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CHAPTER 1

INTRODUCTION

1-1 Motivation and Previous Research

A theoretical investigation of the nonlinear effects in the reflection and
refraction of plane finite-amplitude acoustic waves at the interface between two
lossless fluids is presented in this dissertation. This research may in one sense
be considered an outgrowth of the author’s master’s thesis work (Cotaras 1985),
which dealt with finite-amplitude effects in long range underwater acoustic prop-
agation. That work is rigorously valid only up to the point that the acoustic
waves interact with either the surface or the bottom of the ocean or pass through
a caustic (focal region). Although this work does not contain any discussion of
what happens at a caustic, it does have application to the reflection and refraction
of finite-amplitude sound at both the surface and the bottom of the ocean.

Evidence from both inside and outside the field of nonlinear acoustics
indicates that the laws governing the reflection and refraction of finite-amplitude
sound may be different from the well-knowr linear theory results—Snell’s law and
the law of specular reflection. From outside the field of acoustics come the unusual
effects that are observed during the reflection and refraction of plane shock waves,
effects such as the stem shock.! These effects have been studied for some time
and are still of interest today [see, for example, Polachek and Seeger (1951);
Jahn (1956, 1957); Henderson (1966); Miura and Glass (1983)]. The results of
the research are not, however, of direct use in acoustics for the following reasons:
(1) The pressure change at the shock is typically much larger than that in finite-
amplitude acoustics, and (2) the results indicate only what happens at the shock,
not what happens to a continuous signal. From within the field of nonlinear

TUpon reflection from an interface, the intersection point of the incident and reflected shocks
detachcs from the interface. The intersection point is, however, still ‘connected’ to the interface

by a third shock—-the stem shock. For more details, see, for example, Courant and Friedrichs
(1976, p. 334).




acoustics, evidence of a possible difference from linear theory is suggested by
Blackstock (1959). Studying the normal reflection of finite-amplitude sound from
a rigid wall, Blackstock noted that the linear theory result of pressure doubling
is not rigorously correct. Pressure doubling is actually the small-signal limit of
the proper law, which is that excess sound speed (¢ — ¢y) doubles.?

Despite the evidence of a possible deviation from the linear theory, the
problem of reflection and refraction of finite-amplitude sound has remained al-
most untouched. Van Buren and Breazeale (1968) dealt with the reflection of
finite-amplitude ultrasonic waves by decomposing the incident finite-amplitude
signal into its Fourier components and then reflecting each component indepen-
dently using linear theory. In their procedure the reflected components are then
recombined to reconstitute the reflected wave. Thus they did not directly address
the question of nonlinear effects in reflection and refraction.

Two Chinese reseachers have recently published pertinent work: Qian
(1982) on reflection of finite-amplitude acoustic waves and Feng (1983) on re-
flection and refraction. Both use perturbation methods and Lagrangian coor-
dinates. Qian examined that which is a special case for us—the reflection of
finite-amplitude sound from a rigid wall at oblique incidence. The paper has a
few algebraic errors® but is otherwise correct for the case it treats. On the other
hand, the work by Feng appears to contain some fundamental errors in both the
wave equations and the boundary conditions. After expanding all the acoustic
variables in a small parameter €, Feng obtains the O(¢) and O(e?) wave equations
and boundary conditions. However, Feng then assumes that the interaction terms
in the O(¢?) wave equations [his Eqgs. (13) and (15)] are zero. This is true only for
the case of simple wave motion.* For compound wave flow, which is what occurs
on the fluid [ side (the incident and reflected fields co-exist), the terms do not
cancel. T'eng’s wave equations are, therefore, not valid on the fluid I side. Fur-
thermore, in his O(e?) particle velocity boundary condition, Feng fails to account
for the variation of the normal to the interface. It is shown in this dissertation
that the variation vanishes only in the special case of normal incidence.

An carlier presentation of some of the results of this research (Cotaras
and Blackstock 1987) apparently stimulated some interest in the problem. For

?For finite-amplitude waves, the sound speed c differs from the small-signal sound speed cp:
see the next section.

3For example, in Eq. (13a) an unneccesary 1/(ch)?, where c} is the small-signal sound speed
m fluid I, is introduced; this error is repeated in Eq. (19).

“For the case of plane waves, simple wave flow may be defined as a wave field that consists
of progressive waves only, that is, waves propagating in one direction only. If progressive and
regressive waves co-exist, then tiie wave field is referred to as compound.




example, Shu and Ginsberg (1988) are examining the reflection and refraction of
finite-amplitude sound at a fluid-solid interface. At the time of writing of this
dissertation, however, their work was not available for examination.

1-2 The Propagation Speed of Finite-Amplitude Acoustic Waves®

It is well known that the propagation of a finite-amplitude wave can-
not be accurately modeled by a small-signal acoustical theory; see, for example,
Blackstock (1972). Small-signal theory fails because the propagation speed of
a finite-amplitude wave depends on the local particle velocity. The dependence
arises in two ways. (1) Convection: Convection occurs when the fluid particles
themselves are set into motion by the passing acoustic wave and contribute their
own velocity to the total wave speed. Thus the actual propagation speed dz/dt
may be expressed as

dz
dt
where ¢ is the sound speed (which is to be distinguished from the propagation
speed). (2) The nonlinearity of the pressure-density relationship: Because of this
nonlinearity, the sound speed c is not, in general, a constant. For an outgoing

plane wave, the sound speed is given by the following [see, for example, Beyer
(1974)]:

=c+u , (1.1)

B
= — 1.
c c0+2Au , (1.2)

where cp is a true constant referred to as the small-signal sound speed (the value
that appears in tables), and A and B are the first and second coefficients of
the Taylor series expansion of the pressure density relation. When the above
equations are combined, the resulting equation is usually written as

dt
where 8 =14 B/2A is called the coeflicient of nonlinearity and has the value 1.2
for air and 3.5 for water. Equation (1.3) is sometimes called the wavelet speed,
a wavelet being a given point on the waveform of a propagating wave.

"For a more thorough introduction to the physical origins of nonlinear acoustics and its
applications, see, for example, Hamilton (1986).




1-3 Scope of the Research

The primary objcctive of this dissertation is to investigate nonlinear
effects in reflection and refraction at a plane interface between two lossless flu-
ids. However, because losses are present in all real fluids and because losses
must eventually be accounted for in a complete treatment of reflection and
refraction, the equation for finite-amplitude wave motion in a homogeneous,
thermoviscous fluid with a single relaxation mechanism is derived in this disser-
tation. Although thermoviscous effects, relaxation effects, and nonlinear cffects
have been studied separately, the derivation (from first principles) of the wave
equation that accounts for all three effects has not been previously attempted.
It is therefore included in this dissertation.

The dissertation is divided into three parts. Presented in the first part
are the basic equations for a homogeneous, thermoviscous fluid with a single
relaxation mechanism and a method for ranking the terms in the equations.
The fluid is assumed to be initially quiet, irrotational, uniform, and in thermo-
dynamic equilibrium. Moreover, effects of rotational flow arc ignored. When
presenting the basic equations, we make a fundamental assuinption: The mag-
nitude of the deviation from thermodynamic equilibrium is assumed to be small,
and linear relationships between each thermodynamic flux and all the thermo-
dynamic forces are assumed to hold. The possibility of cross-effects between
the different thermodynamic fluxes and forces is pointed out, but neglected.
Ranking the terms in the basic equations according to their relative impor-
tance requires that additional fundamental assumptions be made about (1) the
amplitude of the acoustic signal, (2) the magnitude of the transport coefficients,
and (3) the magnitude of the dispersion caused by the relaxation. Use of the
ranking system enables us to develop simplified forms of the equations. The
wave cquation for finite-amplitude signals in a thermoviscous fluid with a single
relaxation mechanism is then developed.

Analyzed in the second part of this dissertation is the reflection and
refraction of finite-amplitude plane waves that are obliquely incident on an ini-
tially plane interface between two lossless, immiscible fluids. First, the bound-
ary conditions at the interface are examined. The interface 1s assumed to be
initially planar and coincident with the z = 0 plane. Morcover, the effects of
surface tension and body forces at the interface are neglected. Second-order
perturbation analysis, which is sometimes referred to as quasilinear analysis,
is employed to analyze reflection and refraction of an abitrary incident signal.
The notation closely follows the work of Naze Tjgtta and Tjetta (1987). The
O(€) and O(€*) systems, where € is a small parameter, are then solved. The




O(€?) system accounts for not only the nonlinearity in the wave equation but
for the finite displacement of the interface and the variation of the normal to
the interface. After the expressions for the O(¢€) and O(€?) reflected and trans-
mitted fields are obtained, it is noted that, to O(e?), Snell’s law and the law of
specular reflection hold.

In the third part of the dissertation, we develop two different ‘modified
forms’ of Snell’s law—forms which appear to indicate that refraction has a
slight amplitude dependence. The ‘modified forms’ are developed by means
other than perturbations and appear to be correct to second-order. However,
in deriving the ‘modified forms’, one of which was reported by Cotaras and
Blackstock (1987), a large assumption is made: that simple wave flow exists
on the incident side of the interface. This assumption is quantified by using
the results of the previous section to develop the O(¢) and O(e?) conditions
for simple wave flow. We next expand each of the ‘modified forms’ of Snell’s
law and find that, to O(e?), the two ‘modified forms’ are equivalent. Morcover,
the ‘modified forms’ yield, at O(e), ordinary Snell’s law and, at O(e?), one of
the O(€?) conditions for simple wave flow. Since simple flow is assumed in the
derivation, the ‘modified forms’ are, to O(€?), equivalent to ordinary Snell’s
law. Thus we metaphorically deflate the balloon that carried us through this
dissertation: the hope of finding a deviation from Snell’s law at O(€?).




CHAPTER 2

ON THE RANKING OF TERMS IN THE BASIC EQUATIONS
FOR A HOMOGENOUS, THERMOVISCOUS FLUID WITH A
SINGLE RELAXATION MECHANISM

Discussed in this chapter are the basic equations for a homogencous,
thermoviscous fluid with a single relaxation mechanism and a method for rank-
ing the terms in the equations. The equations presented are the conservation
of mass (continuity equation), the conservation of linear momentum (Newton’s
second law), and the conservation of entropy. To the entropy equation, however,
we add the second law of thermodynamics: entropy production is positive for
irreversible processes (loss mechanisms). Other relations from thermodynamics
that are presented are an equation of state, Gibb’s equation, and the first law
of thermodynamics: the conservation of energy. The energy equation is manip-
ulated into the form of the entropy equation, and entropy production is seen to
be the sum of the products of the various vhermodynamic fluzes and forces. A
fundamental assumption is then made. The magnitude of the deviation from
thermodynamic equilibrium is assumed to be small, and linear relationships be-
tween each thermodynamic flux and all the thermodynamic forces are assumed to
hold. The possibility of cross-effects between the different thermodynamic fluxes
and forces is pointed out, but neglected. The fluid is assumed to be initially quict
and in thermodynamic equilibrium. Moreover, the signal is assumed to be far
from all hboundaries for all time. Additional fundamental assumptions are then
made about (1) the amplitude of the acoustic signal, (2} the magnitude of the
transport coefficients, and (3) the magnitude of the dispersion caused by the re-
taxation. The terms in the cquations are then ranked according to their relative
importance. Use of the ranking system enables us to readily obtain simplified
forms of the basic equations (Lighthill 1956). Specifically, we develop simplified
forms of the equations appropriate for (1) small-signal wave motion in a lossless
fluid, (2) small-signal wave motion in a homogeneous, thermoviscous, relaxing
fluid, and (3) finite-amplitude wave motion in a homogeneous, thermoviscous,




relaxing fluid. As mentioned in Chapter 1, it is our intention to neglect all losses
i the analysis presented in later chapters. The terms that represent the effects
of viscosity, heat conduction, and relaxation are, however, included at this stage
for completeness.

2-1 Basic Equations for a Homogeneous, Thermoviscous Fluid with
a Single Relaxation Mechanism

We start with two classical equations: the conservation of mass and the
conservation of linear momentum,

dp _

=+ Vi(pu) =0, (2.1)
Duk _ 8a,~k
Dt - B:c,- ’ (22)

where p is the density, ux is the kth component of the particle velocity u (k =
1,2,3), oix is the stress tensor, and D/Dt is the material derivative,

D) _ o), 30)

Dt - at '6$.' (23)

Throughout this work, we follow the summation convention; that is, a repeated
index implies a summation over the index. Equations (2.1) and (2.2) are from
Thompson (1984, Eqgs. (1.54) and (1.59)], but the effect of body forces such as
gravity is neglected in the linear momentum equation.

To the pair of classical equations, we add some thermodynamic relations:
a state equation, Gibb’s equation, and the entropy equation. The state equation
gives the functional relationship between the thermodynamic variables when the
fluid is in thermodynamic equilibrium. (Thermodynamic equilibrium is precisely
defined below.) For a thermoviscous fluid with a single relaxation mechanism,
one form of the state equation is!

P=P(p,s,9) (2.4)

YAny three thermodynamic variables may be chosen as the three independent variables. The
advantage of choosing the advancement variable ¢ and the entropy s as two of the three is that,
if a fluid is always in thermodynamic equilibrium (very common assumption in acoustics), both
q and s take on their equilibrium values, which are constants. Thus, the state equation reduces
to P = P(p).




where P is the total pressure, s is the entropy per unit mass, and ¢ is the degree
of advancement of the relaxation mechanism, for example, a chemical reaction.
It turns out that the following alternate state equation is required:

T= T(P,sa‘I) ’ (25)

where T is the absolute temperature. Another relation between the thermo-
dynamic variables is given by Gibb’s equation, which for a fluid with a single
relaxation mechanism is

P
Tds = de — ? dp—~Adq , (2.6)

where e is the internal energy per unit mass and A is the affinity of the relaxation
process. The entropy equation may be stated in such a way that it incorporates
the second law of thermodynamics:

p-—+'—m—=T ) T>0 (2.7)

where Ji is the Ath component of the entropy flux vector J and T is the entropy
source strength.?

The entropy source strength is an important variable for two reasons.
First, the {luid is defined as being in a state of thermodynamic equilibrium when
no entropy is produced, that is, when T = 0. Second, linear phenomenological
rclations may be introduced by way of the entropy source strength. The entropy
source strength may be written as the sum of the product of thermodynamic
fluxes and forces,

T=JXe |, (2.8)

where Ji is a generalized thermodynamic flux and X is a generalized thermo-
dynamic force. Since thermodynamic equilibrium is defined as zero entropy pro-
duction, it is required that all thermodynamic fluxes and forces be zero at equi-
librium,

Ji = 0 and X; = 0 at equilibrium . (2.9)

If the departures from equilibrium are small, linear phenomenological relations
between the thermodynamic fluxes and forces may be assumed,

Jo = LuXi | (2.10)

ZThe material in this section is based on the material in Chaps. 11, 1V, and V in the book
by Prigogine (1961) and Chaps. 1H, IV, and VI in the book by de Groot and Mazur (1981).
References to other works are made when appropriate.




where L;i are called the phenomenological coefficients. Note that although a lin-
ear relationship between the fluxes and forces is assumed, the coefficients are not
assumed to be constants, and the possibility of interference between the differ-
ent fluxes and forces is permitted. The interference between the thermodynamic
fluxes and forces is, however, restricted by Curie’s principle, which, briefly stated,
is that for an isotropic fluid only fluxes and forces of similar tensorial nature may
interact. Thus, a scalar flux may contain contributions from scalar forces, but
not from vector forces or tensor forces. Moreover, the number of coefficients is
limited by Onsager’s relation, which states that L,z = L.

Finding the appropriate form of T

To find the form of T appropriate for a thermoviscous fluid with a single
relaxation mechanism, we start with the energy equation and rearrange it so that
it is in the form of the entropy equation. In rearranging the equation, we assume
local equilibrium and split the stress tensor into two parts, a pressure term and
a viscous stress term.

We start with the energy equation; see, for example, Thompson (1984,
Eq. (1.60)],

D u? 0 9Q;
= — | = ——(ouup) - == | 11
or (¢4 ) = gt~ 52 @)
where @; is the ith component of the heat flux vector Q. If the kinetic energy
relation (which is obtained by multiplying the linear momentum equation by ;)

is subtracted from the energy equation, the resulting equation is [see, for example,
Thompson (1984, Eq. 1.70)]

De Ou; 0Q;

— = gy— — =L 212
"Dt = "%z, ~ bx; (2.12)

The stress tensor o may be divided into two parts:
Ok = -P(S,'k - U.’-k s (213)

where o), is the viscous stress tensor, — P&, is the pressure stress, and §;; is the
Kronecker delta function, which is equal to unity if ¢ = k, but zero otherwise.?

3The choice of sign on the viscous stress tensor in Eq. (2.13), which is arbitrary, differs
from some work in hydrodynamics (see, for example, Landau and Lifshitz 1959, Eq. (15.2)],
but conforms to some work in thermodynamics [see, for example, de Groot and Mazur 1984,
Eq. (111.35)].
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The viscous stress tensor is assumed to be symmetric.* Using Eq. (2.13) in
Eq. (2.12) and using the continuity equation, Eq. (2.1), leads to the following
form of the energy equation:

Sl o S s N R AN 2.14

Dt p* Dt p *0z,  pOrk ( )

Equation (2.14) may be simplified using Gibb’s equation. However,

Gibb’s relation 1is, strictly spcaking, only valid in equilibrium. Since the fluid

is not always in equilibrivm, we must assume that the fluid particles are in a

state of local equilibrium. If we follow a fluid particle that is in local equilibrium,
Gibb’s equation may be written as

Ds De PDp Dq

oA D 2.15
Dt Dt p? Dt Dt ( )

Use of Eq. (2.15) in Eq. (2.14) yields

Ds 1 ' 0’(1,; 1 6Q, pA Dq
Dt 1 6a:k T 81:;, T Dt
To place Eq. (2.16) in the form of the entropy equation, Eq. (2.7), we
must perform some manipulations that initially appear arbitrary. The resulting
expressions are, however, unique; see de Groot and Mazur (1984, pp. 24-25). The
simpler of the manipulations is
1 0Q; 9] ; , 0T
Tﬁz-_(gl)+%— . (2.17)
T 0x; 0x; \T T2 Ozx;
The more complex manipulation involves expanding o/, and du,/dz; into trace
components and remainders that have zero trace. We rewrite the viscous stress
tensor as follows:
ol = O + 360l (2.18)
where Fj; is a symmetric tensor since o), is assumed symmetric. The gradient of
the velocity is rewritten as

Ju; 1 [(Ou,- 4 O_uk_) B %&;:Qﬂ] 4 1 (aui 6ltk) N 1‘5 Jug

dry — 2|\, | O 0z,| ' 2\0xy 9z;) " 370z,

"This is tantamount to assuming that the internal angular momentum is randomly dis-
tributed amongst the molecules, which is generally the case. If this is not assumed, then it
turns out that another phenomenological coefficient, in this case, the rotational viscosity, is re-
gnired. Moreover, the asyminetry of the viscous stress tensor decays: sce de Groot and Mazur
(1934, Chap. X1I).
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The first term on the right-hand side, which is symmetric and has zero trace,
indicates shearing motion but without a volume change. The second term, which
is antisymmetric, is associated with a rotation but again without a volume change.
The third term on the right-hand side, which consists solely of diagonal elements,
indicates the volume change. Since the product of symmetric and antisymmetric
tensors is zero, we may write

du. &"k au,' auk 2 Bug 1 s Ou,
= Ll et — ] — 26— 20—, 2.19
% orr 2 [(&u + 61:.-) 36'k621 +39%; Oz, ( )

Use of Egs. (2.17) and (2.19) in Eq. (2.16) yields the desired form of the energy

equation:

Ds (Q) _ gaT Fix Ou; +0uk _ 2 vy
"Dt Or; \ T T? Jz; 2T Oz, | Oz. 3% Bz,
jOue  pA Dg
- _._Ji__ . 2.20
Comparing Eq. (2.20) with the entropy equation, Eq. (2.7), we identify the fol-
lowing:

_ 9
J; = -T— (2.21)

and

Q,’ oT o) k Ou; Ouy 2 6U( 1 0;'1' 6u¢ pA Dq
_ &0 Tk STk 2 TR _ZZuiZH PO 7T (999
T=-59 "3t \os, Y3z ) “%%5,| 373, 7ot 3%

Introduction of the linear phenomenological relations and constants

We are now in a position to utilize Eqs. (2.8) and (2.10), the linear
phenomenological equations. Recalling Curie’s principle and Onsager’s relations,
we write

Qi = —%gg , (2.23)

Si = ~ o7 [(g::; + %%) - %‘Sik‘g—g] y (2.24)
I g (2:25)

n%—f = —%‘iig% - L22% , (2.26)
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where
Ly =1La . (2.27)

The coefficients Ly, L, L1, and L,z must be positive in order to satisfy the second
law of thermodynamics, T > 0. For simplicity, we shall neglect the possiblity
of cross-effects throughout the remainder of the work, that is, we assume that
Liz =1Ly =0.

We now identify some of the phenomenological coefficients as the trans-
port coefficients in well-known linear relations (for example, Fourier’s law of heat
conduction):

L i
n:T_; , (2.28)
L,
=2 2.29
2T (2:29)
Ly .
== , 2.30
B = (2.30)

where & is the thermal conductivity, u is the shear viscosity, and g is the bulk
viscosity. Use of Eqs. (2.28)-(2.30) in Eqs. (2.23)-(2.25) yields the following well-
known linear phenomenological laws (recall that the cross-effect in Eq. (2.25) is
neglected):

Q=-xVT , (2.31)
wr 3u,~ au;, 25 ?il_{ ¢
Oik = 1 [(3;; + '5;:) 36'k8z¢] ) (2.32)

%a;.j = PB(V'U) . (233)

Obtaining the fourth phenomenological constant and relation takes a
little more work. First, for future reference, we redefine the phenomenological
coefficient as

Lj;

== 2.34

g = (2:34)

If cross-effects are neglected, this definition results in the following linear phe-
nomenological relation:

Dq / e
o = A (2.35)

It turns out, however, that different forms of the linear phenomenological relation
and its associated coeflicient, which are referred to as the rate equation and the
relaxation time, arc of great use. The rate equation and the relaxation time are
obtained as follows: The affinity A = A(p,T,q) is expanded in a Taylor serics.
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The expansion is then specialized for equilibrium, and the result is subtracted
from the original expansion. The results follow directly. In general, for small
deviations from equilibrium, A may be approximated as
) (¢—q) , (2.36)
T/ g

0A 0A 0A
= (8], oo (5, ) o (5],

dp
where the subscript 0 denotes the static value of the variable. (This notation
is used throughout this work.) As noted earlier, all thermodynamic forces
and fluxes are zero at equilibrium; thus, the equilibrium—static—value of A4
is zero. The equilibrium value of the advancement variable ¢ is denoted by a
) (4" —g)
p\T 0

superscript *.
0A 0A
. ) (P—Po)+(;ﬁ ) (T —To)+ (5(1—
3/ 0 P/
(2.37)

JA
Algege = 0= (5‘
p
Equation (2.37) indicates that ¢* is a function of only two thermodynamic vari-
ables, p and T. Note that the static—equilibrium—values of ¢ and ¢* are equal,
that is,

9o = 9
Subtracting Eq. (2.37) from Eq. (2.36) yields
0A .
A=(5— ) (e—4") - (2.38)
ql,z),

This is consistent with our earlier assumption that the thermodynamic fluxes
and forces be linearly related. Use of Eq. (2.38) in the linear phenomenological
relation (again neglecting cross-effects), Eq. (2.26), leads to

Dq  (¢—q)
iR (2.39)

where

pT

T0 = ~——————
L., {24
22 3q 2T o

The value of 1y is positive because Ly, must be positive to satisfy the second law,

T >0, and because (%ﬂ T) is positive; see de Groot and Mazur (1984, p. 201)
»T/o

(2.40)

for a complete explanation.
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Introduction of the linear phenomenological relations into the momen-
tum and entropy equations

The terms in the entropy equation, Eq. (2.7), that were unknown are the
entropy flux, J, and the entropy source strength, T. The entropy flux is given in
Eq. (2.21). The entropy source strength may be obtained if the lincar relations
between the thermodynamic forces and fluxes given in Eqs. (2.31), (2.32), (2.33),
and (2.35) are substituted into the relation for T, Eq. (2.22),

x [OT\* p [Ou;  Our 5. Ou : IB au( ﬁp
T‘ﬁ(%)*é‘f[éﬁ*%’5é"‘5§ *7\a) TTA BN

Note that all the terms are positive and the squares of variables.

