

* Loops are endless.

A warning is issued for a statement whose static properties
guarantee an exception will be raised.

Warnings are issued for ignored and unsupported pragmas.

Chapter 2. Lexical Elements

2.1 The host and target character set is the ASCII character set.

2.2 The compiler accepts as many as 199 characters on a source line.

B-4

Chapter 3. Declarations and Types

3.2.1 The compiler does not produce warning messages for uninitialized
variables and will not reject a program for this reason.

3.5.1 The maximum number of elements in an enumeration type is 1000.

3.5.5 The range for standard integers is:

INTEGER'FIRST = -(2**31)
INTEGER'LAST = (2**3 l)-1
INTEGER VIDTH = 11
INTEGER'SIZE = 32

LONGINTEGER'FIRST = -(2**63)
LONGINTEGER'LAST = (2**63)-1
LONGINTEGERWIDTH = 20
LONG_INTEGER'SIZE = 64

SHORTINTEGER'FIRST = -(2**15)
SHORTINTEGER'LAST - (2**15)-1
SHORTNTEGERWIDTH = 6.
SHORTINTEGER'SIZE = 16

Refer to type CHARACTER in Annex C for the image of a
character. Images of non-graphic characters are as shown in
paragraph 13 of Annex C.

3.5.8 The attributes of floating-point numbers are:

FLOATDIGITS = 6
FLOATSAFE_EMAX = 252
FLOAT'MACHINEEMAX = 63
FLOATMACHINEEMIN = -64
FLOATMACHINE_MANTISSA = 6
FLOATMACHINEOVERFLOWS = TRUE
FLOATMACHINE_RADIX = 16
FLOAT'MACHINEROUNDS = FALSE
FLOATSIZE = 32

B-5

LONGFLOAT'DIGITS = 14
LONGFLOAT'SAFEEMAX = 252
LONGFLOATMACHINEEMAX = 63
LONGFLOATMACHINEEMIN = -64
LONGFLOAT'MACHINEMANTISSA = 13
LONGFLOATMACHINEOVERFLOWS = TRUE
LONGFLOAT"MACHINE-RADIX = 16
LONGFLOAT'MACHINEROUNDS = FALSE
LONGFLOATSIZE = 64

The type SHORT-FLOAT is not supported at this time.

3.5.9 Fixed point types are represented as integers with an implied binary
point.

Chapter 4. Names and Expressions

4.8 Pragma CONTROLLED is not supported.

The storage space occupied by an object created by an allocator is
not reclaimed when the object becomes inaccessible, except when
storage by collection is used via the STORAGESIZE representation
specification.

4.10 There is no limit on the range of literal values or on the accuracy of
real literal expressions. Real literal expressions are computed using
an arbitrary precision universal arithmetic package.

B-6

Chapter 6. Subprograms

6.3.2 Pragma INLINE is supported except for subprograms which are
library units, that is, compilation units with no enclosing scope
such as a main procedure.

Chapter 9. Tasks

9.2 Task space is acquired from the heap upon task allocation. Task
space is released when the task is terminated.

9.3 On UTX/32 and MPX-32 targets, tasks are scheduled only when a
scheduling event occurs. The expiration of a delay does not cause a
scheduling event. Thus, it is possible for a low priority task to
dominate the processor, even if a higher priority task is ready to
run.

On the Ada Real Time Executive, task scheduling occurs on the
expiration of a delay and the completion or initiation of an
input/output call. Thus, the task that is currently running is always
the highest priority task that is ready to run.

A scheduling event occurs if the currently active task executes an
entry call, accept statement, delay statement, select statement, or
abort statement, or if it elaborates another task or terminates.

B-7

9.4 A task that is initiated in an imported library unit continues to
execute until it completes.

9.5 Storage used by a task is delivered to the total pool of storage when
the task terminates.

9.6 The values for type DURATION are:

DURATION'DELTA = 1.0/(2.0** 14)
DURATION'FIRST - -86400.0
DURATION'LAST = 86400.0

9.8 The values for type PRIORITY are:

PRIORITY 'IRST = 0
PRIORITY'LAST = 255

The default is 128.

