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Abstract 11

When viewed as a square two-indexed matrix, the array of atomic

orbital based, two-electron integrals (ijIkl) is a positive

semidefinite array. Beebe and Linderberg showed, in 1977, that actual

or near linear dependencies often exist within the types of atomic

orbital basis sets employed in conventional quantum chemical

calculations. In fact, large (i.e., higher quality) bases were shown

to be substantially more redundant than smaller or more spatially

separated bases. In situations where there exists significant basis

near redundancy, the rank (r) of the (ij Ikl) - V I,j matrix of

integrals will be significantly smaller than the matrix dimension M.
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The idea of using the Cholesky procedure for generating

two-electron i ngrals was put forth by Beebe and Linderberg in 19771.

Linear dependencies caused by either basis set redundance or symmetry

give the matrix (ijlkl) a true rank (r) smaller than the apparent rank

(i.e., its dimension M). In applying the method to integral

derivatives as described in Section Ia, additional dependencies can

arise. The geometrical derivative of an integral involving

Gaussian-type orbitals (GTO's) can be expressed as a difference

between integrals over GTO's with angular momentum quantum numbers one

higher and one lower than that of the differentiated GTO. Thus, if a

very flexible basis set is used, one might reasonably expect that many

of the integral derivatives (i.e., those involving GTO's with smaller

angular momentum) could be reexpressed as linear combinations of

two-electron integrals themselves, in which case redundancy would

occur in the combined list of integrals and integral derivatives.

In the next two subsections we describe how we implement the

decomposition of the integral and integral derivative array and how we

have computed those subsets of integrals and integral derivatives that

the Cholesky algorithm requires. In Section II we present and

analyze the results of our calculations on C and on benzene.

Ia. Procedure

Consider the atomic orbital basis (0 (r)), (k-l, ...,N) where N is

the number of basis functions. The two-electron integrals form a

matrix V defined as
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V I i- V ij,kl "(ij kl)

- ff 0:(1)oj(1) _ 0*(2)0 (2 ) drd2 (1)

12

To simplify notation, we use a capital index to denote the two indices

occurring in the orbital products I-iJ, J-kl. The range of I and J

is then from I to M where K - N(N+l)/2.

The matrix of two-electron integrals is clearly positive

semi-definite as 1/r12 is a positive definite weighting factor with

the volume elements (dr dr 2). It can be decomposed via the Cholesky

algorithm to form a lower triangular matrix L such that

T (2)

As long as V is positive definite, L always exists, and it has been

shown that the Cholesky algorithm is numerically stable.
2

The algorithm utilized to decompose V into LL T can be detailed as

follows. For J-I,2,...,M, we compute

r J 1! 1/2
- v E 1 (3.1 )

k-1

and, for each J, we evaluate

L , VI J-1 L k ] I ,±] for I-J+l,...,M (3.2)LI' V 'j k- 1 L j-_ LI k a  -. ..

If carried through to completion, in which case L would have the same

dimension as V itself, this process would require the evaluation of M

square roots, M(M-l)(M-4)/6 multiplications or divisions, and

M(M-l)(M+2)/6 additions or subtractions. It would also necessitate

the calculation of each of the elements of the original V array, and

would therefore not produce any savings. In fact, since M-N(N+I)/2,

this process, if carried to completion, leads to on the order of N /12

arithmetic steps, in which case the decomposition of V into L would be

more time consuming than the evaluation of the full V matrix by
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conventional means.

The key to implementing the above algorithm in a manner which can

overcome this Na dependence lies in processing the matrix elements in

a way which allows the (potential) reduced rank of V to be exploited.

We emphasize that it is the physical content (i.e., near redundancy

and saturation) of the basis, which gives rise to the rank reduction

and allows the process we describe here to succeed, rather than the

process itself. To perform the Cholesky decomposition in an order

which exploits rank reduction, we proceed as follows:

1) We first calculate all of the diagonal elements VJ'j using

conventional integral evaluation methods, and we sort

these diagonal VJ'j into a non-increasing order, keeping a

record of the original order.

