
AD-A209 882)N PAGE

12. 60vI ACCESS10% NO 3 ICIPIEW'S CA1A.OC bJ, A

4. Lt (1 t . , 5, 1yPE or REPO & PEPI Onc COt ERE

Ada Compiler Validation S umary Report: C 'VEX 08 May 1989 to 08 May 1990
Computer Corporation, CONVE Ada, Version 1.1 CS au,

(Host and Target), 890508W1.10077 6. PLRFOftN'k . RIpOt; mjiER

7. AUINORts) 3. CO&hA[00 &RANI kJj~Rj)

Wrl-g -Patterson A71
Dayton, OH, USA
9. PIRFDAKIN ORG&NIZATIOh AND ADDRLSS 10. PRDCRAM jLEj.., Pi.21* 1A$M

AREA A VDRX Li:1 NUjR

Wright-Patterson AFB
Dayton, OH, USA

13. CDVR0LI OrICE NAME AND ADDRLSS 2z. AELPOi DAIL
Ada Joint Program Office
United States Department of Defense 1.
Washington, DC 2 301-30B1

14. 0O%10R;N A&EhY hAiK & ADDRLSS(If diferent from Controlng Office) '15. SLCUR1ii (.&SS (Oftidsreportj
UNCLASSIFIED

Wright-Patterson AFB
U5. LASS I ID,

Dayton, OH, USA N/A

15. DlSIRIBJIIO STATEmENI (ofthisReporn)

Approved for public release; distribution unlimited. D T
JUH 3 J I~o

17. 0IS7RIB2IOh 51A",Eo(",j (of the br.frlenl c1titSock2C lfo,HefenftomRepol) SJUI
U 1 L A S S FI E D k . .

It. S~jPPEYkA NOIES

19. KlYh:DRS (Comtinue On reverse Sd df neces.ary idet,tif by block nhumber)

Ada Procrar.irg language, Ada Compiler Validation S,.r.-,ary Rep:rt, Ada
Conpilei Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSl/1IL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTAA I fConrnuc on' reverie side if neesseary and eni ,) b, bloc& number)

CONVEX Computer Corporation, CONVEX Ada, Version 1.1, C210 under CONVEX UNIX, Version
7.1 (Host and Target), ACVC 1.10, Wright-Patterson AFB.

C, 5

DU '" 1473 DIo1no, Or W 6 IS OBSOL7ET

I JAN 13 SN 0102-,,-034-660 UNCLASSIFIED
v rilLI iv, r ht, t irk, int, h~r iwi, pa,.t ibki,.- rwa rmvw,P,-f

Ada Compiler Validation Summary Report:

Compiler Name: CONVEX Ada, Version 1.1

Certificate Number: 890508W1.10077

Host: C210 under
CONVEX UNIX, Version 7.1

Target: C210 under
CONVEX UNIX, Version 7.1

Testing Completed 8 May 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director Accession For

ASD/SCEL NTIS GRA&I
Wright-Patterson AFB OH 45433-6503 DTIC TAB

Unnou-, Li[

DJUS t 4 7e~

Validation 6rganization

Dr. John F. Kramer AvaiJ Codes
Institute for Defense Analyses Dist
Alexandria VA 22311 ist a LI
Ada Joint Program Office
Dr. John Solomond
Director, AJPO
Department of Defense
Washington DC 20301

_

AVF Control Number: AVF-VSR-272.0589
89-01-04-CVX

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890508W1.10077
CONVEX Computer Corporation

CONVEX Ada, Version 1.1
C210

Completion of On-Site Testing:
8 May 1989

Prepared By:

Ada Validation Facility
ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: CONVEX Ada, Version 1.1

Certificate Number: 890508W1.10077

Host: C210 under
CONVEX UNIX, Version 7.1

Target: C210 under
CONVEX UNIX, Version 7.1

Testing Completed 8 May 1989 Using ACVC 1.10

This report has been reviewed and is approved. r

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

I Ada Validation Organizatio

Dr. John F. Kramer
Institute for Defense Analy s

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director, AJPO
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS. 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS. 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS. 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. . 3-5
3.7 ADDITIONAL TESTING INFORMATION 3-6
3.7.1 Prevalidation 3-6
3.7.2 Test Method 3-6
3.7.3 Test Site 3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report -(VSRP describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of. testing this compiler using the Ada Compiler
Validation Capability,' 4CVCb) An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.- The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-I

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

• To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

• To determine that the implementation-dependent uehavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 8 May 1989 at Richardson, TX.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada

compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation ,% 7 legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units'are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TF7TED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler- CONVEX Ada, Version 1.1

ACVC Version: 1.10

Certificate Number: 890508WI.10077

Host Computer:

Machine: C210

Operating System: CONVEX UNIX
Version 7.1

Memory Size: 64 Megabytes

Target Computer:

Machine: C210

Operating System: CONVEX UNIX
Version 7.1

Memory Size: 64 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723

variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
SHORTINTEGER, TINY INTEGER, and SHORT FLOAT in package
STANDARD. (See tests-B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
thr ACVC tests do not specifically attempt to determine the order
cf .-aluation of expressions, test results indicate the following:

,i) None of the default initialization expressions for record
"-'Tponents are evaluated before any value is checked for
r3mbership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and

2-2

CONFIGURATION INFORMATION

uses all extra bits for extra range. (See test C35903A.)

