
Report SOAS-FRPT

-- SUBMARINE OPERA°T,:.TK 1AL ,
n AUTOMATION SYS...

00 PHASE I
iFINAL TECHNICAL REPORT

M. D. Prince
Lockheed Aeronautical Systf~ms Company gmD w !
Advanced Systems Development Center fl
86 South Cobb Drive ELECTE
Marietta, GA 30063 S JUN 13 1989D

1989 May 31

Final Technical Report for November 1988 - May 1989
Contract No. MDA972-89-C-0006

The views and conclusions contained in this document are those
of the authors and should not be interpretedas representing the
official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Sponsored by
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
Naval Technology Office
Submarine Technology Program
ARPA Order No. 6661
Issued by DARPAICMO under Contract MDA972-88-C-0069

nTh_ i '0,-

D.bus a 148 I

Report SOAS-FRPT

SUBMARINE OPERATIONAL
AUTOMATION SYSTEM
PHASE I
FINAL TECHNICAL REPORT

M. D. Prince
Lockheed Aeronautical Systems Company
Advanced Systems Development Center
86 South Cobb Drive
Marietta, GA 30063

1989 May 31

Final Technical Report for November 1988 - May 1989
Contract No. MDA972-89-C-0006

The views and conclusions contained in this document are those
of the authors and should not be interpreted, as representing the
official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Sponsored by
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
Naval Technology Office
Submarine Technology Program
ARPA Order No. 6661
Issued by DARPAICMO under Contract MDA972-88-C-0069

%Original contains color'-.
py1ton: All D1O, mproduoSt
Lcns will bQ iu blclct........................... 1

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

SOAS-FRPT

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Lockheed Aeronautical (If applicable) Defense Advanced Research Projects Agency
Systems Ca pany [_LASC Submarine Technology Program Support Office

6%eDQRESJ (CIttate, 4rd ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
8 U S Drive 1515 Wilson Blvd.

Marietta, GA 30063 Suite 705
ATTN: M. D. Prince, D/73-60, Z/410 Arlington, VA 22209

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZA.TION (if applicable)

Defense vanced Research Pro'-
ects Agency, Contracts Mgt Of2ic DARPA/C0 MDA972-89-C-0006
*-. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209-2308 ELEMENT NO. NO. NO. ACCESSION NO.

ATrN: G. E. Mayberry
11. TITLE (Include Security Classification)

Submarine Operational Autacation System,
Phase I, Final Technical Report

.PERSONAL AUTHOR(S)
M. D. Pince

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM 11/88 TO 5/89 1 1989 May 31

1s. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-G OUP SOAS, Artificial Intelligence, Submarine Technology

Knowledge-Based System Expert System

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

C3 UNCLASSIFIED/UNLIMITED M' SAME AS RPT. [3 DTIC USERS Unclassified0. DISTRIBUTION i AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

TABLE OF CONTENTS0
Section Title Paae

Document Summary Page i
Table of Contents iii
List of Figures vi

1.0 INTRODUCTION 1-1

1.1 Identification 1-1

1.2 Program Overview 1-1

1.3 Summary of Approach 1-2

1.4 Team Members and Responsibilities 1-4

1.5 Key Accomplishments 1-5

1.6 SOAS Phase I Demonstrations 1-5
1.6.1 Subsystem Demonstrations 1-50

2.0 SUBMARINE OPERATIONAL AUTOMATION SYSTEM 2-1

2.1 Concept of Operation 2-1
2.1.1 Operational Considerations of Full-Scale System 2-1
2.1.2 Solution Statement 2-3
2.1.3 Subproblems 2-4

2.2 System Functions and Components 2-6

2.3 System Architecture and Interfaces 2-12

3.0 SOAS PHASE I DEVELOPMENT APPROACH 3-1

3.1 Subsystem Interface Control 3-1
3.2 System Prototypes - 3-1
3.3 Plan-Goal Dictionary : GPAtI 3-1

DT:C TAB

Unt in- j -3.acad

By

6 Distribution/_

valt 1AL;.1i od .
A- :'1 cnd]/or

i o st sp l

TABLE OF CONTENTS (Cont'd.)

Section Title Page

4.0 SOAS SUBSYSTEMS DESCRIPTIONS 4-1

4.1 Command Interface Status 4-1
4.1.1 Intent Module Status 4-1
4.1.2 Intent Module 4-7
4.1.3 Interface Manager Module 4-14

4.2 Tactics Planner Status 4-23
4.2.1 Introduction 4-23
4.2.2 Tactics Planner Requirements 4-23
4.2.3 The Kadet Tactics Planner 4-25
4.2.4 Tactics Planner Phase I Functionality 4-30

4.3 Situation Assessment Subsystem 4-33
4.3.1 Overview of Situation Assessment 4-33
4.3.2 Contact Assessment Control Module 4-39
4.3.3 Contact Definition Module 4-42
4.3.4 Contact Monitoring Module 4-42
4.3.5 SA Data Bases 4-43
4.3.6 Assessment of Expected Engagement Outcomes 4-44
4.3.7 Search Planning and Evaluation 4-51

4.4 System Manager Technical Approach 4-52
4.4.1 SM Subsystem Interface Module 4-54
4.4.2 SM Blackboard Maintenance Module 4-57
4.4.3 SM Plan Coordination Module 4-57
4.4.4 SM Plan Monitor Module 4-60
4.4.5 SM Planning Control Module 4-60

5.0 SIMULATION ENVIRONMENT DESCRIPTION 5-1

5.1 Overview of the Scenario 5-1
5.2 Description of the Simulation/Emulation Methodology 5-2

5.2.1 The Kinematic Control Process 5-5
5.2.2 Platform Controller Processes 5-8
5.2.3 Detection Process 5-9
5.2.4 The Tracking/TMA Process 5-9
5.2.5 Torpedo Targeting Process 5-10

6.0 RELATIONSHIP OF PHASE I PRODUCT TO OVERALL SOAS CONCEPT 6-1

6.1 System Operation 6-1
6.1.1 System Architectures 6-1
6.1.2 Predicted SOAS Architecture 6-1
6.1.3 Situation Assessment 6-1

iv

TABLE OF CONTENTS (Cont'd.)

Section Title Page

6.1.4 Tactics Planning 6-2
6.1.5 Command Interface 6-2
6.1.6 Hardware 6-2
6.1.7 Language 6-3
6.1.8 Interfaces 6-3

6.2 Assessment of Phase I Progress 6-3

0

0V

LIST OF FIGURES

Figure Title Ele

Figure 1-1 Team Member Responsibilities 1-4
Figure 1-2 Situation Assessment Screen 1-8
Figure 1-3 Command Interface Screen 1-9
Figure 1-4 Tactics Planner Subsystem 1-10
Figure 1-5 SOAS Theater, AI Development Laboratory 1-11
Figure 1-6 Search Evaluation Display 1-12
Figure 1-7 Generic Ownship Display 1-13
Figure 1-8 Predictive Engagement Displays 1-14
Figure 1-9 Likelihood Ratio Tracker (LRT) Display 1-15

Figure 2-1 Demonstration 1 System Performance Goals 2-5
Figure 2-2 System Functional Flow 2-7
Figure 2-3 Command Interface Functional Flow 2-9
Figure 2-4 Situation Assessment Functional Flow 2-10
Figure 2-5 Tactics Planner Functional Flow 2-11
Figure 2-6 System Manager Functional Flow 2-13
Figure 2-7 Plan and Goal Graph Example 2-15
Figure 2-8 Plan Generation and Plan Execution 2-16
Figure 2-9 Phase I Laboratory Architecture 2-19

Figure 3-1 Interface Control Document Example 3-2
Figure 3-2 Plan-Goal Graph Example 3-3
Figure 3-3 Plan-Goal Dictionary Example 3-5

Figure 4-1 Command Interface Subsystem 4-2
Figure 4-2 Intent Inference 4-9
Figure 4-3 Select Logical Devices to Get Displays 4-15
Figure 4-4 Select Information Requirements to Satisfy 4-17
Figure 4-5 Select Displays to Meet Information Requirements 4-18
Figure 4-6 Text Message Selection 4-20
Figure 4-7 Kadet Planning Element 4-27
Figure 4-8 The Selection Phase - Building the Planning Hierarchy 4-28
Figure 4-9 The Execution Phase - Executing the Planning Hierarchy 4-29
Figure 4-10 The Planning Element Life Cycle 4-31
Figure 4-11 Primary SA Inputs and Outputs 4-34
Figure 4-12 SA Software Design 4-36
Figure 4-13 SA Functional Modules 4-38
Figure 4-14 SA Track Information 4-40
Figure 4-15 Sample Engagement Event Tree 4-46
Figure 4-16 Computation of One Engagement Event Branch 4-47
Figure 4-17 Geometry to Determine Lead Angle Limits 4-49
Figure 4-18 SM Primary Functions and Inputs/Outputs 4-53
Figure 4-19 SM Functional Design 4-55

vi

LIST OF FIGURES (Cont'd.)

Figure Title Page

Figure 4-20 SM Software Design 4-56
Figure 4-21 System Manager Blackboard 4-58
Figure 4-22 Plan Life Cycle 4-59

Figure 5-1 Process Control in the SOAS Simulation 5-4
Figure 5-2 Flow Diagram for the Kinematic Processq 5-6
Figure 5-3 Submarine Dive Geometry 5-7
Figure 5-4 Torpedo Intercept Geometry 5-11

vii

1.0 INTRODUCTION AND SUNNARY

1.1 IDENTIFICATION

This report details the approach and progress during Phase I of the
Submarine Operational Automation System (SOAS) program, culminating in a
system demonstration. A summary of the problem and approach, both to the
design of system as a whole and to the development of individual SOAS
subsystem functions, will be presented. The results of pursuing these
approaches and the strategy for the next phases of SOAS will be discussed.

1.2 PROGRAM OVERVIEW

The first phase of this program comprised the development and demonstration
of proposed concepts for the Submarine Operational Automation System. The
objective of the working demonstrations was to show the potential effec-
tiveness and technical feasibility of a future full-scale, knowledge-based
command and control system for advanced submarines to enhance the tactical
and operational performance of the platform.

The concept development system and demonstration were required to incorpor-
ate the following specific features:

* The capability to perform or assist is useful and meaningful submar-
ine command-level functions

* The incorporation and demonstration of innovative and state-of-the-
art computer systems, software, and displays

* The development, incorporation, and adaptation of innovative and
state-of-the-art expert- and/or knowledge-based shells, software,
and high-level languages to the submarine command system situation

* Effective man-machine displays and interfaces and the use and incor-
poration thereof

* The compilation and development of a suitable knowledge base of sub-
marine information

e A system configuration suitable for expansion, revision, and upgrade
and interface to ship systems and possibly other expert- or knowl-
edge-based systems.

In addition to the concept development system and demonstration, the scope
of work for Phase I included the delivery of a System Development Plan
describing the proposed approach to Phases II and III, which together will

1-1

lead to a command-level operational automation system intended to be in-
stalled on a submarine for final testing and demonstration. The System
Development Plan, while discussed briefly in this report, is presented in
detail under separate cover.

1.3 SUMMARY OF APPROACH

The approach to the development of the Submarine Operational Automation
System taken by the Lockheed team is summarized by the following tasks:

e Scenario Selection
@ Submarine Systems Definition
e Mission Task Analysis
* SOAS Functions Selection
* Subsystem Specification
e Technology Assessment
* Prototyping and Incremental Integration
e Software Integration Management
e Demonstrations and Evaluations

Scenario Selection - A battle scenario, including representative 1995
targets, threats, Blue and Orange assets, Blue and Red submarine capabil-
ities, tactics, rules of engagement, and mission activities was developed,
primarily by tailoring scenarios provided by the Naval Underwater Systems
Center (NUSC). These scenarios were tailored to include events that would
not only stress the commander, the crew, and the weapons systems, but also

* provide the opportunity to demonstrate specific commander-aiding functions
which SOAS is intended to provide. The scenario events also became the
basis for setting the requirements for the simulation environment, which is
the test and demonstration environment for the Submarine Operational
Automation System. The scenario used for the system demonstration is
detailed in the Demonstration Plan document for the Submarine Operational
Automation System Program (December, 1989).

Submarine Systems Definition - Specific submarine performance charac-
teristics, system capabilities, and weapons numbers and types were elected
as the basis for developing the knowledge bases of the Submarine Operation-
al Automation System.

Mission Task Analysis - An analysis of the attack center personnel and
submarine system tasks was performed. This, along with the technology base
assessment, became the basis for the selection of candidate Submarine
Operational Automation System functions.

SOAS Functions Selection - Using the task list produced from the task
analysis, candidate SOAS functions were selected in the following areas:
Situation Assessment (SA), Tactics Planner (TP), and Command Interface
(CI). The selection of functions has been an iterative process, depending
on the following factors: the ability to develop programming techniques to
provide the function, the likelihood of a suitable method of communicating

1-2

the function to attack center personnel, the availability in the technology
base or similar functionality, and the ability to provide appropriate scen-
ario situations to exercise the functions. As the functions have been
attempted, and in many cases tested, modifications in the functions'
selection and allocation have occurred.

For exampl: the Phase I program initially included the definition and
design oF a Ship's Operations (SO) subsystem. This subsystem was intended
to assist the Commanding Officer (CO) by monitoring, alerting, and advising
him about the schedule for routine ship functions and operations, changes
in conditions affecting current operations, and the status of on-board
systems and equipment. In order to streamline the scope of LASC's SOAS
program, a decision was made not to implement SO as a primary subsystem.
However, the architecture developed during the Phase I effort will allow SO
functions, as well as other desired enhancements, to be incorporated easily
over the life of the system.

Subsystem Specification - Beginning with the functional areas defined
already in the Pilot's Associate Program, the allocation of functions
resulted in the selection of separate subsystems with similar names.

Technology Assessment - Throughout the program, continual assessment of
past and on-going research in the areas of planning, assessment, man-
machine interface, and real-time execution of knowledge-based systems has
been conducted.

Prototyping and Incremental Integration - Beginning with the program
kickoff, limited functionality software was delivered periodically for
demonstration in Lockheed's Artificial Intelligence Development Laboratory
(AIDL). This prototyping and incremental integration served seyeral
purposes:

* It validated the subsystem interaction specification.
e It provided for early evaluation of system performance.
* It tested the completeness and consistency of system design.
e It provided a measure of the maturity of subsystem designs.
@ It exposed specific simulation and test requirements.
e It exercised and validated the integration methodology.
* It provided early insight into system response-time problems.

Software Integration Management - In order to maintain a consistent
design specification while, on the one hand, system requirements were
evolving and, on the other, prototype software was being built and
delivered, several tools were developed to represent and maintain the
system and subsystem specifications. These include the following:

e A SOAS-to-SOAS-to-Simulation Interface Control Document (ICD)
@ A System Plan-Goal Dictionary

These specifications were maintained and published by Lockheed and have
evolved greatly since the beginning of the program.

1-3

Demonstrations and Evaluations - As the SOAS system and simulation
environment matured, it was possible to demonstrate and evaluate specific
functions at both the subsystem level and the SOAS system level. As
subsystems were delivered, scenario segments constructed to exercise each
required function, and much dedicated integration time was spent evaluating
the evolving system.

1.4 TEAM MEMBERS AND RESPONSIBILITIES

Lockheed selected a team of four subcontractors to assist in the develop-
ment of the Submarine Operational Automation System. Team member selection
was based on capability in each of the essential areas, including AI tools
and techniques, domain knowledge, and software development expertise, as
well as the willingness to share technology among other team members. Each
team member played a unique role, as shown in Figure 1-1. Rather than lo-
cating all software development tasks at one site, all knowledge engineer-
ing at another, and all domain expertise at another, the Lockheed approach
has been to give the responsibility for leadership of entire subsystems to
individual team members, with other team members supporting as necessary.
As a result, a great diversity of tools and techniques has been explored,
and a great deal of expertise has been transferred.

Subsystem

Subcontractor SA TP CI SH

Lockheed Aeronautical L,S,T D L,S,D,T
Systems Company

Search Technology,Inc. D D L,S,D,T

ISX Corp. L,S,T

Presearch, Inc. S,D,T D T,D D

Kapos Associates D D D D

Key: L - Lead (System Requirements, Top-Level Design)
S - Software Design and Development
D - Domain Expertise
T - Technology Support

Figure 1-1. Team Member Responsibilities

1-4

1.5 KEY ACCOMPLISHMENTS

The Lockheed Submarine Operational Automation System Phase I effort has
been successful, mixing higher-risk theoretical research with down-to-
earth software development, integration, and testing. From the Pilot's
Associate program and the SOAS Phase I effort have come a mature system
framework, a large quantity of working software, a proven method for
expanding system capability, and a clear path to develop real-time per-
formance. Highlights of the Phase I results are summarized below.

1. A system design and development methodology that includes
configuration-controlled data flow descriptions, a subsystem
interface control document, response time analyses, test pro-
cedures, a central executive subsystem with scripted versions
of all other subsystems, and a system-level knowledge struc-
ture, called the Plan-Goal Dictionary, through which all
planning is coordinated.

2. A proven prototyping methodology and successful prototype
integration exercises.

3. An environment for evolution of working prototypes, which
allows incremental integration of the SOAS system, experimen-
tation with multiple methods within each subsystem, flexible
simulation and test environment with displays, and a network
of machines for developing and testing different methodol-
ogies.

4. A documentation strategy which emphasizes frequent, in-
formal reporting, consistent with the continual experimenta-
tion and system evolution.

5. The sharing of technology through contacts with other
related programs, including DARPA Technology Base efforts
such as ABE Real-Time, Reasoning with Uncertainty Module and
the Pilot's Associate Program.

1.6 SOAS PHASE I DEMONSTRATIONS

At the conclusion of Phase I, the LASC team conducted demonstrations which
incorporated the specific features identified as goals for the SOAS program
and, additionally, showed the promise of attaining real- time performance.
Two types of demonstration were successfully performed: subsystem demonstra-
tions which featured component technologies and a display demonstration
Ahich presented LASC's concepts for man-machine displays and interfaces.

.6.1 Subsystem Demonstrations

7. ae subsystem demonstrations covered the range of functionality needed to

e;inance the tactical and operational performance of advanced submarines.

1-5

* The Tactics Planner subsystem was demonstrated in a stand-alone
mode on a Symbolics machine and used data files which emulated the
input data it would receive from other components of SOAS. The TP
demonstration illustrated the meaningful decision support which can
be provided to the Commanding Officer in tactical situations. The
subsystem showed the ability to reason in the tactical domain with
uncertain and incomplete information, to generate feasible tactical
options, and to communicate the results to the Commander in a
timely manner. The TP subsystem was implemented using Kadet, a
state-of- the-art skeletal planning tool which models operational
situations and provides the TP with a conflict-resolution
capability.

* The Command Interface subsystem was also demonstrated in a
stand-alone mode in a manner identical to the Tactics Planner. The
CI subsystem successfully performed its primary function of inter-
face management, which involves decoding inputs and encoding out-
puts, selecting information to be displayed, and configuring con-
trols to meet the Commanding Officer's current and short-term
plans. Included were features to accept and reject SOAS-generated
plans. In addition, CI's intent inference function was
demonstrated. This latter function, which supports interface
management, processes submarine state information in order to
infer what the CO is trying to accomplish. The results of the
intent inference function are vital to the Command Interface
subsystem in integrating the CO's plans and goals with those
proposed by SOAS.

* Situation Assessment and System Manager were integrated with
the simulation environment to show the effectiveness and
feasibility of these two primary subsystems. Situation Assessment
monitored the external environment for the occurrence of contacts.
SA evaluated the capabilities, intent, anticipated responses, and
lethality of contacts; provided track data about them; computed the
closest point of approach; and predicted engagement outcomes. The
System Manager, on the other hand, successfully controlled all
interactions, maintained the system database, and coordinated
activities between the simulation and the SA subsystem.

* The display demonstration was conducted in the theatre adjacent
to LASC's Artificial Intelligence Development Laboratory. It fea-
tured the System Manager subsystem integrated with the simulation
environment and a Display Generator. SM received contact reports
from the simulation, processed the data, and sent format commands
to the Display Generator, which produced displays. Types of
displays which were shown included periscope depth operations,
contact classification clues, weapon effectiveness, search
evaluation, measures of effectiveness for engagements, and general
ownship status.

0
1-6

The following eight figures contain sample Symbolics screens and worksta-
tion displays as well as the physical layout of LASC's laboratory and other.features of the Phase I demonstrations.