2) For J - 1,2....M, we set L - V112, and we then (for each J)
J,Ji J.J

3) calculate the column of integrals VI,i, for I - J+l ....M

using conventional means.
r 1

4) We then (for each J) set L 1 V.'j - 1  J,k] Ll
IV k-i J.J

for I - J+l,...,M.

5) Finally, we modify the diagonal elements according to

V ,-V ! 1 - J+l ... M.
1, 1 1 1 ,.

This is equivalent to the procedure given in equations 3.1 and 3.2.

However, at any point in the calculation (say the Jh step), V isJ,J

the largest remaining element in the matrix V. If the matrix elements

are known or needed only to a given numerical accuracy 6, then when

V J 6 the calculation can be stopped with no numerical loss. If
JJ

the decomposition is stopped at point J, then in the reformation of
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the Y matrix as LL T, all elements formed in steps 1 to J are exact (to

machine precision), and elements formed in steps J+l to M are in error

by less than 6. Clearly the key question is whether, for reasonable

values of 6 (e.g., 6 - 10- ), the decomposition process can be stopped

(at J-r) early enough to make this decomposition less time consuming

than the evaluation of the full matrix by conventional means. The

process itself will not succeed unless, for a given cutoff 6, the rank

r of Y grows slower than the dimension M of V; that is, the (near)

redundancy in the basis function space is what can make the process

succeed.

In expanding the method to include first integral derivatives,

the matrix V is redefined, but the machinery of the decomposition

given above is unchanged. When dealing with the integrals, a row (or

column) of V is labeled by the functions (f j} - {(l) 1(1), i - 1,N;

j - 1, i). To include the integral derivative case, this set of

functions is expanded to be (f.} - ( 1))(1))), where

x labels the atomic displacements whose integral derivatives are to be

included. If the derivative function is zero, the corresponding f
ii

is deleted from the set.

Ib. Integral Evaluation Methods

As was stated before, the Cholesky decomposition takes advantage

of (near) redundancies in the matrix of two-electron integrals. The

manner of formation of the integrals or even the type of integrals

does not euter directly into the procedure. Gaussian-type orbitals

were chosen in this implementation. For a GTO, the O's in eq 1 takes
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the form

0(l,m,n,a,R) - (x-X) (y-Y) (z-Z)
n e

The use of GTO's is widespread in quantum chemical calculations

because of the relative ease with which electron repulsion integrals

can be calculated compared with other basis set types such as Slater-

type orbitals.

The Rys polynomial method of two electron integral and integral

derivative evaluation is used.3 This method was chosen because of the

ease and efficiency with which integrals over high angular momentum

functions can be calculated. In this method, a Gaussian transform of

the Coulomb operator in eq 1 is performed

1 _ exp(-u2 r2 ) du. (4)
12 0This allows a separation of variables for the three cartesian

coordinates so that the two electron integral can be rewritten as

(ij2k.) - ; f I' (u)I" (u)I' (u) du. (5)
0 2 z

I', I' , and I' are two-dimensional integrals over the respective
x y z

cartesian coordinates of the two electrons. With a change of

variables

t 2 - u2/ (p+u ) (6.1)

I - li//1l-t (6.2)
x x

p - (a+f)(7+6)/(a+P+7+6) (6.3)

the two-electron integral takes the form

.ijl -l 2PLt e- I (t t (t)7

0

where PL(t) is an Lth degree polynomial in t2 , L-1 1 1+ 1 11 and P
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and Q are functions of the Gaussian exponents and positions.

When one differentiates the expression in eq 7 with respect to

position on one nucleus, the derivative passes through the integral.