The linear phenomenological relations arc now introduced into the mo-
mentum equation. Recall that the viscous stress tensor was split into two parts:
a trace component and a symmetric tensor with zero trace. Use of Eqgs. (2.32)
and (2.33) in Eq. (2.18) yields

_ Ou; Ouyg 25 3u, . Ou, 9
L = —i [(axk + -5;;) - 35,),—3;;] - ItBéxk B:I:g . (21.,)

Use of Eqs. (2.13) and (2.42) in Eq. (2.2) yields the following form of the lincar
momentum equation:

Du; oP Ou; p\ 0 Oug
_— = 24l
" Di 81.+#81:8xk+(8+ )ax,ax, ! (2:43)
which may also be written in vector form as
%lt-i = -—VP+uViu+ ([lB + g—) V(V-) . (2.44)

In obtaining Eq. (2.43), we assumed that the transport coeflicients &, g, and
i arc constants.® Equation (2.44) is the well-known form of the momentum
cquation; sce Landau and Lifshitz {1959, Eq. (15.6)).

>This assumption is, strictly spcaking, not necessary; it is, however, convenient. It is not
necessary because it turns out that the ranking scheme, which is introduced later in the chapter,
indicates that the terms which arise if the transport coeflicients are not assumed constant are
negligible. As an example, we now examine one of the terms containing a transport cocflicient,
pndieQue/dxe. The gradient of this term is

V(i V) = pupViu+ (Veu) Vg

But since g is a fuuction of any three state variables, say I°, s, and ¢, we may expand pup in
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Summary of basic equations for a homogeneous, thermoviscous fluid
with a single relaxation mechanism

The basic equations for a homogeneous, thermoviscous fluid with a single
relaxation mechanism are the continuity equation, the linear momentum equa-
tion, the entropy equation, the equation of state, the alternate equation of state,
and the rate equation. The equations are, respectively,

dp
L aiv. = 2.1
5 T (pu)=0 , (2.1)
Du 2 7
—5 = VP4 uVu+ (pB + 5) V(Ve) | (2.44)
Ds vT k [(OT\? po|Ouw;  Oup o Oug z
PE*W(TJ-FGﬁ‘Wﬂaﬁa:sw
2
pe (ue)" | Bp
+T(rg)+TA L (249)
P = P(p,s,q) , (2.4)
T=T(p,s,q) ’ (2.5)
Dg _ (¢4—q)
D= (2.39)

2-2 The Ranking System and Its Fundamental Assumptions

In this section the thermodynamic variables are defined to be the sum of
a static value and a small fluctuation. Fundamental assumptions are then made
about the magnitude of the acoustic fluctuation, the magnitude of the transport
cocflicients, and the amount of dispersion caused by the relaxation mechanism.
The system for ranking the terms in the basic equations is then presented.

Opp Oup
r-rys (28] ) wmwe (%2] ) @-ae
"‘7)0 0 88 re/ g 0 aq ps/ o °

Use of the ranking scheme indicates that the only term in V(ugV+u) that is not negligible is
(#n)oVu. Thus the ranking system will show us that the variation in the transport coefficients
is a negligible effect, but it is simpler for us to treat them as constants from this point on.

a Taylor series,

Oup
pp = (nplo + (—(TIT
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We may define each thermodynamic variable to be the sum of a static
value, which is denoted by the subscript 0, and a small fluctuation, which is
denoted by the superscript /,

p=pot+p (2.16)
P=Po+y , (2.47)
T=Ty+T , (2.18)
s=so+s (2.19)
u=uyg+u , (2.50)
9=q+4q (2.51)
T =q+ ¢ . (2.52)

Note that hecause the fluid was assumed to be initially quiet, the static value of
the particle velocity is zero, that is, [ug| = 0. We therefore drop the unnecessary
prime from u’ and refer to the acoustic fluctuation in the particle velocity sim-
ply as u. Recall that the static values of ¢ and ¢* are the same (i.e., g = o).
Equations (2.46) through (2.52) may be substituted directly in the continuity,
momentu, entropy, and rate equations, but this is deferred until after the rank-
g system is presented.

It is well known that for most fluids the linear, lossless, wave equation
(the classical wave equation) is a good model for describing the behaviour of
small-signal acoustic waves. The classical wave equation may be obtained by
retaining only lincar, lossless terms in the basic equations. A linear, lossless term
15 a lincar term with a coefficient that does not involve a transport coeflicient or
the derivative of the equilibrium variable ¢* with respect to another thermody-
namic variable. Examples are dp’/0t and po(V+u). The linear, lossless terms are
therefore ranked as first-order terms.

On the other hand, if one wants a better approximation - an approxima-
tion that accounts for the weak effects of viscosity, hicat conduction, relaxation,
and nonlincarity - then more terms must be retained. The terms to be retained
are lincar velaxation terms, lincar dissipation terms, and quadratic nonlinear-
iy terms. These terms, which are defined below, are ranked as second-order
ferms and represent the most important effects of viscosity, heat conduction,
relaxation. and nonlincarity. A linear relaxation term is a linear term with a
coellicient that involves a derivative of ¢* but not a transport coefficient. An ex:

. e . - . . . . . . .
ample s pf (—,1‘-—‘ ) - \dinear dissipation termis a linear term with a coeflicient
! 70
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that contains a transport coefficient but not a derivative of ¢*. For example,
¢ V?u is a linear dissipation term. Terms containing a quadratic nonlinear term
with a coefficient that does not contain either a transport coeflicient or a deriva-
tive of ¢* are referred to as quadratic nonlinearity terms; examples are p' (Ju/dt)
and p’(V-u). The names of the various terms are reflective of their physical
interpretation.

Since the effects of viscosity, heat conduction, relaxation, and nonlinear-
ity are assumed small, any term representing the interaction of any two second-
order effects would be expected to be negligible. Such terms are encompassed in
the third major category, higher-order terms. An example of a higher-order term
is the cubic term, p'(u-V)u.

To quantify the ideas in the previous paragraphs, we now state three
fundamental assumptions about the magnitude of the various terms: First, the
magnitude of the particle velocity |u]| is assumed to be small with respect to the
sound speed ¢y, that is,

lul < e

[t turns out that this assumption also implies that the magnitude of the pressure
fluctuation p’ is small with respect to poc2, and that the magnitude of the density
fluctuation p’ is small with respect to pg (see Appendix B),

‘pl' < Pocg) ’

'] < po

To aid in the subsequent ranking, we state that the nondimensional acoustic
fluctuations p'/pocd, p'/py. and u/cy are of order ¢, where ¢ is a small parameter.
Our second fundamental assumption is that for the highest frequency of interest
the effects of shear viscosity, bulk viscosity, and heat conduction are small. This
means that, when suitably nondimensionalized (sece Appendix B), the transport
coefficients g, pg, and x are all small quantities of order v, where v is a small
parameter. Our third fundamental assumption is that the dispersion caused by
the relaxation is of order M, where M is a small nondimensional parameter
that is formally defined later. At this point it is appropriate to recall that two
fundamental assumptions were previously made: the deviation from equilibrium
is assumed to be small enough that the thermodynamic fluxes and forces may be
linearly related, and the cross-effects are assumed negligible.

Use of the ranking system makes it relatively easy to deal with special
cases. For the case of small-signal wave motion in a lossless fluid, only terms
of order ¢ need to be retained. For finite-amplitude wave motion in a lossless
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fluid, terms of order € and €? must be retained. For finite-amplitude signals in a
homogeneous, thermoviscous, relaxing fluid, terms of order €, €2, Me, ve must
all be retained. Thus, the basic equations can be simplified and, in most cases,
combined to form a wave equation corresponding to the situation at hand.

It is important to note that not all second-order nonlinearity terms gen-
erate similar effects. The effects of nonlinearity may be roughly divided into two
catagories: cumulative effects, that is, effects which grow with distance, and non-
cumulative or local effects. Since no e priort method exists to indicate whether
a particular second-order nonlinearity term will result in effects that grow with
distance, all second-order terms must be retained. Under some circumstances
local effects can be important because, although they do not grow with distance,
they can propagate. Thus, a local effect generated at one location may influence
(or render impossible) the measurement of a local effect at a second location.

If Egs. (2.46) through (2.52) are substituted into the continuity, mo-
mentum, entropy, and rate equations as well as the Taylor series expansions of
the state equations and if the terms that are of higher order are neglected, the
following equations are obtained:

%‘f‘ﬂov-u = —plvou_u.Vp’ , (253)
du , , Ou 2 H :
po5; t Vp' = ~p rh po(u-Viu + uVua + <#B + 5) V(V-u) , (254
a !
poToa—st = V2T (2.55)
a ’ I %
Stuve =0 (2.56)

oP oP ap 9*p
V== |+ 5| | +¢ (5| | +i0)° (—— ) » (2:57)
(()p -’»q)o (63 Pv‘J)o (6(1 p.s)o 2 ap’z va)

ar aT aT o*T
=y (——— ) +s' (— ) +q (—— ) +3(p')? ( 7 ) - (2.58)
910/, s |,./, 9q,,/, g 9" (,4/

[t turns out that both the momentum equation and the rate equation may be
further simplified, but this is deferred until later.
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2-3 The Sound Speed in a Relaxing Fluid
The defining relation for the sound speed is usually written as
apP
2= 2 2.59
“= 51 (2:59)

Since three independent thermodynamic variables are required to completely
specify the state of a fluid with a single relaxation mechanism and since Eq. (2.59)
only specifies how two of them are to be used, the sound speed for a relaxing fluid
may be defined in a multitude of ways. It turns out (as we see in the next chap-
ter) that the following two defining relations play an important role in acoustic
wave propagation in a relaxing fluid:

dP 0
ooye — 77 - )
(c*) = 5., apP(p,s,q) , (2.60)
oP 0
0y2 — — P,S,' ,$ . 261
(%) 3, ap{ (p, 5,47 (p,9)]} (2.61)

Equation (2.60) is the defining relation for the frozen sound speed ¢, the sound
speed for a fixed (frozen) value of ¢ that is not necessarily the equilibrium value
q". Equation (2.61) is the defining relation for the equilibrium sound speed c°, the
sound speed for the equilibrium value of ¢ = ¢* that is not necessarily a constant.
[t turns out (as we see in the next chapter) that the frozen sound speed is the
appropriate sound speed for a fluid with a very long relaxation time and/or for
a very high frequency signal. In this case, the signal disturbs a fluid particle at
a rate that is much faster than the rate of the relaxation mechanism, that is,
the fluid is effectively frozen in a single state. Thus, ¢ is constant. On the other
hand, the equilibrium sound speed is the appropriate sound speed for a fluid with
a very short relaxation time and/or for a very low frequency signal. In this case,
the signal disturbs a fluid particle at a rate that is much slower than the rate of
the relaxation mechanism. The advancement variable ¢ is thus always equal to
its equilibrium value ¢*, even though q* changes with the passing acoustic wave.®

When evaluated at static conditions, the values of the frozen and equi-
librium sound speeds are denoted with a subscript 0,

() = (8———P ) : (2.62)
849/ o

dp
“For a more detailed explanation of the roles of the frozen and equilibrium sound speeds,
see, for example, Vincenti and Kruger (1965, Chap. VIII, Secs. 3 and 4).
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2 = oP
(cd) (5p ’qsq.)o . (2.63)

Magnitude of the difference between the two sound speeds

When the ranking system was presented, we assumed that the dispersion
caused by the relaxation mechanism was a small quantity of order M. An expres-
sion for the nondimensional difference between the equilibrium and frozen sound
speeds, which is denoted m and was previously assumed small, may be obtained
in the following manner: The total differential of the pressure is first obtained
and is then specialized for equilibrium. The difference between the frozen and
equilibrium sound speeds follows directly. The total differential of the pressure is

oP oP oP
dP = —| dp+ —| ds+ —| dq . 2.64
dap . P ds o dq ot q ( )

However, at equilibrium the change in the entropy is zero, and the advancement
variable q takes on its equilibrium value ¢*,

oP
dp+ 5&-

_op

dP =
Op

dq° . (2.65)

2

s’q

Rearranging using the defining relations for the equilibrium and frozen sound
speeds and noting the following identity from calculus,’

oP|  0Op 9q
—_— =-1 , 2.66
6‘p Bq 0P (2.66)
we obtain
(®)? = (=) (1 —m) (2.67)
where m 1s given by
0 oq”
=20 %4 (2.68)
aq P,s ap s
“For a gencral proof of the identity
(')_1: By dz| )
dy|, dz|, dz|, ~

see, for example, Van Wylen and Sonntag (1976, p. 366).
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Rearranging Eq. (2.67) yields a more readily interpreted definition for m,

00 \2 0
() — () _ (2.69)
(e=)?
The magnitude of m was assumed to be of order M, where M is a small quantity.
As with the frozen and equilibrium sound speeds, m has a static value that is
denoted myg.

As the value of m tends to 0, the effects of relaxation become small. At
the same time, the values of ¢ and ¢* tend to the same constant, equilibrium
value, qo = ¢;. In this limiting case, the equilibrium and frozen sound speeds are
equal, and, since g is no longer a variable, we recover the usual definition of the
sound speed as given in Eq. (2.59),

m— 0 = =(c)? =(* . (2.70)

We denote the limiting case of m — 0 in our notation by dropping the specifica-
tion on ¢ from the partial differential. This notation is also used to denote when
it is inappropriate to distinguish between the equilibrium and frozen forms of a
thermodynamic fluid property; see below. When evaluated at static conditions,
the sound speed for the m = 0 case is referred to as the small-signal sound speed

and is denoted ¢,
aprP
p s/ 0
To show that the difference between the equilibrium and frozen forms
of a first-order term is a second-order term, we may rearrange the definition of

m and then multiply through by a first-order term, say, the fluctuation in the
density,

(c°)?p" = (c0)*p' + mo(cg)?F’
Since the term mg(c5)?p’ is of second order, it is not appropriate to distinguish
between the equilibrium and frozen forms of the sound speed. (A higher-order

term would be introduced.) The above expression is thus written correct to
second order as

()20 = ()% + mo(co)®p’ . (2.72)
We may gencralize the foregoing discussion. Since the difference between

the equilibrium and frozen forms of a thermodynamic fluid property is a second-
order term, it is appropriate to distinguish between the equilibrium and frozen
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forms of a thermodynamic fluid property only when the property is a coefficient
of a first-order term. This is because the difference between the equilibrium
and frozen forms of a first-order term is a second-order term (of order Mc¢),
whereas the difference between the equilibrium and frozen forms of a second-
order term is a higher-order term. In second-order terms, we therefore neglect
the effects of relaxation. This is indicated notationally by not specifying what is
to be done with ¢ in the partial derivatives that are the defining relations for the
thermodynamic fluid properties.®

2-4 First-Order Acoustics: Small Signals in a Lossless Fluid

In this section the case of small-signal wave motiion in a lossless fluid
is considered. The terms in the basic equations that pertain to nonlinearity,
viscosity, heat conduction, and relaxation are dropped, and it is then seen that
the basic equations for this case are composed only of first-order terms. It is also
noted that neglecting relaxation and heat conduction eliminates the need for s
and ¢ as variables. The motivation for developing some first-order relations at
this time is to assist us in simplifying the second-order relations later. First-order
relations are of assistance because the dependent variables in second-order terms
may be replaced using first-order relations without changing the overall level of
approximation; see, for example, Lighthill (1956).

If all second-order terms are neglected, the following first-order forms of
the continuity and momentum equations, Eqs. (2.53) and (2.54), are obtained:

6 '3

_af: +pVeu=0 (2.73)
9

po 'a; +VP =0 . (2.74)

Equations (2.73) and (2.74) are referred to as the linear continuity and momentum
cquations.

We now discuss the rate and entropy equations or, more accurately, the
lack of need for them. Since the fluid is assumed lossless, the fluid is assumed

8If the difference between the frozen and equilibrium forms of second-order terms were not
negligible, that is to say, if m were not small, then frozen and equilibrium forms of both the loss
coefficient (defined below) and the parameter of nonlinearity (also defined below) would emerge.
llowever, in this work, m is assumed to be a small parameter, and the differences between the
equilibrium and frozen forms of terms containing the loss coefficient and the parameter of
nonlinearity are of higher order.
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to be in a state of thermodynamic equilibrium at all times. The variation of s
and q for any fluid particle is thus zero. Morcover, because the fluid is assumed
homogeneous, both s and ¢ are constant throughout the fluid. The rate and
entropy equations thus reduce to

g = ¢* = constant

s = constant
Because s and g are constant throughout the fluid, the state equation,
Eq. (2.4), reduces to
P = P(p,s = constant, g = constant) . (2.75)

Equation (2.75) 1s sometimes referred to as the isentropic equation of state. The
lincarized Taylor series expansion of Eq. (2.75) is

, (aP ) ,
P =15 P
¢/ ¢

dp
However, as noted above, it is inappropriate to distinguish between the equi-
librium and frozen forms of the sound speed when relaxation is not important.
The linearized Taylor series expansion of the state equation for a lossless fluid is
therefore written as

p=clo . (2.76)

Equations (2.73), (2.74), and (2.76) are the first-order forms of the conti-
nuity, momentum, and state equations and are valid for small-signal wave motion
in a lossless fluid. These equations may be combined to form wave equations in
p' and p',

1 a’zpf
2 —_— loded
Vi = aa7 (2.77)
,_ 1 3% ,

2-5 Second-Order Forms of the Basic Equations

In this section a consistent second-order form of the momentum cquation
is obtained. The order €2 terms in both the continuity and momentum equations
are then expressed in terms of a new variable called the Lagrangian density L.
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The Lagrangian density is related to some of the local finite-amplitude effects.
Next, the second-order forms of the entropy, state, and rate equations are ob-
tained. These equations are then combined into a single equation that is referred
to as the modified state equation. Last, the integral of the modified state equation
is obtained.

Continuity and momentum equations

No terms in the expanded continuity equation, Eq. (2.53), are of higher
order. Thus, the second-order form of the continuity equation is exact. Note
that the second-order terms in the continuity equation are quadratic nonlinearity
terms and need only be retained when finite-amplitude effects are of interest.

A consistent second-order approximation of the expanded momentum
equation, Eq. (2.54), is now obtained for a signal propagating far from boundaries
in an initially irrotational fluid. We first introduce the vorticity {2,

N=Vxu . (2.79)

The terms (u-V)u and V(V-u) in the momentum equation may be expanded
using vector identities [Gradshteyn and Ryzhik 1980, Eq. (10.31.3)] and the def-

inition of the vorticity to give
(u-Viu = 1V(u?) + 2xu

and

V(V-u) = Viu+ VxR
Inserting these relations into Eq. (2.54) yields

Ju . 4 2. 1 , ,0u
po gy + VP = (ke + 44) V?u — 1o Vu adrr

—po(§2Xu) + (#B + %) vx ,

where ©? = u-u. In Appendix B, however, it is shown that for a signal prop-

agating far from any boundaries in an initially irrotational fluid, the vorticity
is a higher-order term. The vorticity terms in the above relation are therefore
neglected.® The remaining terms form the second-order approximation of the
momentum cquation,

du

) , Ou
Po o7 + Vp' = povrVV?u —p 5 100V, (2.80)

*The interested reader is referred to Appendix B where vorticity and the irrotational flow
assutnption are discussed at length.
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where v is the kinematic viscosity and V is is a dimensionless number called the
viscosity number,

v=t | (2.81)
Po

vesgse (2.82)
3 u

The viscosity number indicates the relative importance of the bulk viscosity to the
shear viscosity. Estimates of the viscosity number and the other nondimensional
numbers that appear are given in Appendix B.

A quantity that aids in the interpretation of local ronlinear effects is the
Lagrangian density C,

/\2
c=toe WX (2.83)

2 2poc
The two terms on the right-hand side are, respectively, the kinetic and potential
energy densities. It turns out that terms that contain the Lagrangian density
correspond to local nonlinear effects; see, for example, Aanonsen ef al. (1984).
The primary advantage of the term £ is that it makes it easy to see what terms are
to be dropped when the wave motion is progressive; see Hamilton and Blackstock
(1988). The Lagrangian density and local effects are discussed in greater detail

in later chapters.

We now introduce the Lagrangian density in the second-order forms of
the continuity and momentum equations, Eqgs. (2.53) and (2.80). Recall that first-
order relations may be used to modify second-order terms. Thus the second-order
terms in the continuity equation may be rewritten as

1 o)
'Veu = - 2.84
Pyt 2pocy Ot (284)
and 92
Po Ou -
Vo' = —S— 2.
wve 2¢3 ot (2:83)
and the term p’(Ju/dt) in the momentum equation may be rewritten as
Ou V(p')?
f— = - . 2.86
P ot 2poct (2.86)

Use of Eqs. (2.84), (2.85), and (2.86) as well as the definition of the Lagrangian
density in the continuity and momentum equations yiclds the desired equivalent




second-order forms of the continuity and momentum equations,
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Entropy, state, and rate equations
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The rank-ordering process leads to the linearized form of the expanded
entropy equation, Eq. (2.55). Both terms in Eq. (2.55) are of second order. To
eliminate 7" from the equation, we use the first-order approximation of Eq. (2.58),

,_[or
r=(Z

) p'
9 0

(2.89)

Substituting this expression into the entropy equation and then using the first-

order wave equation in terms of the density, Eq. (2.78), leads to

o0 __w (o] ) &
ot~ poToct \ 9p wilo ot?

This relation may be integrated once noting that the integration constant must
be zero to satisfy quiet conditions. Recalling our discussion on the order of the
difference between the equilibrium and frozen forms of a thermodynamic fluid
property, we see that the following is an equally valid second-order approximation

of the entropy in a relaxing fluid:

g (BT
Bl poTocd \ 9p

) 2
oo O

(2.90)

Note that the effects of finite amplitude, viscosity, and relaxation do not, within
the second-order approximation, contribute to the entropy production. Thus, the
entropy equation need only be considered when heat conduction is of interest.
The ranking process also resulted in a simplified version of the Taylor
series expansion of the state equation, Eq. (2.57). Recalling our earlier discus-
sion on the order of the difference between the equilibrium and frozen forms of

thermodynamic fluid properties, we may rewrite Eq. (2.57) as follows:
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where B/ A is referred to as the parameter of nonlinearity,

B Po ( 62P

AT \57

) . (2.92)

The defining relation for the frozen sound speed, Eq. (2.60), was used in obtaining
Eq. (2.91). The second-order terms in Eq. (2.91) must be included when the
effects of heat conduction, relaxation, or finite-amplitude, respectively, are of
interest.