Figure 1-2, Situation Assessment screen - The SA-simulated
fusion module has helped classify a track (No. M002) and SA has
actually calculated the predicted counterdetection envelope in the
center display. Displayed on the bottom left is the pertinent data
from the SA Track database. One external event of interest is CPA,
which is being monitored by SA. At the bottom middle of the screen
is a message indicating that there is a danger of collision.

Figure 1-3, Command Interface screen - Shown is a portion of
the SOAS Plan-Goal Graph related to Periscope Depth Operations. On
the middle right side of the screen are graphics which would be
displayed in an advanced submarine to assist the CO in P/D Ops.

Figure 1-4, Tactics Planner Subsystem - On the monitor is an
example of the SOAS Plan and Goal Graph which is being used by the
developer to insert knowledge into the Route Planning and
Navigation module. On the right is a diagram of the TP
architecture for future phases of SOAS.

Figure 1-5, SOAS Theater, Al Development Laboratory - Shown on
the left are the two monitors and a touch panel used to present
SOAS displays for a generic command-level officer. On the right
side is a large "futuristic" display which would be used to guide
the attack party. The display can show tactical situations as well
as Command intent.

Figure 1-6, Search Evaluation Display - Shown on the display
are the horizontal and vertical probability of detection zones for
a search evaluation. These zones are significant when trying to
evaluate the success of a search.

Figure 1-7, Generic Ownshlp Display - In the upper right corner
is a prototype of a graph for speed-vs-depth for a cavitation
curve. The bottom display shows the difference in the ship's trim
since the last P/D operation. The right side contains a prototype
display of ownship information.

Figure 1-8, Predictive Engagement Displays - The right display
presents the probability of hit for an unalerted target with the
expected, worst case, and best case outcomes. The displays on the
right illustrate the probability of detection for a vertical salvo
and a horizontal salvo against a target.

Figure 1-9, Likelihood Ratio Tracker (LRT) Display - Using the
LRT, a display can be generated which represents the relative
probabilities of each possible location and course interval for a
track. Relative color weighting makes this an important aid in
making planning decisions.

1-7

-~~C -- CD

- a

3-4

In

~LIJ
r2-

tz)
ED.

0i
'a

z'

L.

* C

r

S

A. 2

0-

..

JE EE

L

0- -----

2.0 SUBMARINE OPERATIONAL AUTOMATION SYSTEM

2.1 CONCEPT OF OPERATION

Since the advent of machines, the role of the human has become increasingly
to manage the machines and monitor their performance. In the combat envi-
ronment, however, the human must not be required to manage and monitor all
submarine systems. Rather, his intent and actions should be monitored and
understood by the machine so that he can be truly supported in assessment,
planning, and plan execution during combat, tracking, and normal underway
operations.

The command centers of future submarines must face an increasingly technic-
ally sophisticated enemy, in superior numbers. While advances in submar-
ines, sensors, weapons, and other systems address the problem, they also
increase the amount of data and information which the control room/attack
center personnel must assess. In addition, the management of these systems
creates an unacceptable workload at critical mission times. The results
are, potentially, more submarine losses or mission aborts through loss of
situational awareness, and fewer enemy destroyed because the submarine and
its capabilities are not used to their maximum capability and thus offen-
sive opportunities are lost.

2.1.1 Operational Considerations of Full-Scale System

* The SOAS challenge is to assist the submarine commanding officer in the tac-
tical execution of his mission. This can be accomplished with a combina-
tion of decision aiding, data integration, information display, and problem
focus. The submarine decision maker is typically faced with an excess of
data, much of which is ambiguous, from which he must focus on the critical
issues and make tactical decisions. SOAS will integrate and structure the
data to provide information, not data, to the decision maker; it will help
the decision maker focus on the critical issues through its unique concept
of "dominance*; it will alert the decision maker if routine conditions or
events become constraints; it will provide tactical planning and answer
"what If" questions, and it will anticipate future requirements by drawing
inferences from ownship and enemy options.

Routine Monitoring and Alertment

A submarine operates in an inherently hostile environment where water
pressure (depth), buoyancy (control of water inside the pressure hull) and
the ship's atmosphere (life support) must be routinely monitored and
controlled. Although potentially dangerous, experience has made control of
this environment routine. The submarine decision maker must know his
environmental situation and be prepared to react instantly to problems, but
he cannot afford to devote any time to these routines. This dichotomy begs

2-1

for a SOAS system that will monitor routine functions, alert the decision
maker to problems, and recommend action thereby "allowing" the decision
maker to concentrate on the more important problems with confidence that he. will not jeopardize ship safety or mission success by "neglecting" routine
functions.

The Need For Information Not Data

A major characteristic of submarine combat system management is data
excess. The submarine routinely operates with multiple contacts and may be
required to simultaneously engage several targets while conducting opera-
tions in multiple warfare areas. For example, a submarine may find it nec-
essary or desirable to launch torpedoes while conducting a Tomahawk strike.
The worsening problem of data excess must be managed by converting data
into concise, comprehensive information because the data excess problem is
endemic to the submarine's situation. Required to rely solely on passive
acoustic data for most of its information, submarine combat systems have
developed several methods of manipulating the acoustic data to provide a
maximum amount of information. This approach is appropriate and necessary
but does result in inconsistent estimates and tends toward data excess.

Data Integration

Submarines are making increasing use of off-board data. The risk involved
with acquiring such data demands its integration with other data for effec-
tive use. The alternative is data pollution resulting in multiple target
tracks from single contacts, unsuccessful attempts at vectored intercepts,
and an inability for the submarine to participate in combined arms opera-

* tions. Whether the submarine is trying to use remote, space sensor data and
information from an on-board acoustic array to perform an independent mis-
sion or is trying to locate and provide targeting information to a mined
party launch platform, data integration will be a primary requisite for
success. This is another problem that will increase in complexity in the
near future.

Adaptation of Machine Into a Team

Submarine operational automation is a more demanding challenge than tradi-
tional man-machine interface problems because the submarine system must
integrate into an efficient team of personnel. Experience has taught that
attempts at one-for-one replacement of an attack center individual by a
machine is inefficient and ultimately disruptive to the team. The adapta-
tion of operational automation must be accomplished because machines simply
do some things better than individuals and because future submarine combat
systems may be so large or distributed that the decision maker may be un-
able to visually observe the workings of his team. Operational automation
is a concept whose time has arrived for submarines but whose implementation
must be carefully orchestrated to insure improved effectiveness and contin-
uation of the important submarine team concept.

2-2

Extendable Methodoloay

* The roles, missions, and tactics of submarines could change dramatically
over the next 20 years. Submarines will very likely control autonomous
vehicles, but may also be required to operate in the undersea terrain or
assume the task of destroying ballistic missiles and satellites. It is,
therefore, of utmost importance that submarine operational automation sys-
tems be extendable to those new roles, missions, and tactics. Changes
should be anticipated and new systems cannot be allowed to encourage stagna-
tion because of their rigidity.

Resolution of Ambiguity

There are two distinct types of ambiguity that permeate the submarine com-
bat control problem. One involves the assembly of partial information into
a complete picture (has own ship been counter-detected) and the second
resolution of conflicting data (determine target range from a series of
inconsistent range estimates). Both are important and must be resolved.

Information Display

Information display, not only how it is displayed but what is displayed,
will have a significant impact on future submarine capability. As the
likelihood increases that a submarine will simultaneously conduct several
tactical operations (e.g., control a mine field penetration and Tomahawk
strike simultaneously, or control a scout MMV while operating under the
Arctic ice and attacking a Soviet SSBN), the very substance of the infor-
mation presented to the decision maker, as well as it formatting for rapid
assimilation, will become increasingly important. It is also likely that
the decision maker's movement may take him outside of the visual range of a
single display because of the size and arrangement of future combat cen-
ters/control rooms.

2.1.2 Solution Statement

It has become evident that the techniques of expert systems offer promise
in several areas of information management and decision aiding. However,
most of the successful expert systems that have been developed are intended
for use in a static, single workstation environment. Only recently have
systems begun to appear that have been interfaced with other computing
systems, and perhaps even other Al systems, and have been designed to
respond to rapidly changing problem domains.

The Submarine Operational Automation System program is aimed at demonstrat-
ing the feasibility of applying the techniques of AI, and in particuldr
knowledge-based systems, to the problems faced by control room/attack
center personnel. To do this it is necessary to accomplish the following:

1. Demonstrate that individual systems can be developed whose func-
tions support the control room/attack center personnel in critical
tasks. This includes demonstrating that the relevant knowledge can

2-3

be collected and represented in an accurate way, and that it can be
used reliably to reason about the incoming data available onboard
the submarine.

2. Demonstrate that the systems can work in conjunction with other
submarine systems, such as sonar and fire control systems, in the
dynamic underwater environment.

3. Demonstrate that the information produced by knowledge-based sys-
tems can be communicated to the key control room/attack center
personnel in a timely manner, and verify that the functions per-
formed by the system can be done in such a way that they are coor-
dinated with all crew actions and intent and so that no command
authority was lost.

4. Demonstrate that the response-time of the system in each functional
area is adequate for use under the harshest conditions.

In order to demonstrate the feasibility of a command-aiding system such as
SOAS, the system first had to be defined. The program outlined by DARPA
emphasized thorough system analysis and systems engineering, but also
required the demonstration of feasibility by means of early, working system
demonstrations as primary program goals. In connection with these require-
ments, the goals of the Submarine Operational Automation System program
involve the creation of prototype systems with increasing capability. The
system performance goals for the Phase I system demonstration are shown in
Figure 2-1.

.2.1.3 Subproblems

In decomposing the top-level problem statement of Section 2.1 into the
solution structure described in Section 2.2, the subproblems described in
the following paragraphs were identified. The material in Sections 3.0
through 5.0 describe the solutions to these subproblems as they were
evolved and implemented during Phase I prototype development. It should
also be noted that the changing system design during subsequent phases of
the SOAS contract may radically alter the character both of these subprob-
lems and of the solutions provided.

Mission and Submarine Definition

A scenario was specified as the basic framework in which to develop the
SOAS mission requirements. Considerable care was required in defining
mission events, submarine performance, weapons and sensors, and display
requirements in order to provide a scenario with sufficient detail to be a
useful reference for system functionality development. Adaptation was also
required to generate situations which stressed the relationships among SOAS
subsystems while retaining operational realism. Section 5.1 summarizes the
basic scenario used for system test and the Phase I demonstration.

The definition of an out-year submarine was a problem from the following
points of view:

2-4

SITUATION ASSESSNENT

Knowledge/ Assess lethality of a subsurface contact
Functions Assess intent of a subsurface contact

Assess target value for all contacts
Assess probability of counterdetection, kill and counter-

kill

Interactions Establish dynamic monitoring criteria for plan generation

and monitoring

TACTICS PLANNER

Knowledge/ Plan and monitor an engagement of a subsurface contact
Functions Plan and monitor a response to a manuvering contact

Interactions Set constraints for route planning based on tactical
engagement requirements

. CONMAND INTERFACE

Knowledge/ Determine and track command intent during an engagement
Functions mission, including implicit plan approval

Dynamically manage display configuration

Interactions Detect/transmit plan approval of tactical and route plans

Figure 2-1. Demonstration 1 System Performance Goals

2-5

9 existence and availability of information
e security level of the information

* * quantity of data required

The first approach was to develop a "generic submarine" based on unclassi-
fied estimates of the capabilities of submarines in the late Iggo's. How-
ever, the level of detail necessary to support the needs of the Situation
Assessment and Command Inteface subsystems made this very difficult to
accomplish within the allocated resources. In many cases, the data needs
of SOAS have exceeded the ability of the program to provide information.

Multiple (Dissimilar) Subsystems

This subproblem is a natural consequence of the freedom given to subsystem
developers to choose tools and environments best suited to their particular
problem domains. Section 3.0 discusses the integration strategies estab-
lished to ensure that the dissimilar subsystems, while optimized for solv-
ing their own particular problems, were communicating correctly with appro-
priate information exchange paths.

Evaluation of System and Subsystem Functions

Despite diligent searches of conferences, papers, and academic institu-
tions, there has been little comprehensive work uncovered which addresses
the global issues related to knowledge-based system evaluation and vali-
dation. Clearly, this must be addressed in the phases of the SOAS program

* which precede Full- Scale Development. The Lockheed team is taking aggres-
sive steps on related programs to develop methodologies suitable for knowl-
edge base validation.

Some Lockeed Independent Research and Development work in measures of
effectiveness has been initiated with the objective of defining methods by
which the value of systems such as SOAS can be quantified.

Technology Maturity

Each of the various Lockheed divisions and subcontractors involved in SOAS
came to the program with experience, tools, and working application soft-
ware ready to apply to the problem. The initial product was, therefore,
remarkably mature. The success of the Phase I Demonstration has now brought
increasing pressure to enhance the maturity of the software tools, the
design and development methods, the application code, and the hardware on
which it runs. The future maturation paths will be described in the
Lockheed System Development Plan for the remaining phases of the project.

2.2 SYSTEM FUNCTIONS AND COMPONENTS

The functional architecture developed for the Phase I Submarine Operational
Automation system is shown in Figure 2-2.

2-6

cc 0
) .- 0

bC - b"

(Us U
0 (U

0

can

ii La El4
cfl E. OS

0 CD 0

CL U

CLC

W

0O czu0

*~a -pl -E~0

a 0

0~

E 0
u

0o - -0
C -

0. cm c

ccE 0C 00cc 0E

0 ~2-7)

In order to provide assistance while avoiding display complexity, SOAS has
a highly intelligent interface between the console displays and all the key

* supporting members of the control room. In Phase I this interface was de-
veloped for use by the Commanding Officer (CO) or the approach officer. It
is capable of estimating the command's needs and priorities and managing
the presentation of information to them. It can be personalized to the
CO's preferences for default actions and decisions, the level of authority
assigned, and the levels of information display preferred. Within this
context, SOAS can provide unprecedented levels of automated decision sup-
port to command-level personnel. Figure 2-3 shows the Command Interface
(CI) displays that the full-scale development program will address. The CI
functionality and processing methods implemented in Phase I are described
in detail in Section 4.1 of this report.

The Phase I SOAS provided assistance to command-level personnel in assess-
ing the external situation. It used the output from simulated acoustic
sensors and the fire control solution to determine intent, lethality, and
vulnerability of each of the enemy units. The Situation Assessment
subsystem of SOAS also assessed the expected engagement outcomes for the
given scenario on request from the CO and the Tactics Planner subsystem
(TP). This assessment included Measures of Effectiveness for engagement
planning, weapon modeling, and environment modeling. The SA functional
flow is show in Figure 2-4 and further definition of the functionality and
processing is defined in Section 4.3.

The Phase I SOAS Tactics Planning subsystem provided suggestions for deal-
ing with current tactical events. Included were recommendations for TMA,

* attack plans and weapons commitments. The TP subsystem demonstrated the
ability to defer the commitment to plan based upon the lack of information
available. The planner featured the ability to show "what-if" reasoning by
showing how perceived values could be changed and planned about. The
functional flow of TP is shown in Figure 2-5 and further definition of the
functionality and processing is defined in Section 4.2.

The Ship's Operations (SO) subsystem was explored but not demonstrated in
Phase I. The goal of SO was to help the crew with normal operations so
that they could concentrate on higher-level decision making. Its functions
included monitoring and assisting in navigation and maintentance of track/
PIM, monitoring ship's signature, having current status available, maintain-
ing ultra-quiet conditions of equipment, providing for alertment of fail-
ures, estimating impact of operational capability and recommending work-
around alternatives, alerting of events and changes in the local environ-
ment, and monitoring routine functions/operations to reduce the data over-
loads.

One of the primary functions of the System Mandger (SM) subsystem was to
manage the interface among the external programs and SOAS. In Phase I, the
external program was the simulation environment. Another major function,
the strategy for integrating and controlling the various functions of SOAS,
was based on a blackboard architecture, which has been used in many AI-
based systems. The System Manager blackboard not only allows all subsys-

2-8

0) 4

La S

-aEo)-

0
CL=C

X Q
(DJ

4) >
AcC 0)

o 'U
0 4

< a)

4) 010

4)0-
cc cc

C 0
to-Ot CO E

0C 0n CE
.2 o

00 0 E0 c 00< 0 i) 0

04 CD4) ~4) CD 4
00 0. 0.2 0. ~

0 00 0 0 0 00C.

2-9

0

0 0

> OIC

0 C0

5 C
00

00
0 U'

U)'=@
V 0

_ _ _ _ cis

os
C.C

co u-

0 C

E E
2 c -

2-10

a U)

c U,
0 r 0 a)Cu.1--

co t- S?.

a - O- cc

o0 004) x
wi

A 0

b Cc

U..

'00

E CJJ
0 0 -

0 cCC

00

Co

0

a,0 0

0(

2-11

tems to share data, but also provides a unified context for all assessment
and planning functions and an opportunity to resolve conflicts that arise
among proposed plans. The System Manager was successfully adapted from the

* Mission Manager subsystem of LASC's Pilot's Associate program; and the
Phase I SOAS program provided an opportunity to validate this important
integration methodology. The functional flow of SM is shown in Figure 2-6,
and further definition of the functionality and processing is presented in
Section 4.4.

2.3 SYSTEM ARCHITECTURE AND INTERFACES

A major SOAS goal is to provide the submarine command with an enhanced situ-
ational awareness by analyzing sensor and submarine system information, dis-
tilling the large quantities of data into relevant information, and manag-
ing the presentation of that information to the command dectsion makers.
From this information, corrective measures or alternative plans for achiev-
ing mission goals can be developed and presented to the decision makers for
approval and execution. The Submarine Operational Automation System is not
a "super-commander" or robotic submarine but rather an assistant to the
decision makers who remain the final authority.

The Lockheed technical approach involves the division of the Submarine
Operational Automation System subsystems into the general categories of
"assessment" and "planning". The Situation Assessment (SA) subsystem
monitors events external to the submarine; this assessment functions is
focused by the current mission state, as represented by the active plans
posted by the Tactics Planner subsystem.

* Tactics Planner, on the other hand, performs planning activities exclu-
sively. It offers the Commander multiple offensive and defensive options
related to ASW operations. It also suggests plans for targeting analysis
based on the validity of the target motion analysis and the measures of
effectiveness for engagement planning computed by Situation Assessment.

The Command Interface subsystem involves both assessment and planning since
it must monitor the Commander's activities and mission events in order to
interpret command-level actions and configure the displays to optimize situ-
ational awareness and mission effectiveness. Monitoring command actions as
as well the mission situation, the CI matches actions or specific commands
to a model of the command-level plans and goals in order to determine,
without explicit input, the intentions of the commander. This estimate of
the command intent guides the behavior of both the assessment and planning
functions.

Plan Coordination

Plan representation is a difficult concept to understand since the method
of generation, the purpose for generation, and the methods for monitoring
and explaining plans vary within the system. The TP subsystem creates very
reactive plans, some of which continue to specialize or modify themselves
even during execution. The CI, in contrast, maintains a static plan repre-

2-12

u©

aP

060

Cut L6

Z05

UU

- z

LL.

oC

C/> u~

p4 <

L.

2-13

sentation primarily to understand command actions, rather to optimize and
recommend responses. In each case the plan representation is different,
and yet both subsystems must exchange precise information about proposed.and active plans.
The planning process must be controlled at the system level. The plans
themselves must be organized from strategic to reactive, so that planning
can begin at the more general level and details can be developed consistent
with the top-level plans. In addition, the planning within each subsystem
must be consistent with existing approved plans when possible, and con-
flicts must be identified and managed.

Plan Representation

In order to coordinate the plan generation and plan execution process
across all SOAS subsystems, a plan and goal structure maintained in the
System Manager has been developed as a means of coordinating the multiple
planning activities within the system. This structure, represented as a
Plan and Goal Graph, consists of planning elements hierarchically arranged
to satisfy specific goals which are the children of higher level plan
elements (Fig. 2-7).

It is important to realize that TP, SM, and CI have very different internal
structures containing knowledge specific to their operations. The Plan and
Goal Graph represents the common vocabulary with which these different
subsystems communicate. The nodes of this graph are called "plan classes,"
copies of which become "plan images" when they are added to the Tactics
Planner agenda.

OControl of the Planning Process
Plan generation and execution in SOAS occur in three stages, as shown in
Figure 2-8.

