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1. INTRODUCTION

High-speed flows that have a small lateral asymmetry occur in rocket motors

that have canted nozzles (to avoid impingement of the plume on adjacent struc-

tures) or nozzles that can be vectored. Interest in this type of flow has been

renewed recently, since it is thought to play a role in an instability observed

in certain spin-stabilized, solid-propellant, upper-stage rockets. In this

case, the flow at the nozzle entrance is oblique to the nozzle axis as a conse-

quence of the Coriolis force acting on the combustion gas in a precessing and

nutating rocket (Ref. 1,2).

Nonaxisymmetric flows through nozzles have also been considered by Walters,

(Ref. 3) both experimentally and theoretically. However, in that case, the

nozzles themselves were nonaxisymmetric, having an obliquely machined throat

section. Other authors have studied nonaxisymmetric flows in nozzles, but

generally they have confined themselves to the supersonic part of the flow,

computed by the method of characteristics, starting from an assumed inclined

sonic surface at the nozzle throat (Refs. 4,5). None of these studies is

directly applicable to the case encountered in canted nozzles or in unstable

spinning and precessing rocket vehicles.

In these applications, the flow--as a correction to the axisymmetric flow--

is sufficiently closely approximated by assuming a steady-state, inviscous and

adiabatic flow of a perfect gas. Based on the assumption of constant reservoir

conditions upstream of the nozzle, the flow is isentropic and isoenergetic

(constant total enthalpy) everywhere. Analogously to the well-known, elemen-

tary theory of quasi-one-dimensional flow, the nozzle cross section is assumed

to vary only slowly with axial distance. Since the lateral asymmetry caused by

the angle of attack or transverse pressure gradient of the entrance flow is

also assumed small, the effects due to the changing cross section and those

due to the lateral asymmetry can both be treated as small perturbations

superposed on the one-dimensional zero-order flow.
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and similarly for the density p, enthalpy h, and the Cartesian velocity

components u,v,w; hence, for instance, for u we write

u = uo(Z) + cu1 + s.f.p. (Ib)

The symmetric flow perturbation (s.f.p.) terms are written informally merely as

a reminder; it will be clear from the subsequent development that, by reason

of symmetry, they do not contribute to any of the integrals defined below.

The first-order asymmetric terms pl,hl,wl can all be expressed in terms of

PI" Thus, from the assumption of a perfect gas and constant entropy, p/p (Z) =

[p/p0 (z)]1/ where y is the ratio of the specific heats. Since this relation

applies separately to the symmetric and the asymmetric case and superposition

holds, it follows, after neglecting second- and higher-order terms, that

pl/Po(Z) = Ipl/Po(Z) (2a)

and similarly

From conservation of energy, h + 1/2(u 2 + v2 + w2 ) = const., and neglecting
2

again second-order terms, it follows that wl/W ° = -h1/w 0 . Introducing the

Mach number M (z) of the quasi-one-dimensional flow, M = w / (y - )h,

we can express the asymmetric perturbation of the axial velocity component by

wl/wo(Z) = - [yM2(z)] - 1 pl/po(z) (2c)

00
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* 2. CONSERVATION EQUATIONS

We consider a control volume bounded by transverse planes at z and z + dz

and by the nozzle walls. We designate by cPlx(z) the transverse momentum

(which is in the x-direction) carried by the flow through the transverse

plane, per unit time. In the case of the rectangular nozzle, P x is taken

per unit width in the y-direction. From conservation of momentum to the

lowest significant order

dP r 1
dz = (Pl)) x=R(z) (Pl)x=JR(z) if a = 1 (3a)

dPlx 21
da = -R(z) (Pl~r=R() cost do if a = 2 (3b)

0=0

for the rectangular (a = 1) and axisymmetric (a = 2) nozzle, respectively.

0 The transverse angular momentum about the origin of the coordinate system

is in the y-direction. The amount carried through a plane normal to the
nozzle axis, per unit time (and per unit width in the case of the rectangular

nozzle), is designated by eLly(z). When second- and higher-order terms

are dropped, the momentum flux pw in the z-direction becomes

2 2 +c
2

PW = PWo + 2cpwW + eWP 1 + s.f.p.0 0 ool1 0 1 sfp

By symmetry, the zero and symmetric first-order terms in pw 2make no

contribution to the integration over x, so that for the rectangular nozzle

R(z)

L zP -)xdx if a = 1 (4a)ly lx - oo 1  0 Wof
x=-R(z)

The first term on the right comes from the u component of the velocity,

integrated over the cross section; the second term is from w.