A consistent second-order form of the expanded rate equation, Eq. (2.56),
is now obtained. To do such, we require some information about the order of ¢'.

T‘}IC “nearized Taylor Sel‘ieS eXpanSion Of q, iS
) + s’ (__’ )
Ps 4] Py 0

, {0

) y (z,,-q

Ps/ o p
P»ﬂ)o

However, use of Eq. (2.66) in the expansion for ¢’ leads to
dq 0q
! / / ! ! / o0\2 !
’ = o - s a
¢, r',$) (Wp) (6 =P 1(c)?) + (&
[ 0
Noting Eq. (2.72), we see that the first term on the left-hand side of the above
equation is of second order. Since s’ is also of second order, the quantity ¢’ must
be of second order. Thus the convective term in the rate equation must be of
higher order, and a consistent second-order approximation of the rate equation
is

r(/ ! /)_ / _a_q
q\p.p,s5)=p 9P

aql _ ql/ _ ql
at - To
The rate equation must be included when relaxation effects are of interest.

(2.93)

Combining the entropy, state, and rate equations

The second-order approximations of the entropy, state, and rate equa-
tions may be combined into a single equation that is referred to as the modified
state equation. QOur starting point is the time derivative of the rate equation,

Lq. (2.93):
0 [a¢ a,, ,
I * — ()
9t (at) 3t(q =0 (2.94)

Our procedure is as follows: The entropy equation is substituted into the state
cquation with the help of some thermodynamic identities from Appendix A. The
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resulting equation is then rearranged to yield an expression for d¢'/dt. This
expression and an expression for d¢*'/dt are then substituted into Eq. (2.94).
This yields the modified state equation. An equivalent form of the modified state
equation is then obtained by integration.

The entropy and state equations, Egs. (2.90) and (2.91), respectively,

oP| ) a2
ds at

expression for d¢’/dt. Use of the static form of Eq. (A.11) from Appendix A and
the time derivative of the entropy equation yields

or gy
Js /o ot?

However, noting the definition of the thermal expansion coefficient, Eq. (A.22),
and using the static form of a thermodynamic identity from Appendix A,

Eq. (A.26), we see that

oP 0s' k(1 1\ 9%

bl B LAY L 2.
(83 P)o ot po (c,,o cpo) ot (2.95)

where c,, and ¢,  are the specific heats at constant volume and pressure, respec-
tively. Equation (2.95) can be rearranged and placed in the following form:

are now combined via the term ( and then rearranged to yield an

s _ xpo (OT
poat—T()C(z) ap

JaP as’ wv(y—-1)8%
-— —_——=——— 2.96
(03 ,,) ot Pr  at* (2.96)
0
where ~ is the ratio of specific heats and Pr is the Prandt]l number,
Cp
= =2 2.¢
TEo (2.97)
Pr=Ft" (2.98)
K

The Prandt]l number indicates the relative importance of viscosity to heat con-
duction. Estimates of the Prandt] number are given in Appendix B. Substituting
Eq. (2.96) into the time derivative of the state equation, Eq. (2.91), and rcar-
ranging leads to an expression for %gt—',
apP ¢ op' o200 v(y—10%" & B ,0p
aql,,) o o R T N A T
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An expression for Qg:—' is obtained from the time derivative of the lin-
earized Taylor series expansion of ¢*/,
as’'
ot
e/ o

aq" B aq- apl + aq:
ot \dpl,/, Ot s
The second-order term on the right-hand side drops out because the change in
the entropy at equilibrium is zero. Thus, the above relation simplifies to

aqtl 8(]‘ apl
—_— —_— —_— . 2.1
ot ( dp 3)0 ot (2.100)
An expression for %(q’ —g"') may be obtained by combining Eqgs. (2.100)
and (2.99),
oP 0,, o _0p cor2 apP aq* ap’
( 3q p,s)oéz(q q7) = 3t [(Co )+ ( dq p's)o ( Op /0 ot

_da-0P_&B o
Pr 02 po A B
However, using Egs. (2.66), (2.67), and (2.68), we see that the coefficient of the

second term on the right-hand side is simply the equilibrium sound speed. Thus,
we obtain

apP d . ap’ dp' v(y-1)0%" & B ,0p
(8_ ) a—(ql-q ')=-—‘—(02‘—‘——(———)"‘-——'9''—.0"i . (2.101)
q t ot 0
£s/ g
The modified state equation is now formed. Substitution of Egs. (2.99)
and (2.101) into Eq. (2.94) yields an expression that may be integrated once with

respect to time. The integration constant must be zero in order to satisfy quiet
conditions. The result is

- / 2
8 (PI _ (680)2 / V(7 1) ap S 2(,}’)2)

To-a—t- —_—— e — —

N (p;_(cg)zp/_ V(v-l)%_fﬁ_B_(pf)?) =0 . (2.102)

Equation (2.102) is the modified state equation, a combination of the entropy,
state, and rate equations. The basis for our earlier comments about the rela-
tionship between the equilibrium and frozen sound speeds and the relaxation
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time/signal frequency is now apparent. If the relaxation time is very large,
Eq. (2.102) simplifies into an expression that depends only on the frozen sound
speed. Conversely, for a small relaxation time, only the equilibrium sound speed
appears.

Equation (2.102) may be integrated by following the procedure of
Rudenko and Soluyan (1977, p. 83). Use of Eq. (2.69) leads to the following:

a(,  wy-18) & B
o (0 - @ 20002 E )

ap’
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The above equation is in the form of a linear first-order differential equation that
can be solved by means of an integrating factor [see, for example, Kreider et al.
(1966, p. 97)]. The result is

t
/ w2, YY=1)8p & B, 2 2/ op’ —(t-y)/m
= —_— et = — - dy . (2.103
P=(a)p +—5; 3t+po2A(p)+m°c°_°°6te y . (2.103)
The integral in Eq. (2.103) may be integrated by parts, and the resulting expres-
sion 1s
t
! 00\2 f V(7 - 1) 9’ cg B, 2 moC(Z)/ 1 —(t=y)/m

= —_— o — — - — dy . (2.104
p (CO)p+ PX‘ 6t+p02A(p) To —oope y ( )
Equation (2.104) is referred to as the integral of the modified state equation.
Equation (2.104) corresponds to Eq. (IV-1.20) in Rudenko and Soluyan’s book
(1977) except that Eq. (2.104) also accounts for heat conduction. The second,
third, and fourth terms on the right-hand side of the Eq. (2.104) are associated

with heat conduction, finite-amplitude effects, and relaxation, respectively.
For the special case of wrg € 1 it is difficult to distinguish between other

loss terms and the leading-order effects of relaxation. Integrating Eq. (2.103) by
parts and neglecting terms of order Ofe(w7o)?] and higher yields

/ 0y2 ./ v(y —1) 2 dp' & B "2
= N — 42— . 2.
= @+ (O s madn) 24 2 2 ) (2.105)
In particular, the leading order effects of relaxation are difficult to distinguish
from bulk viscosity because it is, apparently, difficult to devise a measurement

technique which isolates the bulk viscosity from the relaxation.
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Summary of second-order results

In this section, consistent second-order approximations of the continuity,
momentum, entropy, state, and rate equations for a homogeneous, thermoviscous
fluid with a single relaxation mechanism were obtained. The equations are, re-
spectively, Eqgs. (2.53), (2.80), (2.90), (2.91), and (2.93). The Lagrangian den-
sity was introduced into the continuity and momentum equations, and equivalent
forms of the equations, Eqs. (2.87) and (2.88), were obtained. The entropy, state,
and rate equations were combined to form a new equation, which is called the
modified state equation. Two equivalent forms of the modified state equation,
Eqs. (2.102) and (2.104), were obtained.

2-6 Small-Signal Wave Motion in a Homogeneous, Thermoviscous,
Relaxing Fluid

In this section the basic equations are simplified for the case of small-
signal propagation in a homogeneous, thermoviscous, relaxing fluid. Rather than
re-deriving the relations from the basic equations, we merely drop the quadratic
nonlinearity terms from the second-order forms of the basic equations.’® Since
no quadratic nonlinearity terms exist in either the entropy or rate equations,
Egs. (2.90) and (2.93), respectively, they remain unchanged. Neglecting quadratic
nonlincarity terms in the continuity yields the same equation that was obtained
for small-signal propagation in a lossless fluid, Eq. (2.73). Neglecting quadratic
nonlinearity terins in the momentum and state equations leads to the following:

Po ?9—1: + Vp' = porVV?u (2.106)
and
oP , [ OP -
P =(Vo+s' 5| | +d| 5 : (2.107)
Os Jq
p/ 0o 3/ o

°If one wanted to derive approximate forms of the basic equations valid for small-signal
propagation in a homogeneous, thermoviscous fluid with a single relaxation mechanism starting
from the basic equations, the procedure is identical to that used for finite-amplitude signals
except that nonlinear terms may be neglected from the outset. It turns out, however, the effort
saved in neglecting nonlinearity from the outset is small.
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Dropping the quadratic nonlinearity term from the modified state equations,
Egs. (2.102) and (2.104), yields

o (7 - @ - ORI o (- @ - X220

Pr Ot Pr Ot
(2.108)
and ,
, w o v(Y=1)8p meck ) (tee)/m
p—_—(co)2p+—(l'13—r—)'5/-:-“7002/p8(t y)/Ody . (2.109)

The forms of the continuity, momentum, entropy, state, and rate equa-
tions that are appropriate for small-signal propagation in a homogeneous, ther-
moviscous fluid with a single relaxation mechanism are, respectively, Egs. (2.73),
(2.106), (2.90), (2.107), and (2.93). The appropriate forms of the modified state
equation are Egs. (2.108) and (2.109).

2-7 Epilogue

In this chapter, the basic equations for a homogeneous thermoviscous
fluid with a single relaxation mechanism were presented. The deviation from
equilibrium was assumed to be small, and, accordingly, linear relations between
the thermodynamic fluxes and forces were used. The possibility of a cross-effect
between the bulk viscosity and relaxation was neglected. Assumptions were then
made about the magnitude of the acoustic signal, the magnitude of the transport
coefficients, and the amount of dispersion. A ranking system was introduced
and used to simplify the basic equations into specialized forms for (1) small
signals in lossless fluids, (2) small signals in homogeneous, thermoviscous, relaxing
fluids, and (3) finite-amplitude signals in homogeneous, thermoviscous, relaxing
fluids. Moreover, the Lagrangian density was introduced into the continuity and
momentum equations, and the entropy, state, and rate equations were combined
to form a new equation, the modified state equation.




CHAPTER 3

WAVE EQUATIONS FOR FINITE-AMPLITUDE SIGNALS IN A
HOMOGENEOUS, THERMOVISCOUS FLUID WITH A SINGLE
RELAXATION MECHANISM

3-1 Introduction

_ In this chapter second-order forms of the wave equation for finite-ampli-
tude signals in a thermoviscous, relaxing fluid are developed. The wave equations
are expressed in terms of the acoustic pressure p/, the velocity potential ¢, and
two new variables—the modified acoustic pressure P' and the modified velocity
potential . The modified variables are defined in such a way that the Lagrangian
density £ does not appear in a wave equation that is expressed in terms of P’ or
®. Use of the modified pressure and modified velocity potential was developed
by Naze Tjgtta and Tjgtta; see, for example, Aanonsen et al. (1984).

3-2 Wave Equation in Terms of the Acoustic Pressure p’

The wave equation in terms of the acoustic pressure p' is derived in this
section. The procedure is as follows: The continuity and momentum equations
containing the Lagrangian are combined to form one equation. This equation
and the linear state equation are then used to eliminate the density fluctuation
in the modified state equation. The result is the wave equation in terms of the
acoustic pressure p’. After a modicum of rearrangement, the wave equation may
be integrated and placed in an equally valid form that is referred to as the integral
of the wave equation in terms of the acoustic pressure p’.

Combining the continuity and momentum equations, Eqs. (2.87) and
(2.88), is a straightforward procedure: The time derivative of the continuity equa-
tion is subtracted from the divergence of the momentum equation. The viscosity
term may, however, be rearranged so that it may later be readily combined with
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the heat conduction term. Use of first-order forms of the continuity equation,
the state equation, and the wave equation in p/, Egs. (2.73), (2.76), and (2.77),
respectively, leads to the following first-order relation:
1 &
VH(Veu) = —— —F
pocy Ot

Use of the above yields the desired form of the combined continuity and momen-
tum equation,

0%y , vV 1 02 1 9%, ,
b—tyzvzp +-C—8‘?+<V2+:ga7 E+pTC§5?(p)2 . (3.1)

The wave equation in terms of the acoustic pressure is obtained by elim-
inating the density fluctuation p’ in first and second-order terms (using, respec-
tively, Eqgs. (3.1) and the linear state equation, Eq. (2.76)) in the modified state
equation, Eq. (2.102). The result is

0y, 1 &% b % [_, 1 B o .,
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(3.2)

where b/po is the diffusivity of sound [Lighthill 1956, Eq. (19)] and A is the
coeflicient of nonlinearity,

= 1:_1)_ 4 1.1
b_pot/<V+ B _y3+3y+/€(cu+cp , (3.3)
B
=14+ = . 4
p 1+2A (34)

Note that if the relaxation time 74 is very large, Eq. (3.2) simplifies to a wave
cquation that involves only the frozen sound speed. On the other hand, if the
relaxation time is very short, the converse occurs; Eq. (3.2) simplifies to a wave
equation that involves only the equilibrium sound speed. The third, fourth, and
fifth terms in both major components of Eq. (3.2) represent, respectively, the
effects of viscosity and heat conduction, local nonlinearity, and growing non-
linearity. Considered together, the first and second terms in both the major
components represent linear, lossless wave motion at the frozen and equilibrium
sound speeds, respectively.
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Equation (3.2) may be integrated in the same way that the modified state
equation, Eq. (2.102), was integrated. First, however, it must be rearranged using

the following: ,
1

() (F)
Substitution of Eq. (3.5) into Eq. (3.2) leads to

2 b Py 1 5°
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where [J? is called the d’Alembertian operator and the subscript 0 indicates that
this d’Alembertian operator uses the equilibrium sound speed,

1 62
2 = 2 — e—— —

o=V~ @y ar

As was the case with the modified state equation, Eq. (3.6) is in the form of a

linear first-order differential equation that may be solved by way of an integrating

factor (see, for example, Kreider et al. (1966, p. 97)). The result is

b FBp mo ; Py’
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which is here called the integral of the wave equation in terms of the acoustic pres-
sure. The equation is a second-order approximation that consistently accounts
for the effects of viscosity, heat conduction, relaxation, and nonlinearity. Each of
the five terms in Eq. (3.7) reprcsents a specific acoustic phenomenon. The three
terins on the left-hand side represent, respectively, (1) small-signal wave motion
in a lossless fluid, (2) the dissipation of the signal that is caused by viscosity
and heat conduction, and (3) the effects of relaxation. The two terms on the
right-hand side of the equation represent, respectively, (1) the local nonlinear
effects and (2) the cumulative nonlinear effects. Clearly, if either thermoviscous
or relaxation effects are negligible, the appropriate form of the wave cquation
1s obtained by setting b or m, respectively, to zero. Similarly, if nonlinearity is
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not of interest, then the appropriate form of the wave equation is obtained by
neglecting the two terms on the right-hand side.

An equation that is equivalent to Fq. (3.7) may be obtained by combining
Eq. (3.1) with the integral of the modified state equation, Eq. (2.104). This
eliminates the need for the foregoing integration, but Eq. (3.2) would not be
obtained.

As we noted in the previous chapter when examining the modified state
equation, it is difficult to distinguish between other loss terms and the leading-
order effects of relaxation for the special case of wry <« 1. Integrating the re-
laxation term in Eq. (3.7) by parts and neglecting terms of order O[e(wry)?] and
higher yields
(b+ moTopoecs) %' (V2+ 1i2_) B o

Pocd e c2 at® poch Ot?

Note that the definition of the diffusivity b may be generalized to include the
effects of relaxation in this special case of wry < 1.

0 + @) . (38)

3~-3 The Wave Equation in Terms of the Velocity Potential ¢

The particle velocity may be expressed as the gradient of a scalar po-
tential because the fluid is, within the second-order approximation, irrotational
(see Appendix B),

u=V¢ . (3.9)

The gradient of the velocity potential may therefore be used to replace the particle
velocity in all equations. Moreover, first and second-order expressions for the
pressure and the wave equation in terms of ¢ may be obtained. An expression
for the Lagrangian £ in terms of ¢ may also be obtained.

Before obtaining the second-order form of the wave equation in ¢, we
develop the other aforementioned relations. Integration of the first-order wave
equation in terms of the particle velocity and setting the arbitrary static value of
the potential ¢y to zero leads to

63 .10

The second-order form of the momentum equation, Eq. (2.88), becomes (after
integration)

, Jd
P = ot oV~ L (3.11)
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the first-order approximation of which is

,_ 09
P==pz (3.12)

The Lagrangian £, which is defined 1n Eq. (2.83), may also be expressed in terms

of ¢,
_ Po 1 (9¢)°
c="2 [(vqs)2 -2 (5?) ] . (3.13)

Note, however, that the term (1%¢* expands identically as

. ., 10% . 1 [/0g\°
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where (37 is the d’Alembertian operator using the small-signal sound speed,

1 92
2 —_ 2 — —— ar—
o' =v ct ot?

(3.14)
Noting Eq. (3.10), we see that, to second order, the Lagrangian may be expressed
in terms of the velocity potential as follows:

L= ’;—"DW . (3.15)

With the above relations, we may now readily express the second-order
wave equation, Eq. (3.7), in terms of ¢. Substitution into first and second-order
terms involving the pressure using Eqs. (3.11) and (3.12), respectively, yields

0 b_d'¢ [0 sy
ot D°¢+ och Ot +g ay dy

2 azﬁ B & (aqs)’

= Lo (% 3.16
= dal T aar \ o (3.16)

A higher-order term, (vV/c2)Od%#, was neglected in obtaining the above relation.
In order to integrate the above equation, we rearrange the relaxation term using
the following:

4 t
64¢ P L y)/Toa' 9 83¢ e (t- y)/Tod

| o 5 57 (3.17)
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Equation (3.17) can be verified by integrating the left-hand side by parts and by
applying Leibnitz’s theorem to the right-hand side. Substituting Eq. (3.17) into
Eq. (3.16) and then integrating with respect to time leads to

b 8%  mo a¢ . 2 B (08
ao¢+ At a | 5 dy=—=L+glz) - (18

By expanding the nonlinearity terms using the definition of § and £, Egs. (3.4)
and (3.13), we see that Eq. (3.18) may be written as

b &b mo [ oy _L ., 1 B (06\"
Do¢+ 3t3 +-c—- 3y dy 2 (V) +E§§Z 5t

(3.19)
Equations (3.18) and (3.19) are equivalent forms of the wave equation in terms
of the velocity potential ¢. The terms in Eq. (3.18) have the same meaning as
the corresponding terms in Eq. (3.7).

3-4 Wave Equations in Terms of the Modified Pressure P’ and the
Modified Velocity Potential ¢

In this section, the wave equation is expressed in terms of two new vari-
ables, the modified acoustic pressure P’ and the modified velocity potential @,
which are defined below.

To motivate the definition of P’ and to find the wave equation in terms
of it, we start with the wave equation in terms of the acoustic pressure, Eq. (3.7).
Equation (3.7) may be rearranged with the aid of Eq. (3.15) to obtain

, 18 b 3% | mo o
(e 4o [

B &
= "ol 8t2( ) . (3.20)
The modified acoustic pressure P’ is now defined as
, 1 9%
P =p +%‘3<v2 Zg&f) ¢ . (3.21)

To first order, the modified and the ordinary acoustic pressures are equal. The
difference, a second-order term, accounts for local nonlinear effects. The wave
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equation in terms of modified acoustic pressure is, accordingly,
b PP mg [P B &
epry 222 —/ gy — P9 pya (329
Dt ad @ Ta ) e Y poCéatZ( ) (3:22)
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In Eq. (3.22), no single term explicitly accounts for the local effects. The effects
are instead accounted for in the definition of the modified acoustic pressure.

An expression for the modified pressure P’ in terms of the velocity poten-
tial ¢ motivates the definition of the modified velocity potential ®. If Eq. (3.11)
is substituted into the definition of P’, Eq. (3.21), the following expression is
obtained:

i 1 0
P'= —Pog; (¢ 2) + porVV?¢

~5Za
The modified velocity potential is now defined as
1 0

Thus the modified acoustic pressure is related to the modified velocity potential

by

P, = —po%q-t: + pol/VVz(I) . (324)

Inserting Eq. (3.24) into Eq. (3.22) and integrating noting Eq. (3.17)
leads to the wave equation in terms of the modified velocity potential,

b B0 me [ 59 B o [(90)
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As with the wave equation in terms of the modified pressure, Eq. (3.22), no single
term in Eq. (3.25) accounts for local nonlinear effects. These effects are instead
accounted for in the modified velocity potential ®.

Equation (3.25) may be obtained directly from the wave equation in
terms of the velocity potential, Eq. (3.19). Such an approach yields the same
motivation for the definition of the modified velocity potential.

3-5 Summary

In this chapter, wave cquations in terms of the acoustic pressure p',
the velocity potential ¢, and two new variables-—the modified acoustic pressure
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P’ and the modified velocity potential §—were derived. They are, respectively,
Egs. (3.7), (3.19), (3.22), and (3.25). The wave equations in terms of the modified
variables contain one less term than their ordinary counterparts because the
modified variables themselves account for the local nonlinear effects.




CHAPTER 4

ON THE BOUNDARY CONDITIONS AT THE INTERFACE
BETWEEN TWO LOSSLESS, IMMISCIBLE FLUIDS

4-1 Introduction

In this chapter, the boundary conditions at the interface between two
inviscid, immiscible fluids are examined. The fluids are assumed to be initially
quiet, and the interface is assumed to be initially planar and coincident with
the z = 0 plane. Moreover, we neglect the effects of surface tension and body
forces at the interface. Expressions that are correct to second order are obtained
for each of the two boundary conditions—the kinematic condition and the force
balance condition (Newton’s second law). Although our analysis in later chapters
is restricted to two dimensions (plane waves obliquely incident on an initially
plane interface), the approximate forms of the boundary conditions developed in
this chapter are for three dimensions.

The superscripts I and II are used to indicate the different fluids through-
out the remainder of this dissertation.

4-2 Kinematic Condition

The author can think of no better way to express the kinematic boundary
condition than to quote from Prandtl and Tietjens (1934),

The kinematic boundary conditions at the surface of contact between
a liquid and a solid body, and also between two immiscible fluids
(water and oil, water and air, etc.), must clearly be such that neither
vacuum nor interpenetration can occur. The necessary consequence
of this is that the normal components of the velocities of the two
media are equal on each side of the surface of contact, ... .

