
I I IA I I iri i m

AD-A209 885 AGE7. It 12. 6Dvl ACCESS]Ok N:. 3.1 ICrIFIEW C:JAAD fjjwi

4. IJILt 5d.J meI 6 IYPL OF RPtr I PEIF:o: CDIERED

Ada Coyrpiler Validation Summary Report: Harris 17 Jan. 1989 to 17 Jan. 1990
Corporation, Computer Systems Division, Harris Adaj Versio
5.0, Harris NH-3800 (Host and Target), 890118W].1 016 8. rO , RIPD; ,

7. £UINDOis) V COftACI O &RAN1 k,.;.£R;s)

Wrf-g t-Patterson AFB
Dayton, OH, USA

0. PERFORKINh ORANIZATIOh AND ADDRLSS 20. PROZaAM ILfNihI. PR:.E.:1. 1AS#
AREA & VDOL UN:1 OU"EERS

Wright-Patterson AFB
Dayton, OH, USA

11. C044RO;LINa OrFICE NAM! AND ADDRESS 12. RLPORT DAT[

Ada Joint Program Office
United States De partment of Defense 3.. J u, F.

Washington, DC 2E301-3081

14. 'DNIIOR&0 AEN:Y kAMi 6 ADDRSS(;fret reom Controllng Office) lb. S[LCLA31 CLASS (o0'th, rep n)

UNCLASSIFIED
Wright-Patterson AFB . ,
Dayton, OH, USA N/A

It. DISIRIBDJ1 h SIALMElN (of thssReport)

Approved for public release; distribution unlimited.

17. D015 25.7 10N S1A'iYN" rN~h 1;~.7cn~~r ok2 I 'l'r ~w eo7

16. KEYWORS (Cof s ,, on /evrCie , ,nece,.s.,,end idehi bbo, i b nber)

Ada Proqra ir.in language, Ada Compiler Validation SL,---ary Re-:rt, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-S7D-
1815A, Ada Joint Program Office, AJPO

20. ABSIRA-1 (Continueo erse odr ,f n l.,i,.o'eridwcnt) b, bloc* ruwmbfr)

Harris Corporation, Computer Systems Divisions Harris Ada, Version 5.0, Harris
NH-3800 under CX/UX, Version 4.0 (Host and Target), ACVC 1.10.

89 -k3

DD 1 1473 fIIION of I NO' 65 IS OBSSodl
I JA 73 Sh 0102,0- 4-6601 UNCLASSIFIED

Ada Compiler Validation Summary Report:

Compiler Name: Harris Ada, Version 5.0

Certificate Number: 890118W1.10016

Host: Harris NH-3800 under CX/UX, Version 4.0

Target: Harris NH-3800 under CX/UX, Version 4.0

Testing Completed 17 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson aocession For
Technical Director NTIS GRA&I
ASD/SCEL DTIC TAB
Wright-Patterson AFB, OH 45433-6503 Unannounced

Just if Ica tDion___ ___

Ada Validation Organization Avai lcT- ."'
Dr. John F. Kramer| A;:. r
Institute for Defense Analyses Dist

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-226.0589
88-08-25-HAR

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890118W1.10016
Harris Corporation, Computer Systems Division

Harris Ada, Version 5.0
Harris NH-3800 Host/Target

Completion of On-Site Testing:
17 January 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB, OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

MEL_ _ I I

Ada Compiler Validation Summary Report:

Compiler Name: Harris Ada, Version 5.0

Certificate Number: 890118W1.10016

Host: Harris NH-3800 under CX/UX, Version 4.0

Target: Harris NH-3800 under CX/UX, Version 4.0

Testing Completed 17 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB, OH 45433-6503

Ada Validation Organization

Dr. John F. Kramer
Institute for Defense Ana;ses

Alexandria VA 22311 I

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS • • 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation 3-6
3.7.2 Test Method 3-7
3.7.3 Test Site 3-8

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Sumnary Report 4 describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability j(ACVC)w An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.- The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

1-1

INTRODUCTION

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 17 January 1989 at Ft. Lauderdale FL.

1 .2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presentedi Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB, OH 45433-6503

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
18UI North Beauregard Street
Alexandria VA 22311

1-2

INTRODUCTION

1.3 REFERENCES

Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Conentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain

lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customiz- according to implementation-specific values--for example, an
illeRI file name. A list of the values used for this validation is
provioed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Harris Ada, Version 5.0

ACVC Version: 1.10

Certificate Number: 890118WI.10016

Host Computer:

Machine: Harris NH-3800

Operating System: CX/UX, Version 4.0

Memory Size: 8 Megabytes

Target Computer:

Machine: Harris NH-3800

Operating System: CX/UX, Version 4.0

Memory Size: 8 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
SHORT INTEGER, TINY INTEGER, and LONGFLOAT in the package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) NUMERIC ERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AO1iA.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR)r
CONSTRAINT ERROR for an array having a 'LENGTH that exceccs
STANDARD. INTEGER 'LAST and/or SYSTEM.MAX INT. For th 3
implementation:

(1) Declaration of an array- type or subtype declaration with more
than SYSTEM.MAX-INT components raises no exception. (See test
C36003A.)

(2) NUMERIC_.ERROR is raised when an array type with INTEGER'LAST +
2 components is declared. (See test C36202A.)

(3) NUMERIC ERROR is raised when an array type with SYSTEM.MAX INT
+ 2 components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the subtype
is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(T) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C' 3207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

h. Pragnas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3OO4A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1O12A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1012A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be compiled
in separate compilations. (See test CA2009C.)

(9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

J. Input and output.

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

2-5

CONFIGURATION INFORMATION

(3) Modes IN FILE and OUT FILE are supported for SEQUENTIALIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes INFILE, OUT FILE, and INOUT_FILE are supported for
DIRECTI0. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CEi3102E and CE31021..K (3 tests).)

(6) RESET and DELETE operations are supported for SEQUENTIAL IO.
(See tests CE2102G and CE2102K.)

