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CREEPING RAY ANALYSIS OF RESONANCE
FOR PROLATE SPHEROID

Abstract -- A ray orbit resonance condition is postulated and shown

to reproduce asymptotically the resonant frequencies of a prolate spheroid.

The method uses local creeping rays associated with a smooth convex

impedance surface. As expected, the method deteriorates for high aspect

ratio spheroids where the tip radii of curvatures are electrically

small. This work is an alternative approach to Howard's earlier geometric

treatment and gives the relation to creeping ray analysis. The theory

provides impetus to the understanding of mode conversion and diffraction

ray coupling near edges of such scatterers. Comparison of pole location,

* pole trajectories and layering with L. Marins analysis (1972)> is given.

I. INTRODUCTION

There continues to be strong interest in the singularity expansion

method (SEM) and its application to the radar target identification problem.

The singularities are the complex resonant frequencies in the W or s-plane

and exist in layers. Resonance requires at least one orbit of a ray and,

therefore, for the external problem, the radiation loss, associated with

the imaginary part of the frequency, is considerable. Thus, the resonance
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poles describe relatively late times of a low Q resonator. This is a

difficult regime for the object identification problem. For this translates

to small signal amplitudes and, hence, poor signal to noise levels.

In addition, the required signal processing is non-linear and it happens

that small errors in the signal can result in large errors in pole location

[1]. To attempt to overcome these difficulties, one can take advantage

of the redundant information associated with pole layering. Thus, identi-

fication can be based upon pole families, not individual poles. This

requires theoretical understanding and prediction of-the ordering of the

higher order pole locations.

This is precisely the high frequency regime where asymptotic geometrical

methods apply. Indeed, just as classical mechanics is asymptotic to

quantum mechanics in the limit of large quantum numbers, so our asymptotic

theory applies as the discrete complex frequency index becomes large.

Our geometric method also requires the local radius of curvature to be

large with respect to a wavelength.

In a previous paper by one of us [2], the method of Keller and Rubinow

[3] was extended to the exterior resonance problem. In this paper, we make

explicit use of the creeping ray condition (see equation i), while in the

previous paper [2], the equivalent effect was developed using an additional

explicit radial resonance condition. This additional condition inforced

transverse resonance between the surface of the scattering object and a

turning point caustic.

Recently, Heyman and Felsen have also shown, using a method having

some similarities with ours, that local creeping rays describe exterior

resonances on smooth convex objects [4].
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*II. THEORY

We make free use of the comprehensive results of Bremmer [5], Fock

[61, Wait [7], Logan [8], and more recently 0. S. Jones [9]. In these

references, it is shown that the creeping wave mode equation for a cylinder

of radius 5, and for vertically polarized waves, is

H(1)'(kp) 1 (kip)

V
H( I )  (k,) - 1- H ( 2 )  (klP)-

V V

In equation (1), H()(z) is the Hankel function of order v and argument

z of type j (j is 1 or 2). For a fixed frequency w, equation (1) has a discrete

iwt
set of roots vs, s = 1,2,3 .... We are using the time dependence e Here,

k = w/c is the wave number of free space and k1 is the complex wave number

of the spheroid. Condition (1) has the physical interpretation that the sur-

face reflection coefficient is infinite. This allows a reflected wave with

no incident wave which is a condition of resonance.

The propagation along the spheroid surface has angular dependence

exp(iva) (2)

where a is an angular distance along the surface. In our application, we

allow in equation (1) to be a variable. In this ray treatment, p is

the local radius of curvature of the spheroid along the direction of the ray

path. Hence, it is a continuous function of position. Only the radius

of curvature in the direction of propagation is significant. The transverse

curvature is insignificant. We know that because the local ground wave

modes for a sphere and cylinder of the same radius and material are equal.
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The asymptotic creeping ray resonance condition is given by S
v d = 21(n+ 1) (3)

1 ds

The term vd a is the incremental complex phase advance where d - , and

where ds is the arc length along spheroid and p is the local radius of

curvature. The additional phase of i corresponds to the phase shift advance

of TT/2 going through the focus at each tip of the spheroid. Details of

this shift are given in the appendix.

