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1 Introduction

.. in practice, failure is still far less frequently the result of bad working principles than
of poor detail design. Pahl and Beitzl1]

In this paper we introduce the theory underlying a computer program that selects standard
components from catalogs in order to implement a wide variety of mechanical designs. The user of
the program forms a schematic by combining such elements as those in Fig. 1. Given the schematic,
specifications, and a utility function, the program returns the optimal catalog numbers.

We can view the schematics and the specifications as a description in a "high level (source)
language", and the catalog numbers as a description in a "lo'-level (target) language". Then, by
analogy with computer language compilers, we can call our program a "mechanical design compiler".
Like computer language compilers, such programs should improve designer productivity, prevent
errors. and alw the exploraticn of nmnr,: alternatives in greater depth.

1.1 Observations on Component Selection

Suppose that we wanted to design a power train for an ice-cream stirrer (Figure 2). We will
call this the Toscanini's problem, after a local eatery. Given a range of acceptable stirring speeds,
the torques required, and a catalog, we might use the transmission input-output equations RPM =
(ratio)(RPM) and torque, = (ratio)(torquej) to systematically eliminate those transmissions unable
to provide the required speed with the available motors. Then we might eliminate those motors
unable to provide the required torque through any of the remaining transmissions.

We have several observations to make. First, note that in this example we think about sets
of artifacts (e.g. all Dayton 3-phase motors), rather than particular artifacts (the motor that
fell off the loading dock yesterday). Because of manufacturing variation, even a single catalog
number designates a set of different physical artifacts, which may or may not be interchangeable in
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Figure 1: Schematic elements
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a particular design. We must also consider sets of operating conditions; for example, the ice cream
maker may be nearly empty, or full of cold Double Dutch Chocolate. We cannot always assume that
the maximum load is the only one that matters--some electric motors over-heat unless operated at
nearly full load.

Second, torque is a quantitative property, normally expressed in terms of real numbers. Our
reasoning about torque is therefore also quantitative. However, while the torque at a particular
operating condition is normally represented by a real number, the torques required by the stirrer
under all ice-cream viscosities and fill levels correspond to an interval of real numbers (say those
from 10 to 40 newton-meters.)

Third, the artifact sets are organized, for example by horsepower and motor speed. We can
eliminate large sets simultaneously (e.g. all the motors of less than 1 horsepower).

Finally, the only mathematical expressions used in the example were algebraic equations. Most
designers would attack the problem by substituting single values (say for the largest output torque)
into the equations, then comparing the results with other single values from catalogs. If asked
to justify using calculations on single values to draw conclusions about sets, they would provide
intuitive arguments, in English and specific to the particular problem being considered.

We might write these intuitions into an "expert system", and that program might work well in
a sufficiently narrow domain. But a compiler should give correct results on every design which can
be composed from the schematic elements. It therefore needs a general and precise theory, which
can be closely examined and confidently applied to diverse design problems.

1.2 Preview

This paper introduces a theory for quantitative inference about sets of artifacts and operating
conditions. The theory provides the basis for a mechanical design compiler which operates by
eliminating unsatisfactory alternatives from catalog sets of artifacts.

We will begin with a brief overview of the compiler. We then introduce some operations on real
number intervals. From intervals, we build up a language of "labeled-intervals", or "specifications".
Then, we illustrate the use of formal operations on this language to perform quantitative inferences
in the solution of the Toscanini's problem.

2 A design compiler

A user of our compiler creates a design schematic by pointing in sequence at displayed icons.
Each icon represents a computational "object", which normally includes a list of catalog numbers.
Thus, it also represents the set of real artifacts purchasable by ordering from the catalog. Associated

Figure 2: The Toscanini's Problem
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with each catalog number are specifications in the labeled interval language. Other specifications
automatically abstracted from these, along with equations built into the schematic object, describe
the whole set of artifacts represented by the icon.

The schematic assembly process establishes an identity between corresponding variables for con-
nected components. For example, in the Toscanini's problem the output torque of the transmission
is identified with the input torque to the stirrer.

