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Robot Motion Planning:
A Distributed Representation Approach

Jerome Barraquand, Jean-Claude Latombe

Robotics Laboratory
Computer Science Department

Stanford University

Abstract
In this paper, we propose a new approach for planning the motion of robotic systems among obstacles,
which is based on a distributed representation of the world model. Within this approach, we designed and
implemented a general purpose path planner with five new capabilities:

(1) It is able to generate very complex motions for robots with many degrees of freedom. In particular,
we succeeded in generating complex paths for a 10 DOF non-serial manipulator arm made with both
revolute and prismatic joints.

(2) It is drastically faster (between I and 2 orders of magnitude) than existing systems on a sequential
computer. We generated complex paths for a 3 DOF bar in a 2D workspace in about I second on a
MIPS-based workstation, as opposed to minutes or even tens of minutes for other algorithms.

(3) The algorithms are highly parallelizable. We envision a VLSI implementation which should allow to
generate plans in real-time, even for 10 DOF arms. Real-time motion planning for complex robotics
systems opens new perspectives on some key issues such as motion planning in incompletely known
or unknown environment, motion planning among fast moving obstacles and multi-robot motion
planning.

(4) Our approach extends to motion planning problems with non-integrable constraints, e.g. non-holonomic
and/or dynamic constraints. In particular, the planner was able to deal systematically with maneuvers
for a non-holonomic car.

(5) The planner outputs a path for the robot in configuration space, while the goal is specified in opera-
tional space. Hence, the inverse kinematic problem is completely avoided. Furthermore, any kind of
redundancy of the robot arms can be handled without modification.

These capabilities are obtained through the systematic use of low-level distributed multiscale represen-
tations of the world. These representations allow to apply simp" ;,nd powerful numerical techniques to
geometrical and physical concepts.

The approach is illustrated by several simulation examples, bot,. tv.th mobile robots and manipulator
arms.

ACKNOWLEDGMENTS: This research was funded by DARPA contract DAAA21-89-COOQ2 (Army),
DARPA contract N00014-88-K-0620 (Office of Naval Research), SIMA (Stanford Institute of Manufacturing
and Automation), CIFE (Center for Integrated Facility Engineering), and a Digital Equipment Corporation
grant.

Tim, autlors also thank Professor M. llarrison from the Stanford University Graduate Business School
and J. Cheng from the Stanford University Statistical Consulting Service for their sound advice on Brownian
motions with reflective boundaries.

1!



1 Introduction

In this paper, we propose a new approach for planning the motion of robotic systems among
obstacles, which is based on a distributed representation of the world model. Within this
approach, we designed and implemented a general purpose path planner with five new ca-
pabilities:

(1) It is able to generate very complex motions for robots with many degrees of freedom.
In particular, we succeeded in generating complex paths for a 10 DOF non-serial ma-
nipulator arm made with both revolute and prismatic joints.

(2) It is drastically faster (between 1 and 2 orders of magnitude) than existing systems on a
sequential computer. We generated complex paths for a 3 DOF bar in a 2D workspace
in about 1 second on a MIPS-based workstation, as opposed to minutes or even tens
of minutes for other algorithms.

(3) The algorithms are highly parallelizable. We envision a VLSI implementation which
should allow to generate plans in real-time, even for 10 DOF arms. Real-time motion
planning for complex robotics systems opens new perspectives on some key issues such
as motion planning in incompletely known or unknown environment, motion planning
among fast moving obstacles and multi-robot motion planning.

(4) Our approach extends to motion planning problems with non-integrable constraints, e.g.
non-holonomic and/or dynamic constraints. In particular, the planner was able to deal
systematically with maneuvers for a non-holonoic car.

(5) The planner outputs a path for the robot in configuration space, while the goal is
specified in operational space. Hence, the inverse kinematic problem is completely
avoided. Furthermore, any kind of redundancy of the robot arms can be handled
without modification.

These capabilities are obtained through the systematic use of a low-level distributed
multiscale representation of the world. This representation allows us to apply simple and
powerful numerical techniques to geometrical and physical concepts. More specifically, we
compute numerical potential fields in configuration space that have very few or very small
local minima, and we provide the planner with a way to escape systematically from these
minima. The approach is illustrated by several simulation examples, both with mobile robots
and manipulator arms.

The principle of our approach is to throw attractive potential fields over the workspace,
each applying to a specific point on the robot body, and then to combine these potentials in
configuration space to attract the whole robot toward the desired goal. Each of the workspace
potential fields is computed numerically and has no other local minimum than the goal of
the robot's point it acts on. Basically, these potentials allow to avoid all the workspace
co7cauities. However, when these potentials are applied concurrently at the different points
of the robot, the resulting potential in configuration space may have (and indeed has) local
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minima other than the goal. However, these minima generally determine wells of relatively
small depth. The idea then is to build a graph connecting the local minima and perform a
search of this graph until the goal is attained. The search of the local minima graph can be
implemented in several ways.

For example, (Barra 89] presents an approach that connects the different local minima by
tracking the valleys of the potential. This approach worked pretty well for a small number of
DOF, but appeared unable - at least with the current implementation - to deal with some
complex motions for a large number of DOF, although it succeded in some cases.

In this paper, we present two new approaches for building and searching this local minima
graph. The first consists of a simple brute force exploration of the local minima in the
discretized configuration space, which happens to be very efficient when applied to robots
with a small number of DOF. The second is based on a Monte-Carlo procedure. It is
much more general (it has solved tricky path planning problems for a 10 DOF robot), and
furthermore highly parallelizable. We strongly believe that this second approach is definitely
the best when massively parallel hardware becomes commonly available. However, the first
method is faster for small robots on a sequential computer and is deterministically resolution-
complete, whereas the Monte-Carlo approach is only probabilistically resolutioni-complete.

We model the obstacles as distributed bitmap descriptions rather than centralized semi-
algebraic descriptions as it is usually the case in the literature on path planning. We think
that distributed descriptions are simpler to obtain from sensory data and that they may
be easier to handle algorithmically (specially when massively parallel computing hardware
becomes commonly available). In particular, the 'perfect potential fields' computed numer-
ically in our approach could not in general be computed analytically with closed mathe-
matical functions. In addition, using bitmap descriptions opens new perspectives on some
computational complexity issues. While the complexity of path planning algorithms using
semi-algebraic models is usually polynomial in the number of algebraic constraints and in
the maximal degree of these constraints, the complexity of our algorithm is polynomial in
the inverse of the resolution of the bitmap descriptions'.

\Ve have implemented our approach and experimented with it on many examples, simu-
lating both mobile robots and manipulator arms. Some of the most significant experiments
are reported in this paper. In particular, for a 3 DOF bar amidst a planar maze composed
of more than 70 complex-shaped obstacles, we have succeeded in generating paths in about
.5 second on a DEC-3100 workstation. We have also been able to generate complex paths
including several maneuvers for a non-holonomic 3 DOF planar mobile robot (a car with
limited steering angle) in about 1 minute. To our knowledge, our planner is the first one
capable of solving systematically non-holonomic motion planning problems. Finally, and
most importantly, we have succeeded in generating complex paths for a non-serial 10-DOF
manipulator arm including both prismatic and revolute joints. All the examples presented

Different algorithm complexity measures with non algebraic models have already been given in

[rLmelsky 871.
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so far to the planner have been solved within a few minutes of computation. However, as the
Monte-Carlo procedure is not deterministically complete, and as the path planning problem
is known to be NP-Hard, it is certainly possible to find problems which the algorithm would
fail to solve in a reasonable amount of time. We are currently investigating this issue. To
our knowledge, our planner is the first one capable of solving systematically motion planning
problems of this complexity.

As the Monte-Carlo procedure is easily parallelizable, we envision a VLSI implementation
of the algorithm for 10 DOF manipulator arms, which should allow to generate plans in real-
time. If motion planning can be performed in real-time, it can be included in closed loop in
control algorithms. The concept of 'reactive planning' then reduces to closed-loop real-time
motion planning. Therefore, real-time motion planning for complex robotics systems opens
new perspectives on some key issues in robotics such as motion planning in incompletely
known or unknown environment, motion planning among fast moving obstacles, multi-robot
motion planning.

The paper is organized as follows. In Section 3, we describe how the workspace numerical
potential fields are computed and how a generic robot interacts with these potentials. In
Section 4, we detail the very fast hierarchical graph search planner implemented for 3 DOF,
and we show some experimental results obtained with a long bar in different 2D workspaces.
We also compare these results with those computed using the Monte-Carlo procedure. In
Section 5, we describe the application of the technique to non-holonomic constraints. We
show some experimental results where a car with limited steering angle plans complex ma-
neuvers. In Section 6, we give a detailed account of the Monte-Carlo approach which allowed
to solve complex planning problems for complex robots (in particular for the 10 DOF non-
serial manipulator arm) and show corresponding simulation results. Finally, we discuss in
Section 7 the parallelization issues relative to the different steps of the motion planning al-
gorithm. All the experiments reported below were carried out on a MIPS-based DEC-3100
workstation.

2 Relation to other work

Research on motion planning has been quite intensive during the past ten years. Most of
it has focused on path planning, i.e. the topological and geometrical problem of finding
a collision-free path between two given configurations of a robot, or more generally be-
tween two given subsets of configuration space. Today, the mathematical and computational
structures of the general problem (when stated in algebraic terms) is reasonably well un-
derstood ((Schwartz 82,Schwartz S7a,Schwartz S7b,Canny 871). In addition, some practical
algorithms have been implemented in more or less specific cases (e.g., [Brooks S3,Fav 84,
Golizenes S4,Lozano S7]).

One of the most extensively studied path planning approach is the cell decomposition
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approach. It consists of first decomposing (exactly or approximately) the set of free configu-
rations of the robot into a finite collection of cells (e.g., Collins cells for exact decomposition
and rectangular cells for approximate decomposition), and then searching a graph represent-
ing the connectivity between these cells. However, in this approach, the number of cells to
be generated is a function of the number of semi-algebraic constraints used to model the
robot and the obstacles, and of the degree of these constraints. This function tends to grow
exponentially with the number n of DOF, as the volume of the configuration space (locally
diffeomorphic to R') increases exponentially with n. Thus, the approach is untractable even
for reasonably small values of n. To our knowledge, no planner has been implemented using
this approach with n > 4. In fact, this is true of other so-called 'global' methods, which
represent the connectivity of free space as a graph before actually starting the search for a
path.