(7) RESET and DELETE operations are supported for DIRECT IO. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

(13) More than one interi-al file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 36 tests had been withdrawn because of test errors. The AVF
determined that 381 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 13 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 1942 17 33 46 3300

Inapplicable 0 6 375 0 1 0 381

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 199 577 537 245 172 99 161 332 137 36 252 254 298 3300

N/A 14 72 143 3 0 0 5 1 0 0 0 121 23 381

Wdrn 0 1 0 0 0 0 0 1 0 0 1 29 4 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

A39005G B97102E BC3009B CD2A62D CD2A63A..D CD2A66A..D
CD2A73A..D CD2A76A..D CD2A81G CD2A83G CD2A84M..N CD50110
CD2B15C CD7205C CD5007B CD7105A CD7203B CD7204B
CD7205D CE21071 CE3111C CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 381 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

3-2

TEST INFORMATION

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT FLOAT.

c. The following 16 tests are not applicable because this
implementation does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

d. C5531I..P (8 tests) and C455321..P (8 tests) are not applicable
because the value of SYSTE24.MAXMANTISSA is less than 32.

e. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

f. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

g. C86001F is not applicable because, for this implementation, the
package TEXT 10 is dependent upon package SYSTEM. This test
recompiles package SYSTEM, making package TEXT10, and hence
package REPORT, obsolete.

h. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

i. This implementation does not suppport address clauses. Therefore,
the following 76 tests are not applicable:

CD5003B CD5003C CD5003D CD5003E CD5003F
CD5003G CD5003H CD50031 CD5011A CD5011B
CD5011C CD5O11D CD5001E CD5011F CD5O11G
CD5011H CD5011I CD5O11K CD5011L CD5011M
CD5O11N CD5O11Q CD5011R CD5011S CD5012A
CD5012B CD5012C CD5O12D CD5O12E CD5OI2F
CD5012G CD5O12H CD5012I CD5012J CD5012L

CD5012M CD5013A CD5013B CD5013C CD5O13D
CD5013E CD5O13F CD5O13G CD5013H CD50131
CD5O13K CD5013L CD5013M CD5013N CD50130
CDSO13R CD5013S CD5014A CD5014B CD5014C
CD5O14D CD5014E CD5O14F CD5014G CD5014H
CD5014I CD5014J CD5014K CD5014L CD5014M
CD5014N CD50140 CD5O14R CD5014S CD5014T
CD5O14U CD5014V CD5014W CD5014X CD5014Y

3-3

TEST INFORMATION

CD5014Z

J. This implementation does not support intermediate 'SIZE clauses
for floating point types. Therefore, the following 14 tests are
not applicable:

CD1009C CD2A41A..B CD2A41E CD2A42A..J

k. This implementation does not support 'SIZE clauses for access
types. Therefore, the following 23 tests are not applicable:

CD2A81A..F CD2A83A..C CD2A83E..F CD2A84B..I
CD2A84K..L CD2A87A ED2A86A

1. This implementation does not support 'SIZE clauses for task types.
Therefore, the following 5 tests are not applicable:

CD2A91A. .E

m. CD2A61I and CD2A61J are not applicable because they specify length
clauses that require the implementation to compress the storage
allocated to the components of an aggregate object. This
compression is not required by the Ada Reference Manual (13.2(5)).

n. CE2102D is inapplicable because this implementation supports

CREATE with INFILE mode for SEQUENTIALIO.

o. CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIALIO.

p. CE2102F is inapplicable because this implementation supports

CREATE with INOUT.FILE mode for DIRECT_10.

q. CE21021 is inapplicable because this implementation supports

CREATE with INFILE mode for DIRECT 10.

r. CE2102J is inapplicable because this implementation supports
CREATE with OUTFILE mode for DIRECTIO.

s. CE2102N is inapplicable because this implementation supports OPEN
with IN FILE mode for SEQUENTIALIO.

t. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIAL 10.

u. CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIAL_10.

v. CE2102Q is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIALIO.

3-4

TEST INFORMATION

w. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECT IO.

x. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECT IO.

y. CE2102T is inapplicable because this implementation supports OPEN
with INFILE mode for DIRECTIO.

z. CE2102U is inapplicable because this implementation supports RESET
with IN FILE mode for DIRECT_10.

aa. CE2102V is inapplicable because this implementation supports OPEN
with OUT FILE mode for DIRECTIO.

ab. CE2102W is inapplicable because this implementation supports RESET
with OUTFILE mode for DIRECT IO.

ac. CE3102E is inapplicable because text file CREATE with IN-FILE mode
is supported by this implementation.

ad. CE3102F is inapplicable because text file RESET is supported by
this implementation.

ae. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

af. CE3102I is inapplicable because text file CREATE with OUTFILE
mode is supported by this implementation.

ag. CE3102J is inapplicable because text file OPEN with INFILE mode
is supported by this implementation.

ah. CE3102K is inapplicable because text file OPEN with OUT FILE mode
is supported by this implementation.

ai. CE3115A is inapplicable because resetting an external file with
OUTFILE mode is not supported when the internal file is
associated with more than one external file. USEERROR is raised
for such an attempt.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting

3-5

TEST INFORMATION

a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 13 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B24009A B25002A B33301B B36002A B38003A B38003B
B38009A B38009B B41202A BC1303F BC3005B

The following modification was made to compensate for legitimate
implementation behavior:

a. At the recommendation of the AVO, the line containing
INTEGER'IMAGE was commented out in test ED7006C since
SYSTEM.MEMORY SIZE is outside the range of INTEGER for this
implementation and there is no predefined integer type whose range
includes SYSTEM.MEMORYSIZE.

The following test was graded using a modified evaluation criteria:

a. In test CE3804H, the string, "-3.525", is written to a text file,
and a later attempt is made to read these characters as the value
of a fixed point variable. That variable is then compared to the
real literal -3.525; this implementation finds the values not
equal and reports failed. Since the real literal, -3.525, is not
a model nunber, the has ruled this test as passed for this
implementation.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the Harris Ada, Version 5.0 compiler was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3-6

TEST INFORMATION

3.7.2 Test Method

Testing of the Harris Ada, Version 5.0 compiler using ACVC Version 1.10 was

conducted on-site by a validation team from the AVF. The configuration in
which the testing was performed is described by the following designations
of hardware and software components:

Host computer: Harris NH-3800
Host operating system: CX/UX, Version 4.0
Target computer: Harris NH-3800
Target operating system: CX/UX, Version 4.0
Compiler: Harris Ada, Version 5.0

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked , and all executable tests were run on the Harris NH-3800.
Results were printed from the host computer.

The compiler was tested using command scripts provided by Harris
Corporation, Computer Systems Division and reviewed by the validation team.
The compiler was tested using all default option settings except for the
following:

OPTION EFFECT

-el If warning or errors occur during compilation,
generate a full source listing with the
warning/error messages included in the
listing.

-w Suppress compilation warning messages.

-L Generate a full source listing even if no
errors or warnings occurred during
compilation.

-M unit-name Create an executable image for main program
unit-name.

-o exe name (with -M) Name the executable image exe name.