The integrand is then an L+l th polynomial in t 2 and may be evaluated

using the Rys quadrature.
a(iJ jkl)x p 81 O~(t)o

-2 -iP I (t) I (t) at
a 0 a z

- fl P.l(t) e-PPQ 2t2 at
0

n'al X(t a) *L+I
-ai a I (tc) IZ(t a) W , n' > 2 (8)

a

The recursion relationship given in reference 3c has been

81 (t )

differentiated to give the quantity X a directly.
ax

a

The integral derivative could have been expressed as a difference

of integrals over higher and lower angular momentum functions, but, as

Pulay has pointed out , the relative efficiency of the two methods is

questionable. The current implementation was judged to be more easily

computer coded and was chosen for that reason.

II. Results

Ha. The Test Calculations

As the major test of this procedure, a series of calculations was

done on diatomic carbon with twenty-two separate, fully uncontracted,

even-tempered basis sets varying in size from ten (2slp) to

seventy-two (18s6p) functions. This large range of basis sizes was

studied to explore the effects of increasing basis near redundancy.
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In each test calculation, the Cholesky decomposition was allowed to

proceed to tolerance (6) of zero. As the process advanced,

intermediate rank reduction information (i.e. r as a function of 6)

and CPU timing data were saved. This was done first on the list of

two-electron integrals and then for the list of integrals and integral

derivatives (with respect to the C-C bond length coordinate). Tables

1-4 summarize the rank reduction data realized in these calculations
-3 -6a - - 12 - 15

at 6 tolerance values of 10 , 10 , 10 , 10 , and 10 (in most

quantum chemistry codes, integrals and integral derivatives are

computed to precision of approximately 10-11 au). Graphical

representations of this data are shown in figures 1-4.

All calculations shown here were done on our FPS-164 array

processor but did not make use of its matrix accelerator (MAX) board.

For the purposes of testing the Cholesky algorithm, all integrals

which were not zero by symmetry were explicitly calculated although

this should not be necessary in production runs.

Ib. Analysis of Findings

As the data of Tables I and 2 show, the rank r of the matrices is

much smaller than the dimension M even for tight cutoff tolerances and

increases slowly as the dimension increases. As M continues to

increase, the rank seems to approach an asymptotic value (see figs 3

and 4) after which addition of basis functions does not increase the

rank. At this point, the basis set is complete to within the cutoff

tolerance. To analyze the potential CPU and/or storage advantages of

the Cholesky process applied to the integrals and integral
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derivatives, we wanted to fit the "data" obtained in our calculations

to a reasonable functional form.

In choosing a functional form to fit the M dependence of r, we

required the function have an asymptotic limit as the above analysis

indicates and a slope of approximately one for small values of M

because r 4 M in this limit. We therefore model the variation of r

with M as atanh(jMT). For this function, the asymptotic (as M 4 c)

limit is a and, if the optimal value of P is approximately 1/a, the

slope is approximately one for small M.

Results of least squares fits of the above functional form to our

r(M) "data" for the two-electron integrals for diatomic carbon are

given in table 5 and for two-electron integrals and derivatives in

table 6 for the five cutoff tolerances examined. Figures 5 and 6 show

the resulting optimal leasts squares curves for the two-electron

integrals and for the integrals and derivatives respectively. In the

two-electron integral case, the a values range from 186 to 1012 with 0

values between 0.01140 and 0.00066 and y vaues between 1.063 and

1.761. For the two-electron integrals and derivatives, a ranges from

326 to 1324, P from 0.01304 to 0.00110, and y from 1.028 to 1.617.

One notes here that the values of 8 are approximately i/a for each

case, satisfying the initial slope requirement (i.e., the fit to the

actual "data" is quite good as M - 0). The result that a values are

less than 2500 is of crucial importance as we now illustrate

(corresponding to basis set sizes near 50 because M N 2).

