
SOFTWARE SYSTEMS SAFETY
DESIGN GUIDELINES AND
RECOMMENDATIONS

BY MICHAEL L. BROWN

PROTECTION SYSTEMS DEPARTMENT

MARCH 1989

'o, - ubhc release, distnrbution 5s unlimited

m 7 -RICT!0N NOTICE l'or classified documents, follow
: ,<eires sout' ned 'Chapter 17 of OPNAVINST 5510 1H.

-r u' rlassified 'irrited documents, destroy by any method
- at w;! prevent disc'osure of contents or reconstruction of

S ELEC TE UJUL 17 1989W

F ;S, . WP.XNAVAL SURFACE WARFARE CENTER
~~ Dahigreri. Virginia 22448-5000 0 Silver Spring, Maryland 20903-5000

UNCL TFTFD
SEC. jTY CLASSIFICATION OF THIS PAGE 14han Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NSWC TR 89-33

4 "rt--E 'a-1 Slbt'je) ,S TYPE OF REPORT & PERIOD COVERED

Software SyrtL,' ,L: Safety Final

Design Guidelines and Recommendations Final6. PERFORMING ORG. REPORT NUMBER

7 A ' -OR's, B. CONTRACT OR GRANT NUMBER(*)

Michael L. Brown

9 PERFORMNG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Surface Warfare Center (H12) 17X4912.3789
Dahlgren, Virginia 22448-5000 WU # 7CHVSWS

?I CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Surface Warfare Center March 1989

Dahlgren, Virginia 22448-5000 23. NUMBER OF PAGES
29

14 MONITORING AGENCY NAME & AODRESSf different from Controlling Office) IS. SECURITY CLASS. (of this report)

Space and Naval Warfare Systems Command
(SPAWAR-30) Unclassified
Wa;hington, DC 20362-5100 Isa. oECLASSIFICATION'OOWNGRADING

SCHEDULE

16 DISTRE>- T!ON STATEMENT (of this Report)

Approved for Public Release; distribution is unlitt:!j.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side if necessary and Identify by block number)

Safety, Software Safety, Design Guidelines, System Safety,
Safety Engineering, Software Design

20 ABSTRACT (Continue on reverse side If necessary and Identify by block number)

Software Systems Safety is a discipline within System Safety concerned with
the potential safety risks associated with software and computers in safety
critical applications. This technical report provides guidelines and
recommendations that may be useful in reducing the safety risk of software
in safety critical applications. However, it is important to note that these
g-uidelines and recommendations must be tailored to the specific application
and must be applied as part of a comprehensive system safety program.

FORM

DD I jAN 7, 1473 EDITION OF I NOV 65 IS OBSOLETE
S'N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (ften Del Entored)

NSWC TR 89-33

EXECUTIVE SUMMARY

Software Systems Safety is a discipline within System Safety
concerned with the potential safety risks associated with soft-
ware and computers in safety critical applications. In recent
years, a number of mishaps, some resulting in the death of or se-
rious injury to people, have been attributed software errors.
Yet, every day new systems come on the market that employ comput-
ers for control of safety critical functions and there seems to
be no slowing of the trend. Many of the safety critical errors
found in software systems are design errors, in other words, the
software control of a system is inherently unsafe. Therefore, a
significant portion of the Software Systems Safety effort is fo-
cused on eliminating design errors and the development of spe-
cific safety design requirements that become a part of the final
product. The intent of this technical report is to provide some
guidelines and recommendations that may be useful in reducing the
residual safety risk associated with software controlled systems.
However, it is important to note that they must be tailored to
the specific application and must be applied as part of a compre-
hensive system safety program. / ... -

Aooession For
NTIS GRA&I /

DTIC TAB 5]

Unannounoed 0

CDPV Justification
ITASPECM

0 By
Distribution/

Availability Codes
Avail and/or

10at Special

iii

NSWC TR 89-33

FOREWORD

This technical report is the result of collecting data re-
lated to Software Systems Safety over the last several years.
Funding for this and related Software Systems Safety efforts has
been provided by the Protection Systems Department and has been
coordinated with the Warfare Systems Architecture and Engineering
(WSA&E) program at the Space and Naval Warfare Systems Command.