9.11 Pragma SHARED is supported for scalar and access types.

Chapter 10. Program Structure and Compilation Issues

10.1 All main programs must be procedures without parameters.

10.3 Pragma INLINE is supported except for subprograms which are
library units, i.e., compilation units with no enclosing scope.

A generic declaration and its corresponding body (and all subunits)
need not be part of the same compilation.

Separate compilation of generic specifications, bodies and subunits
is allowed from separate files.

10.4 Library management tools provide the ability to create a list of
compilation units made obsolete by the compilation of a unit.

B-8

Chapter 11. Exceptions

11.7 Pragma SUPPRESS does not affect checks for integer and floating
point overflow, division by zero, and task elaboration.

Chapter 13. Representation Clauses and Implementation-
Dependent Features

13.1 Pragma PACK is supported.

In a packed record, all spare space between scalar fields is
removed. Each scalar field is placed in the next available bit
position and allocated the minimum number of bits necessary. It is
possible, for example, for an integer field to overlap byte and word
boundaries.

Fields that are composite types preserve the size and alignment
characteristics of the composite type. Thus, if a field in a packed
record is of a type that has a 16-bit alignment, the field will be
aligned on a 16-bit boundary within the packed record. This will
also have the effect of requiring at least a 16-bit alignment of the
packed record.

B-9

When arrays are packed, scalar elements are compressed to occupy
the minimum necessary number of bits that is a power of 2. Thus,
Booleans, integer ranges of 0.. 1, and enumeration types of two
elements are allocated a single bit in a packed array. Integer ranges
of 0..3 and enumerations with as many as four elements are packed
into two bits. Integer ranges of up to 0.. 15 and enumerations of up
to 16 elements are packed into four bits. Packing has no effect on
any other scalars. That is, types that will fit into a byte are allocated
one byte per element, those that will fit into 16 bits are allocated a
halfword, 32-bit types are allocated a word, and 64-bit types are
allocated a doubleword.

Packing an array of a record or array type preserves the size and
alignment characteristics of the component type, just as in a record.

13.2 The length ciause for the size of a subtype is supported.

The length clause for collection size is supported. The presence of
a length clause for an access type implies that storage for that type
is to be managed by the collection. The absence of such a clause
implies the default storage management.

The length clause for task activation is supported.

The length clause for small of a fixed point type is supported for
values of small which are either integers or reciprocals of integers.

13.3 The enumeration representation clause is supported with the
restriction that it cannot be used for the predefined type
BOOLEAN. Thus, the user cannot change the representations of
the predefined constants TRUE and FALSE.

B-10

13.4 Record representation clauses are supported. The maximum
significant value for the expression following "at mod" is 8. Thus
the compiler does not support alignment to boundaries greater than
a double word.

Only those records having components that are all statically sized
may be the subject of a representation specification. Records
containing dynamically sized components may not be the subjects.
A base type may not be mapped (via a component clause) into an
area larger than it normally occupies; for example, an integer may
not be mapped into an area greater than 32 bits. A composite type
used as a component of a representation specified record must be
aligned so as to preserve the alignment of its constituent
components. If a composite type (a record or an array) is used as a
field or element in a second composite type, then any representation
specification on the second type must retain the bit-alignment of the
original type. This explains why the type string (which is a
composite type -- an array of characters) cannot be aligned on
anything but its original alignment, for example,

type integerarray is array (integer range 1..2) of integer;
type integerrecord is

record

field : integerarray;

end record;

for integerrecord use
record

fieldl at 0 range 2.. 65;

end record:

This example is illegal because the composite type integerarray is
aligned on a zero ("0") bit boundary by default and this alignment
must be preserved in later uses of this type. The size in bits of a
representation specified record with 25 bits actually occupies 32
bits; if the record is used as a component of another representation
specified record, 32 bits must be reserved for it.

B-I

13.5 Address clauses for objects are supported.

Address clauses for subprograms and packages are not
supported.

