ESD-TR-89-118

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

SKETCH 4B
AN IMAGE UNDERSTANDING
OPERATING SYSTEM

14 JUNE 1989

Prepared for the Defense Advanced Research Projects
Agency under Air Force Contract F19628-85-C-0002.

Approved for public release; distribution is unlimited.

LINCOLN MANUAL 163 |

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

SKETCH 4B
AN IMAGE UNDERSTANDING OPERATING SYSTEM

R. WALTON
J. VERLY
P. VAN HOVE
Group 21

LINCOLN MANUAL 163

14 JUNE 1989

Prepared for the Defense Advanced Research Projects
Agency under Air Force Contract F19628-85-C-0002.

Approved for public release; distribution is unlimited.

LEXINGTON MASSACHUSETTS

The report is based on studies performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology. The work was
sponsored by the Defense Advanced Research Projects Agency under Air Force

Contract F19628-85-C-0002.

The views and conclusions contained in this document are those of the contractor
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the United States Government.

The ESD Public Affairs Office has reviewed this report,
and it is releasable to the National Technical Information
Service, where it will be available to the general public,
including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

gk L. Soruiedt

Hugh L. Southall, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

SKETCH 4B
AN IMAGE UNDERSTANDING
OPERATING SYSTEM

by
Robert Walton
Jacques Verly

Patrick Van Hove

April 1989

MIT Lincoln Laboratory

1. SKETCH LICENSE REQUIREMENTS.
2. SKETCH MANUAL.
3. SKETCH DEMONSTRATION PROGRAMIS.

4. SOURCE FILES OF A REPRESENTATIVE SKETCH PACKAGE.

COPYRIGHT C 1988 BY MIT; ALL RIGHTS RESERVED.
DEVELOPED AT LINCOLN LABORATORY.

SKETCH LICENSE REQUIREMENTS

April 1989

WARNING

TO RECEIVE SKETCH YOU MUST HAVE THE FOLLOWING:

1. PERMISSION FROM MIT.

o

BERKELEY UNIX ON VAX OR SUN3.

3. WESTERN ELECTRIC DEVICE INDEPENDENT TROFF
(UNLESS YOU DO NOT WANT TO PRINT DOCUMENTATION).

4. FRANZ LISP FROM FRANZ INC. IF SUN3
(NOT NECESSARY IF VAX).

SKETCH MANUAL
VERSION 4B

April 1989

by
Robert Walton
Jacques Verly

Patrick Van Hove

MIT Lincoln Laboratory

COPYRIGHT C 1988 BY MIT; ALL RIGHTS RESERVED.
DEVELOPED AT LINCOLN LABORATORY.

-

10.
11.

13.
14.
15.

mTHE 0 QW

CHAPTERS

INTRODUCTION.
LISP TUTORIAL.
FRANZ EXTENSIONS.
ATOMS.

OBJECTS.
CATALOGS.

ARRAYS.

BASIC ARITHMETIC.
BIT GRAPHICS.

ANALYTIC GEOMETRY.

DISPLAY.
HISTOGRAMS.
EDGES.
LINEAR FIT.
TEXTURE.

APPENDIXES

INDEX.
CONFIGURATION.
MAKING FILES.
WRITING MANUALS.
FRANZ FIXES.
DISPLAY DAEMON.

CHAPTER 1

INTRODUCTION

1. PURPOSE. SKETCH is an image understanding operating system designed for use
by the serious programmer who is trying to construct and debug complex Al Image
Understanding programs. The emphasis in SKETCH is on being small, efficient, and
flexible, and on promoting modularity of the final program. SKETCH is not intended to
be an image processing system for non-programmers.

SKETCH is also useful, in the hands of an experienced programmer, for evaluating
the performance of algorithms, complex or simple, against large data sets, and for storing
resulting images and tables on disk for rapid review and reference.

2. REQUIREMENTS. SKETCH strives to meet the following requirements:

2.1. SKETCH IS LISP BASED. An interpretive language is desirable for control,
because the programmer productivity of an interpretive language is at least 50 better
than that of a compiled language.

Little use of disk should be made during the computation, for speed reasons.

The best standard language for these purposes is LISP.

2.2. SKETCH USES FORTRAN AND C FOR SIGNAL PROCESSING. No
LISP, including COMMON LISP in most of its current implementations, seems to be able
to handle numeric computations in a cost effective manner. Therefore, array oriented

algorithms need to be written in FORTRAN or C.

2.3. SKETCH INTERFACES WITH EXISTING DATA. Tapes in existing data

libraries usually do not have to be reformated.

2.4. SKETCHPROCESSES MODERATE AMOUNTS OF DATA. Develop-
ment of Al Image Understanding algorithms requires testing against many thousands of
images. Although this is usually not practical, because the CPU time requirements are
excessive, it is at least practical to test against hundreds of small images each day, given
proper support. This involves batch runs, storing results on disk for rapid review and
reference, and interactively repeating alternative computations on any input image that
requires further analysis.

2.5. SKETCH INTERFACES WITH EXISTING Al PACKAGES. Existing Al
software packages, like OPS5, PEARL, etc., should be integrable with SKETCH.
SKETCH should not prejudge the representation of symbolic data, because different
representations have different efficiencies in different applications.

INTRODUCTION 1-1

INTRODUCTION 1-2

2.6. SKETCH PROMOTES MODULARITY. Users of the SKETCH should gen-
erally be able to write signal processing modules without regard to interfaces other than

those defined by the SKETCH.

3. MAJOR SKETCH COMPONENTS. SKETCH supports several general purpose
object data types that facilitate communications between user subroutines in the same
way that the floating point number types do: by providing easy to use standards that
everyone can use without much thought. Specifically provided are SKETCH array, cata-
log, and display data types, and extra support for the LISP S-expression data type when
it is used for messages to human users. SKETCH also provides an object package with
specific support for defining semantic networks and storing them in catalogs (i.e., files).

3.1. THE ARRAY PACKAGE. SKETCH tries to do for array computations what
the floating point number did for simple arithmetic: provide a single array data type
everyone can share, and reduce user bookkeeping operations to a minimum.

SKETCH arrays support element values not supported in other systems. Block
floating point elements are supported: that is, elements that are stored as integers, with
all elements of the same array being multiplied by the same power of two. Block floating
point arrays are useful to compact array storage on disk or in MOS memory, and have
been useful in the past to speed computation on computers with slow floating point
hardware. Missing values are also supported for array elements, even in block floating
point and on computers without IEEE floating point.

More precisely, SKETCH supports arrays with 8-, 16-, and 32- bit signed or
unsigned block floating point numbers, 1-bit unsigned integers, and 32- or 64- bit floating
point numbers. Any array with signed numeric values may store missing values.

SKETCH allows a subroutine that has received an array to request that the array be
put in the format of the subroutine’s choice. The subroutine can ask for the array to
have single precision floating point elements, for example, and if the array does not
already have these, it will be converted to have them. In image processing work, it is also
often desirable to add extra rows and columns around the edges of a 2D array by mirror-
ing the rows and columns near the edges, and this can be requested by the subroutine at
the same time.

Thus the programmer is relieved from the burden of having to present arrays in the
right format to each subroutine. There is no debilitating speed penalty for conversion of
array element types and provision of boundary extension values, as this is accomplished
by working with data in blocks, rather than one element at a time.

Similarly, because arrays are allocated in a garbage collected memory, the program-
mer is relieved from managing memory, or allocating output arrays for a subroutine he is
calling. Each subroutine merely allocates its own output arrays with the element format
it prefers, and returns these arrays as values to its caller.

In SKETCH, arrays are not just collections of elements, but are in fact a vector of
elements plus a linear map of array subscripts to vector subscripts. Two arrays may
share the same vector, and as any linear subscript map is allowed, one array may be a
window into the other, or a transpose of the other.

SKETCH also solves the problem of writing functions that deal with arrays of any
dimension; for example, elementwise addition of arrays of any dimension. SKETCH

Printed May 1, 1989

INTRODUCTION 1-3

makes all arrays 6 dimensional, with unused dimensions set to size 1. An elementwise
array addition program checks all its arrays for identical dimension sizes, and then exe-
cutes 6 nested loops, with the outermost loops iterating only once for unused dimensions.
The 6 nested loops are embedded in a macro, so the fact that there are as many as 6 loops
is generally invisible to the programmer.

SKETCH arrays have several facilities aiding input/output. First, the array control
information is stored separately from the array elements on disk. The control informa-
tion is stored as ASCII LISP S-expressions, human readable and editable, in files called
catalogs (catalogs are discussed in more detail below). The array elements are stored in
binary form, in separate files called array caches, and are pointed to by the control infor-
mation, which contains the file name and offset of where the elements are stored.

