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A Statistical Derivation of the Average Degree of Polymerization

in a Stirred Tank Reactor
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Abstract

The statistical approach in its many forms has been a powerful tool in describing the

structural evolution of nonlinear polymers, but has been limited in its application to batch

processes. This restriction is removed by considering the paradigm of Af homopolymerization

in a homogeneous stirred tank reactor. The number- and weight-average degrees of

polymerization are derived from recursive arguments which properly account for the non-

random combination of monomers caused by the residence time distribution. The results .0

in agreement with those derived from the kinetic equations. This route is not necessarily a

simpler or more powerful approach than solution of the kinetic equations, but it does provide

new insights into this particular problem, as well as demonstrating the versatility of the

statistical approach. AOOession For
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Introduction

Stepwise polymers produced in a homogeneous continuous stirred tank reactor1

(HCSTR) can exhibit significantly broader distributions than their counterparts produced in

batch reactors. The homopolymerization of A2 monomers serves to illustrate this. In a batch

reactor the molecular weight distribution is the most probable (or geometric) distribution: 1

pn =_ pP-1 0 -P) (1)

where Pn is the molar fraction of n-mers, and p is the extent of reaction (the probability that a

functional group has reacted). This distribution gives the following number- and weight-

average degrees of polymerization:

DPn- - p (2)

DP + p (3)D~w- 1- p

The polydispersity of the polymer thus has an upper bound of two. The conversion is related

to time t through the Damk6hler number Da by the following relationship:

Da
P 1 + Da (4)

where Da = ktfc10 , k is the rate constant for functional group (tio monomer) reaction, f is the

functionality of the monomer (here 2), and cl 0 is the initial monomer concentration.

In an HCSTR, on the other hand, the distribution takes a more complicated form: 1
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(2n - 2)! p-1
Pn = n.n - 1)! (1 + p)2 n-f (5)

which yields the following average degrees of polymerization:

D =1T (6)
DPn- p1 (6

lw + p 2 _ 7
DPw-( 1 - p) 2

Here, in contrast to the previous case, the polydispersity has no upper bound. The conversion

is related to the relative rates of exit and reaction through the Damkohler number by the

following relation:

p ,l 1+4 4D a- 1(8
2Da(8)

where Da = k0fc10 , cl 0 is the entering monomer concentration, and the mean residence time 0

is the ratio of the volume of the reactor to the volumetric throughput rate.

Since for linear polymerizations broad distributions are easily obtained in an HCSTR,

for nonlinear polymerizations one might expect the situation to be even more severe, such that

the gel point could be advanced con,'! ably. Several researchers have investigated the

behavior of nonlinear polymerizations in HCSTRs. With regard to step polymerizations, the

first work is that of Cozewith et al., 2 which solved both the steady state and start-up problems

for A.. homopolymerization. For finite functionality systems, Gupta and coworkers 3-5 have

analyzed HCSTRs in series, the effect of oscillations in feed, and the effects of intramolecular

reaction. Hendriks and Zff6 have analyzed the problem starting with the Smoluchowski

coagulation equation, and have looked at different coagulation kernels, analyzing both A2 and
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A. homopolymerization (which describes as well the critical behavior of the Af system).

Nonlinear free-radical systems have also been studied.7-11

Common to all of these analyses is the use of the kinetic equations describing

polymerization. -This approach would seem necessary because the various statistical methods,

which are so useful for describing nonlinear polymerizations, have been held (usually

implicitly) to be valid only for batch polymerizations.1 Z13 The non-geometric character of the

distribution of eq 5 would thus seem to be beyond statistical reach, but yet Biesenberger and

Tadmorjustify it with combinatoric reasoning. 1,14 Thus, this alleged restriction is not

absolute. Nonetheless, the question must be asked: how are the ideality assumptions (equal

reactivity and independent reaction) violated, so that simple application of statistical methods is

invalid? Then, is there a correct statistical - ". to the average properties? The paradigm of

random step homopolymerization of f-functional monomers, analyzed by the recursive

method, 15 serves to answer both questions, with the answer to the latter being "yes."

Statistical (Recursive) Derivation.

DP W.

Consider the homopolymerization of f-functional monomers in an HCSTR operating at

steady state, for which cyclization is prohibited, and for which only monomer enters the

reactor. To derive the weight-average degree of polymerization, we first grab a (zeroth

generation) monomer at random, so that we can write:

DP W = I + f E(NAut) (9)

where E(NAOUt) is the expected number of attached monomers looking out from a functional

group.15 We must realize two things: (1) the probability of any of the f functional groups on
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the monomer having reacted is dependent upon the residence time of that monomer, and (2) the

only correlation between the states of the different functional groups is the fact that they all

share the same residence time. These two points correspond to violations of the equal

reactivity assumption and the independent reactivity assumption, respectively. The source of

these nonidealities, however, is not intrinsic to the reaction chemistry, but rather to the reactor

configuration.