13.5.1 Interrupts are supported as address clauses for entries for Ada
Real Time Executive targets only.

13.6.1 Change of representation is supported.

13.7 The Gould specification for package SYSTEM is:

package SYSTEM is

type ADDRESS is private;
type NAME is (Gould-Ada);
SYSTEMNAME : constant NAME := Gould Ada;

STORAGEUNIT: constant:= 8;
MEMORYSIZE : constant := 2**24-1; - for CONCEPT/PowerNode

- or
MEMORY-SIZE : constant:= 2*"31-1; -- for NPL

--System-Dependent Declarations

subtype BYTE is INTEGER range 0.. 2**8-1;
subtype INTEGER_16 is INTEGER range -2**15 .. 2*15-1;
subtype INTEGER_32 is INTEGER; -- range -2**31 .. 2**3 1-1;
subtype INTEGER_64 is LONGINTEGER;

-- range -2**63.. 2**63- 1

--System-Dependent Named Numbers

MININT : constant := -(2**63);
MAX INT: constant := (2"*63)-1;
MAX-DIGITS: constant:= 14;

B-12

MAXMANTISSA: constant := 31;
FINEDELTA: constant := 1.0/(2.0**MAXMANTISSA);
TICK: constant := 1.0/60.0;

--Other System Dependent Declarations

MAXOBJECTSIZE : constant := MAXINT;
MAXRECORD_COUNT: constant := MAXINT;
MAXTEXT_10_COUNT: constant := MAX INT-1;
MAX_TEXT_IOFIELD: constant := 1000;

subtype PRIORITY is INTEGER range 0.. 255;

NULLADDRESS : constant ADDRESS;

private

type ADDRESS is new INTEGER32;
NULL_ADDRESS constant ADDRESS :- 0;

end SYSTEM;

B-13

13.7 Pragmas SYSTEMNAME, STORAGEUNIT and
MEMORYSIZE allow only 1 valid value. Thus a recompilation
of package SYSTEM will not be performed.

13.7.1 For system-dependent named numbers, the following values
apply:

MIN_INT -2**63
MAXINT (2**63)-l
MAXDIGITS 14
MAXMANTISSA 31
FINE DELTA 1.0/(2.0**MAXMANTISSA)
TICK 1.0/60.0

There are no system generated names for system-dependent
components.

13.7.2 The representation attribute 'address is not supported for
packages and labels. An 'address attribute for a subprogram
refers to the address of the procedure header of the body of the
subprogram. For a task it is the address of the first byte of the
task's code. It is only implemented for tasks that are declared
through the use of task types. For a constant, 'address yields
either the address of a constant or NULLADDRESS if no
storage location is associated with the constant.

13.7.3 For any floating point type FLT, the following attribute values

apply:

Attribute Value

FLT'MACHTNE_ROUNDS FALSE
FLT'MACHINERADIX 16
FLT'MACHINEMANTISSA (See below)
FLT'MACHINEEMIN -64
FLT'MACHINEEMAX +63
FLT'MACINE_OVERFLOWS TRUE

B-14

For floating point types of 6 or fewer decimal digits:

FLT'MACHINEMANTISSA = 6

For other floating point types:

FLT'MACHINEMANTISSA = 13

13.8 Machine code insertions are not supported.

13.9 The pragma INTERFACE is supported for Assembler (asmx32),
and all Gould Common Languages (FORTRAN, Pascal, and C)
on UTX/32, MPX-32, and Ada Real Time Executive targets.
Pragma INTERFACE is also supported for cc and F77 on
UTX/32 targets.

13.10.2 Unchecked conversions are allowed between variables of types
(or subtypes) TI and T2 provided that:

" they have the same static size
" they are not unconstrained array types

B-15

Chapter 14. Input-Output

14.1 When the main program exits, any open files are closed by the
system.

Under MPX-32 and ARTE, multiple internal files cannot be
opened to the same external file. If an attempt is made to open
two internal files to the same external file, the exception
USE_ERROR is raised.

Under UTX/32, multiple internal files can only be opened to the
same external file for reading.

Calling CREATE with the name of an existing external file does
not raise an exception; the old file is overwritten.

14.2 Type COUNT is range 0 .. MAXINT-1 in TEXTIO. Type
COUNT is range 0.. MAXINT in DIRECTO.

Instantiation of DIRECT_1O and SEQUENTIALIO for
unconstrained record and array types is not supported.