41
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Obtaining the normal component of the particle velocities at the interface requires
knowledge of the normal to the interface. Consider Figure 4.1, which depicts the
interface between fluids I and II at time ¢, where ¢ > 0. Because the interface
initially lies in the z = 0 plane, the equation for the interface may be written as

z— f(z,y,t)=0 , (4.1)

or, alternatively, as

F(z,y,z,t)=0 . (4.2)

A vector normal to the interface N(z,y, z,t) is [see, for example, Thomas and

Figure 4.1 INTERFACE BETWEEN FLUIDS | AND Il AT TIME ¢ > 0

Finney (1979)] 5 5
N(xayazat):—ia—i—.b;;'*'k ) (43)

or, in terms of the function F,

N=VF . (4.4)
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Note that for later convenience N is used rather than the unit normal VF/|VF|.
If the interface has a velocity of ug, then the normal velocity of the interface and
the normal velocity of a particle at the interface on, say, the fluid I side must
match,

up N=uleN , (4.5)

where u! is the velocity of fluid I. The situation is the same on the fluid 11 side,
upe N=u'. N ) (4.6)

where u"! is the velocity of fluid II. The kinematic boundary condition between
the two inviscid, immiscible fluids may thus be written as follows:!

ul. N=u'"N on F(z,y,z,t)=0 . (4.7)

For future reference, we note that u' and u!' may be written in terms of their z,
y, and z components as follows:

u' = iu! 4o, ko' (4.8)
uf = i 4+ jo + kw' . (4.9)

It turns out that it is important to know what happens to a particle
that is initially on the interface. Physically, we may reason that if the normal
velocity of a fluid particle at the interface is equal to the normal velocity of the
interface itself, then a particle that is initially on the interface must remain on
the interface. This may be shown mathematically by following the developments
of Myers (1980) and Lamb (1932). The velocity of a point on the interface,
r=iz+jy+kz, is given by

OF dr
— +ZVF= -
50 + 7 F=0 on F(z,y,2,t)=0
Noting that dr/dt = up and substituting using Eq. (4.5) yields
oF DF
e 'V == =
5 +u-VF Di 0 on F(zx,y,z,t)=0

Following the proof given by Lord Kelvin, Lamb (1932, p. 7) shows that, for an
inviscid fluid, an interface whose equation satisfies DF/Dt = 0 always consists of

'Note that if the fluid were viscous, a sccond kinematic condition would emerge. This
kinematic condition would govern the particle velocity tangential to the interface.
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the same fluid particles, that is, that a particle that is initially on the interface
remains on the interface.

Note that the kinematic boundary condition as expressed in Eq. (4.7) is
to be applied on the interface, the location of which is time varying. Consequently,
the normal to the interface is also time varying. However, because the fluid
is assumed initially quiet, any motion of the interface must be caused by the
impinging acoustic signal. It would appear, therefore, to be possible to describe
the motion of the normal to the interface in terms of the impinging acoustic
signal. Since the kinematic boundary condition already depends directly on the
particle velocity, an expression for the normal in terms of the particle velocity is
sought.

It turns out, however, to be convenient to find first an expression for
the normal in terms of the particle displacement. To that end, the expression
for the normal to interface given in Eq. (4.3) is used, and expressions for 0f/0z
and 0f /0y are obtained in terms of particle displacement. The displacement of
a fluid particle that is at location z,y, z at time t is denoted &,

&(z,y,2,t) =1A(z,y,2,t) +j B(z,y,2,t) + kC(z,y,2,t) (4.10)

where A, B, and C represent, respectively, the components of displacement from
the initial (rest) position of the particle. The particle displacement and the
particle velocity are related in the following manner:

=2=24u-V¢ . (4.11)

Since a particle that is initially on the interface stays on the interface, the dis-
placement of the interface given by Eq. (4.1) and the z component of Eq. (4.10)
for a particle on the interface must be equal, that is,

z= f(x) y,t) = C (:c, Y, z3t)lz=](.r,y,t) . (4‘12)

The following relationships between the derivatives of f and C may be readily
derived:

of &
of ¥
3 - To% fv%c_ , (4.14)
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Inserting Egs. (4.13) and (4.14) into Eq. (4.3) and rearranging yields the desired
form of the normal in terms of the particle displacement,

acC .0C ,0C oC
N=(1“a‘:) % i (%)

Since no approximations have been made, Eq. (4.15) is an exact expression for
the normal to the moving interface.

Next, an expression for the normal that is correct to first order (linear
in the acoustic variables) is obtained. Performing a binomial expansion of the
denominator of Eq. (4.15) and retaining only linear terms leads to

(4.15)

z=f(z,y.1)

.0C ,0C
N__lE—J5;+k . (416)

z=f(z.y.t)
Noting that the first-order approximation of Eq. (4.11) is
3
Tt

and that the fluid is assumed to be initially at rest, we see that the first-order
approximation of C(z,y, z,t) is

(4.17)

Cla,ysz,t) = [w(e,y,z,)dt (4.18)

z:j(rfy't)

Use of Eq. (4.18) leads to the first-order approximation of the normal expressed
in terms of the particle velocity,

N = -i ——dt—J/—di+k (4.19)

z'*j(:c.y.t)

An expression of the kinematic boundary condition applied on the mov-
ing interface that is correct to second order is now obtained. Substitution of
Eq. (4.19) into the kinematic boundary condition, Eq. (4.7), yields the following
expression, which is correct to second order:

ow'! ow'
- ——dt — —dt
g Oz Oy dt +w' =
11
L ?(?—u;.-—dt*—vu a—au—;—dt+w” on z = f(z,y,t) . (4.20)
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Since the first-order approximation of Eq. (4.20) is

w'=w! onz=f(z,y,t) ,

we see that Eq. (4.20) may be written

1 1
3;1; dt + (v - /?w—dt+w =w!l onz= f(z,y,t) . (4.21)

(ull —u )
Equation (4.21) is the kinematic boundary condition applied on the moving in-
terface correct to second order.

An expression, which is correct to second order, for the kinematic bound-
ary condition to be applied at z = 0 rather than on the moving interface z =
f(z,y,t) is now obtained. This step is required because the wave equation is
most conveniently solved subject to boundary conditions on boundaries that do
not move. Application of a Taylor series expansion to Eq. (4.21) and retaining
terms up to second order yields

awII awII

n_ 1 I
(v’ —u’) e dt + (v — o) F» dt
1 dw' 4 !
+ w +f(a:,y,t)—a;—=w + f(z,y,t) 5 onz=90

Substitution of the leading-order term in the Taylor series expansion of Eq. (4.12)
into Eq. (4.18) leads to

f@yt) = [w(z,y,zt)dt (4.22)
2=0
Combining the two foregoing relations yields
Bw“ ow'  Ow!
I m_ 1 ow 1
)/ dt+ v)/ +(8z 8z>/w dt
=w'—w onz=0 . (4.23)

Equation (4.23) is the kinematic boundary condition that applies at z = 0 correci
to second order. Dropping the second-order terms yields

w=w" onz=0 (4.24)
which is the well known small-signal form of the kinematic boundary condition:
the normal particle velocities balance at the interface. Note that in the small-
signal approximation the motion of the interface is assumed negligible.
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4-3 Force Balance Condition

The second boundary condition—the force balance condition—is ob-
tained by applying Newton’s second law to the interface. Consider Fig. 4.2, which
shows a material region (abbreviated MR) that spans the interface. Newton's sec-

MATERIAL REGION up

AS Ahu
\ A
Ah!
FLUID I FLUID II
INTERFACE
(MATERIAL SURFACE)

Figure 4.2 MATERIAL REGION THAT SPANS THE INTERFACE

ond law may be expressed in a general form as follows [see, for example, Panton
(1984, p. 107)]:

d
— = = 9
= ]MRpudv /MRdeV+/MRRdS onz=f(z,yt) , (4.25)

where F is the body force per unit mass vector, and R is the surface force per
unit arca vector. Since body forces (gravity, for example) are neglected, the
first term on the right-hand side drops out. Moreover, the surface force vector
reduces to the pressure applied normal to the material region because viscosity
and surface tension are assumed negligible. If the material region is collapsed
about the massless interface, the leit-hand side of the Eq. (4.25) goes to zcro.,

which leaves

pl=p" onz=f(z,y,t) . (4.26)
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Equation (4.26) is the exact boundary condition that is to be applied on the
moving interface.

An expression for the pressure balance boundary condition on z = 0 that
is correct to second order may be obtained by applying a Taylor series expansion
to Eq. (4.26). Application of a Taylor series expansion and retention of terms up
to second order yields

31 9 1
p’+f(z,y,t)l=p“+f(z,y,t)-8£z— onz=0

0z
Use of Eq. (4.22) in the above relation leads to the desired form of the pressure
balance boundary condition on z = 0 that is correct to second order,

apt  apht
n_1_ (o _9op_ 1 -0 . .
p—p (02 % /w dt onz=0 (4.27)

In obtaining Eq. (4.27), the first-order form of the particle velocity balance
has been used in the second-order term. Dropping the second-order terms in
Eq. (4.27) leads to

p=p" onz=0 . (4.28)

This is the well-known small-signal form of the pressure boundary condition: the
pressures balance at the interface between two fluids.




CHAPTER 5

AN ANALYSIS OF THE REFLECTION AND REFRACTION OF
FINITE-AMPLITUDE PLANE WAVES AT A PLANE
FLUID-FLUID INTERFACE USING SECOND-ORDER

PERTURBATION THEORY

5-1 Introduction

In this chapter we analyze the reflection and refraction of finite-am-
plitude plane waves that are obliquely incident on an initially plane fluid-fluid
interface. A second-order perturbation analysis method, sometimes referred to
as quasilinear analysis, is used. The notation and method closely follow the
work of Naze Tjgtta and Tjgtta (1987). The boundary condition at the source
is arbitrary. Special attention is given to the O(e?) source boundary condition
and the motion of the interface. The chapter is divided as follows: In the first
section, each acoustic variable is expanded in a power series in ¢, where € is a small
parameter (the peak particle velocity normalized by cp). The O(¢) and O(e?)
interface boundary conditions, wave equations for fluids I and II, and relations
between the various acoustic field variables are obtained. In the second section,
the O(€) system is solved, and expressions for the O(¢) reflected and transmitted
acoustic fields are found. In the third section, we solve the O(€?) system and
find expressions for the O(€?) reflected and transmitted acoustic fields. Although
some interpretation of the results is given as they are obtained, the majority of
interpretation of results is deferred to the next chapter.

It is useful to note at this time that oblique incidence reflection and re-
fraction of plane waves is inherently a two-dimensional problem. Without loss of
generality, we therefore take the incident ray to lie in the z, z plane. The subse-
quent motion—reflected wave, transmitted wave, and motion of the interface—is
independent of the coordinate y. Thus, it is appropriate for our work to define
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the propagation direction of the incoming signal as

ni" = isin 6™ + k cos 6™ | (5.1)

where, as above, # is measured from the +z-axis; see Fig. 5.1. (Recall that the
interface is assumed to initially lie in the z = 0 plane.) This orientation of the
incident signal to the coordinate system is assumed through the remainder of this
work. Moreover, all angles are measured from the +2z-axis. The superscript inc
is used throughout this work to indicate an acoustic variable associated with the
incident signal; similarly, the superscripts refl and trans are used to indicate the
reflected and transmitted signals.

X
/
0<0<180° / ginc
/
Z
ninc
FLUID I FLUID 1
P> €5 Po €5

Figure 5.1 DIAGRAM SHOWING COORDINATES THAT ARE REQUIRED FOR OUR ANALYSIS

5-2 Basic Equations, Relations, and Boundary Conditions

Obtained in this section are O(¢) and O(€®) forms of the following: (1)
the wave equations for fluids I and II, (2) the relations between the modified
acoustic potential ® and some of the other field variables, namely P', ¢, p/, and
u, and (3) the interface and source boundary conditions.
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Wave equations of O(¢) and O(¢?)
The lossless version of the wave equation, Eq. (3.25), is
2 B8 (00 .
=22 (=) . 5.2
o'e cd ot <0t) (52)

To obtain O(e) and O(€?) forms of Eq. (5.2), we expand the modified velocity
potential ® in a power series in terms of a small parameter ¢ (which is defined
later from the source boundary condition),

P = C‘I)(l) + €2¢(2) + e (5.3)

If the expansion is inserted into Eq. (5.2) and if coefficients of like powers of € are
equated, then the following O(¢) and O(€e?) forms of the wave equation for fluid
I are obtained:

0’e,y =0 (5.4)

1 ool \?
241 g 0 (1)
0%}, = A ( = ) . (5.5)

Recall that the superscript I is used to indicate an acoustic variable or a fluid
constant that is associated with fluid I. The corresponding pair of equations that
govern the O(e) and O(e?) acoustic fields in fluid II are

0@y =0 (5.6)
L g5 /001 \?
SpH = B v 1) 5
1P () 3t < ot (5.7)

O(€) and O(é€*) relations between ® and P/, ¢, p/, and u

Since the wave equation is expressed in terms of the modified acoustic
potential ®, the O(¢) and O(e?) forms of the relations between @ and some of the
other field variables, namely, P’, ¢, p’, and u, are required. We start by expanding
the modified acoustic pressure, the velocity potential, and the acoustic pressure
In power series in €:

P = CP(I) + 62P(2) + - (58)
¢=c€pu)+ by + -, (5.9)
p'=e€pp)+€Epay+- (5.10)
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Note that for convenience the primes in the expanded forms of P’ and p’ have
been dropped. The particle velocity u may be expanded in a power series as
follows:

u=-eug +eug+--- . (5.11)

The O(¢) and O(€?) forms of u may be written in terms of their z and z compo-
nents,

ug) = iU(l) + kw(l) s (5.12)
U(g) = iU(z) + kw(g) . (513)

Alternatively, the components of u may be directly expanded as follows:

u = euq) + CZ‘M(z) +- (5'14)
w = ewn) + Ewg) +0 . (5.15)

For the case of propagation in a lossless fluid, the expression for the
modified acoustic pressure P’ given in Eq. (3.24) simplifies to

, ad
P =—p05t— . (5.16)

Inserting the expansions for P’ and @ into Eq. (5.16) and then equating coefli-
cients of like powers of € yields the following O(¢) and O(e?) relations for P’ in
fluids I and II:
0%!
Pay = —Pg—giﬂ ; (5.17)
09!
Pl = =52 (5.18)
581l
PRy = ) —52—) ) (5.19)
00!
Py = _p{}-gt‘i’ . (5.20)
The modified acoustic potential @ is defined in Eq. (3.23) in terms of
the acoustic potential ¢. Using the expansions for & and ¢ leads to the O(¢) and
O(¢€?) forms of the relation between ® and ¢ for fluids I and II,

ol = b4y > (5.21)
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@ = 4 2 () 22

Oy = ¢ — W'a_t(d’(”) s (5.22)

o) =y (5.23)
1

(2) ¢(2) c})l 2 5t (¢(1)) (5.24)

Similarly, the O(¢) and O(€?) forms of the relation between the modified
velocity potential ¢ and the acoustic pressure p' for both fluids I and II may be
found. Using the expansions for p’, P/, and ¢ in the defining relation for P,
Eq. (3.21), and then rearranging and substituting using Eqs. (5.17)-(5.20), we
obtain

o = by ¥l 525
o pI 1 62

Play = —Po5; Oy — (V2+ a7 3 —7) @w) (5.26)
0

pll) = -PB‘E% : (5-27)

IS | 9 ~_ ol V24 1 5.28

P2y = —Po gt @~ £ ( n)z 6t (® (1)) ) (5.28)

Use of Eq. (5.11) in Eq. (3.9) and substitution of Egs. (5.21)-(5.24) into
the results yields the O(e) and O(e?) forms of the relation between the modified
velocity potential ® and the particle velocity u for both fluids I and II:

uyy = Vo, (5.29)
up = Vo, + (2}))2%V(¢}1))2 , (5.30)
u;) = vaeg, (5.31)
ug = Vg + 3 cg)z at v(es)® - (5.32)

O(e) and O(e?) forms of the interface boundary conditions

The O(¢) and O(€?) forms of the two dimensional versions of the interface
boundary conditions, Eqs. (4.23) and (4.27), may be obtained by substituting in
the expansions for p’, u, and w. Equating coefficients of like powers of ¢ yields the
O(€) and O(€?) forms of the expression for the normal particle velocity balance
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at the interface,
I _ I .
Win,o = Y|,z (5.33)
ow'! ow! Gwl!
I I = (W, — ! (1) (1) I
Y@, ™ Y], = () ~ U) [ 5 S\ T /“’m‘“
= 2=U
(5.34)
and the O(¢) and O(€?) forms of the pressure balance,
I [
P, oo = P() P (5.35)
oplyy _ 9p(;
1 1 = (22 _ 7P / R 5 6
P@)l,=0 ™ PO),=0 ( 9z 0z ) e (5.36)

O(¢) and O(¢?) forms of the source boundary condition

The boundary condition at the source is arbitrary, and our results may
therefore be used to analyze transients or harmonic motion. Although, strictly
speaking, our source must be infinite in extent because we have assumed infinite
plane waves, we assume that the reflected signal does not interact with the active
source. This is reasonable, however, because practical experiments that approx-
imate plane waves can be devised. Moreover, the theory developed here may be
used as a single component of the spatial Fourier decomposition of a directive
source, in which case the geometry may be selected such that the reflected signal
does not return to the active source.

The boundary condition at the source may be written as follows:

u= —-;—:i]- -aa—tS(t ~T) at r=ry , (5.37)
where r = ry defines a plane, S is any given function of ¢, and 74 is defined as
n-ro/ch. The coefficient, the time derivative, and the phase shift are introduced
for later convenience, specifically, to make it easier to match the solution in terms
of the modified velocity potcitial. Using the expansion of the particle velocity
given in Eq. (5.11) and expanding S in a power series as

S = 68(1) + 625(2) + .- (5;8)
lcads to the O(e) and O(e?) forms of the arbitrary particle velocity source condi-
tion,

n d

Uy = —— —Smit - t r=r 5.9
(1) T o 1t ~m) a 0 (5.39)
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n Jd
up = —g7 550t —7) at r=r . (5.40)

cl ot

5-3 Solution of the O(¢) System

In this section, the O(€) system is solved. The O(¢) system consists of
the O(€) wave equations for fluids I and II, Egs. (5.4) and (5.6), and the O(¢)
boundary conditions. The O(¢) boundary conditions consists of the O(e) interface
boundary conditions, Eqgs. (5.33) and (5.35), and the O(¢) boundary condition at
the source, Eq. (5.39). To these we add the Sommerfeld radiation conditions for
fluids I and 1I, that is, that the reflected and transmitted waves propagate away
from the interface in fluids I and II, respectively. First, the general solutions of
the wave equations in fluids I and II are found. Next, application of the interface
boundary condition leads first to the law of specular reflection and Snell’s law
as conditions for the validity of the solutions and second to the reflection and
transmission coefficients. Finally, the incident signal is matched to the source
boundary condition.

To solve the O(€) wave equations, we first note that because they are
homogenous, no particular solutions are required. If the reflected and transmitted
waves are assumed to be planar, the general solution of the O(¢) wave equations
for fluids I and II may be written as follows:

Oy (r,t) = OF5(r™) + V(i) (5.41)
Oy)(r,t) = BE(7(™) - (5.42)
The definitions of 7\, r('f)ﬂ, and 7({}" are
e = g “Z"’ , (5.43)
= "fii S (5.44)
W=t "“Z;f = (5.45)

where nz‘l’f)i and nz{‘;“’ are unit vectors in the direction of propagation of the
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reflected and transmitted waves, respectively (see Fig. 5.2),!
nﬁ‘) =1 sin 9{:‘; + k cos 9{;? where cos Om‘ <0 , (5.16)
ni}™ =isin 4™ + k cos ()™ where cosf[}™ >0 . (5.47)

The assumption that the reflected and transmitted waves are planar is tested

FLUID I
PG> Co

Figure 5.2 DIAGRAM SHOWING THE ANGLE OF INCIDENCE AND THE O{¢) ANGLES OF RE-
FLECTION AND TRANSMISSION

by checking whether the assumed solution satisfies the interface boundary condi-
tions.

Use of Egs. (5.41) and (5.42) in the O(¢) boundary conditions at the
interface, Eqgs. (5.33) and (5.35), respectively, leads to

fl refl rans in inc
cos 0ff) 8<I>(1) _cos 0(‘:‘)’“’ 3<I>;13" - cos f'n° é_ﬂ (5.18)
(.‘(Ij ot =0 (,(l)l ot z=0 C(l) ot 2=0

"This nonstandard definition of the reflection angle 8™ is chosen to simplify our later work.
It turns out to be casier to manage the problem if all angles (more are introduced in the O(c?)
analysis) are defined relative to the same reference; we chose the +:z-axis.
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and refl 11 trans inc¢
ot |, »p5 Ot | _, 8t | _,
where we have used the following chain rule result:
v = ——— 5.50

This relation is used repeatedly in later analysis. Equations (5.48) and (5.49)
are written with the O(¢) incident signal on the right-hand side because it is a
‘known’ function. The form of the O(e) incident signal is obtained by matching
the O(e) source condition, which is deferred until later.

Snell’s law and the law of specular reflection are now obtained as condi-
tions for the validity of the solutions. Our derivation of Snell’s law and the law
of specular reflection is a little longer than some other more common approaches.
This approach is, however, the same one that we use to solve the O(€?) problem.

- It is therefore used here so that the reader may become familiar with it. Equa-
tions (5.48) and (5.49) represent a system of two equations and two unknowns
with two conditions to be met, namely, that the solutions be valid for all z and
all . The conditions may be obtained by taking the z and t derivatives of the
pair of equations, solving each set independently, then forcing the solutions to be
the same. But if the solutions are to be the same, then the equations generated
by taking the z and t derivatives of the boundary conditions must be linearly
dependent. Accordingly, we arrive at the following conditions by forcing the z
and t derivatives of Eqgs. (5.48) and (5.49) to be linearly dependent:

sinf™ = sinf5 (5.51)

sin#™ = nsin o™ (5.52)

where n is the ratio of the sound speeds,

i

(5.53)

<
=T
o

Equation (5.52) is Snell’s law, and, as we soon see, Eq. (5.51) leads to the law of
specular reflection.

We now solve for the angles 0("{‘)‘ and §(}™. To satisfy Egs. (5.51) and
(5.46) simultaneously, # and 0{;? must be related as follows:

o5} = 180° — 6™ . (5.54)
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To satisfy Egs. (5.52) and (5.47) simultaneously, (13" and 6'" must be related
by

o = sin~!(n"'sin 6™) . (5.55)

Ifn>1, 02;")‘"’ is real for all '™ if n < 1, 0:{‘)‘"’ is real provided that |sin 6| < n.
The angle of incidence at which |sin §™¢| = n is referred to as the critical angle.
In what follows we assume for simplicity that §{;}" is real. The case of o
being complex (incidence above critical angle) is briefly discussed in Sec. 5-5.
Use of Egs. (5.54) and (5.55) in Egs. (5.43), (5.44), and (5.45) shows

that the values of '™, T('f)ﬂ, and T(‘{;’““ are equal when evaluated at the interface.