3-7

TEST INFORMATION

Tests were compiled, linked, and executed (as appropriate) using a single
host/target computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Ft. Lauderdale FL and was completed on 17 January
1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

Harris Corporation, Coputer Systems Division has
submitted the following Declaration of Conformance
concerning the Harris Ada, Version 5.0 compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: Harris Corporation, Computer Systems Division
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-8503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Harris Ada Version: 5.0
Host Architecture ISA. Harris NH-3800 OS&VER #: CX/UX, 4.0
Target Architecture ISA Harris NH-3800 OS&VER #: CX/UX, 4.0

Implementor's Declaration

I, the undersigned, representing Harris Corporation, Computer Systems Division, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in
this declaration. I declare that Harris Corporation, Computer Systems Division is the owner of record
of the Ada language compiler(s) listed above and, as such, is responsible for maintaining said compiler(s)
in conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's corporate name.

~ ADate: /Z

Harris Corporation, Computer Systems Division
Wendell Norton, Director of Contracts

Owner's Declaration

I, the undersigned, representing Harris Corporation, Computer Systems Division, take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above, and agree to the public
disclosure of the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada Language Standard
ANSI/MIL-STD- 1815A.

, &%' J- y 4 Date: //A -r*

Harris Corporation, Computer Systems Division
.Wendell Norton, Director of Contracts

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the Harris Ada, Version 5.0 compiler, as described in
this Appendix, are provided by Harris Corporation, Computer Systems
Division. Unless specifically noted otherwise, references in this appendix
are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not a
part of Appendix F, are:

package STANDARD is

type INTEGER is range -2 147 483_648 .. 2_147_483_647;
type SHORT INTEGER is range -32_768 .. 32_767;
type TINY _NTEGER is range -128 .. 127;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONGFLOAT is digits 15 range -1.79769313486231E+308

1.79769313486231E+308;

type DURATION is delta 2.0"*(-13) range -131_072.0 .. 131_072.0;

end STANDARD;

B-I

APPENDIX F

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.1 PROGRAM STRUCTURE AND COMPILATION

A "main" program must be a non-generic subprogram that is either a procedure or a function returning
an Ada STANDARD.INTEGER (the predefined type). A "main" program cannot be a generic subpro-
gram or an instantiation of a generic subprogram.

F.2 PRAGMAS

F.2.1 Implementation-Dependent Pragmas

Pragma CONTROLLED is recognised by the implementation but has no effect in this release.

Pragma INLINE is implemented as described in section 6.3.2 and Appendix B of the Ada R.M. This
implementation expands recursive subprograms marked with the pragma up to a maximum nesting depth
of 4. Warnings are produced for nesting depths greater than this or for bodies that are not available for
inline expansion.

Pragma INTERFACE is recognised by the implementation and support calls to C and FORTRAN
language functions. The Ada specifications can be either functions or procedures. All parameters must
have mode IN.

For C, the types of parameters and the result type for functions must be scalar, access, or the predefined
type ADDRESS defined in the package SYSTEM. Record and array objects can be passed by reference
using the ADDRESS attribute. The default link name is the symbolic representation of the simple name
converted to lowercase. The link name of interface routines can be changed via the implementation-
defined pragma external-name.

For FORTRAN, all parameters are passed by reference. The parameter types must have the type
ADDRESS defined in the package SYSTEM. The result type for a FORTRAN function must be a scalar
type. Care should be taken when using tasking and FORTRAN functions. Since FORTRAN is not reen-
trant, it is recommended that an Ada controller task be used to access FORTRAN functions. The default
link name is the symbolic representation of the simple name converted to lowercase, with a leading and
trailing underscore ("_") character. The link name of interface routines can be changed via the
implementation-defined pragma externalname.

For FORTRAN, the implementation also detects usage of this pragma at link time see (a.ld) and includes
a call to the system supplied FORTRAN initialization routine as part of the elaboration of the Ada pro-
gram. Additionally, the default system FORTRAN libraries are included in the linking of the Ada pro-
gram.

B-2

CXI/UX HAPSE Programmer's

Pragma LIST is implemented as described in Appendix B of the Ad% RM.

Pragma MEMORY-SIZE is recognised by the implementation but has no visible effect. The imple-
mentation restricts the argument to the predefined value in the package system.

Pragma OPTIMIZE is recognised by the implementation but has no effect in this release. See the -0
option for ad& for code optimization options, or the implementation defined pragma, OPTLEVEL.

Pragma PACK causes the compiler to choose a non-aligned representation for elements of composite
types. Application of the pragma will cause objects to be packed to the bit level.

Pragma PAGE is implemented as described in Appendix B of the Ad& RM.

Pragma PRIORITY is implemented as described in Appendix B of the Ada RM. Priorities on GCX
range from 0 to 9, with 9 being the most urgent.

Pragma SHARED is recognised by the implementation but has no effect.

Pragma STOR.AGt.UNIT is recognised by the implementation but has no visible effect. The imple-
mentation restricts the argument to the predefined value in the package system.

Pragma SUPPRESS in the single parameter form is supported and applies from the point of
occurrence to the end of the innermost enclosing block. DIVISIONCHECK and OVERFLOWCHECK
for floating point types will reduce the amount of overhead associated with checking, but is not fully
repressible. The double parameter form of the pragma, with a name of an object, type, or subtype is
recognised, but has no effect.

Pragma SYSTEM_NAME is recognised by the implementation but has no visible effect. The imple-
mentation provides only one enumeration value for SYSTEMNAME in the package SYSTEM.

F.2.2 Implementation-Defined Pragmas

Pragma EXTERNALNAME provides a method for specifying an alternative link name for variables,
functions and procedures. The required parameters are the simple name of the object and a string con-
stant representing the link name. An underscore is automatically prepended to the specified name, unless
the first character of the name is an underscore. Note that this pragma is useful for referencing functions
and procedures that have had pragma INTERFACE applied to them, in such cases where the "unctions
or procedures have link names that do not conform to Ada identifiers. The pragma must occur after any
such applications of pragma INTERFACE and within the same declarative part or package specification
that contains the object.

Pragma INTERFACE-OBJECT provides an interface to objects defined externally from the Ada
compilation model, or an object defined in a foreign language. For example, a variable defined in the
run-time system may be accessed via the pragma. This pragma has two required parameters, the first
being the simple name of an Ada variable to be associated with the foreign object. The second parameter
is a string constant that defines the link name of the object. The variable declaration must occur before
the pragma and both must occur within the same declarative part or package specification.