The design guidelines and recommendations in this report
come from a variety of sources throughout the Department of De-
fense, the Defense and Aerospace Industries, and the Food and
Drug Administration. Notable contributions have come from Major
Bruce Bonnett, formerly with the Air Force Inspection and Safety
Center, Norton Air Force Base, California; Dr. M. Frank Houston,
Food and Drug Administration; Dr. Nancy Leveson of the University
of California at Irvine; and Dr. Peter Neumann of Stanford Re-
search International, Menlo Park, California. Major Bonnett
established the Triservice Software Systems Safety Working Group
which has been the focal point for much of the work that led to
this report. Dr. Houston has the dubious position of trying to
cope with the problem of software safety in medical devices.

This report has been reviewed by Dr. R. W. Mattozzi, Systems
Engineering Branch; Mr. Michael Ramsburg, Head, Risk Assessment
Branch; Mr. F. B. Sanchez, Head, System Safety/Security Division;
and Mr. Roy Shank, Protection Systems Department.

Approved by:

M. J. Tino, Head
Protection Systems Department

v

NSWC TR 89-33

CONTENTS

Chapter Page

INTRODUCTION 1
SOFTWARE SYSTEMS SAFETY 1
PURPOSE 2
IMPACT OF GUIDELINES AND RECOMMENDATIONS . . . 2
TAILORING OF DESIGN GUIDELINES AND

RECOMMENDATIONS 2
DEFINITIONS 3

2 DESIGN GUIDELINES AND RECOMMENDATIONS 5
GENERAL SYSTEM GUIDELINES 5
COMPUTERS AND MICROPROCESSORS 6
SOFTWARE DESIGN 7
SPECIFIC GUIDELINES AND RECOMMENDATIONS 10
SAFETY CRITICAL COMPUTER SOFTWARE

COMPONENTS
INTERFACE DESIGN GUIDELINES AND
RECOMMENDATIONS 12

OPERATOR INTERFACE DESIGN GUIDELINES
AND RECOMMENDATIONS 13

IDENTIFICATION OF SAFETY CRITICAL
COMPUTER SOFTWARE COMPONENTS 14

GUIDELINES FOR SOFTWARE DEVELOPMENT
PHASES 14

3 CONCLUSIONS AND RECOMMENDATIONS 17

Appendix

A REFERENCE DOCUMENTS A-I

DISTRIBUTION (1)

vii

NSWC TR 89-33

CHAPTER 1

INTRODUCTION

SOFTWARE SYSTEMS SAFETY

Software Systems Safety is concerned with the potential
safety risks associated with software and computers in safety
critical system applications such as weapon, fire control and
guidance systems, robotics, medical devices, etc. Software Sys-
tems Safety is a discipline within System Safety and is the logi-
cal extension of System Safety into the software and computer
control of the system. In recent years, a number of mishaps,
some resulting in death of or serious injury to people and damage
to other systems and the environment, have been attributed fail-
ures of software. Software errors in a radiation therapy machine
allowed the machine to deliver lethal overdoses of radiation to
several patients, five of whom died. An errdr in the design of a
blood databank program allowed over 1000 pints of blood that may
have been contaminated with the Acquired Immune Deficiency Syn-
drome (AIDS) to be distributed. A worker in Ford's Michigan
Casting Center was struck and killed by a robot due to an error
in the system design and its inability to cope with sensor fail-
ures. Every day, we 'see an increase in systems that are employ-
ing computers for control of safety critical functions. Weapon
systems are now in operation in which the software has full con-
trol over the entire engagement process, from detection to kill
assessment. Canada will soon commission the first nuclear power
plant in North America with a software controlled SCRAM system.
The SCRAM system determines when conditions are such that the nu-
clear reaction should be shut down. Similar systems will likely
make their appearance in US nuclear power plants in the not too
distant future.

Most of the safety critical errors found in software systems
are design errors from a variety of sources. Lack of understand-
ing of how a system is to be used, basic errors in assumptions of
how a system or hardware works, ambiguous design requirements and
subsequent ambiguity in the implementation, etc. are all a part
of the problem. Therefore, a significant portion of the Software
Systems Safety effort is focused on eliminating design errors and
the development of specific safety design requirements that be-
come a part of the final product.

I

NSWC TR 89-33

PURPOSE

The purpose of this technical report is to provide guide-
lines, recommendations, and other considerations for the design
and development of software for systems in which that software
has potentially safety critical applications. These guidelines,
recommendations, and requirements are designed such that, if
properly implemented, they will enhance the safety of software.
Safety critical applications of software include not only control
functions where the software exercises direct control over hard-
ware, but applications wherein the software-derived data are used
to make safety critical decisions or safety critical data are
stored. Examples of the latter two issues include structural de-
sign programs, monitors of safety critical functions, and extend
even to database applications such as medical records. These
guidelines are not intended to be used as a checklist but as an
augmentation to software safety analyses such as those recom-
mended in the Task 300 series of MIL-STD-882B.