(4) NUMERIC ERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to a null

array type with INTEGER'LAST + 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

2-3

CONFIGURATION INFORMATION

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEG7R'LAST
raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

h. Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3OO4A..B, EA3OO4C..D, and CA3OO4E..F.)

i. Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

J. Input and output

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT IO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes IN FILE and OUTFILE are supported for SEQUENTIALIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT I . (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE31021..K.)

(6) RESET and DELETE operations are supported for SEQUENTIAL_10.

(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTIO. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

2-5

CONFIGURATION INFORMATION

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when reading or writing. (See
tests CE3111A..E, CE3114B, and CE3115A.)

2-6

E

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 329 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for eleven tests were required to successfully demonstrate the test
objective; (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 1993 17 28 46 3345

Inapplicable 0 6 323 0 0 0 329

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 161 332 137 36 252 292 299 3345

Inappl 14 72 135 3 0 0 5 1 0 0 0 77 22 329

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15C CD2D11B CD5007B CD50110 ED7004B
ED7005C ED7005D ED7006C ED7006D CD7105A CD7203B
CD7204B CD7205C CD7205D CE21071 CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 329 tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..Z C45241L..Y C45321L..Y
C45421L..Y C45521L..Z C45524L..Z C45621L..Z
C45641L..Y C46012L..Z

3-2

TEST INFORMATION

b. C35702B and B86001U are not applicable because this implementation
supports no predefined type LONGFLOAT.

c. The following 16 tests are not applicable because this implementation
does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55BO9C B86001W
CD7101F

d. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 47.

e. C86001F is not applicable because, for this implementation, the package
TEXT IO is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXTIO, and hence package REPORT,
obsolete.

f. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

g. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

h. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

i. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types.

J. CD2A61I and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

k. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for access
types.

1. CD2A91A..E (5 tests), CD5012J, CD5013S, and CD5014S are not applicable
because this implementation does not support size clauses for tasks or
task types.

m. The following 42 tests are not applicable because this implementation
does not support an address clause when a dynamic address is applied to
a variable requiring initialization:

CD5003B..H CD5O11A..H CD5011L..N CD5O11Q
CD5011R CD5O12A..I CD5012L CD5013B
CD5013D CD5013F CD5013H CD5013L

3-3

TEST INFORMATION

CD5013N CD5013R CD5014T..X

n. CE2102D is inapplicable because this implementation supports CREATE
with INFILE mode for SEQUENTIAL_10.

o. CE2102E is inapplicable because this implementation supports CREATE
with OUT FILE mode for SEQUENTIAL IO.

p. CE2102F is inapplicable because this implementation supports CREATE
with INOUTFILE mode for DIRECTIO.

q. CE21021 is inapplicable because this implementation supports CREATE
with IN FILE mode for DIRECTIO.

r. CE2102J is inapplicable because this implementation supports CREATE
with OUT FILE mode for DIRECT IO.

s. CE2102N is inapplicable because this implementation supports OPEN with
IN FILE mode for SEQUENTIALIO.

t. CE21020 is inapplicable because this implementation supports RESET with
IN-FILE mode for SEQUENTIALIO.

u. CE2102P is inapplicable because this implementation supports OPEN with
OUTFILE mode for SEQUENTIAL IO.

v. CE2102Q is inapplicable because this implementation supports RESET with
OUT-FILE mode for SEQUENTIAL_10.

w. CE2102R is inapplicable because this implementation supports OPEN with
INOUTFILE mode for DIRECT_10.

x. CE2102S is inapplicable because this implementation supports RESET with
INOUTFILE mode for DIRECTI0.

y. CE2102T is inapplicable because this implementation supports OPEN with
INFILE mode for DIRECT_10.

z. CE2102U is inapplicable because this implementation supports RESET with
IN FILE mode for DIRECT 10.

aa. CE2102V is inapplicable because this implementation supports open with
OUTFILE mode for DIRECT 10.

ab. CE2102W is inapplicable because this implementation supports RESET with
OUTFILE mode for DIRECT IO.

ac. CE3102E is inapplicable because this implementation supports CREATE
with IN FILE mode for text files.

ad. CE3102F is inapplicable because this implementation supports RESET for
text files.