IIc. Potential Numerical Advantage of the Method
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Analysis of the algorithm described in Section Ia. shows that

the Cholesky decomposition process requires: (1) arithmetic

operations (additions or multiplications) whose numbers scale as

(3M-2r+l)(r-l)r/3 as M (and r) increases and (2) integral or integral

derivative evaluations whose number varies as Mr - r(r-l)/2. In

contrast, the conventional treatment requires M(M+1)/2 integrals to be

evaluated. If the CPU time required for a floating point addition or

multiplication is denoted A and the (average) time required to

evaluate a single two-electron integral or derivative is denoted B,

the ratio of the Cholesky to conventional computer time requirements

should vary as

C/T - A(3M-2r+l)(r-l)r/3 + B(Mr-r(r-l)/2)BM(M+l)/2

This ratio must be less than one for the Cholesky process to be

computationally advantageous. On our FPS-164 array processor using

non-vectorized code, a floating point multiplication takes 0.540 Psec

(with an addition being a factor of three less) and a twa-electron

integral or integral derivative evaluation requires 503 gsec using the

6highly optimized ARGOS integral evaluation program . Thus for the

following analysis, we set A-0.540 and B-503.

Figures 7 and 8 show C/T for the diatomic carbon data for

integrals and integral plus derivatives respectively. For the

integrals, the ratio C/T is less than one for all but the tightest

cutoff tolerance and is a decreasing function of M as M increases.

For the integrals and derivatives, the result is more pronounced with

C/T being less than 0.4 for all values of M and decreasing to below

0.1 for M > 1000. Thus, the Cholesky decomposition process shows much
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promise for decreasing computation times for integral and

(especially) integral and derivative evaluation.

Disk storage requirements may also be greatly reduced by the

Cholesky process. The conventional algorithms store on the order of

M2 integrals. The Cholesky algorithm described in Section Ia

stores M(r+l) - r(r+l)/2 integrals. The ratio of the Cholesky to

conventional storage requirements is less than unity for all M and,

for large M (as r approaches its asymptotic constant a) decreases as

a/M. Saving substantially on storage also leads to increased program

performance through reduced I/0. With large main memories

characteristic of modern computers, it is possible that all of the

requisite integrals can be kept in the high-speed memory of the

machine.

In addition to savings in integral evaluation time and storage,

the Cholesky process, if advantageous, can give major savings when

atomic orbital based, two-electron integrals (ijIkl) must be

transformed to the molecular orbital (MO) basis. Because each

integral (those given exactly and those approximately) is expressed in
r

the Cholesky procedure as VI -- I L,kLkJP the transformation of the
k-1

I and J indices to the mo basis set can be realized by transforming

the first (I) index of the (L ,k ) array to the mo basis:
VL C C -L - L(9

E Qk ia Jb Lb k A,k (9)
ij

where the (C i) are the LCAO-MO expansion coefficients. This

two-index transformation would be carried out for all k-l, ... ,r, but

the k index itself nD not be transformed. Thus, the requisite

transformation process involves rN(N+l) steps to obtain (V ); the

mam m mmmnm ma ss mkmnoi iim m
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conventional transformation of V to VB requires 4N5 steps.I3 A

Ild. Other Tests

As a check on the generality of our findings on C2 using the

above bases, two other sets of calculations were performed with

substantially different basis sets. A Dunning lOs6p primitive set7

and an uncontracted 6-311G set8 (lls5p primitives) were used for both

integral and integral plus integral derivative calculations. Table 7

summarizes the results for these calculations. Comparing these results

with those using similarly sized even-tempered basis sets shows that

the results are very similar. We therefore feel it is likely that

integral and derivative evaluations within any reasonably well

optimized moderate to large size basis set will benefit from the

Cholesky decomposition.

An additional calculation was done on the benzene molecule to

judge the performance of the Cholesky decomposition on a polyatomic

system for which many integrals vanish due to large spatial separation

between atomic centers and for which basis set saturation was not

anticipated. The 36 function STO-3G basis of Hehre, Stewart, and

Pople 9 was used in this calculation and the integral derivatives were

taken with respect to one C-C bond distance. Although the rank

reduction is still significant, the results (Table 8) show a marked

decline in the advantage of the Cholesky process. This is primarily

due to the smaller basis set size and large spatial separations among

the orbitals in the molecule. With this much less flexible basis,

there will be fewer near dependencies in the basis, and the Cholesky
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process is not advantageous.

