
-2 .SF CA' CN Or '6 7G

REPORT DOCUMEW4ATION PAGE

AD-A209 85 I~Ji ~it) RESTRICTIVE MARKINGS.. .

-ECTTEE DISTRIBUTION I AVAILABILITY OF REPORT
119CT Approved for public release; distribution

2b. ~ ~ ~ TJ~ 01LSWCTO ON"I ,t1 1 1989d unlimited.

4 PERFORMING3 ORGANIZATION Of UMIER(S) S MONITORING ORGANIZATION REPORT NuMBER(S)%phD AkUlox- -Ka* %
6. NAME OF PERFORMING ORG A7LM'ON-7 60 OF41CE SY.MBOL -7& NAME OF MONITORING ORGANIZATION

Unvrst of1 California ~ Air Force Office of Scientific Research/NtL

6c. ADDRESS (Crty. Stare, &Md ZIP Code) 7b ADORI5S (City, State, and ZIP Code)

La JllaCA 9093Building 410
La oll, C 9293Bolling AFB, DC 20332-6448

11a. NAME OF FUNDING /SPONSORING Tab OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
OIRGANIZATION I(if apok~ablei
AFOSR I N7. AFOSR-86-0062

8c. ADDRESS (City, State, ari ZIP Code) 10 SOURCE OP FUNDING NUMBERS
PROGRAM IPROJECT TASK IWORK UNIT

Building 410 ELEMENT NO0. NO. No. ICCIESSION NO
Bolling APB, DC 20332-6448 61102F I2312 IAlI

it TITLE (Irtclude Secunqt Clawfkio

The Back Propagation Technique For Modeling Cortical Computation

1 2 PERSONAL AUTHOR(S)
Dr. David Zipser

l3a. TYPE OF REPORT 1l3b TIME COVERED 14~ DATE OF REPORT (Year, Montht. Dy) 5I PAGE COUNT
Final I FROM 111. E- AAI 0 1dari L9 Jan 31, 11989 1' 19

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue an everse of necenary and 4*ntrf4 by block numnber)
FIELD IGROUP ISUIBGROUP

19 ABSTRACT (COMtMnu an rverse if necesury ard identOl by block nurnber)
~Over the past several years powerful learning procedures have been developed that can program

simulated neural networks to compute a wide variety of functions. This has made it possible

to use learning procedures to train model networks to do computations that occur in the brai
While there was no a priori reason to suppose that the individual neuro-like units in these

model networks would resemble the brain in any way, the empirical observation is that they d
Good results have been achieved applying this paradigm to modeling monkey parietal area 7a.

Various aspects of the primary visual area have also been successfully modeled using this

approach. The results of this work raise the interesting possibility that learning procedure
and particularly the back propagation algorithm used in these studies, can serve as a general

technique to account for how the brain implements computations. While these observations do

not imply that back propagation is actually used in the brain, they do raise the possibility
that someaaoosl nnprcde is used there . -r

L20. DISTRIBUTION I AVA ILASIITY OF ABSTRACT 
Z1 k BSTRACT SECURITY CLASS CATION

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPH4ONE (Include Are oe 2 OFFICE SYMBOL
D William 0 Berry (202) 767-5021 7 Nt

Do)0 FORM 14973.4 ;MAR 83 APR editiom may Ot v%*d until exhalusted. SECURITY CLASSIFICATION OF -MIS PAGE
All oth~er edmton$ are obsolete. UNCLASSIFIED

Q, ~ T 1



r -.I n 9 v 1

AJ-(*K-TK' ~j ~ 1

FINAL TECHNICAL REPORT

AFOSR-86-0062

David Zipser

Institute for Cognitive Science

University of California, San Diego

La Jolla, California

IS~
Tilc -

By ..
Distri AbiO'