There are two geodesic paths on a spheroid. F4rst, there is the path

from one tip of the spheroid to the other; there is a continuum of these.

They cross at the tips which give rise to the focus phase shift. Second,

the path going around the equator; the resonances for this second path

are easier to calculate because they are the same as the sphere.

Returning to (3), along the ray path implicit in the closed path 0
integral, we can consider the geometry as two dimensional. Along such

a ray let the surface be represented as

y = f(x) (4)

Then it follows from elementary differential geometry [10] that

d - ds = [f"(x)/(l + (f'(x)) 2 )] dx (5)

Let us apply this to an elliptic cross section of a prolatespheroid for

principal orbit planes containing the axis of revolution. Then

f(x) = ± (b2 - c2x2) (6)

where c = U/a < 1 is the aspect ratio of the ellipse and where a and b are

6



the semi-major and semi-minor axes. Substitution of (6) into (5) yields

de = [b2c2/((b2-c2ca2 x2) (b2 -c 2 x2 ))] dx (7)

where

2 c2

The resonance condition (3) depends upon the propagation constant v. The

propagation constant v in turn depends upon the local radius of curvature

i which for the elliptic surface is given by

23/2 2222 3/2 22p = (1 + (f'(x)) ) /f"(x) = (b2-c cax) /(c b ) (8)

In view of the dependence of the creeping ray propagation constant v on

the local parameter kp, as given by equation (1), it is useful to make

a further change of integration variable

3 c2
t = c p/b (9)

Then the resonance condition (3) becomes

c 1:v dT = (n+ 1 ) 7/2 (10)f C T(T 2_C2 ) (I-T2)1

In (10) we have accounted for the four fold symmetry of the orbit. Note

that the integrand in (10) is singular at both end points T = c and 1.

These singularities are removable. Thus, we make the linear change of

variable

2 1-c + c
2 2

to obtain
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0
2 g + c + c x)

- 2dx 12(n +1 (12)

where

g~u) -4c v (u) (13)
u(u +c)1 (1l+U)

is nonsingular.

Now we make the further change of variables

x = sin Tr/2 s

Then (12) becomes

+1

.r g(T L + sin s) ds = 21r(n+7) (14)

1-1

This form is suitable for numerical integration.

III. SOME APPROXIMATIONS

In the high frequency limit, the creeping ray condition (1) can be

simplified. The relevent approximations are discussed in detail in several

references ([5], [6], [7], [8]).

A more modern mathematical treatment is given by Olver [11]. Olver

derives a uniform asymptotic expansion which assumes the argument and order

are large and approximately equal. The uniform asymptotic expansion is

given in terms of Airy functions. The lead term in the expansion is given by
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-i /3 4 /4 2/3

v )Ie ( 4 Ai(v ¢w) (15)1/3

where

2/3 C3/2 _ f ( (-t2 1 /2/t dt, w = exp (i2- /3) (16)116

The phase factor w = exp(i 2-a/3) is common in these approximations.

In fact, Fock defined his Wl(z) function as

W1 (z) = -2wi Wi Ai(wz) (17)

This function is outward radiating at infinity. The implicit relation

(16) can be expanded as a function of . The expansion needed is around

z z 1 and hence 0 0. One determines

z(c) = 1- 21/3 c + 3/102-2/3 c2 + 1/700 + ... (18)

Series (18) can be manipulated (under the same conditions required to

produce (8)) to yield the information

kp I13 +1. 2 I132

v kp + (7-) t +1( ) t 2 + ... (19)

where t = v2/3 c and it is assumed kp >> 1. In addition, series (18) can

also be used to obtain the expansion

: 21/3 [(l - z) + _L (1 z) 2 + ... (20)

z =kp/

Also from (15) and (17) we determine

0
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H(1) (kp) z 2e i 7T/2 -1/3 ( 2)1/4 w (t)
V 1 z2 W

where for z : 1, to first order, this reduces to

(I ) (kp) 24/3 e-i i/2 /3 (21)

An explicit representation of the Fock function Wl(t) is

W1(t) ,.exp(st - s 3/3) ds (22)

where

W* = exp (-i 27t/3)

This integral has two first order saddle to points at s s.p. VT which

coalesce at t = 0. The coalescence corresponds to the position of the

creeping ray caustic.