In an attempt to cope with more DOF, an approach, which consists of approximating
free space at successive levels of detail as a collection of rectangular cells of decreasing size,
has been developed by several researchers (see [Brooks 83,Fav 84]). Several implementations
of this approach show that it can significantly improve the average computing time for
small numbers of DOF (typically, n < 4). However, although the full potential of the
paradigm has probably not been completely exploited yet, current results lead to think that
it is not powerful enough to extend the applicability of the cell decomposition approach to
significantly higher values of n.

Since the untractability of the cell decomposition approach - and more generally of the
other global methods - is due in part to the precomputation performed before the search of
the connectivity graph, local methods to path planning have been considered for handling

more DOF and some successful systems have been implemented (e.g., [Donald 84,Fav 871).
A local path planning method consists of placing a regular grid (at some resolution) onto
the robot configuration space and searching this grid (see (Donald 87]). Heuristics computed
from partial information about the geometry of the configuration space are used to guide the
search. Thus, unlike global methods developed so far, a local method requires no expensive

precomputation step before starting the search of a path. Consequently, in favorable cases,
it runs substantially faster than any global method. But, since the search graph (i.e., the
grid) is considerably larger than the connectivity graph searched by global methods, in less
favorable cases, it may require much more time than global methods. In order to deal
with this difficulty, powerful heuristics are needed to guide the search, but known such
heuristics have the drawback of eventually guiding the search into dead-ends, from which it
is very difficult to escape. For example, a widely used heuristic technique consists of guiding
the robot along the gradient direction generated by an artificial potential field [Khatib S61.
It is well-known that this technique eventually leads the search to local minima of the
potential and provides no way to escape these minima. The issue of defining a potential field
with a unique minimum at the goal configuration and whose attraction domain includes

all free space has been investigated with very limited success so far ([Kod 87,Rimon 88]).
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Furthermore, if such a nice potential could be defined, its computation would probably be
expensive and constitute a precomputation step before search similar in drawback to cell
decomposition. Paths for a 8 DOF manipulator have been generated with a variant of the
potential field method [Fav 87]. Although impressive, the results have been obtained in a
specific workspace made of vertical cylindrical pipes. Such a workspace makes probably
easier the definition of a potential field with few local minima. Nevertheless, the planner
also required some human interaction for escaping local minima.

Recently, we have developed an approach based on a numerical valley tracking algorithm
[Barra 89] which was able to plan paths for a 10 DOF manipulator arm with a complex
kinematic chain (the same arm is used in this paper). However, the approach was not very
reliable - it failed on several problems - and quite slow. In fact, the approach reported below
derives from that described in [Barra 89].

3 Distributed Representation and Potential Fields

3.1 Overview

Let A denote the robot body, W its workspace, and C its configuration space parameteriza-
tion (i.e. generalized coordinates). A configuration of the robot, i.e. a point in C, completely
specifies the position of every point in A with respect to a coordinate system attached to
W. The subset of C consisting of all the configurations where the robot has no contact or
intersection with the obstacles in W is called free space and denoted Cire..

The workspace W is modeled as a multiscale pyramid of bitmap arrays, each of these
arrays being 2- or 3-dimensional. At a given resolution level, the array is represented by a
function:

BM : W -+ {1,0}

x '- BM(z)

in such a way that the subset of points x such that BM(x) = 1 represents the workspace
obstacles and the subset of points x such that BM(x) = 0 represents the empty part of
the workspace. All our experiments were conducted in a 2D workspace, but the approach
extends without any change two a 3D workspace (at the expense of more computing time).

The coarsest level of the bitmap pyramid is typically 162, the finest 2562 or 5122,

The bitmap representation of a particular workspace at the 2562 resolution is shown in
Figure 1 (I = black; 0 = white).

For each point p in A, one can consider the geometrical relation which maps the configu-
rations q = (q... ,q,) of the robot to the position x of p in the workspace. This geometrical
rmlap:
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(p,q) '-. X(p,q) = x

is called forward kinematic relation.

Our approach to path planning is based on the definition of a numerical potential field
U(q) over configuration space that has few and small local minima. In the case where some
local minima appear, the algorithm backtracks in configuration space until the robot gets out
of the local minimum. All the computations, in configuration space as well as in workspace,
are performed within a multiscale hierarchical data representation. For each resolution level
of the hierarchy, the overall configuration space potential field U(q) is computed as a non-
linear combination U(q) = G(Up, (X(piq)),.•. , U7, (X(pk, q))) of several workspace potential
fields U , (z),. .. , Up,(x), each of these attracting concurrently a given point pi of the robot
towards its goal position. In the next two subsections, we describe the computation of these
workspace potential fields. Then, in subsection 3.4, with describe the interaction of the robot
with these workspace potentials, and specify the non-linear combination G.

3.2 Distance Function and Voronoi Diagram

At each resolution level of the hierarchy, the potential field used in our implementation is
constructed in two steps. In the first step, we compute an approximation to the distance
to the obstacles in the workspace, as mentioned in [Barra 89]. We build at the same time
an approximation of the generalized Voronoi Diagram. This first step is described in this
subsection. In the second step, we compute a potential field using this distance information
and the Voronoi diagram. This second step is described in the next subsection.

We first compute the map dj, which is an approximation of the L' distance to the
obstacles. The function di is simply computed as follows: First the points on the boundary
of {z / BM(z)} are identified and the value of d, at these points is set to zero (we also include
the points on the rectangular frame bounding the bitmap as boundary points). Then, the
value of d, at all the neighbors of these boundary points :a the empty part of the workspace
are set to 1; the value of d, at the neighbors of these points, if not yet computed, is set to
2; etc. The procedure is recursively repeated until all the empty part of the workspace is
completely explored. Figure 2 displays the equipotentials of d, for the workspace shown at
figure 1. The valleys of the map thus obtained, i.e. the set of points where the waves coming
from the boundary points meet, form the discretized Voronoi diagram for the L' distance.

As a matter of fact, we can define the generalized Voronoi diagram associated with any
distance function in the following way: For each point x in the free space, we can compute
along with the distance di to the nearest obstacle the set P(x) of boundary points from
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Figure 1: Bitmap de.;cription of a 2D workspace.

Figure 2: Visualization of di for the 2D workspace shown above.



Figure 3: A Generalized Voronoi Diagram.

which this distance has been obtained. This associated set of boundary points P(x) is the
sot of points which realize the minimum distance d1(x). The generalized Voronoi diagram is
precisely the set of points for which P(x) contains more than one boundary point. Figure 3
displays the generalized Voronoi diagram computed from the workspace shown on Figure 1.

The computation of d, is not local and therefore must be done prior to the execution of the
rest of the path planning algorithm. However, the procedure is linear in the number of points
of the bitmap representing W and is quite fast (a fraction of a second for a 2562 bitmap).
The time complexity of the procedure does not depend on the shape of the obstacles (the
complexity of computing analytically the Voronoi diagram of a polygonal workspace increases
with the number of vertices).

3.3 Workspace Potential Fields Without Local Minima

The idea is to define an attractive potential field [Khatib 86] attracting some points of
the robot A toward their goal position. We could use a classical analytical potential field
depending on the Euclidean distance in W. But it is known that this kind of field can
have other local minima than the goal, especially in the workspace obstacle concavities.
The bitmap description of the workspace allows us to compute numerically an attractive
potential field which has no other local minima than the goal, when used on a point robot.
This potential happens to be very helpful for avoiding concavities of the workspace obstacles.

Let us consider a point robot x moving freely in the workspace. Let XCOAL be the goal
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Figure 4: Numerical potential field UW for a 2D workspace.

position of x in VV'. We set the value of the potential at the goal point to zero. Then the
neighbors Of XGOAL are set to 1 . This procedure is recursively repeated until the empty
part of W is completely explored. The complexity is linear in the number of points of the
bitmap description, and constant in the number and shape of obstacles. The equipotentials
of the resulting workspace potential field UW (X, XGOAL) for the 2D workspace of figure 1 are
displayed in figure 4. This computation was performed in a fraction of a second.

A property of this function is the following: when one follows the gradient from any
starting point ZINIT, a path connecting ZINIT to XGOAL is obtained, which is the shortest
geometrical path for the L' distance. In a 3D space, this may be an important advantage
over exact shortest distance algorithms, since the problem of computing the exact shortest
distance in a 3D polyhedral space is NP-hard in the number of vertices under any LP metric
[Canny 87].

The above technique has interesting extensions. For example, it is possible to modify the
definition of the potential in order to take safety considerations into account.

We detail in the next paragraph an improvement of the technique previously presenited
in [Barra 89] for building 'safe' potential fields. The idea is to compute first the distance d,
and the Voronoi - ram V'D as explained above. Then, the potential field is computed inl
three steps. T-VI ' step consists of tracing a line L following the gradient of the distance
dl from the goa, point XGOAL to the nearest point on the VD. Once this line is computed,
we obtain a newv se' points S = VD U L. This set S is connected. The second step of
the algorithm s to Idhbel all the points of S starting from XGOAL. The label 0 is assigned

10



!//i

\

%%

Figure 5: Another numerical potential field taking safety considerations into account.

to XCOAL, the label I is assigned to its neighbor x, which is at maximum distance d, of
the obstacles. Then we consider together the neighbors of XGOAL and x, which have not
been labeled yet, and give the label 2 to the one which is the farthest from the obstacles.
This operation is recursively repeated until the set S = VD U L is completely explored. At
each step of the recursion, the list of points in S to be labeled is represented with a heap
structure, so that each insertion of a new point or extraction of the maximum distance point
is performed in logarithmic time. At the end of the second step, all the points X E S have a
label l(x). The third step is simpler, and very similar to the computation of dj. We compute
all the neighbors of all the points in S, and give to the neighbor of x E S the label 1(x) + 1.
We then compute the neighbors of these neighbors, and increment the labels iteratively until
the freespace is completely explored.

Instead of incrementing the labels systematically of the same constant 1, more complex
incrementation functions giving smoother potentials can be easily derived. For example, we
can make the increments in the third step dependent of the distance d1 . Instead of giving
the increment 1 to the neighbors of S, we could give the increment Ildl. Then, we could
give the increment l/d 1 again to the neighbors of these neighbors, and so on. In that case,
we would obtain a potential field that becomes infinite on the obstacles boundaries. We will
not detail further the cosmetics of numerical potential fields computations, but we want to
point out that a large familly of potential fields with very nice properties can be build within
this bitmap numerical framework.