III. Summary

The Cholesky decomposition method has been shown to be effective

in reducing the number of integrals and integral derivatives that need

to be calculated, stored, and transformed to the molecular orbital

basis for atomic orbital basis sets which contain substantial near

redundancy. The saturation of the atomic orbital basis, n= the

Cholesky process itself, causes this procedure to succeed. As

analytical energy and wavefunction derivative methods are applied to

larger molecular systems, the number of requisite integrals and

integral derivatives grow very rapidly. The incorporation of our

method into existing analytical derivative program suites should

therefore allow CPU and disk storage requirements to grow at a much

slower pace and thereby allow calculations on much larger systems than

is thought currently practical.
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Table 1 Rank reduction at cutoff tolerances of 10- , 106, 10- ,

10-12, and 10"15 for C2 two-electron integrals.

basis set # basis full rank at rank at rank at rank at rank at
functions rank 10**-3 10**-6 10**-9 10**-12 10**-15

2slp 10 55 25 31 32 32 32
3slp 12 78 30 45 46 46 46
4slp 14 105 34 60 63 64 64
5slp 16 136 37 72 80 81 82
5s2p 22 253 60 106 134 166 145
6s2p 24 300 58 123 165 174 179
7s2p 26 351 64 133 185 198 208
8s2p 28 406 66 138 196 214 232
8s3p 34 595 87 170 257 308 328
9s3p 36 666 91 182 278 334 360

lOs3p 38 741 91 187 288 353 396
lls3p 40 820 98 194 295 385 424
lls4p 46 1081 il 230 356 472 541
12s4p 48 1176 116 234 360 481 558
13s4p 50 1275 115 240 364 491 564
14s4p 52 1378 114 244 375 505 603
14s5p 58 1711 130 276 422 580 684
15s5p 60 1830 131 275 423 585 732
16s5p 62 1953 134 280 432 598 739
17s5p 64 2080 134 285 448 603 766
17s6p 70 2485 148 319 481 670 850
18s6p 72 2628 149 324 495 674 863
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Table 2 Rank reduction at cutoff tolerances of 10 , 10- , 10,

10-12, and 1015 for C two-electron integrals and2

derivatives.

basis set * basis full rank at rank at rank at rank at rank at
functions ranka 10**-3 10**-6 i0**-9 i0**-12 10**-15

2slp 10 110 47 54 55 55 55
3slp 12 156 58 77 79 79 79
4slp 14 210 67 99 103 104 104
5slp 16 272 69 112 122 124 125,
5s2p 22 506 104 159 188 222 203
6s2p 24 600 103 181 227 237 243
7s2p 26 702 11 195 251 265 276
8s2p 28 812 114 203 264 284 303
8s3p 34 1190 156 258 356 408 430
9s3p 36 1332 156 269 373 433 461

lOs3p 38 1482 157 280 390 459 503
lls3p 40 1640 169 287 399 492 534
lls4p 46 2162 202 361 500 619 690
12s4p 48 2352 203 358 496 624 702
13s4p 50 2550 201 355 493 627 701
14s4p 52 2756 205 363 511 645 747
14s5p 58 3422 223 407 574 738 850
15s5p 60 3660 235 415 585 755 908
16sSp 62 3906 236 418 593 767 913
17s5p 64 4160 226 420 610 770 937
17s6p 70 4970 255 477 669 867 1058
18s6p 72 5256 258 482 685 872 1070

a includes orbital products { ~ ) and derivatives id
derativesn
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Table 3 Fraction of apparent rank at cutoff tolerances of 10 -3,

10-6 , 10-9, 10"12, and 10-15 for C two-electron integrals.

