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Summary

This research project involved the development of mathematical models for

analysis, synthesis, and simulation of large systems of interacting devices. The work

was motivated by problems that may become important in high density VLSI chips

with characteristic feature sizes less than 1 micron: it is anticipated that interactions

of neighboring devices will play an important role in the determination of circuit pro-

perties. It is hoped that the combination of high device densities and such local

interactions can somehow be exploited to increase circuit speed and to reduce power

consumption. To address these issues from the point of view of system theory,

research was pursued in the areas of nonlinear and stochastic systems and into neural

network models.

Statistical models were developed to characterize various features of the

dynamic behavior of interacting systems. Random process models for studying the

resulting asynchronous modes of operation were investigated. The local interactions

themselves may be modeled as stochastic effects. The resulting behavior has been

investigated through the use of various scaling limits, and by a combination of other

analytical and simulation techniques. Techniques arising in a variety of disciplines

where models of interaction have been formulated and explored were considered and

adapted for use. Of particular relevance are random field models of spatial interac-

tion, various results concerning stochastic convergence related to the Central Limit

Theorem, and some basic ideas about computational complexity related to analog

systems. Research into the relations between state space structure and the input-

output function of large systems, using geometric and algebraic methods from non-

linear system theory, was performed. Distributed computation models, in the form

of artificial neural networks, have been studied because of the great interest in appli-

cations of such systems to a variety of problems in pattern classification and signal

processing. A,=es.ion For
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Technical Results

A first area of significant progress developed from an investigation of applica-

tions of nonlinear system theory to realizability questions for linear filtering. It has

been shown [1] that internally nonlinear systems do not produce a broader class of

linear input-output behaviors than internally linear systems. This means, for exam-

ple, that optimal linear filters cannot be realized by "lumped" systems when the

associated covariance functions are not separable; thus it is not possible to exploit

nonlinear behavior to obtain optimal linear filters for more general signals than the

class to which the well-known Kalman filter may be applied. For nonlinear filters

that are described by a Volterra series input-output description, a similar kind of

result was obtained [41, and more general results for linear filtering in colored (corre-

lated) noise processes were developed using the theory of reproducing kernel Hilbert

spaces (RKHS) [5]. The general importance of these results is that there are funda-

mental structural limitations imposed on the input-output behavior of any well-

behaved finite dimensional nonlinear system.

A second area of work was in the formulation of Markov field models for spa-

tially interacting systems, [21 and [101. A number of models were proposed, and effi-

cient simulation procedures were developed. Several conclusions were drawn on the

basis of the work. First, the computational demands of general Markov field models

are extremely severe, and this suggests that either approximation methods will prob-

ably play an important role in any case where they are to be applied or massively

parallel computers such as the Connection Machine will be needed to handle the

demands. With no such parallel computing engine available for experimental work,

research relied on modest simulation studies, and special attention was given to stu-

dies of possibilities for time-scale decomposition and state aggregation. Intriguing

nonlinear phenomena similar to phase transitions in quantum physics models are

observed in the behavior of locally interacting systems.

After considerable discussion, including the valuable one at the ONR-sponsored

workshop on submicron systems, it appears that physical models for interacting quan-

tum systems have not yet reached the stage where applications of Markov field

models for large-scale behavioral modeling are realistic. That is to say, the physical
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constraints that are necessary to impose on this general form of empirical model are

not yet well enough understood. However, based on the success of stochastic models

in applications such as binary (and gray-scale) image modeling, we continue to be

optimistic that future work on quantum well devices and systems will lead to some

applications for Markov field models.

An attempt to use Markov field models in an application involving VLSI sys-

tems was made: the phenomenon of pattern sensitive faults in dynamic memory

devices was considered [101. However, the results of this preliminary analysis are not

very encouraging. Several comments about this particular problem can be made.

First, conventional work on testing of memory chips involves the design of a suffi-

ciently rich class of test input sequences. The use of statistical modeling, and sys-

tem identification/parameter estimation methods for determining faulty chips on the

basis of random test input sequences, is a different approach to testing which is not

(yet) widely accepted, although statistical models for phenomena affecting com-

ponent lifetimes (e.g. electromigration of metal at contacts) are common in reliability

modeling. Finally, we are unaware of any nonproprietary data on real chips that

could be used in evaluating the stochastic modeling approach to testing in a realistic

setting. This is crucial for such applications where it is desired to detect rare events

(failures) with low error probabilities. The highly developed detection systems used

in radar and sonar applications have evolved from an extensive amount of empirical

and analytical work. It should be expected that applications of statistical models in

VLSI testing will require a similar combinat* ,. of effort.

The general work done in the area of interacting systems of simple elements

suggested that various distributed computational models may be useful in signal pro-

cessing applications. The same conclusion has been reached by many other research-

ers starting from a variety of perspectives. To examine this kind of question in a

specific setting, we undertook some research to explore the structure of artificial

neural network models with an eye towards isolating one or more neural network

models that could be implemented with a spatially interacting structure of the type

we imagine might be relevant for future generation high density VLSI chips.

The first major accomplishment was a rederivation of the capacity results for
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Hopfield associative memory networks [9], [10]. This problem has attracted consider-

able attention, partly because of its implications that, in one particular but important

sense, the number of stored memories that can be achieved on average is disappoint-

ingly small (growing sublinearly with the size of the network). A new analysis was

carried out, using probabilistic methods related to the Central Limit Theorem for

dependent, exchangeable, random variables. This offers an advantage over the ear-

lier combinatorial approech because it gives a way of exhibiting how constraints on

interconnections and how stochastic neuron models affect asymptotic capacity.

Some further analysis, giving bounds for the number of spurious memories, was also

carried out [11].

The second major thrust in the neural networks area involved a family of struc-

tured, locally interconnected networks based on trellis graphs associated with linear

finite-state systems. Systems of this kind are used to generate convolutional codes

for digital communications. It was found that the combinatorial optimization prob-

lem of finding a shortest part through a segment of a trellis graph could be solved by

a suitably formulated (Grossberg-type) neural network [7], [81, [11]. This provides a

localized, distributed solution to the shortest path problem quite different in spirit

than the dynamic programming solution (Viterbi algorithm) which is widely used in

practice. Furthermore, this use of neural networks seems to offer a particularly nice

method for representing data with distributed redundancy and natural capabilities for

efficient fault tolerant implementation.

Finally, there was some research work that built upon on-going work concerning

analog computation. In particular, the work described in [61 describes a framework

for analysis of the complexity of physical systems, e.g. electronic circuits, neural net-

works, etc., based on the recognized (or at least widely believed) computational

intractability of certain combinatorial optimization problems, the class of NP-

complete problems. Since neural networks and more general nonlinear circuits have

been proposed as a means of solving NP-complete problems like the "Traveling

Salesman Problem," (by Hopfield and Tank, Chua, and others), the results of [6],

namely that the scaling difficulties encountered by such solutions as the problem size

increases, are quite naturally to be expected on the basis of complexity theory
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THE COMPLEXITY OF ANALOG COMPUTATION *

Anastasios VERGIS
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Kenneth STEIGLITZ
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Bradley DICKINSON

Department of Electrical Engineering, Princeton Uniersity, Princeton. NJ 08544. U S.,4

We ask if analog computers can solve NP-complete problems efficiently. Regarding this as unlikely, we
formulate a strong version of Church's Thesis: that any analog computer can be simulated efficientlv (in
polynomial time) by a digital computer. From this assumption and the assumption that P * NP we can draw
conclusions about the operation of physical devices used for computation.

An NP-complete problem. 3-SAT, is reduced to the problem of checking whether a feasible point is a local
optimum of an optimization problem. A mechanical device is proposed for the solution of this problem. It
encodes variables as shaft angles and uses gears and smooth cams. If we grant Strong Church's Thesis. that
P * N P and a certain "Downhill Principle" governing the physical behavior of the machine, we conclude that it
cannot operate successfully while using only polynomial resources.

We next prove Strong Church's Thesis for a class of analog computers described by well-behaved ordinary
differential equations, which we can take as representing part of classical mechanics.

We conclude with a comment on the recently discovered connection between spin glasses and combinatonal
optimization.

1. Introduction

Analog devices have been used, over the years, to solve a variety of problems. Perhaps most
widely known is the Differential Analyzer [4,261, which has been used to solve differential
equations. To mention some other examples, in [251 an electronic analog computer is proposed to
implement the gradient projection method for linear programming. In [18] the problem of finding
a minimum-length interconnection network between given points in the plane is solved with
movable and fixed pegs interconnected by strings; a locally optimal solution is obtained by
pulling the strings. Another method is proposed there for this problem, based on the fact that
soap films form minimal-tension surfaces. Many other examples can be found in books such as

*[14] and [16], including electrical and mechanical machines for solving simultaneous linear
equations and differential equations.

• This work was supported in part by ONR Grants N00014-83-K-0275 and N00014-83-K-0577, NSF Grant
ECS-8120037. U.S. Army Research-Durham Grant DAAG29-82-K-0095. and DARPA Contract N00014-82-K-0549.

0378-4754/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)
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Given the large body of work on the complexity of Turing-machine computation, and the
recent interest in the physical foundations of computation. it seems natural to stud, the
complexity of analog computation. This paper pursues the following line of reasoning: it is
generall. regarded as likely that P * NP-that certain combinatorial problems cannot be solved
efficiently bv digital computers. (Here we use the term efficient to mean that the time used b, an
'ideal' digital computer is bounded by a polynomial function of the size of the task description.
See [9] for discussion of this criterion.) We may ask if such problems can be solved efficiently by
other means, in particular, by machines of a nature different from digital computers. We thus
come to ask if NP-complete problems can be solved efficiently by physical devices that do not
use binary encoding (or, more generally, encoding with any fixed radix). We lump such devices
together under the term analog computer- in what follows we will use the term analog computer
to mean any deterministic physical device that uses a fixed number of physical variables to
represent each problem variable. This description is admittedly vague and certainly non-mathe-
matical-we mean it to capture the intuitive notion of a 'non-digital' computer. (More about this
in the next section.)

We want to emphasize that the question of whether an analog computer can solve an
NP-complete problem 'efficiently' is a question about the physical world, while the P = NP
question is a mathematical one. However, mathematical models of various kinds provide a
formalism that is apparently in,.Ispensable for the understanding of physical phenomena. An
important connection between the mathematical world of computation and the physical world of
computing hardware was discussed by Church. In his 1936 paper [61 he equated the intuitive
notion of effective calculability with the two equivalent mathematical characterizations of
X-definability and recursivity. Turing [281 then showed that this notion is equivalent to computa-
bility by what we have come to call a Turing machine, so that the intuitive notion of effective
calculability is now characterized mathematically by 'Turing-Computability'. This is generally
referred to as 'Church's Thesis', or the 'Church-Turing Thesis'. In our context we express this as
follows:

Church's Thesis (CT): Any analog computer with finite resources can be simulated by a digital
computer.

What we will come to demand is more than that: we are interested in efficient computation.
computation that does not use up resources that grow exponentially with the size of the problem.
This requirement leads us to formulate what we call

Strong Church's Thesis (SCT): Any finite analog computer can be simulated efficient 'v by a
digital computer, in the sense that the time required by the digital computer to simulate the
analog computer is bounded by a polynomial function of the resources used by the analog
computer.

Evidently we will need to give a characterization of analog computers and the resources that
they use. This is discussed in the next section. Following that, we argue that certain numerical
problems are inherently difficult (i.e. not polynomial) for analog computers, even though they are
easy for digital computers.