Figure .5 shows the equipotentials of this last potential field. The path obtained by
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tracking its gradient stays away from the obstacles (in fact a point robot tracking this
potential would follow the safest path on the Voronoi diagram.). However, the complexity
of computing this modified potential is slightly higher than that of the previous one. Let
m bc the number of points in the workspace bitmap, and p the number of points lying in
VD U L. The complexity is 0(m + p log p) instead of 0(m) (the logarithmic term comes from
the calculation of the maximum distance point in the Voronoi list with the heap structure).
For most reasonable workspaces, we have p oc m -- because the Voronoi diagram is of
dimension n - 1 in a n-dimensional workspace. Therefore, we have an average complexity
of 0(rn + rn log n), which simply equals 0(m). The algorithm is still linear in the
average case. For a 2562 workspace, the computation took about 2 seconds (including the
computation of d, and VD).

3.4 Configuration Space Potential Field

As the workspace representation is distributed, the natural representation for the robot
should also be distributed. That is to say, the robot should be considered as a the discretized
collection of all the points on A. On a parallel hardware, this would be the simplest and
most efficient fashion to compute the distance of the robot to the obstacles and the attractive
potentials. One could use one processor per discretized point on the robot. However, as we
made all our simulations on a sequential computer, we slightly adapted this representation
in order to reduce the amount of computations.

First, we only need to consider the points on the boundary of the robot, because the
minimum distance from the obstacles to the robot is always reached on the boundary of
the robot. Second, using the distance information, we can adjust adaptively the number of
points on the robot (we call them control points) with regards to the distance to the obstacles
computed for each of these points. To illustrate this idea, let us assume that we want to
compute the minimum distance D, from the robot to the obstacles. It is mathematically
defined as:

D,(q) = inf d,(X(p,q)).
pEA

Let us consider an ideal robot composed of a single straight line segment of length L.
We suppose that the workspace function di has been precomputed. Instead of computing
the distance d, for each discretized point on the segment and then calculating the minimum
of all these distances, we choose to compute first the distances d1(begin) and d,(end) of the
two extremity points of the segment. If DD, = min(d1(begin), d,(end)) > L, then we are
sure that the robot cannot hit the obstacles, and we choose DD, as an approximation of
D1. Otherwvie, we compute the distance d, for the middle point of the segment. Our initial
segment can be considered as the union of two half-length segments, and we can recursively
apply the approximation procedure to these sub-segments.

If the robot boundary can be modeled by a polygon, this segment procedure can be
appli'd to each segment of the polygon. Moreover, the segment procedure can be easily
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generalized to higher order models of the robot boundary like arcs of circles, arcs of ellipses,
and so on. When the robot is far from the obstacles, very few points on its boundary need
to be checked. When the robot is in contact space however, the segment which achieves the
contact has to be checked in its entirety.

After this procedure, we obtain an approximation of the distance D, between the robot
and the obstacles.

As our robot can be a complex articulated system, we might need to check its auto-
intersections. For example, if the robot is a manipulator like those described in section 6.5,
we have to check intersections of several straight line segments in the workspace. Usually,
if the number of segments is n, checking the intersections of all these segments can be
performed in 0(n 2 ) operations. With a distributed representation of the workspace, this
complexity falls to O(n): as a matter of fact, we can simply draw each of the segments on
the workspace bitmap. If we draw a point which has already been drawn, we know that the

segments intersect. This remark shows once again that distributed representations generate
algorithmic complexity measures which are very different from those obtained with algebraic

representations.
We now detail the computation of the configuration space potential field for a generic

robot.
Let us first consider a simple bar in a 2D workspace like the one illustrated in figure

4.2. We want the bar to reach a given goal configuration from any initial configuration.
To specify this goal configuration in terms of workspace potential fields applied to given
points on the robot, selecting only one point will not be enough to characterize the goal.
This is so because one point on the robot specifies only two degrees of freedom, whereas our
robot has three. Therefore, we need to select at least two points on the robot if we want to
specify completely the final configuration. For more complex robots like manipulator arms
with many DOF, one might want to specify only some points on the end-effector, in order
to define a given grasping configuration without computing all the inverse kinematics. So,
depending on the application considered, the choice and the number of the attractive points
for defining the overall potential field can be conveniently adapted.

Let us call k this number of attractive points, and Pi,..-, pk the corresponding points on

the robot body.
The overall configuration space potential field U(q) is computed as a combination U(q) =

G(UPI (X(pI,q)),. , Uk(X(pk,q))) of several workspace potential fields Up,(x),... ),
each of these attracting concurrently a given point pi of the robot towards its goal position.

To define precisely this overall potential, we still need to specify the competition function
G. In most of the previous works on the artificial potential field approach, the function G
was chosen linear [IKhatib 86]:

i=k

G(y,,..., yk) = Ay,

This choice gives good results in some cases, but the identification of the multipliers Ai is a
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non-trivial problem.
The choice of the function G is especially important because it highly influences the

number of local minima of the potential U. With our 'p,;[fecL' numerical potential fields
defined for a point robot, the workspace concavities do not create any more local minima by
themselves. It is the concurrent attraction of the different points on the robot which creates
these local minima, because of the fact that these points do not move independently. The
function G precisely defines in which way the competition between the different points is

going to be regulated.
The choice of G which seems to minimize experimentally the number of local minima is

i=k
G(yl,...,yk) = ny,

This competition function favors the attraction of the point which is already in the best
position to reach its goal. It seems natural to think that this policy will minimize the
number of competitions between points, and therefore minimize the number of local minima.
However, when one point has re-.ched its goal position, the potential field is identically null,
and the attraction paradigm does not work any more to bring the other points to their goal

position. A solution to avoid this phenomenon is to add another term to the competition
function:

i=k i=k
G(yl,..., Yk) = min yi + c max 1 y

where e is a small number. Then, we have to tune the parameter e. In the case of the bar in

a 2D workspace illustrated on figure 4.2, the best results where obtained with e = 0.1.

Another choice is to set:
i=kG(yl,..., yk)z=max yi

This choice would tend to maximize the number of competitions between points, and there-
fore the number of local minima. However, it can be the best choice in some cases, and
especially with manipulator arms. As a matter of fact, the number of local minima is not
the only measure for the quality of the overall potential. Another very important factor for

the convergence rate of the algorithm is the distribution of depths of these local minima. The
method will overcome small local minima without problem even if they are numerous. But
only one very deep local minimum can provoke the failure of the whole algorithm. Another
word for the depth of a local minimum is the activation energy, to refer to chemical kinetics

terminology. This last choice of the competition function seems to maximize the number of
local minima but to minimize the activation energy for each of these. It is the one we chose

for the 10 DOF manipulator arm illustrated in figure 6.5. In out experiments, we chose two
attracting points at the two end-effectors of the non-serial kinematic chain.

It may appear surprising to choose such competition functions involving computations of
maxima and minima. These are non-differentiable for some degenerate points, and comput-
ing their derivatives may cause numerical instabilities. However, there are many techniques
for following the gradient of a function, some of which are faster and fancier, some of which
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are slower and more robust. In all cases, one can design a differentiable approximation of
the maximum function in the following way: Choose a very small number o, and compute:

G(yl,. . Yk) = 6'1og (f:exp(yi/U))

One can show that this function uniformly converges towards the maximum function when

c converges towards zero.
The next section describes the first of the two paradigm we have used to escape from

local minima. It is valid only for a small number of DOF, but happens to be the fastest on

a sequential computer for robots with 3 DOF. A general paradigm valid for any number of
DOF will be presented in section 6.

4 Very Fast Motion Planning
for a Small Number of DOF

4.1 Hierarchical Best First Search of Freespace

We represent C as a cartesian n-dimensional space with modular arithmetic for the angles.
For example, in the case of the 3 DOF mobile robot studied in section 4.2, the configuration
space is represented by R' x R/27rZ. We then perform a hierarchical discretization of the
cartesian n-dimensional space using a multiresolution pyramid. The resolution level chosed
in the configuration space pyramid is tightly related to the resolution level chosen in the
workspace bitmap representation. To make this relation precise, we need to give some

elementary definitions related to the concept of multiresolution.

Let us denote 5 the effective distance between two adjacent points in the workspace
bitmap representation. In the workspace pyramid, 5 varies between 6..i" and .

For example, let us assume that we have a 2D workspace represented by a pyramid of
images whose sizes are ranging between 162 and 5122. If the distance is measured in per-
centage of the workspace diameter, we will have in that case b;,, = 1/512 and 6,ar = 1/16.

The scaling factor between two successive resolutions is always 2 in our implementations,
although it could be any other factor. The resolution is by definition the logarithm in the
base defined by the scaling factor of the inverse of the distance between two discretiza-

tion points. In our example, the resolution r varies between rmmn = - log2(Sma) = 4 and
r... = - 10g2(6,im) = 9.

For any given resolution chosen in the workspace V C Rd, say r = -log 2(b), the
corresponding resolution R, = - log 2(Ai) for each of the degrees of freedom qi must be chosen

in such a way that any elementary motion (i.e. a motion of A, = 2
- R,) in configuration space

is transformed in a small motion of all the robot body points in workspace. By small motion,

we mean a motion for which any point on the robot moves by less than a few number nbtol

points in workspace.

15



The relation between positions in workspace and configurations is given by the forward
kinematics relation X(p, q). So, an elementary motion A, of qi in C will generate a motion
of each coordinate X, in workspace for each point p on the robot body of:

ax.

If we impose all workspace motions to be less than nbtol x 6, we must have:

A, = nbtol x 6/ sup 2A[L(pq) nbtol x /J,
PE-A~qECjE[1.dl Oqj

The numbers J;P are generally straightforward to compute. Then the resolution R/ is
computed by:

R, = r + log 2(JL.) - log2(nbtol)

Let us consider as an example a bar of length L moving freely in a 2D workspace. The three
degrees of freedom of this bar are respectively the first coordinate XG of the center of gravity,
the second coordinate YG, and the orientation of the bar 0. XG, YG, and 0 are all normalized
coordinates ranging between 0 and 1.

One can compute

J= = 1
and

J0 =irL
sup

If we set nbtol = 2, we have:
RG = RvG = r - 1

and
Re = r + log 2(7rL) - 1

This means that we need 21 = 2 times less samples for XG and YG than for the workspace
representation at each resolution, and 2/(irL) less samples for 0.

The uniform discretization of configuration space for each resolution level that we just
described does not take advantage of the knowledge we have of the distance to the obstacles
D1 . As a matter of fact, instead of moving with constant increments Ai we could compute
for each configuration the largest increment possible, which would allow the robot to move
fast, while still avoiding the obstacles.