B-16

14.2.1 FORM String Interpretation Conventions for CREATE and
OPEN are as follow:

The form string is case insensitive. The exception USEERROR
is raised if the form string is incorrect. Strings may be upper or
lower case.

For UTX/32: exclusive

Use of this string causes the file to be opened with a UTX/32
advisory lock.

Form string parameters must be separated by a blank. The
parameter value immediately follows the equal sign with no
intervening blanks. The defaults for file creation are the same as
the MPX-32 defaults.

CREATE File:

BLOCKED => (TRUE, FALSE)
TRUE - file data initially blocked (default)
FALSE - file data initially unblocked

SHARED => {TRUE, FALSE)
TRUE - resource is sharable (default)
FALSE - resource is not sharable

ZERO => [TRUE, FALSE)
TRUE - file is zeroed on creation/expansion
FALSE - file is not zeroed on creation/expansion (default)

FILETYPE => (00 .. FF}
Resource type is equivalent to the file type code interpreted as
two hexadecimal digits. Valid values are 00 through FF
(default value is 00).

B-17

MAXINC => n
n size in blocks of each automatic increment for file extension

(default is 64 blocks)

MININC => n
n minimum acceptable automatic increment size in blocks if

MAXINC cannot be obtained (default value is 32 blocks)

SIZE => n
n initial block allocation size of the file

(default is 16 blocks for MPX-32 and 0 blocks for UTX/32
and Ada Real Time Executive targets)

OPEN file:

BLOCKED => (TRUE, FALSE)
TRUE - open in blocked mode (default)
FALSE - open in unblocked mode

SHARED => (TRUE, FALSE)
TRUE - open for explicit shared use
FALSE - open for exclusive use

If SHARED is not specified, the file is opened for implicit
shared use (default).

Note: This option is applicable only if the file was created as a
shareable file.

PAGE => (TRUE, FALSE)
TRUE - page terminal output
FALSE - do not page output

For direct access, the default size of the created file in UTX/32
equals 0 and in MPX-32 equals 16 blocks.

For ARTE:

B-18

When a file is opened, the ARTE file system support determines
whether the file resides on a UTX/32 partition or a DFS partition by
reading the first path element. The possibilities are:

* The root file system of the boot disk
• Another UTX/32 file system
* A direct file system

The create, open, close, read, write, and delete procedure
calls in the Ada application program correspond to those procedures
documented in the Ada LRM. On the create or open (with implied
create) statement, the form parameter is an implementation specific
string parameter that gives more information about the file. The
string contains a sequence of DFS parameter names and values. The
syntax of the form string is:

form : constant string := "paraml =value param2=value";

Parameters for DFS files are listed below. All parameters are
optiinal and can be omitted if the default is to be used.

size specifies the starting file size in tracks. The minimum size is
one. The maximum size is limited by the contiguous space available
in the file system. (On a UDP, for example, one track is 16 sectors;
one sector is 1024 bytes.) The default value is one track.

extent specifies the size of each additional extent (in tracks) if the
file must be extended due to passing end of file (EOF) on a write.
The minimum extent size is one track. The maximum size is limited
by the amount of contiguous file space available in the file system.
The default value is one. UseError is raised at runtime if the file
system support attempts to extend the file and too large a number
was specified.

gap specifies the maximum number of cylinders that can separate
extents of a file. Gap=O, which is the default, means space can be

B-19

allocated in any cylinder. A gap of one or more indicates the new
extent must begin in a cylinder no more than that number of
cylinders away from the last sector of the previous extent. Smaller
numbers mean less seek time when skipping from one extent to the
next. The maximum gap size is limited only by the distance between
the end of the current extent and the end of the partition.