As a consequence of this arrangement. array control information may be copied
between catalog files without copying the binary elements. Different catalogs may be
created without duplicating array elements.

Arrays have a property list like LISP symbols, permitting the user to add
identification and other information to arrays. This information is stored with the array
control information in catalogs, and may be used to select arrays from a catalog.

When an array, i.e., its control information, is read from a catalog, the array in
MOS memory has no elements, but continues to point at the elements on disk. If the ele-
ments of an array are wanted in a particular format by some subroutine, and the ele-
ments are not in MOS memory but are on disk, then the elements are read from disk
Before altering elements of an array, a program indicates that it wants to write the
array, and the array is marked as no longer having valid elements on disk. But il the
array elements are not altered, the array continues to remember where its elements are
stored on disk.

When an array is written into a catalog file, the array elements will be written into
an appropriate array cache file, if an only if these elements do not already exist some-
where on disk.

Thus catalogs containing arrays can be copied and edited without copying array ele-
ments unnecessarily.

A general underlying idea of SIKETCH is that the elements of an array can be in
many different formats in many different places. SKETCH, as it now exists, makes less
use of this notion than it might, but uses it enough to work well. Future versions
designed for parallel computers would necessarily make extensive use of the notion,
because in addition to changing the element format of an array, and adding mirrored
edges to image arrays, different subroutines would also want arrays to be laid out in
different ways in parallel memory.

3.2. THE OBJECT PACKAGE. The object package is used to store information
about arrays and other objects. It combines significant features of the LISP defstruct
facility, LISP property lists, and objects in the SMALLTALK language. Objects are LISP
values which have a type and attributes. The attributes play the role of properties in a
property list, defstruct slots, or SMALLTALK messages.

The storage of objects and access to their attributes can be optimized after the
manner of defstruct. The method for doing this is extensible, and the SKETCH object
system should be integrable with the data storage systems of other Al tools, e.g. PEARL.

Printed May 1, 1989

INTRODUCTION 1-4

Currently the SKETCH object package is well integrated with the C language structure
defining facility.

An important feature of SKETCH is that attribute labels and object types do not
have to be predeclared, nor is it necessary to specify in advance all the attributes that can
be attached to a SKETCH object or all the types of SKETCH objects. Input data can
create attribute labels and object types on the fly, as can interpreted code. With special
syntax, compiled code can do this too. In this respect, SKETCH objects are similar to
LISP property lists. The SKETCH data cataloging facility makes important use of this
feature.

It 1s possible to have access to an attribute of a SKETCH object trigger a function,
and to pass extra arguments to that function. By this means the basic capabilities of
SMALLTALK objects are supported. Operations not having to do with attribute access
can also be defined on objects. These are generic in that they have different definitions
when applied to different object types.

The SKETCH objects package permits both a function and a macro to be supplied
for operations on objects and attributes. The macro is used to obtain efficiency when
there is sufficient information about object types available at macro expansion time. The
function performs the operation when such information is not available until later.

The SKETCH objects package also facilitates I/O of recursive semantic networks by
providing a system for naming objects with analogs of symbol print names. and a system
for forward referencing named objects pointed at by other objects being read into
memory. In a catalog a reference to a named object is represented by just the type and
name of the object. When a forward reference to an object is read, a place holder, or
stub, is allocated [or the object. Later, when the full object is read, the stub is filled in
with the rest of the object attributes.

3.3. THE CATALOG PACKAGE. The catalog package stores information in the
file system concerning arrays and other LISP values. A catalog is just a sequence of
objects stored in an ASCII file.

Catalog entries are LISP values that are read and evaluated to create objects.
Because they are evaluated, they can represent objects by giving algorithms for comput-
ing them, rather than just by providing a direct representation of the object.

To write an object in a catalog, one unevaluates the object and prints the resulting
expression. Unevaluation is a standard objects package operation that can be defined
according to object type. The unevaluate-print-read-evaluate mechanism of data storage
and retrieval is a very powerful mechanism for representing complex objects in catalogs.

Catalogs can include other catalogs. A special include entry can be placed in one
catalog to cause the contents of a second catalog to appear to replace the include entry in
the first catalog.

Catalogs can be defined as applying filters to other catalogs. A filter is a function of
one variable. If one catalog is a filter of a second catalog by a particular function, the
function 1s applied to each object in the second catalog to make the corresponding object
of the first catalog. This is done incrementally whenever an object is to be read from the
first catalog. By returning the special value please-ignore, the function can cause objects
from the second catalog to be deleted, in the sense they will be skipped when objects are
read from the first catalog.

Printed May 1, 1989

INTRODUCTION 1-5

An index for a catalog may be built and saved on disk, so random access in the cata-
log is fast.

It is generally easy to write programs which read existing datasets and produce
SKETCH catalogs listing the arrays in these datasets. These cataloged array objects can
contain whatever parameters describe the data. In particular, they may include new
attributes not declared to SKETCH code.

3.4. THE DISPLAY PACKAGE. The display package implements display objects
and the means of displaying them on a monitor. Display objects are basically memories
that describe 2D arrays of pixels. Included is an intensity array which typically has one
8-bit unsigned integer code per pixel. Display objects reference color maps that map pixel
intensity codes to colors. Display objects can additionally have up to 32 bitgraph planes,
each with one bit per pixel. Pixels with a ‘1’ bit in a bitgraph plane are overlaid with a
color code determined by the plane. Each bitgraph plane is individually erasable, permit-
ting somewhat dynamic displays.

Bitgraph planes are used to store text and vectors. A display can also store text and
vectors in an S-expression based format that can be used to redraw this portion of the
display in a different resolution.

The display package emphasizes display device independence and the pre-
computation of displays for rapid browsing. Display objects can be stored in catalogs,
after the manner of any SKETCH object some of whose attributes are SKETCH arrays

3.5. THE TOP LEVEL PACKAGE (TO BE IMPLEMENTED). The top level
package will contain functions commonly used to control SKETCH runs. Computations
of objects from other objects are defined by tables so that when an object is required it
can be computed in the most efficient possible manner. Information about generating
displays is similarly defined by tables. Given these tables, a user can quickly customize
interactive jobs that compute and display objects, and batch jobs that precompute
objects and displays for later use. The user can also quickly modify the form of the
display and the objects displayed.

Detailed CPU timing statistics will also be automatically recorded.

Currently the top level package does not exist.

4. MANUAL CONVENTIONS. SKETCH is a set of packages, each of which is
documented in its own manual chapter (or appendix). The last section of a package
chapter is the GLOSSARY, which describes all the global names defined in the package.
Also described are a few technical terms used in the package documentation. Names
defined in the glossary are italicized wherever they appear in the manual. There is an
index of all glossary names in Appendix A.

The sections of the package chapter before the GLOSSARY are called the tutorial
for the package. The glossaries by themselves are complete reference documentation: the
package tutorials are not generally complete. If there is no tutorial, it i1s recommended
that one first read the demonstration program listings for the package that appear after
the manual, looking up the new names encountered in the glossary as you go.

Just before a package glossary there is often a section titled HITLIST which lists
known problems with the package which we would like to fix, plus enhancements we

Printed May 1, 1989

INTRODUCTION 1-6

might like to make.
See APPENDIX D for more details on writing package chapters.

5. GETTING STARTED. To get started invoke the sketch program as a UNIX com-
mand. This program is in the SKETCH root directory (you must ask where this root
directory is on your system). It is a lisp environment with all the features of the FRANZ
lisp(1) program, plus the additional features of SKETCH. For example, il you invoke
sketch and at the prompt ‘—>' you type—

(print-array (an-array has-sizes ’(10 10) by-ezpression '(sum X Y)))

then SKETCH will print out a 10X10 array with each element equal to the sum of the
subscripts that reference the element.

SKETCH should be learned by trying things out as you read the manual. In lien of
this, you may consult the demonstration listings at the end of the manual. Demonstra-
tion programs are run as if they had been typed into sketch, one line at a time, and the
resulting display was made into a listing. Such demonstration programs are used to
debug programs initially, to recheck programs after changes, and to act as examples for
new users. Demonstration programs with names of the form xxx_xdemo.l may be found
in package subdirectories of the SKETCH root directory.

The SKETCH compiler, named sketchcom, is used just like FRANZ [lisz/(1).
Sketchcom is also in the SKETCH root directory.

SKETCH C code can be compiled with the normal C compiler, provided vou
#include the appropriate package .h files. These are in the package subdirectories of the
SKETCH root directory, and you should compile with UNIX commands such as—

cc -0 -¢ -I<SKETCH-root-directory > <filel >.c ...
which permit the SKETCH .4 files to be found.