Having assembled a schematic, the user supplies specifications in the labeled interval language
for the most convenient objects, usually loads. The objects pass each other these specifications, the
specifications abstracted from the artifact sets, and new specifications derived from these by using
equations. The objects eliminate from consideration incompatible artifacts (by deleting numbers
or groups of numbers from the catalog listing), and abstract new descriptions for tile resulting
subsets. In the Toscanini's problem, the user might specify the range of torques required at the
stirrer input shaft. This information, propagated through equations in the the trans-mission object,
would eliminate those motors unable to supply enough torque to drive the load through a iy of tho

transnissions under consideration.

Since the information reaching the motor object is about all the possible combinations of trans-
mission and load, the compiler does not explicitly enumerate the alternative combinations of motor
and transmission. This approach may be contrasted with one in which alternatives are generated,
evaluated, and discarded or modified. If we think of the design process as searching a space of
artifacts, our approach works by eliminating volumes of the space, while the other evaluates designs
at points in the space. At any time during our program's operation, the schemati represents the
volume of the artifact space which has not been eliminated.

This approach has several advantages.

" Manufacturing tolerances and operating condition variations are represented explicitly.

" The program need not examine each alternative individually.

" Elimination inferences, unlike choice inferences, can be confidently made from partial infor-
mation. For example, our program does not yet contain a representation of geometry, but
it can still safely eliminate motors providing insufficient torque. It could not safely choose a
motor-it might not be suitable geometrically.

" The inference system has been designed to produce only statements which are true of each
of the objects being considered at the present stage of compilation. The sets of artifacts
considered at later stages will be subsets of this set, so the statement will still be true of each
artifact. Therefore, statements never need to be withdrawn.

" The meaning of design representations is often left intuitive; designs are sometimes said to
stand for an "archetype", or a "partially defined object". In contrast, at each stage of the
compilation process our representation stands for a well-defined set of physical objects. We
can therefore evaluate operations by using physical reasoning about the objects represented
before and after a formal operation.

This set-based approach, however, has one significant disadvantage: conventional, single-valued
or even "constraint propagating" systems of mathematical inference are inadequate to deal explicitly
with sets of artifacts and operating conditions. We now begin building appropriate inference tools
based on relationships between variables and intervals of real number values.

3



3 Some Operations on Intervals

We need to work with sets of values for example the torque required to drive an ice cream stirrer
under all load conditions. We might write 0 < torquc < 10 (in our favorite units), or torque E [0 10]
but will instead write (torque 0 10); for now, the reader can assume these statements mean the same
thing.

Using this notation, we will present eight operations on intervals. Because we are trying to
convey a general understanding we will present the operations using examiiples, and claim without
proof that under appropriate circumstances the operations are both well defined and computable.
For more detail, see [2].

The first five operations used by our design compiler are straightforward, and are illustrated in
the following examples.

" Intersection: fl((x 1 4), (x 2 6)) ---. (x 2 4).
" Not-intersection:A((x 1 4),(x 2 6)) -. FALSE.
" Filled-union: U((x 1 4), (x 8 10)) -(x 1 10).
" Subset: C ((x 10 12), (x 10 14)) -TRUE.

" Not-subset: S ((x 10 12), (x 10 14)) -FALSE.

We will call the sixth operation RANGE. RANGE takes an implicit equation in three variables and
a pair of intervals in two of the variables, and returns the compatible interval in the third variable.
More precisely, suppose that g(x, y, z) = 0 is the implicit equation, and X and Y are intervals in
x and y respectively. Then RANGE(g, X, Y) - Z, where Z is the minimal interval such that for
every assignment of x E X and y E Y, there is an assignment of z E Z which satisfies g.

Let us do an example. Suppose that in the Toscanini's Problem, we had available transmission
ratios only from 2 to 4, and we knew that output torques above 8 would damage the stirrer. Figure 3
repiesents the transmission equation, ti - " = 0, by showing lines of constant output torque.ratio

From the figure we see that regardless of our choice of transmissions, any motor providing input
torque above 4 will induce output torque above 8. We might reasonably conclude that regardless of
our choice of transmission we should not use any motor producing running torques above 4.