1. The tactical planning stage takes OOD and/or CO briefing
information which initially constrains the next evolution
and the overall mission. This process outputs a data
structure called the tactical plan, which is a high-level
representation of the expected mission events expressed as
constraints on the route, time, resource allocations, etc.
This data structure is the context within which more
detailed planning must be done.

2. Plan selection takes current situation information, system
information, and command intent and chooses the appropri-
ate procedures for executing the tactical plan, including
permitted ranges of key parameters. This is a set of typi-
cal responses to the environment, but not yet a set of
actions to be performed.

2-14

Parent
Planning Element

6oals goals goals

Control Data
Flow Flow

Situation Planning Monitor
Data Element Messages.

(PE)

Children hildren Children
PE's PE' s PE's

Figure 2-7. Plan and Goal Graph Example

2-15

Selection of PEs Execution of
Generation of Applicable to Knowledge In Implementation ofPlanning Context Current Situation Selected PEs PVI/PIIot Actions

Tactical S 0 Planning I Pzn IPlan I PaPlanning p, Plan IS e le c t io n EentiGenerationl Aed Ilmplementatlinr

Ale
Agnd Acin

Heirarchy I l; cln

Constraint Resolution n r

Domain-Specific Conflict Knowledge

Figure 2-8. Plan Generation and Plan Execution

2-16

3. Plan execution is the generation of specific actions. The
selected procedures are "executed" by choosing specific
values from the allowable ranges and producing an agenda
of specific actions to be performed. The agenda of reac-
tively-planned actions is carried out by the crew and/or
CI subsystem, which operates only with the previously
authorized permission of the command decision maker.

The plan element selection process begins at the highest level and proceeds
to lower levels of detail as shown in Figure 2-8. At the lowest level, as
specific agenda actions are considered, conflicts among actions appear and
are resolved by specific knowledge at the lowest common parent node of the
conflicting elements. Thus, the conflicts tend to migrate "upward" through
the plan structure whereas planning constraints which resolve conflicts
flow "downward."

The selection and specialization of plan elements should not be confused
with the execution of plans. Plan elements are generated in response
mission events and data, and may be posted simply as contingency for a
likely event. A plan may be proposed for consideration by other subsystem,
without ever being proposed to the command decision makers. Finally plans
may be feasible and proposed, but never approved by the decision makers
either by explicit rejection or implicit counteractions. All these examples
serve to emphasize the distinction the between plan generation process and
the execution and monitoring of suggested actions. The mechanism for relat-
ing the plan generation and execution is the planning agenda, illustratdJ
in Table 2-1. This agenda is constantly maintained by the System Manager
and serves as the input to CI for cueing the CO or decision makers about

* what actions are suggested to perform and when.

TABLE 2-1. System Manager Planning Agenda

ITEM CHARACTER EXAMPLE

Action Name Text String Hard Left Rudder

Value Range Pair of Numbers 40 to 45 Degrees

Requesting Plan Text String Contact Analysis

Parent Goal Text String TMA Analysis

Priority Number 17

Explanation List of Goal Names Near-Object
and Parameters Classify Contact

Determine Position
Perform Mission

2
2-11

The plan/goal structure is essential to the SOAS development process. It
provides a common system-level view that is shared by all subsystem devel-
opers. By identifying the various sources of plan information and the
phases of planning and by translating this information into detailed,
executable plans, it provides a common language of plans and goals (and
their functionality in the system) that helps unify the specification of
message traffic among the subsystems. It enables the integration of all
planning activities by means of a single structural representation.

Developing a system-level representation of plans and goals has led to a
better understanding of the problems of planning and plan interpretation
in systems like SOAS. The panning process and the plan execution process,
for example, pose different problems in terms of processing to be
performed, data requirements, etc.

An essential distinction between the plan generators, such as Tactics, and
the CI function, which explains the command actions in relation to exist-
ing or potential plans, has been clarified; and a mapping between the
representation used in the TP and the CI plan and goal structures has been
developed.

Important questions still remain, including how particular classes of
plans can be included, and how the crew will participate in guiding or
modifying the plan generation and execution process. However, the basic
approach has been validated both in the Pilot's Associate program and in
the Phase I SOAS program; and it provides an excellent framework for
addressing these questions.

.Approaches and Lab Architecture

The approches used by each of the demonstrated SOAS subsystems are listed
in Figure 2-9.

The architecture used in Phase I to develop and demonstrate the SOAS
subsystems is presented in Figure 2-10. It consisted of four Symbolics
machines with four Silcon Graphics Iris workstations for displays. The
predictive algorithmic routines of the Situation Assessment subsystem were
located on a VAX 11/780 along with the simulation. Communication was
performed with an Ethernet protocol.

2-18

cnn

LLu

I-a c

2-

3.0 SOAS PHASE I DEVELOPMENT APPROACH

The process of defining, maintaining, and validating the interfaces by
which the SOAS subsystems cooperate is at the heart of the Phase I
development approach. The initial predictable need for a stable,
configuration-managed Interface Control Document (ICD) was agreed at the
offset. However, during integration of the prototypes described below, it
became clear that a completely new type of document was required to draw
together scattered pieces of information related to the plans in the
system. The result was the Plan-Goal dictionary described in Section 3.3.

3.1 SUBSYSTEM INTERFACE CONTROL

Based on an Information Flow Diagram, it was possible to identify the
information paths among the SOAS subsystems. For each path, it was
necessary to specify the protocol by which the information was transmitted
and the format of each message in that protocol. Figure 3-1 is an example
drawn from that document illustrating the nature of the information
captured in the ICD and maintained as a living document throughout the
development process. Because this information was critical to the
development of each subsystem, it was maintained under strict configuration
control as outlined in the SOAS Software Development Plan (Rev A, 6 Dec
1989) and was available electronically for use by the subsystem developers
over the Lockheed dial-up secure network.

O 3.2 SYSTEM PROTOTYPES

Since one of the primary technical issues on the SOAS program was
integrated of the various expert subsystems, a strategy was developed and
implemented whereby all the subsystems were brought together and integrated
every three months. Even before this event, however, a trial integration
process took place in the creation of the "scripted" System Manager (SMM).
This was a version of the SM with additional rules to represent the
behavior of each of the subsystems through a particular narrow slice of the
scenario. Its original intent was to provide a "living" model of the
message traffic in the SOAS which would validate the ICD and provide a
model interface for the real subsystems to match. The first integration of
the SMM achieved this objective by validating the first version of the
ICD. Subsequent issues of the SMM were retained as substitutes for the
real subsystems during partial system integrations.

3.3 PLAN-GOAL DICTIONARY

As the prototypes matured, they became more centered on the plans which
were being proposed. The detailed mechanization of the evolution of a plan
is described in Section 4.1.6. Since all the subsystems were communicating
about plans and goals and each had different needs for information relating
to those plans and goals, it became necessary to define the scope and
relationships among the plans and goals. The first representation of this
need was a Plan-Goal Graph, a sample of which is shown in Figure 3-2. This

* represents goals (a state of the world to be achieved) as ovals and plans
strategies for achieving that state) as rectangles.

3-1

3'.-3.4.2.2 Periodic -rate TBD. Data of 9999 implies no
available data.

(SA SONAR <time> CONTACTRPT
<contact id>
<sensor id>
<range>
<range rate>
<range sd>
<bearing>
<bearing -rate>
<bearing -sd>
<signal excess>
<age>)

<contact id> :=integer
<sensor id> :=integer
<range> :=real (yds)
<range-rate> :=real (yds/min)
<range sd> :=real (yds)
<bearing> :=real (deg)
<bearing rate> ":=real (deg/min)
<bearing sd> :=real (deg)
<signal -excess> :=real (db)
<age> :=real (minutes)

Figure 3-1. Interface Control Document Example

3-2

Cal

CC

&5

too-

cca

3-3c

A detailed algebra relating these concepts was formalized since plans.contain enough knowledge to be able to divide their parent goal into
subgoals and any goal could be satisfied by more than one plan. The
graph, therefore, became a rather complex tree whose relationship were
defined. Of all the plans which could satisfy a goal, any one of them
shall be sufficient to do so. However, for the children goals of a plan,
all child goals must succeed for the plan to succeed.

For plan generation, knowledge was required to select, specialize, and
execute the set of plans necessary to solve a particular situation. For
explanation of operator actions in this context, knowledge was required to
distinguish the various plan-centered explanations of a particular
action. For plan success or failure, knowledge of what parameters were
important for plan termination and/or continued operation was needed. For
plan display, information requirements for both suggesting and executing
each plan had to be specified. All this knowledge about plans resides in
software, in different places in the subsystems. However, it was clear
that a central dictionary was required as a repository for all the
scattered knowledge relating to a particular plan or goal. This became
known as the Plan-Goal Dictionary, and the Plan-Goal Graph became a
graphical index to that dictionary showing the explicit structure to the
plans and goals. Figure 3-3 illustrates a sample from that dictionary.

0
3-4

(Goal-name DO-TACTICS-PLAN
Source l"

PGG-Index 1- E -2
Module MM POSTS TP SATISFIES
Function IS SATISFIED BY TP MEANS PILOT

* WANTS THE TP AS A RESOURCE
Prototype-Schedule
Characteristics MULTIPLE DYNAMIC
Exclusions NONE
Legal-Parent-Plans PERFORM-MISSION
Legal-Children-Plans TOP-LEVEL-TACTICS
Parameters NONE)

Figure 3-3. Plan-Goal Dictionary Example

0
3-5

4.0 SOAS SUBSYSTEM DESCRIPTIONS

This section contains an overview of the four SOAS subsystems which were
demonstrated during Phase I of the program: Command Interface (CI),
Tactics Planner (TP), Situation Assessment (SA), and System Manager (SM).
Presented for each subsystem is information about the following topics:

e Goals and objectives

* General methodology, including subsystem architecture and tools

e Module descriptions, explaining the technical results achieved
during Phase I in terms of functionality implemented

4.1 COMMAND INTERFACE SUBSYSTEM

4.1.1 Overview of Command Interface

As its name implies, the Command Interface (CI) serves as the interface
between key members of the attack party and the other systems in the sub-
marine. In designing the CI, the philosophy adopted was that these key
members should be "in charge." Thus, the CI was designed to support them
in accomplishing their chosen goals. For the Phase I implementation, the
Command Interface subsystem focused on the particular needs of the Command-
ing Officer (CO); thus, the following description is presented within the
context of this one individual. However, in future phases, the CI architec-
ture and functionality which have been developed are easily extensible to
other personnel in the combat center/control room.

The primary function of the CI subsystem is interface management, which
involves decoding inputs and encoding outputs, selecting information to be
displayed, and configuring controls to meet the CO's current and short-term
plans. Accomplishment of this primary function is supported by the second-
ary function of intent inference. Intent inference involves monitoring the
CO's actions and inferring what he is trying to accomplish. The results of
the intent inference function are vital to the CI and are also used outside
the CI in other parts of SOAS.

As shown in Figure 4-1, these primary and secondary functions (i.e., inter-
face management and intent inference) are accomplished in separate modules
of the CI. Implementation of these functions has involved embedding a vari-
ety of models of the human, submarine, and situation into the CI modules.
These modules will be discussed in detail in separate sections. The remain-
der of this Overview describes the Command Interface in terms of its
inputs, outputs, and overaJl processing. It also explains the knowledge
structures common throughout the subsystem.

4-1

tax!

C r

00 I

241

4L4
II

a00

C.

Inputs and Outputs

* In its role as intermediary, the CI interacts with three types of agents:
other SOAS subsystems, the submarine simulation, and the Commanding Offi-
cer. The SOAS subsystems with which the CI interacts (i.e., Tactics Planner
and Situation Assessment) are knowledge-based systems that propose plans
and produce value-added assessments supplementing submarine and external
state data. These "planners" provide proposed plans and text explanations
of the proposed plans as input to the CI; the CI provides the CO's actual
(inferred) intent as output to the planners. Information from the submar-
ine (i.e., the submarine state) is obtained via sensors; the CI communi-
cates with the submarine by issuing commands to actuators and sensors. The
CO communicates with the C! by selecting options from menus; the CI pre-
sents information to the CO via visual displays.

For the Phase I demonstration, the Command Interface subsystem was
presented in a stand-alone mode. Although all inputs and outputs were
simulated, the overall processing within the subsystem was successfully
executed.

Overall Processing

Processing in the CI is portrayed in Figure 4-1. In the following para-
graphs, processing is discussed within the context of CI interaction with
each of the three agents described (i.e., planners, submarine, and Command-
ing Officer).

* First, consider the interaction between the CI and the planners. As noted,
planners propose plans to the CI. These proposals are in the form of rec-
ommendations to be considered by the CO. For example, suppose Tactics
Planner (TP) proposed to dive below the layer. This proposal would be
passed to the intent inference function, where it would be stored and a
meta-intent to consider the proposal would be created. The interface man-
agement function would then reevaluate the current displays in light of the
proposed plan and modify them if necessary. For example, the interface
manager might display a text message about the proposal and order the sound
velocity profile (SVP) to be shown.

The Commanding Officer has the option to accept or reject a proposal. Fur-
ther, acceptance or rejection can be communicated explicitly or implicitly.
In the SVP example, explicit acceptance would indicate that the CO intended
to dive below the layer; explicit rejection would represent explicit CO dis-
approval of the proposal to dive below the layer. Implicit acceptance or
rejection is inferred by the intent inference function, based on the CO's
actions. For example, if the CO issued a command to dive to a depth that
was below the layer, then the plan would be implicitly accepted. Changes
to the CO model, if any, are communicated to the planners and the rest of
the CI.

Next, consider CI interaction with the submarine. Submarine data are de-
coded by the information management function into the common state represen-
tation used by all CI modules. The submarine state information does not

* directly prompt processing by CI modules. However, the intent inference

4-3

function may run synchronously, and changes in submarine state are pro-
cessed by this module at the next invocation. Commands from the CO are

* represented within the CI as actions in a common action format; the inter-
face management function encodes these actions into appropriate commands
for use by the CO or systems of the submarine.

Finally, consider CI interaction with the CO. As noted, the CO may issue a
command by menu activation. The input decoding function translates the
command into a common action format used internally by all CI modules.
Next, the CO's command, represented as an action, is passed to the intent
inference function for interpretation. If the action can be interpreted by
the intent inference function as consistent with current or feasible CO
intent, the action is considered explained and is passed through output
encoding to the CO or systems for execution. If the intent inference mod-
ule interprets the explained action as representing a change in the CO's
intentions, the change in intent is communicated to the planners and the
rest of the CI.

Once the CO's tasks are known, the interface management function determines
how information is to be displayed. Displays and controls are selected on
the basis of current and proposed CO intentions. For example, an intention
to prevent counterdetection by diving below the layer would be supported by
displaying the SVP and providing a means to issue commands (e.g., a menu).
Once the order to dive below the layer has been issued, the SVP information
might not be needed any longer and the displays and controls would be
changed to support new intentions.

* In addition to supporting CO, selection of displays and controls considers
display constraints and human information processing limitations. Informa-
tion is prioritized based on importance and deadline, and the more impor-
tant information is selected for display first. Once the appropriate
displays and controls have been identified, display selection commands are
passed to the display generator, which creates the actual displays viewed
by the CO.

In summary, the CI serves as the intermediary between the user, L'e subma-
rine, and other portions of SOAS. The philosophy guiding the design of the
CI was that the Commanding Officer is in charge of the system. The primary
function performed by the CI in support of the CO is interface management.
This function is supported, in turn, by the secondary function of intent
inference in which models of the CO are embedded. The primary and secondary
functions are performed by highly interdependent modules within the CI.

Commmon Knowledge Structures and Software

Several knowledge structures used throughout the CI are described here to
avoid repetition. These include blackboards, goals, plans, scripts,
actions, and states. Goals, plans, and scripts represent CO intent.

A slot-filler construction is used to represent all entities throughout the
CI. Each slot-filler structure is of a single type (e.g., goal, state, or
action) and consists of one or more slots (or attributes) and a filler (or

* value) for each slot. For example, the structure used to describe the goal

4-4

Remain Undetected would be of type "goal." Its slots would include "name"
and "actor." The "name" slot would contain the filler remain-undetected. and the "actor" slot might contain the filler "CO," which would indicate
that the CO was pursuing this goal.

Slot-filler structures are generalized to store more complex forms of infor-
mation. For generality, a filler may also be another structure or list of
structures all of the same type. In addition to storing a literal value
such as "CO" or remain-undetected, a filler may also be a named variable
such as "*actor-var*." Such structures are called patterns and are used in
pattern matching and instantiation, as described below.

Pattern matching is the comparison of two structures, one of which is data
and the other a pattern. Some of the pattern's slots contain variables as
fillers. The pattern-matching process compares the two structures to deter-
mine if they match. Two structures match if they are of the same type and
all slots in the pattern match all slots in the data. Two slots match if
they contain the same filler, or the pattern contains a variable as a
filler which, in turn, has a value equal to the data filler or has no value
assigned. If the pattern variable has no assigned value, the matching
causes the variable to receive a binding, which may then serve to constrain
future pattern matching. The pattern matching returns bindings if matching
is successful.

The instantiation process modifies a pattern structure by replacing one or
more named variables with values. Instantiation need not be complete, i.e.,
only some variables need to be given values; the remaining slots with vari-

* able fillers will not be changed.

CI rule-based functions use a common inference engine named Chainer, which
supports both forward and backward chaining. Forward chaining works from
known facts to conclusions (i.e., deductive reasoning). Backward chaining
works from conclusions to initial causes or facts (i.e., hypothetical rea-
soning). The direction of inference and the conflict resolution strategy
can be controlled by either the Chainer package or the calling function.

Blackboards

All information used by the CI modules resides on either the library black-
board or the regular blackboard. The library blackboard contains the orig-
inal entities in their uninstantiated form and information that does not
change during execution (e.g., knowledge bases). The regular blackboard is
dynamic in that it holds the current state of the CI. It contains instances
of goals, plans, scripts, states, etc. Throughout the remainder of this
section, references to the CI blackboard should be interpreted as referring
to the regular blackboard unless otherwise specified. Blackboards within
the CI should not be confused with the blackboards of the other planners.

Goals

A goal is an object that describes a desired or expected state of the CO,
submarine, or external world. It serves as the parent of a set of plans,. each of which is a method to achieve the state represented by the goal.

4-5

Goals have a number of slot-filler pairs. The name is a symbol used to
retrieve and identify the goal. The planner is the agent pursuing the
goal. The attributes represent the preferences of an agent for a partic-
ular goal relative to other goals. The end state represents the states of
the CO, submarine, or world that satisfy the goal. If the states are de-
scribed by variables, there may also be a conditions clause that compares
the variables to particular contexts. The goal also has a start time,
expected duration, and its actual satisfaction time. A goal's recurrence
requirements are represented as single or continuous. A goal may be satis-
fied by a single occurrence of its desired end state, or it may by its
nature require continuous satisfaction.

Goals may serve as substeps of a plan. The relationship of a set of goals
to its parent plan is that all sub-goals must be achieved for the parent
plan to succeed. Plans are related to their parent goals in a logical OR
fashion. That is, one or more of the plans must be completed in order to
satisfy the parent goal.

Plans

Plans represent non-structured methods for pursuing goals. A plan is an
object that describes the salient parameters of a method but allows for
easy distinction between it and other related but different activities.

Plans have a number of slot-filler pairs. The name is a symbolic reference
for retrieval and identification of the plan type. A separate, unique

* symbolic tag is provided to identify specific instances of the plan. The
planner is the agent who is performing the plan.

The attributes are a set of characteristics that represent the cost of a
plan. These cost attributes interact with the value system of the planner
to determine the relative preference of the plan compared to other plans
that might satisfy a given parent goal. A plan also contains temporal
information such as the starting time, the expected duration, and actual
duration of the plan.

There are slot-filler pairs that specialize the plan for each instance of
its occurrence. An example might be the "track" slot, which will have a
variable filler that allows the plan to be specialized to a particular
instance involving a particular track.

Scripts

Scripts are sequences of activity with particular ordering constraints. A
script is a particular method for executing a plan. A checklist or proce-
dure may be implemented as a script. A given plan may have no scripts asso-
ciated with it, or one or more scripts that could be used to fulfill the
plan. When a plan is activated, one of its scripts (if it has any) is also
activated. In order to choose a script when several possibilities exist, a
script has a set of attributes that represent its preference to he CO.