3-4

TEST INFORMATION

ae. CE3102G is inapplicable because this implementation supports deletion
of an external file for text files.

af. CE31021 is inapplicable because this implementation supports CREATE
with OUTFILE mode for text files.

ag. CE3102J is inapplicable because this implementation supports OPEN with
INFILE mode for text files.

ah. CE3102K is inapplicable because this implementation supports OPEN with
OUTFILE mode for text files.

ai. CE3115A is not applicable because resetting of an external file with
OUT FILE mode is not supported with multiple internal files associated
with the same external file when they have different modes.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for eleven tests.

The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

B24009A B33301B B38003A B38003B B38009A B38009B
B41202A B91001H BC1303F BC3005B

The following modifications were made to compensate for legitimate
implementation behavior.

Since this implementation uses 4 storage units for Booleans, the following
changes were made to CD1CO4E on the recommendation of the AVO: on line 51,
"1..BOOLEAN'SIZE + 1" was changed to "0..BOOLEAN'SIZE -1" and lines 75, 99,
and 107 were commented out. After these modifications, the test executed
and reported passed.

3-5

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
CONVEX Ada was submitted to the AVF by the applicant for review. Analysis of
these results demonstrated that the compiler successfully passed all applicable
tests, and the compiler exhibited the expected behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the CONVEX Ada using ACVC Version 1.10 was conducted on-site by a
validation team from the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and software
components:

Host computer: C210

Host operating system: CONVEX UNIX, Version 7.1
Target computer: C210
Target operating system: CONVEX UNIX, Version 7.1
Compiler: CONVEX Ada, Version 1.1

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests

requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled,
linked, and all executable tests were run on the C210. Results were transferred
via magnetic tape to another system for printing.

The compiler was tested using command scripts provided by CONVEX Computer
Corporation and reviewed by the validation team. The compiler was tested using
all default option settings except for the following:

OPTION EFFECT

-nw Suppress warning messages
-M Upon successful compilation, perform link phase and

build an executable.
-o Specifies name of executable

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the

3-6

TEST INFORMATION

validation team were also archived.

3.7.3 Test Site

Testing was conducted at Richardson, TX and was completed on 8 May 1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

CONVEX Computer Corporation has submitted the following
Declaration of Conformance concerning the CONVEX Ada.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: CONVEX Computer Corporation
Ada Validation Facility: ASD SCEL, Wright-Patterson AFB Off 4543:8-650:3
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: CONVEX Ada Version: Version 1.1
Host Architecture ISA: C210 OS&VER #:CONVEX Unix, Version 7.1
Target Architecture ISA: C210 OS&VER #: CONVEX Unix, Version 7.1

Derived Compiler Registration

Derived Compiler Name: CONVEX Ada Version: Version 1.1
Host Architecture ISA: C201, C202, C120, OS&VER #: CONVEX Unix, Version 7.1

C220, C230, C240,
C220i, C220i, C230i

Target Architecture ISA: Same as host OS&VER #: Same as host

Implementor's Declaration

I. the undersigned, representing CONVEX Computer Corporation. have implemented no deliberate
extensions to the Ada Language Standard A.JNSUIIMU-STD-1815A in the compiler(s) listed in this
declaration. I declare thatOCONVEX Computer' Corporation is the owner of record of the Ada
language compiler(s) listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in the declaration shall be made only in the ow'ier's corporate name.

~{.-, //?C&~ ~Date: j~~~/~(
CONVEX Conputer Corporation
Frank J. Marshall, Vice President

Owner's Declaration

I. the undersigned, representing CONVEX Computer Corporation. take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and agree to the public
disclosure of the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada Language Standard
.ANSI/MIL-STD-1815A.

3~) Date : 4 Li
CONVEX Computer Corporation
Frank J. Marshall, Vice President

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to

implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the CONVEX Ada, Version 1.1, as described in this
Appendix, are provided by CONVEX Computer Corporation. Unless specifically
noted otherwise, references in this Appendix are to compiler documentation
and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type SHORT INTEGER is range -32768 .. 32767;
type TINY INTEGER is range -128 .. 127;

type FLOAT is digits 15 range -8.98846567431157E.+307 .. 8.98846567431157E+307
type SHORT FLOAT is digits 6 range -1.70141E+38 .. 1.70141E 38;

type DURATION is delta 6.103515625E-5
range -1.31072E+5 .. 1.31071999938965E+5

end STANDARD;

B-I

Implementation-Dependent Characteristics

Implementation-Dependent Pragmas

CONVEX Ada supports the following implementation-dependent pragmas:

DYNAMIC-SELECT

This pragma causes the compiler to generate multiple versions of the loop that i niaediaLev
follows, based on trip counts supplied by the user. Up to four versions of the loop can bht
generated: scalar, vector, parallel, and parallel-outer/vector-inner. The compiler also
generates code to allow runtime selection of which version to execute.