Each package has a file named <xxx/xxx_defs.h> relative to the SKETCH root
directory. This .h file includes everything that C language code needs to use the package.
Here xxx is the package prefix, the same prefix as on all global names defined by the pack-
age. E.g, if you use sar_array, defined by the ARRAYS package, #include
< sar/sar_defs.h>.

The ARRAYS package .h file, <sar/sar_defs.h>, includes the .A files of all packages
appearing before it in this manual. Since most programs do not use C global names that
are defined in packages after the ARRAYS package in this manual, one can often just
include this ARRAYS package .4 file and nothing else.

There is also a sophisticated and fairly easy to use SKETCH file-making facility
built on top of the UNIX make program. See APPENDIX C for details.

Printed May 1, 1989

CHAPTER 2

LISP TUTORIAL

1. APOLOGY Sorry, but we have not yet finished converting the very old SKETCH1
version of this chapter to something correct for current SKETCH.

LISP TUTORIAL 2-1

CHAPTER 3

FRANZ EXTENSIONS

1. FRANZ EXTENSIONS. This package consists of a set of miscellaneous functions
that extend the capabilities of FRANZ LISP in many different directions. Tables on this
and the following pages briefly describe the functions and global variables defined by this
package. All these are defined in more detail in the glossary, but those marked with a
dagger (T) are also mentioned in the tutorial sections before the glossary.

2. PRETTY PRINTING. The philosophy of SKETCH is that messages intended lor
people can be organized as LISP lists. The messages are usually like sentences with tle
left parenthesis ‘(’ serving in place of initial capitalization and the right parenthesis *)’
serving as the period. Paragraphs are just lists of sentences, with an extra ‘(' serving as
paragraph beginning and an extra ‘)" as paragraph end.

The pretty-print function prints arbitrarily complex lists, and is the heart of the svs-
tem for outputting messages. Unlike most other programming languages, this system
does formatting almost automatically, relieving the programmer of a very substantial

ARITHMETIC

(ceiling 'n_number) | Computes the smallest integer that is not less than

n_number.

(floor 'n_number) Computes the largest integer that is not larger than
n_number.

pi The constant pi and its square root.

sqrt-pi
(round 'n_number) | Computes the nearest integer to a given number.

ENVIRONMENT

is-compiler Non-nil in a SKETCH compiler environment, and ni in a
SKETCH evaluator environment.

SFE_LINT t C Macro. 1 if macro expansion is being done for lint, 0 if
for the C compiler.

SFE_VAX C Macro. 1 if compilation is for a DEC VAX. 0 if not.
SFE_MC68000 | C Macro. 1 if compilation is for a Motorola 68000. 0 il not.

FRANZ EXTENSIONS 3-1

FRANZ EXTENSIONS 3-2

ERROR CHECKING AND HANDLING

(assert 'g_condition ['g_message]) | LISP macro. Evaluates g_condition, and if
it is ntl, calls error with g_message.

(ccheck 'g_value) t A LISP function to check whether a C func-
tion that has just been called has signaled an
error by calling sfe_error. If yes, reads the
error message stored by sfe_error and passes
it to error. If no returns g_value.

(error ’l_message) t Signals that an error has occurred, taking as
a single argument an error message,
|_message, which is a list to be pretiy-
print’ed.

(error-trace 's_switch) Sets a switch that if on causes the system to
continuously keep records that allow the de-
tailed state of the stack to be printed if an
error should occur. Unfortunately, this
record Kkeeping can be quite consumptive of

CPU cvcles.

exit-on-error If non-nil, causes the programn to exit on an
error.

sfe_assert (g_test, t_message) { A C Macro. Evaluates g_test, and if false
sfe_assertl (g_test, t_message, ...) | (0), calls sfe_error with t_message and the
sfe_assert2 (g_test, t_message, ... other arguments (...) to signal the error, and
sfe_assert3 (g_test, t_message, ... then calls sfe_return to take an error return
sfe_assert4 (g_test, t_message, ... from the current C function.

sfe_assert5 (g_test, t_message, ...

sfe_check () t A C macro. Checks whether a C function
just called signaled an error by calling
sfe_error. If yes, calls sfe_return to take an
error return from the current C function.

bt St N e N

sfe_error (t_message, ...) t A C function. Called with a2 message to sig-
nal an error. T_message and the other argu-
ments (...) are as for sprintf. Sets an error
switch that is read and reset by ccheck, and
stores the error message in a buffer for
ccheck to read and pass to error.

sfe_iserror () { A C macro that returns true (non-zero) if
the error switch set by sfe_error is on.

sfe_return; t A C macro. Returns from the current C
function. For use if an error has occurred.

Printed April 27, 1989

‘ FRANZ EXTENSIONS 3-3

FILE HANDLING

(demo ’s_input-file [¢| Reads from s_input-file and produces output as if
['s_output-file {¢]]) the lines of s_input-file were typed in. The output

may be redirected to s_output-file.
(search-path '(s_directory ...) Searches for and returns the full pathname of a file
's_file ['s_mode]) | given a list of directories, the user supplied partial

pathname s_file, and an access mode, s_mode, which
1s 'r, 'w, or 'a to denote read, write, or append.

(split-filename ’'s_filename) Separates the directory part of s_filename from the
basename part, returning the two element list:
(directorv-name hase-name).

(stringopen 't_string 'x_size t Opens a port that makes t_string into a file. X_size

's_mode [’t_name]) is the number of bytes in t_string, and s_mode is r,
t_string are not treated specially, and ‘rs, ‘ws, or ‘as
for read, write, or append where NUL’s are specially
treated as the end-of-file.

(use-ptport 'p_port) Indicates when output sent to p_port is also being
sent to ptport. Useful for making C code that uses

‘ printf work right with demo.

LIST HANDLING

(copy-list 'l_list Copies I_list, without recursively copying sublists

['x_length ’g_fill]) | (unlike copy). Can optionally fill the resulting list
to a specific x_length with elements equal to g_£ll,
or truncate the result to x_length.

(equal-filled-lists Tests equality of lists, filling the shorter list with
Ilist-1 '1_list-2 'g_fill) elements equal to g_fll, if the lists are not of equal
length.
(list-depth ’g_value) Computes the nesting depth of sublists of g_value
Returns 0 if g_value is not a list.
(list-length ’g_list Computes the length of g_list, verifies that the list
['u_predicate]) terminates with a nil, and can optionally check

whether the list elements satisfy u_predicate. Re-
turns the list length if all is well, or -1 otherwise.

Printed April 27, 1989

FRANZ EXTENSIONS 3-4

LOADING AND DUMPING

(cload *([s_discipline] s_function ...) T | Loads C language s_file.o file containing

(s_file 's_library])) definitions of s_function ... with calling dis-
cipline s_discipline. S_library specifies C .0
file libraries to he searched after loading
s_file.o.

(dumplisp s_file) t Dumps the current evaluator or compiler en-
vironment into a file, s_file, which becomes a
new evaluator or compiler.

MEMORY MANAGEMENT
(carray ’a_array) Returns address of first element of a_array as a
fixnum, so that can be passed to a C function.
gc-history Variables that hold records ol garbage collector ac-
“gc-history-count* tivity.
*gc-count®
(purearray ...) Like the LISP array macro or *array function, but
(*purearray ...) allocates an array whose elements are ignored by
the garbage collector. This speeds up garbage col-
lection.

(puresegment ‘s_type 'x_size) | Returns the first of x_size contiguous LISP objects
of typep type s_type. Like segment, but the allocat-
ed elements are ignored by the garbage collector.
This speeds up garbage collection.

Printed April 27, 1989

‘ FRANZ EXTENSIONS 3-5

MEMORY REFERENCE
(copy-setf-function 's_symbol Makes s_symbol have the same setf behavior
's_source) as s_source.
(defsetf s_function ...) Defines the setf behavior of s_function.

(dpb ’'x_value #oPPSS 'x_number) | Returns x_number with the field specified by
#oPPSS (see Idb below) replaced by x_value.

(has-setf-function 's_symbol) Returns non-ntl il s_symbol has a setf
behavior.
(1db #oPPSS ’x_number) Returns the bit field obtained by right shift-

ing x_number by PP bits and masking off
the low order SS bits. PP and SS are octal
numbers.

(vrefi-double 'V_vector ’x_index) | Accesses the x_index+1'st flonum stored in
the immediate vector V_vector.

(vsize-long 'V_vector) Returns the number of 32 bit long fiznum’s
(vsize-double "V_vector) or 64 bit double flonum’s stored in the im-
mediate vector, V_vector.

Printed April 27, 1989

FRANZ EXTENSIONS

3-6

PRINTING AND PRETTY PRINTING

float-format

The C format in which LISP flonum’s are
printed. Defaults to "%.6g" in SKETCH.

line-length

The line length in columns for pretty print-
ing. Defaults to 80.