The RANGE operation produces the appropriate interval:

RANGE(tI - 1o- 0, (t, 0 8), (ratio 2 4))-,(ti 0 4).

ratio

ihe RANGE operation is equivalent to what is usually called the constraint propagation of inequal-
ities, and has been well explored[3]. However, it is not the only operation of interest. Suppose that
instead of saying that the stirrer will be damaged by torques above 8, we say that torques ranging
from 0 to 8 may be required to drive it. We should conclude that we need motors able to provide
torques ranging ranging at least from 0 to 2; see Figure 4. We will call the operation producing this
interval DOMAIN; it can be defined as an inverse of RANGE. For example,

DOMAIN(t - -o- = 0, (t, 0 8), (ratio 2 4))---(ti 0 2)

ratio

precisely because

to
RANGE(t, - t--- = 0, (ti 0 2), (ratio 2 4))---(to 0 8).

Finally, we define the eighth operation, SUFFICIENT-POINTS, as another sort of inverse to
RANGE. Suppose in the Toscanini's problem we knew that we had available only motor torques
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Figure 3: An illustration of the RANGE operation
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Figure 4: An illustration of the DOMAIN operation

up to 2, and we needed stirrer torques up to 8. Looking au Figure 5 we would conclude that any
transmission ratio of 4 or above would do. That is,

SUFPT(ti - -- = 0, (to 0 8), (ti 0 2)) ----+(ratio 4 oo)

ratio

because for all ratios in [4 co], the RANGE of the ratio and the input torque includes the output
torque. For example, a ratio of 5 would give the output torque interval 0 to 10, which includes the
desired interval, 0 to 8.

RANGE(ti - = 0, (ti 0 2), (ratio 5 5))--+(ti 0 10).
ratio
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Figure 5: An illustration of the SUFFICIENT-POINTS operation

All of the operations presented are sometimes useful in design, but when should we use each one?
In these examples we used our experience as designers to decide which operation would produce the
desired interval. In a formal system, we need to build the information guiding those decisions into
the specifications themselves. We will call these augmented interval statements labeled intervals.

4 The labeled interval specification language

We will return to the examples of the previous section, but first introduce the language of labeled
intervals using an even simpler design problem-selecting one of a set of motors to be connected
directly to a load (Figure 6).

1 motors ad

Figure 6: A very simple power tiain

4.1 Limits and operati.g regions

Suppose that we know that each of some set of motors can produce torques throughout the
interval 0 to 20, but that damage may result to the load if the torque goes above 10. We want to
eliminate these motors from consideiation. Given only the intervals ((t 0 20), (t 0 10)) a program
would not have enough information to specify what operation to use. For example, if the larger
interval applied to the load and the smaller to the motors, we would not eliminate the motors. We
can attach the information required using the following labels.

on 1lf
The Limits label, symbolized by I ,indicates that values of the variable will or must be drawn

only from the interval. Thus, ( t 1 0 10) means that the torque must not reverse or go above 10.

Similarly, the tolerance on a bearing inner diameter can be expressed as (I I di 2.99 3.01).
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rie Opera ting- Region label, symbolized by T'. indicates that the variable will or Inust
assume every value in the interval; (e.erq t 0 20) indicates that the motor torque call at least range
from 0 to 20 (and perhaps beyond.)

We will later define a rule which elininates these motors because, for he variable t. the operating-

region interval is not a subset of the limit interval.

4.2 Required. Assured, and No-stronger labels

Suppose that in our motor-load example we want the load speed to l)e regulated to between 1750

and 1800 rpm. We introduce a Required (R) interval label, meaning that tie stateneit iulst be
only

true for proper function. For the load, we can write (R [ ] RI),11750 1800).

Suppose further that some catalog number designates a set of high-slip motors, capable of reg-
ulating the speed only well enough to keep it between 1H25 and 1800. We introduce the No-

Orly
stronger-possible (N) label, and write for the high slip motors (N [ I RP11725 1800). By this
we mean that we cannot specify any subset of these motors which guarantees stronger limits. (Be-
cause of manufacturing variation, some of them probably do guarantee better speed regulation, but
we cannot, within the framework given, select these.) We will define a rule which eliminates these
motors because the No-stronger-possible limit interval for RP.Ifis not a subset of the Required limit
interval.