IMPACT OF GUIDELINES AND RECOMMENDATIONS

The guidelines and recommendations contained in this techni-
cal report may have some impact on the system and software devel-
opment processes. However, if the System Safety Program is put
in place early, the impact will be minimal and, in fact, may en-
hance the overall development processes. System safety, as with
any other system engineering discipline, requires early integra-
tion into the system development process to ensure its maximum
benefit and minimal negative impact. Properly done, the safety
requirements will have no more impact than any of the other de-
sign requirements and will have a high payoff in later stages of
the system life cycle.

TAILORING OF DESIGN GUIDELINES AND RECOMMENDATIONS

Many of the guidelines and recommendations contained in this
report are written as requirements (i.e., "shall" is used instead
of "will" or "should"). The guidelines and recommendations must
be tailored to the system or system type under development before
inclusion in any contractual or design documents. The user is
cautioned to ensure that any guideline or recommendation selected
is tailored to the system and that the intent vice the letter of
the guideline or recommendation is incorporated in the final de-
sign. In some instances, it may be desirable to change "shall"

2

NSWC TR 89-33

to "will" or "should." Many of the guidelines are common "do's"
or "don'ts" of software engineering, however, they are emphasized
here to highlight their importance in the area of software sys-
tems safety. As with any other source of guidance, the applica-
tion of these guidelines or recommendations will not provide any
assurance that the final system will be safe; they must be ap-
plied as part of a comprehensive system safety/software system
safety program.

DEFINITIONS

The following definitions are necessary to understand some
of the guidelines and recommendations included in this report.
They may be used at the discretion of the reader in the prepara-
tion of contractual or design documents.

Computer Software Components

Computer Software Components (CSCs) are distinct parts of
computer software configuration items (CSCI). CSCs may be
further decomposed into other CSCs or Computer Software Units
(CSUs). (Reference 2)

Configuration Item

Configuration items are hardware, software, or an
aggregation of both, which are designated by the contracting
agency for configuration management. (Reference 5)

Safety Critical Computer Software Components

Safety critical computer software components (SCCSCs) are
those computer software components (processes, functions, values
or computer program states) whose errors (inadvertent or
unauthorized occurrence, failure to occur when required, occur-
rence out of sequence, occurrence in combination with other func-
tions, or erroneous values) can result in a potential hazard, or
loss of predictability or control of a system. (Reference 1)

3

NSWC TR 89-33

Safety Kernal

A safety kernal is an independent computer program that
monitors the state of the system to determine when potentially
unsafe system states occur or when transitions to potentially
unsafe system states may occur. The safety kernal is designed to
prevent the system from entering the unsafe state and return it
to a known safe state. Safety kernals may operate in the
background as shell programs or in independent computers.

Software Systems Safety

Software Systems Safety is the optimization of System Safety
in the design, development, use, and maintenance of software
systems and their integration with safety critical hardware
systems in an operational environment.

4

NSWC TR 89-33

CHAPTER 2

DESIGN GUIDELINES AND RECOMMENDATIONS

GENERAL SYSTEM GUIDELINES

System Design

The system shall be designed for minimum safety risk
consistent with mission requirements, mission effectiveness,
time, and cost. The order of precedence to be used in the system
design to reduce the risk shall be that specified in MIL-STD-882.

Power-Up Tests

A power-up test shall be incorporated in the design that en-
sures that the system comes up in a safe state, and that safety
critical circuits and components are tested to verify their cor-
rect operation.

The software design shall ensure that the system is in a
safe state during power-up, intermittent faults in the power, or
in the event of power loss. The software shall provide for a
safe, graceful shutdown of the system due to either a fault or
power-down, such that potentially unsafe states are not created.

Thp software shall be designed to perform a system level
check at power-up to verify that the system is safe and function-
ing properly prior to application of power to safety critical
functions including hardware controlled by the software. Peri-
odic tests shall be performed by the software to monitor the safe
state of the system.

Primary Control Computer Failure

The system shall be designed such that a failure of the pri-
mary control computer will be detected and the system returned to
as safe state.