Something like our Strong Church's Thesis was discussed recently by Feynman [81 in
connection with the problem of building a (digital) computer that simulates physics. He says:
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"The rule of simulation that I would like to have is that the number of computer elements
reo ired to simulate a large physical system is only to be proportional to the space-time
volume of the physical system. I don't want to have an explosion."

We would argue that 'proportional to' be replaced by 'bounded by a polynomial function of'. in
the spirit of modern computational complexity theory.

A class of mechanical devices is proposed in Section 5. Machines in this class can be used to
find local optima for mathematical programming problems. We formalize the physical operation
of these machines by a certain 'Downhill Principle'. Basically, it states that if. in our class of
mechanical devices, there are feasible 'downhill' directions. the state vector describing the
physical system moves in such a direction. We also discuss measuring the resources required b,
these machines.

In Section 6 we reduce 3-SAT (the problem of whether a Boolean expression in 3-conjunctive
normal form has a satisfying truth assignment), to the problem of checking whether a given
feasible point is a local optimum of a certain mathematical programming problem. This shows
that merely checking for local optimality is NP-hard.

In 3.ection 7 a mechanical device in the class mentioned above is proposed for the solution of
3-SAT. Naturally, the efficient operation of this machine is highly suspect. Be careful to notice
that the operation of any machine in practice is a physics question, not a question susceptible of
ultimate mathematical demonstration. Our analysis must necessarily be based on an idealized
mathematical model for the machine. However, we can take the likelihood of P : NP, plus the
likelihood of Strong Church's Thesis, as evidence that in fact such a machine cannot operate with
polynomially bounded resources, whatever the particular laws of physics happen to be.

The paradigm that emerges from this line of reasoning is then the following:

If a strongly NP-complete problem can be solved by an analog computer, and if P # NP. and
if Strong Church's Thesis is true then the analog computer caunot operate successfully with
polynomial resources.

We will then prove a restricted form of Strong Church's Thesis, for analog computers governed
by well-behaved differential equations. This suggests that any interesting analog computer shouid
rely on some strongly nonlinear behavior, perhaps arising from quantum mechanical mecha-
nisms; however, the problem of establishing Strong Church's Thesis (or even the Weak Thesis) in
the case of quantum-mechanical or probabilistic laws is an open problem.

2. Some terminology

We know what a digital computer is; Turing has laid out a model for what a well-defined
digital computation must be: it uses a finite set of symbols (without loss of generality to.l}) to
store information, it can be in only one of a finite set of states, and it operates by a finite set of
rules for moving from state to state. Its memory tape is not bounded in length a priori, but only a
finite amount of tape can be used for any one computation. What is fundamental about the idea
of a Turing Machine and digital computation in general, is that there is a perfect correspondence
between the mathematical model and what happens in a reasonable working machine. Being
definitely in one of two states is easily arranged in practice, and the operation of real digital
computers can be (and usually is) made very reliable.
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A Trellis-Structured Neural Network*

Thomas Petschet and Bradley W. Dickinson
Princeton University, Department of Electrical Engineering

Princeton, NJ 08544

Abstract

We have developed a neural network which consists of cooperatively inter-
connected Grossberg on-center off-surround subnets and which can be used to
optimize a function related to the log likelihood function for decoding convolu-
tional codes or more general FIR signal deconvolution problems. Connections in
the network are confined to neighboring subnets, and it is representative of the
types of networks which lend themselves to VLSI implementation. Analytical and
experimental results for convergence and stability of the network have been found.
The structure of the network can be used for distributed representation of data
items while allowing for fault tolerance and replacement of faulty units.

1 Introduction

In order to study the behavior of locally interconnected networks, we have focused
on a class of "trellis-structured" networks which are similar in structure to multilayer
networks [5] but use symmetric connections and allow every neuron to be an output.
We are studying such locally interconnected neural networks because they have the
potential to be of great practical interest. Globally interconnected networks, e.g.,
Hopfield networks [3], are difficult to implement in VLSI because they require many
long wires. Locally connected networks, however, can be designed to use fewer and
shorter wires.

In this paper, we will describe a subclass of trellis-structured networks which op-
timize a function that, near the global minimum, has the form of the log likelihood
function for decoding convolutional codes or more general finite impulse response sig-
nals. Convolutional codes, defined in section 2, provide an alternative representation
scheme which can avoid the need for global connections. Our network, described in
section 3, can perform maximum likelihood sequence estimation of convolutional coded
sequences in the presence of noise. The performance of the system is optimal for low
error rates.

The specific application for this network was inspired by a signal decomposition
network described by Hopfield and Tank [6]. However, in our network, there is an
emphar " on local interconnections and a more complex neural model, the Grossberg
on-c," ., off-surround network (2], is used. A modified form of the Gorssberg model
is de - -,- in section 4. Section 5 presents the main theoretical results of this paper.
Although -he deconvolutioji network is simply a set of cooperatively interconnected

*Suppoi,.d by the Office of Naval Research through grant N00014-83-K-0577 and by the National
Sciegtce Foundation through grant ECS84-05460.

tPermanent address: Siemens Corporate Research and Support, Inc., 105 College Road East,
Princeton, NJ 08540.



on-center off-surround subnetworks. and absolute stability for the individual subnet-
works has been proven [1], the cooperative interconnections between these subnets
make a similar proof difficult and unlikely. We have been able, however, to prove
equiasymptotic stability in the Lyapunov sense for this network given that the gain
of the nonlinearity in each neuron is large. Section 6 will describe simulations of the
network that were done to confirm the stability results.

2 Convolutional Codes and MLSE

In an error correcting code, an input sequence is transformed from a b-dimensional
input space to an Al-dimensional output space, where M > b for error correction
and/or detection. In general, for the b-bit input vector U = (ul,. . ., ub) and the AM-
bit output vector V = (vl,..., vM), we can write V = F(ul,. .. , ub). A convolutional
code, however, is designed so that relatively short subsequences of the input vector
are used to determine subsequences of the output vector. For example, for a rate 1/3
convolutional code (where M 3b), with input subsequences of length 3, we can write
the output, V = (vl,. .. , Vb) for vi = (vi,, vi,2, v, 3 ), of the encoder as a convolution
of the input vector U = (ul, ... , U, 0, 0) and three generator sequences

go = (1 1 1) gi = (1 1 0) g2 = (0 1 1).

This convolution can be written, using modulo-2 addition, as

i

V; = Ukgi-k ()
k=max(1,i-2)

In this example, each 3-bit output subsequence, vi, of V depends only on three
bits of the input vector , i.e., vi = f'(ui-2, ui- 1, ui). In general, for a rate 1/n code, the
constraint length, K, is the number of bits of the input vector that uniquely determine
each n-bit output subsequence. In the absence of noise, any subsequences in the
input vector separated by more than K bits (i.e., that do not overlap) will produce
subsequences in the output vector that are independent of each other.

If we view a convolutional code as a special case of block coding, this rate 1/3,
K = 3 code converts a b-bit input word into a codeword of length 3(b + 2) where
the 2 is added by introducing two zeros at the end of every input to "zero-out" the
code. Equivalently, the coder can be viewed as embedding 2 b memories into a 2 3(b+2 )-

dimensional space. The minimum distance between valid memories or codewords in
this space is the free distance of the code, which in this example is 7. This implies
that the code is able to correct a minimum of three errors in the received signal.

For a convolutional code with constraint length K, the encoder can be viewed as
a finite state machine whose state at time i is determined by the K - 1 input bits,
i-k,. . ., u-. The- encoder can also be represented as a trellis graph such as the one

shown in figure 1 for a K = 3, rate 1/3 code. In this example, since the constraint
length is three, the two bits ui- 2 and ui- 1 determine which of four possible states the
encoder is in at time i. In the trellis graph, there is a set of four nodes arranged in a
vertical column, which we call a stage, for each time step i. Each node is labeled with
the associated values of ui- 2 and ui- 1. In general, for a rate 1/n code, each stage of
the trellis graph contains 2 K- 1 nodes, representing an equal number of possible states.
A trellis graph which contains S stages therefore fully describes the operation of the
encoder for time steps 1 through S. The graph is read from left to right and the upper
edge leaving the right side of a node in stage i is followed if ui is a zero; the lower edge
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Figure 1: Part of the trellis-code representation for a rate 1/3, K = 3 convolutional
code.

if ui is a one. The label on the edge determined by ui is vi, the output of the encoder
given by equation I for the subsequence Ui-2, Ui- 1, Ui.

Decoding a noisy sequence that is the output of a convolutional coder plus noise
is typically done using a maximum likelihood sequence estimation (MLSE) decoder
which is designed to accept as input a possibly noisy convolutional coded sequence, R,

and produce as output the maximum likelihood estimate, V, of the original sequence,
V. If the set of possible n(b+2)-bit encoder output vectors is {Xm : m = , ..., ( + 2)

and x,,i is the ith n-bit subsequence of X.. and ri is the ith n-bit subsequence of R
then

b

V = argmax P(r, I x,,i) (2)

That is, the decoder chooses the Xm that maximizes the conditional probability, given
Xm, of the received sequence.

A binary symmetric channel (BSC) is an often used transmission channel model in
which the decoder produces output sequences formed from an alphabet containing two
symbols and it is assumed that the probability of either of the symbols being affected
by noise so that the other symbol is received is the same for both symbols. In the
case of a BSC, the log of the conditional probability, P(ri I xm,i), is a linear function
of the Hamming distance between ri and xn,i so that maximizing the right side of
equation 2 is equivalent to choosing the Xm that has the most bits in common with
R. Therefore, equation 2 can be rewritten as

6 n

V = arg max I L .(.,,i. (3)

where xn,i, is the 1th bit of the ith subsequence of X, and I4(b) is the indicator
function: I.(b) = 1 if and only if a equals b.

For the general case, maximum likelihood sequence estimation is very expensive
since the number of possible input sequences is exponential in b. The Viterbi algo-
rithm [7], fortunately, is able to take advantage of the structure of convolutional codes
and their trellis graph representations to reduce the complexity of the decoder so that



it is only exponential in K (in general K < b). An optimum version of the Viterbi al-
gorithm examines all b stages in the trellis graph, but a more practical and very nearly
optimum version typically examines approximately 5K stages, beginning at stage i,

before making a decision about ui.

3 A Network for MLSE Decoding

The structure of the network that we have defined strongly reflects the structure of a
trellis graph. The network usually consists of 5K subnetworks, each containing 2 K°-1
neurons. Each subnetwork corresponds to a stage in the trellis graph and each neuron
to a state. Each stage is implemented as an "on-center off-surround" competitive
network [21, described in more detail in the next section, which produces as output a
contrast enhanced version of the input. This contrast enhancement creates a "winner
take all" situation in which, under normal circumstances, only one neuron in each
stage -the neuron receiving the input with greatest magnitude - will be on. The
activation pattern of the network after it reaches equilibrium indicates the decoded
sequence as a sequence of "on" neurons in the network. If the j-th neuron in subnet i,
Ai,j is on, then the node representing state j in stage i lies on the network's estimate
of the most likely path.