The final label in this class is Assured (A), indicating that we are sure a particular statement
will be true for all the artifacts represented (under appropriate conditions). Thus for our high slip

only
motors, we have also (A [ ] RPM1725 1800).

We have illustrated the Assured, Required, and No-stronger-possible labels only in conjunction
on ly

with the Limit ([ ] ) label, but they can be defined comparably in conjunction with the Operating-
Range (e'-r' ) label.

Labeled interval descriptions are models of artifact sets, and we can choose the level of abstraction
of the model. For example, there is a torque curve for each motor type, which would allow more
accurate prediction of the speed regulation based on the possible torques. If we chose to include
the torque curve in our describing equations, we would apply labeled interval specifications to the
equation', ,jefficients.

In addition to the labels defined above, we designate each quantity as either a state variable
or a parameter. Parameters, such as gear ratio, are fixed at manufacture, while state variables
like torque may vary during operation.

Each labeici interval pertains only t,,u specified Ret of operating conditions such as start-up or
normal operating conditions. We will assume "norma operating conditions" throughout this paper.

5 Operations on Labeled Intervals

The key activities of our compiler can be specified by three groups of formal operations on
labeled intervals: elimination, abstraction, and specification propagation.

5.1 Elimination

These operations eliminate artifact sets whose labeled interval specifications conflict with the
specifications imposed by the user or by other parts of the design.

We represent these operations using patterns. Suppose that for our motor-load power train we
only

have the same speed regulation requirement as above: (R RPMI750 1800). We want to elim-
o nly

mnate motors with weaker speed regulation, say (N RPM1725 1800). These two specifications

7



iatch the pattern
only only

(N [ X " .r ,, (R [ ] X xi x,)-eliminate,

with X taken to be the RPM and x, and x,, the lower and upper bounds (f the corresponding
intervals.

Since the No-stronger-possible specification is not a subset of the Required specification, the
program removes the relevant catalog numbers from the associated list.

((R A) e"y x ((A)only. ...) ( ((R ) [ I X ... )

only only
((R A)[ ] x...) ((RA) [ X...)only oniy

L((R A) e .L Yr ) (9 (N e r y x... j

Table 1: Elimination patterns

All our elimination patterns are shown in Table 1 (with the arrow and the word "eliminate"
omitted for brevity). When the list "(R A)" appears in a pattern, it can be matched against either
a lRequired or an Assured statement.

5.2 Abstraction

In the Toscanini's problem, we want to evaluate motor alternatives with respect to the set of
all transmissions under consideration. Therefore, we need a set of specifications which describe
all the transmissions. The program abstracts these specifications from the previously encoded
descriptions of the individual "catalog number" subsets.

The program uses either the intersection or the filled-union operation to combine the intervals
aLssociated with a given variable and pair of labels in each subset. For assured limits it uses the filled-

only only
union operation, so for example it combines (A [ I RPM1150 1200) and (A [ ) RPM1750 1800)

only

to form (A [ ] RPM1150 1800). There are six types of labeled interval defined by combining the
two label sets (Assured, Required, No-stronger-possible) and (Limit, Operating-Region). Table 2
shows the operation appropriate for combining each type of labeled interval.

interval type operation

(A e"ery n
only

(AI I) U
(R every )n

only(rtl ) u
(N e tr y )U

onhly

(N[1) n

Table 2: Abstraction operations

5.3 Propagating Labeled Intervals Using Equations

We turn now to a more complex question: how can we propagatc labeled interval3 through
equations, so that, for example, the torque requirements for the ice cream stirrers can be converted

8



into torque requirements fur the motors? \Ve Introduce two operations oil labeled intervals and
equations.