0
4-6

The basic building block of a script is the event, which is made up of four. distinct parts: action, state, constraint function, and side-effect.
Actions are commands that can be sent to the submarine. States are the
internal representation of the submarine state vector. The constraint
function places conditions on both the action and the state to limit the
context to the particular needs of the event. The side-effect function
allows any inter-process communication about the event that may be needed.
An event is said to occur if either its action or state is observed and its
constraining conditions are true. When an event occurs, it is marked as
having occurred and its side-effect function is evaluated.

The script body is the sequence of events that make up the execution of the
method. The body is organized into a set of segments, each of which can
contain an arbitrary number of events. The events inside a segment can
occur in any order. Two kinds of segments are defined: blocks, in which
each event should occur only once; and cycles, in which each event can
occur an arbitrary number of times. The final block of the body is the
event that signifies the normal ending of the script.

Actions

An action is a command that can be sent to the action systems of the
submarine. Actions result in submarine state changes, which are then sent
back by the submarine to the CI. Typical actions include setting torpedo
presets and commanding a new depth or speed.

'State Vectors

Each system in the submarine is represented as a state vector. Each state
vector has an "actor" slot containing the system name, and a slot for each
attribute of the system that the CI uses. The state vector also has a
time-stamp to show when it was last updated. The state vectors may contain
both quantitative and qualitative data.

4.1.2 Command Intent Module

The intent inference function is accomplished in the Command Intent module.
This module supports the integration of the CO's plans and goals with those
of the other planners in the SOAS system. The integrated set of plans and
goals forms the basis for communication between the CO and SOAS and for
providing the CO with a managed display and control environment in the
command station.

Command Intent Module Functions

The functions of the Command Intent module are as follows:

1. Explain CO actions in terms of a script (i.e., checklist or proce-
dure) previously known to be active.

2. Explain CO actions in terms of plans previously known to be active.

4-7

3. Explain CO actions via hypothetical reasoning about feasible new
plans and goals, and provide these new plans and goals to the other
SOAS planning functions.

4. Identify abandoned scripts, plans, and goals.

5. Identify inconsistent actions.

Command Intent Module Software Design

The Command Intent module is designed as three major components, all coded
in Common Lisp: the executive, the script-based reasoner, and the plan-
based reasoner. The components form a general-purpose intent understanding
system called Ope'ator Plan Analysis Logic (OPAL). The OPAL system uses
functions from the set of general-purpose utilities that support the CI
modules to perform its low-level data access, matching, and rule-based
inference processes.

The OPAL functions have been implemented in two components. Functions 1
and 4 are implemented in the script-based reasoner, and functions 2 and 3
are implemented in the plan-based reasoner. Function 5 is not directly
implemented but is a by-product of functions 1, 2, and 3.

The executive component provides access to the central CI blackboard data
structure, thus buffering the other two modules from the details of the CI
interface to the other SOAS subsystems, as well as from the other CI mod-

O ules. The executive component calls the other two components, depending on
the status of data on the C1 blackboard. At the conclusion of an execution
cycle, the executive updates the CI blackboard with the results. Figure 4-2
shows a functional flow diagram for OPAL.

Script-Based Reasoning

The script-based reasoning process uses a set of pre-stored procedural
representations called scripts to find explanations for each action of the
CO. Scripts have three major structural parts:

1. Script top, which contains identification and timing data

2. Script termination clause, which lists events causing the script to
be considered deliberately stopped by the CO

3. Script body, containing the procedural steps to be performed. The
script body represents procedural data as an ordered set of seg-
ments, each containing one or more events.

The structural components of scripts are described more fully in Table
4-1. The CI blackboard contains the set of scripts known to be active at
any given moment.

The script-based reasoning process is a linear, iterative process that
* scans the active scripts on the blackboard and marks each associated event

4-8

@70 @00

0 .2 0

UCL 0 CL C

0L - =0.. L
(U)i, m. mX

. 0Occ .0
UL X UX

I.-

CLC

CLC

4-9-

TABLE 4-1. Script Components

Slot Name Description

Action A representation of a CO party input that contains variables
for the prior and commanded state of the submarine or system,
but does not indicate how the action was entered.

State A representation of the value of a particular submarine or
system parameter. Normally, actions cause a change in state.

Bindings A list of variables and their values. Bindings are used to
specialize actions to particular values of systems or states.

Condition A boolean function that can compare bindings or values of
states directly from the blackboard.

Side-Effect A function that alters the data environment of the reasoning
process without affecting the direct inference that is made.

Event The smallest unit in the execution of a script. The event is
the fundamental building block of scripts used in both the
terminations and body. An event is made of an action, a
state, a condition, and a side-effect. It can be marked when
it has been done, and may be optional or required.

Segment A group of events which can be marked in any order. Two types
of segments exist, Blocks and Cycles. In Blocks, each event
can only happen once. Cycles allow indefinite repetition.

Terminates A special segment that holds the events which cause the
script to be no longer active.

Body A list of segments which must be done in the exact order in
which they are listed. The last segment provides for the
deactivation of the script on its normal completion.

Script Top A set of parameters that describe the script in general and
identify each particular instance of the script. The top
includes name, ID, and timing data.

4-10

as accomplished as it is observed to occur. Three stages of scanning are
performed on each script.

1. First, the script top is scanned to determine if its allowable exe-
cution time has passed. Scripts which have not been completed prior
to their execution time are marked as abandoned scripts.

2. Second, each script is scanned for terminating events in its termin-
ation clause. If a terminating event has occurred, the script is
immediately marked as terminated and removed from the set of active
scripts. If the terminating event was satisfied by a CO action, the
action is not explained by the terminating event and further search
for explanation must be performed.

3. Finally, the body of the script is scanned. The scanning process is
constrained to consider events in only one active segment of each
script at a time. This ordering constraint allows events inside a
single segment to be performed in any order, but requires that all
events in a segment be completed prior to the activation of the next
segment. If an input action satisfies an event in the body, then it
has been explained by OPAL as an event that was expected on the
basis of the CO's intent to continue performing a known active proce-
dure represented by the script. The body of the script is updated
to show the current status of the script, including completion of
any segments. Branching to other scripts is performed as a side-
effect of events in a script whenever appropriate.

* After all active scripts have been scanned, the script-based reasoner re-
turns control to the OPAL executive, which updates the CI blackboard with
the current active scripts, including the effects of script abandonments,
script terminations, and script updates. This update occurs each OPAL pro-
cessing cycle even if there was no CO input, because of the need to scan
scripts for events that may be satisfied by the current state of the subma-
rine. If there was no input action or if the action was explained by a
script event, OPAL returns control to the CI. Otherwise, the plan-based
reasoning component is called to continue the attempt to explain the CO's
action.

Plan-Based Reasoning

The plan-based reasoning component searches the SOAS plan and goal graph in
a bottom-up fashion, trying to find a path in the graph that connects the
input action to some known plan or goal. The plan and goal graph is repre-
sented as a rule base, in which each link between a parent object and its
set of children is a rule. The rule format conforms to that required by
the Chainer utility component. The parent object is found in the IF clause
of the rule, and each of its children is expressed as a premise in the THEN
clause of the rule.

The relationship between a particular child and its possible parents is con-
strained by two processes: a binding list and a set of constraint func-
tions.

4-11

e The binding list specifies values for variables that exist in
both the child and the parent. These bound values allow the general
pattern of an object, whether action, plan, or goal, to be
particularized to a specific instance of the general pattern. For
example, the plan to go to a waypoint named X only satisfies the
goal of being at a place Y if X and Y are bound to the same waypoint
identifier.

* The constraint functions allow very general comparisons of the
values of specific bound variables and values from the internal or
external environment of the submarine as represented on the CI
blackboard.

Each rule is also capable of executing side-effects, which modify the data
environment of OPAL but do not directly affect parent-child relationships.
Script activation is an example of such a side-effect. When a plan is in-
ferred as part of the attempt to explain an action and the plan was not
already known to be active, the direct action of the rule will put the plan
on the active plan list. If the plan is supported by a script, the side-
effect of the rule will activate the script so that future CO inputs that
represent the continuation of the plan can be explained by the script-based
reasoning component of OPAL. Other side-effect functions are the removal
of conflicting plans and goals and the creation of new variable bindings.

The rule base in the plan-based reasoner is stored as a hash table that per-
mits direct access to the rules that could apply to the current reasoning
state. The rules are used in both the forward and backward directions dur-

* ing the search for an explanation of an input action, plan, or goal. The
search process is recursive and consists of two major steps: prediction
and find-parent.

e In the prediction step, a rule that links the current object
(action, plan, or goal) to a known active plan or goal is sought.
Rules are fired backward from the current object to find a possible
parent pattern. If a rule fires backward, the rule is then tried
forward from the known set of plans and goals. If it also fires
forward, this implies there is a plan or goal in the known lists
that is an acceptable parent of the current object. The known lists
then can e said to predict that the current object is consistent
with the CO's intentions.

* The find-parent step fires rules backward from the current ob-
ject to find its parent. The newly found parent will serve as the
current object in the next cycle of recursion. If no new parent can
be found for the current object because either bindings or con-
straints prevent any rules from firing, then the search for an expla-
nation has reached a dead end. The search backs up by returning to
the prior level of recursion.

At each level of recursion, a local environment containing the results of
all side-effects, such as conflicting plan removals and activated scripts,
is maintained. When the prediction step is satisfied, this local environ-. ment is saved and returned to the OPAL executive for posting to the CI

4-12

blackboard. The input object has been explained by the plan-based reasoner,
so it is posted to the appropriate blackboard slot depending on the type of
t he input object. If the search returns to the input level of recursion
without satisfying the prediction step, then the input has no explanation.
Objects without explanation are posted to the CI blackboard for further
analysis.

The plan-based reasoner is used by OPAL to explain both CO actions and
plans proposed by the other SOAS planners. The OPAL executive calls the
plan-based reasoner only if there are objects on the blackboard to be
explained. If both a CO action and a proposed plan from another planner
are on the blackboard, the plan-based reasoner may be called twice in a
single OPAL cycle. An essential product of OPAL's processing is the up-
dated plan, goal, and script lists formed during the generation of an expla-
nation for actions and plans. These lists are supplied to all other modules
of the CI as vital inputs to their processes. They are also supplied to the
SOAS planning functions to indicate the CO's intentions in terms that map
directly into their internal reasoning processes.

The plan and goal graph that forms the basis for OPAL's reasoning includes
explicit plans for accepting and rejecting the proposed plans of the SOAS
planners. Because of this, the CO may express his intentions directly by
explicit acceptance or rejection of the proposed plan, or he may express
his intention indirectly by merely taking action. The explanation of the
action by OPAL will confirm either that he is acting in a way that is con-
sistent with the proposed plan or that he has chosen a different plan that
still achieves the known goals and satisfies the constraints.

. Command Intent Module Knowledge Representation and Acquisition

The knowledge required by the Command Intent module consists of scripts and
rules. The operational procedures for the simulated submarine and for CO
interaction with SOAS constitute the major source of script knowledge.
Specific knowledge required includes the set of all possible actions at the
command station, the effects of each action on the simulated submarine
systems and SOAS, and the constraints on each action in terms of submarine
and system states that are represented in thesimulation. Representations
of these actions are used to create the script events.

The knowledge used to construct OPAL's rule base is extracted from the plan
and goal graph. Each plan and goal in the graph is represented as a pattern
containing its variable and fixed parameters. For each plan and goal, the
sets of all plans and goals which conflict must also be identified. For
plans performed by clearly established procedures or checklists, scripts
are identified. All other plans must be decomposed either into subgoals or
directly into actions from the set of all possible actions (as discussed
earlier). Finally, the constraints that limit the feasibility of parent-
child relationships between the actions, plans, and goals must be identi-
fied. All these relationships are used to build rules for the rule-based
reasoning component.

4-13

The number of rules and the complexity of their interaction are a direct
reflection of the granularity of the representation of intentions. During

* the course of Phase I, three different plan and goal decompositions were
performed, producing representations of intentions that were progressively
finer grained and broader in scope. The current design of the Intent Mod-
ule does not depend on any particular granularity. It should be noted,
however, that the attainable execution speed of the module is directly
affected by the number of plans and goals used to build the rule structure.

4.1.3 Interface Manager Module

The Interface Manager (IM) is responsible for managing the displays and
programmable controls to meet the CO's information needs. IM also decodes
incoming messages and encodes outgoing messages for the CI. Even though IM
operates autonomously, the CO may override its selections at any time.

Interface Manager Module Functions

The Interface Manager has three primary functions:

1. Select displays and controls.
2. Decode inputs to the CI.
3. Encode outputs from the CI.

Selecting displays and controls (function 1) is quite complex and is accom-
plished via the following secondary functions:

l.a Determine logical devices to be evaluated.
l.b Determine information to be displayed.
1.c Allocate displays to logical devices while maximizing information

displayed.
l.d Select text messages to be displayed to the attack party.

Interface Manager Module Software Design

The ways in which the above functions are accomplished in IM are discussed
in the following paragraphs. To avoid excessive nesting of headings, the
secondary functions associated with display and control selection are
listed at the same level as input decoding and output encoding.

Determining Logical Devices to Be Evaluated

Determination of logical devices is illustrated in Figure 4-3. IM deter-
mines whether or not a physical device should be considered for display
replacement based on the time since the last display change. This function
serves to limit IM's use of processing resources and to permit CO-chosen
displays to remain visible. IM then orders physical devices according to
the focus data. This data is used to cause the most important information
to be displayed on the devices where the CO most frequently looks. The
focus data is currently determined by knowledge engineering rather than by
measurement.

4-14

-. . . , ,. - |.- --.- . . -- -

ccc

00 _u,

. >

~iJ

-a cc

00

400

"co

• "- - U

0

CLC

C4

- U

4-*

-4 1

Each physical device may be divided into one or more logical devices. This
is necessary when two important types of information compete for the same

* physical device. Choosing one or the other may be less desirable than show-
ing both in smaller areas. Division of display space is currently constant.

Each logical device has a set of displays that may appear on it. Several
logical devices may be capable of showing the same display, but it will be
chosen only once. In order to show a menu, a display, and a text message
on the same physical device, it must be divided into three logical de-
vices. The potential displays are currently fixed for each logical device.

Determining Information that Should be Displayed

This function, which is graphically displayed in Figure 4-4, involves inte-
grating active and proposed plans, integrating the information requirements
of plans, and removing low importance information requirements.

Integration of active and proposed plans involves removing mutually exclu-
sive plans from the active plan list. This is valuable because it gives
the CO a clearer picture what the proposed plans are. The intent inference
function is invoked to merge the proposed plans with the active plans. The
intent inference processing would have to be done on a hypothetical copy of
the plan and goal graph because the proposed plans are not being accepted
by IM. This is already part of the intent inference function in that pro-
posed plans accepted by the CO must be integrated into the plan and goal
graph.

Every plan has an associated list of information elements. This list repre-
sents the information the CO needs to execute the plan. For example, when
coming to periscope depth, the CO needs to know the range and course of all
contacts, the layer depth, ownship trim status, ownship depth, speed and
course, and other information. The integration of these information re-
quirements merges the requirements of all plans into a single structure.
The result is termed the integrated information requirements.

Once the integrated information requirements have been identified, low
importance integrated information requirements are deleted if necessary.

Allocating Displays to Logical Devices

Allocation of displays to logical devices is illustrated in Figure 4-5.
This function is accomplished iteratively by choosing the display that
covers the maximum of integrated information requirements by the current
set of plans. After a display is chosen, the information it is capable of
displaying is removed from the integrated information requirements. These
reduced integrated information requirements are used in subsequent display
selection decisions.

Each display is penalized according to the integrated information require-
ments that it cannot display. Then with a straightforward application of
the Common Lisp sort function, the least penalized display is moved to the
beginning of the list of feasible displays.

4-16

aE0

00

0 0 C

00

0 a a-

E CL 0

0 E c0

00 40

C) C

4A

0 E

i- . .
000

C. C

0 CL

0

0. 4-17

al Cc

*, E
0O

~~ E

10 > A

.S

0 0

cis4 0 w
CO L

E0 00

0 0- C

0 rm 0

cc 0

A- CA
0 13

(4 0

sn -0 -
0 9o

(4
a.-

E4 0 .

o E 0
cc41

Frequently, a number of displays receive the same numerical score. If this
is occurs, then all the displays that receive the best score are sorted

* again based on the amount of information each is capable of displaying.
The display with the least information is preferred, since it is the least
cluttered.

Display assignment heuristics take into account situational aspects not con-
sidered by the scoring process. These heuristics can cause the selection
of a display other than the one with the least penalty. An example is that
when displays score close to the same value, and one of them is currently
shown, no change should be made to the display format if it has been shown
for less than a specified number of seconds. The heuristics also allow the
CO's direct request to override selections made by IM.

After a display has been selected, its information capabilities are removed
from the integrated information requirements. These requirements are used
in subsequent passes of the allocation of displays to logical devices. At
the completion of processing, the unfilled information requirements are an
output of the selection process.

Selecting Text Messages to be Displayed to the CO

Selectng text messages is illustrated in Figure 4-6. Planners (e.g., Tac-
tics Planner) produce text messages to tell the CO some information or to
explain a proposed plan. Text messages appear on logical devices that can
show only text. he process by which text messages are selected is de-
scribed below.

* Ordinarily, the number of text messages sent to the CI is expected to be
smaller than the number of logical displays for showing text messages.
Thus, although most of the logic in this function is unnecessary in the
routine case, it is used in the worst case.

The initial specification of a text message provides a time at which the
message need no longer be displayed. When a message's time limit is ex-
ceeded, it is removed from the logical device. In addition, logical de-
vices are freed for subsequent text message display (as described below).
If a text message is not displayed before its deadline, the planner that
prepared it is advised of the failure. The text message is then discarded.

IM must also determine the importance of a text message. Each text message
contains a topic and a list of plans to which it is relevant. IN finds the
message importance by taking the maximum importance of the topic to all of
the active plans in the list. Having considered both importance and display
deadlines, IM sorts text messages into a priority order. A rule base is
used to process the deadline information so that text messages that could
wait are moved to the end of the queue.

It is important to determine the appropriateness of a text message for each
available logical device. Two knowledge bases are used to accomplish this.
One knowledge base correlates text message importance with the rate at
which the CO samples a device. Devices that the CO samples more frequently

4-19

0o'

49 CU 0
Ec

0o0

ta'

aa

VI
cc w

S x

00g

oZ!

c-20

are rated higher. The other knowledge base helps enforce the rule that a
text message which appears near a display should refer to the same topic..For example, a text message about the torpedo tube status would be shown
near the tube status display since they both share the same topic.

The most important text message is placed on the best logical device. A
knowledge base is used to select the color of the text message according to
its importance and topic.

Input Decoding

Inputs from the CO are converted to the common internal representation by
table lookup. Submarine state changes are also decoded into the internal
representation by table lookup. Inputs from other subsystems are decoded
and placed on the CI blackboard.

Output Encoding

Once a set of displays has been selected, the specifications are sent as
commands to the display generator (DG). Once a display device has been con-
figured, it dynamically presents changes in the represented information, as
directed by the control logic of the particular displays and without explic-
it control from IM. Touch panels are controlled as displays so that the
meaning of touching a particular part of the panel is conveyed to the CO by
the graphics image overlaid on the panel. Internally represented actions
are encoded into a form appropriate for commanding the submarine and sent,
as commands, to the appropriate system for execution. Outputs to other.subsystems are encoded and placed on the CI blackboard for output processes
to handle.

Interface Manager Module Knowledge Representation and Acquisition

The knowledge acquisition process for plan information requirements is done
as follows. The expert is given a plan to rate. He chooses the topics
that are relevant to the plan from a predetermined list. Then the expert
rates the relative importance of each topic to the plan. Finally, the ex-
pert rates the desired resolution, scope, bandwidth, and control bandwidth
of each topic. The process is repeated for every plan.

Regarding knowledge representation, the interface manager uses a number of
objects internally to represent the console configuration and information
shown.

Physical Device

A physical device is either a display device or a control. The available
displays are the overhead, left, center, and right CRTs. The available con-
trols are the touch-sensitive menu pads on the center CRT. The internal
representation of a physical device describes its location within the con-
sole, the decoding table that is used to decode its inputs, and the time
and actor (i.e., CO or IM) of the last display selection.

4-21

Logical Device

.A logical device is a virtual display device which corresponds to all or
part of a physical display device. For example, currently each CRT is
divided into three virtual devices. A logical device is created to display
information about a single topic (e.g., ownship state) or set of logically
related topics (e.g., all sensor systems).