The DYNAMIC-SELECT pragma accepts three parameters, which specify the trip (iteration)
count at which the compiler is to select vector, parallel, or parallel-vector execution. Each
parameter may be an integer or one of the keywords DEFAULT or NONE. The compiler
selects a version of the loop to execute based on the following rules:

" If the actual trip count is less than the minimum of the trip counts specified in the

pragma, the loop runs scalar.

" If the actual trip count is greater than the maximum of the trip counts specified in
the pragma, the loop runs in the mode corresponding to the maximum of the
specified trip counts.

" In all other cases, the loop runs in the mode corresponding to the greatest trip
count specified that the actual trip count exceeds.

If you omit one or more of the trip counts by entering DEFAULT instead of an integer. the
compiler selects a default trip value for the test. If you use the keyword NONE instead of'
an integer, the compiler does not generate code for the corresponding mode.

The DYNAMIC-SELECT pragma must immediately precede the for or while loop to which
it applies. If the pragma is to apply to a hand written loop, the pragma must appear
immediately before the labeled statement at the head of the hand written loop.

EXTERNAL-NAME

This pragma takes the name of a subprogram or variable defined in Ada and allows the user
to specify a different ex'ernal name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package
specification and must apply to an object declared earlier in the same package specification.

F ORCE-PARALLEL

This pragma tells the compiler that the iterations of the following loop are independent and
that the loop should be parallelized. If both this pragma and FORCE-VECTOR precede a
loop, the loop is vectorized and the strip-mine loop is parallelized.

The FORCE_P.AR LLEL pragma must immediately precede the for or while loop to which
it applies. If the pragma is to apply to a hand written loop, the pragma must appear
immediately before the labeled statement at the head of the hand written loop.

FORCE-VECTOR

This pragma tells the compiler that the iterations of the following loop are independent but
that the loop should be vectorized rather than parallelized. If both this pragma and
FORCE..PARALLEL precede a loop, the loop is vectorized and the strip-mine loop is
parallelized.

B-2

Implementation-Dependent Characteristics

The FORCE_..YECTOR pragma must immediately precede the for or while loop to which it
applies. If the pragma is to apply to a hand written loop, the pragma niust afj4)ar
immediately before the labeled statement at the head of the hand written loop.

IMPLICIT-CODE

This pragma takes one of the identifiers ON or OFF as the single argument. This pragina i-
only allowed within a machine-code procedure. It specifies whether implicit, code generated
by the compiler is to be allowed or disallowed. A warning is issued if OFF is used and any
implicit code needs to be.generated. The default value is ON.

INTERFACE

This pragma takes the name of a variable defined in another language and allows it to be
referenced directly in Ada. The pragma replaces all occurrences of the variable name with
an external reference to the second (link.argument).

The pragma is allowed at the place of a declarative item in a package specification and must
apply to an object declared earlier in the same package specification. The object must be
declared as a scalar, array, record, or access type. The object may not be any of the
following:

" A loop variable
" A constant
" An initialized variable

MAXTRIPS

This pragma tells the compiler that the expected number of iterations (trips) for the
following loop is approximately n. The compiler uses this information for profitability
analysis, dynamic selection, and variable strip mining. The pragma accepts a single integer
constant argument.

The MAX...TRIPS pragma must immediately precede the for or while loop to which it
applies. If the pragma is to apply to a hand written loop, the pragma must appear
immediately before the labeled statement at the head of the hand written loop.

NO-PARALLEL

This pragma prevents parallelization of the following loop but does not prevent
vectorization. If both this pragma and the NOVECTOR pragma precede a loop, the effect
is the same as if the SCA.L.AR pragma is used.

The NO-PARALLEL pragma must immediately precede the for or while loop to which it
applies. If the pragma is to apply to a hand written loop, the pragria must appear
immediately before the labeled statement at the head of the hand written loop.

NO-RECURRENCE

This pragma instructs the compiler to vectorize a loop even if the compiler cannot prove
that there are no recurrence vector dependencies in the loop. If the loop does, in fact,
contain recurrences and the NO-RECURRENCE pragma is specified, incorrect code may be
generated.

The NORECURRENCE pragma must immediately precede the for or while loop to which it
applies. If the pragma is to apply to a hand written loop, the pragma must appear
immediately before the labeled statement at the head of the hand written loop.

B-3

Implementation-Dependent Characteristics

NOSIDEEFFECTS

This pragma tells the compiler that the subprogram being compiled does not change the
value of any global objects. The optimizer portion of the compiler can then move operatioms
on such variables across calls to the subprogram.

The NOSIDE-EFFECTS pragma must appear in the declarative part of a function or

procedure.

NO-VECTOR

This pragma prevents vectorization of the following loop but does not prevent
parallelization. If.both this pragma and the NO-PARALLEL pragma precede a loop, the
effect is the same as if the SCALAR pragma is used.