For convenicnce, a new term that is equal to 7', T(’f)ﬂ, and T(‘{f‘“s when they are

cvaluated at the interface is now introduced,
sin §in¢ \

=t - (5.56)

S
The reflection and transmission coefficients, denoted R and T, respec-
tively, are now introduced, and the two interface boundary conditions are used to
yicld expressions for the coefficients. The expressions depend only on the physical
properties of the fluid and the angle of incidence. The coefficients R and T relate
the reflected and transmitted pressures? at the interface to the incident pressure

at the interface and are defined as follows:

pmﬂ
= f:‘lz=0 , (5.57)
p(l) z=0

R

ptrans
T = -0 l=o (5.53)

(1)

z=0

where s, p{t}, and pi}™ are the pressures corresponding to 5, ®{5f, and ®{[3™,

respectively. At this time, we also define the acoustic impedance of fluids I and
I, respectively,

1.1
PoSo
7l = oo 5.59
cos finc ( )
.11
20 = P 5.60
cos ftrans (5.60)

8]

ZSome authors use coefficients based on the acoustic power of the incident, reflected, and
transinitted waves. For clarity, our coefficients are sometimes referred to as amplitude reflection
and transmission cocfficients.
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Note that the ratio of impedances is, accordingly,

A n Cos 03‘;‘“‘

Z0 " m cosfme
where m is the ratio of the densities (not the relaxation variable, which is no
longer required),

(5.61)

Po

Po
Note that m is defined as (fluid II density/fluid I density) whereas n is reciprocally
defined (fluid I sound speed/fluid II sound speed). The reason for the difference
is merely convenience. Use of Eqgs. (5.57) and (5.58) in Egs. (5.48) and (5.49)
yields

trans

_ n cos 6
1-R= o T T (5.63)
and
1+R=T , (5.64)
where we have noted that
cos 02‘,’? = —cosf™ . (5.65)
Manipulations of Eqgs. (5.63) and (5.64) yield the traditional results
Zu _ 71
and o 7T
T= m s (567)
or, in terms of n and m,
m cos 0™ — n cos O3
= - . , (5.68)
m cos 0'"° 4 n cos 06‘)‘“’
T = 2mcos @ . (5.69)

m cos in¢ 4 n cos 0;{‘;“’

We now point out some interesting special cases. Note that for intromis-
sion (no O(e) reflection) to occur, the acoustic impedances of the two fluids must
be the same, that is, Z!' = Z", or, by Eq. (5.61),

. .. m i -
intromission : cos )™ = —cos ™ . (5.70)
n
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By squaring both sides of Eq. (5.70), eliminating the cosines in favor of sines,
and using Snell’s law, we see that

2 2
. ; m® —n -
sin? g™ = — (5.71)
m? -1
where gintre = gincy sromission” Note that for a intromission angle to exist, the
miromission
following condition must be met:
2 2
mé —n
—_— >0
m? —1

Another special case occurs when the impedance of fluid II is very small in com-
parison to that of fluid I. The reflection coefficient tends to —1, and the interface
1s referred to as a pressure release interface. If, on the other hand, the impedance
of fluid II is very large in comparison to that of fluid I, the reflection coeflicient
tends to unity. In this case, the interface is referred to as rigid. Note that al-
though the transmission coefficient tends to 2 in this case, it can be shown that
the acoustic power transmitted tends to zero.

We now obtain the reflected and transmitted fields in terms of the inci-
dent field. Note that the definitions of R and T may be rearranged to yield

6 re a inc
5 20 (7o) = R 9(35(m0)
and
J T

51200 (70) = — = ®35(7s)

The solutions away from the interface are obtained by replacing the independent
variable 15 with T('f)ﬂ for the reflected field and with 7([}" for the transmitted ficld.
The resulting field relations may be integrated once with respect to time noting
that the integration constant must be zero in order to satisfy the condition that
the reflected and transmitted fields be zero when the incident field is zero. Thus,
away from the interface, the reflected and transmitted fields are

M) = RO (5-72)
rans rans T in rans .
q);n) (T(tx) ) = m (1‘):( (L1) *) (5.73)

We now obtain an expression for ® (1) that matches the source boundary
condition. Because the reflected wave is assumed not to return to the active
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source, the reflected wave is not involved in matching the source boundary con-
dition. We may therefore write

inc HPinc 89S
Vo =~ B = d o (5:74)
r=rg Lo} at r=ro Co t
Accordingly, to match the source condition, the following must be true:
" =n |, (5.75)
J inc/ _inc 0
ot (1)(7' )r=r° = ES(I)(t - To) . (5.76)

Since, when evaluated at r = rg, the independent variables of both functions are
equal, the solution away from the interface may be obtained by replacing the

inc

independent variable with 7",

a inc ( 7.inc

6 inc
57 20) Swy(7"™)

)= 5
To obtain an expression for <I>‘(’{§ rather than its time derivative, we must inte-
grate the foregoing relation with respect to time. This would, in general, mean
that an arbitrary function that is linearly dependent on r, say F(r), must be
determined. We know, however, that the boundary condition at the source re-
quires that VF| __ be zero. The function F(r) must, therefore, be a constant.
Since ®(1 is not a measurable quantity and all measurable quantities depend on
derivatives of ®(;), we are free to choose this constant such that @, at the source
at time ¢ = 0 is zero. We may, therefore, write the incident field as

G5(r™e) = Say(r™) = S(ro) (5.77)
Accordingly, the reflected and transmitted fields are
o = R (Su) (7! ~ Suy(m0)) (5.78)
rans T rans rd
5 = = (Sw(E™) ~ Sw(m) - (5.79)

To summarize, we have derived the following major results: (1) Snell’s
law and the law of specular reflection, Eqs. (5.52) and (5.54), respectively, (2)
the expressions for the reflection and transmission coeflicients, Eqs. (5.66) and
(5.67), respectively, and (3) solutions representing the O(e) incident, reflected,
and transmitted fields, Eqs. (5.77), (5.78), and (5.79), respectively.
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5-4 Solution of the O(e?) System

In this section the O(¢?) system is solved. The O(€?) system consists of
the O(e?) wave equations for fluids I and 11, Eqgs. (5.5) and (5.7), respectively, the
O(€?) boundary conditions at the interface, Eqs. (5.34) and (5.36), respectively,
the Sommerfeld radiation ¢ nditions for fluids I and I, and the O(e?) boundary
condition at the source, Eq. (5.40). The procedure is as follows: First, the
general solutions for fluids I and II are separated into two parts—the particular
solution, denoted by the subscript p, and the homogencous solution, denoted by
the subscript h:

¢}2) = Q%2)P + ¢}2)h ’ (580)
O = B0y, + Py - (5.81)

The particular solutions are chosen to satisfy the O(¢?) wave equations. The
gencral solutions are then substituted into the O(€?) interface boundary condi-
tions, and the O(€?) homogeneous solutions are chosen to satisfy these boundary
conditions. Terms accounting for the finite displacement of the interface and
the variation of the normal to the interface are identified. The results are then
summarized.

The O(c?) particular solution

Since the O(¢) solution is known, it may be substituted into the right-
hand side of the O(€?) wave equations. However, since the final form of the O(c)
solution depends on the boundary condition at the source, the functions <I>‘(‘l‘;
<D[‘,’f)', and ®{3™ are used. The O(€?) wave equations, Eqgs. (5.5) and (5.7), then
become

ﬂl P Hdinc 2 Jdinc gPpref Preft 2 X
Dz(q’{”””{”"):(ca)‘@?[( o) Y2 e e ) | O

11 6q)trans 2
(8, + 9h) = s 7 (T

(3t \ ™ o
These equations are significantly more complicated than their O(e) counterparts.
The nonlinear terms on the right-hand side of Eq. (5.82) represent, respectively,
the self-action of the incident signal, the interaction between the incident and
reflected signals, and the self-action of the reflected signal. The nonlinecar term
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on the right-hand side of Eq. (5.83) represents the self-action of the transmitted
signal.

Because the wave equation for fluid II is simpler, we solve for its partic-
ular solution first. Note that the right-hand side of Eq. (5.83) may be expressed
as a d’Alembertian,

gl g [odiane\? L Hptrans 2
(651)4'67( é;) ) Nk [(ﬂ) (nipes. ( (1) )] . (5.84)

Equation (5.83) may thus be written

a?

ﬂll . aQEll'z)ms 2
Bz + ¢(2)h+2(q1)1 (ng)™ - l‘)( % ) =0 . (5.85)

The particular solution for fluid II is now obvious,

2
ﬂll rans 6¢t;ans
<I)(2)1: 2(c? (n{3y™ -r) ( ) . (5.86)
The remaining equation,
O%®G, =0 (5.87)

is to be solved subject to the Sommerfeld radiation condition for fluid 11 and the
O(€?) interface boundary conditions. We defer this to later. Note that the partic-
ular solution for fluid IT exhibits amplitude growth in the direction of propagation
via the coeflicient (nt{‘;“s -r). Moreover, note that the direction of propagation of
the particular solution for fluid IT is given by Snell’s law.

To obtain the particular solution of the wave equation for fluid I, we fol-
low the method of Naze Tjgtta and Tjgtta (1987). As noted earlier, the particular
solution may be thought of as being composed of three parts: the self-action of the
incident wave, the self-action of the reflected wave, and the interaction between
the incident and reflected waves. The fluid [ wave equation is first rearranged to
find the particular solution that pertains to the interaction between the incident
and reflected waves. Noting that O%( ti5)* = 0 and that Dz((b?;’)‘)z = 0 leads to
the following form of C]2(<I>:1))2:

inc refl
aes 9941y

O%(®,y)* = 20 (@595 = ot ot

inc refl )

2
W(n -ng) — (5.88)
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Use of the definitions of n'™* and nf}, the law of specular reflection, and some
algebra simplifies Eq. (5.88) to
oo 00 (dy
ot ot " 4 cos? finc

OX @) (5.39)

Note that Eq. (5.89) may be expressed in terms of the Lagrangian £, which was
defined in Eq. (2.83). The O(¢) values of the Lagrangian in both fluids I and 11
are zero. The O(e?) value of the Lagrangian in fluid II is also zero. However, the
O(e€?*) value of the Lagrangian in fluid I is

I
I Po —2 (& fl
Ly =20 (eisopt) (5.90)
With Eq. (5.89), the particular solution that pertains to the interaction be-
tween the incident and reflected waves is at hand. The inhomogeneous terms in
Eq. (5.82) that correspond to the self-action of the incident and reflected waves
are of the same form as the inhomogeneous term in the fluid II wave equation.

Thus, they too may be expressed as d’Alembertians that are similar in form to
Eq. (5.84). Using this idea and Eq. (5.89) in Eq. (5.82) leads to the following:

[:]2

N
1 I 'B nc (1)

ﬂ, 6 mnc A re
+ 2(cb)? cos? finc at(q)(l)q)(l?)

reﬂ a(breﬁ 2 B
2d )( - ( B > =0
(5.91)

The O(e?) particular solution for fluid I is therefore

L . GPinc 2
P = - 27—)[( o (5

cl b e . aq)reﬂ i
s oo + a0 (5 ) (592)

cos? inc gt
The remaining equation,
O q’(?)h =0 , (5.93)

must be solved subject to the O(e?) interface boundary conditions and the O(c?)
source condition. Note that the two terms in the particular solution for fluid
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I that correspond to the self-action of the incident and reflected waves exhibit
amplitude growth in the direction of propagation. The amplitude growth is given
by the coefficients (n™™ -r) and (nf‘ff)i r). Moreover, note that the direction of
propagation of the term that corresponds to the self-action of the reflected wave
is given the law of specular reflection.

The O(€?) homogeneous solution

Now that the particular solutions to the O(€?) wave equations are known,
we may find the O(€?) homogeneous solutions. We start by examining the O(€?)
interface boundary conditions and introducing some new notation. The general
solutions for fluids I and II are then substituted into the O(e?) interface bound-
ary conditions, and two relations between the O(e?) homogenous solutions are
obtained. Next, the relations are solved for the O(e?) homogeneous solutions for
both fluids I and II.

A noteworthy difference between the O(€?) interface boundary conditions
and their O(¢) counterparts is that, as a result of the particular solution being
evaluated at the interface, the O(€?) interface boundary conditions contain terms
that grow with z. This makes sense physically because the amplitude of the
particular solution grows with the distance propagated. Since the particular
solution strikes the interface at oblique incidence, the distance propagated varies
with position along the interface; consequently, its amplitude varies along the
interface. It thus turns out that the O(e?) homogeneous solutions is composed of
two parts: The part that accounts for the aforementioned particular solution has
amplitudes which vary along its wavefront. The part that accounts for everything
else has uniform amplitude along its wavefront. The propagation direction of
both waves is assumed constant. The assumption of constant angle is difficult to
maintain for all z and all ¢ if the wave with the amplitude variation along the
wavefront is overlooked.?

The introduction of some new notation makes matching the O(€?) in-
terface boundary conditions more manageable. Recall that the O(€?) interface
boundary conditions, given in Egs. (5.34) and (5.36), contain terms that account
for the displacement of the interface, the variation of the normal to the intcrface,
and the O(e€?) pressure and particle velocity differences. Singling out the O(¢?)
pressure and particle velocity differences for a moment, we see that they may be
expanded into their homogeneous and particular parts and written in terms of

3A wave with amplitude variation along the wavefront is a solution of the wave equation. For
example, p = A(y) f(z ~ cot) is a solution of the one-dimensional wave equation, p¢ —c2prr = 0,
where the subscripts indicate differentiation.
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the modified velocity potential ®,
o] o0} 00! B<I>
I (2)h (2)h 2)p halai(C]]
P,y ~ Pl ""0[ ot ™a T Tae Mo
! (oo 1 & 2 2 1 & 1 \2
- 7 vy ——2 V(o
+ 1 (V + (c(l))z 8!2)( 1)) ( 11)2 BYE ( (1)) Y
(5.94)
ol 0% _ 9%y, 900 _ 9%y
Y@= T | 752 0z 0z 0z
1 90,4 . 1 90 o=
—_— —— 5.9¢
@y ora: )~ e ares (O0) ] o )

Use of Eqgs. (5.94) and (5.95) in Egs. (5.34) and (5.36) leads to some lengthy
expressions. We therefore introduce the following shorthand notation for not
only the terms in Egs. (5.94) and (5.95), but also for the terms in Eqgs. (5.34)
and (5.36) that represent the variation of the normal and the displacement of the
interface:

A accounts for the particular solution of the particle velocity and is subdivided
into two components, A; and A, where A; represents those terms that.,
when evaluated at the interface, have T as a coefficient, and A, represents
the ‘rcgular terms’ that do not have z as a coefficient,

B accounts for the nonlinear relation between the particle velocity and the
modified velocity potential,

C accounts for the particular solution of the pressure and is also subdivided
into two components, C; and Cig, for the same reasons as for A, and A,

) accounts for the nonlinear relation between the pressure and the modified
velocity potential,

E accounts for the displacement of the interface in the particle velocity bound-
ary condition,

I accounts for the displacement of the interface in the pressure boundary
condition,
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G accounts for variation of the normal in the particle velocity boundary con-
dition.

Mathematically, the shorthand notation is defined as follows:

%] ad>
= (2)p (2)p
AS Ay tode = =, e | (5.96)
1 9 0 1 8 9
B = 2(c )2 ot az( (1)) ( Il)z ot 32( (1)) L (5.97)
88!, ool
= (2)17 (2)p 5 ¢
C = Creg+l'c = at - at . , (5 38)
_ 1 2 1 62 m 2 1 82 )
D = Z (v + (66)2 W) (Q(l)) o - 4 (v + (C&I)z at (Q(l)) » ,
(5.99)
dw! ow
b= ( 5 63)) / wyydl (5.100)
_ 1 [0py BPH) i
b= ( 0z 0z ./ (l)dtl = (5.101)
Sl
— (0 (1) £ 102
G = (u(]) u(]))/ 8$ dt » () 10 )

Use of the foregoing definitions in the interface boundary conditions yields the
following more compact form of the interface boundary conditions:

o0} o001
a('z)h —m 6(2)11 —(Creg+2Ca+ DY+ F (5.103)
t z=0 t 2=0
LY B<I>
(2)h TFan ~(Arg +TA; + B+ E+G) . (5.104)
aZ 2=0 02 z2=0 ’

Explicitly shown in Egs. (5.103) and (5.104) is the interrelation between the O(c?)
homogeneous solutions for fluids I and II.

An examination of the definitions of A through G reveals that they are
quadratic forms of O(¢) terms. Moreover, A through G are defined at z = 0, and
relations between the O(e) terms at z = 0 are also known. It is thus possible to
specify A through G in terms of the O(¢) incident signal, the properties of fluid [,
and the nondimensional ratios of the fluid properties. The general procedure
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is as follows. First, we use Eqs. (5.72) and (5.73) to express the functions (I)ﬁ?

and ®{13™ in terms of ®{j5. Next, Snell’s law and the law of specular reflection,
Eqgs. (5.52) and {5.54), are used to express the coefficients sin 0(’;'? and sin (75" in
terms of sin 6", Using Eq. (5.65), we rewrite the coefficicnt cos 0{:;’ in tcrms of
cos 6'; the coeflicient cos 02{‘)‘"’, which usually appears with the coefficient T, is
eliminated in favor of cos 0™ by way of Eq. (5.63). In gencral, we eliminate 1" in
favor of R using Egs. (5.63) and (5.64), or a combination thereof. Also note that
the time and space derivatives of ®(y) are related by Eq. (5.50). The resulting
expressions for A through G (with the ‘z-dependent’ parts of A and C separated
from the ‘regular’ parts) are

I R iy .
/lreg(TO) - —'2_(7(1))—2' (1 - R ) ‘E“I‘;{ 8t . s ().IUv))
v _f' cosfi™ 2 B n?\ zsin ™ B‘D'(';C)

#As(ro) = 2(d2 & (1—}2)( T Bm) T & o\ ot o
(5.106)
1 (:080'“r 62
=0
'BI R 0 inc . o
Cresl70) =~y com e 507 ° (1))2 L (5.108)

i)

I IT 2 : inc a¢inc 2
i

Q(Ctl))2 \ B Co -0
(5.109)
1 (l + R)2 62 inc ; 2 finc a(I)'(’l“): ’
D(T{)) = (C{,)z 3 (1 ) ((D(l))z - 21{C0320 T s
z=0
(5.110)
, 1 cosfinc
E(r) = @ (1 - 1%
) _ 2 ] 0'2<binc
X [sin2 /i (1—71—1-) — (I - 2—)} P — ;1) . (5.111)
m m il =0
('OS2 oinc ) a2®inc
P(r5) = = R (m - 1)ops ——42 5.112
(Tg) ((.(l))'z ( ) ("l ) (1) otz . ) ( ) )
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cos 0™ sin? ginc odinc (
G(r) = ———1 (I—RZ)( — )( 8;”) (5.113)

& (c)

z=0

Equations (5.105)-(5.113) are a significant result because, as we soon
find out, the terms A through G appear throughout the homogeneous solutions.
Obtaining simplified forms of the homogenous solutions for special cases such as
reflection from a rigid wall (R = 1) or reflection from a pressure release surface
(R = —1) is now relatively straightforward. (In the next chapter, we analyze the
special case of intromission, R = 0.) Moreover, the dependence of the terms on
the changes in physical properties of the fluids is now apparent, specifically,

_ﬁzﬁziu&ﬁﬂ , (5.114)

R IEd W
n? 1
1 ——= pocall (5.115)
= iy 1]
m—1 1
— = -p—ﬁ[po] ) (5.116)
0

where the symbol | ] indicates the jump of the enclosed quantity at the inter-
face, that is, (property!! — property'). Equation (5.114) represents the jump in
a new property, the ratio of the compressibility to the coefficient of nonlincarity,
whereas Eqgs (5.115) and (5.116) represent the jump in the compressibility and
the density, respectively. Note that the terms that represent the motion of the
interface vanish if both the densities and small-signal sound speeds are matched.
Moreover, it turns out that the general condition for no reflections (perfect trans-
mission) is that the densities, the small-signal sound speeds, and the coeflicients
of nonlinearity be matched.

We now solve the O(€?) homogeneous wave equations, Eqgs. (5.87) and
(5.93), subject to the O(e?) interface boundary conditions as given in Egs. (5.103)
and (5.104). We earlier noted that the O(e?) interface boundary conditions con-
tain terms that grow with z. Futhermore, we noted that these terms arc ac-
counted for by a separate function—one that exhibits an z-dependence when
evaluated at the interface. This function, which is denoted by a subscript a, and
a constant amplitude function, which is denoted by the subscript b, satisfy the
interface boundary conditions. The reflected and transmitted signals are sought
in the following form:

incy _inc refl reﬂ reﬂ refl < ~
q)(z)h( t) = ®3)(7™) + (nfg)e, T)® (2)a(7'(2)a P2 (T2w) (5.117)
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S t) = (aiel T)RE (7GR + ek (Ta”) (5.118)
where the amplitude variation along the interface is given by (nfj 2) L °r) and
(n{gay -r) and where

nisd or
R R (5.119)
o
nrell Lp
efl _ (2)% ;
ntrans or
ans __ (2)a K
T(tzr)as = C(I)I ) ()1.21)
ntran or
ripeme — g QR (5.122)
T2 cll
n{';')'a = isin 0(;';,‘ + kcos b3 YR (5.123)
{3l = isin Oy + kcosfhg) (5.124)
n{3e = isin 655" + kcos 0552 (5.125)
n@dt® = isinfz° + kcos 75" (5.126)
nish | = isinff,, +keosO5,, (5.127 )
nGjel = isin 0(2),”_ + ksin O(Z)QL (5.12

That (n”” refl

2)aL * )@{g’)’a(r(z)a) is a solution of the homogeneous wave equation may

be verified by direct substitution if it is noted that the vectors n(z) 1 and n{ie

are perpendicular to the direction of propagation, that is,

refl refl

n(z)a n(z)al = 0 3 (5129)
nGe-ngey =0 . (5.130)
However, two possibilities exist for both nmmL and n{3}>) ¢ it may have a com-

ponent in cither the +1i direction or the —i dlrectlon We choose both nihyy
and nf5} | to have components in the +i direction; sec Fig. 5.3. Direct substi-
tution of Egs. (5.117) and (5.118) into the O(€?) interface boundary conditions,
s, (5.103) and (5.104), yields what appears to be a systenm of two equations and
four unknowns with four angles to be determined subject to the two conditions
that the solution be valid for all z and all t. Fortunately, we may separate the
terms that exhibit growth with £ and demand that they equate separately. We
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are thus left with two systems of two equations and two unknowns with two an-
gles to be determined subject to the two conditions that the solutions be valid for
all z and all ¢—one system for the ‘z-dependent terms’ and one for the ‘regular
terms.” The system for the ‘z-dependent terms’ is

trans trans

- efl efl
cos 03, | 99%5)a

cos ,
- singreft e —a . prans (2)a 4
(2)al T Qal —F— [
% ot |, < ot |._
oored . (5.131)
Qr; rans
. re| )a . r (2)0. .
sin 0(2?0_1. _——a(t — msin 822‘)’:‘1 —5 0 = _C, . (5.132)
Z=0 z=

The system for the ‘regular terms’ is

os0e OV conlgh GOBL
e ot |._, c ot |, (2)ad T(2)al,-0
Ccos atrans aq,tra.ns
~ cosOgfnt @G|, _ + —r- | = (A ¥ BHE4G)
Co z=0
(5.133)
g inc aq)reﬂ OPtrans
(2) (2)b (2)b -
: —b) o @ (O + D)+ F . (5.131)
()t >=0 at 2=0 at z=0

Since the unknowns {;?a and QE;‘;‘” appear in the ‘regular term’ system,
it 1s required that ‘z-dependent term’ system be solved first. To solve the ‘r-
dependent term’ system, we first find the angles by applying the conditions that
the solutions be valid for all z and all ¢. This is accomplished in the same way as
it was in the O(e) case—the = and t derivatives of Eqgs. (5.131) and (5.132) are
taken. The resulting sets of equations are then forced to be linearly dependent
thereby making their solutions identical. To make the z and ¢ derivatives of
Eqs. (5.131) and (5.132) linearly dependent, the following two conditions must

be true:
sin 0{;‘)’(, sin ginc

= , 5.135
Singgl)’:s sin @< E 1o
i = 3 (5.136)
Co Co
Accordingly, we see that
()r(-ll - orcﬂ = 180° Oinc 5.137
(2)0 = Yy = toU” — (5.137)
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and
Bigne = e (5.138)

Thus, the signals that match the particular solution at the interface propagate in
the same direction as the O(e) signal. That is to say, these O(c?) homogeneous
solutions obcy Snell’s law and the law of specular reflection. Since the angles
0{;;’0 and §732° are known, the angles 0(2) 1L and 63307 are also known,