frac.of frac.of frac.of frac.of frac.of
basis set # basis full rank at rank at rank at rank at rank at

functions rank 10**-3 10**-6 10**-9 10**-12 10**-15

2slp 10 55 0.45454 0.56363 0.58181 0.58181 0.58181
3slp 12 78 0.38461 0.57692 0.58974 0.58974 0.58974
4slp 14 105 0.32381 0.57142 0.60000 0.60952 0.60952
5slp 16 136 0.27205 0.52941 0.58823 0.59558 0.60294
5s2p 22 253 0.23715 0.41897 0.52964 0.65612 0.57312
6s2p 24 300 0.19333 0.41000 0.55000 0.58000 0.59666
7s2p 26 351 0.18233 0.37891 0.52706 0.56410 0.59259
8s2p 28 406 0.16256 0.33990 0.48275 0.52709 0.57142
8s3p 34 595 0.14621 0.28571 0.43193 0.51764 0.55126
9s3p 36 666 0.13663 0.27327 0.41741 0.50150 0.54054

lOs3p 38 741 0.12280 0.25236 0.38866 0.47638 0.53441
lls3p 40 820 0.11951 0.23658 0.35975 0.46951 0.51707
lls4p 46 1081 0.10268 0.21276 0.32932 0.43663 0.50046
12s4p 48 1176 0.09863 0.19898 0.30612 0.40901 0.47449
13s4p 50 1275 0.09019 0.18823 0.28549 0.38509 0.44235
14s4p 52 1378 0.08272 0.17706 0.27213 0.36647 0.43759
14s5p 58 1711 0.07597 0.16130 0.24663 0.33898 0.39976
15s5p 60 1830 0.07158 0.15027 0.23114 0.31967 0.40000
16sSp 62 1953 0.06861 0.14336 0.22119 0.30619 0.37839
17s5p 64 2080 0.06442 0.13701 0.21538 0.28990 0.36826
17s6p 70 2485 0.05955 0.12837 0.19356 0.26961 0.34205
18s6p 72 2628 0.05669 0.12328 0.18835 0.25646 0.32838
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Table 4 Fraction of apparent rank at cutoff tolerances of 10-3 ,

10"5, 10"9, 10-12 , and 10-  for C2 two-electron integrals

and derivatives.

frac.of frac.of frac.of frac.of frac.of
basis # basis full rank at rank at rank at rank at rank at
set functions ranka 10**-3 10**-6 10**-9 10**-12 10**-15

2slp 10 110 0.42727 0.49091 0.50000 0.50000 0.50000
3slp 12 156 0.37179 0.49359 0.50641 0.50641 0.50641
4slp 14 210 0.31905 0.47142 0.49048 0.49524 0.49524
5slp 16 272 0.25368 0.41176 0.44853 0.45588 0.45956
5s2p 22 506 0.20553 0.31423 0.37154 0.43874 0.40119
6s2p 24 600 0.17167 0.30167 0.37833 0.39500 0.40500
7s2p 26 702 0.15812 0.27778 0.35755 0.37749 0.39316
8s2p 28 812 0.14039 0.25000 0.32512 0.34975 0.37315
8s3p 34 1190 0.13109 0.21681 0.29916 0.34286 0.36134
9s3p 36 1332 0.11712 0.20195 0.28003 0.32508 0.34610

lOs3p 38 1482 0.10594 0.18893 0.26316 0.30972 0.33941
lls3p 40 1640 0.10305 0.17500 0.24329 0.30000 0.32561
lls4p 46 2162 0.09343 0.16698 0.23127 0.28631 0.31915
12s4p 48 2352 0.08631 0.15221 0.21088 0.26531 0.29847
13s4p 50 2550 0.07882 0.13922 0.19333 0.24588 0.27490
14s4p 52 2756 0.07438 0.13171 0.18541 0.23403 0.27104
14sSp 58 3422 0.06517 0.11894 0.16774 0.21566 0.24839
15sSp 60 3660 0.06421 0.11339 0.15984 0.20628 0.24809
16s5p 62 3906 0.06042 0.10701 0.15182 0.19636 0.23374
17s5p 64 4160 0.05433 0.10096 0.14663 0.18510 0.22524
17s6p 70 4970 0.05131 0.09598 0.13461 0.17445 0.21288
18s6p 72 5256 0.04909 0.09170 0.13033 0.16591 0.20358