It remains to determine an asymptotic ray approximation tothemodal

equation (1).

IV. IMPEDANCE BOUNDARY CONDITION

At high frequencies, and when the object to which the creeping ray

attaches is convex and a relatively good conductor, it is not necessary

to compute the fields on the inside of the object. This is possible because

under these conditions, the fields inside are geometrical and propagate

nearly normal to the surface. The ratio of tangential E and H is approxi-

mately the same as for a plane wave. The general formulation is known

as the Leontovich boundary condition and a good account is by this original
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author [12]. From this discussion it follows that the normal surface wave

impedance z(1) in the limit from inside is given by

n

( zk/ k _ - 2  , horizontal polarization

zl/k 2 k2  /kI  , vertical polarization (23)

The terminology is with respect to the electric vector. Thus, horizontal
4

corresponds to the electric vector in the plane of the surface, vertical

corresponds to H lying in the plane of the local surface. The intrinsic

wave number kI is complex, i.e.

lT= (24)

Im(kl) > 0.

The wave impedance (23) is a ratio of tangential components at the surface

of the scatterer. Hence, the corresponding ratio on the exterior has the

same limiting value.

zn = z n (25)

On the exterior, it follows from Maxwell's equations that

i / i~ n ' horizontal

n

(iw e vertical (26)

Substitute 26) into (25). Let 'p and be the tangential E or H field for
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horizontal or vertical polarization, where a/;n is the outward pointing

normal derivative. Then, the Leontovich boundary condition is explicitly

given by

- + a 0 (27)
3n

where

-i k1 2 k , horizontal polarization

i k2 //k12 _ k2 /k2 , vertical polarization

We now relate this development of the homogeneous boundary condition (27)

to our creeping ray analysis.

Recall that in equation (8) we have defined p to be the local radius 0
of curvature of the object along the creeping ray path direction. Thus,

the normal derivative a/;n = 3/Dp . Then, using (21) and (27) yields the

explicit modal equation

w.(t) - qw,(t) = 0 (28)

where the normalized impedance parameter q is given by

f I/k, horizontal polarization

q = -i (v/2) I1/ 3 /kl2_k 2

k/k1
2 , vertical polarization (29)

In the perfectly conducting limit, the modal equation further simplifies to
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W l(tm) = C horizontal polarization

wl(t ) = 0 vertical polarization (30)

m = 1, 2, 3 ...

The roots tm and t' for wl(t) = 0 and wj (t) = 0 respectively are relatedm m

to the roots of the Airy function Ai by relation (17). The Airy function

has isolated zeros along the negative real axis. There are no others.

Thus, the roots defined by (30) all lie on the ray e i.e.

tm = e i 4n/3 am

ts = ei 4  am (31)

Abramowitz and Stegun have listed the first ten of them [13]. They are:

m a a'm m

1 -2.33810741 -1.01879297
2 -4.08794944 -3.24819758
3 -5.52055983 -4.82009921
4 -6.78670809 -6.16330736
5 -7.9413359 -7.37217726
6 -9.02265085 -8.48848673
7 -10.04017434 -9.53544905
8 -11.00852430 -10.52766040
9 -11.93601556 -11.47505663

10 -12.82877676 -12.38478837

1

Table 1: Zeros of Ai(z) and Ai(z)
(from Abramowitz and Stegun, p. 478)

Asymptotically for large m, the zeros am and am are given by

am = -(3,r(4m - 1)8)2/3 + 0 (m- 4 / 3 )

am = -(3i(4m-3)/8)2/3 + 0 (m-4/3 ) (32)
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If the surface is not perfectly conducting, mode equation (28) must

be solved. However, Airy's differential equation for Wl(t) is

W-(t) - t W(t) z 0 (33)

This can bq checked, i.e. Wl(t) as defined by equation (22) satisfies (33).

Thus, the roots ts as a function of q satisfy the differential equation.

dtm 1 (34)

dq tmq 2

This is a nonlinear Riccati equation which has been solved in the Bremmer

reference [6].