As we know our distance D, to the obstacles, we can allow elementary motions in
workspace of the order of D1, instead of limiting ourselves to motions of the order of 6.

Then, we can approximately estimate the configuration space increments in the following

A,(D,) = nbtol x OJSUP
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Here, nbtol must be smaller than 1 in order to make sure that the obstacles are avoided.
In cases where the workspace is not cluttered, this adaptation may reduce significantly the
overall computation time. However, it makes the computation of the neighbors of a given
point more complex than with the uniform grid.

The principle of the approach at each resolution is to perform a best first search of the
configuration space discretized grid, using the potential field as the heuristic for the search.
For a n DOF robot, each discretized configuration has 3'* - 1 neighbors.

The graph search is first performed in the coarsest grid at resolution ri,, in workspace
and R, = r,,,, + log 2(J,,p) - log2(nbtol) in configuration space. The workspace potential
fields are also computed at the coarse resolution rmin. If no solution is found, the search
is performed in the next finer grid, and so on until the finest grid is treated. At each
resolution level considered, the potential fields have to be recomputed. As the computation
time required to explore a coarser grid is almost neglectable with regards to the computation
time required to explore a finer one, this naive coarse to fine approach is actually the best in
the average case. It would be possible to imagine a hierarchical approach where the resulting
graph of a given resolution could be used as the initial graph of the next finer resolution.
However the solution of a path planning problem is generally so versatile with respects to
the resolution that in most cases, the resulting graph of the previous resolution where the
search algorithm has failed would be more misleading than helpful for the search in the next
finer resolution.

The search algorithm in each grid uses the numerical potential field as the heuristic for
a best-first procedure. As long as the algorithm does not reach a local minimum of the
potential field, the best-first search reduces to following the gradient of the potential. When
a local minimum is reached, the search algorithm fills up the attractor associated with this
local minimum until a saddle point allows the best-first procedure to reach another attractor,
and so on until the attractor of the goal is reached. At first sight, the experimental efficiency
of such a brute force technique may appear fairly surprising. The fundamental reason of
this efficiency is the following: The potential fields computed in the workspace are designed
to be 'perfect' potential fields for a point robot, in the sense that they have no other local
minima than the goal. Therefore, complex shaped obstacles with many large concavities do
not create local minima of the overall potential even for a complex robot. Local minima can
occur only when the workspace is so cluttered that the solution path has to come very close
to the obstacles. But in that case, the number of discrete configurations lying in freespace
(i.e. which do not intersect the obstacles) around the attractor associated with the local
minimum can only be very small. The attractor is therefore filled very fast by the best-first
search algorithm.

This approach is only valid for a small number n of DOF, because the number of discrete
configurations in any given attractor increases exponentially with the number of DOF, even
though it is generally small for n < 4.

However, it has two advantages:

* It is extremely fast: very tricky paths for a 3 DOF bar in a 2D workspace were obtained
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Figure 6: Path generated by a 3 DOF mobile robot in a 2D workspace.

in about 1 second. Simpler paths without complex maneuvers can be obtained in about
1/5 second, which can already be considered real-time.

e It is deterministically resolution complete, i.e. the method is guaranteed to reach the
goal in a finite amount of time whenever a solution exists (up to the resolution of the
discretization), or return failure when there is no solution.

The next subsection is devoted to some experimental results obtained with this planner.

4.2 Experimental Results

\Ve experimented the path planner on a 'mobile robot' with 3 DOF, namely a long bar in a
2D workspace.

The mobile robot is a planar rectangular object with two DOF of translation and one
DOF of rotation (see figure 6). Figure 6 shows an example of path generated by the planner.
The displayed path shows the ability of the planner to produce complex maneuvers.

The heuristic potential was computed by considering two points on the robot body, at
the two extremities of the bar.

In the setting shown in figure 6, the running time of the algorithm was I second. This
compares extremely favorably (three orders of magnitude faster) with the runining time
reported in [Brooks 83] for similar path planning problems. One of these orders of magnitude
is obtained through the improvement of the computing hardware. The two other ones arc
actually a product of our algorithm.
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Figure 7: Another path generated among randomly distributed obstacles.

Figure 7 shows another example of the abilities of the algorithm. Here, the same robot
found a path in less than 5 seconds within a 5122 bitmap world obstructed by more than
70 complex-shaped obstacles. This example demonstrates a main advantage of distributed
representations over centralized ones: the running time of the algorithm does not depend on
the number and shape of the obstacles.

This hierarchical best-first search algorithm is the fastest planner developed so far for
robots with a small number of DOF. However, we had to develop another method based
on a Monte-Carlo procedure in order to deal with many DOF. Of course, the Monte-Carlo:
based algorithm also works for a small number of DOF. We experimented it in the same
setting as the one displayed in figure 6. The result obtained (after energy minimization)
is shown in figure S. The running time was 10 second on the same hardware, which is
ten times slower. However, as we will see in section 7, the Monte-Carlo based algorithm is
massively parallelizable, and will certainly prove extremely faster than the best-first search
of dedicated computing hardware. We believe that real-time capabilities are achievable with
this algorithm.
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Figure 8: The same path planning problem solved by the Monte-Carlo procedure.

5 The Case of Non-Holonomic Constraints

5.1 Overview

This section introduces the first algorithm able to deal systematically with maneuvers for
the 'car problem', i.e. the problem of planning the motion of a car with limited steering
angle. This problem was first introduced by [Laumond 86]. Laumond proved that whenever
a path in open free space does exist for moving the body of the car without considering any
constraint, then a solution to the maneuvering problem exists. However, the solution paths
which could be obtained by implementing the constructive proof given in this paper would
lead to a very large number of maneuvers, and are therefore not practical. [Laumond S7]
proposes an algorithm for planning the motion of the car whenever there is no need to
perform maneuvers. The problem of planning maneuvers has been addressed for some par-
ticular obstacles configurations by other authors [Tourn 88], but no general solution has been
proposed yet. The main idea of our approach is to discretize the problem and perform a
dynamic programming search of the solution. The resulting algorithm is again resolution
complete. Furthermore, optimality under different criteria can be achieved. In particular, we
can constraint the algorithm to find the solution path with the minimal number of maneuvers
possible.

The next subsection is devoted to a characterization of holonomy for mechanical systems
using Frobenius Integrability Theorem. This characterization allows us to prove the non-
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holonomicity of the 'car problem'. The reader familiar with holonomy may want to skip this
subsection.

5.2 A Local Characterization of Linear Holonomy.

We have considered so far the motion planning problem as a pure geometric problem, i.e.
a problem for which all the constraints can be expressed using only the geometric variables
(qj,. .. , q,,). In other words, a constraint is said to be geometric when is can be expressed as
an equation in configuration space:

F(q,t)=O, qEC ()

Such a constraint can be interpreted geometrically in the following way (if the function
F is smooth and has a surjective differential): equation 1 defines a submanifold of the
configuration space C, and it means that the mechanical system considered is bound to stay

on this submanifold whatever force is applied to it.
A real world mechanical system can have many kinds of constraints, some of which can be

reduced to a geometrical relation, some others which cannot. In particular, one can consider
the larger class of kinematic constraints, i.e. the constraints which include the geometric
parameters and/or velocity parameters. Mathematically, any kinematic constraint can be

expressed as:
G(q,4,t) = 0, (q, 4) E TB(C) (2)

where TB(C) is the tangent bundle associated with the manifold C, i.e. the space representing
the configurations and velocities. The tangent bundle is itself a manifold [Spivak 79]. It is

more commonly called phase space in Physics, or state space in control terminology.
When dealing with a general kinematic constraint of the form 2, an interesting problem

is to know if the constraint can be integrated, i.e. if the system of first order differential
equations defined by 2 can be reduced to a set of geometric relations of the form 1. This
problem is commonly referred to in mechanics as the holonomy problem.

A constraint of the form 2 will be said to be holonomic if it can be integrated, and
non-holonomic otherwise. To our knowledge, there is no mathematical result about the
integrability of equations of the form 2 in the general case. However, there is a very important
particular case for which a characterization can be derived. We detail this particular case in

the next few paragraphs.
Kinematic constraints on mechanical systems are generally the result of a rolling contact

between two rigid bodies. For example, in the case of the 'car problem', the kinematic

constraint is the result of the rolling of the wheels on the ground. The kinematic constraint
is expressed as a relation between the relative velocities of the two points in contact. In
general, the contact is a combination of rolling and sliding, this combination depending on
the friction coefficients of the two bodies. When there is no sliding at all, the relation simply
states that the velocities of the two points in contact are the same, relation which is linear

21



in the velocity parameters. Therefore, the case where the function G of formula 2 is linear
as a function of the velocities is particularly interesting. Under the assumption of perfect
rolling, equation 2 can be rewritten:

imn

G(q,q,t) =w(q,t).q -- 'w,(q,t), = 0 (3)
i=I

For each configuration q, w(q, t) is linear. By definition, w is called a 1 -differential form

([Spivak 79]). For each q E C, equation 3 defines an hyperplane A(q) included in the tangent
space of C at q. The function A is called (n-1)-distribution associated to w.

There is a fundamental result about integrability of linear kinematic constraints called
Frobenius Integrability Theorem, which can be simply stated as follows when applied to
1-forms:

Theorem 1 (Frobenius Integrability Theorem)
Let w be a 1-form on a manifold C of dimension n, and A the associated distribution of

hyperplanes.

In a neighborhood of any point qo E C, the three following conditions are equivalent:

i) w A dw = 0 (i.e. the exterior product between w and its exterior differential is null).

ii) The distribution A is invariant under the Lie bracket. (i.e. for any couple of vector fields
(X, Y) on A, [X, Y] is also on A).

iii) There is a foliation of C tangent to A. (i.e. the constraint 3 can be integrated)

A proof of this theorem in the general case can be found in [Spivak 79]. In the case of
1-forms stated above, a pedestrian proof only based on elementary calculus (Fixed point
theorem) can be found in [Barra 88]. It is important to notice that this local result can be
globalized ([Spivak 79], vol. 1, pp 264-268). From this theorem, we are able to infer a local
characterization of holonomy for linear kinematic constraints, and in particular of any kind
of kinematic constraint induced by pure rolling contacts.

Bv definition of exterior differentiation of differential forms, we have:

dw = U-),<T - -) dq, A dq,

F ,om the definition of exterior product of differential forms and the above formula wc coin-
p it e:

Ad-, ( i + W) + Wk dq A dq1 A dq&.. ,. << qj caqk \Oqk COqi cOqi aqj

Therefore, we deduce from Frobenius Theorem:
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Figure 9: The Car Problem.