5

NSWC TR 89-33

Maintenance Intcerlocks

M,<- tenance interlocks shall be provided to preclude hazards
to personnel maintaining the system. Where interlocks must be
oerridden to perform tests, etc., they shall be designed such
that they cannot be inadvertently overridden, or left in the
overridden state once the system is restored to operational use.

Power Failures

The system shall be designed to provide a safe shut-down un-
der power failure conditions. Fluctuations in power shall not be
capable of creating potentially hazardous states.

Work Arounds

The system design shall not permit detected unsafe condi-
tions to be circumvented.

Electromagnetic Radiation/Pulse/Electrostatic Discharge

Computer and external hardware design shall preclude harmful
effects from electromagnetic radiation, electromagnetic pulse, or
electrostatic interference.

COMPUTERS AND MICROPROCESSORS

Central Processing Units

Central Processing Units (CPUs) that process entire
instructions or data words are preferred to those that multiplex
data or instructions (e.g., an 8-bit processor is preferred to a
4-bit processor emulating an 8-bit machine).

Microprocessors and computers that can be fully represented
mathematically (e.g., the VIPER family of microprocessors) are
preferred to those that cannot.

6

NSWC TR 89-33

Watchdog Timers

Watchdog timers or similar devices shall be provided to en-
sure that the microprocessor or computer is operating properly.
The timer reset shall be designed such that the software cannot
enter an infinite loop and reset the timer as part of the loop
sequence.

Memory and Memory Busses

CPUs with separate instruction and data memories and busses
are preferred to those using a common data/instruction data buss.

For CPUs using a common data buss, tests shall be conducted
to determine the minimum number of clock cycles that must occur
between functions on the buss to ensure that invalid information
is not picked up by the CPU.

Periodic memory and data buss checks shall be performed.
The design of the test sequence shall ensure that single point or
likely multiple failures are detected and isolated.

SOFTWARE DESIGN

Design

Software design and code shall be modular. Modules shall
have one entry and one exit point in accordance with DoD-STD-2167
design guidelines.

The software shall be designed to detect potentially unsafe
conditions and states, either within the software or the overall
system, and shall be capable of preventing the potential hazard's
occurrence by recovering to a safe state. When a potentially un-
safe state has been detected, the software shall alert the opera-
tor to the anomaly detected, the action taken, and the safed sys-
tem configuration and status. If a safety kernal is used to ac-
complish these tasks, it shall be resident in non-volatile read
only memory (ROM).

7

NSWC TR 89-33

Analog Function Controls

Software control of analog functions shall have feedback
mechanisms that provide positive indications of the function hav-
ing occurred.

Maintenance

The system and its software shall be designed for ease of
maintenance by future personnel not associated with the original
design team. The use of techniques for the decomposition of the
software system into modules for ease of maintenance is recom-
mended.

Undocumented Features

The operational and support software shall contain only
those features and capabilities required by the system. The pro-
grams shall not contain "undocumented features".

Safing Systems

The software shall provide for safing hardware subsystems
under the control of software when unsafe conditions are
detected.

Unauthorized Access

The system design shall prevent unauthorized or inadvertent
access to or modification of the software (source or assembly)
and object code. This includes preventing self-modification of
.:.e code.

C * dstrophic and Critical Functions

Functions that are potentially catastrophic or critical

shall be controlled by at least two independent functions.

8

NSWC TR 89-33

Inadvertent Instruction Jumps

The system shall provide for fail-safe recovery from inad-
vertent instruction jumps.

The system shall detect inadvertent jumps within or into
Safety Critical Computer Software Components, return the system
to a safe state, and, if practical, perform diagnostics and fault
isolation to determine the cause of the inadvertent jump.

Interrupt Processing

The software shall be capable of discriminating between
valid and invalid (e.g., spurious) internal interrupts and shall
recover to a safe state if they occur.

LanguaQe Constructs

Halt, stop, or wait instructions shall not be used.

GO-TO statements shall not be used.

Flags

Flags shall be unique and shall have a single purpose.

Files

Files shall be unique and shall have a single purpose.
Scratch files shall not be used for storing or transferring
safety critical information between processes.

9

NSWC TR 89-33

Addressing Schemes

Indirect addressing methods shall not be used unless abso-
lutely necessary. When used, the address shall be verified as
being within acceptable limits prior to execution.

System Errors

The software shall make provisions for logging all system
errors detected.