LAvJiliJbt1Y comes
I " Avjl a:d or

0AY )dI

0 9MAY 1989



Final Technical Report AFOSR-86-0062
January 31, 1989 1

THE BACK PROPAGATION TECHNIQUE FOR

MODELING CORTICAL COMPUTATION

L Introduction

Over the past several years powerful learning procedures have been developed that can

program simulated neural networks to compute a wide variety of functions. This has made it

possible to use learning procedures to train model networks to do computations that occur in

the brain. While there was no a priori reason to suppose that the individual neuron-like units

in these model nctworks would resemble the brain in any way, the empirical observation is that

they do. The response properties of some units in these networks closely resembles those of

real neurons in the cortex. We have had particularly good results applying this paradigm to

modeling monkey parietal area 7a (1,2,3,4). Various aspects of the primary visual area have

also been successfully modeled by us and others using this approach (5,6). The results of this

work raise the interesting possibility that learning procedures, and particularly the back propa-

gation algorithm used in these studies, can serve as a general technique to account for how the

brain implements computations. While these observations do not imply that back propagation

is actually used in the brain, they do raise the possibility that some analogous learning pro-

cedure is used there.
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I1. Work Accomplished

A. Accounting for the Experimental Data From Parietal Area 7a

Lesions to the posterior parietal cortex in monkeys and humans produce profound spatial

deficits in both motor behavior and perception (8,9,10,11). Based on single unit recording data

and lesion studies Andersen and colleagues (12,13,14) proposed that parietal area 7a performed

a spatial transformation from observation based to head centered coordinates by combining

retinal based and eye-position information. Our model attempts to account for the mechanism

of this transformation (1,2,3,4).

The classes of area 7a neurons that are relevant for our modeling effort are eye-position

neurons, responding to eye-position only; visual ncurons, responding to visual stimulation only;

and spatially tuned neurons, which respond to both visual and eye position information. Neu-

rons in the first two classes presumably represent the eye-position and retinal location informa-

tion in observation based coordinates used by area 7a as inpuL The partially tuned neurons

correspond to the hidden units in our model.

To model area 7a we used -,iput format based on experimental observations. The

input consisted of two parts: an eye position and a retinal position. The output was a represen-

tation of spatial location. Training consists of randomly picking a set of allowed eye and reti-

nal positions as input, and then computing the corresponding spatial location to train the out-

put. This model, shown in Figure 1, is described in detail elsewhere (2). This network, as

well as all others described here, was simulated using the P3 parallel system programming

environment, implemented on a Sybolics 3600 LISP Machine (15).
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Figure 1. (a) The back propagation network used to simulate area 7a of the monkey parietal lobe. The input to the network
consists of retinal position and eye-position information. The arrows indicate the direction of activity propagation. error was
propagated back in the opposite direction. The Ws are the weights that are changed by learning. (b) An area 7a visual neu-
ron receptive field of the type used to model input to the network in (a). (c' The eye position vs. ftring rate response lines
for 30 area 7a neurons showing the observed range of slopes and intercepts. The eye position input to the model was based
on this data.
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A teacher is needed for the network to learn the coordinate transformation carried out by

area 7a. In our original studies we used two teacher formats, each representing spatial location

in a head-centered frame. One format represented spatial location as the eye position at which

the stimulus would be foviated. The other format represented head centered spatial location as

the retinal location of the stimulus when looking straight ahead. These teachers were used to

train the model in separne training sessions. Subsequently we have used a wider range of

teachers and shown that any teacher format that encodes information about the head-centered

location of the stimulus produces hidden units of the kind found in area 7a (4).

The network learned to compute the transformation carried out by area 7a. The really

interesting observation is that the network learned to do this in a way analogous to area 7a.

This can be seen by comparing the hidden units to the area 7a spatially tuned neurons. The

important properties to be compared are retinal receptive fields and spatial gain fields. The

extensive similarity of experimental and model receptive fields can be seen Figure 2. The

spectrum of hidden unit receptive fields was similar for both teachers. Note that three of the

most complex hidden unit receptive fields in row C of Figure 2(b) come from untrained hidden

units. Training tends to smooth out the receptive fields and accentuate a single peak, usually

shifting it toward the periphery.