Corollary 1 (Characterization of linear holonomy)
A linear kinematic constraint (and in particular a pure rolling constraint) defined by:

G(q,4,t) = w(q,t). = Ew(q,t)4i = 0
i=1

is holonomic if and only if the following relation holds for any (i,j, k) E (1,n]3 such that
1 <i <j<k <n:

( 8 wLk _ a, (8, W k I (8,_ )w'
Ajk W q - +Li - + ak OWk (2W- = 0

d - (qk, \qk 8q, / qi aq,

In the next subsection, we state the 'car problem', and prove its non-holonomicity using
the above result. This property implies that the 'car problem' cannot be handled by purely
geometric algorithms.

5.3 The Car Problem

Let us consider a front wheel drive car with limited steering angle. Figure 9 displays a
simple model of such a car viewed from the top. Such a mechanical system has 3 DOF
(two translations and one orientation), but it cannot change the three configuration space
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parameters independently. This is so because the velocity of the car rear is always tangent
to the car orientation: the car has a kinematic constraint 2 .

The car configuration is parameterized by the coordinates X1 and Yf of the driver (the
point F in the middle of the two front wheels), and the car orientation 0. The steering angle
of the front wheels is denoted by 0 E [-m5, +,--m,,] The car can move forward v > 0 or
backward v < 0. The length of the car is L.

The coordinates (X,, K) of the point R in the middle of the rear wheels verify the
following relation:

Xr = X, - Lcos0 Yr = Yf - Lsin0 (4)

The kinematic constraint expresses that the velocity of R is parallel to the orientation of the
car:

Xr, = AcosO =AsinO

where A is a constant. Eliminating A, we get:

- X sinO + Y, cosO = 0 (5)

Taking the derivative of formula (4) we get:

XT=Xf+OLsinO "r=Yf -OLcosO0 (6)

Combining (5) and (6) we obtain the kinematic constraint:

- XC fsinO + cos 0 -0L = 0 (7)

Using the notations of the previous subsection, we identify:

wx, =-sinO wy =cos0 wo=-L

We compute the coefficient Axyfo:

AxfyfG, = wx( aOy) + w, (+) + w i, Ow'f 1 0

Therefore, the kinematic constraint of the car problem is non-holonomic.

We now derive the equations governing the control of the system. As the car is a front
wheel drive, the velocity of F is computed as:

f= v cos( + 0 ) Y 1 = v sin(O+ ) ()

2 lere we model this constraint using only the 3 DOF necessary to plan the motion of the car. In fact,
a real car has many more DOF and many kinematic constraints. In particular, the constraint that we are
simply modeling here is induced by the pure rolling contacts between the wheels and the ground. We do not
need to go into such a detailed modelization for our purpose.

24



Combining this with the kinematic constraint (7) we get:

vsino - Lj = 0

Finally, we obtain the full system of differential equations relating the control parameters
(v, 0) to the configuration parameters (Xf, Y1, 0) by combining formula (8) and:

* =sino
L

This system of differential equations is non-linear, and has to be integrated numerically
when the controls are time-varying. However, whenever v and 0 remain constant, it can be
solved analytically. There is nothing surprising with that: with a given constant steering
angle and at a given speed, the trajectory of the point F is an arc of circle, while the
orientation of the car changes linearly. The integration is straightforward. We first compute
0:

O(t) = 0(0) + t - (9)

and then X1 and Y using the above result:

Xf(t) = £0 1. v--- )- i(n+O() (10)

snL( o ( +  °)+sin in " -sr~+J)
Y 1(t) = Y1 (0) + L (s( + 0(0) + t-v ) - cos(O + 0(0)) (11)sin k L

From the two last formulas, we deduce that the turning radius of the car is

L
RT

sin 4)

The algorithm we use to find a path between two given configurations is very similar to
the one used in the holonomic case. The main difference comes from the computation of the
neighbors of a given configuration. In the holonomic case, control space and configuration
space are identical. This is not any more true in the non-holonomic case. The idea here is to
discretize the control parameters (v, 4) instead of discretizing the configuration parameters.
For example, we can set the number of neighbors to 6, corresponding to the 6 following
control values:

v E {-vo,Vo}, E {-maz,0,+)
+maz}

The configurations of the 6 neighbors are then computed from formulas (9), (10), (11).
Ve could perform the search in a best-first fashion like we did in the holonomic case.

This would result in admissible paths, but these solutions would include a very large number
of maneuvers. The objective function used in the dynamic programming search is in general
a combination of the heuristic potential field term and the term relative to the number of
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Figure 10: A Parking Maneuver.

maneuvers. If we want to minimize the number of maneuvers, we have to modify the best-
first procedure. The idea is to use the precomputed distance to the obstacles D1 , and to
compare it to the turning diameter DT = 2RT = 2L/ sin . As long as the robot is far
from the obstacles and the goal (D1 > DT), we can proceed in a best-first fashion with
no risk to need maneuvers. When the robot comes too close to the obstacles or the goal
(DI < DT), we have to abandon the potential field heuristic and to perform the search using
only the term relative to the number of maneuvers.

Examples of paths for the car problem with complex maneuvers are shown and discussed
in the next subsection.

5.4 Experimental Results

We experimented the non-holonomic car planner with various values of the maximal steering
angle , Figure 10 shows an example of the parking problem with a very limited steering
angle 6,,,, = 30 degrees. The running time was 30 seconds. This is much longer than tile
running time in the holonomic case. The reason is that with such a limited steering angle.
the turning diameter is larger than the workspace diameter itself. Therefore, the heuristic
potential field does not help much in that case to obtain the final solution. The algorithl
has to explore a large part of the search space.

Figure 11 shows an example of maneuvering in a clustered environment with a steering
angle o, = 45 degrees. The running time was about I minute. Figure 12 displays four
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Figure 11: Maneuvering in a clustered environment.

successive parts of the same path so that the different maneuvers can be isolated from each
other. Ten maneuvers (i.e. changes on the sign of v) were necessary in this example.

Any kind of maneuver can be performed in any obstacle distribution, up to the resolution
of the bitmap.

6 Large Systems: A Monte-Carlo Approach

6.1 Overview

The hierarchical best-first search algorithm described in the previous sections cannot plan
the motion of robots with many DOF. The reason of this limitation is the same for any
complete motion planning algorithm based on the configuration space approach: the volume
of configuration space, which is locally diffeomorphic to R', increases exponentially with
n. One the other hand, human beings are able to solve motion planning problems with
a 'ery high number of DOF. Often, the redundancy of DOF is helpful and simplifies the
planning problem. There is a divorce between the mathematical result of NP-hardness and
the everyday life experience. To design realistic efficient motion planners for many DOF, we
have to drop the completeness requirement. Then, the main question is the following: Is it
possible to design non-complete algorithms which give nevertheless the correct solution in
mosTz real-life cases?

The main purpose of this section is to show some experimental results which let us think
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Figure 12: Maneuvering in a clustered environment (continued).
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that the answer is positive.

6.2 Local Minima: The Exit Problem

The Monte-Carlo approach that we describe in this subsection uses the same framework as
the graph search approach. It uses the same numerical potential field U, and is implemented
with the same coarse-to-fine hierarchical decomposition of the world model. As there is
no interaction between the search at different levels of hierarchy, all these levels could be
implemented concurrently on a parallel machine. The difference comes from the way local
minima of the potential field are treated. We detail here the procedure employed at a given
resolution level. The principle is the following.

Starting from the initial configuration qIN IT, we first follow the gradient of the numerical
potential field U(q) until we reach a local minimum qt, at altitude U1to = U(q,,). The
problem of exiting from this local minimum is solved by generating several random motions
from qjoc, each of these random motions having a random duration. The two key points of
the algorithm are how to perform these random motions, and how to choose their duration.
Before detailing these two points in the next subsection, we give the overall sketch of the
algorithm. From all the termination configurations of these random motions, we follow
again the gradient of the potential field until we reach new local minima. We retain only
those of the new local minima whose altitude is lower than Ut1,. If none of the new local
minima has an altitude lower than U1,c, we say that qto, is a dead-end. Otherwise, for each
of those new local minima retained, we perform again the random motion procedure, in a
best-first fashion. So, a graph of local minima is incrementally built, the path joining two
neighbor local minima being the concatenation of a random motion and a gradient motion.
A standard best-first search of this graph is performed until we reach the goal, or until all
the local minima developed are dead-ends.

When the solution path is finally obtained, we smooth it using the classical principles of
Variational Calculus. More precisely, we minimize the total work needed to move the robot
from the initial configuration to the goal configuration.

A very nice property of this procedure is that all the brownian motions starting from a
given local minimum can be performed in parallel on any SIMD machine (there is no need
for intercommunication between the different processing units).

As we use a random procedure to build the graph of local minima, we can never be sure
to find a path whenever it exists. In other words, the technique is not deterministically
resolution-complete. However, the fundamental properties of Brownian motion allow to
prove that when the computation time converges towards infinity, the probability to reach
the goal converges towards 1. We will say that our Monte-Carlo procedure is pro6abilistically
resolution- complete. This convergence-in-distribution property, well-known for the so-called
'simulated annealing' algorithms [Geman 86J, is a very weak one. To illustrate its weakness,
let us consider the most silly (uninformed) of the motion planning algorithms that one
can imagine: Start a Brownian motion from the initial configuration without using any
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heuristic, and keep on until reaching a small neighborhood of the goal configuration. This
entirely uninformed algorithm is probabilistically resolution-complete! What the theory does
not tell is how long time the algorithm will need to actually reach the goal (and it should
better not tell!). Designing algorithms only makes sense when one has some control of the
computational complexity in the average case.

The potential-field-informed Monte-Carlo procedure that we propose happens to be ex-
perimentally efficient for motion planning. Again, the efficiency of such a simple technique
may appear fairly surprising. We believe that the reason of its efficiency is the following:
The mathematical problem of motion planning when stated in algebraic terms is known
to be Pspace-hard in the number n of DOF. On the other hand, the more DOF a robot
manipulator has, the more paths there are to reach a given configuration from any initial
configuration. The redundancy of DOF often appears helpful when human beings are con-
fronted to a given planning problem. In other terms, the more DOF you have, the more
solutions to the planning problem you have. The worst-case behaviour of the problem (very
large search space with very few solutions) does not appear often in real-life cases. The
average case behaviour seems to be more of the type: very large search space with very large
number of solutions. In such cases, controlled stochastic algorithms can be particularly well
suited.