Use_Error is raised if an attempt to extend a file fails because
of a lack of space, or no space is available within the specified gap
parameter.

nobuf specifies that I/O is to be done directly from and to the
object specified in the user call. Normally I/O is buffered into a
holding area in the ARTE Runtime Library and the data is then
moved to the user area. This parameter provides an advantage for
large data transfers, i.e., greater than 8192 bytes (the internal buffer
size). The disadvantage is the possibility of wasted disk space. All
unbuffered transfers begin on a disk sector boundary. If a record
happens to equal N sectors plus I byte, then nearly an entire sector
will be wasted for each record that is written. Data should be
structured to minimize this loss if this parameter is used. The nobuf
parameter does not have a value; its presence in the form string
causes it to be true; otherwise, it is false.

B-20

14.3 For UTX/32, the default standard input and output files are UNIX
standard in and standard out. These can be redirected in the usual
way. For MPX-32, the default standard input and output files are
logical file code SYC for standard input and SLO for standard
output. These files are automatically assigned as appropriate for
interactive, batch and real time tasks.

For both UTX/32 and MPX-32, the file and line terminators are
the normal end of file and end of line. The page terminator is
control-L. The last page terminator before the end of file is not
physically present in the file, but it is assumed to be present by the
rest of the system.

Type COUNT is range 0.. MAX_INT-1 in TEXT_10
Type COUNT is range 0.. MAXINT in DIRECT_IO

Annex A. Predefined Language Attributes

There are no implementation-defined attributes.

The representation attribute 'address is not supported for packages
and labels. An 'address attribute for a subprogram refers to the
address of the procedure header for the body of the subprogram.
For a task it is the address of the first byte of the task's code. It is
only implemented for tasks that are declared through the use of task
types. For a constant, 'address yields either the address of a
constant or NULLADDRESS if no storage location is associated
with the constant.

B-21

Annex B. Predefined Language Pragmas

When interfacing to C, FORTRAN, or Pascal, the compilers for
these languages force the name in the object code to correspond to
the appropriate convention. Thus, for C, the first character of the
name has an underscore prepended, FORTRAN has an underscore
added in front of and behind the name, and Pascal has an
underscore added in front and two underscores added behind the
given name.

The following pragmas have no effect:

" CONTROLLED
* MEMORYSIZE
• OPTIMIZE
" STORAGEUNIT
" SYSTEM_NAME

The default value for pragma LIST is ON unless the first pragma
LIST statement encountered specifies ON, in which case the default
is OFF.

The following implementation-dependent pragmas are supported:

COMMENT Embeds the text of a string literal within
the object file of the compilation unit
containing the pragma. The syntax is:

pragma COMMENT ("text of the comment");

This pragma may appear at any location
within the source code of an Ada unit.
There is no restriction on the number of
comments that may be used.

B-22

IMAGES Controls where the code to support the 'images
attribute for an enumeration type is generated.
The syntax is:

pragma IMAGES (<enum_name>), DEFERRED I IMMEDIATE);

<enum_name> must be the name of a previously
defined enumeration type. This pragma must
appear in the same package specification or
declarative part as the type definition. If
IMMEDIATE is specified, the code for the
'images attribute is generated in the compilation
unit where the type definition appears. This is
the default. If DEFERRED is specified, the
code is generated in any compilation unit that
references the 'images attribute. Note that if no
references are made to the 'images attribute, no
code is ever generated.

LINKNAME Pragma LINKNAME is used to associate a
string with the name of a routine in the object
code. The syntax is:

pragma LINKNAME (<adaname>, <string>);

B-23

..

<adaname> must be the name of an Ada
routine that previously appeared in a pragma
INTERFACE. The effect of this pragma is to
use the <string> as the name for the routine in
the object code for the unit. Thus,

function Hyperbolic Sin (X: Float)

return Float;

pragma INTERFACE (Assembly, Hyperbolic_Sin);

pragma LINKNAME (HyperbolicSin, ":HSIN:");

would cause the compiler to use the string
":HSIN:" in the object code whenever referring
to the Ada routine HyperbolicSin.

When interfacing to C, FORTRAN, or Pascal,
the compilers for these languages force the
name in the object code to correspond to the
appropriate Gould convention. The Ada
compiler automatically adapts to these
conventions. The Ada compiler enforces the
following conventions on the names inserted
into the object code, where <name> is the
subprogram name specified in a pragma
INTERFACE statement:

_<name> C
-<name>- FORTRAN
_<name>__ Pascal

B-24

Annex C. Predefined Language Environment

Package LOWLEVEL_10 is not provided.
Package MACHINECODE is not provided.