The internal representation of a logical device includes its physical de-
vice parent, its screen boundaries, its neighboring logical devices, the
actor and time of its last display change, and the names of the feasible
displays that may be shown on it.

Display

A display is a dynamic picture that can be shown on a virtual device. The
display is represented twice with the SOAS system. Within the display gen-
erator, the display is a computer program that can draw dynamic pictures on
the CRTs. The data that are displayed come directly from the simulation or
from messages that originate in various planning modules. Within IM, a dis-
play is represented in terms of its ability to display information. IM is
responsible for choosing which displays are visible. The display generator
is responsible for drawing the display on the screen.

The internal representation of a display contains the name of the logical
device on which the display is located and the information that it is cap-
able of displaying (i.e., a list of information elements).

.Information Element

An information element is an abstract entity that represents both a plan's
need for information and a display's capability for showing information.
An information element contains a "topic" that describes what the informa-
tion is about. Some example topics are ownship depth, tube 1 status, and
contact state. When an information requirement is represented, an impor-
tance rating is included that indicates the importance of the information
relative to the success of the plan. Importance is rated on a scale from
one to ten, where one represents "nice to know" and ten represents "essen-
tial to plan success."

Other slots in an information element include input bandwidth, control band-
width, resolution, and range.

9 The input bandwidth is the CO's sampling frequency for informa-
tion on the display.

e The control bandwidth, by analogy, is a rating of how frequently
the CO could activate the control.

* Resolution and range refer to the precision and breadth of the
information, respectively.

4-22

It should be noted that all of these dimensions refer to the CO's capabili-
ties rather than those of the electronics. For example, bandwidth repre-

* sents the frequency with which the CO can extract information from the
display, not the frequency with which the display is updated. The resolu-
tion is the precision with which the CO can extract information, not the
precision of the electronics itself.

Text Message

A text message contains a text string for the CO to read. It can be pro-
duced either within or outside the CI. IM decides how and when to display
the text message without examining the text itself. The text message is
described by a topic and a set of plans to which the text message is
relevant. This is sufficient for IM to determine how important a text
message is to the CO. The text message also describes the deadline by
which time the CO should read the text.

Focus Data

The fraction of attention the CO allocates to each display is represented
by focus data. It contains the name of a physical device and a numeric
value that represents the attention paid to the physical device relative to
other physical devices.

4.2 TACTICS PLANNER SUBSYSTEM

* 4.2.1 Overview of Tactics Planner

The two goals of the Tactics Planner subsystem for Phase I were to conceive
and complete a design of the subsystem for Phases II and 111, and to demon-
strate the correctness and feasibility of the design. This was done in
three steps. First, the basic operational and technical requirements were
defined. From this, the second step consisted of choosing the design, tool,
and basic approach which would be used to provide these requirements, in-
cluding deciding which requirements could be provided immediately and which
would have to wait for further development in later phases. The third step
was the production of a Phase I software demonstration which provided a
proof-of-concept of the suggested solution.

The next three sections give a summary of each step of this process. Sec-
tion 4.2.2 presents the basic operation and technical requirements. Section
4.2.3 describes the Kadet planning tool, which has been chosen as the basis
for the Tactics Planner subsystem. Section 4.2.4 summarizes the software
demonstration, showing the basic functionality and the advanced features
that were added during Phase I development.

4.2.2 Tactics Planner Requirements

The first stage of Phase I was to complete a requirements analysis for the
Tactics Planner subsystem. The requirements were based on the defined goals
of tactics planning within the SOAS system.

4-23

The purpose of the Tactics Planner subsystem is to support planning during
actual situations. During tactical situaticns, the submarine commander is

* continually required to reason about and decide between competing options.
Many of these decisions are based on parameters or information that is un-
certain or incomplete, making the decision more difficult. The Tactics
Planner subsystem will 'reason along' with the Commander.

To support the Commanding Officer in this fashion, Tactics Planner must rea-
son intelligently about the submarine tactics domain. This domain features
a number of potentially interacting subproblems which can overlap in sever-
al dimensions, including time (both planning time and plan execution time),
computational resource demand and utilization, and implementation resource
demand and utilization. Further, as stated above, the domain is riddled
with uncertainty, which adds the requirement of doing cost/benefit analysis
of uncertainty resolution. All these subproblems are in addition to the
basic planning problem of handling multiple, possibly conflicting, plan
options in a timely manner.

The remainder of this section briefly lists the technical functional re-
quirements that are necessary to provide these functions to the command
decision maker. (These functions are described in more detail in the
System Development Plan.)

The Tactics Planner is designed to provide decision support to the CO. This
involves technical functionality along two lines. The first is the ability
to reason in the tactical domain to generate tactical options, planning op-
timizations, information trade-offs, and other information that is re-
quired. The second is to communicate these results to the commander in a
timely manner. This second line of functionality is coupled to the
functionality of the Command Interface subsystem.

The first technical challenge is to plan in the tactical domain. The

following functionality is required:

* Dynamically generate, maintain, optimize and execute plans

a Provide focus of attention

* Reason about constraints, including constraints related to mis-
sion objectives, system status, current threats, and commander
intent

* Resolve conflicts among competing or cooperating plans

* Reason with multiple plans and provide plan prioritization

9 Reason with uncertain and incomplete information, including
reasoning about uncertainty resolution

* Conduct real-time processing on real data

* Reason about time-critical limitations

4-24

The second technical challenge is to communicate the results of planning to

the commander. The following functionality is necessary:

a The ability to reason about plan prioritization.

e The ability to use advanced explanation facilities.

a The ability to handle hypothesis testing.

4.2.3 The Kadet Tactics Planner

The purpose of the SOAS Tactics Planner is to provide support for the
command decision process. The functional requirements necessary for the
Tactics Planner to achieve this goal were outlined in the last section.
All of these abilities must be present in any SOAS tactical operational
scenario. The system must also have the ability to smoothly integrate
further operational scenarios with no loss of capability.

The Tactics Planner subsystem will fulfill these functional requirements by
using the Kadet planning system. Kadet is a reactive planner which utilizes
skeletal planning elements to model operational situations. Kadet is ideal
for solving the SOAS tactical planning problem for many reasons. The Kadet
architecture was designed along with the Plan and Goal Graph methodology of
knowledge acquisition. This allows for a straightforward transition of
domain-specific knowledge into rules and rule-sets to drive Kadet. The
remainder of this section describes the basic Kadet architecture.

The Kadet planning framework is based on a design and development methodol-
ogy that uses predefined skeletal plans. Skeletal plans, developed as "gen-
eric" solution structures for carefully designed and bounded goals, are cap-
tured through knowledge engineering sessions. They can then be dynamically
and continuously specialized to the changing situation based on a-priori
collections of knowledge designed for this purpose. This knowledge is pro-
vided through the use of a versatile, yet understandable, rule system.
Skeletal plans are organized into a solution hierarchy of planning elements
that have been optimized to provide a framework for both plan generation
and plan understanding and explanation.

The concept of skeletal plans has been augmented in the Kadet framework to
include the following features:

1. Localized blackboard-oriented plan elements providing non-
monotonic reasoning capabilities.

2. Script-based plan elements to support strategic planning.

3. Rule-based, multiple Instantiations of plan classes to pursue
parallel (cooperating or competing) responses to the planning
context.

4. User-defined modularity to support intelligent resource allo-
cation based on the planning context.

4-25

Much of the structure for tactical planning is common to all planning ele-
ments. This basic planning paradigm, identified in the course of this de-

* velopment effort, has driven the development of the Kadet planning tool.
This generalized planning architecture is best understood by viewing a
generic planning element as shown in Figure 4-7.

This plan has several components. First, each plan has a name. Each plan
also contains a script, a predecessor/successor list of steps which must be
performed in order to carry out this plan. The script often has only a
single step, or it may have a set of steps operating in parallel. More
complex scripts feature some steps in sequence, with others in parallel.
Leaf node plans have empty scripts. Each script step represents the need
to select a child plan to perform some activity; so each script step has a
set of legal plans attached to it. Following the script is a set of ini-
tial assertions, facts asserted on the local blackboard which is contained
within each planning element. The plan has a cardinality associated with
it, which enables the plan to be instantiated only once (i.e., only one
such plan can exist at any time) or as needed (such as a torpedo evasion
plan, which may have a separate copy in action for each contacted torpedo);
this slot contains a rule for determining this cardinality. The parent goal
and child goals slots contain system goal names which identify this plan's
position in the Plan and Goal Graph. Finally, the plan element includes
several domain-specific rulesets: the transition, decomposition, execution,
specialization, selection, and initialization rulesets. These rulesets are
used to handle the two steps of planning: building the planning hierarchy
and executing the planning hierarchy. These are termed the selection phase
and execution phase, respectively.

s The Selection Phase, illustrated in Figure 4-8, is the first
part of planning. When a selection message is sent from a parent,
it means that this plan has been selected as a possible option for
achieving some goal. (The initialization ruleset, which is not
shown in the figure, contains basic control rules used in every
planning element to handle specialization.) The specialization
ruleset is used to specialize this planning element to the current
situation. Specialized parameters are stored on the local
blackboard. The selection ruleset is used to determine how well
this planning element 'fits' the goal it has been selected to
achieve, and the cost/benefit of continuing this line of planning.
This information is sent to the parent. Depending on the selection
ruleset, select messages may be sent to child planning elements to
satisfy the subgoals. This selection phase is used to control
building the planning tree, to focus attention on relevant planning
elements, and to prune the planning process based on the current
situation.

9 The Execution Phase, shown in Figure 4-9, is the next part of
planning. When an execute plan is received from a parent, it
means that this planning element should attempt to execute to solve
the goal. This does not mean that this planning element has been
chosen for real-world execution, but only that it has been chosen

4-26

*Z 0

2 0

cncn

po P4

4-27

LA -0

C

izC

4J

x L Uo 0) 0E I r

'A 0

00

13 0

0W (A

> >

4-28

08

9) W

4-

US 0

0 ~ C.

EUU

u0 LUJ

~-d0 *~i .2al
Enb

uJ E

X4

uj 4 -2

for serious consideration by the planning world and needs to develop a com-
plete set of actions. Specialization rules continue to execute, updating.this element to the current situation. Transition rules evaluate the plan
appropriateness, completeness or failure. Decomposition rules are used to
split the problem into solvable sub-problems based on the subgoal scripts
and to decide when to send execution messages to the children. Execution
rules run to execute any processing that needs to happen at this level of
planning, integrating standard systems into the planning process. (Typic-
ally, at the leaf nodes, there are no subgoals, no decomposition rules, and
the execution ruleset resolves to basic actions that make up the planning
element.)

Another way to look at the planning elements is to examine the planning ele-
ment life cycle, depicted in Figure 4-10. Initially, a plan element is in-
active, receiving and sending no messages and conducting no planning. When
a SELECT message is received, the plan becomes a candidate. After the spec-
ialization ruleset is executed, it becomes specialized. If the selection
rules determine that it is likely to achieve the relevant subgoal, it is
upgraded to a feasible plan. If the parent goal decides to investigate the
plan further by sending an EXECUTE message, the plan becomes active and
begins to plan a complete set of actions to achieve the subgoal. The par-
ent plan evaluates all of the active plans that satisfy a given subgoal and
chooses among them, producing a selected plan. This plan is then proposed
to the CO. If the CO chooses the plan, it becomes invoked. If not, it is
revoked, dropping in priority. When a plan becomes active, selected, in-
voked, and finishes execution, it cycles back to being inactive, waiting
for a new SELECT message to show that it has again become relevant.

. 4.2.4 Tactics Planner Phase I Functionality

The goal of the Tactics Planner software demonstration at the end of Phase
I was to demonstrate the basic capabilities of the subsystem. To accomplish
this goal, a narrow slice operational scenario was chosen. This scenario
involved ownship making initial contact with and reacting to an enemy subma-
rine after ownship had crossed the layer coming up for a Periscope Depth
Operations (P/D Ops) maneuver.

Basic Kadet Functionality

Using Kadet enabled the Tactics Planner to immediately demonstrate many of
the requirements for the full system. These included the following
components:

Planning Frameworks The system generated, maintained, optimized and
executed plans.

Focus of Attention Through the use of selection, transition, and
decomposition rulesets, the Tactics Planner was able to focus attention on
'relevant' plans and options.

4-30

wi 4-

4 -A

C

L

0i

4-31

Constraint Reasoning - By specializing skeletal plans according to pa-
rameters that are dynamically set on global and local blackboards, con-

*straints to the reasoning process were used as system state variables and
integrated into the normal planning process.

Constraints - Constraints become state variables which can be used like
any other parameter to guide the planning process. The ability to handle
domain-specific constraints, such as system status, mission plans, or infor-
mation requirements, has been demonstrated. The use of Kadet and domain-
specific knowledge acquisition will give the Tactics Planner the ability to
handle constraint-based reasoning.

Conflict Resolution - The Kadet tool provided the Tactics Planner with
two levels of conflict resolution. A more complete description of the
local and global methods of handling conflicts can be found in the System
Development Plan.

Parallel Planning - The Tactics Planner showed the ability to reason in
parallel about multiple, possibly competing, plans and to assist the CO in
selecting between them. The rulesets that focused attention to 'weed out'
unimportant plans also insured that all relevant plans were considered.
The plan life cycle allowed multiple, competing plans to be active, each
going through the entire planning process to generate a complete set of
actions. Decisions were made to select between these active plans. Each
active plan was concerned with planning itself, and the decision between
active plans was handled higher in the hierarchy.

* Knowledge Acquisition Tools - The graphical interface to the Kadet tool
was a major piece of functionality demonstrated during Phase I. The Kadet
tool has developed a sophisticated, mature methodology for debugging, exam-
ining and building the knowledge base. It contained the basic TP interface
with capabilities for examining the planning process, including the ability
to trace the growth of the Plan and Goal planning tree, trace the rules and
rulesets, examine the operational tactical situation, and monitor the
message traffic. Other tools that were used in Phase I were the Plan and
Goal Graph editor and the Rule/Ruleset Editing system. All of these tools
are already operational and will facilitate the development of the full-
scale system.

Additional Phase I Functionality

The Kadet planning tool provides much of the basic functionality. During
Phase I, progress was made in other key areas as described below.

Reasoning with uncertain information - The Tactics Planner was updated
to begin reasoning with uncertain information. The 'facts' of the system
have been converted to structures which maintain uncertainty levels, show
the source of uncertainty, and are able to trace back through the changing
level of uncertainty of the fact. The rulesets in the system were aug-
mented to show reasoning about probabilistic data by choosing between
"goodness" of various plans. This decision is a domain-context-dependent
arbitrator. (For example, the p(k), p(ck) and p(cd) were used in deciding
between competing attack plans.)

4-32

Deferred plan selection was also demonstrated. This is the ability to
defer commitment to any plan until enough information is available and the.plan 'goodness' is high enough. By deferring commitment, plans to gather
information and increase information reliability can be run to optimize the
deferred plans.

Hypothesis "what-if" reasoning - The Kadet planner showed the capabil-
ity to change the perceived values for the selection criteria for plans.
The new values would possibly affect plan selection. If the new outcomes
were evaluated as more accurate, the hypothesized values could replace the
current values. If not, the hypothesized values could be scrapped and the
original values restored.

4.3 SITUATION ASSESSMENT SUBSYSTEM

4.3.1 Overview of Situation Assessment

The Situation Assessment (SA) subsystem derives meaning from the data avail-
able about the submarine's external environment. This data includes ambigu-
ous, incomplete, and uncertain information as it relates to the planned tac-
tical and mission objectives of the submarine. At the highest level, SA
subsystem functions can be grouped into two general categories: assessing
contacts by computing and inferring additional high-level attributes about
them, and monitoring the external environment for the occurrence of situa-
tions of interest.

* Inputs and Outouts

Inputs and outputs to the Phase I Situation Assessment subsystem are shown
in Figure 4-11. Inputs to SA come directly from the System Manager (SM)
subsystem but derive from three external sources:

9 The Command Interface, which transfers requests for information and
monitoring activities from the Commanding Officer

• Other SOAS subsystems, including SM, which request information and
monitoring activities

• The simulation environment, which provides updated information about
contacts and system solutions

For the Phase I implementation, outputs from SA were sent to displays on
the SA Symbolics terminal and to displays on the IRIS graphics machine. In
future phases, these outputs will be sent to the Command Interface for dis-
play to key attack party members and to other SOAS subsystems for internal
processing. Outputs from Situation Assessment consist of the following:

@ Contact assessment, including capabilities, intent, and lethality

* Closest point of approach (CPA)

4-33

U)l

-j -

0 z

- w _

.o a 0 -0

0U z
0 V

0. 0

0 cis

o 0 0 c 0 0L
- - -- - (1

0

C

0

Cl)CL

CLU

CL00 C~

01

c 0,

LE E 0 E

ai 00
0r * C0

0 20

cc co m

4-34

* Assessment of expected engagement outcomes (measures of effective-
ness)

* Areas of detection and counterdetection for use in search planning
and evaluation

* Assessment of search planning and evaluation options (measures of
effectiveness)

e Track data, such as bearing, bearing rate, source designator, fre-
quency, signal-to-noise ratio, and depth elevation angle

Hardware and Tools

Situation Assessment software was implemented primarily on a Symbolics 3600
series Lisp machine using the Symbolics Genera 7.2 operating system. Source
code was written in Common Lisp and used Inference's Automated Reasoning
Tool (ART) which provided a rule-based system for reasoning and a
blackboard-type agenda for structured control of the reasoning. In
addition, portions of the SA subsystem related to expected engagement
outcomes and to search planning and evaluation were hosted on a VAX 11/780
and written in FORTRAN for ease of algorithmic computations.

SA Software Design

The SA software design is shown in Figure 4-12. Current SA implementation
consists of four separate processes whose primary functions are as follows:

1. Input Data Handler - Reads connections with the simulation,
other SOAS subsystems, and the predictive algorithms for assessing
engagement outcomes (which resided on a VAX 11/780)

2. Output Data Handler - Prepares and sends messages to other SOAS
subsystems and to the predictive algorithms for assessing
engagement outcomes

3. Algorithmic Threat Attribute Computation - Updates the tracks
database with contact and mission data and computes additional
algorithmic contact attributes including predictive models for
probability of kill, probability of counterkill, and probability of
counterdetection.

4. Threat Monitor and Information Stream Management - Monitors the
tracks database for specific conditions of interest and generates
messages to notify the SOAS system of these conditions.

Communications between the I/O processes and the other two processes is
accomplished using message queues (Input Agenda, Output Agenda, and Monitor
Agenda). The Algorithmic Threat Attribute Computation and Threat Monitor
and Information Stream Management processes communicate through common
access to the SA Database.

4-35

0,

_C I
00

0 0-

-®r

0e
o

o~

08 (D

0~ 0r

00

-'n cc

C a a 0

coI a

a 0 c0

C U9
0 r w29

4-3

SA functionality has been divided into four modules as seen in Figure
4-13: Database Maintenance, Contact Assessment Control, Contact Defini-
tion, and Contact Monitoring. These SA subsystem modules are described in
the following four sections. The description of Situation Assessment con-
cludes with a summary of the SA Database.

4.3.1 Database Maintenance Module

The Database Maintenance module accepts track file data from the simulation
(with assumed sensor fusion) and mission data from other SOAS subsystems,
and stores it in the appropriate database. It also computes additional geo-
metric and algorithmic attributes, as specified by the Contact Assessment
Control module, which are in turn used by the Contact Definition module.

Upon initialization, a process is created to generate and read the connec-
tion with the SM subsystem, through which all message traffic flows includ-
ing simulation data and MOEs for engagement planning. Messages are re-
ceived from the SM and placed on an input queue. A separate process then
parses the messages and stores the data in the appropriate database. Addi-
tional algorithmic contact attributes are computed as specified by the
monitoring and information requirements of Contact Assessment Control.

Upon request by Tactics Planner, Database Maintenance module assesses the
expected engagement outcomes for a given scenario by computing measures of
effectiveness (MOEs). MOEs for engagement planning include the following:

e Probability of detection/counterdetection
e Probability of track/countertrack
e Probability of kill/counterkill
e The exchange ratio for each attack

Lisp functions are used to read messages from the external connections and
some algorithmic attribute computations, along with FORTRAN. The input
queue and databases are implemented using Lisp Flavors.