Comparing the spatial gain fields is more complex because the interaction of observa-

tions taken in the presence and absence of visual stimulation must be considered. The eye

position gain fields generated by :.e model are compared to the data for 7a neurons in Figure

3. All the total gain fields (outer :.s) of the hidden units, generated by either teacher, were
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a 10 20 30 40

b 10 20 30 40

Figu e 2. (a) Experimentally determined retinal receptive fields (1,6). The data for drawing each of these receptive field
plots comes from measurements of the firing rate of a single area 7a neuron at 17 different retinal locations. These locations
were at the center and at 10. 20. 30, and 40 degrees out. A neighborhood-weighted Gaussian smoothing function was used to
create the plots shown here. The receptive fields are arranged in rows with the eccentricity of the field maxima increasing to
the right, and in columns with the complexity of the fields increasing downward. All the fields in row A have single peaks.
Those in B a few distinguishable peaks. The fields in C are the most complex. The data has been normalized so the highest
peak in each field is the same height. (b) Hidden unit retinal receptive fields generated by the back propagation model.
These plots were generated in the same way as those of Figure 2(a) except that the data came from computer simulations of
the model network. All the fields, except for the three on the left in row C, are from units that have received 1,000 learning
trials. The remaining three are from untrained units and represent fields that result from the initial random assignment of
synaptic weights.
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Figure 3. (a) The spatial gain fields of nine neurons from area 7a (1). The diameter of the darkened inner circle,
representing the visually evoked gain fields, is calculated by subtracting the backgrourd activity recorded 500 msec be.
fore the stimulus onset from the total activity dunng the stimulus. The outer circle diameter, representing the total
response gain fields, corresponds to the total activity during the stimulus. The annulus diameter corresponds to the
background :tivity that is due to an eye position signal alone, recorded during the 500 msec prior to the stimulus
presentauon. (b) Hidden unit spatial gain fields generated by the model network. Fields a.f were generated using the
monotonic format output: the rest used the Gaussian format outpuL

planar. This result compares with 80% for the 7a neurons. The visually evoked gain fields

(inner dark disks) of the hidden units show differences between the teachers. With the mono-

tonic eye-position format, 78% of the visual response gain fields were planar or monotonic,

while with the Gaussian retinal format, only 36% fall in this class. These figures compare with

55% in this class for the experimental data. The striking similarity between model and experi-

ment raises important questions such as to what degree will this result generalize to other corti-

cal regions, and is there a back-propagation Icarning mechanism in the brain? Ultimately both

of these are empirical questions that must be answercd by more research.
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B. Back Propagation Models of the Visual System

Back propagation requires some form of teacher. We have tried to use teachers that

could be obtained locally from signals present in the cortical area being modeled. One way to

do this is to have the teacher the same as the input. In this case the network learns to do an

identity map which re-creates the input pattern on the output (16). What happens in identity

mapping can be roughly described as a principle component analysis using the same number of

dimensions as there are hidden units, followed by a rotation of coordinates so that the variance

is distributed equally on each axis. The net effect of this, when the number of hidden units is

less than the number of inputs, is that the hidden units have a lower dimensional encoding of

the input than the original input pattern (17,18,19). Our experience gained using identity map-

ping in speech recognition and image compression (1920) shows that this often leads to the

representation of important stimulus features in a very efficient way. Identity mapping is a

powerful correlation-based learning technique. It has been demonstrated that even weaker

correlational procedures such as simple Hebbian learning can generate some of the properties

of visual neurons (21). When we applied identity mapping to simplified models of the visual

system we found hidden units that encoded stimulus location, depth and orientation (6). These

results are summarized below.