O5er = 057 —90° = 90° — '™, . (5.139)
O = O™ +90° . (5.140)

Equations (5.131) and (5.132) may now be solved for @Eg?a and @510
Use of Egs. (5.137)-(5.140) in rearranged forms of Eqs. (5.131) and (5.132) yields

aq)reﬂ I
= 1- 1 5.141
ot 2=0 2COS 0"‘° (( )Cz + 0lnc( + R) ) ) ( )

aq,mms n 1 (1 + R)2 CI
(2)a 0
Y] - : - —A:] 5.142
ot 2=0 m22cosfrc 1 — R (C cos finc ) ( )
where we have made use of the following:
Z! 1-R
= 5.143
ZU 4 21 7 ( )
1 zuzl c{) 1+R
oL =TT 5.144
py ZV+ Z11 " cosfinc 2 ’ ( )
1 1+ R
oy = 5.145
mZi+ Z0 . 2m (5.145)
T = (5.146)
M ZT L 70~ osfinc 2m 5.
1 1 1+R
= - 5.147
cos 03" cosfircm (1 - R) (5.147)

Equations (5.141) and (5.142) may be integrated once with respect to time noting
that the integration constant must be zero in order to satisfy quiet conditions,
that is, in the absence of an incident signal, a reflected or transmitted signal docs
not exist. Since both A; and C; are given in terms of the time derivative of
the incident signal [see Eqs. (5.106) and (5.109)], integration is possible in closed
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form. That this integration is possible is important because the expressions @[5,

and ®{335° show up explicitly in the O(e?) form of the particle velocity. To obtain
expressions for <I>{3f)1a and ®{}}° away from the interface, we replace the current
trans

independent variable 73 with T('l‘)ﬂ for the O(e?) reflected field and with 7} for
the O(€?) transmitted field. Thus, the expressions for <I>{§f)‘a and Q30 are

1

reﬂ refl reﬂ

®2a(T00)) = ~ 5 < /C () dt 4+ —5 (1~ /A () )
(5.148)

and

n 1 (1+R)?

m? 2cosfinc 1 - R

rms trans ,
(/c )t — cosomc/A i ).(5.119)

The system composed of ‘regular terms’ is now solved in an identical
fashion: First, the £ and t derivatives of the pair of equations are taken, and the
two conditions that force the = and t derivatives of the equations to be lincarly
dependent are obtained. The two conditions are

(™) =

sin 0{;?,, sin 0inc

= ) (5.150)
< co
sin Q4 in ™c
@b _ sin (5.151)

I =g
Thus, the angles at which the O(e?) homogeneous solutions leave the interface
are the same as their O(e) counterparts,

05 = 05y = 180° — g™ (5.152)
05" =05 (5.153)

That is to say, these O(€?) homogenous solutions also obey Snell’s law and the
Jaw of specular reflection. Using Eqs. (5.152) and (5.153) in the ‘regular term’
system [Eqs. (5.133) and (5.134)] and then rearranging leads to the following

S : . 3 grefl 8 trans —N-
cxpression for = 7 and - 2 at z=0:
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where we have again made use of Eqs. (5.143)-(5.147). Integration of Egs. (5.154)
and (5.155) is, in principle, possible, but not in closed form. This is not a problem,
however, because (ngffb and @73}, unlike Q‘{fj‘)]a and @E;")‘gs, do not appear explictly
in any measurable quantity, only their derivatives. To obtain expressions for
2 @Eg?b and ;;*)‘;‘s away from the interfacz, we repiace the independent variable
7'9 with T"’ﬂ for the reflected field and with T‘{;‘“s for the transmitted field.

In summary, although we have not obtained closed form solutions for
<I>f2)h and @fg)h, we have obtained closed forin solutions for the derivatives. This
is significant because only the derivatives of Q}Q) appear in measurable quantities

such as the pressure or particle velocity. The derivatives of (I){z)h and @}L)h are

9 o D | ety 22, 90T -
2 Dy (1, 1) = Bt + (n{fL 1) 5t Ot ) (5.156)
inc ;)pinc fl rc-f efl
Vd)[. (l‘ t) — _n ()q)(?) ref q)reﬂ n(l) (nref l') ad)"‘ ll dq)r?)b
(k15 YT (2)e (e (‘)t c{, ot
(5.157
) ooy ovgy o
(I)“ ntrans 2)a ’ 5 15%
)l (2)h ( ) ( (1)L ) at ot () ) )
n(rms (’)(b(!'arﬁ ntrani ()(I)lrar:s
V(DH r.{)=n trans (btrum__ (1) ntrn .r '(2)0 (1) '(2)6 5159
(Z)h( ) e P (_(1) ( (2)al ) Ot q‘, BY ( )
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where n§}, and n{}}* are given by
nz‘;gl =icos 0™ + ksin 6™ | (5.160)
n{{Y = icosjj™ — ksing 3™ . (5.161)

All the components of Egs. (5.156)~(5.159) are known: @{;‘)'a and P{332* are given

by Egs. (5.148) and (5.149), and their derivatives, & ®73", and 5 ®{52, are read-

ily obtained. The functions (%d)'(;')‘b and g; E;‘;}," are given by Egs. (5.154) and
(5.155). It is also noted that the O(€?) homogeneous solutions propagate in di-

rections predicted by Snell’s law and the law of specular reflection.

Matching the O(c?) source condition

The O(€?) boundary condition at the source is now matched to the O(¢?)
solution evaluated at the source, r = ro. As we noted when matching the O(¢)
boundary condition at the source, the reflected signal is not involved in matching
the boundary condition at the source. The O(e?) boundary condition at the
source is given in Eq. (5.40). The relation between u(;) and the modified velocity
potential ®(;) is given in Eq. (5.30). Use of Eq. (5.40) and the general solution
for <I)}2), Eq. (5.80), in Eq. (5.30) leads to

. ninc 8
V(<I>"1":)2 - —==S)(t — 7o)
M rero cl ot

1 0

Ve -~ BN O

I
== V(I)(2)1u

r=ro

(5.162)
The first term on the right-hand side of Eq. (5.162) forces the O(e?) particular
solution to vanisi. at the source. The physical interpretation is that no self-
action of the incident wave has occurred when the wave is still at the source.
T".e second term on the right-hand side accounts for the nonlinear relationship
between the modified velocity potential and the particle velocity. As we see below,
this term disappears if the equation is re-expressed in terms of a measurable
quantity such as the pressure or particle velocity. The third term on the right-
hand side accounts for the O(€?) signal at the source. Physically, an O(¢?) signal
at the source represents a local effect at the source such as the finite displacement
of the source. This local effect must not be overlooked because it is of the same
order as the local effects at the interface—the finite displacement of the interface
and the variation of the normal to the interfacc. Evaluating V¢{2)P (neglecting
reflections) and rearranging leads to the following:
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A closed form integral of Eq. (5.163) was not found. If the source condi-
tion is harmonic, however, the integral may be obtained. The form of Eq. (5.163)
is nevertheless acceptable because all measurable quantities depend on deriva-
tives of ® and not on @ itself. For example, we may use Eq. (5.26) to rearrange
Eq. (5.163):

inc

incy 2 ,
_PG| B (905 e O (OO0 9.
p(I) r=ro N 2(66)2 [( 6t (l"l r)Bt 6t . + at S(2)(t TO)

(5.164)
We have thus found the expression for the O(e?) incident pressure in terms of the
O(e) incident pressure [related to 8‘1)1(',‘3/& by Eq. (5.25)] and the O(¢?) pressure
at the source (related to 05(;)/dt). Other such manipulations are possible.

Summary of O(e?) Results

Because closed form solutions have not been obtained for (I)‘(’gf)lb and QE;“);“,

we have no closed form solutions for @%2) and @}g). Solutions for any O(¢?) measur-
able quantity may, however, be obtained because measurable quantities depend
only on the derivatives of @}2) and (Pg). The derivatives of the functions &f,),
and @}é)p may be obtained by differentiating Eqgs. (5.92) and (5.86), respectively.
The derivatives of ®f;), and &}, are given in Egs. (5.156)-(5.159).

The major results of this section are as follows: (1) Closed form ex-
pressions have been obtained for the O(€?) particular solutions for fluids I and 11,
Fqs. (5.92) and (5.86), respectively. (2) The propagation directions of the growth
terms in the O(€?®) particular solutions for fluids I and II are given by Snell’s law
and the law of specular reflection. (3) Closed form expressions have been ob-
tained for the derivatives of the O(e?) homogencous solutions for fluids I and 11,
Eqgs. (5.156)--(5.159), respectively. (4) The propagation direction of the O(c?)
homogeneous solutions are given by Snell's law and the law of specular reflection.
(5) Expressions have been obtained for the quantitics A through i, which repre-
sent the motion of the interface, variation of the normal to the interface, and the
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nonlinearity of the relations between the acoustic variables, I£gs. (5.105)—(5.113),
respectively. All of the foregoing have been obtained assuming an arbitrary source
function.

5-5 Complex Transmission Angle

In this section we briefly point out what steps should be taken if the
incident angle is greater than the critical angle. Above critical incidence, the
transmission angle and the retarded time 7¢*" are complex. Moreover, the defi-
nitions of the reflection and transmission coeflicients, Egs. (5.57) and (5.58), are,
strictly speaking, no longer valid because the reflected and transmitted signals
are no longer in phase with the incident signal. The problem may be resolved by
using complex notation. We start by assuming an incident harmonic wave, say
55 = Re[e"“"&)i('x‘ﬁ(x, z)], where i = /-1 and ~i(';'j(:c, z) is a complex amplitude.
All the time derivatives in lincar terms are then replaced by —iw. To compute
the quadratic terms which contribute to the second harmonic, we must do only
a little more work. For example, to compute the time derivative of (0®;)/0t)?
which appears in the wave equation Eq. (5.2), we note first that

Gat) : w? ~2iwt 2 i Ea
( 5t = ——2—R,e [C ‘b(l) - (I)(I)Q(l)} 3
'whcrc é(l') is the complex conjugate of ®(;y. The time derivative of (39 (y)/9t)?
is, accordingly, given by

9 (0%, ’ w? 2wt §2
(79'; (7 = -?Re [—22&)6 tq,(l)]

Thus, everything we have done may be applied to incident angles above the
critical angle provided that (1) the time derivatives ¢~ . terms are replaced
by —iw, (2) the time derivatives of quadratic tern.. « . replaced by —2w, and
(3) the amplitude of the quadratic terms is multiplied by 2.

The more general case of an incident pulse may also be treated using
complex notation. The incident pulse is considered as a superposition of harmonic
waves. Care must exercised in this case, however, because cach harmonic interacts
not only with itsclf (as above), but also with every other harmonic. Thus, it turns
out that the O(e?) solution contains convolution integrals of the Fourier transform
of the pulse with itself.
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5-6 Summary

In this chapter, we have analyzed the reflection and refraction of finite-
amplitude plane waves that are obliquely incident on an initially plane fluid-fluid
interface. The procedure used is second-order perturbation analysis; the source
boundary condition was arbitrary. Specific terms that account for the displace-
ment of the interface, the variation of the normal to the interface, and the O(c?)
source condition are identified. It is found that the O(¢?) reflected and transmit-
ted waves propagate in the same direction as their O(€) counterparts. In other
words, to O(€?), no deviation from Snell’s law or the law of specular reflection is
seen. Expressions for the amplitude of the O(¢?) reflected and transmitted waves
have been obtained.




CHAPTER 6

MODIFIED FORMS OF SNELL’S LAW BASED ON SIMPLE
WAVE FLOW

6~1 Introduction

Developed in this chapter are two different ‘modified forms’ of Snell’s
law—forms which appear to indicate that refraction has a slight amplitude depen-
dence. The ‘modified forms’ are developed by means other than perturbations.
Specifically, the first ‘modified form’ is obtained by matching the trace velocities
of the incident and the transmitted signals at a fixed interface. This ‘modified
form’ was reported by Cotaras and Blackstock (1987). The second ‘modified
form’ is obtained by examining the variation of the pressure along the moving
interface and was suggested by Naze Tjgtta and Tjgtta (1988). While different
from each other, both forms appear to be correct to second-order. However, in
deriving the ‘modified forms,’ it is assumed that simple wave flow exists in both
fluids. We are now, however, in a position to quantify the simple wave flow
approximation. Using the results of the previous chapter, we develop the O(¢)
and O(e€*) conditions for simple wave flow to exist in both fluids simultaneously.
These conditions are then imposed on ‘modified forms.’

This chapter is divided into two sections as follows. In the first section,
conditions for simple wave flow in fluids I and II are devcloped. The O(e¢) and
O(¢*) conditions for simple wave flow in fluid I are obtained by determining the
conditions for no O(e) and O(€?) reflections. We then examine the conditions
required for simple wave flow to exist simultaneously in fluid II. Developed in
the econd section of this chapter are the two different ‘modified forms’ of Snell’s
law. It turns out that, to O(€?), the two methods result in equivalent expressions:
ordinary Snell’s law and one of the conditions for simple wave flow, which is
assumed in their derivation. The ‘modified forms’ are, therefore, equivalent to
ordinary Snell’s law.

80
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6-2 Conditions for O(¢) and O(€?) Simple Wave Flow

Simple Wave Flow in Fluid I

In this section, the results of the previous chapter are used to determine
the O(e) and O(e?) conditions for simple wave flow in fluid 1. This is done by
determining the O(e) and O(e?) conditions for no reflections. The condition for
no O(e) reflection was noted in the previous chapter [see Eq. (5.70)] and was
given the name intromission. Thus, all that remains to be done is to determine
the O(€?) condition for no reflection. Qur procedure is straightforward: First,
the O(¢) condition is imposed on the O(e?) general solution for fluid I from the
previous chapter. The O(e?) condition for simple wave flow in fluid 1 is then
determined by forcing the O(e?) reflection to vanish.

To impose the O(¢€) condition, first recall that the O(e?) general solution
for fluid I is divided into two parts, a particular solution and a homogeneous
solution. At intromission the O(¢) reflection is by definition zero, and, accord-
ingly, the terms in the O(e?) particular solution for fluid I that correspond to
the interaction of the incident and reflected waves and to the self-action of the
reflected wave vanish. The O(€?) condition for simple wave flow in fluid I is thus
determined solely by forcing the O(€?) homogeneous solution for fluid I to vanish.

Imposing the O(¢) condition (R = 0) on the terms that make up the
O(€*) homogeneous solution for fluid I [the terms A through G which are given
in Egs. (5.105)-(5.113)], we obtain the following:

) .9
ﬂl cos finc ﬂl[ n2 anC
Ay = B cost ( BUaT) (VRN (6.1
2(¢0)? ¢ B m ot Y
A = ﬂl oS 0inc L ﬂll 722 zsin yinc 6 an\ 2
T2)? o Bl m g Ot \ ot ) o
aAreg
_ 9
T (6.2)
1 cosfne n?\ 0% _.
B - _ l = I ‘I)mc 2 (‘
Q(C([))2 C{) ( m) 6t2( (1)) im0 ’ ( ) 3)
Creg = 0, (6.4)
. ﬂl | ﬁ”n2 rsinfrc g (9 l(rll(): 2
(', = ———— _—_—— —
2(c})? Bt m cy Ot \ ot Y
_ c(l, OAceg (6.5)
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Note that G, the term that accounts for the variation of the normal, is zero for
normal incidence. (The condition for intromission at normal incidence is m = n.)
For all other angles, however, m must be unity for G to be zero. However, if m
is unity, then the O(e) condition [see Eq. (5.70)] in combination with Snell’s law
indicates that n is unity also, that is,n = m = 1. If both m and n are unity, then
E, F, and G, which together account for all interface motion, are zero. Note that
even with n and m equal to unity, the term A is not zero unless g' = g'.

We now determine the form of the O(€?) homogeneous solution given
that R = 0. Using Eqs. (6.2) and (6.5) in Eqgs. (5.148) and (5.149), we see that

for the special case of R =0

o, =0, (6.10)
trans| M sinf"
el = %“2?—052(75?/1“3 : (6.11)

Note that ®737°, the part of the homogeneous solution for fluid II that has am-
plitude variation along its wavefront, is zero in the case of normal incidence. For
oblique incidence, ®{32* is zero only if A, is zero. Use of Eqs. (6.6), (6.10), and
(6.11) in Eqs. (5.154) and (5.155) leads to

()q)rvzﬂ 1 2 oinc F
(2)b Co tan )
= - —- e T+ Gl + — A2
ot 2 cos finc [(1+ m? )Arg+E+ }+ 2 (6.12)
and
7L e T G o L tan? §in A
a |, m 0t 2 cos 0incm m? 8
Voo F
- 0 OB+ E4G) - — . (6.13)
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Equations (6.10) and (6.12) are the two terms that make up the O(€*) homoge-
neous solution for fluid I. Since Eq. (6.10) shows that @{;?a is already zero, the
O(€?) conditions for simple wave flow in fluid I may be obtained by forcing 4){‘;‘)‘6
to be zero.

An examination of Egs. (6.1), (6.7), (6.8), and (6.9) indicates that for
Q{;’)‘b to be zero, the coefficients of (9@™/9¢t)* and @5 826;'1‘;/382 must be zero.
Setting the coefficient of ®{f§ 8°®{j5/0t* equal to zero yields the O(¢) condition
for intromission, which was previously assumed. No new conditions are therefore
required to force the coefficient of ®{5 8°®{j5/dt? to be zero. On the other hand,

forcing the coefficient of (99</3t)? to be zero leads to the following condition:

1 2 ginc Im,2 _
s (1 + -taif——-) (1 - ﬂ—%) + sin? @' (I———Tz) =0 . (6.14)
m

2 m

Note that at normal incidence, Eq. (6.14) reduces to (with m = n)

11
(1 - %—,?n;) =0 . (6.15)

Equation (6.15) indicates that for no O(e€?®) reflection at normal incidence, the
jump in the quantity /¢y must be zero. For oblique incidence the condition is,
however, more complicated. The angle dependence in Eq (6.14) may be removed
using the O(e) condition [see Eq. (5.71)], and we thereby obtain the following
form of the condition for no O(e?) reflection:

gi (l B _ﬁf__n_z_) N m(n? — 1)(n? — m?)
2 Bl m n?*(m + 1)(m? — 1)

=0 . (6.16)

Thus, for oblique incidence, simple wave flow exists in fluid I if the
properties of the fluid pair are such that both the O(e) and O(€?) conditions for
no reflections [Eqs. (5.71) and (6.16), respectively] are met simultaneously. For
normal incidence, the number of conditions for simple wave flow is the same—
two, but the conditions themselves are simplier in form. The O(c) condition for
no reflection at normal incidence is obtained from Eq. (5.70),

[poco) =0 . (6.17)

The O(¢?) condition for no reflection at normal incidence is Eq. (6.15).
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Simple Wave Flow in Fluids I and II

We now examine the conditions for simple wave flow to exist simulta-
neously in fluids I and II. We start by considering what restriction the simple
wave flow assumption places on the relationship between the temporal and spa-
tial derivatives of an acoustic field variable. The restriction is central to many
relations that are derived assuming simple wave flow.

As an example, we develop the nonlinear impedance relation for the
special case of outgoing simple waves. Our starting point is the second-order
form of the momentum equation, Eq. (2.88). If simple wave flow in a lossless
fluid is assumed, Eq. (2.88) simplifies to

au U q )
poy'*-v]) =0 . (6.18)

If the acoustic field consists of simple outgoing waves, the time and space deriva-
tives of the pressure are related by

, n ap’

Vy' = —m—&— , (6.19)

where n is the direction of propagation. [Recall that the propagation speed of a
finite-amplitude wave is ¢o + B(n -u).] Substituting the foregoing in Eq. (6.18),
integrating, and noting that the integration constant must be zero in order to
satisfy quiet conditions leads to

P'=po (Co + ﬂ(nQ'u)) (n-u) . (6.20)

Equation (6.20) is the second-order form of the impedance relation and is valid
for simple outgoing waves of finite amplitude.

Equation (6.19) indicates that, under the simple wave flow assumption,
the temporal and spatial derivatives are simply related; moreover, the gradicent
of the pressure is parallel to the direction of propagation. The particle motion is,
accordingly, restricted to being parallel to the direction of propagation.

To obtain a condition for simple wave flow in fluid II, we examine the
gradient of the O(¢) and O(€*) pressures in fluid II and demand that they be
parallel to the direction of propagation. The gradient of the O(e) pressure in
fluid IT is ohtained by taking the gradient of Eq. (5.27). Noting Eq. (5.50), we
find that, to O(¢), the gradient of the pressure is parallel to the direction of
propagation. Thus no additional conditions are required to assume simple wave
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flow exists in fluid II to O(e). The situation is more complicated at O(e?). The
O(€?) pressure in fluid II is given by Eq. (5.28). The second term on the right-
hand side of Eq. (5.28) is a quadratic form of the O(¢) solution, and the gradient
of this term is, accordingly, parallel to the direction of propagation. The first term
on the right-hand side of Eq. (5.28) may be divided into two parts: a particular
solution and a homogeneous solution. From Eq. (5.86) we see that the fluid 11
particular solution is also a quadratic form of the O(e) solution, the gradient
of which is parallel to the direction of propagation. The fluid II homogeneous
solution is given by Eq. (5.118). By inspection we see that for the gradient of

@{é)h to be parallel to the direction of propagation, @z;‘;z* must be zero. We noted

earlier that, for the special case of R = 0, Q:;ﬁ“ is zero for normal incidence, but

for oblique incidence, ‘ng‘};‘s is zero only if A, iIs zero. Furthermore, A, is zero

only if -
pln .
(1 - ’ﬂT‘;) =0 . (6.21)

Since Eq. (6.21) is the same as the normal incidence condition for O(€?)
simple wave flow in fluid I [Eq. (6.15)], no additional conditions are required
for O(e?) simple wave flow to exist simultaneously in fluids I and II at normnal
incidence. For oblique incidence, however, Eq. (6.21) represents an additional
condition. Thus, for O(€?) simple wave flow to exist simultaneously in both fluids
I and II at oblique incidence, the conditions expressed in Egs. (5.71), (6.11), and
(6.21) must be met simuitaneously. The only way all three conditions may be
satisfied simultaneously is if the static densities, the small-signal sound speeds,
and the coeflicients of nonlinecarity are matched,

Po =Py 6.22)
c=dl 6.23)
J (6.24)

6—-3 Modified Forms of Snell’s Law

In this section, two ‘modified forms’ of Snell’s law are developed. The
first is obtained by matching the trace velocities of the incident and transmitted
signals at the interface, while assuming that the interface is stationary. The
second ‘modified form’ of Snell’s law is obtained by examining the variation of
the pressure along the moving interface. The O(¢) and O(€?) results of the two
methods are found to be equivalent. Moreover, when the conditions for simple




86

wave flow, which is assumed in their derivation, are imposed on the ‘modified
forms’, they reduce to ordinary Snell’s law.

Trace velocity matching!

This section progresses as follows: First, ordinary Snell’s law is derived
by matching the trace velocitics of small-signal waves. Ther, a ‘modified form’ of
Snell’s law is developed by matching the trace velocities of finite amplitude waves
at the interface. Simple wave {low is assumed on the fluid [ side, and the interface
is assumed stationary. The O(¢) and O(e?) approximations of the ‘modified form’
are then developed.