For a rate 1/n code, there is a symmetric cooperative connection between neurons
A/-j and M+,,A;,k if there is an edge between the corresponding nodes in the trellis
graph. If (x 1 ,j,k,1,...,XiJ ,) are the encoder output bits for the transition between
these two nodes and (rij,. . . , ri,,) are the received bits, then the connection weight
for the symmetric cooperative connection between jj and Ai+l,k is

1n

MI,3,k = n (X,,k, ) (4)

If there is no edge between the nodes, then mid,,k = 0.
Intuitively, it is easiest to understand the action of the entire network by exam-

ining one stage. Consider the nodes in stage i of the trellis graph and assume that
the conditional probabilities of the nodes in stages i - 1 and i + 1 are known. (All
probabilities are conditional on the received sequence.) Then the conditional proba-
bility of each node in stage i is simply the sum of the probabilities of each node in
stages i - 1 and i + 1 weighted by the conditional transition probabilities. If we look
at stage i in the network, and let the outputs of the neighboring stages i - 1 and
i + 1 be fixed with the output of each neuron corresponding to the "likelihood" of
the corresponding state at that stage, then the final outputs of the neurons AMj will
correspond to the "likelihood" of each of the corresponding states. At equilibrium, the
neuron corresponding to the most likely state will have the largest output.

4 The Neural Model

The "on-center off-surround" network[2] is used to model each stage in our network.
This model allows the output of each neuron to take on a range of values, in this
case between zero and one, and is designed to support contrast enhancement and
competition between neurons. The model also guarantees that the final output of
each neuron is a function of the relative intensity of its input as a fraction of the total
input provided to the network.



Using the "on-center off-surround" model for each stage and the interconnection
weights, mij,/, defined in equation 4, the differential equation that governs the in-
stantaneous activity of the neurons in our deconvolution network with S stages and
N states in each stage can be written as

N

iij -Auij + (B- uij)(f(ui,j ) + Z[mi-l,k,Jf(Ui-l,k) +mi,j,kf(ui+l,k)])
k=l(1

-(C+ u,) -(f(ui,k) + j-[m,-Ikjf(ui-,k) + mi,l,kf(ui+lk)])
k=j 1=1

where f(x) = (1 + e-AX)- 1, A is the gain of the nonlinearity, and A, B, and C are
constants

For the analysis to be presented in section 5, we note that equation 5 can be
rewritten more compactly in a notation that is similar to the equation for additive
analog neurons given in [4]:

S N

ij = -Auij - 1 Z(Ui,,Sij,kLf(Uk,) - Tij,kjf(u ,)) (6)
k=1 1=1

where, for 1 < I < N,

sij,ij = 1 Ti,j,i,j = B
Si,j_j I -- T rti-,, q  Tij,ij = -C V [ # j

q Ti,,ji-l, = Bmi-l,,j - C , mi-lz,q (7)
si,j,i+i,l = E Miq'I q#Jq

q= 0 V k T 1,i, i + 1} i,j,i+l,i = Bmi,j,, - C E mi,q,i
Sjkl=0 k i-,~iI q;6j

To eliminate the need for global interconnections within a stage, we can add two
summing elements to calculate

N N N

= Ef(z,,) and .i = [M,.,k,,f(U.,k)+ mi,,,kf(Ui+lk)] (8)
j=1 j=1 k=1

Using these two sums allows us to rewrite equation 5 as

izi,, = -Au, + (B + C)(f(uij) + Ii,.) - ui,j (Xi + J) (9)

This form provides a more compact design for the network that is particularly suited
to implementation as a digital filter or for use in simulations since it greatly reduces
the calculations required.

5 Stability of the Network

The end of section 3 described the desired operation of a single stage, given that the
outputs of the neighboring stages are fixed. It is possible to show that in this situation
a single stage is stable. To do this, fix f(uk,) for k E {i - 1, i + 1} so that equation 6
can be written in the form originally proposed by Grossberg [2]:

N N

= -Au,, + (B - ui,,) (I, + f(ui,,)) - (ui,, + C) (1 ik + Z f (Uik)) (10)
k1 k=1



where li F-IN , [m.i- ,kdf(ui-1,k) + Mi,,kf(Ui+1,k)].

Equation 10 is a special case of the more general nonlinear system

ii = ai(zi) (bi(xi) - ()Ci,kdk(Xk(

k=i1~dc(t)

where: (1) ai(xi) is continuous and ai(xi) > 0 for zi 0; (2) bi(xi) is continuous
for xi ! 0; (3) ci,k = ck,i; and (4) di(xi) 0 for all xi E (-0,00). Cohen and
Grossberg [1] showed that such a system has a global Lyapunov function:

V(x) = - bi(i)d()d( ) + 1 c,,kd,(x,)dk(xk) (12)

i=1 2= k=1

and that, therefore, such a system is equiasymptotically stable for all constants and
functions satisfying the four constraints above. In our case, this means that a single
stage has the desired behavior when the neighboring stages are fixed. If we take the
output cf each neuron to correspond to the likelihood of the corresponding state then,
if the two neighboring stages are fixed, stage i will converge to an equilibrium point
where the neuron receiving the largest input will be on and the others will be off, just
as it should according to section 2.

It does not seem possible to use the Cohen-Grossberg stability proof for the entire
system in equation 5. In fact, Cohen and Grossberg note that networks which allow
cooperative interactions define systems for which no stability proof exists [1].

Since an exact stability proof seems unlikely, we have instead shown that in the
limit as t6e gain, A, of the nonlinearity gets large the system is asymptotically stable.
Using the notation in [4], define Vi = f(ui) and a normalized nonlinearity f(.) such
that f- 1 (V) = Aui. Then we can define an energy function for the deconvolution
network to be

E =..! T,k,LViJVk,1 A ~ - Sij,kLVk,I) f.jV jI (() d( (13)
i,j,k,J kI

The time derivative of E is

--= - .. (-AiJ - uij E Si,j,k,lVk,l + : Ti,j,k,lVk,l
dt k J 1 kI V (14 )

- ! Z"3,, / -. '()dq'
A kJ 4

It is difficult to prove that k is nonpositive because of the last term in the parentheses.
However, for large gaL, this term can be shown to have a negligible effect on the
derivative.

It can be shown that for f1(u) = (I + e-u)- , fj Jf-I()d( is bounded above

by log(2). In this deconvolution network, there are no connections between neurons
unless they are in the same or neighboring stages, i.e., Si,jk,l = 0 for Ii - kJ > 1 and
I is restricted so that 0 < 1 < S, so there are no more than 3S non-zero terms in the
problematical summation. Therefore, we can write that

lim -1 E SiJ, -() d( = 0
A-,.oo A k



Then, in the limit as A - oo, the terms in parentheses in equation 14 converge to u,

in equation 6, so that-im E = -j- ii. Using the chain rule, we can rewrite this
A0dt

as

Urn =-~ (dVjj' d 2 I(Vj
2

It can also be shown that that, if f(-) is a monotonically increasing function then
d-f-1(V) > 0 for all V. This implies that for all u = (u, ,. . ., uy,s), im,-o k < 0.

and, therefore, for large gains, E as defined in equation 13 is a Lyapunov function for
the system described by equation 5 and the network is equiasymtotically stable.

If we apply a similar asymptotic argument to the energy function, equation 13
reduces to

E= - Tij,k,1Vi,jVk, (15)
i,j,k,1

which is the Lyapunov function for a network of discontinuous on-off neurons with
interconnection matrix T. For the binary neuron case, it is fairly straight forward to
show that the energy function has minima at the desired decoder outputs if we assume
that only one neuron in each stage may be on and that B and C are appropriately
chosen to favor this. However, since there are O(S 2 N) terms in the disturbance
summation in equation 15, convergence in this case is not as fast as for the derivative
of the energy function in equation 13, which has only O(S) terms in the summation.

6 Simulation Results

The simulations presented in this section are for the rate 1/3, K = 3 convolutional code
illustrated in figure 1. Since this code has a constraint length of 3, there are 4 possible
states in each stage and an MLSE decoder would normally examine a minimum of
5K subsequences before making a decision, we will use a total of 16 stages. In these
simulations, the first and last stage are fixed since we assume that we have prior
knowledge or a decision about the first stage and zero knowledge about the last stage.
The transmitted codeword is assumed to be all zeros.

The simulation program reads the received sequence from standard input and uses
it to define the interconnection matrix W according to equation 4. A relaxation
subroutine is then called to simulate the performance of the network according to an
Euler discretization of equation 5. Unit time is then defined as one RC time constant of
the unforced system. All variables were defined to be single precision (32 bit) floating
point numbers.

Figure 2a shows the evolution of the network over two unit time intervals with the
sampling time T = 0.02 when the received codeword contains no noise. To interpret
the figure, recall that there are 16 stages of 4 neurons each. The output of each stage
is a vertical set of 4 curves. The upper-left set is the output of the first stage; the
upper-most curve is the output of the first neuron in the stage. For the first stage,
the first neuron has a fixed output of 1 and the other neurons have a fixed output of
0. The outputs of the neurons in the last stages are fixed at an intermediate value to
represent zero a priori knowledge about these states. Notice that the network reaches
an equilibrium point in which only the top neurons in each state (representing the "00"
node in figure 1) are on and all others are off. This case illustrates that the network
can correctly decode an unerrored input and that it does so rapidly, i.e., in about one
time constant. In this case, with no errors in the input, the network performs the
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Figure 2: Evolution of the trellis network for (a) unerrored input, (b) input with burst
errors: R is 000 000 000 000 000 000 000 000 111 000 000 000 000 000 000. A = 10.,
A = 1.0, B = 1.0, C = 0.75, T = 0.02. The initial conditions are xll = 1., xlj = 0.0,

16,j = 0.2, all other xij = 0.0.

same function as Hopfield and Tank's network and does so quite well. Although we
have not been able to prove it analytically, all our simulations support the conjecture
that if xij(0) = for all i and j then the network will always converge to the global
minimum.

One of the more difficult decoding problems for this network is the correction of
a burst of errors in a transition subsequence. Figure 2b shows the evolution of the
network when three errors occur in the transition between stages 9 and 10. Note that
10 unit time intervals are shown since complete convergence takes much longer than
in the first example. However, the network has correctly decoded many of the stages
far from the burst error in a much shorter time.

If the received codeword contains scattered errors, the convolutional decoder should
be able to correct more than 3 errors. Such a case is shown in figure 3a in which the
received codeword contains 7 errors. The system takes longest to converge around two
transitions, 5-6 and 11-12. The first is in the midst of consecutive subsequences which
each have one bit errors and the second transition contains two errors.

To illustrate that the energy function shown in equation 13 is a good candidate
for a Lyapunov function for this network, it is plotted in figure 3b for the three cases
described above. The nonlinearity used in these simulations has a gain of ten, and, as
predicted by the large gain limit, the energy decreases monotonically.

To more thoroughly explore the behavior of the network, the simulation program
was modified to test many possible error patterns. For one and two errors, the program
exhaustively tested each possible error pattern. For three or more errors, the errors
were generated randomly. For four or more errors, only those errored sequences for
which the MLS estimate was the sequence of all zeros were tested. The results of
this simulation are summarized in the column labeled "two-nearest" in figure 4. The
performance of the network is optimum if no more than 3 errors are present in the
received sequence, however for four or more errors, the network fails to correctly decode
some sequences that the MLSE decoder can correctly decode.
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Figure 3: (a) Evolution of the trellis network for input with distributed errors. The
input, R, is 000 010 010 010 100 001 000 000 000 000 110 000 000 000 000. The
constants and initial conditions are the same as in figure 2. (b) The energy function
defined in equation 13 evaulated for the three simulations discussed.

errored number of number of errors

bits test vectors two-nearest four-nearest

0 1 0 0
1 39 0 0
2 500 0 0
3 500 0 0
4 500 7 0
5 500 33 20
6 500 72 68
7 500 132 103

Total 2500 244 191

Figure 4: Simulation results for a deconvolution network for a K = 3, rate 1/3 code.
The network parameters were: A = 15, A = 6, B = 1, C = 0.45, and T = 0.025.