Knowledge required by this module to provide the algorithms for computing
additional contact attributes can be classified into two categories: simple
physics and geometry knowledge, and SA domain knowledge. Physics and geom-
etry knowledge has been acquired primarily from reference books. SA domain
knowledge has been obtained from the domain experts at Kapos, Presearch,
and Search Technology. Domain knowledge acquisition has taken place through
interviews with the experts, reports written by the experts, other domain
literature, and algorithms generated by the experts.

Currently computed algorithmic contact attributes include, in part: time
to intercept, weapon envelopes, launch acceptability regions, sensor envel-
opes, probability of kill, probability of counterkill, probability of
counterdetection, and CPA.

The predictive calculations ?or probability of kill/counterkill are com-
puted as functions of weapon and target characteristics, range at time of
torpedo launch, angle off bow, the accuracy of the firing solution, alert-

4-37

LU

a-a
*~ Icc

Cu)
ci

IC m-

(a -_

E 0)
ou

0=0

CL Cu 4

0 c0 0

0 u 0 o

CUq cu cc U)-

__ __ __ __

au 0Oc

a ~ 4)

0 C

Cu 2
iA

WII

a4-38

ing event (launch or enable), and evasion tactic (including countermeas-
ures). The predictive calculations for probability of counterdetection areScomputed as functions of the SVP, FDM parameters including source level as
a function of AOB and speed, and short- and long-term acoustic variation.
The simulation facility provides the data for these calculations. The idea
of these functions is not to merge all available data and related uncertain-
ty into one number, such as exchange ratio, but rather to segment the tac-
tically important components such as counterdetection, TMA, and weapon/coun-
terweapon capability in the face of countermeasures and, thus, to give the
ccnmander the option of viewing a variety of aspects of his position or
just the one number, if he so chooses. Additional details about the predic-
tive algorithms used by SA are provided in Section 4.3.6.

Figure 4-14 details a Lisp Flavor that represents all the information cur-

rently contained in a track for the SOAS system for Phase I.

4.3.2 Contact Assessment Control Module

The Contact Assessment Control module provides a mechanism by which the
other SOAS subsystems can request SA track information or establish moni-
tors to detect situations of interest. In addition, this module controls
the assessment and computation of both algorithmic and heuristic contact
attributes based on the current priority and information requirements of
specific tracks.

Two types of requests are handled by Contact Assessment Control:

1. Monitor requests - Generated by Tactics Planner and5sent via System Manager to monitor for specific situa-
tions of interest (events) based on the current activi-
ties of the commander and SOAS system

2. Information requests - Generated by Command Interface
or Tactics Planner and sent via System Manager to supply
the requesting subsystem or the Display Generator with
contact attributes (information streams) based on the
information requirements of the currently active plans

For the Phase I implementation, specific monitor and information requests
were detailed in the SOAS Interface Control Document and are discussed
further in the Contact Monitoring section.

Lisp functions were used to receivp parse the request messages. Monitor
and information requirements werr mented using ART rules and its black-
board structure.

Knowledge which defines monitors and information streams was acquired
through analyzing the purpose and information requirements of the plans
used in the SOAS system. Details regarding the content of the monitors and
information stream were developed through discussions with the subsystem
leads whose subsystems were responsible for generating the plans which use
the information. Assessment control knowledge within this module also
exists in the "orm o,? knowing to what level the assessment of a contact is

4-39

Current attributes for all tracks in Phase I.
Each instanc, of this track flavor will have these attribute slots.
Values for these attributes are either calculated, inferred, prebriefed,
or Unknown and are updated dynamically.
Som~e values may be inappropriate for certain tracks and therefore are left
an an empty slot.

(scl:def flavor TRACK
((PNE-DP.IrFED nil)

(UPDATZ-RATZ '(120))
(TRACX-NUMBER (scl~make-instance 'alot))., SA object number (integer)
(SENSOR-ID (scl:make-instance 'slot))
(TIMeZ-FIRST-SEEN (scl:mako-instance 'slot)) mission time, seconds (integer)
(SENSOR-AGE (.cl:make-instance 'slot))
(SYSTEM-AE (scl:make-instance 'slot))
(SONAp.-MODZ (scl: make- instance 'slot :value 'unknown)) acoustic mode for now (passive,

active,acquired~hit~exhausted)
(POSITION-LONG (acl:wAke-instance 'slot :value 0)) degree. longitude (real) <xdisp>

caic-ed from range in yards
(POSITION-LAT (scl:make-instance 'slot :value 0)) degrees, latitude (real) cydisp>

in parse-messaqe
(POSITIONI-DEPTH (scl:make-instanco 'slot :value 0)) feet, below NSL (real) <zdlsp>
(CO)OQAfDED-DEPTN (scl:make-instanc. 'slot :value 0)) lcd 4-14
(DEPTH-RATE (scl:mak.h-inatance 'slot :value 0)) lcd 4-14 (dive-rate)
(SPEED (scl:make-instance 'slot :value 0)) knots (real)
(C0OMANDED-SPEED (scl:maks-instance 'slot :value 0)) icd 4-14-89
(ACCELERATION (scl:make-iLnstance 'slot :value 0)) lcd 4-14
(THRUST (scl:make-instancm 'slot :value 0)) lcd 4-14
(CO)O~NDED-THRUST (scl:make-instanoe 'slot :value 0)) lcd 4-14
(DIVX-ANGLZ (scl:make-inatance 'slot :value 0)) icd 4-14
(COURSE (scl:make-instanoe 'slot :value 0)) (HEADING) degrees (real)
(COURSE-RATE (scl:make-instanoe 'slot :value 0)) deg/min (real) (heading-rate)
(C0OMXNDD-COURSZ (acl:make-instance 'slot :value 0)) icd 4-14
(RUDDER (sel:make-instanoe 'slot :value 0)) lcd 4-14
(COOGENDRD-RUDDEA (scl:make-instanoe 'slot :value 0)) lcd 4-14
(SZWSOR-IWGR (sci :make-instance 'slot)) an, relative range from ownship
(SENSOR-RINGZ-RATE (scl make-instance 'slot)) nm/soec2 (real)
(SENSOR-RAKIGE-SD (sol :make-instace 'slot))
(SYSTM-RAMGZ (scl:make-instancs 'slot))
(SYSTEM-R~ANGE-RATE (scl:make-instance 'slot)) nm/sec2 (real)
(SYSTE6M-RAi4GE-SD (scl:make-instance 'slot))
(REL-EXARING (scl:mako-instaace 'slot)) degrees frea.)
(SENSOR-BZARING (scl:makeb-instance 'slot)) degrees (real)
(SYSTEM-BEARING (scl make-in stance 'slot))
(BEARflWG-XNIT (scl:make-instance 'slot))
(SYSTEM-BEARING-RATE (scl:make-instance 'slot)) deg/min (real)
(SENSOR-SEARING-RATE (scl:make-instance 'slot)) deg/min (real)
(SENSOR-SEARING-SD (sci :make-instance 'slot))
(FTY (scl :mai-instance 'slot :value 'unknown)) s"e lCD Appendix A (integer)
(FFN-PROMaBILITT (scl:make-instaice 'slot)) 0 to 100 (real)
(CLASS (ad make-instance '&lot -.value 'unknowm)) see lCD Appendix A (integer)
(CLASS-PROBABILITY (scl:make-instance 'slot)) 0 to 100 (real)
(TYP% (scl:aake-instance 'slot :value 'unknoan)) see ICD Appendix A (integer)
(TYPZ-PROB&SILITY (scl:make-instanoe 'slot)) 0 to 100 (real)
(TORPZDO-1&UNCZ-DZTECTIo-LA3 (scl:make-instance 'slot)) 0-no launch, 1-missile

launched 2-torp engine det
3-torp enable detect

(TOR.PEDO-LaUNCE-TERJIAL-TLAG (scl :iake-instaace 'slot)) 0 - no explosion, 1 - missile
exploded (integer)

(DANAZ-AS3SSSWrT (scl:make-instsnce 'slot)) 0 - W/A, 1 - destroyed, 2 - damaged,
3 - missed (integer)

Figure 4-14. SA~~L' Trc fomto (Sheet 1 of 2)

0 4-40

(object-tracking (ol:make-instance 'slot))
(range-at-launch (scl :mak-instsnc. 'slot))
(criticail-target (scl:mak-instanc. 'slot))
(target-of-concern (sclmake-instance 'slot))
(critical-object (scl:make-iastanco 'slot))
(object-of-concern (scl:mako-instano 'slot))
(critical-surface (scl:mak-instanc. 'slot))
(surfaco-of-concern (scl:make-instance 'slot))
(critical-sbmewrged (acl make-instance 'slot))
(sumrqed-of-concern (acl:nak.-instance 'slot))
(critical-airborne (scl:make-instance 'slot)) ASW patrol or beloa
(airborne-of-concern (scl:make-instance 'slot))
(critical-torpedo (scl:make-instanc. 'slot))
(torpedo-of-concern (scl:mako-instance 'slot))
(cbortest-tims-to-lar-againt-owncbip (scl: make- instance 'aboc))
(optimum-cortet-time-to-lar-against -ounship (aol: mako-instance 'slot))
(shortest-time-to-intorcept (scl:make-instanoe 'slot))
(time-to-interoept (scl:ciake-instance 'slot)) ;.;CVA
(time-to-lar-againt-ownship (scl: make-instance 'slot))
(tims-to-lar-against-object (sel:uake-inctance 'slot))
(shortest-tiae-to-la-aainst-object (scl: mak-instance 'slot))
(optimm-hortst-time-to-lar-against-object (ccl :mak.-instance 'slot))
(tbxeoat-value (scl mak-instance 'slot))
(throat-walue-.issioa (scl:.a-instance 'slot))
(target-value (scl make-instance 'slot))
(aspect-angle (scl~make-instance 'slot)) degrees, owuship relative to object (real)
(zig-detect (ccl :mak-instance 'slot))
(speed-change (acl:make-instance 'slot))
(course-change (scl:mako-instance 'clot))
(aspect-angle-change (scl:make-instance 'slot))
(SNR-vlue (scl:make-instance 'slot))
(pod-.st (scc:make-insance 'slot)) his ability to detect us
(peb-est (scl:make-instance 'slot)) his ability to hit us0(ph-eat (4cl:make-instanoe 'clot)) his ability to be hit by us
(active-int (scl:make-instance 'slot))
(transient-det (scl:aake-inatsnce 'slot))
(O-transient-det (scI :ak-instance 'slot))
;;(intent (scl:aake-instanco 'slot))

; (intent -mission (ccl ~mak-instanoe 'slot))
(capability (scl:aake-instanoe 'slot))
;(VZSOI (ol ake-instance sclot))

(torpedo-target (scl:aake-instanoe 'slot))
(daemon nil)

(DISPLAY-ZCOM)
readable-instanoe-variables
writable-instance-variables
initable-instnce-variables)

Figure 4-14. SA Track Information (Sheet 2 of 2)

4-41

required. This knowledge is respons4ble for determining which contact
attributes should be calculated and when the calculations should be per-. formed.

4.3.3 Contact Definition Module

The Contact Definition module infers high-level attributes about contacts
and will handle the uncertainty associated with them. Based on the informa-
tion and assessment requirements given by Contact Assessment Control, Con-
tact Definition heuristically determines qualitative features of a contact
and handles Phase I level corrupt information.

The functions in this module which infer contact attributes use rules to
perform their assessments. These rules utilize contact information pro-
vided by the Database Maintenance module in the Tracks Database and informa-
tion in the Track Capability Database which contains specific knowledge re-
garding the capabilities of threats (subs, ships, ASW patrols, torpedoes).
Other information used would be any pre-briefed information, communicated
information, commander's intuition, rules of engagement, and environment
conditions (SVP).

Because of the qualitative nature of these assessments, it is essential to
have a strategy for handling uncertainty. During Phase I, theoretically
based probabilistic functions were used to handle the uncertainty in the
data for determining predicted probability of kill, probability of counter-
kill, probability of counterdetection, and other target solution parameters
such as range, which are derived by course and speed emulations in the simu-

* lation's TMA module. More advanced methods will be added to the stochastic
approach in later phases to help determine attributes such as probable
intent of threat, stronger threat identification.

4.3.4 Contact Monitoring Module

The Contact Monitoring module monitors the SA database for situations of
interest based on the planning activities of the commander and thus the
SOAS system. It also distributes contact information based on the informa-
tion requirements of the other SOAS subsystems.

ihe SA has a set of predefined monitors which are invoked and revoked ac-
cording to the currently active plans within the SOAS system. These moni-
tors are used to detect the occurrence of specific events in the external
environment which can signify the su:cess or failure of active plans or
identify a situation that might require new planning.

Contact information distribution is performed using information streams.
Information streams are essentially data streams containing a predetermined
list of contact attributes which are turned on based on the needs of the
SOAS planning subsystems. Depending on the type of data being sent, infor-
mation stream messages may be updated synchronously with a variable update
rate, only once, or asynchronously when attributes change. The purpose of
information streams can be summarized as supplying the right information,
to the right subsystem, at the right time, and at the desired update rate.

4-42

The majority of the monitoring functions in this module are implemented in
ART rules. Contact Assessment Control attaches values to attribute slots
in the SA database. ART rules fire whenever a change in a slot value
triggers a match for some fact in the rules. These rules then call Lisp
functions that check for conditions of the monitor by accessing relevant
contact attributes. The broadest and most inexpensive delimiting condi-
tions are initially checked, leaving the conditions with more expensive
computations to be done only after the initial conditions are satisfied.
When all conditions of a monitor have been met, a message is generated
notifying the appropriate SOAS subsystem that the monitored event occurred.

Information streams are implemented in much the same way as the SA moni-
tors. As active values change, Lisp functions are called which construct
the appropriate information stream message, accessing previously computed
attributes and calculating any other contact attributes required for the
message.

The knowledge used in the Contact Monitoring module has been acquired
through analysis of the SOAS Plan-Goal Graph and discussions with other sub-
system leads. These discussions are used to define the information require-
ments for plans, as well as describe how to perform appropriate contact
monitoring for active plans.

4.3.5 The SA Database

The SA database for Phase I can be divided into four sections:

e Track database - The track database is an object-oriented rep-
resentation of information known about each contact in the environ-
ment, implemented using Lisp Flavors. These contacts are represented
as tracks with some 40 attributes for each track, including a sepa-
rate track for ownship. These tracks, which have already been corre-
lated from various sensor contacts by a sensor fusion function, con-
tain any pre-briefed, sensed, computed, communicated, and inferred
information about all contacts in the environment, friendly or
enemy. (This sensor fusion function is simplified for Phase I, but
will be used in later phases to correlate many sensor platforms, for
which SA will enhance the output by reasoning more deeply about the
surrounding environment and all ambiguous and incomplete data).

* Track capability database - The tracks will also contain infor-
mation as to the capability of the threat. This data will be ob-
tained from a capability database, which for Phase I contained
weapons carried, weapon ranges, and sensor ranges based on published
information in Jane's Fighting Ships.

@ Mission database - This portion of the SA database contains in-
formation about the current mission, ownship status, and briefed
information, such as airbase locations, SOSUS arrays, and communica-
tions zones.

4-43

9 Engagement outcomes database - Unlike the previous three data-
bases which resided on the SA Symbolics machine, the databases and
models related to assessing engagement outcomes were hosted on the
Vax 11/780 for ease of computation. The following section describes
the models which were used as well as the algorithms for predicting
the outcomes of submarine engagements.

4.3.6 Assessment of Expected Engagement Outcomes

The paragraphs which follow describe the methodology for the predictive
algorithms and databases used by the Database Maintenance module to assess
the outcome of submarine engagements and the history of acceptance this
methodology has enjoyed in the Naval community. The specific equations
used to model submarine encounters are discussed first. Next is a brief
description of the numerous models necessary to perform these calculations.
The models include weapons models, propagation loss models, search planning
and evaluation models, time-motion analysis (TMA) models, and countermeas-
ure models. During Phase I, these models were used off line to provide
databases for Situation Assessment In subsequent phases, it is anticipated
that these models will be used both on and off line to provide information.

Algorithms for Comouting NOEs for Expected Engagement Outcomes

The algorithms used to determine probability of detection/counterdetection,
probability of track/countertrack, probability of kill/counterkill, and the
exchange ratio for each attack are the same as those developed for the sub-
marine engagement model SUBSUB.

*Originally, SUBSUB was developed specifically as a high-speed, cost-effec-
tive model for use in support of the ASW POM Appraisal. It was developed
in 1981 at the request of PM-4, presently SPAWAR, as an augmentation to SIM
II against which it was successfully launched in the POM-84 Appraisal.

Since its introduction in the POM-84 Appraisal, SUBSUB has been utilized in
several efforts aied upgraded significantly to represent new tactics and
systems. It was uqed in all the POM appraisal efforts since POM-84. In
1986, an interactive engagement was developed for the war gaming efforts at
the Naval War College. To date, this model is still being upgraded and
maintained for this purpose.

In 1987, the model was used in by Team A/ASW Appraisal. Following its use
in Team A, SUBSUB was again reviewed. It was reviewed by CNA at the request
of OP-951 as part of a broad effort to upgrade the fidelity f the ASW
Appraisal models. This review indicated several areas where improvements
were required to enhance the model's fidelity and to provide a more formal
mathematical basis for the overall model structure.

Presearch Inc. and Metron Inc. were jointly tasked to develope an approach
to implement the recommended improvements while maintaining the desirable
features of the existing model, i.e., rapid turn-around time and the
flexibility to represent a broad spectrum of weapon, sensor, platform,
environmental and tactical inputs. An acceptable approach was developed

* by Presearch and Metron, approved by CNA, and implemented by Presearch.

4-44

The algorithms developed in this last review provided the basis for the
quantitative assessment of systems and platforms for SOAS.

* The general approach for modeling SSN one-on-one engagements in SOAS is to
represent a submarine engagement as a series of independent probabilistic
events and to combine them using Markov Chain techniques. The probability
of occurrence for each engagement event is mathematically represented by a
definite integral that includes terms for the signal excess and the kine-
matic conditions. For example, the ability of a platform to detect prior
to being counterdetected is a function of the detection sensor performances
and search tactics of the two opposing platforms. Once the individual
events are determined, they are combined using Markov Chain processes to
yield engagement results. Events are combined according to a predefined
event sequence. This multiplication process is based on the assumption
that each event is independent of the previous event but there is range
dependence between events.

For example, consider the sample event probability tree given in Figure
4-15. In this tree, Blue has detected an enemy platform. When Blue
proceeds to launch an attack on Orange, six events are possible:

1. FCD: Blue launches a weapon; Orange has not counterdetected

2. CDT: Blue is counterdetected prior to weapons launch

3. FCT- Blue is counterdetected prior to weapons launch but launches a
weapon prior to countertrack

4. FCT: Blue is counterdetected and then countertracked but launches a
weapon prior to counterfire

5. CFT: Orange is detected prior to weapons launch but launches a
weapon prior to Blue track

6. CFT: Orange is detected and then tracked but launches a weapon
prior to Blue fire

From this tree, consider that a U.S. platform has detected an enemy subma-
rine. The probability that the U.S. platform is able to launch a weapon
without sacrificing covert operations, i.e. not be counterdetected, and
kills the enemy platform is determined using equation presented in Figure
4-16. In this equation, PCD is the cumulative probability of counterdetec-
tion at range R and zero is the probability density for Blue's track.
These probabilities are determined using sensor's Figure of Merits (FOM)
and propagation loss data. The term PK is the probability of a Blue kill
as a function of firing range.

Using the approach given in the above equation, it is possible to model
several possible current and future one-on-one engagements scenarios.
First, it allows the ise of active as well as passive in all phases of an
engagement. This is possible since no platform is constrained to using the
same sensor for all phases of an engagement. Second, it allows the full
parameterization of weapon systems. Third and final, the algorithms have

4-45

*00
a)o

C >

z
4.0

0 4
t U)

1.- I0 0

la-a-

P cc x 0
cu C

U) xw
cc0 x

x 0 2L

U) cm .1C
.C < x

Cu r .. Y

x x0
x- 0

cc X C =0

0 QCC

I-~ 0) cu Cl) Z co I~
It)Am NC jI4 0 .) Mi

09 21) 2 C C f a) C
4)0 0 0g. 0 ft As

as Clo Z) zoi-JO
V:. 0 . c 0 a 0 0 ~ I

0a) U) U) a) w
C 0 0 0 0 0) -
o 0DMm0 0 00

(.. C . *. a-

C. 000 0.

IL. 0L 0 C 0

00)

4-46

C -

~3 " (G,0":)

0-

P (k) secure= f cP(r F3 co , , .C ,
o [0o

-. J

Where: B = Blue 0 = Orange
D = Detect T = Track
1 = Secure Tactics 2 = Nonsecure Tactics

OXX are probability density functions

Pxx are curnu' ':ive probability functions

Fn(*/rn 1) = cumulative CPA distribution for the tactics
associated with the nth branch

fx(rm) = firing range associated with tracking range
rm

PK2 (rm) = weapon effectiveness at range rm (condition
2 = nonsecure attack)

Figure 4-16. Computation of One Enaagement Event Branch

4-47

the potential for future enhancements. These upgrades are necessary to

model future system, platform, and tactical ,mprovements.