V. ASYMPTOTIC SOLUTION OF RESONANT FREQUENCIES

Given the angular propagation constant v, (equation (19)), the resonance 0
condition (10) becomes

1 2 d
(n+ 1) 2 = ka T2

2 2 f c((1 -T2 )(T2 -c2

+ c2/'3 (ka)1/3 t I(1
2 m T

c~( 4/3 )( 2-13

+ m0 ( 2) d (35)0 ka c T2((_ 2)1(T2_c2))

The integrals on the right hand side of (35) are tabulated special functions.
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The first is k/4 times the perimeter of an ellipse (reference [14],

4 223.6c, p. 49) i.e.

2 2 -C 2 E( /i-c)

where

E(x) f (l -x2 sin20) de (36)
fO

is a complete elliptic integral of the second kind (references [13] p. 590,

and [15]).

Result (36) follows from the change of variable x = (l-T
2 )/(1- c2

and then the subsequent change of integration variable sine = x. Similar

changes of variables can be made to determine

IdT K l - c)

c((_ T2 )( 22 T l+c l-c

wheie

K(x) / (I -x2 sin2e) de (37)
f0

The K function is the complete elliptic integral of the third kind given

also by Abramowitz and Stegun [13]. The same substitutions used in obtaining

(36), and when an additional substitution T - 1 leads to the result
T

Il dT 1 ± E!I 2

f c ((l d 2) 2 c ))c -) (38 )

15



Mode equation (35) thus becomes

2/ -K c (n + )IT tm c 2/

c2/3 K( T ) tx- 2 + - 0 (39)
T~ l+cc2J m 4E~T7J 120x -

x31/3

where x = (ka/2)l/ 3

Thus, (39) is a quartic equation in x with complex coefficients.

In the perfectly conducting limit, from (31) it is seen that t3 is real.
4

This suggests the change of variable.

2

m

Then (39) becomes

lc 13 2/3  K(.i-) y (n +) iT ~ -2/3 (0
y 3 +c ,- 3 (0/Ir _ 3- 2' 3- t 6  120 tm6Y

E( - c ) tm 4E(/l - c t m t

Notice the coefficients in (40) in the perfectly conducting limit are real.

The complex normalized frequency

nm= ka n, m = 1,2,3...

depends upon two integers, n and m, which order the roots in the angular

(e) and radial (p) coordinates. In the terminology of Marin [16],

'Y ik iwnm -Snm (1

nm :=-iknm = c m (41)

where here and what follows c = 2.997925 x 108 m/sec and where wns is

the complex natural resonant frequency in radians/second, and Snm is the

Laplace transform pole location. In the figures to follow it is convenient
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to plot the location of the unitless frequency

Snm a
Ynma = a (42)

where a is the semi-major axis of the prolate spheroid.

Of course, since the actual electromagnetic time domain response

must be real and causal, the poles in the complex s plane (or ya plane)

must either lie on the negative axis or appear as complex conjugate pairs

in the second and third quadrants. We, therefore, only plot results in

the second quadrant.

VI. NUMERICAL RESULTS

In figure 1, we reproduce (from reference (16)) a pole trajectory of the

first two pole layers of the prolate spheroid. Each curved line segment traces

the motion of the poles in the second quadrant of the normalized s plane as

the aspect ratio c = b/a varies from .1 to 1. Figures 2a through 2d are com-

parison plots of Marin's numerical solution of an integral equation [16] and

ours. As would be expected of an asymptotic method, in the case of a sphere

(figure 2a), the accuracy of our method is good. When the aspect ratio

c = b/a departs from unity, the accuracy degrades since then at the tips of

the prolate spheroid the radius of curvature becomes electrically small.

This violates the asymptotic assumption. The second layer plotted further

to the left in figures 2a through 2d correspond to m = 2 in the ray equation

(40). The comparison is somewhat misleading as tables 2a through 2d show.

The tables have the same information as the figures but, in addition,

include the absolute relate error in percent entry in the fifth column.

The errors for m = 1 and m = 2 pole layers are seen to be comparable.