Monte-Carlo procedures have already been helpful in some cases for solving NP-hard
problems. [Cerny 85] gives sub-optimal solutions to the traveling salesman problem for more
than 10000 towns. [Kirk 83] proposes an algorithm better than human experts for placement
and routing of VLSI chips. The traveling salesman problem is indeed NP-hard, but the very
large search space is associated with a very large number of 'good' sub-optimal solutions. It
is the same for routing of VLSI.

Monte-Carlo procedures for optimization have also been used more or less successfully
in many other fields of science and engineering, and in particular in Image Processing.
[Geman 84] applies a so-called 'simulated annealing' approach for restoring images blurred
with non-linear filters. Several authors have implemented edge detection algorithms based
on the same paradigm. Recently, it has been applied to higher level problems in Computer
Vision. [Barnard 88] addresses the stereo matching problem using a hierarchical pixel-level
simulated annealing algorithm. (Barra 88] proposes a new approach to the 3D reconstruc-
tion of stratigraphic layers and the detection of geological faults in seismic data. Despite
some impressive results for specific problems, the Monte-Carlo approach to Computer Vision
cannot be considered as a general paradigm. There is a straightforward reason to this lack
of popularity: the search space of Computer Vision problems is huge. Furthermore, these
problems are hard to express correctly in terms of the optimization of a functional. \Vheii
it is possible, several parameters have to be tuned empirically or by means of identification
models, leading to even heavier optimization problems.

For motion planning, the number of parameters has been reduced to a tractable set
using the specific characteristics of the problem, and the function to optimize is well defined.
Furthermore, the Monte-Carlo procedure proposed behaves very differently from the classical
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'simulated annealing' procedures. Basically, simulated annealing procedures perform a kind
of breadth-first search of the graph of local minima of the function to be optimized, whereas
our Monte-Carlo algorithm performs a best-first search of this graph using as heuristic the
function to optimize itself. We believe that this best-first approach leads to much higher
convergence rates. This belief is supported by strong experimental evidence in the case of
Robot Motion Planning.

6.3 What Is a Continous Random Motion?

We now detail the first key point of the algorithm, that is how to perform a random motion.
When we reach a local minimum of the potential field U, there is no more information that
we can extract locally from U to guess the direction of motion which will lead to the goal. In
some way, the potential gave us all what it knows locally about the goal. As long as we do not
make any assumption on the statistics of the obstacles distribution, we have no more piece of
valuable information to reach the goal. Then, if we do not want our algorithm to stop and
return failure, we have to choose the next direction without any information. As we work at
a given resolution R = - log 2 Ai for each configuration space parameter qj, we would like
the standard deviation of our step to be equal to A,. But the most uninformed distribution
(i.e. the one which maximizes the entropy) among all those which have a given standard
deviation A, is precisely the Gaussian distribution [Roubine 701. Therefore, our velocity
along each configuration parameter qj must follow a Gaussian distribution with deviation
Ai. But the problem of choosing our velocity happens again and again at every single
time, independently of the previous times. Therefore, the velocity process n(t) must be a
time-decorrelated Gaussian process. By time-decorrelated we mean that the autocorrelation
function is:

r,(t, t') = Ai2S(t - t')

where 6 is the Dirac function, or equivalently3 that the power spectrum is fiat:

A 2,

This is precisely the definition of a white Gaussian noise . It can be proven that the white
Gaussian noise is the generalized derivative4 of the standard Brownian motion, also called
W'l'iener-Levy process. Therefore, the most uninformed motion Q(t) = (Ql(t),. .. ,Q,,(t)) in
configuration space is the Brownian motion. The Wiener-Levy process is a non-stationary ho-
mogeneous centered Gaussian Markovian process with the following properties [Papoulis 65]:

Its density is given by: 1 q
pi(qi,t) = exp(- - )

Aj ~ 2At
3This equivalence results from the Bochner-Wiener-Khintchine theorem (Feller 66]: The spectral power

is the Fourier transform of the autocorrelation function for any stationary process.
'derivative in the sense of stochastic distributions [Roubine 70] [Fernique 67].
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* The standard deviation of increments E(t) increases proportionally to the square root
of the duration:

,2(t) = E ((Q,(to + t) _ Q,(to))2) = A 2t

* The increments are independent, i.e. the two processes Q(t) - Q(t') and Q(t') - Q(t")
are independent for any (t, t', t")

It can be shown that the Wiener-Levy process is almost surely continous', but this is
a highly non-trivial result! The Wiener-Levy process is well-defined as long as it does not
encounter any obstacles in configuration space. When the process Q(t) hits the bound-
ary of a C-obstacle, the Brownian motion procedure has to be adapted in order to remain
in freespace. The classical generalization of Brownian motion when the space is bounded
is called reflective boundary motion. Basically, it consists of reflecting symmetrically to the
tangent hyperplane of the C-obstacle the motion that would take place if there were no obsta-
cle. The mathematical consistency of this reflective boundary assumption is fully discussed
in [Anderson 76]. We will not detail it in this paper.

We now detail the second key point of the algorithm, that is how to choose the duration
of the Brownian motions Q(t). Basically, we want these motions to take the robot out of the
local minima of U. For each local minimum qjl of U, we can consider its scope, or attraction
radius ARi(ql0 ) in each direction q1. This scope is the distance, along each configuration
space parameter q, between qTO0 and the nearest saddle point qsaddle. To escape from a local
minimum, we simply have to exit the attractor of qt *. To do so, the minimum distance
that we have to travel in each direction qi from qti is precisely ARi(ql,,,). If we are able to
estimate the statistics of AR, the property E(t) = AiVt gives us a clue for the exit problem.
The duration T(qoc) of the Brownian motions should be of the order of

{ 2
T(qo.) , max ARi(q1.) (12)

But to estimate the statistics of AR, we need to have a statistical model of the potential
field U. As we do not make any assumption on the obstacles distribution, we cannot infer
any statistical property about U and AR. Generally, we may assume that the distance ARi

for each parameter qj will not exceed the value that would provoke a motion in workspace
of more than the workspace diameter itself. This diameter being I with our normalized
coordinates, we obtain the following estimate of ARi for any local minimum qioc:

Ani(qtoc) - 1/J~ip

On the other hand, we have AL : 6/Jp, where 6 is the distance between two points in
workspace. Combining these two formulas with (12), we obtain:

1
T(qloc) -

5in other words, the probability for being discontinuous at any given point is zero
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We now have to choose for T a single-parameter family of distributions to define completely
our algorithm. All what we know about the attraction radii AR: is that they are strictly
positive, and that their expected value is bounded by 1/J, up. Again, the most uninformed
distribution (i.e. the one which maximizes the entropy) of a real positive process whose
expected value is given is the truncated Laplace distribution. The density of Azg is therefore
given by:

p(AR.) = j..,exp(-JpAi)

The intuitive interpretation of this result is the following: as no hypothesis is made about
the shape of the potential field U, the maximum entropy paradigm states that the rate of
variation of the number N of attractors having a given radius AR is constant. In other
words, I/N x dN/dAR does not depend on AR. This means that the overall statistical shape
of the potential does not change when the resolution varies. But 11N x dNIdAR equals
1/p x dp/dAR. Therefore p varies exponentially with AR, which precisely defines a Laplace
distribution.

Consequently, the relation (12) induces the following distribution for the duration T:

p(t) = X. exp(-6,/i) (13)

One can verify that the expected value of this distribution is indeed 1/62.
The Monte-Carlo procedure is now completely defined. However, the final path obtain is

the concatenation of several gradient motions and Brownian motions. It does not have good
dynamic properties. Therefore, we postprocess this path by means of an energy minimization
procedure that we describe now.

6.4 Path Optimization

There are several Riemanian metrics that we can consider on the configuration space manifold
C. The most natural one is the kinetic energy metric, but it becomes a complex expression
for large systems. In our implementation, we chose a very simple metric, such that the
geodesics of the metric are easy to compute. For some simple unit mass mobile robots (like
the long bar studied in section 4.2), this metric is exactly the kinetic energy metric. For long
manipulator arms including several revolute joints in serie (like the 10 DOF robot shown in
section 6.5), it is no longer the case. We used the metric:

11

d32  dqi
t=1

where the q, are normalized coordinates (i.e. all ranging between 0 and 1). The geodesics
cquation reduces in this case to:

j(t) =0
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with
7(t[Itr) = qINIT, 7(tGoAL) = qGoAL

This is a classical quadratic two points boundary value problem under the non-linear obstacle
avoidance constraint. It can be solved using standard projected gradient procedures such
as Gauss-seidel with projection (on a sequential computer) or Jacobi with projection (on a
parallel machine). The final path obtained is smooth, and of course homotopic 6 to the initial
path obtained from the Monte-Carlo procedure.

At this point, it is necessary to make some remarks about the topological properties of
the configuration space, depending on the dimension of the workspace. If the robot is a solid
object moving in a 2D workspace (like the long bar), its configuration space is R' x S': R2

for translations, S' for rotations. The Poincar6 group' of this space is:

fl(R 2 x S') = Z

This simply means that the robot can make any number of turns, either clockwise or counter-
clockwise. Any couple of paths having the same total number of turns are homotopic, but two
paths with different numbers of turns can never be homotopic. This result has an important
consequence for our energy minimization procedure: if the Monte-Carlo algorithm outputs a
path having more turns than necessary, the smoothing procedure with not solve the problem.
In fact, some cosmetic improvements can be made to the Brownian motion generator in order
to avoid this problem. We will not detail it is this paper.

Now, if the robot is a solid object in 3D (free-flying robot), its configuration space is
R 3 x SO(3): R3 for translations, SO(3) (special orthogonal group) for rotations. The
Poincar6 group of this space is

rI(R 3 x SO(3)) -- {O,1}

This means that there are only two different homotopy classes: the class of paths which
make a total rotation of 27r, and the class of paths which make a total rotation of 0. Any
path can be shown to belong to one of these two kinds by changing continuously the axis
of rotation. Therefore, even if the Monte-Carlo procedure outputs a path with more turns
than necessary, the energy minimization procedure will reduce the number of turns to the
optimal possible.

Finally, if the robot is a fixed-base manipulator arm with mechanical stops on the revolute
joints, the configuration space is simply connected, and equivalent to an n-cube in Rn. Its
Poincar6 group is extremely simple:

II(Rn) {0}

The homotopy problem does not exist for such manipulators.