B-3

Implementatton-Dependent Characteristics

Pragma INTERFACESHARED-OBJECT provides an interface to objects defined in foreign
languages which exist in CX/UX shared memory segments. Specifically, this allows for the sharing of
data between Ada objects and FORTRAN or C objects defined within the same process or in a separate
process.

Pragma INTERFACESHAREDOBJECT associates an Ada variable with a CX/UX shared
memory segment. It has two required parameters. The first parameter is the simple name of the Ada
variable to be associated with the foreign object. The second parameter is a string constant that defines
the external link name of the object as defined in the foreign language. The variable declaration must
occur before the pragma and both must occur within the same declarative part or package specification.

Variables marked with the pragma must have a static size. It is recommended that an explicit length
clause be specified for composite objects to ensure conformance with the sise as defined by the foreign
language. Additionally, record representation clauses may be used to define the layout of records to
match the foreign language definitions.

The association of the shared memory segment to the Ada variable is effected at program startup time, by
the HAPSE run-time system. However, specific control over the configuration of the shared memory is
defined externally from the Ada compilation model and requires user intervention. The CX/LJX
skmdeftne utility has been provided to aid the user in defining the configuration of shared memory seg-
ments. The utility produces a link-ready file and a loader command file which must be included in the
link of any Ada program using pragma INTERFACESHAREDOBJECT. To include these files in
the link process, the user should invoke the HAPSE prelinker, a.Ld, adding the names of these files to the
end of the command line. See section 11.2.2 for an example application of the pragma. Refer to the
CX/UX User's Reference Manual for details on the shmde fine utility.

Pragma SHARED-PACKAGE provides for the sharing and communication of library level packages.
All variables declared in a package marked pragma SHARED-PACKAGE (henceforth referred to as a
shared package) are allocated in shared memory that is created and maintained by the implementation.
The pragma can only be applied to library level package specifications. Each package specification nested
in a shared package will also be shared and all objects declared in the nested packages reside in the same
shared memory as the outer package.

The implementation restricts the kinds of objects that can be declared in a shared package. No uncon-
strained or dynamically sised objects can be declared in a shared package. No access type objects can be
declared in a shared package. No explicit initialisation of objects can occur in a shared package. If any
of these restrictions are violated, a warning message is issued and the package is not shared. These res-
trictions apply to nested packages as well. Note that if a nested package violates one of the above restric-
tions, it prevents the sharing of all enclosing packages as well.

Task objects are allowed within shared packages, however, the tasks as well as the data defined within
those tasks are not shared.

B-4

CX/UX HAPSE Programmer 'a

Pr gma SHARED-PACKAGE accepts as an optional argument, "params", that, if specified, must
be a string constant containing a comma separated list of CX/UX shared segment configuration parame-
ters, as defined by the following:

a key= name, which identifies the CX/UX shared segment key to be used in subsequent shmget
system calls, which are done automatically by the implementation in configuring the shared
segment. name is considered to be a CX/UX filename which will be translated to a shared
segment key using the CX/UX ftok(3C) service. By default, HAPSE applies Wkey= {absolute
HAPSE library path}/.shmem/ackage-name to the shared package. Note that relative path
tames may be specified and would cause key translation to be dependent on the user's current
working directory when program execution is initiated. If name is a decimal integer literal,
HAPSE interprets this as the actual CX/UX key, and does not translate it using the ftok ser-
vice.

* ipc= (IPCCREAT, IPC.EXCL, IPCPRIVATE), which allows the user to specify details
about the initialisation of the shared segment. By default, HAPSE applies ipc=
(IPCCREAT) to the shared package, thereby creating the shared segment if it did not previ-
ously exist. If any 1pe parameters are given, they entirely replace the default ipe specification.

" SHMRDONLY, which specifies that the segment is only available for READ operations.
HAPSE defaults shared package segments to READ/WRITE.

* mode = n, where n is assumed to be a 3 digit octal number defining the access to the shared
segment. By default, HAPSE applies mode=644 to the shared package, (owner read/write,
group read, other read).

A detailed explanation of the IPC and SHM flags, and access modes may be found in the CX/UX
Programmer'a Reference Manual, Chapter .

The pragma must appear within the specification of the library level package. The pragma may also be
repeated in the package body to allow the user to override the shared memory configuration parameters
that were associated with the pragma in the specification. Additionally, these configuration parameters,
as defined above, may also be specified at link time to a.d, via the -shmem "params" option, where
"params" is defined as above with the addition that the first item in the list must be the name of a
shared package. If this option is used, then it replaces all previous information that may have been pro-
vided with all pragmas for that package.

With the valid application of pragma SHARED-PACKAGE to a library level package, the following
assumptions can be made about the objects declared in the package:

" The Lifetime of such objects is greater than the lifetime defined by the complete execution of a
single program.

" The lifetime of such objects is guaranteed to extend from the elaboration of the shared pack-
age by the first concurrent program until the termination of execution of the last concurrent pro-
gram.

In the assumptions above, a concurrent program is defined to be any Ada program which elaborates the
body of a shared package, whose span of execution, from elaboration of such a package to termination,
overlaps that of another such program.

B-5

Implementation-Dependent Characteristics

In actuality, the shared memory segments created by these programs remain even after the last con-
cturren program has exited. The values of objects within these segments remains valid until the segment

is destroyed, or until the system is rebooted. Segments may be explicitly removed through the shared
memory service shmcd, to which an interface is provided in the HAPSE package share dmemory/_j.upport.

Alternatively, the user may obtain information about active shared memory segments through the

CX/UJX utility ipea(S). These segments may be removed via the CX/UX utility iprm(1).

Programs that attempt to reference the contents of objects declared in shared packages that have not

been implicitly or explicitly initialized are technically erroneous as defined by the RM (3.2.1(18)). This
implementation, however, does not prevent such references and, in fact expects them.

The above discussion describes the intent that several Ada programs may begin, continue, and complete
their execution simultaneously, with the contents of the variables in the shared packages consistent with
the execution of those programs.

Since packages that contain objects that are initializsed are not candidates for pragma
SHAREDPACKAGE, the implementation suggests that programs be created for the sole purpose of
initializing objects in the shared package.

The association of a CX/UX shared memory segment with the shared package is effected during the ela-
boration of the package body. If this association should fail due to system shared memory constraints,
access, or improper use of shared memory configuration parameters, one of several predefined exceptions
will be raised. The exceptions are of the form:

shared_package.error.{name of package}.{service). (code}

where .(code} is a CX/LX error code mnemonic.