1. Hidden unit identity map encoding of stereo depth. The visual cortex contains

many binocular neurons, some of which are involved in extracting depth information from

stereo images on the two retinas. To see how hidden units would encode depth information, a

simplified binocular model of the visual system was used in an identity mapping study. To
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avoid the complexities of three dimensions, linear retinas were used with depth as the second

dimension. The method for determining disparity and the identity mapping network are shown

in Figures 4 and 5. On each training cycle, a location was picked at random, within a circle

around the fixation poinL This location was then projected to the retinas through the focal

point of each eye. The activity for each unit of Lhe retinal array was computed as a Gaussian

function of its distance from the location of this projection point. The depth of the chosen

location, relative to the fixation point, is encoded in the disparity between its location on the

two retinas. The flat, linear retinas used here are an approximation to a horizontal slice

through the curved retinas of the eye.

rr
oo

Figure 4. Mdiod for computing disparities during training of two retina identity mapping network. The fixation point

is 44dcated by fp. c is the center of the retinas, z the location of the stimulus in space an its projection on the retinas.
and f is the focal point for each eye.



Final Technical Report AFOSR-86-0062
January 31, 1989 9

-- 1OUTPUT

00000 HIDDEN

I 1 171 INPUT

LEFT RETINA RIGHT RETINA

Figure 5. The two retina identity mapping network. All input units arc connected to all hidden uruts, %kich are con-
nected to all output units.

It is not completely trivial to determinc what features the hidden units encode. A

graphic display that shows the relationship between unit activity and spot position has proven

very useful in this regard. To generate this type of display the input spot is scanned over the

disk of possible input positions. At every position of the spot the activity of each hidden unit

is plotted at a corresponding position on the computer display. A separate disk-shaped pattern

is generated for each hidden unit. The pixels in the display used can be set only to black or

whit, so to get a graded effect the pixel closest to the spot position is set to black with a proba-

bility approximately proportional to the unit's activity. To clearly define the disk the probabil-

ity of setting a pixel to black is slighdy greater than zero even when activity is zero. This pro-

duces a display in which the degree ) darkining over an area is roughly proportional to unit

activity. To more clearly show _he _ oity pattern, a set of contour lines is superimposed on

the display by plotting white pixels .hcnever the activity of a unit falls within certain evenly
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spaced narrow bands. The response of the hidden units as a function of disparity is discussed

in the research plan section.

The results obtained from computer runs with two, three, four, and nine hidden units are

shown in Figure 6. The network with only two hidden units could not solve the problem. In

this network the .'aput stimuli were mapped to identically corresponding positions on the two

c ,put arrays, that is, there was no disparity. For three and more hidden units the disparity

present in the input was re-created to some degree on the output. The accuracy with which

7.1
V. Eih

Figure 6. Ffidden unit activiti plotted as a funcrion of stisnulus location in space for the two retina idenhity Mappun&
network. Runs using two, three, four, and rune uddcn units am~ shown.
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disparity was reproduced was quite good with four units and virtually perfect with nine units.

Close examination of the data in Figure 6 reveals several interesting points. In the case of two

hidden units the contour lines in the two eyes are completely parallel to each other. This

means that no depth information can be derived from the activity of the hidden units because

their activity values remain proportional for all depths at any given lateral displacement. The

contour lines are angled in depth to compensate for the additional lateral movement required to

produce a fixed displacement on the retina as a point gets further from the observer. For more

than two hidden units the contour lines are no longer exactly parallel. This provides a coordi-

nate system in depth that the output units can use in re-creating the required disparity. In the

case of nine hidden units, sections of the contour lines are running nearly perpendicular to each

other, providing detailed depth information.

In no case did the network solve the problem by treating the two eyes separately. For

example, in the case of four hidden units, a simple solution would be to dedicate two of the

hidden units to each eye. What is actually observed is a distributed, binocular representation

for each hidden unit. The reason that monocular units did not occur is that back propagation

identity mapping works by generating hidden units that capture the correlations in the input

patterns. When, instead of the relatively small amount of disparity that results from depth, a

large amount of random uncorrelated disparity is used in the training, we find that the hidden

units do become monocular. This is analogous to the loss of binocular neurons in animals with

defects preventing eye convergence.
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2. Hidden unit encodings of location and orientation. When vision is used to guide

spatial behavior, an important early step in the process is to extract the location of the stimulus

from the retinal image. It is known from neurophysiological studies that retinal location serves

as input to the parietal region (see Figure l(b)), but the way the retinal location of a stimulus is

computed is not understood. One possibility is that the hidden units in a network trained to

identity map images of discrete objects will encode their location in the image.