* Weapons Models

The weapons effectiveness data used for predicting outcome of submarine
engagements is determined by one of two models, NTORP or MSTORC. Both of
these models developed by Presearch Inc., are used extensively to determine
weapon performance. These models generate the results found in the U.S. and
Soviet Weapons Effectiveness Baseline; these two documents provide a single
source of weapons effectiveness estimates intended for use in conducting
studies and analyses by the Navy.

The model NTORP determines the effectiveness of torpedoes in the runout
search mode. The probability of a runout torpedo hit is determined by
first defining the firing ship minimum and maximum lead angles that will
result in the interception of the actual target track by the actual torpedo
acquisition angle. Figure 4-17 shows the minimum and maximum torpedo lead
angles that will result in target acquisition opportunity. The probability
that the torpedo actually acquires the target is then determined by the
distribution of lead angles, which results from combining all significant
platform, sensor, fire control, and launch errors with torpedo gyro
errors.

The model, MSTORC, used to determine circle search torpedo effectiveness is
applicable to both air-dropped torpedoes and missile delivered torpedoes
(i.e., ASROC, VLA, SEA LANCE). The model is comprised of two distinct
sections: the development of an acquisition and closure matrix, and the
development of a splash point distribution matrix. The product of these
two matrices provides the probability of hit given attack for each threat/
scenario combination.

The generation of the acquisition and closure matrix utilizes the charac-
teristics of the weapon and the threat platform. The threat is assumed to
be in the center of an NxN size matrix at the time the weapon hits the
water, modeled as the origin in a Cartesian coordinate system. Subsequent
movement by the threat within the coordinate systems will be dictated by
the speed, acceleration rate, and evasion tactics for the submarine. For
each point in the matrix, the probability that the weapon can acquire the
threat is determined (averaged over a uniform distribution for initial
weapon orientation). Acquisition is based on a three dimensional environ-
ment where the acoustic search beams for the torpedo provide both vertical
and azimuthal coverage.

The acquisition range for a particular scenario is impacted by the subma-
rines target strength, target doppler, target aspect, and the torpedo sonar
performance characteristics. Upon acquisition, the ability of the weapon
to close the target is driven by the range to the target, the relative
speeds of the target and torpedo, and the endurance of the weapon.

The generation of the splash point distribution matrix is driven from the
ability of the attacking platform to localize the threat and to deliver the

4-48

Target
Track

Target at Torpedo
Weapon Launch Beam Pattern

Maximum Lead Angle

Minimum Lead Angle

Own-Ship Heading

Figure 4-17. Geometry to Determine Lead Angle Limits

4-49

weapon to the right point. The model is designed to compute two sigma
values and two bias values for down range and cross range errors. These

*sigmas and biases are determined for each specific scenario and firing
range, and are impacted by the type of sonar system and technique being
used to perform the target motion analysis (TMA). The sigma values are
used to determine the probability of a weapon splashing at each point on
the matrix with the center of the matrix corresponding to the origin of a
Cartesian coordinate system. The biases will shift the location of the
origin of the splash point distribution matrix relative to the origin of
the acquisition and closure matrix. The subsequent product of the two
matrices provides the probability of hit given attack for the scenario.

Representative answers for weapons effectiveness questions were collected
for this Phase I effort and stored in a database for referencing by the
Situation Assessment module. For this initial database, the parameters
considered (and thus the indices of the database) were the targets AOB and
the range to the target. There are many degrees of freedom left to exploit
remaining in the model for a more complete database.

The models consider the effects the following major input parameters that
might be used as parameters for predictive databases:

a Range
* Initial AOB
@ Downrange and crossrange placement error (Solution quality) Target

alertment and maneuvers
Target initial speed
e Weapon/target depths
e Vertical and horizontal beam pattern

For those parameters for which there is partial or no information to

consider, assumptions may be made or averages computed.

Environmental Model

The environmental data used for predicting the outcome of submarine
engagements considers a wide variety of parameters such as the sound
transmission loss data and ambient noise as a function of geographical
locations. The propagation loss data was generated using the Generic Sonar
Model (GSM) and ambient noise was obtained from the Acoustic Baseline.

The Generic Sonar model was developed as a joint effort between NUSC and
NOSC at the request of POSSM, the Naval Sea Systems Command 06H1 Panel On
Standard Sonar Models. The model was developed to aide in the design of
sonar systems. Along with providing the necessary transmission loss data
for the equations used to predict engagement outcomes, the model was
designed to determine passive and active signal excess as a function of
range frequency and source/receiver depths, to perform LOFAR diagrams,
Autocorrelation functions and cross-correlation functions.

The Acoustic Baseline (ABL), originally written in 1973, provides a common
standard reference for worldwide environmental data provided by the Naval

* Oceanographic Research and Development Activity (NORDA). The document is

4-50

continually upgraded and revised in an attempt to represent the complexity
of oceanographic and meteorological conditions that affect underwater

*acoustics. It contains sound velocity profiles and ambient noise for all
geographical areas.

4.3.7 Search Planning and Evaluation

Prior to engagement, Situation Assessment can optimize the search planning
and underway search evaluation phases of ASW operation by determining the
detection/counterdetection areas and computing measures of effectiveness.
Candidate MOEs for search planning and evaluation include the following:

e Sweep rate
9 Probability of detecting first
@ Probability of secure detection
* Average and minimum probability of detect
* Daily engagement work
a Exchange ratio
* Probability of kill

The probability of detecting first provides for considering the two-sided
nature of the problem and requires algorithms for predicting counterdetec-
tion capabilities. The probability of kill along with the exchange ratio
allows the CO to evaluate the risk associated with achieving the mission
objective of killing the target, and to tailor that risk to the operational
scenario. (In the event that the SSN is performing area clearing search for
a CVBG that is to arrive soon, the CO should be willing to risk more.)

* Sweep rate will be calculated using the integrated effect of all of the
search capability, not just a cookie-cutter representation times ownship
speed.

The methodology for optimizing search planning and underway search evalua-
tion was developed by Presearch, Inc. Although this functionality was not
integrated into the SA subsystem for Phase I, data similar to the results
of running these algorithms was presented in the notional displays during
the SOAS Phase I demonstrations.

The methodology was developed and a prototype implemented as a part of the
BSY-II proposal effort. The modeling approach utilizes this proven,
straightforward methodology that readily incorporates critical realistic
features of ASW operations including vertical/horizontal asymmetries;
target motion; short and long term signal excess; continuous and transient
target/ ownship noise sources; constant speed or sprint drift tactics;
Adjunct search using UUVs; conditional, cumulative, and instantaneous
probability distributions; and open, reflecting, or semipermiable area
boundaries. The analysis will cover a spectrum of realistic operational
scenarios including area, barrier, datum,and speed of advance searches
against single or multiple, known or unknown targets.

Search planning will comprise plans for sensor employment, the track plan,
a speed plan (for constant speed or sprint drift), a depth plan for the
ship, a depth plan for the towed array,and a depth plan for adjunct

* sensors. These plans can consider the search area geometry, the type of

4-51

acoustic environment, PIM requirements, communication requirements, and
average and extremal treatment of multiple target types.

.Search evaluation will determine the detection/counterdetection areas and
MOEs for the actual conditions, both current and historical (up to the last
two days). A target probability distribution is calculated and displayed.
The displays allow for sensitivity analysis to parameters such as target
speed and target source level variation from the mean. The possibility of
background search monitoring to generate situation assessment alerts will
be considered.

Search planning and evaluation will require significant data entry in
Phases II and III because of the lack of a bus architecture. This should
present little problem due to the time available during the search phase.

The human factors engineering for the display of information resulting from
the use of these algorithms has to a large extent been completed. The
displays have shown themselves to be intuitive and useful in a number of
Navy reviews.

4.4 SYSTEM MANAGER TECHNICAL APPROACH

System Manager (SM) supports the other SOAS subsystems by handling all
interactions and coordinating all planning activities among subsystems, by
providing a consistent global SOAS database, and by monitoring currently
invoked plans. Figure 4-18 shows these functions along with the primary.inputs and outputs in the SM functional design.

Inputs to the SM are classified into two groups:

1. Environmental information which describes the current
state of the submarine and the external threat environ-
ment

2. Planning information including proposed tactical and mis-
sion plans, and plans representing the Commander's intent

SM outputs are classified into two main categories:

1. Global SOAS information including the threat environment
data which is distributed to all other SOAS subsystems

2. Plan coordination information which handles the proposi-
tion, invocation, and maintenance of plans throughout the
SOAS system

The SM subsystem software design uses a blackboard architecture consisting
of a database (the SM blackboard) and knowledge sources which perform SM
functions. The SM blackboard contains most of the Global SOAS Blackboard
as well as information local to the SM. All communications among the SM's

4-52

<.

,Z Z

0

inni

C

z B2
z

ot

LA.

4-53

internal modules take place through the SM blackboard. The knowledge
sources using the blackboard are segregated into the SM modules described

* below and shown in Figure 4-19.

All knowledge within the SM falls into one of three domains: interface
knowledge, planning knowledge, and control knowledge.

Interface knowledge includes knowledge about how to handle the inter-
faces with each SOAS subsystem, what information to expect from each sub-
system, and how to distribute information throughout the SOAS system. This
knowledge is acquired through negotiations with subsystem leads and imple-
mentors and through prototype integration exercises. Interface knowledge
is documented in the SOAS Interface Control Document (ICD) which defines
all messages among SOAS subsystems.

Planning knowledge consists of knowledge for coordinating the progres-
sion of plans through the SOAS system, maintaining the plan structures, and
monitoring invoked plans. This knowledge exists in the context of the SOAS
Plan-Goal Dictionary and the SOAS Plan-Goal Graph. Planning knowledge is
acquired through negotiations and through development of the plan pro-
gression and approval cycles. Subsystem leads also provide knowledge for
the monitoring of plans for which their subsystem is responsible.

Control knowledge includes reasoning about the response time necessary
for SOAS subsystem activities and assigning time constraints to subsystem
tasks. This knowledge is acquired by considering the SOAS system-level
functional timing requirements along with the SOAS subsystem leads' esti-

* mates of time requirements for each subsystem task.

The SM software design which has been developed to implement the functions
described above can be seen in Figure 4-20. In this design a separate
process monitors each subsystem connection for incoming messages. These
processes use a queue to pass messages to another process running Inference
Corporation's Automated Reasoning Tool (ART). ART contains the rules which
implement the SM functions and maintain the SM blackboard.

4.4.1 SM Subsystem Interface Module

The Subsystem Interface module handles the physical interfaces between the
SM and each SOAS subsystem. This module's simple I/O utility functions
allow it to be implemented entirely in Lisp.

Upon SOAS system initialization, a connection is established over the Ether-
net interface with each SOAS subsystem, residing on separate Symbolics com-
puters. For each connection, a dedicated Lisp process is generated which
monitors the connection for incoming messages from the other SOAS subsys-
tems. Each message received is stored and the destination address of the
message is checked. If the destination address is the SM, then the message
is put on the SM input queue which is eventually read by the Blackboard
Maintenance module. If the destination address is a subsystem other than
the SM, then the message is forwarded directly to the subsystem 3pecified
by its destination address.

4-54

0_ _ ..

(CL 0

2. cc.0
0 n

oc

ccI

-i I

4-5

EU
0

4.'
tlU
aC

4-55

0. 0
Cl) U)

.020

.0 '4-

0 0

0
0 2

C%j

CL SO
s4)

I

do

90'

00

4-5-

All SM outgoing messages are passed to the Subsystem Interface module and
sent out across the subsystem connection specified by the destination.address of the message.

4.4.2 SM Blackboard Maintenance Module

The Blackboard Maintenance module maintains the SM Blackboard which con-
tains the Global SOAS Blackboard describing the current state of the world
and the SOAS system. Access to information in the blackboard is controlled
by this module so as to provide the other subsystems with information both
unsolicited and when queried.

The SM Blackboard (Fig. 4-21) contains local facts used internally by SM as
well as two databases which comprise the Global SOAS Blackboard:

1. Information Database which contains data describing the
current state of the submarine, its performance limita-
tions, and its external environment including telecon
threats.

2. Plan Data which contains both a static and a dynamic
plan structure describing plans within the SOAS System

The Plan Database contains static and dynamic plan structures which are
tree data structures representing all or portions of the SOAS Plan-Goal
Graph. The static plan structure represents the entire SOAS Plan-Goal
Graph and contains a-priori information about every plan class. Informa-
tion stored for each plan class includes its feasibility status, the parent
goal which the plan class exists to satisfy, the subgoals established by
the plan class, any actions necessary to perform the plan, and monitoring
requirements for monitoring an invoked instance of a plan class.

The dynamic plan structure is maintained as plan instances are suggested by
SOAS subsystems and invoked by the CI. Each plan instance in this tree
points to the specific instance of its parent goal and contains details re-
garding the progress of the plan instance and the constraints of its sub-
goals, actions, and monitors.

All data in both the Information and Plan Databases are represented using
ART facts. Submarine and environment information exists primarily as
"flat' facts. Plan information exists as linked facts forming a tree
structure with parameters in one fact pointing to another fact. The tree
structure of plans is more suitable to frames (schemas in ART); however,
the implementation of the plan trees using "flat" facts out performs an ART
schema implementation.

4.4.3 SM Plan Coordination Module

The Plan Coordination module (Fig. 4-22) coordinates the introduction of
new plans with currently invoked plans and handles all interactions requir-
ed during the progression of a plan.

4-57

c E~ co

00
c M-

00

IL- *00~

0 -n ca EL

o o _= l 0

._on uO: -

0a "" 0"0

_, _ ..o
UJU

4-582

... ")

0 0O --... C

Cc0(AC .&

00 0 0Cro

0E E cc MUM
00oaoo *1:

0;z == 0 Lu.

Cu 0 Cc 0 (0

. - C.2

Lm 1. 3 .C

(a 0 c0 % 0 wo

*L w __ a LCoco- La

Co 0..
*NO8

E
0

C C

CL C
X a

OCC

0 0

U) ,

4) CIS 0

c~

4-59

The knowledge needed to perform the Plan Coordination functions is imple-
* mented in ART rules. These rules monitor the Plan Database portion of the

SM Blackboard as plans progress through the plan life cycle. Once a plan
is suggested by a SOAS planning subsystem (TP), the Plan Coordination mod-
ule looks at the plan's resource requirements to assure that there are no
conflicts with the requirements of any currently invoked plans. If free of
conflicts, then the plan is proposed to the CI which, in turn, invokes or
rejects it.

Knowledge about the resource requirements of a plan and any anticipated
conflicting plans is stored as facts with pointers to the plans in the
static plan structure to which they apply. This knowledge is acquired
through discussions with the SOAS subsystem leads responsible for the
generation and use of plans within the SOAS system as well as by observing
the interactions between plans during prototype integration exercises.

4.4.4 SM Plan Monitor Module

The Plan Monitor module monitors the constraints under which a plan in-
stance is executing. Achieving a state described by the monitoring con-
straints of a plan instance signifies that the conditions for completion of
this plan instance have been met. Failing to achieve a goal state within
some given time or entering a state outside of the limitations specified by
the plan instance's constraints signifies the failure of this plan instance
and a need to revise the plan or use a different plan.

The completion or failure of a plan instance determines when replanning is
necessary. Replanning can be the generation of a new plan due to the com-
pletion of a plan, the generation of a new plan due to the unrecoverable
failure of a plan, or simply the generation of a revised plan due to failed
monitoring constraints. Each of these conditions is determined by the
success or failure of constraint monitors associated with a plan instance.

Monitoring and information requirements associated with each plan are
stored as part of the static plan structure. As plans become invoked, the
SM references these requirements and invokes the appropriate monitors. The
SM is responsible for the actual monitoring activities required by some
plans; however, the SM uses the SA subsystem to perform the monitoring
required by several other plans. For monitoring performed by the SA, the
SM sends monitoring and information requests to the SA which help to focus
its contact assessment.

4.4.5 SM PlanninQ Control Module

The Planning Control module controls the non-real-time activities of the
SOAS System and coordinates these activities to handle the real-time simu-
lation environment.

Future functionality of the Planning Control module will include reasoning
about the response time of subsystems in light of the currently active
plans, urgency of the situation, and activity of the SOAS subsystems. The
SM will be able to assign response-time requirements to each task performed

4-60

through d.scussions with subsystem leads to develop a better understanding
of the inner workings and processing time requirements of each SOAS sub-

* system.

4-61

5.0 SIMULATION ENVIRONMENT DESCRIPTION

Lockheed developed the Phase 1 Submarine Operational Automation System
demonstrations to show the capabilities of the SOAS expert systems during a
submarine engagement. These expert systems have the ability to quickly
evaluate available system information as well as predicted performance in-
formation. Through this evaluation the merit of various tactical alterna-
tives with respect to their risk to Blue are ascertained.

The purpose of this section is to describe the numerous algorithms which
were developed and implemented in support of this effort. These algorithms
provide a method to simulate the engagement of two submarines. Using
current and projected data, they consider the availability and capabilities
of submarine systems such that command decisions can be made for any given
phase of an engagement.

5.1 OVERVIEW OF THE SCENARIO

This section provides an overview of the Phase I SOAS scenario. It de-
scribes briefly the environment chosen for the engagement. It identifies
the players and their respective systems, i.e., sensors, weapons, and
countermeasures as well as their tactical options. It also provides an
overview of the numerous degrees of freedom available in the simulation.

* During Phase I, a sample submarine engagement scenario was developed. This
scenario formed the basis for identifying requirements, conducting knowl-
edge engineering sessions, and running the SOAS software. The scenario
began with two platforms on patrol, Blue and Orange. The Bluet platform
had limited a-priori information about the Orange platform in the area from
relatively old surveillance data. The Orange platform was controlled by
the scenario controller. Since this was an application of expert systems
technology and not a mission analysis, the Orange platform had complete
knowledge of Blue. Orange knew Blue's current position, course, and speed
at all times. The Orange platform's counterdetection ability was
calculated and presented to the operator; however, location information was
presented prior to counterdetection. Allowing scenario control access to
this infor-mation permitted the operator to manipulate the scenario to best
test thp -4S system by making ad hoc assumptions about the Orange state of
awarenes'

One of the "-,or factors to consider in the command decision process is how
envirorenta, conditions impact sensor performance. Not only does the
environment determine the acoustic performance and thus the likelihood of
detecting signals, but also the physical attributes of the environment can
limit the use of certain sensors. For this scenario, a location in the Sea
of 0 was selected. This choice was based on environmental characteristics
and the high probability of future submarine encounters here.

5-1

A major characteristic of this environment is the presence of a strong.layer that creates a wide variety of tactical options which stress the
Commanding Officer's decision-making abilities. The sound generated in a
layer is not dissipated but remains within the layer. Therefore, a sensor
that is in the layer with the source will have longer-than-usual detection
ranges. However, if a sensor is across the layer from the source, then the
opposite is true. Detection ranges in the cross-layer case are typically
severely reduced. Another major characteristic of this environment is that
it is relatively shallow. The maximum bottom depth of this location is
1200 feet, with areas of even less depth in the operating area.

Other major factors to consider in making command decisions are the oppos-
ing platform and its respective equipment listing. The key players in this
scenario were a Soviet Generic 90's type SSN for Orange and a U.S. Improv-
ed 688 class submarine for Blue. Both platforms had low source levels with
respect to current platforms. Both were fitted with towed arrays as well
as hull-mounted sensors. Blue was fitted with two hull sensors: the BQQ-5C
and the Wide Aperture Array (WAA). The Orange platform was equipped with
the projected 1990's sensor suite. All platforms were assumed for this
demonstration to be restricted to using their hull sensors. The shallow-
ness of the water restricted the use of the towed array; therefore, only
hull sensors were utilized. All hull sensors were operated in the passive
mode.