For example, shared..package-error.package.shmat.EMFILE would be raised to indicate that the shared
package attachment failed because it'would exceed the system imposed limit on active shared segments.
These exceptions are not available to the user since exceptions generated from the elaboration of library
level package bodies have no enclosing scope from which to supply a handler. Refer to the CX/UX
Programmer's Reference Manual for a detailed list of the error conditions for hkmget(2) and shmop(f).

So that programs can define critical sections to reference and update variables within the shared packages,
HAPSE has provided semaphore operations. See the description of the implementation-defined attributes
P'LOCK and P'UNLOCK.

Pragma SHARE-BODY is used to indicate whether or not an instantiation is to be shared. The
pragma may reference the generic unit or the instantiated unit. When it references a generic unit, it sets
sharing on/off for all instantiations of the generic, unless overridden by specific SHARE-BODY pragmas

for individual instantiations. When it references an instantiated unit, sharing is on/off only for that unit.
The default is to share all generics that can be shared, unless the unit uses pragma INLINE.

Pragma SHAREBODY is only allowed in the following places: immediately within a declarative part,
immediately within a package specification, or after a library unit in a compilation, but before any subse-
quent compilation unit. The form of this pragma is

pragma SHARE-BODY (genericname, boolean-literal)

B-6

CX/UX HAPSE Prorammer •

Note that a parent instantiation is independent of any individual instantiation, therefore recompilation of
a generic with different parameters has no effect on other compilations that reference it. The unit that
caused compilation of a parent instantiation need not be referenced in any way by subsequent units that
share the parent instantiation.

Sharing generics causes a slight execution time penalty because all type attributes must be indirectly
referenced (as if an extra calling argument were added). However, it substantially reduces compilation
time in most circumstances and reduces program size.

Pragma OPTLEVEL controls the level of optimization performed by the compiler. This pragma
takes one of the following as an argument: NONE, NUNIAL, GLOBAL, or MAXIMAL. The default is
MINIMAL. NONE produces inefficient code but allows for faster compilation time. MINIMAL produces
more efficient code with the compilation time slightly degraded. GLOBAL produces highly optimized
code but the compilation time is significantly impacted. MAXIMAL is an extension of GLOBAL that can
produce even better code but may change the meaning of the program. MAXIMAL attempts strength
reduction optimizations that may raise OVERFLOW exceptions when dealing with values that approach
the limits of the architecture of the machine. The pragma is allowed within any declarative part. The
specified optimization level will apply to all code generated for the specifications and bodies associated
with the immediately enclosing clarative part.

In general, programs should be developed and debugged using OPT-LEVEL (MINIMAL), reserving GLO-
BAL and MAXIMAL for a thoroughly tested product.

The following optimizations are performed at the various levels.

OPT-LEVEL NONE:
Short circuit boolean tests
Use of machine idioms
Literal pooling

OPT-LEVEL MINIMAL: (in addition to those done with NONE)
Binding of intermediate results to registers
Determination of optimal execution order
Simplification of algebraic expressions
Re-association of expressions to collect constants
Detection of unreachable instructions
Elimination of jumps to adjacent labels
Elimination of jumps over jumps
Replacement of a series of simple adjacent instructions by a single faster complex instruction
Constant folding

OPT-LEVEL GLOBAL: (in addition to those done with MINIMAL)
Elimination of unreachable code
Insertion of zero trip tests
Elimination of dead code
Constant propagation
Variable propagation
Constraint propagation
Folding of control flow constructs with constant tests
Elimination of local and global common sub-expressions
Move loop invariant code out of loops
Reordering of blocks to minimize branching
Binding variables to registers
Detection of uninitialized uses of variables

B-7

Implementation-Dependent Characterstics

OPT-LEVEL MAXIMAL: (in addition to those done with GLOBAL)

Strength reduction
Test replacement
Induction variable elimination
Elimination of dead regions

F.3 IMPLEMENTATION-DEPENDENT ATTRIBUTES

HAPSE has defined the following attributes for use in conjunction with the implementation-defined
pragma SHARED.PACKAGE.

P'KEY
P'LOCK
P'UNLOCK

Where the prefix P denotes a package marked with pragma SHRAREDPACKAGE.

The 'KEY attribute is an overloaded parameterless function which returns the key used to identify the

CX/UX shared segment associated with the package. One specification of the function returns the
predefined type string, and returns a value specifying the filename used in the key translation (ftok(sc)).

If an integer literal key was specified in the pragma ahared_.package parameters, this function returns a
null string. The other specification of the function returns the predefined type universalinteger, and

returns a value specifying the translated integer key. The latter form of the function will raise the

predefined exception PROGRAMERROR if the shared package body has not yet been elaborated.

The 'LOCK and 'UNLOCK attributes are parameterless procedures which manipulate the "state" of a
shared package. HAPSE defines all shared packages to have two states: LOCKed and UNLOCKed.

Upon return from the 'LOCK procedure, the state of the package will be LOCKed. If upon invocation,
'LOCK finds the state already LOCKed, it will wait until it becomes UNLOCKed before altering the state
and returning. 'UNLOCK sets the state of the package to UNLOCKed and then returns. At the point of

unlocking the package, if another process waiting in the 'LOCK procedure has a more favorable CX/UX
priority, the system will immediately schedule its execution.

Note that if 'LOCK is waiting, it may be interrupted by the HAPSE run-time system's time slice for
tasks which may cause another task within the process to become active. Eventually, HAPSE will again

transfer control to the 'LOCK procedure in the original task, and it will continue waiting or return to the
task.

The state of the package is only meaningful to the 'LOCK and 'UNLOCK attribute procedures that set
and query the state. A LOCK state does not prevent concurrent access to objects in the shared
package. These attributes only provide indivisible operations for the setting and testing of implicit sema-

phores that could be used to control access to shared package objects.

HAPSE provides the package, shared-memorysupport. This package contains Ada type, subprogram
definitions, and interfaces to aid the user in manually interfacing to the CX/UX shared memory services.

B-8

CXI/UX HAPSE Programrnmer

This includes:

" System defines and records layouts as defined by the CX/L'X C Programming Language
include files, <ays/ hm.h> and <aya/ipc.h>.

* Interface specifications to shared memory system calls: shmbind, shmget shmat, shmctl,
shmdt.

" Interface specifications to the CX/UX binary semaphore operators: bnemqet, lockbin-
acm, urdockbinsem.