11



By essentially the same argument, for the axisymmetric nozzle

R(z) 21

L . zP1  -f f (2powawI + 2 )r2cos* dr d if a = 2 (4b)
r=0 *=O

Conservation of angular momentum then requires that

dL R(z) /Pl
d1y. d f d-- if a = 1 (5a)
dz dz x Pzxdx + dz dlz

xff-R(z)

R(z) 2w 2 dR dPlx
dL1 Y d f f 2c Os  dr d + z + R a_ if o = 2 (5b)

dz dz f f l o ~ Y dz dz
r=O -

where Eqs. (3a) and (3b), respectively, have been used and where again the

zero-order and first-order symmetric terms make no contribution to the

integrals. The first term on the right represents the moment from forces

acting on the transverse planes bounding the control volume; the last term

results from the wall pressure.

The term Lly is eliminated from these equations by differentiating

Eqs. (4) and substituting the result into Eqs. (5). When Eqs. (2) also are

used to eliminate p, and wI , it follows that

d R(z) 2dR dP
(M -l)plxdx + R =0 d-lx

dz dz Plx
x=-R(z)

R(z) 2w dP
d f J 2 2 dR lx

(M -l)plrcoo dr dz dz Plx 0 if a 2

dz r-O #*0 0 zro ~rd + - -P=zf

12



where use has been made of the expression for the dynamic pressure of the
2 2

quasi-one-dimensional flow (Ref. 6) (p /2)w = (y/2)p o . ° Differentiating

again with respect to z and using Eqs. (3) gives the following equations for

Pl. where now n1l other first-order perturbation terms have been eliminated:

d(M2 1)I) ) plXdx RdR [( )]
dz 2 0z )z (PI)x=R(z) - (Pl)x=-R(z)

d 12 x=-R(z)

r d /RZ] [ 1]
+ 1 - Ai \R zzJ] 1 (P ) -(l~xf-R(z = 0 if a = 1 (6a)

d2 J(M2 1) R(z) 2W r 2 cs r

12 - f Plr2o dr d _ RdR d oz zR (pl) coso d

dz2  r-O p o dz dz r=R(z)

Rz 4  R (Plz c d* =0 if a 2 (6b)

0.

13
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3. INTEGRAL METHOD

Integral methods are typically based on prescribing for the dependent

variable a simple functional form that may depend on one or several parameters

and satisfies the boundary conditions. The parameters then are determined

such that the integral relations--in this case, the conservation equations for

the transverse momentum and angular momentum integrated over the nozzle cross-

section--are satisfied. With a judicious choice of the functional dependence,

useful results, although of limited accuracy, can often be obtained.

In the present case, we prescribe for the asymmetric perturbation term p1

a linear dependence on the transverse coordinate, in the form therefore

P1  g1 (z) x

p (z) R(z)

where the nondimensional coefficient gl(z) is to be determined.

0
We designate by R* the nozzle half width (o = 1) or nozzle radius

(o = 2) at the throat (a fictitious throat if the quasi-one-dimensional flow

is subsonic throughout) where M = 1, and po = p0 and define the
00

nondimensional quantities

R/R* , = z/R* kl(Q = R* . 9l(z) ()

k() R(z) p* ()(8

p0

Carrying out the integrations in Eqs. (6) yields a combined relation for the

rectangular and axisymmetric nozzles, in the form of a second-order

differential equation for kl(0

1 d2 [+2 ( kl - - t kl + E kI = 0 (9)
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Equation (9) represents the principal result of Sections 1 through 3 and is

suitable for computer programming of the direct problem (prescribed zero order

Mach number as a function of axial distance) or of the inverse problem

(prescribed nozzle contour). In either case, it is advantageous to express

the function t( ) in Eq. (9) by the Mach number M0 (). From a well-known

formula for quasi-one-dimensional flows (Ref. 6)

{ 2 y + I (+ 2- 
(10)

As one would expect, Eq. (9) exhibits the transition at M = I between0

an essentially exponential behavior of k1 ( ) and, on the other hand, a

wavelike character as the sign of the coefficient of the highest (second)

derivative changes.