The method of matching the trace velocities of the incident anda trans-
mitted signals is first demenstrated by deriving Snell’s law for small-signal waves.
Shown in Fig. 6.1 is a plane wave obliquely incident on a plane interface. Iirst,
consider fluid I. We follow the progress of a single typical wavelet of the incident
wave, in this case, a peak. At time ¢ = 0, the wavefront for this wavelet is AA’. At
a time At later, the wavefront has moved a distance ¢ At to position B3'. The
increment the wavelet has moved along the interface, that is, the trace distance
Az, is

B c At
AB — sin @inc
Note that ¢}/ sin 0" is the trace velocity of the wavelet along the interface. Next
consider fluid 1I. The wavelet of the transmitted wave at time t = 0 is represented
by the wavefront AA” and, at a time At later, by BB". The distance along the
ray is ¢j At and the trace distance is given by

Ar

(6.25)

11
Az,, = -8t (6.26)

AB 3in @trans
Thus, the trace velocity is ¢!/ sin 6=, Combining the two equations leads to
Snell's law,
@ ___
sin finc " gjp gtrans
It appears that Snell's law is simply a kinematic condition that requires the trace
velocities to be the same for both the incident and transmitted waves. (Note

(6.27)

"I'he trace velocity matching technique and the resulting ‘modified form’ of Snell’s law were
presented at the THth meeting of the Acoustical Society of America (Cotaras and Blackstock
1ONT).
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that the trace velocity matching method may also be used to obtain the law of
specular reflection.)

The trace velocity matching technique is now used for finite-amplitude
waves. Recall that the propagation velocity of a simple outgoing wave of finite
amplitude is ¢} + FY(n -u)—not just the small-signal sound speed c}. Consider
Fig. 6.2. By invoking the same geometrical argument used for small-signal waves,
we obtain the following ‘modified form’ of Snell’s law for finite amplitude waves,

sin g'¢ sin gtrans

cé + ﬂl(ninc ,uinc) = C%)I + ﬂll(ntrans .utrans)

Note, however, that simple wave motion was assumed in fluid I and that the

(6.28)

motion of the interface was neglected.

The O(e) and O(€?) forms of the ‘modified form’ of Snell’s law are now
developed. We first expand Eq. (6.28) using the techniques developed in Chapter
5, specifically, Eqs. (5.11)-(5.13). Using Eqs. (5.12) and (5.13) in Eq. (6.28), then
binomially expanding the denominators and retaining only the leading and next
higher-order terms leads to

sin g gt sin gtrans B
1 — € = (n'"€ y'ne¢ = ] —e— ntrans .utrans . 6.29
C([) ( ¢ c(l)( u(l))) 'coﬁ - ( € C(I)I( (1) ) (6.29)

Lquating the leading-order terms in Eq. (6.29) yields the following O(¢) form of
the ‘modified forin’ of Snell’s law:
sin gin __singtrns
T

This is merely the ordinary form of Snell’s law. It was noted in the previous
chapter that Snell’s law is one of the conditions required for the O(¢) solutions
for the wave equation to be valid for all z and all t. Equating the next higher-
order terms of Eq. (6.29) and using Snell’s law leads to the O(e?) form of the
‘modified form’ of Snell’s law,

(27 o

In obtaining Eq. (6.30), we have made use of the following O(e) result, which
was in turn obtained using the O(e€) pressure balance, Eq. (5.35), and the O(¢)
nnpedance relation, p = poeg(n -u):

e ine trans trans

. n .,
n" -yl = —n ug) . (6.31)
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It was noted in the previous section, however, that Eq. (6.30) is a condition for
simple wave flow to exist in fluid II to O(e?); see Eq. (6.21). Thus, to O(e?), the
‘modified form’ of Snell’s law and the ordinary form are equivalent. That is to
say, the ‘modified form’ of Snell’s law is a trivial non-extension of Snell’s law.
The problem with the derivation of the ‘modified form’ is that the conditions
imposed by the simple wave flow assumption were overlooked.

In summary, it has been shown that, to O(c?), the ‘modified form’ of
Snell’s law that is obtained by matching the trace velocities reduces to ordinary
Snell’s law when the conditions of the simple wave flow are imposed on it.

Variation of pressure along the interface?

In this section, another ‘modified form’ of Snell’s law is derived—this one
by examining the variation of the pressure along the interface. A Taylor series
expansion is then used to obtain O(€) and O(€?) approximation of this ‘modified
form’ along z = 0. Simple wave flow is, however, again assumed on the fluid I
side, and it turns out that this ‘modified form’ of Snell’s law yields the same O(¢)
and O(€?) expressions that were obtained using the trace velocity method.

We first show that the jump in the variation of the pressure along the
interface is zero. A simple way to show this is to describe the interface in a
parametric form using only a length coordinate £ and the time t. The pressure
jump at a point £ is then written

p'(e,t) -6, t) =0 . (6.32)
Similarly, at a point £ + A¢, we may write
P+ ALt —pN e+ AL =0 . (6.33)

Combining the two previous expressions and dividing by A¢ yields the desired
result,
ap! _ op!
Faarn
The variation of the pressure along the interface may also be expressed in terms
of the tangent to the interface T and the gradient of the pressure,

T -Vp!=T-Vp'l . (6.35)

(6.34)

The second ‘modificd form’ of Snell’s law may be obtained by applying
Fq. (6.35) along the moving interface. If simple wave flow is assumed on the

*This method was suggested by Naze Tjotta and Tjatta (1988).
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fluid I side, Eq. (6.19) may be used to obtain an expression for the gradient.
Thus, along the interface, Eq. (6.35) may be written as

sin oinc apinc 3 sin gmms aptram
ct!J + IBI(ninc .uinc) ot - C(I]I + ﬂll(ntrms .utra.ns) ot

, (6.36)

where the angles 8™ and 6" are defined relative to the instantaneous normal.
Except for the dp/dt terms, Eq. (6.36) is the same as our previous ‘modified
form’ of Snell’s law, Eq. (6.28), which was obtained neglecting interface motion
altogether.

If this ‘modified form’ of Snell’s law is to be compared with the previ-
ous one, the angles must be referred to the +z-axis and the displacement of the
interface must be accounted for. Moreover, the entire expression must be ap-
proximated to O(e?). This may be accomplished as follows: First, an expression
for the tangent is obtained using the previously derived O(¢) expression for the
normal to the interface, Eq. (4.19). Next, an O(e?) expression for the gradient
of the pressure is obtained by expanding Eq. (6.19) and using a Taylor series
expansion about z = 0. This, of course, assumes simple wave flow on the fluid I
side. The two expressions are then combined to yield the O(¢) and O(e?) forms
of Eq. (6.35) about z = 0.

An expression for the tangent may be obtained from our expression for
the normal to the interface N, Eq. (4.19). Since T must be perpendicular to N,
T is given by

trans

. 6w(1)
T=+itke —_az_dt ) (6.37)

The + sign is chosen.

If simple wave flow is assumed on the fluid I side, Eq. (6.19) may be used
to obtain an expression for the gradient. Expanding the denominator binominally
and accounting for the motion of the interface using a Taylor series expansion
results in the following expression for the gradient of the pressure along z = 0:

rlinc apl(rlli
1€ "ot

Co
apinc a2pinc 1 apinc ) .
o (5 T s S0 e )

Vpl = —

2=0

ot

} (6.38)

z=0

The expression for the gradient of the pressure in fluid II is similar.
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Using Egs. (6.37) and (6.38) in Eq. (6.35) and equating equal powers of
¢ yields the following O(e) and O(e?) results:

sin g p5s

d ot

_ singene Gtz

P ot

, (6.39)

z=0

sin 6" ang?m sin ginc 02 P'(l)

_ _ trans dt
ql) ot c0 otoz )
cos §in° 61’?{(): Qs dt sin 6 ﬁ ! Op '('ii nine gine
- 3 + — (n'™ uif)
Co I L&) CO
B sin 0tr&n3 3pz;?"’ sin 0 trans azpul'?ns / trans dt
= By ot ol 0tdz ‘o
COS ozrm apzli?ns aw(l) dt + Sin 0“-&“5 _ﬂ__l—[ ap‘da)ns (ntrans N tranS)
o ot Oz @ o Ot W

(6.40)

Fortunately, the O(¢e) and O(e?) results given in Eqgs. (6.39) and (6.40)
may be simplified. Use of the time derivative of the O(e) pressure balance given
in Eq. (5.35) reduces Eq. (6.40) to Snell’s law,

sin@i"e  sin g*ran
S c
Equation (6.40) may be simplified by noting that, for simple wave flow, the z-
derivative of the O(e?) pressure balance, Eq. (5.36), is

Lrans

W)

sin @inc api('{ : sin ginc 3%pits o°p) /
& ot |_, & otex
cos fine Ip{3s dwi)™

dt
1
cp Ot Oz =0
3 sin 0trans 3}2;’;‘;"5 sin otra.ns 82 pm)ms / trans i
I - i W
cl ot |, o ot 0z ) 2=0
cos 02 Opy™ 1 dwi™ 6.41
cll ot oz (6.41)
z=0

Use of Eqgs. (6.41), (6.31), and Snell’s law reduces Eq. (6.40) to

ﬂ" n')
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This is the same expression obtained using the trace velocity approach, Eq. (6.30).

Thus, the ‘modified form’ of Snell’s law that is obtained by examining
the variation of the pressure along the interface is, to O(¢?), equivalent to that
obiained by matching the trace velocities if the results are referred to z = 0.
Moreover, both ‘modified forms’ are, to O(€?), equivalent to ordinary Snell’s law.
This implies that neglecting the motion of the boundary in the derivation of
the first ‘modified form’ is not a problem. The problem is the simple wave flow
assumption that is made when deriving both of the modified forms.

6-4 Summary

In this chapter, we examined the conditions for O(¢) and O(e?) simple
wave flow in fluid I and fluid II. For oblique incidence, the conditions are that the
static densities, the small-signal sound speeds, and the coeflicients of nonlinearity
be matched. For normal incidence it is only required that poco and pgc2/8 be
matched. Also examined in this chapter are two ‘modified forms’ of Snell’s law.
It was found that the two ‘modified forms’ were, to O(€?), equivalent and that
they reduce to ordinary Snell’s law and one of the conditions for simple wave
flow, which was assumed in their derivation. Thus, to O(€?), they are equivalent
to ordinary Snell’s law.
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CHAPTER 7

SUMMARY OF RESULTS
AND PROPOSALS FOR FUTURE WORK

7-1 Summary

This dissertation is divided into three parts: In the first part the basic
equations for a homogeneous, thermoviscous fluid with a single relaxation mecha-
nism were examined. The examination led to the following results: (1) Simplified
(correct to second order) forms of the equations for a homogeneous, thermovis-
cous fluid with a single relaxation mechanism were developed. (2) The wave
equation for finite-amplitude wave motion in such a fluid was also developed.
The derivation of this wave equation from first principles has not been presented
previously. The following assumptions were made during the derivation: (1) The
deviation from equilibrium was assumed to be small, and, accordingly, linear re-
lations between the thermodynamic fluxes and forces were used. (2) The possibil-
ity of a cross-effect between bulk viscosity and relaxation was neglected. (3) The
magnitude of the acoustic signal was assumed to be small, but large enough to
make quadratic nonlinearity terms significant. (4) The magnitude of transport
coefficients was assumed to be small, and (5) the amount of dispersion was also
assumed to be small.

In the second part of the dissertation, the reflection and refraction of the
finite-amplitude sound at an interface between two lossless fluids was analyzed.
The analysis yielded the following results: (1) Expressions that are correct to
sccond order were derived for the kinematic and force balance boundary condi-
tions. (2) Expressions for the O(e) and O(e?) reflected and transmitted ficlds
were obtained, and specific terins that account for the displacement of the inter-
face, the variation of the normal to the interface, and the O(e?) source condition
were identified. (3) It was noted that, to O(€?), no deviation from Snell’s law
or the law of specular reflection is predicted. None of these expressions have
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been previously obtained, and all expressions were obtained for an arbitrary (not
necessarily harmonic) source condition.

The significant results of the third part of this dissertation are as follows:
(1) The requirements for simple wave flow to exist simultaneously in fluids I and
II are that the small-signal sound speeds, the static densities, and the coefficients
of nonlinearity be matched. (2) The two ‘modified forms’ of Snell’s law are, to
O(€?), equivalent. (3) When the conditions of simple wave flow in fluids I and
Il are imposed on the ‘modified forms’ of Snell’s law, they reduce to ordinary
Snell’s law. :

7-2 Future Work

The work presented in this dissertation is much less extensive than the
work that remains to be done. Two ideas for future work on the fundamental
assumptions in the derivation of the basic equations are the following: The first
is to examine the possibility of nonlinear thermodynamic effects. Such effects
occur because the deviation from equilibrium is not small enough to be correctly
predicted by a linear model. For the case of a chemical reaction as the relaxation
mechanism, Prigogine (1961) points out that the deviation from equilibrium is
frequently large enough to require the use of nonlinear relations between the
thermodynamic fluxes and forces. The second idea for future work is to include
the effects of diffusion. Diffusion may be important near the interface of two
fluids. Moreover, the effects of diffusion are known to interact with the effects of
heat conduction; see Prigogine (1961).

Future work on the problem of reflection and refraction of finite-ampli-
tude sound should be oriented towards reducing the idealizations of this work by
performing the two following extensions. (1) The effects of losses in the fluids
should be included in both the wave equations and the boundary conditions.
(2) The effects of finite source size should be included by using results of this
dissertation as one of the components in the spatial Fourier decomposition of
the source. The results of this work may, however, be readily used to analyze
two special cases that are easily realized experimentally, namely, reflections from
a rigid wall (R = 1) and reflections from a pressure release surface (R = —1).
In the long term, a numerical implementation of the results would be useful for
computing the transmitted and reflected fields of a given source, both near and
far from the interface. In this way many different source-receiver geometries and
fluid pairs could be examined.




APPENDIX A

THERMODYNAMICS OF RELAXING FLUIDS

A-1 Introduction

It is useful to know the origins of the fundamental thermodynamic rela-
tions that apply to acoustics. The majority of the expressions that are developed
in this appendix are well known for nonrelaxing fluids (sce, for example, Van-
Wylen and Sonntag (1976)), but not so well known for relaxing fluids. Good
references on the thermodynamics of relaxing fluids and its application to acous-
tics do, however, exist; see, for example, de Groot and Mazur (1962) and Bhatia
(1967). The interested reader is referred to these references for more details. The
purpose of deriving fundamental relations in this appendix is merely complete-
NEeSs.

The notation used in this appendix is as follows: Frozen quantities are
denoted by a superscript ®, equilibrium values bv a superscript °. The reason
for this, which is elaborated in the main text, is that the frozen value is the
correct value for infinite frequency; the equilibrium values are correct for zero
frequency. The notation used to denote the static value of any thermodynamic
variable is the subscript . If a fluid does not contain a relaxation mechanism,
no difference between the frozen and equilibrium states exists. The notation
used to denote variables in this situation is the same, except the superscripts
are dropped. For example, the static values of the specific heats at constant
pressure and constant volume for a nonrelaxing fluid are denoted cp, and oy
respectively. All variables in this appendix are dimensional, and, consequently.
no special notation is required to indicate dimensionality.

A--2 Relations from Gibbs Equation

Considered in this section are the relations that may be obtained from
Gibbs equation. Use of Gibhs equation leads to differential equations for the
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pressure, density, and temperature. Relations between derivatives of the temper-
ature and pressure may then be obtained. We start by stating one form of Gibbs
equation,

ck:]ﬂ&+%dp—A@ , (A.1)
p

where, as in the main text, e is the specific internal energy (energy per unit
mass), T is the absolute temperature, s is the entropy (per unit mass), P is the
total pressure, p is the density, A is the affinity of the relaxation process, and
g is the degree of advancement of the relaxation mechanism. As was pointed
out in the main text, three independent state variables are required for relaxing
fluids. In general, p, s, and ¢ are used as the independent variables in this work.
Accordingly, the differential of the internal energy e may be expressed as follows:

de:%‘i ds+? dp-i~§E dg . (A.2)
S P9 p 3,9 q PSS
Comparison with Eq. (A.1) reveals that
Je
T = 'a—s- y (1\3)
Y
P =/ g , (A1)
9p|,,
and 3
A=-25 (A.5)
dq|,,
Cross-differentiation between Eqs. (A.3) and (A.4) reveals that
opl,, P* 0s|

Equations (A.3), (A.4), and (A.6) are valid for constant, or frozen, gq.

Equations (A.1) and (A.2) are now examined at equilibrium. At equi-
librium, ¢ takes on its equilibrium value ¢*, and A is equal to zero. Furthermore,
only two independent thermodynamic variables are required. Thus, at equilib-
rium, Egs. (A.1) and (A.2) simplify to

P
de = Tds + -p—2dp (A7)
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and

dezﬁ

d ) (A N)
s 4

pg=q*
(onsequently, the equilibrium definitions of the temperature and pressure are the
same as the frozen definitions, Egs. (A.3) and (A.1). except the derivatives are
evaluated at ¢ = ¢°,

= 9e , (A9
ds p=q"
P=p2-gf (A 10
P s.9=q°

(‘ross-differentiation between the two foregoing relations leads to the equilibrinm

form of Eq. (A.6),
ar 1 gP
—_ == =
ap P 0s p9=q*
Proceeding as above, more relations may be obtained from the Gibbs
equation expressed in terms of the enthalpy, h = ¢ + Lp’-,

(A

8,9=9°

dh:Tds-}-%dP—-A(lq . (A1)

Fixpressing the enthalpy as a differential quantity in terms of s, and ¢ vields

dh oh dh
dh=—| d -—] dP 4+ — (
33 P.q o aP |s,q * aq P,s e

Comparison of the above relation with Eq. (A.12) reveals that

T = Q-’l , (N 13)
Jds Pa

= — , (A1)

and

A= - — ) (A1)
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As with the Gibbs equation expressed in terms of the internal energy, Eqs. (A.13)
and (A.14) may be evaluated at equilibrium, that is, at ¢ = ¢*. This leads to

h
T = g— (A.16)
$ Pg=g*
and op
pP= E’ . . (All)
3.9=¢

A-3 Definitions of Fundamental Thermodynamic Fluid Properties

In this section, some fundamental thermodynamic fluid properties are
defined. First to be defined are the frozen forms of the specific heats at constant
pressure and constant volume, the isothermal and isentropic bulk moduli, and
the cocflicient of volume expansion (thermal expansion coefficient). They are,
respectively,

¢ = g—;ﬂi g;—m : (A.18)
@ = %p,qug'sT—,,,q , (A.19)
Ky=p —66—; . , (A.20)

5 —p%—f,,q : (A21)

ay = —% g-% o , (A.22)

The definitions of the equilibrium forms of the above properties, which are de-
noted by the superscript Y, are identical, except that the partial derivatives are
evaluated at ¢ = ¢*. As noted in the introduction, if the fluid does not contain a
relaxation mechanism, the need for the superscript is gone, and it is, therefore,
dropped.

The frozen and equilibrium forms of the ratio of specific heats arc

(A.23)

]

m
-~ [
=3 5%
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and

70

i

bl

(A.21)

It can be shown (see, for example, Thompson (1972, p. 63)) that 4™ is equal
to the ratio of the squares of the frozen isothermal and isentropic sound speeds,
that is, that

57,.1,3. = 4% or (A.25)
dpl,, 9|1,

A similar relation holds for the equilibrium values. This relation is used in the
nondimensionalization of an alternative form of the state equation that involves
the temperature. (See the derivation that precedes Eq. (B.23) on page 110.)

A-4 Thermodynamic Identities

In this section, relations between the thermodynamic fluid propertics are
developed. The first relation developed is

1 1
T(c®aX)? (—— - —-) =1 . (A.26)
¢ e
v P
Fquation (A.26) is used to combine the entropy and state equations (see Eq. (2.95)
on page 28). Our starting point is the temperature expressed as a perfect differ-
ential,

or

dT = —| ds+ —=—| dp+ —

Js o op|,, dq

Dividing through by ds and applying constant P and ¢ yields

or| _or| ,or| o
Os T 0s apmas

aT aT

dq

P

Pg P9 Pg

By applying Eq. (A.6) and the defining relation of the frozen sound spced,
2. (2.60), to the following identity,
dp Js
ds|p, OP

JaP

— =-1
p'q ap

2.9
then rearranging and inserting the results into Eq. (A.27), we obtain the following:
2
ar ( p )2 ar
c® drl,,

Js

_ar

s

Pyg pq
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Application of the definitions of the thermal expansion coefficient and the specific
heats at constant pressure and volume, Eqs. (A.22), (A.18), and (A.19), respec-
tively, leads to the desired result, Eq. (A.26). Use of an identical procedure leads
to the equilibrium counterpart of Eq. (A.26), namely,

1
T(ay)? (Cl-a - 5) =1 . (A.28)
v P

For nondimensionalizing the state equation [see the derivation of
Eq. (B.20) on page 109}, an expression for %?'M is required. Our starting point

is the expansion of frozen specific heat at constant pressure,

o _ Oh|  Oh| 0Os| Op
o =

- O_T—P.q as-P.qa-—pl’.qé?

Pq

Noting the definitions of the temperature and the thermal expansion coefficient,
Eqs. (A.13) and (A.22), respectively, we see that the above relation becomes

Jds

oo_

"5 (A.29)

¢y = —pTa

P9

Applying the defining relation of the frozen sound speed, Eq. (2.60), to the fol-
lowing identity,
0s dp| OP

dp|p, OP|,, 0s

and then rearranging and inserting the result into Eq. (A.29) leads to the desired
result:

=-1 ,

Pq

oP (¢®)a>T
op| _ plem) et (A.30)
Js c®
09 P
The equilibrium counterpart to Eq. (A.30) is
ap CO 2a0T
— = ﬁ—)—p— (A.31)
ds| _ . c?
p9=q L4
For nondimensionalizing an alternative form of the state equation. an
expression for ‘Z—’% is required. (See the derivation that precedes Eq. (B.23) on
P
page 110.) The following identity is our starting point:
arP| aT op| I
arT o Jdp P oP Taq
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Using the definition of the thermal expansion coefficient, [2q. (A.22). and noting
that the ratio of specific heats is equal to the ratio of the isothermal and isentropic
bulk moduli, Eq. (A.25), we readily see that

apP pa®(c™)? .
')T = '—-p—j.'o——— (A32)
Y g 7
The equilibrium counterpart to Eq. (A.32) is
P paj(c)? .
pg=q* K

A-5 Epilogue

In this appendix, the fundamental relations from thermodynamics that
are commonly used in acoustics have been defined (or derived as need be) for
fluids with a single relaxation mechanism.




APPENDIX B

ANALYSIS OF THE NONDIMENSIONAL FORMS OF THE
BASIC EQUATIONS FOR A HOMOGENEOUS,
THERMOVISCOUS FLUID

B-1 Introduction

Developed in this appendix are nondimensional forms of the continu-
ity, momentum, state, and entropy equations that are valid for a homogencous,
thermoviscous fluid that is initially both quiet and irrotational. When nondimen-
sionalizing, it is assumed that the signal is in free space, far from any boundaries.
Also developed in this appendix are estimates of the magnitude of the nondimen-
sional coeflicients in the equations. Moreover, estimates of the nondimensional
signal strength are obtained. The number of assumptions required for small-signal
acoustics is then examined. It is noted that only one fundamental assumption is
required: That any one of the acoustic field variables be small. It then follows
that the others are also small. Next, the nondimensional vorticity equation is de-
rived, and the effect of the irrotional flow assumption is considered. The notation
used in this appendix differs somewhat from that in the main text because the
analysis is conducted using nondimensional variables. The notation is introduced
as needed.