F.4 SPECIFICATION OF PACKAGE SYSTEM

package SYSTEM is
type ADDRESS is private;
type NAME is (HarrisGCX);

SYSTEM-NAME : constant NAME := HarisGCX;

-- System-Dependent Constraints

STORAGE-UNIT : constant 8;
MEMORY-SIZE : constant : 3_221_225_469;

-- System-Dependent Named Numbers

MINJNT : constant -2147_483_648;
MAX.INT : constant : 2_147_483_847;
MAX-DIGITS : constant := <9 for HCX/GCX, 15 for GCX/GCX>;
MAX-MANTISSA : constant :- 30;
FINE-DELTA : constant :- 2.0*s(-30);
TICK : constant :2 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 9;

MAXECSIZE : INTEGER:= 4_000.000;

NOADDR : constant ADDRESS ;

function PHYSICAL-ADDRESS (I : INTEGER) return ADDRESS;

function ADDRGT (A, B : ADDRESS) return BOOLEAN;
function ADDRLT (A, B : ADDRESS) return BOOLEAN;
function ADDRGE (A, B : ADDRESS) return BOOLEAN;
function ADDRLE (A, B ADDRESS) return BOOLEAN ;
function ADDR_DIFF (A, B : ADDRESS) return INTEGER;
function INCRADDR (A : ADDRESS ; INCR : INTEGER) return ADDRESS;
function DECRADDR (A : ADDRESS ; DECR : INTEGER) return ADDRESS;

B-9

Implementation-Dependent Characzcristica

function ">" (A, B : ADDRESS) return BOOLEAN renames ADDRGT;
function "<" (A, B : ADDRESS) return BOOLEAN renames ADDRLT;
function ">=" (A, B: ADDRESS) return BOOLEAN renames ADDRGE;
function "<= " (A, B : ADDRESS) return BOOLEAN renames ADDRLE;
function "-" (A, B : ADDRESS) return INTEGER renames ADDRDIFF;
function "+" (A: ADDRESS ; INCR: INTEGER) return ADDRESS

renames INCRADDR ;
function "-" (A: ADDRESS ; DECR : INTEGER) return ADDRESS

renames DECRADDR ;

pragma inline (ADDRGT);
pragma inline (ADDRLT);
pragma inine (ADDRGE);
pragma inline (ADDRLE);
pragma inline (ADDRDIFF);
pragma inline (INCRADDR);
pragma inline (DECRADDR);
pragma inline (PHYSICALADDRESS);

private

type ADDRESS is new INTEGER;

NOADDR : constant ADDRESS 0;

end SYSTEM;

F.5 RESTRICTIONS ON REPRESENTATION CLAUSES

F.5.1 Pragma PACK

Pragyna PACK is fully supported. Objects and components are packed to the nearest and smallest bit
boundary when pragma PACK is applied.

F.5.2 Length Clauses

The specification T'SIZE is fully supported for all scalar and composite types, except for floating point.

The specification T'SIZE is not supported for access and task types.

B-10

CX/UX JIAPSE Pro gramnmers'

T'SIZE applied to a composite type will cause compression of scalar component types and the gaps

between the components. T'SIZE applied to a composite type whose components are composite types does

not imply compression of the inner composite objects. To achieve such compression, the implementation

requires explicit application of T'SIZE or pragma PACK to the inner composite type.

Composite types which contain components that have had T'SIZE applied to them, will adhere to the

specified component sise, even if it causes alignment of components on non STORAGE-UNIT boundaries.

The size of a non-component object of a type whose size has been adjusted, via T'SIZE or pragma

PACK, will be exactly the specified size; however, the implementation will choose an alignment for such

objects that provides optimal performance.

F.5.3 Record Representation Clauses

The simple expression following the keywords "at mod" in an alignment clause specifies the

STORAGE-UNIT alignment restrictions for the record, and must be one of the following values: 1,2 or 4.

The simple expression following the keyword "at" in a component clause specifies the STORAGEUNIT
(relative to the beginning of the record) at which the following range is applicable. The static range fol-
lowing the keyword range specifies the bit range of the component. Components may overlap word

boundaries (4 STORAGEUNITs). Components that are themselves composite types must be aligned on a
STORAGE-UNIT boundary.

A component clause applied to a component that is a composite type does not imply compression of that

component. For such component types, the implementation requires that T'SIZE or pragma PACK be
applied, if compression beyond the default size is desired.

F.5.4 Address Clauses

Address clauses are only supported for the task entries.

The function PHYSICALADDRESS is defined in the package SYSTEM to provide conversion from
INTEGER values to ADDRESS values.

F.5.5 Interrupts

Interrupt entries (UNIX signals) are supported. This feature allows Ada programs to bind a UNIX signal
to an interrupt entry by using a for clause with a signal number. There is no protection against two

tasks binding the same signal. The result is undefined. Interrupt entries should have no parameters and

can be called explicitly by the program. See SIGVEC(2).

The HAPSE runtime uses SIGALRM (14) to perform time slicing and delays. The result of establishing a

signal handler for SIGALRM is undefined.

The following example program uses an interrupt entry that prints a message when the process receives

SIGINT.

B-11

Impiemeiation-Deperndenr ChLaracLerrzic

with TEXTJO, SYSTEM;
use TEXTJO;
procedure INTR is
-- This program waits for the user to generate SIGINT (<CONTROL> C)

SIGINT-NUMBER : constant := 2;

task SIGINT-HANDLER is
entry SIGINT;
for SIGINT use at SYSTEM.PHYSICALADDRESS(SIGINTNUJMBER);

end SIGINT_HANDLER;
task body SIGINTHANDLER is

begin
accept SIGINT;
PUTLINE("Control-C received");

end SIGINTHANDLER;

begin
null;

end INTR;

F.6 OTHER REPRESENTATION IMPLEMENTATION-DEPENDENCIES

The ADDRESS attribute is not supported for the following entities: static constants, packages, tasks,
labels, and entries. Application of the attribute to these entities generated a compile time warning and a
value of 0 at runtime.

F.7 CONVENTIONS FOR IMPLEMENTATION-GENERATED NAMES

There are no implementation generated names.

F.8 UNCHECKED CONVERSIONS

F.8.1 Restrictions

The predefined generic function UNCHECKED conversion cannot be instantiated with a target type that
is an unconstrained record type with discriminants.

F.8.2 Implementation

The following describes the transfer of data between the source and target operands when performing
unchecked conversion. When possible, the implementation may optimize the conversion operation such
that no transfer of data actually occurs.

B-12

C X ,- ILAPSE Programmer's

F.8.2.1 Simple Types

For all access, task and scalar types, unchecked conversion is implemented using the most efficient MOVE
instruction to move a 1, 2, 4 or 8 byte object to its destination.

If the sizes of the source and target differ, then the smallest size is used.

If the target has a larger size than the source, the source is moved to the low order bits of the target with
no change in bit pattern. The high order bits of the target are sero filled if the source had an unsigned
representation, else the high bit of the source is signed extended through the high bits of the target.