SPECIFIC GUIDELINES AND RECOMMENDATIONS

Operational Programs

Operational program loads shall not contain unused
executable code. Unused executable code shall be removed from
the source and the program recompiled.

Operational program loads shall not contain unreferenced
variables.

All processor memory not used for or by the operational pro-
gram shall be initialized to a pattern that will cause the system
to revert to a safe state if executed. It shall not be filled
with random numbers, halt, stop, wait, or no-operation instruc-
tions. Data or code from previous overlays or loads shall not be
allowed to remain. (e.g., If the processor architecture halts
upon receipt of non-executable code, a watchdog timer shall be
provided with an interrupt routine to revert the system to a safe
state. If the processor flags non-executable code as an error,
an error handling routine shall be developed to revert the system
to a safe state and terminate processing.) Information shall be
provided to the operator to alert him to the failure and the
reversion to a safe system state.

Overlays shall all occupy the same amount of memory. Where
less memory is required for a particular function, the remainder
shall be initialized to a pattern that will cause the system to
revert to a safe state if executed. It shall not be filled with
random numbers, halt, stop, no-op or wait instructions or data or
code from previous overlays.

10

NSWC TR 89-33

SAFETY CRITICAL COMPUTER SOFTWARE COMPONENTS

SCCSCs and other safety critical software items shall not be
used in one-to-one assignment statements.

SCCSCs and safety critical interfaces shall be under
positive control at all times.

Safety critical timing functions shall be controlled by the
computer and shall not rely on human input. Safety critical tim-
ing values shall not be modifiable by the operator from system
consoles unless required as part of the system's functional
capabilities.

Safety critical functions shall be grouped together and the
number of affected program modules shall be minimized where pos-
sible within the constraints of operational effectiveness, com-
puter resources, and good software design practices.

Conditional statements shall have all possible conditions
satisfied and under full software control (i.e., there shall be
no unresolved potential input to the conditional statement).

Safety critical functions shall exhibit strong data typing.
Safety critical functions shall not employ a logic "I" and "0" to
denote the safe and "armed" (potentially hazardous) states. The
"armed" and safe states shall be represented by at least a four
bit unique pattern. The safe state shall be a pattern that can-
not, as a result of a one or two bit error, represent the "armed"
pattern. If a pattern other than these two unique codes is de-
tected, the software shall flag the error, revert to a safe state
and notify the operator.

Decision statements in safety critical computer software
components shall not rely on inputs of all ones or all zeros,
particularly when this information is obtained from external
sensors.

Operational checks of testable safety critical system ele-
ments shall be made immediately prior to performance of a related
safety critical operation.

Upon completion of tests wherein safety interlocks are re-
moved, disabled or bypassed, restoration of those interlocks
shall be verified by the software prior to being able to resume
normal operation. While overridden, a display shall be made on
the operator's or test conductor's console of the status of the
interlocks.

11

NSWC TR 89-33

INTERFACE DESIGN GUIDELINES AND RECOMMENDATIONS

Inter-CPU communications shall successfully pass verifica-
tion checks in both CPUs prior to data transfer. Periodic checks
shall be performed to ensure the validity of data transmissions.

Data transfer messages shall be of a predetermined format
and content. Each transfer shall contain a word or character

string indicating the type of data and content of the message.

As a minimum, parity checks and checksums shall be used for veri-
fication of correct data transfer. Character Recognition Codes
(CRCs) shall be used where practical.

External functions requiring two or more safety critical
signals from the software (e.g., arm and fire) shall not receive
all of the necessary signals from a single register or in-
put/output port. In addition, these signals shall not be gener-
ated by a single CPU command.

The software shall be capable of discriminating between
valid and invalid (e.g., spurious) external interrupts and shall
recover to a safe state in the event of an erroneous external
interrupt.

Decision statements shall not rely on inputs of all ones or
all zeros, particularly when this information is obtained from

external sensors.

Safety critical input or output functions shall not employ a
logical "1" and "0" to denote the safe and "armed" (potentially
unsafe) state. Safety critical functions shall be represented by

at least four bits. The "armed" state shall be represented by a
unique bit pattern. The safe state shall be represented by an-
other unique pattern that canno., as a result of a one or two bit
error, represent the "armed" pattern. If a code other than these
two unique codes is detected, the software shall flag the error,

revert to a safe state, and notify the operator of the erroneous

input or output.