(pretty-format 'g_value
['x_level])

Returns the format of g_value for pretty
printing. Such a format gives detailed in-
structions for controlling optional carriage
return insertion.

(pretty-print ’g_value t
[’p_port
[’x_margin
[’s_string
[’x_repeat
[’x_right-margin||{]l)

Prints g_value in a pretty format by insert-
ing carriage returns and tabs. In detail, first
prelty-format's the value and then pretly-
prinl-format’s the resulting format.

(pretty-print-format
'g_format
[p_port
[’x_margin
[’s_string
['x_repeat
[’x_right-margin!lli])

Pretty prints a format, g_format, returned
by prelty-formal.

(pretty-tab 'x_margin
['p—port
[’s_string
[’x_repeat||])

Tabs to the x_margin+1'st column. Permits
special line headers to indicate indentation
of tracing or similar matters.

(print-size 'g_value
[’x_maximum])

Computes the number of characters that
would be outputted by print'ing g_value.

Printed April 27, 1989

’ FRANZ EXTENSIONS ' 3-7

TIMING

(fdelay 'f_time) Delays until f_time. F_time is as measured
by ftime.

(ftime) Returns a finely measured time. The error

of measurement is 1/60°th second or less.
The time returned is measured in seconds
from midnight, Jan. 1. 1970. GNIT.

*ptime-counts-per-second® | The number of ticks per second for the value
returned by the plime function.

(xtime ’g_expression) Measures the CPU time in seconds taken by
the evaluation of g_expression, exclusive of
garbage collection time.

Printed April 27, 1939

FRANZ EXTENSIONS

3-8

TOP LEVEL

(argv-shift ['’x_number|)

Removes x_number arguments from the be-
ginning of the list of UNIX command line ar-
guments which are individually returnable
by argv.

top-level-init
top-level-exit
top-level-prompt
top-level-read
top-level-eval®
top-level-print
top-level-times
top-level-print-times

Global variables which are set to the func-
tions that perform various parts of the top
level algorithm. May be reset to control
that algorithm.

top-level-init-started
top-level-init-times
top-level-saved-times™
*top-level-saved-print-times®

Global variables used by the top level to
save information.

(status top-level-rc-files) 1

The list of places to look for a parameter file
to be read during initialization ol a
SKETCH evaluator or compiler.

(status top-level-switches) t

The list of switches (-£ and -/) that will be
recognized and processed at the beginning of

the UNIX argument list to a SKETCH

evaluator or compiler.

top-level-threshold-time t

The minimum time in seconds that must be
consumed by evaluating an expression read
by the top level belore timing statistics for
evaluating the expression will be printed out.

+1 The last (+), next-to-last (++), and next-to-
++ 1 next-to-last (+++) expression read by the
g 5 ol top level.

ik The last (*), next-to-last (**), and next-to-
et next-to-last (***) result of evaluating an ex-
sen i pression read by the top level.

burden. Also, SKETCH pretty-print is somewhat more sophisticated than most other
LISP pretty printers.

As an example, consider the LISP expression—
(pretty-print ‘(cannot open ,file for writing))

which is intended to output an error message in the case a file cannot be opened for out-
put. There is no need for the programmer to worry about line feeds in long error mes-
sages, such as when the file has a very long name. The pretty-print function will insert
line feeds for him. However, the programmer must put line feeds after messages, using

Printed April 27, 1989

FRANZ EXTENSIONS 3-9

the terpri function, as pretty-print does not do this.

The normal FRANZ LISP error function, which signals that an error has occurred
and outputs an error message, has been modified to take a single list argument as the
error message which is to be pretty printed. E.g.—

(error ‘(cannot open .file for writing))

Although LISP does have formatted print routines similar to those of C and FOR-
TRAN, their use is avoided in SKETCH, because they do not automatically insert car-
riage returns or indent for readability.

3. RCFILES. Whenever any version of a SKETCH evaluator or of a SKETCH com-
piler is loaded, it searches for files in the list returned by —

(status top-level-re-files)
and applies the LISP load lunction to the first such file found. The usual default values
for these lists are—

(sketch.rc ../sketch.rc ../../sketch.rc ~/sketch.rc)
for the SKETCH evaluator and—

(sketchcom.rc ../sketchcom.rc .. /. /sketchcom.rc ~, sketchcom.rc)
for the SKETCH compiler.

4. SKETCH SWITCHES. When a SKETCH evaluator or compiler is loaded. and
after any top-level-rc-files are loaded, the following argument flags are processed. Any

-[file-name
arguments cause the file-name to be loaded by the LISP load function. Any
-E "expression”

arguments cause the expression to be read by the LISP read function and evaluated by
the LISP eval function. Any errors occurring during these loadings and evaluations will
terminate the SKETCH program. The arguments so processed must be at the beginning
of the argument list, and will be removed from the argument list. The rest of the argu-
ment list may then be accessed as if these removed arguments had never existed.

5. TOP LEVEL VARIABLES. The top level reads an input expression, evaluates it,
and prints the resulting value. The global variables +, ++, and +++ are set respectively
to the last, next-to-last, and next-to-next-to-last expressions read. The global variables *,
** and *** are set respectively to the results of evaluating the last, next-to-last, and
next-to-next-to-last expressions read.

If evaluation of an expression takes more than *top-level-threshold-time* seconds
(including time for garbage collections), then after the evaluation result is printed, a mes-
sage indicating how long evaluation took and how much of that time was spent garbage
collecting i1s printed. In the message the phrase compute-time refers to CPU time not
spent garbage collecting, while the phrase gc-time refers to CPU time spent running the
normal FRANZ LISP garbage collector. *top-level-threshold-time* defaults to 1 second

Printed April 27, 1989

FRANZ EXTENSIONS 3-10

6. STRING FILES. SKETCH supports the use of character strings in memory as
files. This permits output to be prepared for displays without having to first write the
output on disk. It is also used for passing error messages from C to LISP. This facility 1s
implemented by the stringopen function described in the glossary.

7. DUMPLISP. The FRANZ LISP dumplisp function has been extended so that it will
correctly dump a SKETCH evaluator or compiler environment. The resulting file can be
executed as a new variant of the sketch evaluator or compiler.

When a SKETCH compiler is called without arguments (other than —E or —/), it
will read and evaluate its standard input, just like any LISP environment. Statements in
this input may load files and then call dumplisp.

8. LOADING C AND FORTRAN FILES. Loading C and FORTRAN .o files
should be done with the cloed function, which is described in the glossary. This lunction
allows C and FORTRAN .o files to be reloaded into the current LISP environment. It
does this by taking as an argument a list of all the global function names and initialized
variables in the .o file, and removing these I'rom the symbol table belore reloading the file.

To fully understand argument passing, it is necessary to read the section on loreign
functions in the FRANZ LISP manual chapter on functions. However. the fellowing will
suffice for many purposes. Numeric arguments and values will be appropriately passed
without problems. Functions with the c-function discipline return integers which become
LISP fiznum’s, and functions with the double-c-function discipline return floating point
numbers that become LISP flonum’s. Lists, symbols, character strings, hunks, and vec-
tors may he passed as arguments, and will be passed as pointers equal to their respective
addresses. Except for character strings, these are all structures defined in the SKNETCH
ATOMS package.

[C functions that return LISP values are currently difficult to write because FRANZ
lacks a discipline for them. This should be fixed.]

9. PASSING ERROR MESSAGES FROM C TO LISP. The sfe_error lunction
can be called from C to record an error message and set an error switch. This function
takes the same arguments as printf. The message is written into a string file (see above),
and is later read by the LISP read function and passed to the LISP error function. Thus
the message must be a valid representation of a LISP value. An example is-

sfe_error ("(cannot open %s for writing)",
sat_sformat (file_name));

where the sat_sformat function from the ATOMS package reformats the character string
file_name, if necessary, so that it is a valid LISP symbol (e.g. #play becomes |#play|).

Upon returning to LISP from C the error switch is checked by the ccheck function.
If set, it is cleared, the error message is read using read, and the error function is called
with the LISP value read. The form for employing ccheck is usually

(ccheck (_some_C_function ...))

in which ccheck, if it finds the error switch off, returns the value of its argument, which is
the value returned by _some_C_function.

There are a variety of C utility functions for working with the error handling facil-
ity just described. The sfe_assert macro makes a test and calls sfe_error if the test fails.

Printed April 27, 1989

FRANZ EXTENSIONS 3-11

Eg—
sfe_assert (count > 0, "(count argument s == 0)"):

In the lailure case, sfe_assert also returns from the current function. It cdoes this by exe-
cuting the sfe_return macro, which defaults to return (0), but which can be redefined by
the programmer if it is necessary for the current C function to clean up on an error
return, or if 0 is incompatible with the data type of the value returned by the function.
Sfe_assert is heavily used to test for errors in C functions.