The first is represented h, the following pattern:

(R t[ ]Vi.) ,c ((RI.A)t >) Ac y(v,v 2 ,t) :0
oo"ly

-((RubA) ] 1'3

The labeled interval patterns to the left of the arrow are matched with potential inputs to
the operation, while the pattern to the right of the arrow defines the form of the output. The
g( 1 2. , v3 ) = 0" niatches equations linking the two input variables and the output variable. The

"(PC At" in the input patterns again indicate that the operation is appropriate for either Required
or Assured statements. The "(RubA)" in the output indicates that the output will be Required
unless both inputs are Assured, in which case it will be Assured. Finally, tile "RANGE" in the
output pattern indicates that the numeric values are to be found by applying the RANGE operation
to the input values.

Suppose again that in the Toscanini's Problem, we have available transmission ratios only from
2 to 4. and we know that torques above 10 would damage the stirrer. The specifications match our
pattern:

ny only
(R to0 10) - ((R A) [ I vi)

only only
(A[ ratio2 4) - ((R. A) o V2)
ra ti -0 (V , V2, V3) = O.ratio

~onlyThis justifies applying the RANGE operation to form (R [ ] tI 0 5). The elimination operations

will use this new specification to eliminate any motor producing torques above 5.
The second operation is represented by the pattern

only
((R A) every s) & ((R A) P2) & g(sl,p2,sa)= 0

((RubA) every s 3 DOMAIN).

Reading the pattern, we see that the first input must be an operating-region interval and the
second a limit. The first input and the output variables must be state variables, while the second
input variable must be a parameter. The output interval is formed by applying the DOMAIN oper-
ation to the input intervals. The (RubA) rule is applied again. The idea is that if we need a state
variable to tak,, on every value in a certain operating-region, and we have some limited choices of
parameters in the equation, then the other state variable must take on values over a sufficiently large
interval to satisfy the equation with at least one of the parameters available. If we need torques up
to 8 to drive the stirrer, we can match the specifications with the pattern:

(Rt "ey to 0 8) , (ft A) -e ry,)
only ol

(A [' ratio2 4) -- ((R A) jnl p)
-t =O t. g- ,a)O

ratio I- -9V,2V)=0

We therefore apply the DOMAIN operation to form (R evry ti 0 2); the motors are required to
supply torques throughout the operating-region from 0 to 2. Note that this specification does not
imply that the input torque ti can never be greater than 2, but rather that all motors considered
must be able to supply torques of at least 2. If at some point the transmissions of ratio 4 are
eliminated from consideration, a new labeled interval requiring higher ti will be generated.

Table 3 shows all the propagation operations. Symbols representing the associated equations are
omitted for brevity. The list "(p s)" may be matched against, either a parameter or a state variable.
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The T and I operations, given intervals in a variable, extend the interval upward to infinity or
downward t~o zero respectively The $ome' label indicates that the variable must take on at least one
value in the interval; see [2] for details.

(A 7ve-y si) & (A "e"' S2 ) -(A evey 83 RANGE)
(Rt e'er s1 ) & (ft every s,) -(Rt"v"Y S3 RANGE)

(N eve'ry si) & (N every .2) -(evr S3 RANGE)
only at onl

((t ) (pi si)) & ((ft A) [ I(p2 s,)) -((Rt ubA) r](p3 83) RANGE)
only 

ySDOAN((ft A) curry s1 ) & ((Rt A) [ (P2 S2 )) -((R ubA) C~J8 OAN
only oni

((ftA) every sj) &((ftA) ( ] 2) -(f [ ]P3 SUFPT)
every only "

(N eeysi)& (N [Jp,) , -(N ever S3 DOMAIN)
ly 

rS3RNE(N e er sl) &((A R) F'1(P2 82) -(Neey83RNE
(Aevrys1 &(N y oly
(A~~ ~ e1'e ,) ( o P2) -(N ', 83 RANGE)

(ft every s)& (N evr 8)- f [ I P SUFPT)