For locally interconnected networks, the major concern is the flow of information
through the network. In the simulations presented until now, the neurons in each stage
are connected only to neurons in neighboring stages. A modified form of the network
was also simulated in which the neurons in each stage are connected to the neurons
in the four nearest neighboring stages. To implement this network, the subroutine to
initialize the connection weights was modified to assign a non-zero value to Wi,j,i+2,k.

This is straight-forward since, for a code with a constraint length of three, there is a
single path connecting two nodes a distance two apart.

The results of this simulation are shown in the column labeled "four-nearest" in
figure 4. It is easy to see that the network with the extra connections performs better



than the previous network. Most of the errors made by the nearest neighbor network
occur for inputs in which the received subsequences ri and ri+1 or ri+2 contain a total
of four or more errors. It appears that the network with the additional connections
is, in effect, able to communicate around subsequences containing errors that block
communications for the two-nearest neighbor network.

7 Summary and Conclusions

We have presented a locally interconnected network which minimizes a function that
is analogous to the log likelihood function near the global minimum. The results of
simulations demonstrate that the network can successfully decode input sequences
containing no noise at least as well as the globally connected Hopfield-Tank [6] de-
composition network. Simulations also strongly support the conjecture that in the
noiseless case, the network can be guaranteed to converge to the global minimum. In
addition, for low error rates, the network can also decode noisy received sequences.

We have been able to apply the Cohen-Grossberg proof of the stability of "on-
center off-surround" networks to show that each stage will maximize the desired local
"likelihood" for noisy received sequences. We have also shown that, in the large gain
limit, the network as a whole is stable and that the equilibrium points correspond to
the MLSE decoder output. Simulations have verified this proof of stability even for rel-
atively small gains. Unfortunately, a proof of strict Lyapunov stability is very difficult,
and may not be possible, because of the cooperative connections in the network.

This network demonstrates that it is possible to perform interesting functions even
if only localized connections are allowed, although there may be some loss of perfor-
mance. If we view the network as an associative memory, a trellis structured network
that contains NS neurons can correctly recall 2 S memories. Simulations of trellis net-
works strongly suggest that it is possible to guarantee a non-zero minimum radius of
attraction for all memories. We are currently investigating the use of trellis structured
layers in multilayer networks to explicitly provide the networks with the ability to
tolerate errors and replace faulty neurons.
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Abstract state
We have developed a neural or connectionist network which 000 00 000 00 1
optimizes a function having the form of the log likelihood - 111
function for the output sequence of a binary symmetric chan-
nel whose input comes from a convolutional code. The net-
work may be applied to more general FIR deconvolution 01 O11 01 01 0
problems. It requires mainly localized connections and is 1 00 1 00

selves to VLSI implementation. Analytical and empirical 110results on network performance and stability are described. 10 001 10 003
intended to represent the type of networks which lend them - -2 :101 101

1 Introduction (I1)010 11 01 4

One of the often cited problems in trying to implement stage 1-I stage i stage 1+1
neural networks, particularly of the Hopfield type ill,
in VLSI is that the networks generally require global Figure 1: Part of the trellis-code representation for a
interconnections. This causes difficulties, requiring long rate 1/3, K = 3 convolutional code.
wires to connect elements that are far apart. It would
be much easier to design efficient VLSI implementations 2 The Network
if connections could be restricted to be between only Consider the trellis graph, shown in figure 1, for a con-
elements that are 'close' together. volutional code that is to be searched by a maximum

While it is possible to impose a locality requirement likelihood estimator such as the Viterbi decoder 131. For
on a network which might ordinarily have global inter- a rate 1/n convolutional code with constraint length
connections, the performance will suffer. For a vari- K, if we force a decision after 5K stages, the trellis
ant of Hopfield associative memory networks, it has graph contains 5K stages, each containing 2 ,-I states.
been shown 121 that capacity decreases in proportion The Viterbi algorithm (or any other MLE algorithm)
to the maximum allowable distance between connected must choose the path through the trellis that has the
elements. It would be desirable to design networks in maximum likelihood of being correct given a (possibly
such a way that the locality constraint is initially sat- noisy) received bit sequence. Assuming a binary sym-
isfied, preferably exploiting the underlying structure of metric channel, we can assign a weight to each edge
the problem. in the trellis graph that is proportional to the number

We have developed a network which optimizes a func- of matching bits in the received bit sequence and the
tion that has the form of the likelihood function for expected sequence for that edge. The maximum likeli-
decoding convolutional codes or more general FIR sig- hood estimate in this case is equivalent to the path with
nal deconvolution. The structure of the network reflects the greatest cumulative weight.
the structure of the trellis representation of the convolu- Figure 1 corresponds to a rate 1/3 time invariant con-
tional code and therefore has the desired locality prop- volutional code with a constraint length of 3 where the
erty. The locality of the final network is also enhanced generator sequences are
by the choice of neural model used for each element. go = (1 1 1) 91 = (1 10) 2 = (0 1 1).

*Work supported by the Office of Naval Rsarch through grant For an input sequence u = (u, ..., ut, 0, 0), the encoder
N00014-SM-K-0677 and by the National Science Foundation output is v = (vl,..., vb+2). The output after the ith
through grant ECS84-05460.



input bit has entered the encoder is vi (vil, Vi2, Vi3) a symmetric cooperative connection between these two
where (using modulo-2 addition) neurons and the associated weight is

i In

V, = ukgi-k ( -
1 "" (2)

k=max(i,-2) 1=1

Notice that this code, for a fixed length input con- If there is no edge between Xlj and /i+lk , then

taining b bits, converts the b-bit input words into a M,,.&. = 0. I4(b) is the indicator function:

codeword of length 3(b + 2) where the 2 is added by (1 if a= b
introducing two zeros at the end of every input to "zero- 0(b) = 0 if a A b
out" the code. Equivalently, the coder can be viewed
as embedding 2 b memories into a 23(b+2)-dimensional For more general sequence estimation or FIR sig-
space. The minimum distance between valid memories nal deconvolution, e.g., MLE sequence estimation in
or codewords in this space is the free distance of the the presence of intersymbol interference, the connection
code, which in this example is 7. This implies that the weights would be determined by a similar function. If
code is able to correct a minimum of three errors in xij,.A. and r, represent tile encoded and received signals,
the received signal, then the connection weight can be any monotonically

A MLE decoder is designed to accept as input a pos- decreasing function of the distance between the two sig-
sibly noisy coded sequence, r, and produce as output nals. For a system in which there is no noise corrupting
the maximum likelihood estimate, 4, of the original se- the received signal, analysis of the network is simplified
quence, v. If the set of possil le 2(b + 2)-bit encoder by choosing this function to be a step function which is
output vectors is (xm : m = 1,...,23(6+2)) and xm,, is 1 if x.,jk = ri and 0 otherwise.
the ith n-bit subsequence of x,, then The varying input weights required by this network

can be implemented in at least two ways. To obtain
1art) ax 1p(ri lx,,.,, a model in the neural network spirit, the received bitswould be applied to input neurons whose output is pro-

portional to the degree of match between the expected
In the case of a binary symmetric channel, this is equiv- and actual inputs. The output of these neurons would
alent to then modify the signals on the cooperative connections

N at multiplicative synapses. Such synapses have been
---argminaxZE (ri,x,) (1) observed in biological systems. This method has the

advantage of requiring relatively simple neurons for the
.M(a, b) is the number of matching bits in a and b. trellis since their input weights would be fixed. Alter-

We have defined a neural network which corresponds natively, the weights used by each neuron to calculate
to the trellis used for the MLE estimation defined above, its output can change with each input. This method is
Each stage of the trellis, representing the set of possible probably the easiest to use for digital implementations
states at each time instant at position i, is implemented and is the one used in our simulations. Observe that in
as an "on-center off-surround" competitive network [4]. either of these cases, the information required to calcu-
This network will be described in more detail in the late the weight is local at each edge of the trellis graph
next section but for now it suffices to know that it will and therefore at each connection in the network.
produce a contrast enhanced version of the input. Intuitively, it is easiest to understand the action of

The edges in the trellis graph correspond to coopera- the entire network by examining one stage. Consider
tive connections between neurons. In addition to these the nodes in stage i of the trellis graph and assume
cooperative connections, it is sometimes helpful to add that the conditional probabilities of the nodes in stages
inhibitory connections between unconnected nodes in i - 1 and i + 1 are known. Then the conditional prob-
the trellis graph, since these transitions can not occur ability of each node in stage i is simply the sum of the
in the final path. All connections in this model are as- probabilities of each node in i - 1 and i + 1 weighted
sumed to be symmetric. The weights assigned to each by the transition probabilities. If we look at stage i in
connection in this model vary with each problem in- the network, and again let the neighboring stages i - 1
stance; i.e., for each received sequence or subsequence and i + 1 be fixed with the output of each neuron corre-
the weights may be different. sponding to the "likelihood' of the corresponding state

More precisely, for a rate l/n code, if there is an at that stage, then the final outputs of the neurons Mj
edge between nodes X,, and Xj+ 1,h in the graph, and if will correspond to the 'likelihood' of each of the corre-
(xj.,tII... ,,. are the encoder output bits for the sponding states. When the stage reaches equilibrium,

transition between these two nodes and (r,.z,...,r,) the neuron corresponding to the most likely state will
are the received bits for this transition, then there is have the largest output.



3 The Neural Model N states in each stage can be written as

In the previous section, we defined the problem to be u.i = -Auij N
solved by this network and the connections to be used. + (B - u,i) (f(ui.i) + 1- [rr-I. .if(u,_ 1k)

These requirements place some restrictions on the neu- k=1
ral models that can be used. The model used in this
network, called an "on-center off-surround" network be- + rnmjj f(u+1ik)

cause the output of each neuron in the network is used N N

as positive feedback to itself and negative feedback to - (C + u,..) 1: f(sU,k) + 1' [rr- 1k.,f(ui- 1k)
all the other neurons in the network, was proposed by k#, 1=1
Grossberg 14). The model allows the output of each + MtAkf(Ui+ + ),l"
neuron to take on a range of values and was designed
to support contrast enhancement and competition. The (5)
model also guarantees that the final output of each neu- Equation 5 can be rewritten more compactly as

ron is a function of the relative intensity of its input as S N
a fraction of the total input provided to the network. 9i, = -Auji-Z E(UiSi,,If(uk.)-Ti,j,Ajf(uk,))

The instantaneous activity, ui, of each neuron Xj kf1 1=

(i - 1,..., N) in the on-center off-surround" network (6)
is described by a differential equation: where, for 1 _ l _ N,

i = -A,u, + (B, - C,u,) (I, + f,(u,) S,,.,- 1 , = -
N N q

-(Diu, + E,) (Fii j + Fi. gh(UA) (3 S, 3 ,~ 11

j=1 = B (7)

Here A,, Bi, C,, D,, and Ei are constants; f() and T4 = _ - c -

gk(.) are nonlinear non-decreasing functions; and I is qj
an external input to Mi . Fj,, is the weight associated Ti,j'i+xj = Bmij, - C Z m ,qj
with the input to .Mi from 54. It can be shown that this e;i
system restricts uj in such a way that If k O (i - ,i,i + 1), then Si.j,j = T,j,, = 0.