It is moderately rare for SKETCH C functions to call each other. When they do,
the caller may have to check the error switch upon return from the called function. This
is done with the sfe_tserror macro. The sfe_check macro combines this test with an call
to sfe_return if the error switch ison. E.g.—

my_function (...);
sfe_check);

10. DEFINING FUNCTIONS AND GLOBAL VARIABLES FOR LINT. It s
important to lint C functions to find errors. When doing so, all functions callable in C
code outside the file in which they are defined should he given public definitions sufficient
to specify the types of their arguments. This is done by including code such as-
#1f SFE_LINT
#ifndef PPP_MMMM_C
/* ARGSUSED */
some_function (argument_1, ...}
type_l argument_1; ... { returns(0); }

endif
endif
in the .h file of the package that defines the function. The statement
#define PPP_MMMM_C

must also be included before any #include statements in the file ppp_inmmm.c that gives
the normal definition of the function.

This code works as follows. If a file other than ppp_mmmm.c is being linted,
SFE_LINT will be 1 and PPP_MMMM_C will be undefined. Therefore, the definition of
some_function given in the .h file will actually be used by lint. If ppp_mmmm.c is being
linted, this definition will be suppressed by the #ifndef PPP_MMMM_C. If a file is being
compiled instead of linted, this definition will be suppressed because SFE_LINT will be 0.

The function definition accessed by lint needs to declare the type of each argument
and the type of the value returned. The body of this function definition should consist
only of a valid return statement if the function returns a value. If the function returns no
value, the body should be empty. The special line-

/* ARGSUSED */

must be placed before this function definition to keep lint from complaining that the
arguments are not used in the function body.

A similar thing must be done for global variables. To keep lint happy, these must
be given an explicit extern in the normal part of the .h file, and then redefined without the
extern inside #if SFE_LINT and #ifndef PPP_MMMM_C.

Printed April 27, 1989

FRANZ EXTENSIONS 3-12

11. HITLIST

(1) Provide library directories and searching for autoload.

Make cload handle composite files consisting of many .o files linked together. These
will load faster in autoload situations.

(2) Add general-c-function discipline to return lisp values from C functions.

(3) Speed up pretty-print.

(4) Possibly add argument processing facility.

(5) Possibly add new reader/printer that uses expression syntax and operator hierarchy.
(6) Add abbreviation handler.

(7) Make error set prinlength and prinlevel to reasonable values.

12. GLOSSARY.

(argv-shift ’x_number|) [LISP Function]

SIDE EFFECT: Remove x_number arguments from the beginning of the command line
arguments returnable by arge. Specifically, remove the arguments
returned by (argv 1) through (argv x_number). (argv 0} is left untouched.
X_number defaults to 1.

(assert 'g_condition ['g_message|) [LISP Macro]

SIDE EFFECT: Evaluates g_condition, and if false evaluates (error g_message).

G_message defaults to ’'(g_condition is false). Note that g_imessage is
evaluated only if given and g_condition is false.

(carray ’a_array) [LISP Macro]

RETURNS: An integer equal to the address of the first data word of the array. This can
be passed to a c-function as the address of the beginning of the array.

(ccheck 'g_value) [LISP Function|
WHERE: ’g_value is usually a call to a C or FORTRAN function loaded by cload: e.g., as
in-

(ccheck (_sar_copy x y))
RETURNS: G_value.

SIDE EFFECT: A check is made to see if a C function has called sfe_error since the last
call to ccheck. If the answer is yes, error is called with the LISP expres-
sion read from the character string generated by the call to sfe_error.

Printed April 27, 1989

FRANZ EXTENSIONS 3-13

(ceiling n_number) iLISP Function:

RETURNS: The sinallest integer greater than or equal to n_number.

(check-list g_list ['u_predicatej) [LISP Function|

RETURNS: -1 if g_list is not a normal nikterminated list each element of which satisfies
u_predicate, if that is given. Otherwise returns the number of elements in

g 180, 4,)
(cload ’([s_discipline| s_function ...) [LISP Function|
's_file)
(cload ’([s_discipline] s_function ...) [LISP Function]

"(s_file [s_library]))

WHERE: S_file.o (s_file with the extension .o added) is an object file of some foreign
language, most likely C but maybe FORTRAN or PASCAL. This file is
assumed to contain the functions with global load names s_function In
order to allow reloading of this file, these global names should be an exhaustive
list of all global functions defined in the file. Note that if the names are those
of C global functions, they must being with _, as the load names of all global C
functions have _ prefixed by the C compiler.

S_discipline is one of the FRANZ function disciplines or the symbol constant.
which refers to initialized global data. The default is c-function, which refers to
a C language function that returns an integer. Some other possibilities are
double-c-function which i1s a C function returning a real number, lisp-c-function
which 1s a C function returning a lisp value, integer-function which 1s a FOR-
TRAN function returning an integer, and real-function which is a FORTRAN
function returning a real. See the FRANZ LISP documentation on functions
for other disciplines and a precise explanation of the calling linkages.

The first argument is a list of s_discipline’s and s_function’s, with each
s_discipline applying to all the functions following it and an implicit c-function
at the beginning of the list. No function name may be the same as a discipline.
The possible disciplines are listed in the global constant *function-disciplines*

S_library is passed as a character string to the UNIX loader (Id) as the library
to be searched for undefined globals. It may also be a list of more than one
library: e.g.

"Fim -1V foo.al.

SIDE EFFECT: Loads s_file.o, searching the directories in the list (status load-search-path)
just as the load function does. Defines the function definitions of
s_function ... to refer to the entry points of the same names in the files.

Does nothing if the file is already loaded (this cload has already been exe-
cuted, and the file found by searching directories does not have a more
recent modification time than the version of the file that was previously
loaded.

Printed April 27, 1989

FRANZ EXTENSIONS 3-14

BUG: If a C or FORTRAN function 1s referred to by other C or FORTRAN functions,
then reloading the first function will leave these other C or FORTRAN functions
referring to the old version of the function, and not the newly reloaded version.
This can be corrected only by subsequently reloading all the functions that refer to
the reloaded function.

NOTE: You should not use initialized global variables in your programs, as it is impossi-
ble to reload the files containing them. One can get out of this problem partially
by listing the global variable name in the cload function call as if it were the
name of a function. But then one has the problem that functions loaded before
the global variable was reloaded will still refer to the old global variable, and not
the newly reloaded one. This is O only if the global variable is really a con-
stant. Such a variable should be given the discipline constant.

“‘compiler” ISKETCH Term|

MEANS: A SKETCH environment built on top of the liszt program which compiles
SIKETCH code, but does not have all the apparatus to evaluate arbitrary
SIKETCH functions. A compiler is as opposed to an evaluator.

computer-format [LISP Global Constant]

VALUE: The type of the computer, from the point of view of the data formats it uses.
Thus all DEC vax’s have the type dec, all Motorola 68000’s have the type
motorola, most all IBM computers have the tvpe ibm, and most all INTEL com-
puters have the type intel. Note that :bm and motorola use the same integer
formats but different floating point formats. Ditto for dec and intel. Note that
all computers use the same formats for arrays with 1-bit or 8-bit elements (this
format is determined by IO devices, and is IBM compatible).

(copy-list "I_list ['x_length ’g_fill]) [LISP Function]

RETURNS: A copy of I_list. Only the top level list cells are copied, unlike the copy func-
tion (which copies list cells recursively). If the last element of 1_list is dotted,
so is the last element of the returned value. If x_length is given, the result
will have exactly x_length list cells. If I_list is too short for this, cells con-
taining g_fill will be added (and the result will be dotted if I_list is). If 1_list
is too long, it will be truncated (and will not be dotted even if I_list is).

(copy-setf-function 's_symbol ’s_source) [LISP Function]

EQUIVALENT TO: (defsetf s_symbol ...) where ... was whatever appeared in a previous
(defsetf s_source ...). If s_source has no current setf expansion func-
tion, s_symbol will be set to have no setf expansion function.

Printed April 27, 1989

FRANZ EXTENSIONS 3-15

(copy-string 't_string) [LISP Function]

RETURNS: A copy of t_string that does not share memory with t_string or any other
string.

(defcache s_function (g_size s_equal s_cache) |_arguments [LISP Macro|
. I_body)

WHERE: G_size defaults to 10, s_equal to eq, and s_cache to *s_function-cache®.

SIDE EFFECT: Defines s_function after the manner of defun to be a function that looks
items up in a cache and maps them onto values. The first argument to
s_function is the item to be looked up, and the function returns the value
found.