B-2 Nondimensionalization of the Equations of Motion

Developed in this section are the nondimensional forms of the basic equa-
tions. First, the dimensional forms of the equations and our notation are intro-
duced. Then, time and distance are nondimensionalized such that their deriva-
tives are equal. Next, the particle velocity and the excess density are nondimen-
sionalized such that the coeflicients of the nondimensional continuity equation
are unity. The procedure is repeated for the excess pressure while nondimen-
sionalizing the momentum equation. The procedure is repeated again for the
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entropy and temperature while nondimensionalizing two different forms of the
state equation. Last, the nondimensional entropy equation is obtained.

The equations of motion

The dimensional forms of the continuity, momentum, entropy, and state
equations for a homogeneous, thermoviscous fluid are!

0
L4V (p0)=0 |, B.1
i (p0) (B.1)
.Dﬁ S 1 29 1 ey R
por = VP + Vit (u + 3u) V(V-0) (13.2)
D . . di; i, i\ °
i — = k VT Va4 ip|l—=+=2L-26~— , B.3
P17 = KV +ua(V-0)" 4 ou (a@ 95, 3 Jafu) (B4)
L 5 — . ap 1 (p—po\’
P(p,8) = Po+ A (P pO)+($_SO) - +__'_B (&_@) + -, (B4)
Po 93 |; . 2! Po

where j is the density, V (= i&% + j% + k%) is the gradient operator, u is the
particle velocity, P is the total pressure, T is the absolute temperature, § is the
entropy (per unit mass), u is the shear viscosity, ug is the bulk viscosity, & is the
thermal conductivity, D/Di is the material derivative,

_Il)_:-a(_.)

L= 4 §.V() B.5
Dr =5 TVl (B.5)

and the constants A and B are given by

AP )
= =) = B.6
A= po ( ER 5)0 PoCo ( )
PP
[)Epz(-f ) . (B.7)
°\ 9p° i/ o

The hat symbol ~ indicates the dimensional form of a quantity. The static valuc
of a quantity, denoted by the subscript 0, does not, however, need a hat ~ since
it is inherently dimensional.

"As in the main text, the continuity, momentum, and entropy cquations are Eqs. (1.2),
{#D.6), and (19.5), respectively, in the book by Landau and Lifshitz (1959).




105

Relationship between the nondimensional time and space derivatives

In this section, time and distance are rendered nondimensional in such a
way that the nondimensional time and space derivatives are equal. It is reasonable
to do this because it is assumed that the signal is far from any boundaries. Thus,
the only dimensions of interest are those associated with the signal.

Time is made dimensionless by dividing by a time that is characteristic
of the signal t. (= i- for periodic waves, where w is the angular frequency),

] .
t=— . (B.8)
tch

Distance, on the other hand, is nondimensionalized as follows:

a

I;

I =
Ten
where z; is the 1th cartesian coordinate and z., is a characteristic distance. The
characteristic distance is to be chosen such that the coefficients in the classical
wave equation are unity.? Expressing the classical wave equation in terms of
nondimensional time and space yields

2 82
V() - ( Zeh ) — =0,
( ) COtch 6t2 0

where V is the nondimensional gradient operator. If all the coefficients in the
nondimensional wave equation are to be unity, the characteristic distance must be
related to the characteristic time by the small-signal sound speed ¢, specifically,

Teh = Colen

Thus, the definition of the nondimensional distance becomes

a

T
COtch

(13.9)

Iy =

Nondimensionalizing the continuity equation

The continnity equation, Eq. (B.1), is now nondimensionalized. As part
of the procedure, the particle velocity and excess density, which appear in the

21t was pointed out in the main text that the classical wave equation is a good model of
acoustic propagation for the important case of small signals in a lossless fluid.
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continuity equation, are also rendered nondimensional. The nondimensional par-
ticle velocity and excess density are defined as follows:

u

=
1l

Uch

and

>

S= P —Po
Pch

where u., and p., are the characteristic particle velocity and density. The nondi-
mensional excess density is referred to as the condensation.> The characteristic
particle velocity and density are to be chosen in such a way that all the coeflicients
of the nondimensional continuity equation become unity. Expanding the conti-
nuity equation and expressing it in terms of the nondimensional time, distance,
excess density, and particle velocity yields

Q§+“ﬂsv.u+l‘c_h£2(v.u)+ﬂ(u.vs) =0
ot Co Co Pch Co

b}

If all the coefficients in the above relation are to be unity, then the characteristic
particle velocity and density must be defined as follows:

Uk =C

Pch = Po

Accordingly, the definitions of the nondimensional particle velocity and excess
density become

u=2 (B.10)
Co
and .
s=P"P (B.11)
Po
Thus, the nondimensional continuity equation becomes
as
E+V~[($+l)u]=0 . (3.12)

3The symbol § has been chosen to denote the condensation rather than the more conmmonly
used s because, in both the main text and this appendix, s is used to denote the specific entropy.
Moreover, the condensation is not used outside this appendix.
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Nondimensionalizing the momentum equation

The momentum equation, Eq. (B.2), is now rendered dimensionless.
Only one new variable, the pressure, is introduced in the momentum equation.
The pressure is nondimensionalized such that the coefficients of the nondimen-
sional form of the lossless momentum equation become unity. The viscous loss
terms in the momentum equation are ignored in this procedure because losses are
assumed to be of secondary importance to propagation.

The momentum equation is first rearranged using the following vector
identities (Gradshteyn and Ryzhik 1980, Eq. 10.31.7):

(a-V)a = (Yxa)xa + 1V |

Vi = V(V-i) — VX(V xid)
Inserting the identities into the momentum equation, Eq. (B.2), and using the
definition of the vorticity,

R=Vxa , (B.13)
leads to
p(Gh+ (rxa) 4 9a) + 0P = u [V O(9-0) - (U] . (Bag

The viscosity number V, which is defined in Eq. (2.82), is indicative of the relative
importance of the bulk viscosity to the shear viscosity. In the next section,
estimates of the magnitude of the viscosity number and the other nondimensional
numbers are obtained.

The excess pressure is nondimensionalized using a characteristic pressure
P.;, that is to be determined,

, _P-PF
P= Pch.

Introducing the nondimensional time, distance, particle velocity, excess density,
and excess pressure into Eq. (B.14) yields

)
(S+1) <"a% + (2xu) + ;w?) + ;EC%VP' =St[(Vx2)+VV(V-u)] |
0

where St is a dimensionless number called the Stokes number (Truesdell 1953,

Sec. 3),

(B.15)




108

(The kinematic vicosity v is defined in Eq. (2.81).) The magnitude of the Stokes
number indicates the importance of viscosity. If the Stokes number is very small
(small viscosity or large characteristic time (low frequency)), then the momentum
equation may be approximated as

Du Pch

Lty =
(8+1)Dt+poc3 p=0

If the coeflicients of both terms in the foregoing relation are to be unity, then the
characteristic pressure must be given by

-, 2
Pch = pPoCy
Thus, the definition of the nondimensional pressure becomes

P —
p = f" : (B.16)
Po%o

Note that poc? is the static value of the isentropic bulk modulus.
The nondimensional form of the momentum equation is, accordingly,

(S+1) (%—‘t‘+(nxu)+§vu2)+vp'=St[VV(v-u)—Vxn] . (B.17)

Nondimensionalizing the state equation

The state equation, Eq. (B.4), is now nondimensionalized. The only
new variable introduced in the state equation is the entropy. The entropy is
to be nondimensionalized in such a way that the coefficients of the linearized
Taylor secries expansion of the state equation are unity. Qur starting point is the
definition of the nondimensional entropy,

’ S — 8¢

: (B.18)

S

Sch

where s, is the characteristic value of the entropy that is to be determined. Sub-
stituting the above into the lincarized state equation noting the defining relation

for the sound speed, ¢ = %1‘} , yields
k]
s op
J>’=5+'ﬂz‘('5" ) s'
PoCo $1; 0
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However, evaluation of Eq. (A.31) from Appendix A at static conditions shows
that
6}3 _ pctz)apoTO
95 |, o -

%
where o, and c, are, respectively, the thermal expansion coefficient and the spe-
cific heat at constant pressure evaluated at static conditions. Thus, the linearized
state equation becomes

)

0

apo To g,

p'-—-S-}-sch

Cp,
The coeflicient of the linear entropy term is unity if the characteristic entropy 1s

defined as follows:
_ Cpo

CYpo To

Thus, the definition of the nondimensional entropy and the nondimensional equa-
tion of state become

Sch

a, T
o =2 % (5 — s0) (B.19)
P

[

and

1 B
2'A
where B/A is a nondimensional number referred to as the parameter of nonlin-
earity (Beyer 1974, p. 99).

) Note that for the special case of an ideal gas, the state equation is
P = pRT, where R is the gas constant. The coeflicient of thermal expansion
is, accordingly,

pP=8+s+ S*4 (B.20)

ap = = . (BZI)

Thus, for the special case of an ideal gas, it is seen that ap, To =1 and s., = Cp, -

Nondimensionalizing an alternative state equation

Before nondimensionalizing the entropy equation, an alternative form of
the state equation is nondimensionalized,

P=P(,T)
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The reason for nondimensionalizing this equation before the entropy equation is
that it motivates the nondimensionalization of the temperature. The nondimen-
sional temperature is defined as follows:

T-T,

Tch ’
where T, is a characteristic temperature that is to be determined such that the
coeflicients in the linearized Taylor series expansion of the alternative state equa-

tion are unity. Inserting the nondimensional temperature into the aforementioned
equation and then rearranging yields

T =

P’=-17(a_1‘) )S+T°hz o)
6 \ 9|3/, poco \ 0T |;/ |

But, evaluating Eqgs. (A.32) and (A.25) from Appendix A at static conditions
and inserting them into the above leads to

7p' =85+ GpOTchT’

The coefficient of T’ becomes unity if the characteristic tcmperature is defined as

follows: 1
Tch = —

p,
Thus, the definition of the nondimensional temperature and the nondimensional
form of the linearized alternate state equation become

T' = 0y (T = To) (B.22)

and
vw=8+T . (B.23)

Nondimensionalizing the entropy equation

The entropy equation, Eq. (B.3), is now nondimensionalized. No new
variables are introduced in the entropy equation, and the nondimensional form
of the entropy equation may, therefore, be obtained directly,

Ds'
S+ 1IN+ 1)— =
S+ 0+ 03
1. ap ¢S | ug Ou, Oy ou\’
Sta, Thd —27 4+ 20 B o, 2 L[ 22 L 200 245 20k
“ro 0{l’r r+ €y, [;t( u) +2(8$j+ari 36”8.1‘;; ’

(13.24)
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where Pr is the Prandtl number, which is defined in Eq. (2.98). The Prandtl
number is an indicator of the relative importance of viscosity to heat conduction.
Note that the coefficient a, cj/c,, is also a nondimensional number.

B-3 Estimates of the Magnitude of the Nondimensional Coefficients
and Signal

Estimates of the magnitude of the nondimensional coeflicients in the
basic equations are important for the ranking of terms. Estimates of the following
nondimensional numbers are, therefore, obtained: (1) the Stokes number, (2) the
Prandt] number, (3) the viscosity number, and (4) ihe nondimensional coefficient
@p, €3/ Cp,- Also examined is the magnitude of the nondimensional signal by way
of the nondimensional particle velocity.

The nondimensional number that indicates the effects of viscosity is the
Stokes number, which is defined in Eq. (B.15). The Stokes number is proportional
to the frequency and has the range 0 < St < oco. Its value is, therefore, estimated
for a relatively high frequency, 1 MHz. Estimates of Stokes number for water
and air at 20°C and 1 atm are 2.9 x 107® and 8.0 x 1074, respectively.! It is
apparent that, for this temperature, pressure, and frequency, air is more viscous
than water. Estimates of the Stokes number at 1 MHz for a variety of other {luids
are listed by Truesdell (1953, Table 3.1).

The nondimensional number that indicates the relative importance of
viscosity to heat conduction is the Prandtl number, which is defined in Eq. (2.98).
From its definition it is clear that the Prandt]l number has the range 0 < Pr < oo.
Estimates of the Prandtl number cited by Truesdell (1953, Table 3.1) indicate it is
close to unity for many gases, but generally larger for liquids. In fact, for glvcerin,
Truesdell cites a Prandtl number of 1000. The AIP Handbook (1977, p. 2-263)
cites the Prandt] number for air at 20°C and 1 atm as 0.71. In water for similar
conditions, the Prandtl number is about 7.0.> Thus, in air at this tempcrature
and pressure, heat conduction is a slightly more important loss mechanism than

‘The estimate for water is based on density and sound speed data taken from Kinsler et
al. (1982, p. 462) and on shear viscosity data from the CRC Handbook (1984, p. F-37): py =
998 kg/m3, co = 1481 m/s, u = 1.002 centipoises (100 centipoises = 1 poise = 0.1 Pa s).
The estimate for air is based on the following data taken from Kinsler et al. (1982, p. 463):
po = 1.21 kg/m3, co = 343 m/s, u = 0.0000181 Pas.

>This value is based on shear viscosity and specific heat at constant pressure data from
the CRC Handbook (1984, p. F-37 and D-175) and on coefficient of thermal conduction data
from the AP Handbook (1972, p. 4-151): p = 1.002 centipoises, ¢, = 4.2 x 10% J/kg°C, and
k= 0.6 W/m°K.
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viscosity, whereas in water, heat conduction apparently plays a minor role in
attenuation.

Another nondimensional number indicative of loss mechanisms is the
viscosity number, which is defined in Eq. (2.82). The viscosity number indicates
the relative importance of bulk viscosity to shear viscosity. The range of the
viscosity number is § < V < oco. Truesdell cites the viscosity number for air at
standard temperature and pressure as 1.9 and for water at 15°C and 1 atm as
4.4, Clearly, bulk viscosity plays a more significant role in water than in air.

A nondimensional number that arose in the entropy equation is ap, ca/cpo.
Note that for the special case of an ideal gas, the following relations hold:
e, = R7/(y = 1), ap, = 1/To, and ¢} = yRT,. Thus, we see that

2
.%o

=v-1
Cp,
Since the value of 4 for ideal gases lies in the range 1 < v < 5/3, the range of
ap, 5/ cp, for an ideal gas is 0 < @y, c5/cp, < 2/3. For air at 20°C and 1 atm, 4
is about 1.4, and the value of a, cj/c, in air is therefore about 0.4. The value
of ap c§/cp, in water at 20°C and I atm is approximately 0.11.°

The acoustic Mach number is a nondimensional number that indicates
the magnitude of the signal. The acoustic Mach number is used to help estimate
the magnitude of the terms in the basic equations. It is defined as the ratio of
the magnitude of the peak particle velocity to the small-signal sound speed,

M= [Opea|
Co

, (B.25)

which, in terms of the nondimensional particle velocity, is just |Upeax]- The value
of M for sound levels typical of a normal conversion is approximately 1.4 x 10~7,
whereas 3 m from an operating jet engine, M is approximately 1.4 x 10~3. By
definition, the acoustic Mach number is independent of frequency.”

®This valu is based on the previously cited data for the sound speed and specific heat at
constant pressure as well as thermal expansion coefficient data from the CRC Handbook (193,
poF ) ap =200 x 10-6/°K.

"'The values cited are based on the values of 60 dB and 140 dB re 20 uPa, respectively, that
are cited by Pierce (1981, p. 62).
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B-4 The Number of Assumptions Required for Small-Signal Acous-
tics

From the signal magnitude estimates above, it is clear that for ‘normal’
acoustics, the acoustic Mach number is a very small number indeed. In fact,
it is small even in the case of very loud sounds. The magnitude of the other
nondimensional field variables in the basic equations, namely S, p’, T', and s’
is now examined for the case of small Mach number, M <« 1. It turns out
if the acoustic Mach number is small, then the acoustic field variables are of
order M or of higher order. Note that this result implies that the number of
assumptions required for small-signal acoustics is one, namely, that any onc of
the field variables be small.

We start by examining the nondimensional continuity equation,
Eq. (B.12), with the expectation of obtaining an estimate of the magnitude of the
condensation. The three possible solutions are that (1) |S| < M, (2) |S| > A,
and (3) |S| ~ M. The expanded form of Eq. (B.12) is

%—f—+V-u+SV-u+u-VS:O
Recall that the nondimensional time and space derivatives are equal. An exami-
nation of the above equation indicates if the particle velocity is of order M. then
second term is of order M, and the third and fourth terms are of order |S|\.
The first term is of order |S|. Of the three possible solutions, the only one that
balances the equation is the third. In conclusion, it is noted that if A < [, then
S « 1 also. It is further noted that if M <« 1, S is of order M.

A similar analysis of the momentum equation, Eq. (B.17), is now con-
ducted, and the magnitude of the nondimensional pressure is determined. First
note that the definition of the vorticity, Eq. (B.13), indicates that if A < 1, then
the magnitude of the vorticity is also very small, |2} < 1. (It turns out, as is
seen later, that the vorticity is actually quite a bit smaller than M.) Also recall
that the Stokes number is generally a small number. Ignoring the terms that are
products of small quantities simplifies Eq. (B.17),

dJu ,
Recalling that the nondimensional time and space derivatives are equal, it may
be seen that if M <« 1, then [p'] < 1 alse Thus, p’ is of order M if M <« 1.

It turns out that initially assuming that any one of p', u, or § is small

(much less than unity) implies that the other two are also small. Thus, the
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number of assumptions required for small-signal acoustics is one, namely, that
one of p', u, or § be assumed small. That the other two are small follows directly.

Estimates of the magnitude of the nondimensional temperature and en-
tropy fluctuations are now obtained. An examination of the alternate state equa-
tion, Eq. (13.23), indicates the nondimensional temperature fluctuation 77 is of
order (7 — )M . Simplifying the nondimensional entropy equation, Eq. (B.24),
by ignoring products of small quantities leads to

0 _st
ot  Pr

Thus, s’ is of order ;_: ap To(y —1)M.

In this section, it was noted that if M < 1, then the excess pressure and
density are of order M. Morcover, it was noted that the number of assumptions
required for small-signal acoustics is just one. It was further noted that if M < 1,
then 1" and s’ are of orders (y —1)M and 3t ap, To(y — 1)M, respectively.

apo TQ V2 T’

B-5 The Nondimensional Vorticity Equation and the Irrotational
Flow Assumption

The nondimensional form of the vorticity equation is of interest because
it will assist us in understanding the irrotational flow assumption. The nondi-
mensional vorticity equation is formed by taking the curl of the nondimensional
momentum equation, Eq. (B.17). This is readily done using index notation such
as that described in the book by Panton (1984, Chap. 3).® The result is

D2
== = (2-V)u - 2(V-u)
1 Vp'xVS) -5tV Ly VSXV(V
- e (VXIS =8V (5 ) (VSX V(Y-
St 2 1 .

This s an equivalent nondimensional form of Eq. (2.46) in the book by Thompson
(1972). The generation and transport of vorticity is now briefly examined. lor a
more complete discussion, the reader is referred to Thompson and the references
comtained theren.

h')

anton (1984, Eq. 13.3.5) uses index notation to develop the dimensional form of the
vorticity equation vaiid for incompressible fluids.
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Consider a lossless fluid. Note that the Stokes number is zero for an
inviscid fluid, and that, in a uniform lossless fluid, the gradient of the entropy is
zero as well. Thus, the term Vp’' X VS, which is proportional to Vp'x Vs’ (re-
call that |Vp’' X Vp'| = 0), is zero. Accordingly, the vorticity equation simplifies
to DN

D = (£2:V)u — 2(V-u)
Note if the vorticity is initially zero, the vorticity is always zero because no
vorticity is generated in the absence of viscosity or entropy gradients.

In the case of a heat-conducting but inviscid fluid, the Stokes number is
still zero, but the gradient of the entropy is nonzero. Equation (B.26) therefore
simplifies, but not quite as much as above,

DT):Q = (2-9)u - Q(V-u) - (—5—71_1)5 (Vp'xVS)

The new term is a vorticity generation term that is nonzero at time zero in the case
of an initially irrotational fluid. Thus, even in the absence of viscosity, vorticity
can develop; it does not, however, diffuse. That requires viscosity and is discussed
below. If the fluid is initially irrotational, the new term generates vorticity at a
rate proportional to Vp' X Vs') which, according to our ordering system, is very
small—of the order %‘r- apoTo('y — 1)M?. (It may, in fact, be even smaller because
a cross-product is proportional to the sine of the angle between the vectors.) The
other vorticity generation (or destruction) terms, such as (§2-V)u, are of order
M higher than the order of §2.° Thus, the vorticity that these terms gencrate
(or destroy) is also very small. However, our nondimensionalization scheme, and
hence our ordering system, rest on the assumption that the signal is far from
any boundaries. Accordingly, all that may be stated is that the generation of
vorticity in the middle of the fluid is small. Since the entropy gradient is much
sharper at boundaries (due to the presence of the thermal boundary layer, which
has not been discussed), vorticity generation at the boundaries is larger.

In a thermoviscous fluid, all terms in the vorticity equation must be
retained. Now in the case of an initially irrotational fluid, a second vorticity

: _ 2
generation term is nonzero at time zero, St V (s_lﬁ) [VSXV(V-u)]. The order
of this term is StVM?, again, a very small number in the middle of the fluid.
Once more it is important to note that near boundaries the gradient terms are

much larger, and vorticity generation is also proportionally larger.

*Panton (1984, Sec. 13.5) discusses this term at length and points out that it represents the
generation or destruction of vorticity by straining vortex lines.
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Since the production of vorticity in the middle of the fluid is so small in
comparison to that near a boundary, it is of interest to understand the transport
of vorticity from the boundaries into the fluid. To that end the leading-order
terms in the vorticity equation are examined,

an
— =S5tVin
ot
Before solving this equation, we place it in dimensional form,
A
ot

Assuming a solution of the form 2 = Aeiloi-k2) and substituting into the above
leads to

w
2—— -
==l
14

k

where w 1s the angular frequency and k is the wave number. The wave number
may be defined as follows:

i =

where cpp is the phase velocity and « is the attenuation coefficient that must
be positive for stability reasons. Solving for the attenuation coefficient and the
phase velocity noting that /7 = (1 + j)/V/?2 yields

1 —

1
a = -,
Cph 6

where the negative root was chosen so that « is positive and § is defined as
§=2vjw
Thus, the assumed solution becomes
2= Ae il eI i=2/cpn)
Note that the vorticity decays to 1/e of its original value in the distance 4.
Estimates of the distance 6 for water and air may be obtained using the
viscosity data in footnote 4 on page 111. At a frequency of 1 MHz, 6 is about

5.7 x 1077 myin water and 2.2 x 107® m in air. Clearly, even on a wavelength
scale, the distance the vorticity penctrates is very small.
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In this section, it was noted that the vorticity generation in the middle
of the fluid is very small—of order StVM? and that the vorticity generated at
the boundaries, for which no estimates were provided, is restricted to a very thin
layer near the boundary. It is therefore concluded that, away from boundaries,
vorticity may be neglected for acoustic problems in which terms of order StV /2
and higher are neglected.

B-6 Summary

In this appendix, the continuity, momentum, state, and entropy equa-
tions that are valid for a homogenous, thermoviscous fluid were nondimension-
alized. Also obtained were estimates of the magnitude of the nondimensional
coeflicients in the equations and of the nondimensional field variables. The num-
ber of assumptions required for small-signal acoustics was then analyzed. It was
noted that the number is one, namely, that any one of the excess pressure, parti-
cle velocity, or excess density be small. Futhermore, the nondimensional vorticity
equation was obtained, and it was noted that, away from boundaries, vorticity
may be neglected for acoustic problems in which terms of order StV M? and higher
are neglected.
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