The NO-VECTOR pragma must immediately precede the for or while ioop to which it
applies. If the pragma is to apply to a hand written loop, the pragma must appear
immediately before the labeled statement at the head o' the hand written loop.

PARALLEL-UNIT

This pragma causes the compiler to attempt to generate code that will execute in parallel for
the compilation unit in which the pragma occurs. Vectorization may also take place.

Only one SCALARUNIT, PARALLFL-UNIT, or VECTOR-UNIT pragma may appear in a
library unit. Any subsequent SCALARUNIT, PARALLEL.UNIT, or \ECTORUNIT
pragmas are flagged as errors and ignored.

PREFER-PARALLEL

This pragma tells the compiler that is there is a choice of loops in a nest to parallelize and it
is valid to parallelize the loop following the pragma, then it should be chosen for
parallelization. All dependencies are honored.

The PREFER-PARALLEL pragma must immediately precede the for or while loop to which
it applies. If the pragma is to apply to a hand written loop, the pragma must appear
immediately before the labeled statement at the head of the hand written loop.

PREFER-VECTOR

This pragma tells the compiler that is there is a choice of loops in a nest to vectorize and it
is valid to vectorize the loop following the pragiiia, then it should be chosen for
vectorization. All dependencies are honored.

The PREFER-VECTOR pragma must immediately precede the for or while loop to which it
applies. If the pragma is to apply to a hand written loop, the pragma must appear
immediately before the labeled statement at the head of the hand written loop.

PSTRIP

This pragma tells the compiler that the parallel loop which follows should be strip mined
with length n. This pragma reduces the overhead required to synchronize CPUs working
together on the loop. The pragma increases to n the rumber of iterations each CPU picks
up as it gets its next unit of work. The pragma accepts i single integer constant argument.

The PSTRIP pragma must immediately precede the for or while loop to which it applies. If
the pragma is to apply to a hand written loop, the pragma must appear immediately before
the labeled statement at the head of the hand written loop.

B-4

Implementation-Dependent Characteristics

SCALAR

This pragma prevents vectorization of the loop that follows. The SC.ALAP, pragma must
immediately precede tile for or ihile loop to which it. applies. I' the pragma is to apply to ai
hand written loop, the pragma must appear iinmediatly before the labeled statement at thlt
head of the hand written loop.

Loops nested within a loop that has the SCALAR pragma applied to it are eligible for
vectorization.

SCALAR-UNIT

This pragma may appear any place in the declarative part of a library unit and tells the
compiler that no -ictorization is to be performed on the unit. The SCALAR-UNIT pragma
overrides any optimization option specified on the compiler command line.

Only one SCALAR-UNIT, PARALLEL-UNIT, or VECTOR-UNIT pragma may appear in a
library unit. Any subsequent SCALAR-UNIT, PARALLEL-UNIT, or VECTOR_UNIT
pragmas are flagged as errors and ignored.

SHARECODE

This pragma takes the name of a generic instantiation or a generic unit as the first argument
and one of the identifiers TRUE or FALSE as the second argument. This pragma is only
allowed immediately at the place of a declarative item in a declarative part or package
specification, or after a library unit in a compilation, but before any subsequent compilation
unit.

When the first argument is a generic unit, the pragma applies to all instantiations of that
generic. When the first argument is the name of a generic instantiation, the pragma applies
only to the specified instantiation or overloaded instantiations.

If the second argument is TRUE, the compiler tries to share code generated for a generic
instantiation with code generated for other instantiations of the same generic. When the
second argument is FALSE, each instantiation gets a unique copy of the generated code.
The extent to which code is shared between instantiations depends on this pragma and the
generic formal parameters declared for the generic unit.

The SHARE-CODE pragma may also be referenced as SH-ARE. BODY.

SPREAD-TASK

The SPREAD-TASK pragma may appear anyplace in the declarative part of a library unit
and tells the compiler to use multiple CPUs (rather than one CPU) for tasking at runtime.

SYNCHPARALLEL

This pragma tells the compiler, at optimization level -03, that the loop that follows should
be run in parallel even though it requires synchronization that may result in a significant
loss of efficiency.

The SYNCH-PARALLEL pragma must immediately precede the for or while loop to which it,
applies. If the pragma is to apply to a hand written loop, the pragma must appear
immediately before the labeled statement at the head of the hand written loop.

B-5

Implementation-Dependent Characteristics

UNROLL

This pragma tells the compiler to attempt unrolling on tile loop immediately following th.
pragma. Unrolling is performed only if the iteration count is less than 5.

The UNROLL pragma must immediately precede the for or while loop to which it applies. If'
the pragma is to apply to a hand written loop, the pragma must appear immediately befoit
the labeled statement at the head of the hand written loop.