Boundary Conditions

As is well known, classical one-dimensional nozzle theory requires the

Mach number to be unity at a throat where a transition from subsonic to

supersonic flow occurs. An analogous condition occurs in the present case and

is caused by the vanishing of the coefficient in Eq. (9) of the second deriv-

ative of k1 (;) at M = 1. Carrying out the differentiations indicated

in Eq. (9) and letting at the throat M = 1, t - 1, dt/d; = 0 resultso

in the condition for the solution to be regular at ? = 0

dM 2 dkI  [ d2 ( M 2 ]

2 o +  1 L--- E - 0 k 0 at =0 (1la)
T+_2 d; d; d 2( \ + 2/J]

This condition, therefore, relates the first derivative of k1 to k1 at a

sonic throat.

0
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A second boundary condition results from prescribing the transverse

pressure gradient capl/ox at an initial (upstream) location = Ci' hence the

condition R* aPI

PO

In applications to rocket motors, the transverse pressure gradient at the

entrance to the nozzle needs to be determined from pressure matching with the

flow field in the motor chamber adjacent to the nozzle. Since the combustion

gas velocity in the chamber is typically far below the speed of sound, the

calculation is simplified by the assumption of incompressibility, although it

is sometimes complicated by the geometry of the boundaries. This latter

calculation is outside the scope of the present report.

After kI( ) has been obtained from a solution of Eq. (9), the trans-

verse pressure gradient is obtained from Eqs. (7) and (8). In turn, one

obtains the asymmetric force cF1 (per unit axial length) exerted by the

gas on the nozzle wall. This force is often the quantity of greatest interest

in applications. For instance, for the axisymmetric nozzle, after integrating

over the polar angle 0

F1 = W(p*/R*) R2 ()k () (12)

Numerical results for the homogeneous case, applied to a parameterized

family of nozzle contours, are discussed in Section 5.
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* 4. A TEST CASE

Supersonic flow, incident at a small angle on a rectangular duct of

uniform width (Fig. I), represents an example in which an exact--at least in

the sense of a first-order perturbation result--solution is easily calculated.

It is of interest, therefore, to compare, as a test case, results obtained

from Eq. (9) with the exact, but more restricted, solution in this special

case. The exact first-order solution, which is well known, is described by a

periodic pattern of triangular and rhombic regions bounded by Mach lines, in

which the flow properties are constant, but changing discontinuously across

the Mach lines.

Note: R = half width; Ci = incident flow velocity; X = period

Figure 1. Supersonic Flow with Small Angle of Incidence Through
Rectangular Duct

19



With M again designating the unperturbed Mach number, and R the half

width, the period X of the flow perturbation is given by

= 0RJo7 l (exact first-order theory) (13a)

On the other hand, from Eq. (9), since here dt/dC - dM 2/d = 0 and o = 1
0

A+ 
k = 0

dC2 +2(M - )

The transverse pressure gradient, and similarly the other perturbation quanti-

ties, therefore, have a sinusoidal dependence on the axial coordinate, with

period

= - Rg -1 = 3.628 R 1 (integral method) (13b)

The integral method, therefore, gives the correct Mach number dependence

although with a multiplier which differs from the correct one by approximately

10%.

20



5. NOZZLES WITH POLYNOMIAL MACH NUMBER DEPENDENCE

As an example of the application of Eq. (9), we consider an axisymmetric

Laval nozzle for which the square of the unperturbed (quasi-one-dimensional)

Mach number varies with axial distance as a second-degree polynomial, for

which we choose

Ml2 _ 1 f a (l - bC), a > 0, b > 0 (14)
0

where a and b are constants. The nozzle contour is easily calculated from

Eq. (10). For suitably chosen constants, relation (14) results in quite

realistic nozzle contours (Fig. 2).