Feedback loops shall be designed such that the software can-
not cause a runaway condition due to the failure of a feedback
sensor. Known component failure modes shall be considered in the
design of the software.

Input/output registers and ports shall not be used for both
safety critical and non-critical functions.

Limit and reasonableness checks shall be performed on all
analog and digital inputs and outputs prior to action occurring

based on those values.

12

NSWC TR 89-33

The software shall be designed to detect failures in exter-
nal hardware input or output devices and revert to a safe state
upon their occurrence. The design shall consider potential fail-
ure modes of the hardware involved.

The software shall be designed such that the full scale and
zero representations of the software are fully compatible with
the scales of any digital to analog, analog to digital, digital
to synchro, and/or synchro to digital converters.

OPERATOR INTERFACE DESIGN GUIDELINES AND RECOMMENDATIONS

The software shall be designed such that the operator may
cancel current processing with a single action and have the sys-
tem revert to a safe state. The system shall be designed such
that the operator may exit potentially unsafe states with a sin-
gle action. This action shall revert the system to a known safe
state (e.g., the operator shall be able to terminate missile
launch processing with a single action. This action shall safe
the missile. The action may consist of pressing two keys simul-
taneously).

Two or more unique operator actions shall be required to
initiate any potentially hazardous function or sequence of func-
tions. The actions required shall be designed to minimize the
potential for inadvertent actuation.

Operator displays, legends, and other interactions shall be
clear, concise, and unambiguous.

The software shall be capable of detecting improper operator
entries or sequences of entries or operations. It shall alert
the operator to the erroneous entry or operation. Alerts shall
indicate the error and corrective action. The software shall
also provide positive confirmation of valid data entry or actions
taken (i.e., the system shall provide visual and/or aural feed-
back to the operator such that the operator knows that the system
has accepted the action and is processing it. Aural feedback
should be audible against expected background noise.) The system
shall also provide a real-time indication that it is functioning.
Processing functions requiring several seconds or longer shall
provide a status indicator to the operator during processing.

Alerts shall be designed such that routine alerts are read-
ily distinguished from safety critical alerts. The operator
shall not be able to clear a safety critical alert without taking
corrective action or performing subsequent actions required to
complete the operation.

13

NSWC TR 89-33

IDENTIFICATION OF SAFETY CRITICAL COMPUTER SOFTWARE COMPONENTS

The priority structure of fault detection and safing or cor-
recting logic shall be considered safety critical. Software
units or modules handling or responding to these faults shall be
designated SCCSCs.

Interrupt processor software, interrupt priority schemes and
routines which disable or enable interrupts shall be designated
as SCCSCs.

Software generated signals which have autonomous control
over hardware shall be designated as SCCSCs.

Software generated signals which have been shown through de-
tailed analyses (e.g., Fault Tree Analyses) to directly influence
movement of hardware components or initiate safety critical ac-
tions (e.g., rocket motor arm command) shall be designated as
SCCSCs.

Software generated outputs that display the status of safety
critical hardware systems shall be designated SCCSCs.

GUIDELINES FOR SOFTWARE DEVELOPMENT PHASES

Coding Phase

Desk audits and peer reviews shall be used to verify
implementation of design requirements in the source code with
particular attention paid to the implementation of identified
safety critical computer software components and the guidelines
provided in this document.

At least two people shall be thoroughly familiar with the
design, code, and operation of each software module in the
system.

Configuration control shall be established as soon as a
practical software baseline can be established. All subsequent
software changes must be approved by the Software Configuration
Control Board pricr to their implementation. A member of the
Board shall be tasked with the responsibility for evaluation of
all software changes for their potential safety impact. This
member should be a member of the system safety engineering team.
A member of the hardware Configuration Control Board shall be a
member of the Software Configuration Control Board to keep mem-
bers apprised of hardware changes and to ensure that software

14

. m ! ! I

NSWC TR 89-33

changes do not conflict with or introduce potential safety haz-
ards due to hardware incompatibilities.

Conditional statements shall be analyzed to ensure that the
conditions are reasonable for the task and that all potential
conditions are satisfied and not left to a default condition.
All condition statements shall be commented with their purpose
and expected outcome for given conditions.

Reviews of the software source code shall ensure that the
code and comments agree.

Patches shall be prohibited throughout the development pro-
cess. All software changes shall be coded in the source language
and compiled prior to entry into test equipment.