VECTOR-UNIT

This pragma may appear any place in the declarative part of a library unit and tells the
compiler that library unit is a candidate for vectorization. Loops within the library unit are
analyzed and those that have no recurrence vector dependencies are vectorized. The
compiler can be forced to vectorize a loop, even if recurrence dependencies exist, with the
NO.RECURRENCE pragma.

The VECTOR-UNIT pragma overrides any optimization option specified on the compiler
command line. Only one SCALARUNIT, PARALLEL-UNIT, or VECTOR-UNIT pragma
may appear in a library unit. Any subsequent SCALAR-UNIT, PARALLEL-UNIT, or
VECTOR-UNIT pragmas are flagged as errors and ignored.

VSTRIP

This pragma tells the compiler that the vector loop immediately following the pragma
should be strip mined with length n. This pragma allows the user to reduce strip-milie
length, thus creating more iterations of the strip-min! loop so that it can be effectively
parallelized. The pragma accepts a single integer constant argument.

The VSTRIP pragma must immediately precede the for or while loop to which it applies. If
the pragma is to apply to a hand written loop, the pragma must appear immediately before
the labeled statement at the head of the hand written loop.

Implementation of Predefined Pragmas

CONWEX Ada implements the predefined pragmas as follows.

CONTROLLED

This pragma is recognized by the compiler but has no effect.

ELABORATE

This pragma is implemented as described in Appendix B of the American National Standard
Reference Manual for the Ada Programming Language.

INLINE

This pragma is implemented as described in Appendix B of the American National Standard
Reference Manual for the Ada Programming Language.

INTERFACE

This pragma supports calls to C and FORTRAN functions. Ada subprograms are either
functions or procedures.

B-6

Implementation-Dependent Cliaracteristic:-

The types of parameters and the result type for functions must be scalar, access, or The
predefined type ADDRESS in SYSTEM. An optional third argument overrides the default
link name. All parameters must have mode IN. Record and array objects can be passed by
reference using the ADDRESS attribute.

LIST

This pragma is implemented as described in Appendix B of the American National Standard
Reference Manual for the Ada Programming Language.

MEMORY-SIZE

This pragma is recognized by the compiler but has no effect. The implementation does not
allow SYSTEM to be modified by pragmas; the SYSTEM package must be recompiled.

OPTIMIZE

This pragma is recognized by the compiler but has no effect.

PACK

This pragma causes the compiler to choose a nonaligned representation for composite types
but does not cause objects to be packed at the bit level.

PAGE

This pragma is implemented as described in Appendix B of the American National Standard
Reference Manual for the Ada Programming Language.

PRIORITY

This pragma is implemented as described in Appendix B of the American National Standard
Reference Manual for the Ada Programming Language.

SHARED

This pragma is recognized by the compiler but has no effect.

STORAGE-UNIT

This pragma is recognized by the compiler but has no effect. The implementation does not
allow SYSTEM to be modified by pragmas; the SYSTEM package must be recompiled.

SUPPRESS

This pragma is implemented as described in Appendix 13 of the American National Standard
Reference Manual for the Ada Programming Langurg. except that RANGECHECK and
DMSIONCHECK cannot be suppressed.

SYSTEM-NAME

This pragma is recognized by the compiler but has no effect. The implementation does not
allow SYSTEM to be modified by pragmas; the SYSTEM package must be recompiled.

B-7

Implementation-Dependent Characteristics

Implementation-Dependent Attributes

CONVEX Ada provides the implementation-dtpendent attviluhte PREF. wchre P cani rep)restilz
an object, a program unit, a label, or an entry.

This attribute denotes the effective address of the first of the storage units allocated to P. For a
subprogram, package, task unit, or label, it refers to the address of the machine code associated
with the corresponding body or statement. For an entry for which an address clause has been
given, it refers to the corresponding hardware interrupt.

This attribute is of type OPERAND as defined in the package MACHINECODE and is only
allowed within a machine-code procedure. This attribute is not supported for a package, task
unit, or entry.

Specification of the Package SYSTEM

The specification of the package SYSTEM is shown below. This specification is available online
in the file system.a in the standard library.

package SYSTEM
is

type NAME is (convex unix

SYSTEM NAME constant NAME := convex unix;

STORAGE UNIT constant 8;

MEMORY SIZE : constant 16 777 216;

-- System-Dependent Named Numbers

MIN INT constant -2 147 483 648;
MAX INT constant 2 147 483_647;
MAX DIGITS constant 15;
MAX MANTISSA constant 31;
FINE DELTA constant 2.0**(-31);

TICK constant 0.0001;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;
MAXRECSIZE : integer := 64*1024;

type ADDRESS is private;

NO ADDR : constant ADDRESS;

function PHYSICAL ADDRESS(I: INTEGER) return ADDRESS;
function ADDR GT(A. B: ADDRESS) return BOOLEAN;

function ADDR LT(A, B: ADDRESS) return BOOLEAN;
function ADDR GE(A, B: ADDRESS) return BOOLEAN;
function ADDR LECA. B: ADDRESS) return BOOLEAN.