To eliminate the need for global interconnections
Ej < < Bi within a stage, we can add summing elements to cal-
Di C- culate

N N
For our deconvolution network, it is not really posi- Xi = 1 f(zi,) and Ji = Ii,

ble to use equation 3 directly since it is assumes that j=f
the external inputs Ii are constant for at least the time where
it takes the network to converge. To write an equa- N
tion that is similar to equation 3, however, we define = -
an external input to a neuron in stage i to be any in- k_1
put that does not originate from some neuron in stage i
and drop the requirement that the inputs be constant. Then equation 5 can be rewritten as
For simplicity, we also define all the constants to be the lij = -Auij. + (B + C)(f(u.,) -i- Iij) - uij(Xi + J)
same for each neuron and take all the nonlinearities to
be equal to the same sigmoid function (spatial homo- 4 Stability of the Network
geneity). Specifically, for the simulations presented in At the end of section 2, the desired operation of a sin-
section 5, gle stage given that the neighboring stages are fixed

is described. It is possible to show that in this situa-

fM(z) = g,(z) = f = + e - Ax Vi,j (4) tion a single stage is stable. To do this, fix f(ukj) for
k r{i - I,i + 1) so that equation 6 can be written in

Following Hopfield's notation [51, A represents the gain the same form as equation 3:

of the nonlinearity. uj,3 = -Auj, + (B - u,,) (Ij,. + f(uii))

Using the m .. defined in equation 2, the differential N N \ (9)

equation that governs the instantaneous activity of the -(u,., + C) X I2 . + E f (uo)
neurons in a deconvolution network with S stages and k-1t k=l



where Iij is defined in equation 8. A possible extension of equation 11 for the deconvo-
Equations 9 and 3 are special cases of the more gen- lution network is

eral nonlinear system E - : Ti,jk ,jV,1

where A ,, k.1)4V(2

2 12

ai(z,) is continuous and ai(x) > 0 for z > 0 The time derivative of E is
b i(x,) is continuous for z 0 0

= I.=- dv, ( -A,, - u,, &,,,W~

d,(x,) > 0 V xi E (-oo, oo) ,, d.
It has been shown [61 that a system that can be writ- + T T,j.k.Vk, - -A vi "- 'V)dV)

ten in this form has a global Lyapunov function which kA k(V V)
can be written (13)

V - bj( Jd,(',d( ) It can be shown that for f(z)- (1 + e-A) - ,

i= Cnkd (1)dk()k)

In this deconvolution network, Si,j,kj = 0 for i-ki > I

and that, therefore, such a system is asymptotically sta- or IJ- II > S, so there are no more than 3S terms in the
ble. In our case, this means that a single stage has the summation. Then, in the limit as A - oo, the term in
desired behavior when the neighboring stages are fixed. parentheses in equation 13 converges to 9s. in equation

It does not seem possible to use the Cohen-Groseberg 6. Using the chain rule, we can write
stability proof for the entire system in equation 5. Ex-
tensions of 3 and 10 also seem to fall short. In fact, lirin - ( \-- d
Cohen and Grossberg note that networks which allow A-00 dt d ,)
cooperative interactions define systems for which no sta- 1.

bility proof exists 161. It can also be shown that
In another approach, Hopfield [5] showed that a net- d

work with simpler feedback, governed by - f -  ) ! 0
1 N

ii= -. ui + T,,f(u,) for all V, and this inplies that

j=1 lim E<0Vu.
has a Lyapunov function of the form (for V = fi(zi)) A-co

Therefore, for large gains, E as defined in equation 12 is

-E 2. V. ,vi + Jo f'(V)dV (11) o a Lyapunov function for the system described by equa-
2 j j I'(~V (1 tion S.

We can apply the same asymptotic argument to the
Hopfield argued that the nonlinearity can be normal- energy function in equation 12 since the term on the

ized so that we can write second line of the equation is also scaled by A. This
implies that the equilibrium points in this network in

*-' (v,) =-Az, the large gain limit also correspond to the equilibrium
where the bar denotes tie normalized function. Then points of a network of discontinuous on-off neurons. For
the integral in equation 11 can be written the binary neuron case, it is fairly straight forward to

show that the energy function has minima at the desiredfi f 1 (V)dV f = j - (V)dV decoder outputs if we assume that only one neuron in

each stage may E on or that B and C are appropriately
used this manipulation to argue that for large chosen to favor this. This bound is, however, not as

lopfield u ttight as that on the derivative of the energy function
gains (A - oo), the second term in equation 11 is negli- since there O(SN) terms in the summation rather than
gible and so the network of analog neurons has the same
equilibrium points as a network of discontinuous on-off 0(S) as above.
neurons.
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Figure 2: Evolution of the trellis network for unerrored Figure 3: Evolution of the trellis network for input with
input. A = 10., A = 1.0, B = 1.0, C = 0.75, T = 0.02, burst errors. The input is 000 000 000 000 000 000 000
input is all zeros. The initial conditions are zx .l , 000 111 000 000 000 000 000 000. The constants and
Z1.j = 0.0, zxo,j = 0.2, all other z, 4 = 0.0. initial conditions are the same as in figure 2.

5 Simulation Results stage, the first neuron has a fixed output of 1 and the

This network was simulated by discretizing equation 5 other neurons have a fixed output of 0. The outputs of
using Euler's method. For a sampling frequency of l/T, the neurons in the last stages are fixed at an interme-
the equation of the updated activity, ui, (t + 1), is diate value to represent zero a priori knowledge about

these states. Notice that the network reaches an equilib-
Uis.(t + 1) = u,j(t) - TAu..j(t) rium point in which only the top neurons in each state

+T(B - u.,(t)) (f(u,.i(t)) (representing the "00" node in figure 1) are on and all
others are off. This case simply illustrates that the net-

f ( work can correctly decode an unerrored input and that
+=' 2... _,t ,if(u,_,k(t)) + -,,,ftu1+,kt)) it does so rapidly, i.e., in about one time constant.

s One of the more difficult decoding problems for this
- T(C + ui, (t)) '((uk(t)) network is the correction of a burst of errors in a tran-

k# 
\  sition subsequence. Figure 3 shows the evolution of the

\] network when three errors occur in the transition be-
+ ,[mi-1,kf(uUi,k(t)) + Yf,1,kf(Ui+1.k(t))J) tween stages 9 and 10. Note that 10 unit time inter-

i=1 vals are shown since complete convergence takes much
The simulations presented here are for the convolu- longer than in the first example. However, the network

tional code illustrated in figure 1. Since this code has has correctly decoded many of the stages far from the
a constraint length of 3, there are 4 possible states in burst error in a much shorter time.
each stage and we will use a total of 16 stages. The first If the received codeword contains scattered errors, the
and last stages are fixed since we assume that we have convolutional decoder should be able to correct more
prior knowledge or a decision about the first stage and than 3 errors. Such a case is shown in figure 4 in which
zero knowledge about the last stage. The transmitted the received codeword contains 7 errors. The system
codeword is assumed to be all zeros. takes longest to converge around two transitions, 5-6

Figure 2 shows the evolution of the network over 2 and 11-12. The first is in the midst of consecutive sub-
unit time intervals with T = 0.02 when the received sequences which each have one bit errors and the second
codeword contains no noise. The output of each stage transition contains two errors.
is a vertical set of 4 curves. The upper-left set is the To illustrate that the energy function shown in equa-
output of the first stage; the upper-most curve is the tion 12 is a good candidate for a Lyapunov function for
output of the first neuron in the stage. For the first this network, it is plotted in figure 5 for the three cases
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Figure 4: Evolution of the trellis network for input with Figure 5: The energy function defined in equation 12
distributed errors. The input is 000 010 010 010 100 001 evaluated for the networks whose outputs are shown in
000 000 000 000 110 000 000 000 000. The constants figures 2, 3, and 4.
and initial conditions are the same as in figure 2.
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Information Capacity of Associative Memories
ANTHONY KUH, MEMBER, IEEE, AND BRADLEY W. DICKINSON, FELLOW, IEEE

.4bstract -Associative memory networks, consisting of highly intercon- In Section I1 the standard BAMN model and the notion
nected binary-valued cells, have been used to model neural networks. Tight of capacity of the network are described. The operation
asymptotic bounds have been found for the information capacity of these
networks. We derive the asymptotic information capacity of these net-
works using results from normal approximation theory and theorems about In this model each updating operation on a cell is per-
exchangeable random variables. formed by thresholding a linearly weighted sum of other

cell values. If the threshold is exceeded the cell takes on a
I. INTRODUCTION 1 value; otherwise, it takes on a -1 value. A network is

F OR MANY YEARS researchers in various disciplines characterized by a matrix of weights that determines the
have MANYe YEARSdelsarhebrsain ariodscles strengths of the interconnections between different cells.7 'have studied models for the brain. Many models have

been developed in attempts to understand how neural The weight matrix is constructed from a sum of outer

networks function. One class of such models is based on products of vectors chosen to be the desired "codewords"

the concept of associative memory [1]-[27]. Associative to be stored by the network.

memories are composed of a collection of interconnected The information capacity of the standard model is de-
rived in Section III. This requires a formalization of the

elements having data storage capabilities. The elements are notions of capacity and stability. Following [12] we con-
accessed in parallel by a data probe vector rather than by a sider two different definitions. In the first, capacity is
set of specific addresses [14]. related to the maximum number of codewords that can be

Recent years have seen interest increasing in the model- used to construct the AMN while maintaining a fixed
ing of neural networks for possible applications to com-
puter architectures. Associative memory network (AMN) codeword as a stablo the v et nuhe second definition, the
models of one particular form, consisting of highly inter- capacity is related to the largest number of codewords thatcan all be stored as stable vectors in the network. We also
connected threshold devices (1], [2], [51-[12], (24]-[271 have consider the radius of attraction of each of these code-
received much attention. These models are sometimes re- words. For example, if the state of the AMN after a few
ferred to as binary associative memory networks update operations converges to a given vector for all initial
(BAMN's).ThiMs). paprobe vectors at a Hamming distance of K or less, then the

This paper discusses some analytical aspects of the given stable vector has a radius of attraction of at least K.BAMN models. Specifically, we analyze the storage capa- Proofs of the various results are given in the Appendices.
bilities of these models. We consider the case where cells They involve normal approximation theory and theorems
can take on only one of two values {- 1,1}, Our work is from exchangeable random variables. Finally, in Section
motivated by a desire to understand better the results of IV we summarize the main theoretical results of this paper
[12], where various elaborate arguments are used to find and introduce extensions for further research.
the asymptotic value of the network storage capacity. In
contrast, we determine the asymptotic network storage II. OPERATION AND CONSTRUCTION OF THE BINARY
capacity by applying normal approximation theory and ASSOCIATIVE MEMORY NETWORK MODEL
theorems about exchangeable random variables. This new
approach contributes to a better understanding of the In this section we discuss the AMN model presented in
results and provides a means of extending the analysis to [1], [21, sometimes referred to as the binary associative
more general AMN models. memory network. A network consists of cells Xj ), I < i <

N, with each cell taking on one of the values (- 1, 11. Each
cell affects all other cells through an interconnection or

Manuscript received January 26. 1988; revised April 13. 1988. This weight matrix T. The interconnection matrix is symmetric
work was supported in part by the Office or Naval Research under Grant
NOOO14-83-K-0577, in part by the National Science Foundation under with 0 values on its diagonal. Each cell is updated at
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International Center for High Technology Research. This work was with rate X. At each update the linearly weighted sum of
partially presented at the 1986 IEEE International Symposium on Infor- all other cell values is compared to a given threshold. If the
mation Theory. Ann Arbor. MI.