'i.e. the final path is obtained from the initial one through a continuous transformation.
'The Poincar6 group, also called fundamental group, is the quotient of the set of closcd paths by the

homotopy equivalence relation. Each element of this group defines in some way the number of turns that a
path makes
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Figure 13: Structure of the 8 DOF serial manipulator.

6.5 Experimental Results

We have tested successfully the Monte-Carlo procedure on several different robots. First,
we applied it on the 3 DOF bar as shown in figure 8. The computation time was about ten
times slower than with the classical best-first search approach, but we estimate that parallel
implementations of the procedure will reduce dramatically the computation time.

Then, we applied the same procedure on a 8 DOF serial manipulator with only revolute
joints. The overall structure of this arm is presented in figure 13.

Figures 14 and 15 illustrate two different motions of the robot in a 2D workspace. The
paths were generated by the planner.

In the examples shown in figures 14 and 15, we used a heuristic potential U computed
with only one point located at the end-effector of the kinematic chain. The algorithm was
able to find the solution in 2 minutes for the first example (forward motion), and 30 seconds
for the second one (backward motion).

We also applied the procedure on a 10 DOF non-serial manipulator arm including both
prismatic and revolute joints. The overall structure of this arm is presented in figure 16.

The 10 DOF manipulator robot includes 7 revolute joints and 3 prismatic joints. For
this manipulator, the total number of discrete configurations is of the order of 10010 = 1020
configurations.

Figures 17, and IS illustrate two different motions of the robot in a 2D workspace. The
paths were generated by the planner.
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Figure 14: Successive configurations during a forward motion (8 DOF robot).
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Figure 15: Successive configurations during a backward motion (8 DOF robot).
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Figure 16: Structure of the 10 DOF manipulator robot.

In the examples shown in figures 17 and 18, we used a heuristic potential U computed
with only two points located at the end points of the two kinematic chains. The algorithm
was able to find the solution in 3 minutes for the first example, and 2 minutes for the second
one.

Finally, we applied the same procedure to a simple example of multi-robot cooperation.
Figure 19 displays two 3 DOF mobile robots at the two extremities of a corridor. Figure 20
displays the path found when the goal of the small robot is the upper right corner while the
goal of the long robot is the upper left corner. Finally, figure 21 displays the path found
when the goal of the two robots is simply to exchange their respective locations. These lasf
examples where solved in about 30 seconds of computation time.

All the examples presented to the planner have been solved within a few minutes of
computation. So far, we did not find any case where the planner fails.

The next subsection discusses the completeness issue using the fundamental properties
of the Wiener-Levy process.

6.6 Probabilistic Completeness of Monte-Carlo Procedures

In this subsection, we discuss the completeness of the Monte-Carlo procedure described
above. Of course, procedures involving random processes can never be deterministically
complete. However, weaker completeness results can be obtained under particular circum-
stances. The algorithm above takes as input a map of the workspace, and a description of
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Figure 17: Successive configurations during a forward motion (10 DOF robot).
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Figure 19: The corridor problem for a 6 DOF multirobot system.

the initial and goal configurations. Its output is two-fold. First the algorithm gives an an-
swer to the existential question: is there a path between the initial and goal configurations?
Second, if the path does exist, it provides an explicit solution in configuration space. This
may appear surprising: a Monte-Carlo procedure can never give a definitive answer to such
an existential question in a finite amount of time! This is why we arbitrarily bounded the
number of random motions generated from a given local minimum: the algorithm does not
guarantee to answer properly to the existential question, but guarantees to answer it in a
finite amount of time.

We claim that if the number of random motions performed from a given local minimum
is not bounded, the algorithm weakly converges towards the goal. This claim is based
on a very general property of the Wiener-Levy process that we describe now. Whenever
the freespace is connected and relatively compact, and given a Brownian motion w(t) with
reflective boundaries starting at any point qINIT in freespace, the probability for w to reach
during [0, t] any given neighborhood B of the goal qGOAL at least once, converges towards I
when the computation time converges towards infinity. Formally, we have:

ir P(MB(t)) 1 (14)

where

MB(t) ={3r E[0,t] I W(T)EB}
If statement (14) is true, then our Monte-Carlo procedure obviously converges weakly to-
wards the global minimum of the potential field U. As a matter of fact, we may consider a
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Figure 20: Successive configurations during a simple motion (6 DOF multirobot).
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Figure 21: Successive configurations during a more difficult motion (6 DOF multirobot).
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neighborhood B of the global minimum containing no other local minimum. As we generate
arbitrarily many and arbitrarily long Brownian motions, the probability that the process
attains B converges towards 1 by equation (14). But then the process becomes a gradient
procedure which reaches immediately the global minimum.

We now prove the validity of statement 14. It is easily proven if w(t) is a 1-dimensional
Wiener-Levy process by using the Desir Andrd reflection principle [Papoulis 65]. Its gener-
alization to any connected freespace Cf, of any compact manifold C equipped with a volume
measure s u is still true, but based on a deep result about the asymptotic behavior of w(t).

It is important to notice that the compactness assumption for C is crucial. If C is not
compact, the hypothesis has been proven to be false for n > 2 [Doob 84]. As a matter of
fact, if Cr,, is simply equal to R", we have the following result [Doob 84]:

Theorem 2 ( Hitting of a ball B by a Brownian motion in R n )
Let w be a Brownian motion in R' and B a non-empty ball not containing the starting

point of w.
If n<2,

liM P(MB(t)) = 1

If n > 3,
lim P(MB(t)) < 1

Now, let us consider a connected open subset C~f , of a compact manifold with smooth
boundaries, equipped with a volume measure p (In our case, the measure I is simply P =
-Tdql x ... x -Ldqn.) It can be shown ([Schuss 80]) that the probability distribution of a
u-standard Brownian motion with reflective boundaries starting at any given point qINIT is
the solution of the heat equation9:

tp 1 2p, p(q,0) = 6(q- qINIT)

with Neumann boundary conditions:

V(q, t) E aCiree x R', 0

where v is the normal vector to the boundary. It can also be shown ([Schuss 80]) that
this time-varying probability distribution converges towards a stationary distribution poo(q).
Therefore, poo is the solution of the following problem:

Vq E C17e, 12poo = 0

8 A volume measure over a compact topological space is a measure which is finite and non-zero for any
non-empty open subset

9 [Schuss 801 only treats the case of Euclidean space, but its generalization to manifolds is straightforward
[Kendall 871
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and

Ife po(q)dg(q) = 1

But the unique solution of this problem is the IA-uniform distribution:

pOO(q) 
1

As the p-standard Brownian motion is time-homogeneous, we can apply recursively the

Markov property to infer (14).
Finally, we can state:

Monte-Carlo procedure for robot motion planning

Let U be a differentiable real-valued function over an open subset Cf.. of a compact

manifold C equipped with a volume measure p. We assume that the boundary of Cf... is

smooth. We assume that U possesses a unique global minimum qGOAL, and that the number

of local minima of U is finite.
We assume that from any point q in Cf,,, laying in the attractor of a given local minimum

ql, the gradient procedure which leads from q to q.,, can be performed in a finite amount of

time TGRAD(q). We will denote this procedure by GRADIENT(q,t).
We denote by RANDOM(q,t) the p-standard Brownian motion process with reflective

boundaries starting at q E Cfre.
I'Ve consider the following process Q(t) starting from any configuration Q(O) = qINr.

Compute Q(t) = GRADIENT(qtINIT, t) from t = 0
until we reach a local minimum q,, = Q(TGRAD(qtNIT)).
Set t , = TGRAD(qINIT)-

begin loop
begin loop

Generate a random time TRAND following
the distribution given in formula (13).

Compute Qcandidate(t)= RANDOM(qc, t) from tcur

until the time taut for which either of the two conditions

U(Qcandidatr(t)) < U(q%,) or t = tc, + TRAND is true.

The final point of the random procedure is

denoted qaux = Qcandiiate(tauz)-
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Compute Q..didt.o(t) = GRADIENT(q,=, t) from t.., to
tw -- ta + TaRAD(qau)

where another local minimum qn,, = Q.anidate(tnew) is reached.

if U(Qjndidate(tne,)) < U(q.,) then exit

end loop
Set qcur = qncw and tc.r = t.ew.

Concatenate the process Q(t) computed so far with Qcandidate(t)-

end loop

The process Q weakly converges towards the global minimum z,,i of U. In other words,
for any p-measurable neighborhood B of Xmin, we have:

lim P(Q(t) E B) = 1

This procedure performs a random search of the graph of local minima of the potential
field in a best-first fashion, using as heuristic the potential field itself. It behaves very
differently from the simulated annealing procedures [Kirk 831, [Geman 841, which perform a
breadth-first search of the local minima.

Basically, all simulated annealing procedures can be shown to behave similarly to the
following process:

Simulated annealing procedure for optimization

Let U be a differentiable function over [0, 1]' C R" with a single global minimum Xmin
Let w be a standard Brownian motion (for the Lebesgue measure) with reflective boundaries
in [0, 1]'n. Let T(t) be a non-negative function converging towards 0 when t - oo such that
for some constant K and for any t > to the following inequality holds:

K
T (t) >_

Consider the solution X of the following stochastic differential equation'°:

dX(t) = -VU(X(t))dt + v/iTJ0dw(), X(0) = (15)

If K is large enough, the process X(t) weakly converges towards xm'in.

The proof of this result can be found in [Geman 84].

101fere, the differentials have to be taken as It6 differentials [Ikeda 81]
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The logarithmic rate for the temperature is extremely slow in practical applications. Most
of the authors applying this technique choose a much faster annealing schedule (in general an
exponential one), in which case the convergence result collapses. In the case of robot motion
planning, experimental results show that a classical annealing procedure in not practical.
In fact, our Monte-Carlo approach can be considered as a particular case of the diffusion
process defined by (15) where the temperature coefficient T(t) is chosen to be 0 during the
gradient procedure and to +oo during the random motions. Instead of choosing a slowly
decreasing annealing schedule, we perform a sequence of temperature switches between 0
and +oo. The switches are performed when a local minimum is reached.