20.0 b 0.020 -y =1.20 a

0.030 ......- 2.50
16.0 0.050

12.0 2.00

8.02. .00 2.oo0
4.0 -'- 1.50

1.0 -- - - I I I I I I 1I
0 -4.0 0 4.0 8.0 12.0 16.0 20.0 24.0 28.0

Figure 2. Nozzle Contours Satisfying Eq. (14), for y - 1.20
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At M0 = 0 the slope of the nozzle contour becomes infinite. This occurs

at = -(2b)- (l + 4b/a - 1). Clearly, the assumption of quasi-one-dimensional

flow breaks down for approaching this value. At = (2b) - I , the Mach

number M and, hence, the nozzle radius each reach a maximum, which occurso

in the supersonic part of the flow.

The transverse pressure gradient in the form of the function k1 (C) and

the lateral force per unit axial length exerted on the nozzle, in the form of

the nondimensional ratio F ( )/(p*R*), are computed for several values of

the nozzle parameters a and b. They are graphed in Figures 3 and 4. (For the

range of b that is of practical interest for realistic nozzle contours, the

curves in Figure 3 very nearly coincide and depend only on the parameter a.)

The solutions are computed for a ratio of the specific heats y = 1.20, a

value that is representative of many rocket motor combustion gases, and are

normalized so that k1 = 1 at the nozzle throat. It is evident that the

largest transverse pressure gradients and nozzle side forces occur in the

subsonic and transonic sections of the nozzle where most of the readjustment

of the flow direction takes place. It is also evident, particularly for the

smaller values of the parameter a, that the transverse pressure gradient down-

stream of the throat at first reverses sign, an indication of the reflection

on the nozzle walls of the Mach cones associated with the turning of the flow.

Table 1 lists numerical values for the side force on the nozzle. The

effect of Mach cone reflections reversing the sign of the force in the

diverging (supersonic) part of the nozzle is again evident.

In some applications, such as in spin-stabilized solid-propellant rockets,

the condition at the nozzle exit plane is of particular interest, since it

determines the angular momentum flux of the combustion gas and hence the

resulting moment about the vehicle's center of mass. Table 2, therefore,

lists the transverse force Fle at the exit plane, per unit axial length,

relative to the force F 1 at the nozzle throat, for nozzles with the

polynomial Mach number dependence (14) and zero nozzle divergence at the exit

plane.

0
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Figure 3. Function kI (?) Computed from Eq. (9) and Normalized
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0.5 -- a = 2.00, b = 0.020
/-a = 1.50, b = 0.020

0.0 
-

-0.5
-4.0 0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0

Figure 4. Nondimensional Ratio Fl(1)/(p*R*) of the Transverse

Force F1 on the Nozzle Wall, per Unit Axial Length
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Table 1. Function Fl1 &)/(p*R*) for the Nozzle Contours Shown in

Figure 2 for y = 1.20

C a- 1.50 a -2.00 a =2.50 a -1.50 a -2.00 a a2.50 a- .50 a -2.50 a- 3.50
b - 0.020 b - 0.020 b - 0.020 b - 0.030 b - 0.030 b a 0.030 b a 0.050 b a 0.050 b - 0.050