function ADDR DIFF(A. B: ADDRESS) return INTEGEF.,
function INCR ADDR(A: ADDRESS; INCR: INTEGER) raturn ADDRESS;
function DECR ADDR(A: ADDRESS; DECR: INTEGER) retu4rn ADDRESS;

function *>*(A. B: ADDRESS) return BOOLEAN renames ADDR GT;
function '<'(A, B: ADDRESS) return BOOLEAN renames ADDRLT;

B-8

Imple mentaLion-Dependent Characteristics

function ">=-A. B. ADDRESS) return BOOLEAN renames ADDR GE.
function <" (A. B ADDRESS) return BOCLEAN renames ADDR LE.
function -(A. B. ADDRESS) return INTEGER renanes AZDR ::FF.
function '"(A ADDRESS, INCR: INTEGER) return ADDRESS renames :NCR ADDR.
function *-*(A: ADDRESS, DECR: INTEGER) return ADDRESS renames DECR ADDR,

prapgma Inline(ADDR GT);
pragma inline(ADDR_ LT);
pr&-Va inline(ADDR GE);
pragma inIne(ADDR LE);
pragma in1±ne(ADDRDIFF);
pragma inline(INCRADDR);

pragma inllne(DECR ADDR);
pragma ±n2±nre(PHYSICALADDRESS);

private

type ADDRESS is new integer;
NOADDR : constant ADDRESS := 0;

end SYSTEM;

Restrictions on Representation Clauses

This section describes the restrictions on representation clauses in CONEX Ada.

Size Specification

The size specification T'SMALL is not supported except when the representation speciication
is the same as the value 'SMALL for the base type.

Record Representation Clauses

Component clauses must be aligned on STORAGE-UNIT boundaries if the component
exceeds 4 storage units.

Address Clauses

Address clauses are supported for variables and constalts. An object cannot be initialized at
the point of declaration if a subsequent address clause is applied to the object.

Interrupts

Interrupt entries are supported for UNIX signals. The Ada for clause gives the UNTX signal

number.

Representation Attributes

The ADDRESS attribute is not supported for the following entities:

* Packages
" Tasks
" Labels
" Entries

B-9

Implementation-Dependent Characteristics

Machine-Code Insertions

Machine-code insertions are supported. The general definition of the packag,
MACHINECODE provides an assembly-language interface for the target ntachirle. Thi.-
package provides the necessary record types needed in the code statement, an enumeratLio
type of all the opcode mnemonics, a set of register definitions, and a set of addressing--mode
functions.

The general syntax of a machine-code statement is as follows:

CODE-n' (opcode. operand [,operand]);

The parameter n indicates the number of operands in the aggregate. A special case arises for
a variable number of operands. The operands are listed within a subaggregate in the
following format:

CODE n' (opcode, (operand [.operandl));

For those opcodes that require no operands, named notation must be used. The format is as
follows:

CODE O' (op => opcode);

The opcode must be an enumeration literal; it cannot be an object, attribute, or rename. An
operand can only be an entity defined in the package MACHINECODE or with the 'REF
attribute.

The arguments to any of the functions define in MACHINE.CODE must be static
expressions, string literals, or the functions defined in N'LCHINECODE. The attribute
'REF may not be used as an argument in any of these functions. Inline expansion of
machine-code procedures is supported.

Conventions for Implementation- Generated Names

There are no implementation-generated names.

Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables. Interrupt entries are specified with the
number of the UNIX signal.

Restrictions on Unchecked Conversions

There are no restrictions on unchecked conversions.

B-10

Implementation-Dependent Characteristics

Restrictions on Unchecked Deallocations

There are no restrictions on unchecked deallocatuoii~s

Implementation Characteristics of 1/0 Packages

Instantiations of DIRECT-10 use the value \LX-.REC-.SIZE as the record size (txpressed ill
STORAGE-UNITS) when the size of ELEMENT-.TYPE exceeds that value. For example, for
unconstrained arrays such as string, where ELEMIENT-.TYPE'SIZE is very large,
MLAX..REC..SIZE is used instead.

MAX..REC-.SIZE is defined in SYSTEM and can be changed by a program before DIRECT-10 is'
instantiated to provide an upper limit on the record size. In any case, the maximum size
supported is 1024 x 1024 x STORAGE-.UNIT bits. DLRECTJO raises USE..ERROR if
MAX..REC..SIZE exceeds this absolute limit.