Also, in these tables, it is evident that the accuracy improves as the

17
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Fig. I The locus of natural frequencies when 0.1:5 b/as 1.0. The location of the

natural frequencies for b/a = 0.1, 0.2, 0.5, 1.0 is indicated on the curves.
The arrow indicates the direction in which the natural frequencies move
for increasing values of b/a. (After L. Marin, 1972.)
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Natural Frequencies of Prolate Spheroids

b/a = 1.0

Integral GTD Creeping Absolute
Equation Method Ray Solution Relative

Error
m n Re{ya} Im{ya} Re{ya} Im{ya} (percent)

11 - .500 .866 - .622 .931 13.82
2 - .702 1.807 - .795 1.851 5.31
3 - .843 2.758 - .921 2.789 2.91
4 - .954 3.715 -1.022 3.737 1.86
5 -1.048 4.676 -1.108 4.692 1.30
6 -1.129 5.642 -1.184 5.652 0.97
7 -1.201 6.610 -1.251 6.615 0.75
8 -1.267 7.580 -1.313 "7.581 0.60

2 1 -1.596 0 -1.528 .007 4.28
2 -2.157 .871 -2.105 .867 2.24
3 -2.571 1.752 -2.525 1.744 1.50
4 -2.908 2.644 -2.866 2.633 1.10
5 -3.195 3.545 -3.156 3.532 0.86

Table 2a. Mode Comparison for b/a = 1

b/a = 0.5

Integral GTD Creeping Absolute
Equation Method Ray Solution Relative

Error
m n Re{ya} Im(ya} Re{ya} Im{ya} (percent)

1 1 - .453 1.152 - .745 1.232 24.46
2 - .703 2.380 - .951 2.422 10.14
3 - .890 3.623 -1.102 3.636 5.69
4 -1.042 4.876 -1.222 4.863 3.62
5 -1.171 6.136 -1.325 6.100 2.53
6 -1.286 7.401 -1.415 7.343 1.88
7 -1.388 8.669 -1.495 8.592 1.50
8 -1.480 9.938 -1.569 9.844 0.94

2 1 -2.130 0 -2.017 .253 13.01
2 -2.879 1.210 -2.687 1.372 8.04
3 -3.408 2.410 -3.185 2.514 5.89
4 -3.830 3.609 -3.591 3.672 4.70
5 -4.187 4.810 -3.938 4.842 3.94

Table 2b. Mode Comparison for b/a = 0.5

0
21



Natural Frequencies of Prolate Spheroids

b/a = 0.2

Integral GTD Creeping Absolute
Equation Method Ray Solution Relative

Error
m n- Re{ya} Im{ya} Re{ya} Im{ya} (percent)

1 - .336 1.374 - .674 1.548 26.88
2 - .516 2.817 - .846 2.923 13.78
3 - .655 4.277 - .973 4.326 7.44
4 - .773 5.745 -1.075 5.745 5.21
5 - .876 7.220 -1l162 7.175 3.98
6 - .970 8.698 -1.239 8.612 3.23
7 -1.057 10.180 -1.308 10.055 2.74
8 -1.138 11.666 -1.370 11.502 2.42

2 1 -2.672 0 -2.312 1.194 46.67
2 -3.522 1.652 -2.841 2.508 28.12
3 -4.070 3.195 -3.252 3.847 20.22
4 -4.491 4.694 -3.595 5.203 15.86
5 -4.839 6.174 -3.892 6.573 13.10

Table 2c. Mode Comparison for b/a = 0.2 0

b/a = 0.1
Integral GTD Creeping Absolute

Equation Method Ray Solution Relative
Error

m n Re{ya} Im{ya} Re{ya} Im{ya} (percent)

1 - .265 1.458 - .552 1.704 25.51
2 - .400 2.977 - .678 3.136 10.61
3 - .497 4.510 - .772 4.596 6.35
4 - .582 6.051 - .848 6.071 4.39
5 - .658 7.598 - .913 7.556 3.39
6 - .727 9.149 - .971 9.047 2-.88
7 - .793 10.703 -1.022 10.545 2.59
8 - .855 12.260 -1.069 12.046 2.46

2 1 -2.969 0 -2.226 1.990 71.55
2 -3.776 1.886 -2.603 3.372 44.85
3 -4.278 3.572 -2.904 4.779 32.77
4 -4.660 5.194 -3.159 6.202 25.91
5 -4.975 6.72 -3.382 7.639 21.51 _O

Table 2d. Mode Comparison for b/a = 0.1
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integer n increases. Thus, as also expected, our geometrical method

improves as either ka or n increases.