The cache is maintained in the global variable s_cache, which is declared
after the manner of defvar. The size of the cache, the number of items
remembered, is g_size. The most recently used g_size item/value pairs
are retained in the cache, and the other items are discarded. The function
used to test for equality between items is s_equal.

If the item is not found in the cache, 1ts value is computed by the function
body, l_body, whose last cxpression produces the value. The new
item/value pair is added to the cache. L_arguments is a normal defun
argument list for the function, and arguments other than the first may he
used by the function body to compute the value.

(defsetf s_function (s_expression s_value) [LISP Macro|
g_statement ...)

SIDE EFFECT: Defines a lambda function like defun with two arguments named

s_expression and s_value, and with a body g_statement However, this

lambda function i1s not named s_function, but i1s rather attached to the

property list of s_function in such a way that whenever the setf macro 1s
called by an expression of the form—

(setf (s_function ...) g_value)
then the setf macro will call
(funcall <lambda-function> ’(s_function ...) 'g_value))

to produce the macro expansion of setf Thus g_statement ... should
return the setf expansion given that the s_expression argument is bound
to (s_function ...) and the s_value argument is bound to g_value.

IMPLEMENTATION: FRANZ actually implements this, but does not document it.

Printed April 27, 1989

FRANZ EXTENSIONS 3-16

(demo I's_input-file [{| 's_output-file |#]]) I.ISP Function]

SIDE EFFECT: Does a read-eval-print loop reading Irom s_input-file and printing into

s_output-file. All expressions read Trom piport are also printed. each lol-
lowed by an end of line. Atoms read by rafom and characters read by
readc or tyt are similarly printed (but not followed by an end of line).

Prompts are printed, and in general the behavior ol the standard top level
is faithfully simulated with this redirected input and output.

Calls to break cause the equivalent ol control-D to be typed and the read-
eval-print loop to be resumed. Calls to ez:f terminate demo only: not the
program that called demo.

The t switch following s_input-file causes the prograi to wait alter print-
ing each prompt for a control-D to be typed on the standard input. If an
expression is typed instead, it is evaluated and printed, another prompt is
tvped, and the program waits again.

The t switch following s_output-file causes ontput to go into both
s_output-file and the standard output.

DEFAULTS: Output goes by default to the standard output.

NOTE:

NOTE:

BUG:

BUG:
BUG:

BUG:

If no arguments are given, those from the last call to demo are used.

While demo is running, poport, piport, and piport are changed to input from
s_input-file and output to the standard output or s_output-file as appropriate.
Thus other functions can read and print. Also, the read, ratom, reade, and ty:
functions are modified to print what they read if they read it from piport.

The demo read-eval-print loop is the same as the SKETCH top level read-eval-
print loop, operating in a slightly different mode. In particular, functions such as
top-level-prompt, are used.

The characters read from piport are not individually printed. but only the results
returned by read. Thus comments are lost and new lines are inserted after every
expression read, even if this is inappropriate. On the other hand, if *top-level- -
print* is a pretty printer, the print alignment of expressions read can be much
improved.

Similarly new lines and comments are lost when using ratom.
Unty: does not work, and it is suggested that tyipeek be used instead.

Ezec works and the standard output from the command it executes is captured in
s_output-file, but the standard error output from the command is not captured in
s_output-file, and goes to the standard error output no matter what.

If you use the call—
(demo s_input-file ¢ ’s_output-file f)

and type an expression in place of "D, the expression will not be printed in
s_output-file, but the value it evaluates to will be.

Printed April 27, 1989

FRANZ EXTENSIONS 3-17

(dpb ’x_value #oPPSS ’x_number) [LISP Function|
RETURNS: x_number with the field specified by #oPPSS (see (db) replaced by x_value.

(dumplisp s_file) [LISP macro]

SIDE EFFECT: Dumps the current LISP environment into the file named s_file. Either an
evaluator or a compiler environment can be dumped. S_file hecomes a
program that can be invoked as a UNIX command to restart the environ-

ment.
(environment ...) |LISP Macro]
(environment-maclisp ...) [LISP Macro|
(environment-Imlisp ...) LISP Macro)
*in-environment® LISP Global Variable|

CHANGES: These now maintain the global variable *m-environment* which is t when
load is called by a files clause in one ol the various environmenl statements,
and nil otherwise,

(equal-filled-lists 'I_list-1 'I_list-2 "g_fll) |LISP Function

RETURNS: ¢ if I_list-1 equals I_lList-2, and n: otherwise. However. for the purposes of
this comparison, the two lists are made of equal length by filling the shorter
out with elements equal to g_fill. Neither list inay be dotted.

(error 'I_message) 'LISP Function’
(error ’s/t_message ['g_data_1 |'g_data_2}]) \LISP Function

EXTENSION: May be called with a single argument which is a list explaining the error
This will be pretty printed. Use of this feature allows complex error expla-
nations without worrying about printed line lengths.

SIDE EFFECT.: Signals an exception, as per the chapter on EXCEPTION HANDLING in
the Franz Manual. The error type will be 'TER%err, the unique id will be
1, and the error will not be continuable. If an errset is active, nil will be
returned from the errset call.

If s/t_message is a string or a symbol, it will become the error message
string (it will be made into a symbol for that purpose, if it is a string),
and g_data_l and g_data_2, if present, will become the error data. If
L_message is not a string or symbol, the error message will be ’|| and
|_message will become the error data (in this case g_data_1 and g_data_2
may not be given).

It is expected that when printing an error with error message equal to '||.
the first and only error datum will be pretty-print’ed, whereas when
printing any other error, the error message and all data will be patomed.

BUGS: More than two error data should be allowed.

Printed April 27, 1989

FRANZ EXTENSIONS 3-18

(error-trace ’s_switch) {LISP Function|

SIDE EFFECT: Turns error tracing on if s_switch is non-nil, or off if s_switch is nil. If on,
error tracing causes information to be created in the stack during normal
execution that allows a detailed trace to be printed upon an error. Unfor-
tunately, creating this information is costly: LISP bound programs typi-
cally run 2.5 times slower with error tracing on than with error tracing
off. The default is for error tracing to be on.

IMPLEMENTATION: Currently error tracing is implemented by (*rset t) and (sstatus
translink nil).

“evaluator” [SKETCH Term|

MEANS: A SKETCH environment built on top of the lisp program which can evaluate
any SKETCH function call, but does not compile SKETCH code. An evaluator
is as opposed to a compiler.

exit-on-error [LISP Global Variable]

VALUE: If non-nil causes any error (routed trough ER %tpl) to exit from the current pro-
gram using the value of *erif-on-error* as the exit code. The default value of
ezit-on-error is nil, and the recommended non-nil value is 2.

(fdelay 'f_time) [LISP Function|

SIDE EFFECT: Delay until {_time, which is measured in seconds since 00:00:00 GMT, Jan
1, 1970. F_time may have the same resolution as the value returned by
ftime. If the delay is over a second, the CPU will be given up to other
users during most of the delay.

(filestat-atime ...) [LISP Function]
(filestat-ctime ...) [LISP Function]
(filestat-dev ...) [LISP Function]
(filestat-gid ...) [LISP Function)|
(filestat-ino ...) [LISP Function|
(filestat-mode ...) [LISP Function]
(filestat-mtime ...) [LISP Function]
(filestat-nlink ...) [LISP Function|
(filestat-rdev ...) [LISP Function]
(filestat-size ...) [LISP Function]
(filestat-type ...) [LISP Function|
(filestat-uid ...) [LISP Function|

USE: Use these function names instead of filestat:atime etc. so that code will work in
those versions of SKETCH based on Franz LISP with packages (Opus 42 and
later), as well at those without packages (Opus 38).

EQUIVALENT TO: The Franz Opus 38 functions filestat:atime, etc.

Printed April 27, 1989

FRANZ EXTENSIONS 3-19

float-format {LISP Clobal Variablej

VALUE: The C language printf format used by patom etc. to print flonum's. Default
value is "%.16g" in normal FRANZ LISP, but is "%.6g" in SKETCH

(Roor n_number) [LLISP Function]

RETURNS: The largest integer less than or equal to n_number.

(ftime) [LISP Function]

RETURNS: The time in seconds since 00:00:00: GMT. Jan. 1, 1970, as a flonum with an
accuracy of at least 1/60 second.

gc-history [LISP Global Variable|
gc-history-length 'LISP Global Variable
gc-count [LISP Global Variable|
*gc-errors® [LISP Global Variable]
gc-dumpfile [LISP Global Variable|

VALUE: “*gc-history® is a list of messages summarizing the first *gc-history-length® gar-
bage collections since the process started. The default value of *gc-Mstory-
length* is 20.

*gc-count® is the number of garbage collections since the current process
started.