To test this hypothesis a network embodying a very simple model of a visual system was

used. The input and output layers of this network consisted of identically configured image

arrays as required for identity mapping. Rather than using complex images, the initial studies

were done with pattern sets consisting of circular Gaussian spots appearing at random locations

on the input image plane. These spots are simplificd examples of the images of discrete

objects as they would appear at low resolution after figure ground separation.

A network typical of those used is shown in Figure 7. It consists of input and output

layers each with 100 uniL arranged as 10>10 arrays. The hidden layer has a small number of

units ranging from one to nine in different runs. The locations to be coded are represented as

spots of activity on the input layer. The position of the center of a spot is picked at random on

each learning cycle. To reduce edge effects the center of the spot is limited to a disk 8 units

in diameter centered on the input array. The activity of each unit in the input array is deter-

mined as a Gaussian function of its distance from the center of the spot. Gaussian spots are

used so that spot location could vary continuously, and also to allow a smooth, nondiscrete

representation of the input stimuli. Training consists of applying a spot to the input and using

this same spot as the target output. The job of the network is to learn to copy the input spot
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OUTPUT ARRAY

m HIDDEN UNITS

INPUT ARRAY

Figure 7. tdcntity mapping network for a single two-dimensional retina.

onto the output layer through the small number of hidden units.

Figure 8 shows results obtained after extensive identity map training using a network of

the kind described above, with two hidden units. The two hidden units in Figure 8 can be seen

to have formed an explicit encoding of spot location using an orthogonal coordinate system.

Although the activity profiles of the two units are everywhere orthogonal they are not linear.

This is presumably a consequence of constraints other than spot location such as spot size and

spot shape. When the training is repeated with the same network using different sets of ran-

dom starting weights and training sequences, the activity patterns learned by the hidden units

are the same except for the angle of rotation of the coordinate axis. This angle is a free param-

eter and its final value is a result of unpredictable details of random parameters in the training

procedure. When a different size Gaussian spot is used for training, the pattern of hidden unit

activity is similar but there are some subtle differences in the curvature and separation of the
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o 1 p

Figure 8. The response of two hidden unts from an identity mapping network of the kind shown in Fgure 7 plttued in
retinal space. The center of the retina, is at the center of the circles.

contour lines. This indicat~es that spot size information is also being coded by the hidden units.

The shape of the activity patterns that develop in the hidden units indicate that they

might have an orientation tuning similar to neurons in the visual cortex. This was tested by

using a progressively rotated dark bar as input to the fully trained networks. The result is

shown in Figure 9, which is a plot of hidden unit activity as a function of the orientation of a

Gaussian bar having the same width as the spots used to train the network. The pair of hidden

units have a strong orientation tuning. It is interesting that one unit has a decrease in activity

at the preferred orientation while the other has an increase. The preferred orientations of the

two units are just 90 degrees out of phase. These observations on identity mapping of simple

visual system models serve as the basis for our plans to develop a more complete model of

visual cortex.
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0.5.

00-- 0.0

0.9

0 1;0

BAR ORIENTATION

Figure 9. The response of a pair of hidden units to a rotating bar. The hidden units ame those shown in Figure 8.
After training was completed learning was turned off and the network was stimnulated by an input that consisted of a
gaussian bar passing through the center of the input array. The Ile width of the bar was 0.2 of the array width, the
same as the Ile radius of the spot used for training. The bar was presented at 25 equa~y spaced orientations between 0
and 180 degrees. The figure shows the activity of the hidden units as a function of bar orientation.
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