As an HCSTR is perfectly mixed, the residence time distribution is described by an

exponential distribution:

p(t)dt e-t/0 dt (10)

Given a residence time t of the zeroth generation monomer (see Figure 1), the probability of a

functional group having reacted is given by the following:

P(O = 1) e- t/ T (I11)

where t is the time scale for reaction, equal to [k(l-p)fcjo -1, such that 0/T = Da (l-p). The

overall conversion is thus given by:

p=jp(t) p(t) dt= 0 Da(1 - p) (12)0+,E-1 + Da(1 - p)

which is consistent with eq 8.

Conditioning upon residence time, we can then write:

E(NAOUt) = JE(NAOUt t) p(t) dt (13)
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To evaluate E(NAOUt I t ), we must first condition upon the time t' at which the reaction

occurred (see Figure 1):

t
E(NAUt I t) = I - e-t/T + (f-) (NAOUt I one group reacted at time V) le(tt') t dt'

(14)

where the weighting function in the integran, ' the probability density of reaction at time t'

given a residence time t, which is consistent with eq 11. To close the recursion, we must

further condition upon the residence time t" of the first generation monomer (see Figure 1):

E(NAt i t) 1 - e t/T' + (f-1) e-t/'t g *E(NAOUt tp'(t"-t') dt"et/r dt' (15)

The recursion thus does not close algebraically, as it does in the case of a batch reactor, 15 but

rather gives a double integral equation.

The distribution p'(t"-t'), which is the probability density that a monomer has a

residence time t" given that one of its groups reacted at t, is a function only of (t"-t') because

the residence time distribution of a mono -, one group of which reacted at time t', is

insensitive to the fact that it must have remained in the reactor for a subsequent period t'. The

distribution is given by the following:

p'(t) dt = ( 1+ ) e-t/ T e-t/O dt (16)
0'C

i.e. simply the (properly normalized) product of the probabilities of a functional group escaping

both reaction and exit.

The double integral equation can now be transformed to a second-order ordinary

differential equation, and the result is:
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E"(NAOUt 1) - 'LE'(NAOUt I,) _,L2 (g 1, ) ( E(NAutI t) +y =0 (17)

The character of the solution will differ depending on whether f=2 or f>2; this is to be

expected, since a linear system is very different from a nonlinear one. Before proceeding to

the solutions, though, we can answer the first question posed in the Introduction.

If we had naively assumed, in eq 14, that the first generation monomer were also

randomly chosen, we would have written that

E(NAOUt I one group reacted at time t') = E(NAut) (18)

The recursion would thus have closed algebraically, and we would have obtained:

1 + Jp(t) p(t) dt
DPw 0= (19)

1- (f-1) JP(t) p(t) dt

which by eq 12 is simply the familiar batch reactor result.15 Thus we see that it is not merely

the residence time distribution that is the source of the nonideality, but rather that the residence

time distribution forces non-random combination of monomers. That is, a monomer with a

residence time t' does not combine with other monomers with a probability proportional to p(t);

rather, the residence time distribution of the first generation is different from the overall

distribution. In fact, the expected residence time of a first generation monomer is 0(1-

(,t/(O+t)) 2), which is less than the value for the zeroth generation monomer, 0. The

"skewing" of the residence time distribution will also occur for every successive generation,

and so the nonideality may be called a long-range effect. The problem can nonetheless be
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solved exactly, as shown below. (All results will be expressed in terms of the conversion p;

see eq 8).

1. Ile Case f = 2.

Under the initial condition E(NAO°t I 0)=0, and the restriction that DPw must be finite,

eq 17 is easily solved to yield:

E(NAOUt It)= O+ ')t (20)

The expected weight on a monomer thus grows linearly with residence time. Integrating

according to eq 13, we find the weight-average degree of polymerization to be:

DP 1 + p2  (7)

as before.

11, The Case f > 2.

The solution of eq 17 depends upon whether we are operating below, above, or at the

critical conversiui Pc, or the coiresponding Lritical Damkbhler number, Dac:

p =I-2(f-2)( 1 +f 2 (21)

Da,= 4 (f - 2) (22)

as found from the discriminant of the characteristic equation. We will examine each case in

turn.

A.p:p,, With the initial condition that E(NAOut I 0)=0, and the condition that as p (or

Da) approaches zero DPw must approach unity, the solution is:
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1 t (23)
E(NA~ut I t) = e t  )(3

where

X= I-( Ij1 4(f-2)I-(1 + -) ) (24)

In contrast to the linear A2 homopolymerization, for the nonlinear case the expected weight on

a monomer grows exponentially with residence time. The weight-average degree of

polymerization is given by:

DP- f 1 2((-p)_ (1-p)2 -4(f-2)p ) 2 (25)w (f 2)2 2p

in agreement with the solution which can be obtained from the kinetic equations (see

Appendix).