*gc-errors® is the number of garbage collector errors that have occurred since
the beginning of time (the count is not zeroed by dumplisp and reload). After
the first garbage collection that has errors, a dumplisp is done to the file named
gc-dumpfile (before *gc-history* is updated). The default value of *gc-
dumpfile* is 'gc-error-dump.

NOTE: The *gc-history* messages are of two types: compule messages specily am
amount of CPU time used by non-garbage collection computation between two
garbage collections; and gc messages specify an amount of CPU time used by one
garbage collection. The messages are in the order that the actions occur, but
gc-history may be slightly delayed relative to the current state of the process.

The gc messages list the number of pages allocated to each of several types of
data: e.g. fiznum’s. One of these numbers may be of the form N + M: the N is
the number of pages that was allocated before garbage collection, and the M 1s
the number of fresh pages allocated by the garbage collector to try to avoid
another collection for a while. The data type for which the number of pages has
this N + M form is the data type whose exhaustion caused the garbage collection.

Printed April 27, 1989

FRANZ EXTENSIONS 3-20

(gentemp) [LISP Function]

USE: Use gentemp instead of gensym in macros, because the latter will foul up when
macros are expanded for execution at the top level during load in versions of Franz
that have packages.

The problem is that gensym produces macros such as—
((lambda #:g00052) (sum #:g00052 5))
where the two unintered generated symbols are not eq when read.

EQUIVALENT TO: (intern (gensym 'T)). The equivalence is exact in SKETCH based on
Franz Opus 38, and near in SKETCH based on Franz Opus 42 and
later Franz’s. In the later case see the Franz documentation for the
exact definition.

(has-setf-function 's_symbol) [LISP Function]
RETURNS: Non-nil if s_symbol has a setf expansion function defined lor it by defsetf.

NOTE: The setf expansion functions of some symbols are defined only when they are
needed. E.g., caaaar may be so handled.

is-compiler [LISP Global Variable]

VALUE: Non-nil if the current environment i1s a compiler, and nil if the current environ-
ment is an evaluator.

(1db #oPPSS 'x_number) [LISP Function)]

RETURNS: The bit field obtained by right shifting x_number by PP bits and masking off
the low order SS bits. PP and SS are octal numbers.

(list-depth 'g_value) [LISP Function]
RETURNS: The depth of the list nesting in g_value. Atoms (and hunks) including nil
have depth 0. Dotted lists are handled.

pi [LISP Global Constant|
sqrt-pi [LISP Global Constant|

VALUE: The indicated constant floating point number. Sgrt-pt is the square root of pi.

Printed April 27, 1989

FRANZ EXTENSIONS 3-21

(port-string 'p_port) [LISP Function]

RETURNS: The string associated with p_port by stringopen if p_port was created by
stringopen, or nil if p_port was not created by stringopen and therefore has
no associated string. Note that for the string returned to be valid, a NUL
must have been written at its end.

(pretty-format 'g_value ['x_levell) [LISP Macro]

*pretty-format-hook™ [LISP Global Variable]

(setf (get 's_symbol ’pretty-format) [LISP Property]
"(character s_prefix x_prefix-size))

(setf (get 's_symbol ’'pretty-format) [LISP Property]
"(breaks s_break x_count [*] ...))

prinlevel [LISP Global Variable]

prinlength [LISP Global Variable]

RETURNS: The pretty-print format of g_value. This format contains a specification of
how to print g_value that is more precise than g_value itself.

X_level is the number of parentheses that will finally surround the pretty
printed version of g_value. If it is equal to or greater than prinlevel, the ele-
ments of a composite g_value should not be printed. At most prinlength ele-
ments should be printed in any case.

FORMAT SYNTAX: A pretty print format may be a list or an atom. If it is an atom, it is
to be print'ed as is. If it is a list, then it contains a list of items which
are themselves pretty-print formats, plus other information that con-
trols the insertion of carriage returns during the printing process.

' The syntax of the reverse of a pretty print format list is—
([x—prefix-size s_prefix| [s_break g_item] ... [x_postfix-size s_postfix])

Note that for efficiency reasons the actual pretty print format is the
reverse of this list.

The s_prefix and s_postfix are symbols that are patom’ed before and
after the g_item’s. For efficiency x_prefix-size and x_postfix-size are
also given: these are just the number of characters that will be
printed by patom’ing s_prefix and s_postfix, respectively. Either the
prefix information or the postfix information may be omitted if there
is no prefix or posfix.

If possible the prefix, g_items, and s_postfix will all be printed on one
line, with a single space separating each pair of g_items, but no space
after the prefix or before the postfix.

If everything will not fit on one line, there are several cases. In
describing these we will refer to the ‘g_item + string following an
s_break’. This 1s the g_item following the s_break, plus any subse-
quent pairs of the form ‘4 g_item-2’ following that. That is, the
longest following list of g_item’s separated by s_break’s that are +,

Printed April 27, 1989

FRANZ EXTENSIONS . 3.2

including these s_breaks.

In the simplest case, the first s_break is / or /. The item margin is
then set to the first column of the printed prefix. plus 3 columns. A
// s_break will always return to the item margin. A / s_break will
return to the item margin if necessary to avoid line overflow while
printing the following g_item + string. A + s_break will return to
the item margin plus 3 columns if necessary to avoid such line
overflow.

In the more complex case, the first s_break is +. The first item will
then be printed immediately after the prefix, and the item margin will
he set to one column after the end of the first item’s printout. After
this a + s_break will return to the item margin if necessary to avoid
line overflow while printing the following g_item + string. When the
first s_break that is not a + is encountered, a decision will he made
about reseting the item margin. If necessary to conserve horizontal
space, the item margin will be reset to the starting column of the
prefix plus 3 columns, and a carriage return will be inserted. After
this point, whether the line margin is reset or not, printing precedes
as in the simpler case above.

*PRETTY-FORMAT-HOOK®: Pretty-format 1s a macro that works by handling symbols,
numbers, and strings inline, and executing—

(funcall *pretty-format-hook* g_value x_level)

to handle anything else. A series of functions are be written
in the form—

(defvar *my-format-hook* (prog! *pretty-format-hook*
(setq *pretty-format-hook*
'my-format-hook)))

(defun my-format-hook (the-argument the-level)
(or (progn ...)
(funcall *my-format-hook*
the-argument the-level)))

Each of these functions processes the-argument if it is able to
(in the progn block), and returns a non-nil format. Or the
function returns nil if it is not able to process the-argument.
The last function defined, the one named in *pretty-format-
hook?, has the first crack at the-argument.

PRETTY-FORMAT PROPERTY: If a symbol has a pretty-format property on its property
list, the default *pretty-format-hook* routine will take spe-
cial action. This property may have one of two forms.

If it has the form—
(character s_prefix x_prefix-size)

then the symbol is like the quote function, a function of

Printed April 27, 1989

FRANZ EXTENSIONS

3-23

one argument with a special printed representation con-
sisting of s_prefix followed by the argument. Thus quote
has the pretty-format property —

(character [|1)

X_prefix-size is just the print-size of s_prefix, and is
included to improve efficiency by eliminating the recompu-
tation of this size every time it is needed.

If the pretty-format property has the form—
(breaks s_break-1 x_count-1 s_break-2 x_count-2 ... [*] ...)

then the symbol is treated as a function of many argu-
ments, like selqg or do. In the format of a list beginning
with the symbol, the first x_count-1 s_break’s will equal
s_break-1, the next x_count-2 s_break’s will equal
s_break-2, etc. A star (*) before an s_break indicates that
when the breaks list is exhausted, it i1s to repeat beginning
with the s_break just alter the star. For example, the
pretty-format property for selq is—

(breaks +1* /1 +1)
and tor do is—
(breaks +3* // 1)

BUG: Does not handle strings or symbols containing embedded line feeds correctly.

(pretty-print ’g_value ['p_port ['X_margin [LISP Function]
[’s_string ['x_repeat ['x_right_margin|||]])

line-length

[LISP Global Variable|

EQUIVALENT TO: (print 'g_value ['p_port|) but uses the line length in the global variable
line-length, and uses indentation. Each line begins with x_repeat
s_strings lollowed by space till the column equals x_margin. At least
'x_right-margin spaces must be left at the end of the last line (into
which to put left parentheses for lists containing 'g_value).

DEFAULTS: The default p_port is poport, the default x_margin is the current calumn as
found by nwritn, the default s_string is ’||, the default x_repeat is 1, and the
default x_right-margin is 0.

Line-length defaults to 76, which allows for various things like diff{1) list-
ings using the first few columns of a line, and terminals or editors using or
abusing the last column.