Neither SEQUENTIAL_10 nor DIRECT_10 raises
DATAERROR.

Type INTEGER is range -(2**31)..(2*31)-1;

Type SHORT_INTEGER is range -(2**15)..(2**15)-1;

Type LONGINTEGER is range -2**63..(2**63) -1;

Ada FLOAT and LONGFLOAT use the standard Gould floating
point format as described in the CONCEPT 32/67xx and
CONCEPT 32/97xx Reference Manuals and the PowerNode 60xx
and PowerNode 90xx Reference Manuals.

Type DURATION is delta 1.0/(2.0**14) range -86400.0.. 86400.0;

B-25

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGIDI (1..199 => 'A', 200 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

$BIG ID2 (1..199 => 'A', 200 => '2')
An identifier the size of the
maximum input line length which
is identical to $BIG IDI except
for the last character.

$BIGID3 (1..100 => 'A', 101 => '3',
An identifier the size of the 102..200 => 'A')
maximum input line length which
is identical to $BIGID4 except
for a character near the middle.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1-100 => 'A', 101 :> '4',
An identifier the size of the 102..200 => 'A')
maximum input line length which
is identical to $BIGID3 except
for a character near the middle.

$BIG INTLIT (1..197 => '0', 198..200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..194 => '0', 195..200 :> "69.OE1")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRINGI (1 => '"', 2..101 :> 'A', 102 => "')
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIG STRING2 (1 => "', 2-100 => 'A', 101 => '1',
A string literal which when 102 => '"')
catenated to the end of
BIG STRING1 yields the image of
BIGIDI.

$BLANKS (1..180 :> '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST (2**63)-2
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 16777215
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 8
An integer literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME GOULDADA
The vafue of the constant
SYSTEM.SYSTEMNAME.

$DELTADOC 1.0/(2.0"'31)
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD LAST 1000

A universal integer
literal whose value is
TEXT IO.FIELD'LAST.

$FIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$ FLOATNAME NOSUCHFLOAT_TYPE
The name of a predefined
floating-point type other than

FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER THAN DURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 10000000.0
A uni'versal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 255
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILE NAMEI (1..257 => 'B')
An external file name which
contains invalid characters.

$ILLEGAL EXTERNALFILE NAME2 (1..257 => 'A')
An external file name whi.ch
is too long.

$INTEGERFIRST -(2"'31)
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGER LAST (2**31)-I
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 (2"*31)
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -10000000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX DIGITS 14
Maximum digits supported for
floating-point types.

$MAXIN_LEN 200
Maximum input line length
permitted by the implementation.

$MAXINT (2"'63)-1
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAX INT PLUS_1 (2**63)
A universal integer literal
whose value is SYSTEM.MAXINT+1.

$MAXLEN INT BASED LITERAL (1..2 => "2:", 3..197 => '0',
A universal - integer based 198..200 => "11:")

literal whose value is 2#11#
with enough leading zeroes in

the mantissa to be MAX INLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL (1.3 => "16:", 4.196 => '0',
A universal real based literal 197..200 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LITERAL (1 => "', 2-199 > 'A'9 200 => "')
A string literal of size
MAX INLEN, including the quote
characters.

$MININT -(2**63)
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHTYPE

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONG-FLOAT, or LONGINTEGER.

$NAME LIST GOULDADA
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASED INT 16#FFFFFFFFFFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEWMEMSIZE 16777215
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEMSIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEWSTOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEWSYS NAME GOULDADA
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 1.0/60.0
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF-PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. BC3009B: This test wrongly expects that circular instantiations will
be detected in several cou-ilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

e. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

f. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

D-1

WITHDRAWN TESTS

g. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

h. CD2B15C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects

in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

i. CD2D11B: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

J. CD50O7B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

k. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

1. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

m. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

n. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

o. CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

p. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

q. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,

D-2

WITHDRAWN TESTS

132, and 136).

r. CE3411B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUTERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