If the target has a smaller size than the source, the low order bits of the source are copied to the target.

F.8.2.2 Composite Types

All conversions logically occur by moving bits from the source to the target, starting at the highest order
bit of the source and target. The size and shape of the target object is not changed, even if the size/shape
of the source is different. When performing the move the smaller of the source and target sizes is used as
the amount of data to move.

F.9 IMPLEMENTATION CHARACTERISTICS OF I/O PACKAGES

F.9.1 Implementation-Dependent Characteristics Of DIRECT 1/0

Instantiations of DIRECT-1O use the value MAXRECSIZE as the record size (expressed in
STORAGEUNITs) when the size of ELEMENT_TYPE exceeds that value. For example, for uncon-
strained arrays such as a string where ELEMENT_TYPE'SIZE is very large, MAXRECSIZE is used
instead. MAXRECORDSIZE is defined in SYSTEM and can be changed by a program before instan-
tiating DIRECTIO to provide an upper limit on the record size. In any case, the maximum size sup-
ported is 268_435_455 storage units. DIRECT-1O raises USE-ERROR if MAXRECSIZE exceeds this
absolute limit.

F.9.2 Implementation-Dependent Characteristics Of SEQUENTIAL 1/0

Instantiations of SEQUENTIALIO use the value MAX_RECSIZE as the record size (expressed in
STORAGEUNITs) when the size of ELEMENT_TYPE exceeds that value. For example, for uncon-
strained arrays such as a string where ELEMENT_TYPE'SIZE is very large, MAX_RECSIZE is used
instead. MAX_RECORDSIZE is defined in SYSTEM and can be changed by a program before instan-
tiating SEQUENTIAL_10 to provide an upper limit on the record size. In any case, the maximum size
supported is 268435_455 storage units. SEQUENTIALJO raises USEERROR if MAX_RECSIZE
exceeds this absolute limit.

B-13

Implcmertation-Dependent Characteritics

F.1O MACHINE CODE INSERTIONS

The general definition of package MACHINECODE provides an assembly language interface for the tar-
get machine including the necessary record types needed in the code statement, an enumeration type con-
taining all the opcode mnemonics, a set of register definitions, and a set of addressing mode functions.
Also supplied (for use only in units that WITH MACHINECODE) is implementation-defined attribute

'REF.

Machine code statements take operands of type OPERAND, a private type that forms the basis of all
machine code address formats for the target.

The general syntax of a machine code statement is

CODE- n'(opcode, operand {, operand});

In the example shown below, CODE_2 is a record 'format' whose first argument is an enumeration value
of type OPCODE followed by two operands of type OPERAND.

CODE_2'(MOVEL, a'ref, b'ref);

The opcode must be an enumeration literal (i.e., it can not be an object, attribute, or a rename). An
operand can only be an entity defined in MACIINE_CODE or the 'REF attribute.

For an object, arguments to any of the functions defined in MACH1NECODE must be static expressions,
string literals, or the functions defined in MACHINECODE. The 'REF attribute may not be used as an
argument in any of these functions.

The 'REF attribute denotes the effective address of the first of the storage units allocated to the object.
For a label, it refers to the address of the machine code associated with the corresponding body or state-
ment. The attribute is of type OPERAND defined in package MACHINE_CODE and is allowed only
within a machine code procedure. 'REF is only supported for simple objects and labels..

Registers - The supported register operands are DO, D1, ... , D7, AO, Al, ... , A7, SP (which is A7) and
FP (which is A6).

The general syntax for a machine data statement is:

DATAn'(size, operand {, operand });

In the following example, DATAI is a record 'format' where the first argument is the size of the data

(byte, word or long) followed by the data.

Data.V'(long, a 'ref);

The size is an enumeration literal. An operand can only be an entity defined in MACHINECODE or the

'REF attribute.

Addressing Modes - All of the GCX's addressing modes are supported by the compiler, except for some
PC relative modes. They are accessed through the following functions provided in MACHNECODE.

B-14

CX/UX HAPSE Programmer's

Address Mode Assembler Notation Ada Function Call

Data Register Direct dn (n=0,1, ... ,7) dn (n in 0... 7)

Address Register Direct an (n=0,1, ... ,7) an (n in 0... 7)

Address Register Indirect (An) indr(<addrreg>)
with Postincrement (An)+ incr(< addr-reg >)
with Predecrement -(An)+ decr(< addr-reg>)

with Displacement (d,An) disp(<reg>, <disp>)

with Index
(8-bit displacement) (d,AnXn.L*SCALE) index(< base.reg >,

<disp>,
<index-reg>,
<scale-factor>)

Memory Indirect Preindexed ([bd,An,Xn.L*SCALE],od) index-pre(<basereg>,
<disp>,
<index:_reg>,
< scalejactor >,
< outer-disp >)

Memory Indirect Postindexed ([bdkAn] Xn.L*SCALE,od) index-post(< basejeg >,
< disp >,
<index_reg>,
< scalejactor >,
<outer.disp>)

Absolute Short Address (xxx).W Absol(< disp>)

Absolute Long Address (xxx).L Absol(< disp >)

Immediate Data #xxx immed(< integer>)
#xxx immed(<float>)
#xxx immed(< character >)

External Name $<name> ext(< name >)
+#xxx +(<integer>)
+#xxx +(<float>)
-#xxx -(<integer>)
-#xxx -(<float>)
< operand > / < operand > <operand> / <operand>

B-15

[mvienentaio-Dependentn Charaacri.,ica

The following example uses machine code to move a block of data.

with machinie-code;
with system;

procedure move(src,dest :in system.address; length in positive) is

use machine~sode;

begin

code..2' (moveaj, src'ref, &0);
code.2' (movez.1, dest'ref, al);

code...2 (movej, length'ref, dO);
code..2' (aubqjl, ±1, dO);

< <start> >
code_2' (move..b, incr(aO), incrtal));
code..2' (dbf, dO, start'ref);

end move;

B- 16

NOTES

B-17

APPENDIX C

TEST. PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient

to hold any value of an access
type.

$BIGIDI (1..498 => 'A', 499 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

$BIGID2 (1..498 => 'A', 499 => '2')
An identifier the size of the
maximum input line length which
is identical to $BIGIDI except
for the last character.

$BIG ID3 (1..249 => 'A', 250 => '3',
251..499 => 'A')

An identifier the size of the
maximum input line length which
is identical to $BIGID4 except
for a character near the middle.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1..249 => 'A', 250 => '4',

2 5 1..49 9 => 'A')

An identifier the size of the

maximum input line length which
is identical to $BIG ID3 except

for a character near the middle.