a d

includes orbital products ( } and derivatives ( d
. . im
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Table 5 Least squares optimal values of a, j, and 7 for the

function r - atanh(#M ) at cutoff tolerances of 10- ,

10-6, 10-9, 10-12, and 1015 for C2 two-electron integrals.

tolerance 07

10-03 186 0.011401 1.063459

10-06 400 0.007137 1.173166

10"09 528 0.003003 1.454537

10-12 726 0.001181 1.679749

10-15 1012 0.000665 1.761226
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Table 6 Least squares optimal values of a, P, and 7 for the

function r - atanh(,8M ) at cutoff tolerances of 10- ,

10"6, 10-9, 10-12, and 1015 for C2 two-electron integrals

and derivatives

tolerance a 1

10-03 326 0.013045 1.027928

10-06 605 0.007877 1.143445

10-0O 772 0.003882 1.360329

10-12 977 0.001807 1.551929

10-15 1324 0.001100 1.616605
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Table 7 Fraction of rank at cutoff tolerances of I0" , 10
- , 10

10-12, and 10 - "5 for C2 two-electron integrals and

integrals plus derivatives for the Dunning and 6 -311g

basis sets.

frac.of frac.of frac.of frac.of frac.of
basis set # basis full rank at rank at rank at rank at rank at

function rank 10**-3 10**-6 10**-9 10"*-12 10**-15

Dunning
integrals 28 406 0.15517 0.34236 0.50985 0.56897 0.58128
6-311g
integrals 26 351 0.19088 0.36752 0.45014 0.47009 0.48718
Dunning
integrals + 28 812 0.14039 0.25123 0.33867 0.36823 0.37438
derivatives
6-311g
integrals + 26 702 0.16524 0.25783 0.31624 0.31197 0.32051
derivatives

.dm mm m~mmmo i =m eow
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Table 8 Fraction of rank at cutoff tolerances of 10- , 10 - , 10- ,

10"12 , and 10 -15 for benzene two-electron integrals and

integrals plus derivatives with an STO-3G basis.

frac.of frac.of frac.of frac.of frac.of
type of # basis full rank at rank at rank at rank at rank at
calc. functions rank 10**-3 10**-6 10**-9 10**-12 10**-15

integrals 36 666 0.14414 0.31081 0.46547 0.58859 0.63814

integrals +
derivatives 36 1332 0.15165 0.31081 0.46547 0.58859 0.63814
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Figure 2. Rank reduction for diatomic carbon two-electron

integrals and derivatives with even -tempered basis sets at

tolerances of 10 , 10, 10 ,1012 and 10~1
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Figure 4. Fractional rank r/M for diatomic carbon two-electron
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Figure 6. Leasts squares fit to actual data for diatomic carbon

two-electron integrals and derivatives for even-tempered basis
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Figure 7. Ratio of CPU time weighted arithemetic operactionsa for
Cholesky algorithm to conventional methods for diatomic carbon

two-electron integrals with even-tempered basis sets at tolerances

10 ", 10- , i0" ,i0 "  ,and 10"1

Integral evaluation time (503 psec) and floating point
multiplication (0.540 psec) are included in these timings
(see text).



b

31

0.

C
00.3

C

0

0

0.1
0

0.0 J

0 1000 2000 3000 4000 5000 6000
M (number of basis functions squared)

Figure 8. Ratio of CPU time weighted arithemetic operactionsa for

Cholesky algorithm to conventional methods for diatomic carbon

two-electron integrals and derivatives with even-tempered basis

sets at tolerances of 10 , 10 , 10 , 1012 and 1015