Values for timers shall be commented in with the code. Com-
ments shall include a description of the timer function, its
value and the rationale or a reference to the documentation ex-
plaining the rationale for the timer value. These values shall
be verified and shall be examined for reasonableness for the in-
tended function.

Software Testinq Phase

Software testing shall include NO-GO path testing.

Software testing shall include hardware and software input
failure mode testing.

Software testing shall include boundary, out-of-bounds, and
boundary crossing test conditions.

Software testing shall include inputs values of zero, zero
crossing, and approaching zero from either direction.

Software testing shall include minimum and maximum input
data rates in worst case configurations to determine the system's
capabilities and response to these environments.

SCCSCs in which changes have been made shall be subjected to
complete regression testing.

Operator interface testing shall include operator errors
during safety critical operations to verify safe system response
to these errors.

15

NSWC TR 89-33

Maintenance

Changes to safety critical computer software components on
deployed or fielded systems shall be issued as a complete package
for the modified unit or module and shall not be patched.

Firmware changes shall be issued as a fully functional and
tested circuit card. Design of the card and the installation
procedures should minimize the potential for damage to the cir-
cuits due to mishandling, electrostatic discharge, or normal or
abnormal storage environments.

16

NSWC TR 89-33

CHAPTER 3

CONCLUSIONS AND RECOMMENDATIONS

Many of the design guidelines and recommendations in this
technical report are based on lessons derived from past failures
of software controlled systems; others are the result of analyses
performed on safety critical systems; still others are simply an
extension of good software engineering practices. The guidelines
and recommendations should not be used as a checklist for the de-
velopment of safety critical software. Likewise, it is not suf-
ficient that they be used as a checklist for evaluating a pro-
posal or a final product or system. These guidelines and recom-
mendations must be applied as part of a comprehensive system
safety program.

17

NSWC TR 89-33

APPENDIX A

REFERENCE DOCUMENTS

The following documents form the basis for or are referenced

in this document:

1. MIL-STD-882 System Safety Program Requirements

2. DoD-STD-2167 Defense System Software Development

3. DoD-STD-2168 Defense System Software Quality
Program

4. DoD-HDBK-287 Tailoring DoD-STD-2167A
Requirements

5. DoD-HDBK-480 Configuration Control for
Engineering Changes, Deviations and
Waivers

6. DoD-HDBK-483 Configuration Management Practices
for Systems, Equipment, Munitions,
and Computer Programs

Copies of the above documents required by contractors in
connection with a specific procurement may be obtained through
the procuring activity or as directed by the contracting officer.
Government agencies may obtain copies through local technical
library services.

A-1

NSWC TR 89-33

Distribution

Copies

Commander,
Space and Naval Warfare Systems Command
Attn: SPAWAR 003-43 (Tony Sliwa) 1

SPAWAR 003-43B (Al Friend) 1
SPAWAR 005-35 (Marianne Vashnav) 1
SPAWAR 3212 1

Washington, DC 20363

Commander,
Naval Air Systems Command
Attn: AIR 516C (J. Gibble) 1

AIR 516C1 (J. Nerrie) 1
Washington, DC 20375-5000

Commander,
Naval Sea Systems Command
Attn: SEA 666 (Ed Kratovil) 1

SEA 6663 (Paul Wright) 1
SEA 92Q41 (Jeff Thomas) 2

Washington, DC 20363

Commander,
Naval Safety Center
Attn: Code 90 (P. Kinzey) 1

Code 94 (W. Mannschreck) 1
Norfolk NAS, VA 23511-5796

Commander,
Naval Weapons Center
Attn: Code 3687 (Jerry Mathre) 2
China Lake, CA 93555-6001

Commander,
Naval Research Laboratory
Attn: Code 5540B (H.O. Lubbes) 1

Code 7593 (Dr. Landwehr) 1
Washington, DC 20375-5000

Commander,
Naval Air Engineering Center
Attn: Code 9314 1
Lakehurst, NJ 08733-5100

Commander,
David Taylor Naval Research Center
Attn: Code 1202 (Steve Cohen) 1
Bethesda, MD 20084

(1)

NSWC TR 89-33

Distribution
(Continued)

Copies

Commander,
Naval Air Development Center
Attn: Code 7022 (John Pendergast) 1
Warminster, PA 18974-5000