$BIG INT LIT (1..496 => '0', 497..499 => "298")

An integer literal of value 298

with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..493 => '0', 494..499 => "69.0el")

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRINGi (I => "', 2..250 => 'A', 251 => '"l)
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIG STRING2 (1 => "", 2..250 => 'A', 251 => '1',
252 => '"')

A string literal which when
catenated to the end of
BIG STRING1 yields the image of
BIGID.

$BLANKS (1..479 => ')
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2147483647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT MEMSIZE 3221225469
An integer literal whose value
is SYSTEM.MEMORYSIZE.

SDEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEM. STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT._SYSNAME HARRISGCX
The value of the constant
SYSTEM. SYSTEMNAME.

$DELTA DOC 2.0*9(-30)
A real literal whoze value is
SYSTEM.FINEDELTA.

$FIELDLAST 214T483647
A universal integer
literal whose value is
TEXT IO.FIELD'LAST.

$FIXED_NAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT_NAME NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER THAN DURATION 100 000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value

in the range of DURATION.

$GREATER THAN DURATION BASELAST 10_000_000.0
A universal real literal that is
.greater than DURATION'BASE'LAST.

$HIGHPRIORITY 9
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 /no/such/directory/illegal name1
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILENAME2 /no/such/directory/illegalname2
An external file name which
is too long.

$INTEGER FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LASTPLUS_1 2147483648
A aniversal integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -10_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC 30
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAX IN LEN 499
Maximum input line length
permitted by the implementation.

$MAX_I NT 21 47483647
A universal integer literal

whose value is SYSTE4.MAXINT.

$MAXINT PLUS 1 214T483648
A universal integer literal
whose value is SYSTEM.MAX INT+1.

$MAXLENINTBASED-LITERAL (1..2 => "2#", 3..496 => ,0',
497..499 => "11#n)

A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

C-4

TEST P ARAMETERS

Name and Meaning Value

$MAX LENREALBASED-LITERAL (91-3 => 4F..E5>"0

A universal real based literal
whose value is 16#F.E# with

enough leading zeroes in the

mantissa to be MAX_INLEN long.

$MAXSTRING LITERAL (1 => '"", 2..498 => A, 499 => "

A string literal of~ size
MAX IN LEN, including the quote
characters.

$MIN_INT -2147483648

A universal integer literal
whose value is SYSTEM.MININT.

$MINTASK SIZE 32
An intEeger literal whose value
is the number of' bits required

to hold a task object which has

no entries, no declarations, and

"NULL;" as the only statement in
its body.

$NAME TINYINTEGER

A name of' a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONG FLOAT, or LONGINTEGER.

$NAMELIST HARRISGCX

A7list of' enumeration literals

in the type SYSTEM-NAME,
separated by commas.

$NEG BASEDINT 1 6#FFFFFFFD#

A based integer literal whose
highest order nonzero bit

f'alls in the sign bit

position off the representation
f'or SYSTEM.MAX-fINT.

$ NEW MEM SIZE 3221225469

An initeger literal whose value
is a permitted P-gument for
pragma MEMORY SIZE, other than

$DEFAULT MEM S§IZE. If' there is
no other -value, then use
$DEFAULT-MEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEW STOR UNIT 8
An integer literal whose value

is a permitted argument for

pragma STORAGEUNIT, other than
$DEFAULTSTOR UNIT. If there is
no other permitted value, then
use value of SYSTM.STORAGEt7NIT

•

$NEWSYSNAME HARRISGCX
A value of the type SYSTEM.NAME,
other than $DEFAULTSYS NAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has

a single entry with one 'IN OUT'
parameter.

$TICK 0.01

A real literal whose value is
SYSTEM. TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 36 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. A39005G has been withdrawn because it unreasonably expects a
component clause to pack an array component into a minimum size
(line 30).

b. B97102E has been withdrawn because it contains an unintended

illegality- a select statement contains a null statement at the
place of a selective wait alternative (line 31).

c. BC3009B has been withdrawn because it wrongly expects that
circular instantiations will be detected in several compilation
units even though none of the units is illegal wit respect to the
units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

d. CD2A62D has been withdrawn because it wrongly requires that an
array object's size be no greater than 10, although its subtype's
size was specified to be 40 (line 137).

e. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] have
been withdrawn because they wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE length clause is
given) by passing them to a derived sub-program (which implicitly
converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute,
whose interpretation is considered problematic by the WG9 ARG.

f. CD2A81G, CD2A83G, CD2AS'M and N, and CD50110 have been withdrawn
because they assume that dependent tasks will terminate while the
main program executes a looD that simply tests for task
termination; this is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 and 96, 86 and 96, and 58,

D-I

WITHDRAWN TESTS

respectively).

g. CD2B15C and CD7205C have been withdrawn because they expect that a
'STORAGE SIZE length clause provides precise control over the
number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

h. CD5007B has been withdrawn because it wrongly expects an
iLplicitly declared subprogram to be at the the address that is
specified for an unrelated subprogram (line 303).

i. CD7105A has been withdrawn because it requires that successive
calls to CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it is only the expected frequency of
change that must be at least SYSTEM.TICK--articular instances of
change may be less (line 29).

J. CD7203B and CDT204B have been withdrawn because they use the 'SIZE
length clause and attribute, whose interpretation is considered
problematic by the WG9 ARG.

k. CD7205D has been withdrawn because it checks an invalid test
objective: it treats the specification of storage to be reserved
for a task's activation as though it were like the specification
of storage for a collection.

1. CE2107I has been withdrawn because it requires that objects of two
similar scalar types be distinguished when read from a
file--DATAERROR is expected to be raised by an attempt to read
one object as of the other type. However, it is not clear exactly
how the Ada standard 14.2.4:4 is to be interpreted; thus, this
test objective is not considered valid. (line 90)

m. CE3111C has been withdrawn because it requires certain behavior
when two files are associated with the same external file;
however, this is not required by the Ada standard.

n. CE3301A has been withdrawn because it contains several calls to
ENDOFLINE and ENDOFPAGE that have no parameter: these calls
were intended to specify a file, not to refer to STANDARD-INPUT
(lines 103, 107, 118, 132, and 136).

o. CE3411B has been withdrawn because it requires that a text file's
column number be set to COUNT'LAST in order to check that
LAYOUT ERROR is raised by a subsequent PUT operation. But the
former operation will generally raise an exception due to a lack
of available disk space, and the test would thus encumber
validation testing.

D-2