A. Kuh is with the Department of Electrical Engineering. University of weighted sum exceeds the threshold, the cell takes on a I
Hawaii at Manoa, Honolulu, HI 96822. value; if not, the cell takes on a - I value. We assume that
B W Dickinson is with the Department of Electrical Engineering,

Princeton University, Princeton. NJ 08544. the updating processes of all cells are independent, so that
IFEE Log Number 8825711. the total number of updates is a Poisson process with rate
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N. Using a counter k that is incremented every time any cells with V initially input into the network. It is easily
cell is updated, an update of cell i at time k +I is shown that if V is a stable vector then V= A(V)-, the
described by the equation converse is not necessarily true. This stronger condition is

X,(k+ ) X~kT~, ),Xk)(1 1 used in defining ,ii(c) as
X,(k +1) = * (k)T(i. ),x(k) (2.1) -i(c) = maxmaPr( V(k) =A(V(k))) >I-c (2.4)

where (where we may take k = 1) and A (t) as
X >, > 0 h() = m ax m E3Pr(V(i)-= A(V(i)), I _<i :! ) > I- .

v, x=0. (2.5)

Here we have chosen a 0 threshold. We show in Section III that n()- N/2 log N and that

For an AMN with interconnection matrix T, we define a (e) N14logN for any E 0 and for N sufficiently
binary N vector V to be invariant if, when V is input into large; these results were obtained by different, more te-binarydious methods in (121.
the network, all updates leave the state of the network

unchanged. An invariant vector is also called a stable We first present a simple example to help visualize how

vector of the AMN. The set of all stable vectors is denoted these AMN models work. Take N = 4 and rn = 3. and let

ta clt M1
Now consider the construction of an AMN, a process V(1) = V(2) = V(3)=that can be viewed as learning. The T matrix is con-11

structed so that certain vectors are stored in the network. -1 - I
A vector is successfully stored in the network if it can be Using the correlation method, T is easily found to be
retrieved by an appropriate data probe vector. We let V(t), 0 1 3 -1

I < i < m be the codewords, binary N vectors, used to 1 0 1 1
construct the T matrix. The desired behavior of the model T 3 1 0 1
when some vector rl is input into the network, i.e., when I I -1 0
the network s initialized at V, is that after a few updates,
the state of the network should become V, a stable vector We note that only V(3) e M, (i.e.. M - (V(3)}). Fig. 1
which is close to V" in Hamming distance. Several tech- shows a diagram of this model.
niques can be used to construct the T matrix of the AMN.
Here we use a simple technique involving correlation,
which contrasts with techniques using eigenvectors and
orthogonal learning approaches shown in [14], [18], [24];
the latter are more complicated to implement. The correla- 3

tion technique constructs the T matrix from (V(i)} as
follows. Let -1

T,=V(i)V(i)r-1, 1i m (2.2) 3 2

and then take Fig. 1. Example network with edges representing interconnection

m.., T. (2.3) weights and nodes representing cells.

Hopefully, all of the chosen codewords ( V(i)) will be 5 Before concluding this section we note that in our analy-

stable vectors of the network; however, this cannot occur we always assume that any initial state will converge to

when m becomes too large in comparison to N. The set of a stable vector. This was justified by Hopfield in [21 by

all codewords that are stable vectors is called M. Thus noting that

M, C M, but M also contains the "one's complement" of
vectors in M, and possibly other vectors which we call E=_2.Ti,jX,k) 1 (k), k_0 (2.6)
spurious stable vectors.

To find the capacity of these networks, random coding is a monotonic decreasing function of the update counter k
arguments are used; each component of each codeword is and that the elements of M correspond to the local minima
assumed to be chosen independently of all other compo- of E. Therefore, any initial state will converge to a stable
nents, with the probability of a I or - I each equal to 1/2. vector.
Then, given m randomly chosen codewords, one can find
the probability that any codeword or that all the chosen OR THE INMONAC
codewords are members of M. Two definitions for capac-
ity which we call ffi(t) and Ai(c) are introduced in [12]. This section studies the capacities ffi(c) and ih(c) using
Before presenting these definitions, we define a syn- results from normal approximation theory and theorems
chronous update A(V) as a simultaneous update on all N about exchangeable random variables. Our main results
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are asymptotic expressions for these quantities. We discuss By the Demoivre-Laplace theorem [28], for large N.
the two patterns for convergence of initial states to some u(j, k) converges in distribution to a Gaussian random
stable vector. We also consider the error-correcting capa- variable with the same first- and second-order moments.
bilities or the radius of attraction of each codeword. Much Thus we let g(j, k) be a Gaussian random variable with
of the original discussion about capacity, convergence, and the same first- and second-order moments as u(j,. k) and
radius of attraction can be found in [12] and [24]. The key investigate the quantities
differences in our approach versus that of [12] are the
proofs of the main theorems; these are given in the appen- - Pr n( g(j, k) _ N + 1 (3.6)
dices. l

Associated with each cell value we define the interaction and
strength (IS) of cell j for codeword k as

U(j. k) -k) " V )V(),(k) PG = Pr n n g(j, k)-N+1 (3,7)
I-I j-I k - I

= (N-I)VJ(k)+ T_- Vl()V(I)V(k). Let Q(x)=(1/2-)fex'/2dx be the standard normal
, * /k error function and I(.) be the standard indicator function.

(3.1) In Appendix I we develop and use the theory of exchange-
able random variables to show the following resut.

According to the standard model, when a cell is updated
its next value is determined from a comparison of its IS Theorem 1: 1) If
with a threshold value. Using the random coding model N N

described in the previous section U(j, k) is a random m < XN= j I(g(j, k)_-N)
variable. We transform this random variable by letting -

u ) u and YN is a Poisson random variable with parameter
u(j.k)= i V()A()V,(k)VJ(k)= , A = NQ(N/Ti), then XN YN in distribution., * j I k Ik 2) If

[u(j,k)-(N-1)Vj(k)JVj(k) (3.2) NN

where we call u(j, k) the normalized interaction strength m X XN= , I-(g(j,k)<-N)

(NIS). The u,(I) for 1* k are random variables having j-i k-i

probability mass function identical to a shifted binomial and Yv is a Poisson random variable with parameter
random variable with mean 0, N - 1 points, and parameter X2 = NmQ(/ 7m ), then XN - Y. in distribution.
p = 1/2. Since V(l) are chosen independently for all 1, the We can use this theorem to evaluate the capacities
u(]. k) are random variables having probability mass defined earlier. Letting m = N/a log N we solve for the
function identical to a shifted binomial random variable constant a for both cases. From the theorem, for large N
with mean 0, (N - 1)(m -1) points, and parameter p= we have
1/2.

To evaluate Fn(e) we need to compute PG = e (3.8)

=Pr(V(k) = A(V(k))) and

=Pr m u(j,k)>-+0} (3.3) PG= e  , (3.9)

( IBy repeated integration by parts we obtain the expansion

(where we may take k = 1). To evaluate i(e) we need to e-x2 /2 [ 0 (...)i 1
compute Q(x)= [1I+ l (2j - 1)j

=Pr(V(k)= A(V(k -)), I <k_- m ) 2-r x2 t

NHence, for large x, we have the approximation Q(x)

=Pr( fl (u(j,k) -N+l (3.4) e-x 2/2/x2/1'. Then we have the following result.
k -, -I Theorem 2: For case 1) in Theorem 1, assuming ,

The major stumbling block to analyzing (3.3) and (3.4) G G. e-N, and as N-oo,
is the fact that the u(j, k) are not independent. In fact, it PG(1-

is easily shown that N

E{u(j.k)u(I.m)) = m-1. j*1, k=m 21ogN-2log log =fl-log(logN)-log41r
N-1. j=l, kom PG

1, otherwise. N
(3.5) 2logN
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For case 2) in Theorem 1, assuming = , PG >> e-N/2 sti v a ... C.*
T . V(IfV(I'I

and as N - ocI , k-. I

N

4logN-2log log - -3og(logN)-log12 8 7

N
T=•V(k) V(k)'

4log N (3.11) no

Next we consider conditions under which PG and no k "a

PG P. Appendix II shows that when N is sufficiently ,,
larg and m = N/a log N for 1/2 < a << N/log N then

G -* P. This is a consequence of normal approximation
theory. It can similarly be shown that PG - P. Therefore, Updte

for any i > 0 we can find an N large enough such that .
F(c) = N/2 log N and Ah (c) - N/4 log N. Fig. 3. Algorithm used for conducting simulations of .

In Fig. 2 we plot some simulation results for as a
function of m/N; we also plot the theoretical graph of PG

versus m/N. For N = 16 the simulations and the Gaussian typical codeword to be K error correcting. We define these
approximations differ substantially, but for N = 256 the two capacities as th(c, K) and Tn(e, K), respectively.
simulations and the Gaussian approximations are almost Using the same type of arguments as in the first part of
identical. The simulations were performed by choosing this section, we first find the NIS:
random codewords, updating the T matrix, and then u(j, k, , )= E E V,(I) V(I) (k)fl (k) = E u,(1).
checking if V(1) r M. This process is continued until the ivkj Ik Itk

number of codewords, m = O(N). This gives a simulation (3.12)
of one sample network and is shown in Fig. 3. From
Monte Carlo simulations of several sample networks, the From (3.2), we note that u(j, k, V) has the same distribu-

value of P for a given m is easily found. tion as u(j, k). Observe that

N-1-2K= E V(k)V(k) (k)l j(k) (3.13)

10 I*J

-0- sir. N-256 when h(V(k), Vl(k)) = K (where h(x, y) is the Hamming
0.8 -0- theory N-256 distance between x and y). We then define the quantities

-w sir. N.64
-.- theory N.64

06- -w sir. N-16 (K) =Pr(V(k) =A( V)Ih(V(k), IP) < K)
-0- theory N -16

0.4 =Pr n1u(j,k, -) a N+I+2K )

0,- 1 -51k~m (3.14)

0and
00 0.2 0.4 0.6 0.8 1.0 P(K) = Pr(V(k) =A((k))Ih(V(k), (k))

m/N

Fig. 2. Simulations comparing theoreticil Gaussian approximation PG K, I : k - m

to Monte Carlo simulationsaof for N - 16, N -64, and NV- 256. P ~IV m u~,) N121

To this point our assumption has been that we input a (3.15)
codeword with no errors and then calculate the probability
that the state of the system does not change after any in analogy to (3.3) and (3.4). By working with the corre-

update. In AMN we are also interested in recovering sponding Gaussian quantities PG(K) and ,(K), Theo-

stored patterns even when some information about the rem A2 and normal approximation theory give the follow-

data is lost. For a fixed AMN, we say that a codeword V ing result.
has K error correcting ability if all vectors P2 within Theorem 3: Asymptotically, as N - oo and for all K <
Hamming distance K are correctable by one synchronous N/2
update, that is, V = A(P1). We can then evaluate the capac- (N -2K )2
ity of the network if we require all codewords to be K MK (c) = (3.16)
error correcting with high probability or if we require a 2N log N
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and IV. SUMMARY AND DISCUSSION