The diffusion processes of the form (15) are called Smoluchowski-Kramers processes, and
their probability distribution p(X, t) is the solution of a partial differential equation called
forward Kolmogorov equation"1 [Schuss 80]:

-9 = L(p), p(x,O) = 8(x - xo)

where L is the Fokker-Planck operator:

L(p) = V.(pVU) + TV 2 p

The study of the convergence rate of such processes then reduces to the study of the smallest
(in absolute value) non-zero eigenvalue A, of the Fokker-Planck operator. [Matkow 81] and
[Schuss 80] give approximate formulas for computing A, in some simple cases. However,
in most cases, A, can only be computed numerically, and the only clue for estimating the
convergence rate of general diffusion processes is computer simulation.

7 Some Remarks on Parallel Implementations

Thanks to the distributed data representation chosen, the algorithm above is highly paral-
lelizable.

First, the hierarchical decoupled decomposition of the problem allows to compute in
parallel all the differents levels of hierarchy, instead of performing sequentially a coarse-to-
fine approach. This parallelization process is straightforward, and there is no need to detail
it further.

Then, for each resolution level chosen, the planning technique can be roughly divided into
three decoupled steps. The first step consists of computing in workspace a few numerical
potentials (the distance potential, and the attractive potential fields without local minima)
usilng the wavefront expansion technique described in section 3. The second step consists
of performing an incremental best-first search of the connectivity graph built from the set
of local minima of the overall configuration space potential field U. The third step consists
of smoothing the path obtained by solving a classical two points boundary value problem.

l' If U = 0 and T = 1/2 this reduces to the heat equation
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We describe respectively in the three subsections below the parallelization issues relative to
these three decoupled phases.

7.1 Wavefront Expansion in Workspace

The basic idea underlying all workspace computations in our model is to perform a wavefront
expansion of the information. In the case of the distance to the obstacles dj, the wavefront
is initialized to 0 at the obstacles boundaries. In the case of the attractive potential fields,
the wavefront is initialized to 0 at the goal point. Then, at each iteration of the expansion,
the current wavefront oldfront is transformed in the expanded front newfront.

There are two basic ways for parallelizing a wavefront expansion. The first, and theoreti-
cally the most efficient way, is to allocate one virtual processing unit to each of the members
of the front. But two members of the current front oldfront may interfere when they are
expanded because they may produce identical members of the next front newfront, and in
fact they do interfere systematically for any non-planar geometrical wavefront. Therefore,
the processing units need to share memory information. It is well-known that shared-memory
parallelism cannot be performed efficiently in i large scale, as it is necessary for our problem.
Therefore, the only solution remaining is the so-called "data-parallelism", which consists of
affecting to each point of the workspace bitmap a virtual processing unit. In this process,
each virtual processor will have its own memory and will only need to communicate with its
geometrical neighbors. Parallel architectures such as to one used in the Connection Machine
[Hillis 85] are particularly well-suited for this type of application. However, at each cycle
time, only those processors which happen to be part of the current wavefronts oldfront
and newfront are actually active. Therefore, this brute force parallelism wastes a lot of
parallelism power. We believe nevertheless that this approach is the only realistic way to
envision parallelism for geometrical problems.

More precisely, let us consider an SIMD machine with distributed memory having a
capability of local communication with 2D or 3D geometrical neighbors. This is typically the
case for the Connection Machine [Hillis 85]. We suppose that this machine has NBPIX -
216 = 65,536 processors.

We consider a workspace of dimension n = 2 or 3 at resolution r = -log 2 5 = 8,
each coordinate having therefore DIM = 1/6 = 256 discrete values. The total number of
workspace bitmap points is DIMn, that is 65,536 in 2D and 16,777,216 in 3D. Therefore,
the number RATIO of virtual processors (i.e. of bitmap points) that we have to associate
to each physical processor is:

RATIO = max(l, ABPI )M

This ratio is I in 2D and 256 in 3D.
The active wavefront at each time of the expansion is an (n - 1)-dimensional subset of the

n-dimensional workspace. For a typical workspace with a few obstacles, the total number of
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points in this active wavefront is COEF x DIM 1 = 4 x DIMn- 1 . In 2D, this amounts
to 1024. In 3D, it is 262,144.

Let us denote by T. is the computation time that would be required to perform the
expansion using a single serial processor. We assume that the number of physical processors
is always less than the number of virtual processors, that is RATIO = DIMn /NBPIX. The
parallel computation time Tp is approximately (neglecting the communication time between
processors, which is realistic in this case):

Tp = RATIO x T.______DIM T
COEF x DIM -' COEF x NBPIX 3

The above formula leads to two very important conclusions:

1) As long as the number of physical processors is less than the number of virtual processors,
the parallelism speedup of a wavefront expansion does not depend on the dimension of
the workspace.

2) To obtain an actually significant speedup with distributed memory data-parallelism, the
number of physical processors has to be much larger than the number of discrete points
representing each coordinate of the workspace.

We obtain the same speedup for a 2D or a 3D workspace:

T.
1024

If the power of each processor in the parallel machine is 100 times smaller than the power
of classical workstations (this is approximately the case for current data-parallel machines),
we finally get a total speedup of one order of magnitude. As we are able to perform a 2D
wavefront expansion on a workstation in about 1/4 seconds, the same computation could
theoretically be performed in about 1/40 seconds on a data-parallel machine. For a 3D
expansion of the same size, we will need 256 times more time, that is approximately 1
minute on a worksation and 6 seconds on a data-parallel machine.

Finally, we can conclude that a speedup of more than one order of magnitude can only
be made on a general purpose SIMD computer only if considerable improvements are made
in the hardware.

Therefore, we believe that a more realistic solution for workspace computations is to
design a dedicated chip for geometrical wavefront expansion. As the performances of such
dedicated systems highly depend on several technological choices, it is not yet possible to give
an accurate estimate of the final speedup. We think that real-time capabilities (i.e. a fraction
of a second) are achievable for 3D workspaces with current microprocessor technology.

7.2 Parallelizing the Search in Configuration Space

The exit procedure used to escape from a given local minimum qt, consists of generating
several random motions from the local minimum. All these random motions can be performed
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in parallel: We may affect to each of them a different processor, all of these working with a
shared memory. The processor which will be the first to find a new local minimum better
than qto will stop all the other processors. This parallclization is straightforward, and there
is no need to detail it further. For complex manipulator arms like the one described in section
6.5, the number of random motions necessary the exit from a local minimum can be of several
tens for some difficult examples. As the computation time required for the gradient motions
is neglectable compared to the time required for exiting a local minimum on a sequential
machine, the speedup obtained through this parallelization may be of several tens. For
example, in the setting shown in figure 17, the total computation time could decrease from
a few minutes to a few seconds by parallelizing the random motions generation.

During this search in configuration space, the potential field U as well as the distance
D, of the robot to the obstacles have to be computed for each configuration explored. The
computation of D1 involves all the points of the robot body, without interaction between
the different points. This is yet another opportunity for parallelism. As a matter of fact,
we may affect to each point p on the robot body a dedicated processor computing the
forward kinematics q i X(p, q) of this point in the workspace, and communicating with
the workspace bitmap processing unit to output the values of the workspace potential field
and the distance to the obstacles di. Then, the results of all these parallel computations
have to be joined together (through computations of minima and maxima) in order to obtain
the final overall potential U and the distance D 1. Parallel computers are very efficient for
computing non-linear functions such as the maximum or minimum of the output of all
the processors. For complex manipulators arms operating nearby obstacles as it is the

case for the setting shown in figure 17, the resulting speedup could be of two orders of
magnitude (we need about 100 control points when the arm is close to the obstacles). As this
last parallelization can be combined multiplicatively with the parallelization of the random
motions generation, the total speedup achievable during the configuration space search is of
3 to 4 orders of magnitude. In the example shown in figure 17, the total computation time
could fall from 3 minutes to 1/40 seconds with processors equivalent to those available on
current workstations. Of course, this impressive speedup would require a very high number
of processors (about 10000) of the same power than a current workstation. But even if only
100 processors are available, it is still thinkable to distribute 10000 virtual units over 100
physical processors, so that the speedup would still be of two orders of magnitude.

7.3 Concurrent Computation of Two-Points Boundary Value Prob-
lems

Smoothing the path obtained from the Monte-Carlo procedure is a classical quadratic two-
points boundary value problem. On a parallel computer, it is possible to affect one vir-
tual processor to each discrete point on the path. As we only consider first derivatives in
our objective functional, each processor only needs to communicate with its two neighbors:
its predecessor and its successor. Many algorithms are available to optimize in parallel a
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quadratic functional. The simplest possible is the Jacobi algorithm (i.e. steepest descent
gradient applied to a quadratic function). Fancier algorithms like preconditioned conjugate
gradient can also be implemented efficiently on a data-parallel machine. In all cases, recent
experiments [SRI 89] show that impressive speedups are obtained through the parallelization
of such algorithms.

In conclusion, we believe that a dramatic speedup can be achieved in the near future
for this Robot Motion Planning algorithm, either by implementing it on a large scale data-
parallel machine, or by designing a dedicated parallel architecture. This would lead to
real-time performances for robots with a small number of DOF, and to time delays of a few
seconds only for complex manipulators with many DOF.

8 Conclusion

In this paper, we have presented a distributed representation approach to path planning ap-
plicable for any problem in open freespace. The same approach can be used for mobile robots
(with/without non-holonomic constraints) and for arbitrary-shaped manipulator arms.

The approach essentially consists of discretizing both the workspace and the configuration
space of the robot, and performing a best-first search of a path using powerful numerical
potential fields.

The approach has solved 3 DOF robot problems solved by previous planners, but several
orders of magnitude faster (about one second, against several minutes or several tens of
minutes for previous planners). More importantly, it has solved problems that fall far outside
the range of possibilities of any other existing planners, e.g. 3 DOF robot problems with non-
holonomic constraints, 10 DOF manipulator robot problems, and multi-robot cooperation
problems.

The algorithm is highly parallelizable. We envision a VLSI implementation which should
allow to perform real-time path planning. This opens new perspectives on some key issues
in robotics related to the interaction of planning and execution in partially known and

dynamically changing environments.

Current work is conducted along several directions. First, we plan to implement the
approach on robots operating in 3D workspaces. Second, we intend to experiment our
planner on robots having several tens of DOF in order to understand clearly its eventual
limitations. Third, we plan to extend this approach to motion planning in partially known

environment. Fourth, we will implement this approach on real robots in order to study
the new capabilities induced by very fast motion planning. Fifth, we intend to investigate
possible generalizations of the distributed representation approach to motion planning and
control with uncertainty in control and sensing for part mating and dextrous manipulation
operations. As a matter of fact, we believe that this distributed representation of the world
can be extended in order to include not only positions, but also velocities, accelerations,
internal and external forces, and uncertainty.
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