Commander,
Naval Underwater Systems Center
Attn: Code 43 (Jerry Morris) 1

Code 43 (Gerry Lipsett) 1
Newport, RI 02840

Commander,
Naval Ocean Systems Center
Attn: Code 921 (Edward Glunt) 1

Code 921 (Leroy Haulsey) 1
San Diego, CA 92152-5000

Commander,
Naval Coastal Systems Center
Attn: Code 5320 (Tom English) 1
Panama City, FL 32407

Commander,
US Army Communications Engineering Command
Attn: AMSEL-SF-SEP (Rod Murphy)
Fort Monmouth, NJ 07703

Director
US Army Aviation Systems Command
Attn: AMSAV-XAP (Jose Caraballo) 1

AMSAV-W, (Dr. Vernon Allen) 1
4800 Goodfellow Blvd.
St. Louis, MO 63120-1798

Commanding General,
US Army Armament and Material Division
Attn: AMSMC-QAH-A(D) (Paul Janusz) 1
Bldg. 62
Dover, NJ 07801-5601

US Army Laboratory Command
Harry Diamond Laboratories
2800 Powder Mill Road
Attn: SLCHD-TA (Dave Overman) 1
Adelphi, MD 20783-1197

(2)

NSWC TR 89-33

Distribution
(Continued)

Copies

Program Executive officer
Program Manager for Chemical Demilitarization
PEO-PMCML-DEMIL
Attn: ACM-PEO-CDS
Aberdeen Proving Ground, MD 21010

Director,
US Army Human Engineering Laboratory
Attn: Richard Armstrong
Box 716
Fort Rucker, AL 36362

Headquarters,
Air Force Systems Command
Attn: AFSC-HQ (Harris Yeager) 1
Andrews AFB, MD 20334

Director
Air Force Systems Command
Space Division
Attn: SD/SE (Dr. Louis Huang) 1

SD/SE (Roger Lockwood) 1
P.O. Box 92960
Los Angeles, CA 90009-2960

Commanding Officer
Wright Patterson Aeronautics Laboratory
Attn: AFWAL-SES (Randy Janssen) 1
Wright Patterson AFB, OH 45433

Headquarters,
Air Force Inspection and Safety Center
Attn: AFISC/SE 1

AFISC/SESD 2
Norton AFB, CA 92409-7001

Headquarters
Air Force Operational Test and Evaluation Command
Attn: AFOTEC/SE Capt. Steven Mattern 2
Kirtland AFB, NM 87117-7001

Headquarters,
National Aeronautics and Space Administration
Attn: Code QD (Pete Rutledge) 1
Washington, DC 20546

(3)

NSWC TR 89-33

Distribution
(Continued)

Copies

Director,
Food and Drug Administration
Center for Radiological Devices and Health
Attn: Code HFZ150 (Frank Houston) 2
5600 Fishers Lane
Rockville, MD 20857

National Institute of Standards and Technology
Institute for Computer Sciences and Technology
Attn: Dolores Wallace 1
Technology Bldg. Rm B266
Gaithersburg, MD 20899

General Dynamics
Valley Systems Division
P.O. Box 50-800, MS 601-21
Attn: Robert Sweginnis 1
Ontario, CA 91761-1085

Applied Ordnance Technology, Inc.
Attn: Edward Daugherty 1

Joel Pulliam 1
Suite 909
2001 Jefferson Davis Hwy.
Arlington, VA 22202

General Dynamics
Fort Worth Division
Attn: MZ 2288 (Kevin Martin) 1
PO Box 748
Fort Worth, EX 76101

Boeing Aerospace Co.
P.O. Box 3999
Attn: MS 1E-62 (Irving Meyerson)
Seattle, WA 98124-2499

Ketron, Inc.
Attn: Gerald Donovan 1
600 Louis Drive
Suite 203
Warminster, PA 18974

TRW, Inc.
Attn: Carl Hocevar
One Space Park
Redondo Beach, CA 90278

(4)

NSWC TR 89-33

Distribution
(Continued)

Copies

Dr. Nancy Leveson 1
University of California at Irvine
Information and Computer Sciences Department
Irvine, CA 92717

Stanford Research International
Attn: Dr. Peter Neumann 1
BN 168
333 Ravenswood
Menlo Park, CA 94025-3493

Internal Distribution:

E211 (Sullivan) 1
E231 10
G44 (Munach) 1
G44 (Bagnell) 1
H 1
H02 1
H10 1
H101 1
H11 10
H12 1
H13 2
H14 1
N06 2
N42 (Akin) 1

(5)