-0.6 + 0.918 + 0.861 + 0.750

-04 + 2.774 o+ 1.327 + 2.717 + 1.300 + 2.663

-0.2 + 3.315 +g 2.810 + 2.368 + 3.305 + 2.801 + 2.359 + 3.287 + 2.342 + 1.466

0 + 3.141 + 3.141 + 3.141 + 3.141 + 3.141 +. 3.141 + 3.141 + 3.141 + 3.141

0.2 + 2.627 + 2.879 + 3.047 +42.632 +42.884 + 3.052 4 2.640 + 3.062 + 3.263

0.4 + 2.017 +e 2.391 + 2.616 + 2.022 + 2.398 + 2.625 + 2.033 +42.642 + 2.849

0.6 + 1.436 + 1.870 + 2.118 4 1.441 + 1.877 + 2.129 +4 1.449 + 2.150 + 2.345

0.8 + 0.940 + 1.399 + 1.662 +. 0.942 + 1.406 + 1.673 + 0.946 + 1.695 + 1.898

1.0 + 0.542 + 1.008 + 1.282 e 0.541 + 1.013 + 1.292 4 0.538 + 1.314 + 1.538

1.2 + 0.238 + 0.697 + 0.980 + 0.234 + 0.699 + 0.989 + 0.223 + 1.007 + 1.260

1.4 + 0.015 + 0.457 + 0.746 +. 0.007 + 0.456 + 0.753 - 0.011 + 0.766 & 1.048

1.6 - 0.143 +. 0.276 +40.568 - 0.155 +40.271 +40.572 - 0.179 +40.579 +40.8860

1.8 - 0.250 +. 0.141 +e 0.432 - 0.265 + 0.133 + 0.433 - 0.295 + 0.435 + 0.762

2.0 - 0.319 +40.041 +40.329 - 0.335 +e 0.031 +40.328 - 0.370 + 0.325 +40.667

2.5 - 0.381 - 0.101 + 0.168 - 0.401 - 0.118 + 0.161 - 0.442 + 0.145 + 0.508

3.0 - 0.364 - 0.159 4 0.085 - 0.382 - 0.180 4 0.075 - 0.422 4 0.050 +40.417

3.5 - 0.318 - 0.178 4 0.042 - 0.334 - 0.200 +40.029 - 0.366 -0.003 + 0.362

4.0 - 0.267 - 0.178 4 0.019 - 0.279 - 0.202 +40.005 - 0.301 -0.032 + 0.327

4.5 - 0.220 - 0.171 4 0.006 - 0.228 - 0.195 - 0.009 - 0.238 -0.050 +40.304

5.0 - 0.181 - 0.162 -0.001 - 0.183 -0.185 - 0.017 - 0.181 -0.061 4 0.289

6.0 - 0.122 - 0.143 -0.007 - 0.116 -0.165 - 0.024 - 0.088 -0.072 + 0.275

7.0 - 0.084 - 0.127 -0.009 - 0.072 -0.149 - 0.026 - 0.020 - 0.079 + 0 275

8.0 - 0.060 - 0.116 -0.010 - 0.043 -0.137 - 0.027 + 0.033 - 0.085 + 0.287

9.0 - 0.044 - 0.108 -0.010 - 0.023 -0.128 - 0.027 4 0.070 - 0.093 4 0.311

10.0 - 0.034 - 0.101 -0.010 - 0.009 - 0.123 - 0.027 4 0.103 - 0.103 4 0.351

24



Table 2. Ratio F1e/F4 of the Transverse Force Fle on the Nozzle
Wall, per Unit Axial Length, at the Nozzle Exit Plane,
Relative to the Corresponding Force Fl at the Throat

Fle /Fl

a = 1.50, b = 0.020 - 2.468 x 10- 3

a = 2.00, b = 0.020 - 3.811 x 10-2

a = 2.50, b = 0.020 - 4.730 x 10 - 3

a - 1.50, b = 0.030 + 9.298 x 1O- 3

a = 2.00, b = 0.030 4.230 x 10-2

a = 2.50, b = 0.030 - 1.205 x 10-2

a = 1.50, b = 0.050 + 3.267 x 10-2

a = 2.50, b - 0.050 - 3.279 x 10- 2

a = 3.50, b = 0.050 + 1.116 x 10-1

Note: For y - 1.20, and zero nozzle divergence

angle at the exit plane.

0
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NOMENCLATURE

a, b parameters [Eq. 14)]

Fl(z) transverse force on nozzle, per unit axial length

g, kl functions characterizing transverse pressure gradient
[Eqs. (7) and (8)]

h enthalpy

Lly (z) transverse component of angular momentum

MO(z) Mach number of zero-order (unperturbed) flow

p pressure

Plx(Z) transverse component of momentum

R(z) half-width of rectangular nozzle, and radius of
axisymmetric nozzle

u,v,w Cartesian velocity components

x,y,z; r,0,z Cartesian and cylindrical coordinates

y ratio of specific heats

E. -nondimensional lengths [Eq. (8)]

p density

Sa f= 1 for rectangular nozzle; a f 2 for axisymmetric nozzle

( )o zero-order term

( )l first-order asymmetric term

( )* condition at Mo = 1

( )i initial condition

( )e nozzle exit plane condition

0
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