(ft evry .1) &(N ev ery S2) (ft every 83 DOMAIN)

only~ only ol
(Nl[y (p1 81)) & ((A R) 1P 2) -(N ["' (P3 S3) DOMAIN)

only on ly only
(RE ]st)&(N( IP2) -(Rt s3 DOMAIN)

oly
(ft every s)&(N i lpa) -(R evrS3 RANGE)

oly
((R A) every s)&((R A) [o (P2 S2)) -((Rt ubA) 'ome 83 SUFPT)
((ft A) ever y s 1) & (N ever 82) -((ft ubA) ".me 83 SLJFPT)
((Rt A) evys)& ((R A) some8L

- ((R ubA) eVery 83 (DOMAIN(8 1 ,8 2 ) nDoMAIN(1 (SA)82))

U
(DOMAIN(si ,S2) flDoMAIN(j (si ),82))

((ft A) eeysi) & ((Rt A) soTre s2)

-,((R ubA) 80.n 3 (S(JFPT(Si,s2 ) nSUFPT(I (81),S2))
U
(SUFPT(SI,S 2 ) nSUFPT(I (SI),S2))

onlysoe.. 
RNE((Rt A) (I ...e ) (p1 81)) & ((Rt A) soMe 82) ---- ((Rt ubA) som 83RNE

mn y soeMonly
((Rt A) ( TBon ) (p, sfl) & ((ft A) soe82) -(( ubA) P 73 RANGE)

~ ~) only ome AN
((ft A) sres)& (N 11P2) -((R ubA) 8o. 3 DOMAN

Table 3: Inference patterns using equations.

5.4 Review of the literature

We ha%,- been influenced by a number of general ideas. De Kleer[41 argued that much of our
knowledge about the physical world is left implicit by classical mechanics. "Constraint propagation"
can be traced to Sutherland[5]. "Silicon compilers"[6] suggested that design operations could be
regarded as transformations of formal descriptive languages. Chapman[7] argued that "partially
completed plans" represent sets of possible plans; we have directly adapted this idea to physical
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Work using artificial intelligence methods to study mechanical design can be arranged along a
spectrum of increasing abstraction from human design activity. At the most abstract point of this
spectrum, Fitzhorn and his students are using Turing machine models to establish fundamental
conclusions about the design process[8], while Yoshikawa[9] views design descriptions as topologies
on a space similar to our artifact space. Conversely, at the "human model" end, Waldron and
Waldron[10], and Ullman and Dietterich[11] study human designers using the methods of the social
sciences.

Toward the "human model" end, Shin-Orr[12], Brown[13], and Mittal, Morjaria, and Dym[14],
have developed "expert systems" to design multiple-spindle gear drives, air-cylinders, and paper-
paths respectively. These programs use hierarchical control, trial solutions and back-tracking. They
apply heuristics obtained by studying experts, and appear to give nearly expert performance in
narrowly defined domains.

Near the center of the spectrum we might place work focusing on a single strategy. The Dominic
series of programs by Dixon and his students[15], implement a modified "hill-climbing" procedure,
searching from point to point in the design space. Problems like the Toscanini's are coded by the
programmer, rather than assembled from schematics, but much of the system is independent of the
particular problem. Also by Dixon and his students are a series of works on "design by features"[16].
Features are geometrically oriented entities (corners, bosses). It appears that compatibility betweeni
mating features must be maintained by "hard code", and that in general the systems warn if con-
straints are violated, rather than using constraints to set values. Papalambros[17], and Rinderle[18]
are working on a variety of design support issues and tools, spread across the spectrum.

Our work belongs with a cluster slightly further toward the more abstract end of the spectrum.
Ulrich and Seering [19] use "generate, test, and debug" schemes to transform differential equations
into schematics, and schematics into more specific pictorial representations The program does not
use quantitative methods for elimination or optimization, instead presenting the human designer
with a variety of alternatives. Wood and Antonsson[20, 21] have been exploring the use of fuzzy set
theory and fuzzy arithmetic in analyzing designs.

A version of the idea that designs represent sets of artifacts appeared in Requicha's[22] theoretical
study of geometric tolerancing.