(N- 2K)2 This paper has studied the information storage capacity'h(E) = 4N log N" (3.17) of associative memory network models, in particular the

BAMN. Using normal approximation theory and theorems
from exchangeable random variables, we proved some

An AMN can therefore be expected to have torage capa- asymptotic results about the capacity of the network. These
bilities and an error correcting ability for any K < 7/2. theoretical results were compared to simulations for N >

Before concluding this section. we discuss some very 64 the theoretical and simulation results compare quite
simple arguments that can be used to show that the Fn(E) favorably.
is at least N/2 log N. By using subadditivity of probability In proving the asymptotic capacity of the BAMN. we
measures, we can find a lower bound on Fn(c). Note that introduced the Gaussian random variables (g(j. k). 1 _ j

< m, 1 < k < N) which have the same first- and second-
order moments as (u(j,k), ljr5m, 1 k<NJ. We

I - = Pr (u(ij, m) < - N + 1then showed that both the set of events (fg(j,k) < xV).
1 !lk<N} and ((g(j,k)<x,), 1-j5m, l k_<N}

v satisfied Theorem A2, where xN is some prespecified set of
< Pr(u(j.k) < - N+1) numbers. By using normal approximation theory, we sub-

1-1 sequently showed that , "- . It can be similarly shown
-N Pr (u(1, k) < - N + 1). (3.18) that P.~ - . Knowing P and P the capacity is easily

found by using definitions in Section II and III. A more
Using the De Moivre-Laplace theorem [281, for large N, direct proof would be to show that both the set of events
Pr(u(1. k)<-N+1)=Q(N/rm). Therefore, as N-* o, ({u(j,k)<xN}, 1 k<N} and {(u(j,k)<x,}. 1_J)
if the number of codewords m is no larger than N/21og N, < m, 1 < k < N) satisfy Theorem A2. We conjecture that
then -. 1. This lower bound on the probability is rela- this is indeed true, and proving it is a topic for further
tively tight for m 5 N/2log N but quite poor for values of research.
in that are larger. Using Bonferroni's inequalities [281, we Another direction for further research is to consider
can also upper-bound ,ii(c) by lower-bounding the error more ubiquitous AMN models. It would be desirable for
term as these models to retain much of the simple structure of the

BAMN, while incorporating such features as random up-
,V(N-1) date operations, spatially varying interactions, and more

1- > N Pr(u(1. k)<- N + 1) 2 complex learning algorithms. In [271, studies of AMN
Pr(u(1 k) < - N + 1, u(2, k ) < - N + 1). (3.19) architectures with these features are described. Using the

( Ntechniques developed in this paper, we have found asymp-
totic bounds for the capacity of some random update and

Again, this bound is relatively tight for < N/2og N but spatially varying models. Simulations have confirmed the
blows up for values of m that are larger. Fig. 4 shows a validity of analytical work. One key result that we have
plot of Monte Carlo simulations of u- versus when shown is the following: for a class of homogeneous spa-
N = 64. Approximate upper and lower bounds correspond- tially varying models, the capacity of the network is di-
ing to the inequalities in (3.18) and (3.19) and computed rectly proportional to the interconnectivity of the network.
from normal approximations are also shown. Present research is focusing on the determination of the

capacity of various AMN, subject to constraints on net-
work interconnectivity.

0-

-0- simulation APPENDIX I
-*- lower bound08 "- upperbOund This Appendix discusses some basic results concerning ex-

06- changeable random variables and proves Theorem I of Section
C. N=64 111. Much of the discussion comes directly from [301-[331. Theo-

rem Al is from [30] and Theorem A2 is from [321.
04 The problem of interest involves finding the distribution of the

minimum of a number of random variables; we therefore begin
0 2 our discussion with this problem. Let { X, 1 5 i < N) be identi-

cally distributed random variables with the same marginal distri-
00 1 bution as X. To find the distribution of Z - min (X,), we note

0 N/(2logN) 10 20 that t , ,
m SPr( Z z) -- Pr(XA, > z, 1 <i< N).

Fig. 4. Simple bounds using Gaussian approximations for 1 - p. Lower

bound involves calculation of univarialc Gaussian distributions and If the ( X, ) are independent, then
upper hound involves calculation of hi.iriate Gaussian distributions.
Case considered is N = 64 and Monte Carlo simulations are used. Pr( Z < z) - 1 -(Pr( X > z)) v.
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Let us consider a weaker condition on the { X, ). We say that where W is a random variable with
random variables ( X,, 1 _< <_ N } are exchangeable if their joint
distribution is invariant under permutations of the random vai- Pr( W= j) = w (A.7)
ables. We also define events (C,, 1:_< i _< N } as exchangeable if,
for all choices of indices 1 !< i < ... < i, < N, we have If we can find the distribution of W, we can find the order

Pr( (,.C,,. • .,C,") = aA 1k5 N. (A.1) statistics of ( X,, 1: i N } for N finite. This distribution is not
P() 1 keasy to determine, but Galambos [32] and Kendall 130 have

obtained some results for the limiting case under some mild
Note that a, depends only on k and not on the indices i,. ak will obtinsorestrictions.
be referred to as the k th De Finetti constant with a. = 1. Denot-
ing theevent (X,> x} by C,, if (X,, 1< iN} areexchangeable Theorem A2: Let 5, 1 isn) be random vriables with
random variables, then (C,, 1 _.: i < N } are exchangeable events, corresponding distribution functions (F,(x), 1 < i:5 n }. Let (x,,
De Finetti [341 proved an important theorem relating exchange- be a sequence of real numbers such that
able random variables to conditional distributions.

Theorem A]: Let A(N) be the number of C, = {A;> x) that lim F, (x,,) = b
occur for exchangeable random variables X, 1 f i:5 N. Then " -

A(N) with 0 < b < oo. Setting

e= la(n) =(.n) Pr( X,, .X,,,)

exists almost surely, and if ir (a probability measure on the
interval [0,1]) is the distribution function of J, then where the sum is over all indices 1 < i < i, < ... < i, _ n. As-

f0Xkr (dx), k 0. sume that for n > n, there exists a1(n), n < j < M,, such that
0 sequence a,(n), 1 < j < M,, can be associated with a set of M,,

This result was later extended by several people [35]-[36], giving exchangeable events. If M, - oo for n > n, or if both M,w/it - o

the following corollary. and n - oo with

Corollary: Given the above conditions there exists a random lim n2a2 (n)= b2

variable X such that - 0'

Pr(C, , ... , C,kIX ) -f then for any j,
J b ke-h

where A = almost surely. lim Pr( X* < x ) -E
The above results deal with the limiting case as N -- cc, but we n - 00 k-0

are concerned primarily with finite N. Kendall [301 generalized
the above theorems for N finite. As a simple analogy, N = oo can where X/* is the jth-order statistic.
be viewed as picking marbles from a collection of marbles in an The above theorem has the following intuitive interpretation.
urn and replacing the picked marbles, whereas N finite can be We construct M. exchangeable events from some set of n ran-
viewed as performing the same operation without replacement. If dom variables with M. , n. If the events are nearly pairwise
we let 8(a 5 ) -ak - 0k.. l, 1 < k < N and 8M(a) 8(g-(ak)) independent, then I of these events are nearly jointly independent
then for 2 1 1 n. A proof of this theorem presented in [30] is based

N-, on finding the characteristic function of K,, l( X, < x,,)
= (N-m)g'(aN,), 0 m N. (A.2) and approximating this with the characteristic function of a
-0 Poisson random variable with parameter b. The approximation

uses Chebyshev's inequality and depends only on the quantities
lfwelet w,= ) 8 NJ(0 ) for0<j<N, thenw isaprobabil- Ina,(n)-bland In2a2(n)-b 2[and noton b.

ity distribution since In the problem of interest in Section III, for some N and m we

8'a,-, 0, 0.r<N (A.3) want to find Pr(min(g(i,j), 1 i< N) < -N+1) and
Pr(min(g(i,j), 1 i<N, 1_j m) < -N+1) where the

and { g(i, j)} are Gaussian exchangeable random variables. We first
N normalize these random variables, obtaining random variablesE , =1 (A.4) {G,,(i, j)) with the following second moments:

Then we have 1 j

( - ) n- i*k, j=l

s- E[G,,(iij)G,(kk,

for 0 f, m ! N and 1
otherwise.

Pr(C,,,C,2 ,. .. ,C,1W) --- (A.6) We want to find the values of m where Theorem A2 can be

k applied to evaluate the two problems of Section III. To use



Kt;H AND DICKINSON: INFOR-MATION CAPACITY OF ASSOCIATIVE MEMORIES 65

Theorem A2 to evaluate have that
Pr(min( g( i, j), 1_< i:5 N) < - N + 1)1 f(- x.) n- ". A14)

=Pr(min( G, ( i, j), 1i N) < x,.),

the following two conditions must hold for all n > N: From (A.14) as n - co

1) lim,,... nza 2(n) =b2; nIF(x,,)-b',-- n" +-n- logn+ 0 (A.15)
2) there exists M,, such that M,,/n-.-oo as n--o with the 27b 4nr n (

set a G,,(i, j), I < i _< n ) augmented to 1 i e . , elements Equation (A.9) is satisfied when a > 1. If we set m = N/c log N,so that all G,. j) are still exchangeable. then x,, -- Vc-logn. If c>I then for all n N, it is easily
Here h is determined by fixing N and setting b = NQ(- x,) shown that x,, = - c,,ogn where c,, > 1. Therefore. (A.15) is
where x, = - V( N - 1)/( m -1). x,, are chosen such that satisfied for all n > N provided that m < N/log N. Recall that b
na 1 (n) = b and therefore x, = - Q- 1 (b/n). and therefore N are independent of the covergence in distribu-

Condition 2) is easy to show because we can always add any tion of K, to a Poisson random variable with parameter b. Using
number of Gaussian random variables to the set (G,,(i, j), these facts, we can therefore state that for m < N/log N the
1 < i < n ) with all the random variables having the desired first- number of events (GN (i, j) < x }, 1 < i < N occurring converges
and second-order moments. By the definition of exchangeability in distribution (as N -- o) to a Poisson distribution with parame-
this new augmented set has members that are still exchangeable. ter NQ(- x,).

For 1) we want to find the values of m where To use Theorem A2 to evaluate

lir n2a2(n)-b2=O. (A.8) Pr(min(g(i,j),li<N, 1.j!m) < -N+1)

Let f,(x. v) be the bivariate Gaussian density function with =Pr(min(G(i, ), 1:< i < N, 1 : j:5 m) < x,),
marginals having mean 0 and variance 1, and correlation p. Also we again need two conditions analogous to those just obtained
let F,(Z) be the distribution function of Z - max(X, Y) where for all n > N. For Gaussian exchangeable random variables the
X and Y are the marginals of the bivariate Gaussian distribution second condition is trivial to show, just as in the previous case.
with correlation p. Let -y 1/(n -1). Then (A.8) is equivalent to For the first condition we require that

lim n2F (x.) b'.  (A.9) lim n2m 2(a 2(n))=b2 . (A.16)

Note that n 0

For this case x, - Qt(b/nm) and b = NmQ(- xN). We again
F(x,) = dy f (x, y) dx. (A.10) use the Hermite polynomial expansion of the bivariate density to

- X. - xshow that

a,()-Qx,,)=mI Q(l)! (-[f( -x,,)H,(-x,)] (A.17)

.(n - E (0 + [)A

We first look at the inner integrand. f, (x, y) can be expanded as where -y, -1/(n - 1), y2 = 1/(m - 1), and y3 = 1/(n - 1)(m - 1).
a product of the two marginal density functions (f(x) and f(y)), From (A.14) and (A.16) as n - oo
and a series expansion involving Hermite polynomials H,(x) [37] 3 n2 -u

n M'( a2( -n ) - Q(#) - -)ccy 21Y alog n
fl(x, y) - f(x)f (y) E -Hi/x)ni(y) (A.11) aogn{ n-

+0 + + l nl -a + I +n O(n-(alogn .18)
where 4al +n I).n(Ag)

" d' Equation (A.9) is satisfied when a > 2. Using the same argu-
H, (x) -(-1)ex' /2 [e- /2 . ments as in the first case, we can state that for m < N/2 log N the

dx'
number of events { GN(i, j) < xN}, 1 i < N, 1< j < m occur-

Equation (A.1O) can then be written as ring converges in distribution (as N-. o) to a Poisson distribu-

00 y' I tion with parameter NmQ(- xv,). We have thus proved the
F (x,,) -f dyf f(x Y) E -H,(x)H,(y) dx following theorem which is identical to the theorem in Section

. - III.