VII. CONCLUSION

We have presented a geometrical creeping ray formulation of the natural

oscillations of a prolate spheroid. The general formulation has obvious

extensions to smooth rotationally symmetric convex objects. For aspect

ratios not less than one half, the absolute percent error for all but the

lower order (n = 1 and 2) pole locations is-less than 10%. As n increases,

the error becomes less. At the tip of a prolate spheroid of aspect ratio

b/a = 0.1 Jkal = lO 3 so clearly asymptotic formulas such as (19), which

are fundamental to this method, are inappropriate. In such cases, we

recommend that tip diffraction be implemented. Indeed, the creeping rays

loose their identity near such tips. In other words, strong "mode mixing"

occurs. We will consider this addition to the theory in a future paper.

APPENDIX: PHASE ADVANCE AT TIP OF SPHEROID

At a focus, it is known that the phase of the converging rays experience

a phase shift. Born andWolf in their text [17] have a section on the

three dimensional light distribution near a focus. Their model is a spherical

wave emerging from a circular aperture and, hence conversely, converging

on the opposite side of the aperture toward an axial focal point. Although

geometrical optics predicts a discontinuous focus phase shift, finite wave

length calculations show it to be continuous. For these optical treatments

of phase behavior, the phase shift is Tr radians. As we shall now show

this is not the same as for our nroblem. At the poles of a spheroid, the

focus of creeping rays occur.
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For a specific model, we choose a perfectly conducting spherical

surface of radius a. For excitation, we use a vertical electric dipole.

Sommerfeld gives a good derivation of this model [18]. After the Watson

transformation, the potential u is determined to be

ik 2v +1 h ( ) ( k r )

u(r,6) = s P (-cos a) i(ka) (43)

V'4o,Vl ,v2 ...

In expression (43),

h (Z) = (Tr/(2z) H(1)(z) (44)

where HM is the Hankel function of the first kind. The denominator
V

nV (z) is given by

19 (z) : - [h( 1 )(z) + zh(1)'(z)] (45)

where prime denotes derivative with respect to z. In (43), vm m=0,1,2 ...

are the roots to the transcendental equation

V V

VoV 'v2 ... z = ka (46)

as a function of v. Each term in (43) is a creeping wave. For large ka,

Sommerfeld [173 shows that asymptotically

Vm = ka I (4m+I)2/3 (4a)2/3 eir/3j (47)

[+-(~l 4ka

Since the v's are large in magnitude, Pv(-cose) can also be approximated
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by its large argument asymptotic expression e.g. (see [17], p.149).

( (-c a) ) Cos (v+) (- o) - T/4) (48)

provided IvI >> 1 and e not too near 0 or Tr.

Now the phase change associated with the creeping ray passing through

the focus at the poles of the sphere is contained in expression (48) as

has been shown by Wait [7 ]. We use his argument and note that result

(48) can be decomposed into two "rays" i.e. we rewrite (48) as

P (-cose) = A [ei(v+ )e + e i 'R/2 ei(v + ) (21 - )] (49)

where

2(27rvsine) ,

The interpretation is that there are two traveling waves on great

circle paths. One travels through an arc e, the other through the arc

(2Tr- 9). Upon going through the focus at e = Tr, the second ray path picks

up a phase advance of 7/2 radians. Although not demonstrated from this

argument, the phase advance is not abrupt (see [ 7]) but continuous, and

Pv(-cose) near n is finite i.e.

P(-cose) = J0 ((v+2)( )) + 0(( 8-e)2 )

(see [ 7], p. 163). This completes our discussion of the ir/'2 phase advance
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associated with spheroid focus phenomena, and as used in our creeping ray

resonance condition(3).
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