Instantiations of SEQUENTIALLO0 use the value MAX..REC..SIZE as the record size (expressed
in STORAGE-UJNITS) when the size of ELEMvWNT-.TYPE exceeds that value. For example, for
unconstrained arrays such as string, where ELEMENT-TYIE'SIZE is very large.
MAX..REC-.SIZE is used instead. MAY.REC-SIZE is defined in SYSTEM and can be changed by
a program before instantiating INTEGER-10 to provide an upper limit on the record size.
SEQTJENTIAL-IO imposes no limit on MLAX-REC-.SIZE.

B-11

APPENDIX C

TEST PARAMETERS

Certain tests in the PCVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDI (1..498 => 'A', 499 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIGID2 (1..4 98 => 'A', 499 => '2')
An identifier the size of the
maximum input line length which
is identical to $BIG IDI except
for the last character.

$BIGID3 (..249 => 'A', 250 => '3',
An identifier the size of the 251..499 => 'A')
maximum input line length which
is identical to $BIGID4 except
for a character near the middle.

C-i

TEST PARAMETERS

Name and Meaning Value

$BIGID4 (1..249 => 'A', 250 => '1',

An identifier the size of the 251..499 => 'A')

maximum input line length which
is identical to $BIGID3 except
for a character near the middle.

$BIGINTLIT (1..496 => '0', 497..499 => "298")

An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REALLIT (1..494 => '0', 495..499 => "690.0")

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGi (1 => '"', 2.-250 => 'A', 251 => "')

A string literal which when

catenated with BIG STRING2
yields the image of BIG IDI.

$BIG STRING2 (1 => '"', 2-250 => 'A', 251 => '1',
A string literal which when 252 => '"')

catenated to the end of
BIG STRING 1 yields the image of
BIG-ID1.

tBLANKS (1..479 => ''

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer
literal whose value is
TEXT IO.COUNT'LAST.

$DEFAULTMEMSIZE 16_777_216
An integer literal whose value
is SYSTEM.MEMORY SIZE.

$DEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME CONVEXUNIX
The value of the constant
SYSTEM. SYSTEM NA.ME.

$DELTA DOC (l..27 => "0 000 000 000 465 661 287 3",
A real literal whose value is 28..4 =>-"07-739-257-812-5")
SYSTEM.FINE DELTA.

$FIELDLAST 2_147_483_647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXED _ NAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NO_SUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONG FLOAT.

$GREATER THANDURATION 100_000.0

A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHAN DURATION BASE LAST 10_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 99
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 (l .27 => "/no/such/directory/ILLEGAL ",

An external file name which 28..46 => "EXTERNALFILENAMEl")
contains invalid characters.

$ILLEGALEXTERNAL FILE NAME2 (1..27 => "THIS FILE NAME IS TOO LONG_",

An external file name which 28.-73 :> "FORMY SYSTEM",

is too long. 74..288 => 'd')

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGER LAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 2147483648
A univer-sal - integer literal
whose value is INTEGER'LAST + 1.

$LESSTHAN DURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHAN DURATION BASE FIRST -10 000_000.0
A universal real literal that is
less than DURATION'BASE'F'RST.

$LOW PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAXIN LEN 499
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINT PLUS_ 1 2_147_483_648
A universal integer literal
whose value is SYSTE4.MAXINT+1.

$MAX LEN INT BASED LITERAL (1..2 => "2:', 3..496 > '0',
A unive-rsal integer based 497..499 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX INLEN
long.

C-4

I i I ll I l

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL (1..3 :> "16:", 4..495 => '0',

A universal real based literal 496..499 => "F.E:")

whose value is 16:F.E: with

enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX STRING LITERAL (1 => '"', 2..498 => 'A', 499 :> '"')

A string literal of size

MAX IN LEN, including the quote

characters.

$MININT -2147483648

A universal integer literal
whose value is SYSTEM.MININT.

$MIN TASK SIZE 32
An integer literal whose value
is the number of bits required

to hold a task object which has

no entries, no declarations, and
"NULL;" as the only statement in

its body.

$NAME TINY INTEGER

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONGINTEGER.

$NAME LIST CONVEXUNIX
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASED INT 16#FFFFFFFD#

A based integer literal whose

highest order nonzero bit

falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEW MEM SIZE 16777216

An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM_SIZE. If there is

no other value, then use
$DEFAULT MEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEWSTOR UNIT 8
An integer literal whose value
is a permitted argument for

pragma STORAGE UNIT, other than

$DEFAULT STORUNIT. If there is

no other permitted value, then

use value of SYSTEM.STORAGEUNIT.

$NEW_SYS NAME CONVEXUNIX
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.0001

A real literal whose value is
SYSTEM. TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC bectise they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

1. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE *in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

2. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

3. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

4. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

5. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

6. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

D-1

WITHDRAWN TESTS

7. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

8. CD2B15C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

9. CD2D11B: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

10. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

11. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

12. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

13. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

14. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.-

15. CE21071: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

16. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

17. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,

D-2

WI.DRAWN TESTS

132, and 136).

18. CE3411B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUTERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