Both platforms were also equipped with torpedoes and countermeasures. For
this scenario, the blue platform was equipped with regular Adcap, the
Orange with an Mk 48 type torpedo. Each platform could fire single or
salvo shots. Wire-guided torpedoes were not considered. Blue launched a
torpedo based on targeting information from WAA. Orange could launch torpe-
does using any information available to scenario control, e.g., line of
sight or true course, speed, and position information. Along with launch-
ing torpedoes, both platforms used this information for the launching of
stationary and/or mobile countermeasures. Countermeasures were generic and
were assumed to have a delay onset determined by the launcher. Stand-off
weapons were not a factor in this scenario.

5.2 DESCRIPTION OF THE SIMULATION/EMULATION METHODOLOGY

This section describes the simulation of the scenario which was played. It
discusses each of the five processes executed to model the submarine engage-
ment: the kinematic control process, the platform controller processes, the
detection process, the tracking/TMA process, and the torpedo targeting pro-
cess. For each of these processes, the algorithm on which it is based as
well as input and modeling assumptions are provided. The current input
values are unclassified and reflect plausible performance estimates for
generic platforms and systems.

The implementation of the simulation was through multiple independent soft-
ware processes. These processes were executed following the setting of
event flags. When an event flag for a process was set, the identified
process was then executed and all other processes that manipulate data in

5-2

common were set into hibernation. While executing, this process had access
to all required global data such as truth tables, sensor data tables, and
s ystem solution tables. From this information, the process performs the
necessary calculations. Once the process has completed execution, the
global data is released and the next process in the queue is executed. Fig-
ure 5-1 identifies each of the processes executed during this simulation.

Process timer was the controlling process. It maintained the clock used
throughout the simulation and defined the order of execution of the five
process types identified. These processes are:

* the kinematic control process
* the platform controller processes
* the detection process
e the tracking/TMA process
* the torpedo targeting process

As expected, the kinematic control process determined the kinematic state
of each platform. For each platform, it determined the current position in
the x, y, and z coordinate system. For each platform, it also determined
the current acceleration rate, the course, and the speed. This process was
executed for each time step of the simulation.

The platform controller processes defined the orders that were sent for the
kinematic process. It consisted of three subprocesses: the torpedo control
process, the countermeasure control process, and the Orange control process
(SOAS controlled the Blue platform).

* The torpedo control process defined the behavior of the torpedo at
pre-enable, search and homing. For each of these torpedo phases, it
defined the ordered speed, depth and course of the torpedo.

9 Similar to this process was the countermeasure control process. It
however, defined the behavior of countermeasures.

* The third subprocess identified was the Orange control process. It
allowed the Orange commander to input orders for the Orange platform
from a terminal keyboard.

The detection process determined if a sensor detected a platform based on
sensor capabilities and environmental conditions. This process was based
on the standard figure of merit equation. Short-term variation in signal
excess was included in each time step. The detection data generated from
this process was then accessed by the next process identified, the Track-
ing/TMA process.

The Tracking/TMA process predicted a target's course, speed, range, and
bearing. This process allowed for lost contacts but did not consider false
contacts. (Future phases will add false contacts as well as other required
enhancements.) It utilized detection data as well as predefined criteria
for track to determine a solution on the target. Targeting was performed
on command, rather than on an a-periodic basis.

0
5-3

LAU

0 0 0 I
-J1-LA L

0 Zu Z ua l Au
l:u1- ui-Z

IZ % %A% %ALU kA

0 L0

U, U, U&A

INC

$AU
Cc U-

%A2
LU 16LA L,

LA 1-o cc -j i Z

LU z I- CC -- u
-- Z 000o 0- 0

LU LU V 6 . 0.0~

u LZLUIU~w0

o zOI- L 0~ .JZU

0.. LJU

z

LU

5-4-

The last process identified for this simulation is the torpedo targeting
process. Using the predicted target course, speed, range, and bearing,

* this process determined the appropriate lead angle for weapons launch. It
was based on the assumed speed selection presets of the torpedo, the torpe-
do acquisition capability, and the contact system solution.

5.2.1 The Kinematic Control Process

The kinematic control process determined the kinematic state of all the
objects in the scenario at each time step of the simulation. Based on
ordered course, speed, and depth, it determined the current position in
the x, y, and z coordinate system, the current acceleration rate, the
course, and the speed.

Figure 5-2 shows the flow process diagram for this process. Each object
was modeled to have the capability to turn, dive, and/or accelerate. The
actual degree to which an object moves is defined according to performance
specifications. For modeling purposes it was assumed that a platform will
change course prior to changing depth and/or speed. Following the comple-
tion of a course change, the platform will then change depth prior to a
speed change. Following a depth change, a platform will then change
speed. Torpedoes change course and speed almost instantaneously, whereas
a submarine's maneuverability is more limited.

A submarine's turning radius is a function of a platform's length, rudder
setting, and speed. The rate of depth change of a submarine is a function
of the dive pitch rate or vertical dive rate and the dive/climb angle.

* From these parameters, the submarine dive geometry is obtained (Fig. 5-3).
Similar geometry is used to simulate a submarine in a climb. For this
simulation, the maximum operating depth was assumed to be 1200 feet; the
vertical turn rate was 0.5 deg/s/kt, and the dive angle was 25 degrees.

A platform's speed changes are a function of platform type and thrust.
Increases in a platform's speed were derived from the following equation:

V(t) - VM * (1 - ((T2-t)/(T2-T3))AAN)

where

T2, T3, and AN are constants

VM is the platform's maximum speed.

Decreases in speed were modeled linearly and were at the tactically
projected stopping time. Deceleration was a function of initial speed and
the time required to come to all stop.

5.2.2 Platform Controller Processes

This process consisted of three subprocesses: the torpedo control process,
the countermeasure control process, and the Orange control process. All
were responsible for communicating the commanded speed, depth, and course
orders for the respective platforms.

5-5

f f f

z L
> '

I-,-

ui ui AJ 4,

LA. %A0A C A
VC

z
LA.

0 5-6

03--

LU

1 4)

cc:

uiJ

iII> o
0 CIO

z 4:

1=
uN

I--

--- - - - - -I - -I -i

a.n
zS

_j LA

%Aa

5-7

Torpedo Control Process

* The torpedo control process determined the behavior of a torpedo up to
detonation. It defined torpedo runout, search, and homing based on
torpedo presets and the launched angle.

At the time of fire, a torpedo is initialized as a player in the scenario
with the same location as the torpedo launcher. The torpedo's speed is
set to runout speed; the current course is set to that of the launcher,
and the ordered course is set to the inputted gyro angle.

Once the torpedo achieves the ordered course, it continues along this
course until the enable point is reached. At the enable point, the torpe-
do slows to search speed and torpedo sensors are activated. If one or more
targets or countermeasures are in the beam, a random draw appropriate to
the signal excess is made for each target. When the threshold value is
exceeded, the torpedo locks on to the target it is drawing against. This
allows for the random selection of a target for closure when more then one
target is within the beam at the enable point and allows for the torpedo
being drawn off by the other contacts while in homing as the beam width is
reduced during homing.

Homing is modeled as a simple pursuit curve. This is accomplished by
setting the torpedo's ordered course to the target's bearing at each time
interval.

* If the target is anything other than a countermeasure, the program checks
at each time step to see if the target is within a fusing range. If so,
the torpedo explodes and both the torpedo and the target are no longer
active.

If the target is a countermeasure and the torpedo overruns it, or if the
target is not a countermeasure and the torpedo overruns it without passing
within fusing range, then the preset overrun is applied. On overrun, the
torpedo circles the overrun target with a predefined radius at search
speed and continues to look for a target. If the overrun target moves out
of the circle, the torpedo will be re-acquired and attempt to close.

The torpedo continues in this manner until the fuel supply is exhausted
which is a function of time and speed.

Countermeasure Control Process

Countermeasures were deposited at the location of the launching platform.
The countermeasure could be either stationary or mobile, depending on pre-
sets, and was quiet at launch. The countermeasure remained quiet for a
preset amount of time; it then began to broadcast. Prior to broadcast a
countermeasure had no effect on the scenario. Once broadcasting, the coun-
termeasure was capable of attracting torpedoes in search but was unable to
detonate a torpedo. The probability of a countermeasure attracting a torpe-
do was equally as likely as any other contact, given sufficient signal. excess.

5-8

Orange Control Process

* The Orange operator was provided with a visual representation of the true
courses, speeds, and positions of all the contacts in the scenario as well
as a VAX terminal running an application program for driving all the
players (players were taken to mean any torpedoes, CMs, or platforms)
except for the Blue SSN. From this console, the Orange operator had the
capability to launch weapons and countermeasures, order course, speed and
depth changes, and various other minor functions.

Orange counterdetection capability was provided, but it was up to the
Orange operator to act on this information. Since the Orange operator was
presented with true positional data, it was up to the operator to emulate
the sensors and TMA abilities of the Orange platform. The operator was
given the true intercept geometry and was responsible for adding noise to
the gyro angle to reflect imperfect information.

5.2.3 Detection Process

The detection process determined the signal excess associated with a hull
sensor in the passive mode This signal excess was the difference in dB
between the received signal-to-noise ratio and the recognition differen-
tial. The signal excess value was a function of the target's radiated
noise level as a function of speed, the environment, the background noise
level against the sonar system, the directivity index of the array, and
the recognition differential. The combination of these terms were defined

* by the passive sonar equation given below:

Signal Excess - Ls - Nw(r) - Le + (AN - DI) - RD

where

+ is for power summation

Ls is the signal level of the target
Nw is the propagation loss as a function of range
AN is the ambient noise
DI is the directivity index
Le is the self-noise
RD is the recognition differential.

A Lamdna-Sigma jump model was used for providing the long- and short-term

variations inherent in the system.

5.2.4 The Tracklnag/MA Process

This module emulated the processing of information from the sensor up to
the system solution table. The module replaced all of the following
systems and functions:

5-9

* Rapid Ranging Sensor
a Contact Data Correlation
e Target Motion Analysis (TMA)

First, the signal excess information was taken from the detection process.
If the signal was greater than zero for a specified time period, then a
bearing to the target became available, and a bearings-only contact report
and system solution were generated. If the contact was within range, and
the geometry of the encounter had an acceptable bearing, then a
rapid-ranging solution was generated. This solution, consisting only of
the target's bearing and range, along with the time of the event, were
entered into a stack in the sensor data table.

This solution was generated by modifying true range and bearing with an
error contribution. The magnitude of both the range and bearing errors
was dependent upon the signal excess, the relative bearing, and the true
range. The greater the signal excess, the closer the relative bearing to
90 degrees or 270 degrees, and the lower the true range, then the smaller
the errors for range and bearing. The sensor data table (SDT) was updated
at each time step when the signal excess was greater then zero. When there
were four or more such records in the SOT, the process began emulation of
the TMA function.

TMA was emulated by finding a least squares fit to the datums in the SOT
to provide a target course and speed. The results of the TMA emulation
were posted in the System Solution Table (SST). It should be noted that
several items were repeated in the SST that were present in the SDT (i.e.,

* bearing, range, bearing rate, range rate). When they appeared in the SST,
these parameters were temporal data computed from the system solution.
When they appeared in the SOT, they reflected the near instantaneous data
found by considering the most recent sensor information.

When a contact was no longer held (i.e., Signal excess (SE) was less than
zero), the System Solution Table was updated by dead reckoning along the
solution path. This provided for a solution on a contact that was coming
in and out of sensor range. When the contact had not had a positive SE
for a specified period of time, the contact was assumed to be lost and a
message was sent to SOAS.

5.2.5 TorPedo Targeting Process

This process determined the appropriate angle for weapons launch using pre-
dicted information about the target's course, speed, and range. The angle
determined was a function of torpedo presets. It considered the torpedo's
minimum pre-enable run, the fraction of the run at laminar intercept at
pre-enable speed, the runout, search and homing speeds, and the endurance
of the weapon. Figure 5-4 illustrates the geometry for this process.

For each lead angle request, the model determined the time for laminar
intercept. Using the law of cosine and the geometry described in Figure
5-4, the time to laminar intercept, TL, was defined to be the positive
root, if one existed, of the following equation:

5-10

POINT OF LAMINAR

SEARCH SPEED

ENABLE POINT

.~RUNOUT SPEED

FIRING POINT

Figure 5-4. Too~do Intercept Geometry

5-11

(VO^2-VTA2)*TL+2*(VO*L+FR*VT*COS(AOB))*TL + (L^2-FR^2) = 0.0

. where

VO is the torpedo's pre-enable speed

L is the distance from the target at time of laminar intercept
at speed VO

FR is the range to the target at time of fire
AOB is the angle on the bow
VT is the target's speed.

If a positive root was determined, the lead angle, LA, was determined. The
equation for determining the lead angle was defined as follows:

LA = arcsin ((sin(AOB)*VO*TL)/(VO*TL+L)).

If no solution was found, the process returned a lead angle equal to the
system solution bearing (e.g., line-of-sight solution).

5

5-12

6.0 RELATIONSHIP OF PHASE I PRODUCT TO OVERALL SOAS CONCEPT

The goals that were set forth for this concept development phase were to
develop an automation concept to assist the command-level decision makers.
The requirements of the Submarine Operational Automation System program are
to develop a system that will enhance the mission effectiveness of the
attack submarine, to provide demonstrations and evaluations of the benefits
of intelligent systems technologies, and to possibly influence the develop-
ment of technologies by providing an application for them,thus generating a
technology "pull" to drive their development.

6.1 SYSTEM OPERATION

The operational relationship between the Phase I product and the the final
system is that they are similar in architecture but have differences with
respect to the hardware to be used, the language for implementation, and
the actual interfaces.

6.1.1 System Architecture

The architecture used during Phase I was based on a distributed blackboard
on multiple Symbolic workstations. The Phase II and III architecture will
retain the distributed blackboard techniques; however, the system will be

*located on a single machine.

6.1.2 Predicted SOAS Architecture

As the design of the SOAS moves toward the deployment implementation, the
task structure is expected to change. A special-purpose overall scheduler
will provide computing resources for processes to be scheduled. This
scheduler will allocate resources depending upon predetermined modes in
which the SOAS will operate. Individual processes will detect state
changes which will cause the scheduler to change modes. The individual
scheduler for the subsystems provide permission for their processes to run
depending upon the amount of computing resources allocated and the current
mode of the system.

Once a process has permission to run, it will actually run when another
process detects the event which should trigger the first process. Implicit
in this architecture is a hidden constraint on the system design; the
sequential nature of the activation of many of these processes must be
taken into account in the detailed analysis of the architecture and
processing requirements.

6.1.3 Situation Assessment

SA requires the finest-grained scheduling. We assume we are processing
multiple possible tracks per second with 100 active monitors. The process-

6-1

ing level management will ensure that half of the monitors are used, 65% of
the algorithms run and 5% of the estimates for the computing requirements

*of each, the best estimate for SA over the one hundred twenty seconds is a
level 20 MIP process. During the Torpedo Evasion maneuver where the
detailed track estimate of the in-bound torpedo must be continuously fed to
the Tactics Planner, an additional 7.5 MIPS is required on top of the
normal SA functions which must still proceed.

6.1.4 Tactics Planning

The processing load for TP can be divided into three parallel paths. The
first manages low-level, spasmodic computing related to management of ship
evolution, search planning and attack planning. The second is the constant
level of computation associated with the management of the planning process
and resolutions of conflicts. The last segment is reserved for high-demand
activities such as torpedo evasion.

6.1.5 Command Interface

Three relatively separable paths make up the computing load for the CI.
The data manipulation associated with plan management and symbolic messages
consumes one path. The more dynamic processing for constitute a second.
The third path is fully occupied with the high-load processes associated
with information management on the screens.

6.1.6 Hardware

* Reasoning functions in real-time computer processing present a major
challenge to SOAS hardware and software designers. Therefore, the Lockheed
team's approach has targeted the SOAS development toward parallel process-
ing architectures and high-performance VLSI components. Symbolics
workstations and IRIS graphics workstations were used in Phase I to
facilitate the transfer of the the similar PA architecture into the SOAS
environment for concept demonstration. The PA program, just like the SOAS
program, recognizes that the use of these workstations are inadequate for a
program with large amounts of functionality that runs in real time.

The SOAS choice for the next phases are Solbourne computers - SUN clones
that run in parallel. The Solbourne 4/804 is a fully binary-compatible
with the Sun-4; in fact it runs the latter's SunOS operating system.
Nonetheless, the Solbourne Series4/804 doesn't stop with the complete
emulation. This system adds one significant feature not available from any
Sun system: multiprocessing. The Series4/804 has four Cypress processors,
which function asymmetrical - that is, with one CPU handling the
distribution of tasks and I/O. The primary CPU distributes the workload
among the CPUs and handles any kernel-level tasks such as file activity and
process control or communications. Solbourne includes a fully supported X
Windows and X Windows debugger.

0
6-2

6.1.7 LanQuaQe

OThe ease of LISP in quickly prototyping AI solutions has been very useful
in the PA and SOAS programs. However it is recognized that LISP has a
maintenance and performance problem and production problems, so that LISP
is not suitable for real time operational use. For these reasons it is
necessary to abandon LISP.

Candidate replacement languages considered the most seriously were C++ and
Ada. The C++ language offers many of the attributes that are required for
the next phases of SOAS without some of the risks involved in going direct-
ly to Ada. With regard to Ada, based on a realistic assessment, it is
naive to expect that all the risks and problems associated with the
marriage of Ada and real-time artificial intelligence are going to be
resolved in the next few years. Therefore, the Lockheed team will take an
incremental approach using C++.

Progress has begun in the translation of some of the SOAS subsystems to
C++. The Pilot's Associate program has similar requirements to go to a
real-time system language. The SOAS SA subsystem is over 50% translated.
The KADET tool without the SOAS enhancements will be translated by the end
of June 89.

6.1.8 Interfaces

The method for communications between SOAS subsystems was by Ethernet
* message traffic, requiring each subsystem to have a handler for I/O. This

mode of operation will be down scoped by having a lot of the data Available
through global data files. The passing of message traffic will be
incorporated by a DMA read/write operation to reserved message buffer areas
for each subsystem.

The communication for Phase I was via Ethernet to a simulation which had
data that was processed for the ease of the SOAS subsystems to parse.
This will no longer be the case when communication with the HP 9020 Desk
Top Computer is interfaced with SOAS to send the CCS Resident Regional
Database. The Ethernet protocol will be the same; however, the translation
of the information will require more effort.

6.2 ASSESSMENT OF PHASE I PROGRESS

The SOAS working demonstrations showed the potential effectiveness and
technical feasibility of a future knowledge-based command and control
system for advanced submarines to enhance the tactical and operational
performance of the platform. The capabilities that were successfully
demonstrated are described below within the context of the original
contractual goals established for the program:

The capability to perform or assist in useful and meaningful submarine
command-level functions

6-3

o This feature was shown in the Tactics Planner for a TMA leg while SA
was calculating the Measures of Effectiveness for the engagement.

The incorporation and demonstration of innovative and state-of-the-art
computer systems, software, and displays

o This task was accomplished in all subsystem demonstrations and
included the use of Symbolic processors, the Lisp language, the
KADET planning tool, and the OPAL intent model.

The development, incorporation, and adaptation of innovative and
state-of-the-art expert- and/or knowledge-based shells, software, and
high-level languages to the submarine command system situation

o This objective was met through the use of the KADET skeletal
planning tool for a dynamic environment, the OPAL intent tool for
inferring the intent of not just the command but the individuals
implementing the command intent.

Effective man-machine displays and interfaces and the use and incor-
poration thereof

o This capability was shown in the CI subsystem demonstration through
its assistance assisting in display management and through the
actual displays which showed a deeper understanding of the
information needed versus the showing of data for crew interpre-

*tation.

The compilation and development of a suitable knowledge base of sub-
marine information

o This requirement was fulfilled in using the databases and models for
measures of effectiveness for engagement planning, showing the
probabilities for kill, counterkill, and counterdetection for the
time now, two minutes in the future, and at the end of the evolution

A system configuration suitable for expansion, revision, and upgrade
and interface to ship systems and possibly other expert- or
knowledge-based systems

o This configuration was provided in the SOAS structure, specifically
in the planning and assessment methodology. The Plan and Goal Graph
and the corresponding Plan/Goal Dictionary are techniques which were
first used on the Pilot's Associate program and have since been
successfully validated during the SOAS Phase I effort. The proven
flexibility of the LASC architecture ensures its continued success
in future phases of the SOAS program.

6-4