(A.12)
Theorem A3: 1) If

- [(-x")nH(-x")]2 +Q(-x")" e< N X, t(g(j,k) s- I)
i-I

and YN is a Poisson random variable with parameter X, -

Note that Q( - x.) - b/n and, by setting x. - - log n - we NQ(Nv/7-m), then XN -' 1 , in distribution.
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2) If Then the difference between F,,(x), the distribution of L,,. and
N N m the standard normal distribution O(x) is given by

"I-< )(,-= Y_.E /(g(j, k) < N)
2 log Nj-k-2lgNt-i k-i F,,,,(x)-4)(x) = '4(x) E Q,(x)n -F' 2  (B.3)

and Y\ is a Poisson random variable with parameter X, -l

.VrnQ V/rm), then X, - Y, in distribution, where O(x) is the probability density function of the standard

normal distribution and Q,(x) are polynomials derived from thestandard Hermite polynomials [37]:

Given the random variables ( u(j, k), 1 < j < N ) defined in
Section 111, we want to find the following probability: H,(x) (-1)ke :/2d'e-

P= Pr[ f u(j,k) >- N +1) 1 k m (B .1) with

I( 
- 1)1

where ( u(j, k)} are binomial random variables with E(u(j, k)) Q,(x)= H,(x).
=0 and

Letting f,,(x) be the probability density function of F( x). we=!N 1(m 1, j=l haveE( u(j,k) u(I, k)) )M 1, jIhv
Sm -I, i * 1.

From (3.2) we note that each u(j,k) is the sum of m-1 C, =( )'f H,(x)f,(x) dx.
independent identically distributed (i.i.d.) random variables. Let
us normalize these random variables, defining We would like to find the order of magnitude of error terms in

u(j, k) (B.3). In particular, we are interested in the size of F,,(x)- (b(x)
U(j) = 1u(j,k)

2  1j<N. -[4(x)Qi(x)/V1 ].
E( U(j, k)) For lattice (i.e., discrete) distributions where all sample values

can be expressed in the form a + ih where a and h are constants
For large m we know that U(j) converges to a standard Gaus- and i is an integer, the following result holds [40], [41]:
sian random variable (mean 0 and variance 1) by the central limit
theorem. This theorem is also applicable to multivariate distribu- Q(x) hS(xv/m/h) (I
tions; the N-variate joint distribution of {U(j), 1 s j < N} thus F,,(x) - (D(x) ,,-(x) + r I o
converges to the multivariate Gaussian distribution N(0, R) where (B.4(B.,4)

1, i-j
R(i, j) = where S(.) is a correction term arising from the discontinuities( -1 ' i j of the distribution function and h is the size of the lattice. Thecorrection term is the periodic function

as m grows large; see [29, 38, 391.
Under the assumption that the {U(j)} are Gaussian random S(x) = x mod(1)-0.5. (B.5)

variables, the results of Appendix I show that
For distributions in RN an approximation analogous to (8.4)

e --%Q.#.P - f "-'J(2 r1R1) N/2 is slightly more complicated. Now let (u,) be random vectors
-a -# - with Eu, - 0 and EuTu, = R. Before stating a theorem from [38]

.e-/2)xrR-,xdxIdx2 ... dX (B.2) we present some definitions. Let f.,(t) be the characteristic
function of the distribution F,(x). The characteristic function

where - V(N - 1)/( m-1) and xT _ (xI,..., X%,). Since the can be expressed in the following way:
Gaussian assumption is only true asymptotically, we are led to
the question of whether or not P -P.. In this Appendix we 0 ()
show that P -- P for large m by comparing the normal approxi- f(t) = exp X, (B.6)
mation of (U(j), 1 j <5N } to {U(j), 1 sj <N). We first V1'

state some necessary results from normal approximation theory. where v is a nonnegative integer vector, v! H 1 ,!, (it)' =
FINr 1(is an nonneativ iTeger coeffcitsor, arcalj"led (the

A. Error Terms in the Normal Approximation to i.i.d. l.. 1(i)", and II = 1v,. The coefficients x are called the
Random Vectors semi-invariants of F,,. For a Gaussian random vector all semi-

invariants for lv > 2 are 0. Also define
Let us first look at the problem of approximating the distribu- af Ir

tion of sums of i.i.d. random variables by the normal distribution D'f(x) = (x) (B.7)
in R'. We want to find how "close" the normal distribution is to axr x 2 - ax'
the distribution of a normalized finite sum of i.i.d. random and
variables. Let (u,, I < i < m) be N i.i.d. random variables with
Eu, -0, Eu,2 -1, and let DJ(x) - df(x).

, ,J

7mTh following theorem from [38] can now be stated.
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Theorem B!: Let F,,(x) be defined as above. Then Using the tact that the random variables we are looking at are

sup F,(-t'11R(X)J exchangeable and using (B.10)-(B.13), we have that
R'

vl -#'/N2 N(N -1)( N -2)
="-12sup,~ hSI(xv" 1h,)D,-0,R(x) IPPGI - + r )( )

Equation (13.8) is similar to (B.4) in that the first term on the (l.+2p)p
right side of the equation is an error term due to the lattice + (1+(N-I)p)(l+ p) (-)(33
distribution, and the second term describes the standard

O(m' -) error that occurs for all distributions. +±
3)

B. Using Normal Approximation Theory to Show that PG+0 -12(3 5We now show that P , For U(j) we have h~h - +hm)iB.
I /vW --I. We define the v th momen t as Substituting values of m and P3 and simplifying, we have

g, -f...f x'f ( x) dxldx2 '*dxN (B.9) a lo g N

where x' F1,'I x,, and f,(x) is the N-variate joint density IPAl-Ga/

function of (U(j), I1 j . N). For the case where X, = 0 for )/ /)(,251v it is easily shown that As, = X, when JvJ = 3. The semi- (a log N 1  N1I( ~ 2  log N
invariants we need to use in (B.8) are taken from the following + N(1/ 2 )-a 212 rB.6
third moment values:

2(N-2 =jk When 1/2< a -tN/logN, 1 G- as N-ooi. Asymptoti-
2( -) i-j*k cally, we are only interested in the area around a = 2. For a < 2.

EU(i)U(j)U(k) - (N- 1)'( m -1) PG - 1 and for a >2, PG - 0 . Therefore, we can state that

(N 2. ij, i* k, j *k. .P~e-NQ(ft) (B.17)
N-1)'(m -- )

(13.10) as N grows large.

We also observe that

Dj(D(x) f*f '1~j~ . N (ul,' .,u,-I,xj,, . -., UN) du, . du,-, du,,, du,

1

where 40( x,, , x,, ) is the joint Gaussian density function asso-
ciated with random variables (U, , 1 -.r j -. k). Then if we let
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Stochastic Models for Interacting Systems

Anthony Kuh

ABSTRACT

This dissertation is concerned with the behavior of various systems of

interacting components. Interacting systems have been used as models in Econom-

ics, Biology, Physics, Computer Science, and Engineering. We focus on discrete

time systems, where components take on values from a common state space (usu-

ally a binary state space). Components, or cells, are updated at discrete time

instants, with the updates on a cell depending on the previous value of some

specified set of cells. The components of these interacting systems can be viewed as

simple processing units, and the whole system can be viewed as a parallel comput-

ing machine. One of the main goals of the thesis is to find measures for the com-

putational capabilities of different types of interacting systems.

We first study stochastic models for local spatially interacting systems (LSIS).

A candidate mathematical model for local interacting systems is the class of Mar-

kov Random Fields (MRF). After discussing existing MRF models for LSIS, we

introduce a discrete time synchronous model called the Completely Causal Markov

Model (CCMM). Techniques are developed to analyze the behavior of the CCMM



and assess the computational capabilities of various models.

The class of Hopfield Associative Memory Networks (AMN) is discussed. Like

LSIS, ATMN consist of a number of simple interacting components, but unlike LSIS,

AMN components usually have a high degree of interconnectivity. AMN models

have been used to model neural networks. They have powerful computational

capabilities, and they have been used to solve complex combinatorial optimization

problems. We focus on assessing the computational capabilities of AMN models.

The asymptotic information storage capacity of a simple AMN model is derived,

using results from exchangeability and normal approximation theory. Other

models for AMN are also developed along with an evaluation of tne computational

capabilities of these networks.

Finally, we present an application for some models of LSIS, dealing with

detecting faults that occur on semiconductor memory chips. LSIS are used to

model Pattern Sensitive Faults (PSF) which occur when a read or write operation

is faulty for some particular ,torage location when the memory cells exhibit a cer-

tain pattern.
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Abstract
This dissertation considers some aspects of the behavior of several neural

networks. We examine the original Hopfield Associative Memory (HAM)
and derive a lower bound on the number of spurious minima when the stored
memories are orthogonal. Two locally interconnected variations of the basic
HAM network are proposed in which the maximum distance between two
neurons that can be connected is upper-bounded by B. We show that for
such locally interconnected networks containing N neurons, if B/N -+ 0
as N --+ oc then the capacity of the network is determined by B and is
independent of N.

A macroscopic analysis technique first proposed by Amari for networks
with random, nonsymmetric connection weights is modified to show that
HAMs must have either one or two macroscopic stable states. The origi-
nal analysis is also extended to networks of McCulloch-Pitts neurons with
symmetric connections. The analysis and simulations show that the macro-
scopic behavior of networks with symmetric and nonsymmetric connections
are qualitatively similar: the network either has one stable equilibrium; has
two stable equilibria; or oscillates between two states.

We propose a new class of neural networks which are derived from the trel-
lis graph representation of a convolutional code. Such a trellis network can
be viewed as a collection of winner-take-all networks that are interconnected
to reflect the structure of the trellis graph. We demonstrate by simulations
that a trellis network with suitably defined connection weights can decode
convolutional coded signals with added errors for a range of low error rates.
We show that each of the subnetworks is stable for all choices of parameters.
For a restricted set of parameters and a monotonically increasing gain with

i1



sufficiently large derivative, we show that the entire network is equiasymp-
totically stable.

We propose a modified form of the trellis network which can tolerate

errors in the input and replace failed neurons. Spare neurons are added
to each of the subnetworks so that if a neuron fails, it can be replaced by
any spare neuron in the same subnetwork. Replacement occurs without any
supervision through modification of the connections between the subuetworks
and has been verified by simulations.
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