B Here we obtain:

E(NAOUt 1 t)- f 1 2 ( - 1) (26)

which in turn gives DPw as follows:

DP W =2 -2 (27)

Thus the largest DPw to be obtained is four, for f=3; as f approaches infinity, the largest DPw

goes to two.2 Thus, despite the broad distributions , we do not obtain high polymer.3 (The

polydispersity here is deceptively low, for at any Damk6hler number all moments above a

critical moment are divergent.6)
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'-or this case, the roots of the characteristic equation are complex and thus

the solutico is of the form:

E(NA 10 t= e 1Ocjsin(j1,- 4(f-2)-(1+) -1

(28)

C2 COS(2 4(f-2) (I+ 2 )1 )} 
20 rf

an equation which makes no physical sense, as it allows E(NAOut I t) to be negative. Indeed,

DP w is found to be given by eq 25, and thus itself to have an imaginary component. We thus

conclude either that steady state operation is not possible for p>pc,2 or that the steady state is a

gelling one.6 Practically, of course, gelation would make operation of an HCSTR impossible

anyway, such that from an engineering viewpoint Pc gives the critical conversion (and hence

Dac) above which steady state operation is not possible.

DPn.

The number-average degree of polymerization can always be calculated from simple

stoichiometric reasoning, being related only to the number of reacted groups and not to the

details of connectivity. Thus:

1
DPn- I - (f/2)p (29)

in agreement with the result from the kinetic equations (see Appendix).
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Discussion

For the sake of illustration, we examine the case f=3; all of the conclusions drawn,

however, are independent off. The steady state values of the number- and weight-average

degrees of polymerization are shown in Figure 2, which emphasizes that high polymer is

simply not obtained in a single HCSTR. However, while DP w is finite (and in this case equal

to four) at the critical conversion, it should be noted that (dDPw/dp) is infinite. Insight can

also be gained from comparison of the HCSTR results with those from a batch reactor; 15 we

c i.n compare on the basis of either conversion or Damk6hler number. For DPw, Figures 3 and

4 show these comparisons; on either basis, the HCSTR product exhibits a higher DP w than the

batch reactor product, as expected. This is obviously not due to increased conversion at a

given Da; indeed, Figure 5 shows that the DP n for the HCSTR product is lower than that from

a batch reactor at the same Da, indicating a correspondingly lower conversion. (A comparison

of DP n on the basis of conversion is not shown, because there is no difference between the two

on this basis.)

In conclusion, the recursive method has been extended to HCSTRs, proper care being

taken to account for residence time distribution and the accompanying non-random reaction.

The results obtained are in agreement with kinetic derivations, and although this derivation is

not necessarily simpler or more powerful than the kinetic derivation (indeed, we have only

solved the steady-state situation), it does offer insight into how the structure changes with

residence time of the monomer. More importantly, it demonstrates the power of the statistical

method to account, rigorously, for nonideality, in this case a violation of both the independent

and equal reactivity assumptions enforced by the reactor configuration. While the ideas

presented here could be extended to other more practical chemical systems (e.g. Af + B2) or to

other types of reactors, perhaps they will find greater utility in the analysis of nonidealities

intrinsic to the reaction chemistry.
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Appendix: Derivation of DPw and DP, from kinetic equations for f>2.

The kinetic equation describing the polymerization is essentially Smoluchowski's

coagulation equation with source and sink terms,6 and with a kernel appropriate to Af

homopolymerization: 16

dcn Cn- CnO k 00
dt 1 , [(f-2)i+2][(f-2)j+2]cic j - k [(f-2)n+2] cn2 [(f-2)i+2]c i  (A1)

i+j=n i=1

where cno is the entering n-mer concentration. The first three moments, gi (i=0,1,2), of the

distribution evolve according to the following expressioni:17

dI+0 + = - k t (l/2)(f-2)2 g12 + 2(f-2)g.11p0 + 21.0 2 I (A2)
0

dt + 0

+ = k {(f-2)2 V ')t2 + 41t1i2} (A4)dt 0

,k here gi0 is the entering ith moment. The concentration of unreacted functional groups [A]

(which equals {(f-2)t 1+2V1j) obeys the following equation:
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d[A] [A]-[A] k
dt + = - k A] 2  (AS)e

For steady-state operation (i.e. the time derivatives vanish) and only monomer entering

(po)I 10= 20=c 10), solution of the above (algebraic) equations gives:

('_j('-)) CIO (A6)

91 =CI (A7)

2-- ( f1-4(f-2)Da 2 (M)

From eq AS, the conversion is found to be given by eq 8, and upon defining DPw=p 2/g1 and

DPn= 1/p0 , eqs 25 and 29 are obtained.
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