Agogino and Cagan[23] extend formal optimization methods, for example deriving a torsion tube
from a torsion bar by dividing the moment integral into two regions and optimizing over them.[23]

Finally, a good deal of work at about this level of abstraction uses constraint propagation.
Gossard and his students explore "variational geometry", in which systems of equations are tied
to geometric descriptions of parts. Much of this work has been directed to issues of computational
efficiency, but see Serrano[24] for a system that allows the designer to use schematics in building
an equation network for analysis (not compilation) of a mechanical design. Popplestone[25] et al
have used an algebraic constraint propagator as part of a very large system with similar goals.
Gross[26]proposes a similar system for architectural design. Fleming[27], propagates the geometric
tolerances of parts. Steinberg et al[28] have partially integrated top-down refinement (in the sense
of progressively dividing a design problem into modules) and constraint propagation with a hill-
climbing mechanism.

These constraint propagation systems, and our earlier work[29, 30], propagate equalities only, or
else give intervals the limit interpretation and propagate them using only equivalents to the range
operation. However, see Lozano-P~rez et al[31] for a generalization of the domain operation, the
pre-image, used to formulate robot motion plans under uncertainty.

5.5 A summary, with contrasts

We can now summarize our work, emphasizing points of contrast with the "mechanical design"
* programs mentioned above.
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" We provide an explicit and "compositional" high level language in which designers can define
new systems and problems. Formal operations on this language automatically transform high-

level descriptions into detailed descriptions.

" Our design descriptions explicitly represent sets of artifacts and operating conditions, rather

than a single or "archetypical" artifact under a single operating condition.

" We search by progressively narrowing volumes of the artifact space, rather than from point to
point in that space.

" We add the domain and sufficient-points operations on intervals to the range constraint-

propagating operation.

• We add the operating region interpretation of intervals to the limit interpretation.

" We divide specification statements into those which are true of all tlie artifacts represented

(Assured), those which must be true of the final design (Required), and those which may or
may not be true but which cannot be strengthened (No-stronger-possible).

" We divide variables into "causality classes" (parameters vs state-variables).

We believe these concepts are sufficient to support design compilation over a much of the power
transmission system domain. (We have not attempted to design servo-systems, or use components
which are not pre-cataloged.) The design compiler program we have written tests this hypothesis.

6 Results

We have tested our design compiler on more than a dozen arrangements of components. The
data base for these tests includes specifications on such quantities as motor speeds and torques,
pump pressure ratings, efficiencies, and displaced volumes, etc, as well as the related power trans-

mission equations. Also included are equations for determining such quantities as ball screw critical
frequency and buckling load.

There are often multiple solutions satisfying the specifications for a given problem. Also, because
information is lost in abstracting, a group of alternatives may "hide" some unsatisfactory ones. The
system therefore interleaves elimination steps with search steps, looking for the optimum solution
as defined by a user-supplied objective function.

Fig. 7 shows an example component arrangement. The numbers in the schematic symbols
indicate the number of line items in the catalogs represented; there are initially 404,352 possible

combinations. With reasonable user specifications (for example on the speeds at which the loads
should move and the forces required to move them) and a utility function (say summing the cost
and weight), the system takes about 10 minutes' to find an optimal solution.

Testing continues; we defer a detailed discussion of the capabilities and limitations of the inference
system and the search procedure to [2]. We present here conclusions based on example problems

solved to date.

" Our language is powerful enough to capture most of the information provided in catalogs for
a wide range of components.

" Our inference operations appear to result in only correct eliminations when components are
appropriately modelled.

'On a Symbolics 3640 Lisp machine, running our unoptimized research code.
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Figure 7: A hydraulic example

" The idea that design descriptions represent sets of artifacts and operating conditions is pow-
erful. We could not have worked through the complexities of the theory without it.

" Our work is incomplete. For example, the adjustable position of the seat back in a automobile
is neither a parameter nor a state variable. We are now exploring relationships between

variables and intervals additional to Limits ([ ]) and Operating-Regions ( -ry ). We are at
present restricted to invertible algebraic equations and to positive values for variables. We
have explored geometric issues only very lightly. Our abstraction procedures can be made
stronger. More subtly, "hard-edged" interval representations such as ours distort the real
significance of some specifications[32].
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