NOTE: If the line is not long enough to hold a sensible representation of some part of
g_value, the indent may be moved back to the beginning of the line. The lines
where the indent has been moved back are bracketed by comment lines in the

form—

Printed April 27, 1989

FRANZ EXTENSIONS 3-24

<< <N
NS S

where N is the current depth of parentheses.
RETURNS: Number of carriage returns printed.

BUG: Does not handle strings or symbols containing embedded line feeds correctly.

(pretty-print-format 'g_format ['p_port ['x_margin [Ll~SP Function]
['s_string ['x_repeat ['x_right_margin]|||)

EQUIVALENT TO: Pretty-print but takes as input the result g_format of applying pretty-
Jormat to the item to be pretty-printed.

WARNING: If g_format is a list, it is destroyed.

(pretty-tab 'x_margin ['p_port ['s_string [LISP Function]
['_repeat]])

SIDE EFFECT: Spaces until the current column equals x_margin. If the current column is
initially > x_margin, a terpri is done first. Whenever spacing is begun at
the beginning of a line, x_repeat s_string’s are printed before spacing is
done. The deflault p_port is poporl, the default s_string is ‘||, and the
default x_repeat is 1.

RETURNS: Number of carriage returns printed.

(print-size 'g_value ['x_maximum]|) [LISP Function]

RETURNS: The number of characters needed to print g_value, or x_maximum, whichever
is smaller.

BUG: A line [eed in a string value counts as one character.

ptime-counts-per-second [LISP Global Constant]

VALUE: The number of ticks per second of the ptime function clocks.

(puresegment 's_type 'X_size) [LISP Function|

EQUIVALENT TO: (segment 's_type 'x_size) but the resulting segment is allocated to pure
memory and is never garbage collected.

(round n_number) [LISP Function]
RETURNS: The nearest integer to n_number.

Printed April 27, 1989

FRANZ EXTENSIONS 3-25

(search-path ’(s_directory ...) 's_file ['s_mode}) LISP Function]

WHERE: 'S_mode is either 'r for "read”, 'w for "write", or 'a for "append”, and defaults
to'r.

RETURNS: An interned symbol naming a file which has a name of the form

s_directory/s_file. For the r s_mode, s_directory is the first svmbol in the
list '(s_directory ...) for which the file s_directory/s_file -exists, but nil is
returned if no such file exists. For the ws_mode, s_directory is just the first
symbol on the list ’(s_directory ...), for which the directory
s_directory /s_subdirectory exists, where s_subdirectory is the directory part
of s_file (see split-filename). For the a s_mode, s_directory is as for the r
s_mode if some file exists, and otherwise as for the ws_mode.

No check 1s made for file readability, writability. or creatability: just
existence.

For s_directory equal to the symbol |} the name s_tile is used in place of
./s_file. If s_file begins with a slash (/) or tilde (7), no search is done, but the
existence of the file or subdirectory is checked flor. and nil returned if the file

or subdirectory does not exist.

sfe_assert (g_test, t_message) C Macro]
sfe_assertl (g_test, t_message, g_argument_1) 'C Macro|
sfe_assert2 (g_test, t_message, g_argument_1, g_argument_2) .C Macro|
sfe_assert3 (g_test, t_message, g_argument_l, ..., g_argument_3) C Macro)
sfe_assert4 (g_test, t_message, g_argument_l, ..., g_argument_i) C \acro]
sfe_assert5 (g_test, t_message, g_argument_1, ..., g_argument_53) \C Macro|

SIDE EFFECT: Evaluate g_test and if false (zero) call

sfe_error (t_message, g_argument_1, ...)

and then execute sfe_return, which is a macro that defaults to refurn (0).

The digit at the end of sfe_assert counts the number of g_argument’s.
The C macro preprocessor will complain if it is wrong.

sfe_check ()

SIDE EFFECT: If the error flag set by sfe_error is on, executes
which by default does a return (0).

[C Macro]

the sfe_return macro,

Printed April 27, 1989

FRANZ EXTENSIONS 3-26

sfe_error (t_format, g_argument, ...) (C Function]

SIDE EFFECT: An error flag is set, and the arguments cause an error message string to be
produced after the manner of sprintf.

When control returns to LISP, the ccheck function will see the error flag,
reset it, read the error message string using read, and send the value read
to error.

The error flag can also be tested using the C macros sfe_check and
sfe_iserror.

The error message must be a readable LISP value.

sfe_iserror () [C Macro]

RETURNS: True if the error flag set by sfe_error is on. False otherwise.

SFE_LINT - [C Macro]
VALUE: 11f lintis running, O if not.

sfe_return [C Macro]
DEFAULT: return (0)

USE: Executed by sfe_assert and sfe_check in order to return from the current function
upon detecting an error. Can be changed if O is not acceptable as a return value.

SFE_VAX [C Macro]
SFE_68XXX [C Macro]
SFE_BSD [C Macro]
SFE_SUN [C Macro]
SFE_FRANZ [C Macro]
SFE_SKETCH [C Macro]

VALUE: If a SKETCH is running on a DEC VAX processor, SFE_VAX is non-zero and
equals the type number of the processor: e.g. 780, 785, etc. If a SKETCH is run-
ning on a MOTOROLA 68000 processor, SFE_68XXX is non-zero and equals the
type number of the processor: e.g. 68010, 68020, etc.

If a SKETCH is running under a Berkeley Software Distribution version of
UNIX, SFE_BSD is non-zero and equals the version number of the distribution.
If a SKETCH is running under a SUN Microsystems version of UNIX, SFE_SUN

is non-zero and equals the version number of the distribution.

If a SKETCH is using Franz LISP, SFE_FRANZ is non-zero and equals the ver-
sion number of the Franz LISP being used.

SFE_SKETCH is always non-zero and equals the version number of SKETCH

Printed April 27, 1989

FRANZ EXTENSIONS 3-27

that 1s being used.

Software version numbers are written as a version number followed by six
digits: the first 3 for the minor version number, and the next three for the micro
version number. E.g., 4.3 is written 4003000, while 42.16.1 is written 42016001.
Where versions are denoted as ‘a’, ‘b’, ‘c’, etc., these are represented by 1, 2, 3.

The macros just described are always defined: they equal zero if their hardware
or software is not being used.

*sketch-version® [LISP Global Constant|
franz-version [LISP Global Constant|

VALUE: These are the version numbers of the SKETCH and FRANZ LISP that are being
used. They are floating point numbers, generally, with the major version

number as the integer part, and each minor verson number as three decimal
places. Thus FRANZ version 42.16.1 is represented by 42.016001. Minor ver-

H

sions ‘a’, ‘b’, ‘c’, etc. are represented by 1, 2, 3, ... (and given 3 decimal places).
Thus SKETCH version 4b is represented as 4.002.

(split-filename ’s_file) [L1SP Function
RETURNS: The pair (s_directory s_basename) such that s_file is equivalent to—

s_directory /s_basename

If there is no slash / in s_file, s_directory equals ’| | Slashes are removed
from the end of s_directory. Thus an s_directory value of '|| means the root
directory.

(stringopen 't_string 'x_size 's/t_mode ['t_name]|) [LISP Function)]

WHERE: X_size is the number of bytes in t_string. Currently the best way to get such a
string is to call (puresegment ’string x_pages) where x_size = 512 * x_pages.
T_name is the name of the port, and defaults to "stringfile”.

RETURNS: If s/t_mode is 'r (or "r"), returns a port which when read from will read the
string. An end of file will occur after the x_size’th byte. An end of file will
not occur before a NUL byte: the NUL byte will be read.

If s/t_mode is 'rs (or "rs"), behaves as for 'r, but an end of file will occur just
before the first NUL byte in the string, if there is one, or after the x_size’th
byte, if there is no NUL.

If s/t_mode is 'w (or "w"), returns a port which when written will write into
the string. An end of volume is returned when trying to write beyond the
x_size’th byte.

If s/t_mode is ’a (or "a"), behaves just as for 'w, but sets the initial position

of the port to the first NUL byte in the t_string, or just after the end of
t_string if there are no NUL bytes.

Printed April 27, 1989

FRANZ EXTENSIONS

3-28

If s/t_mode is 'ws or 'as (or "ws" or "as") beliaves like ‘w or ‘a. but writes
NUL's into the part of the string to be written, and arranges lor an end of
volume just before the last byte of the string (which is NUL). Ensures there
is a NUL in the string. If ’'as is used with a string that has no NUL, the last

byte of the string is set to NUL.

The close, drain, terpri, fseek, and nwritn functions can e used on these ports

in the normal way.

The string may be used as a normal string after the port is closed, as long as

the string is NUL terminated.

NOTE: Fseek can be use to determine the location of the current position in one of these
ports relative to the beginning of the string, and to reset that position.

Nuwritn can be used to determine the number of characters between the current
position and any previous line feed in the string, or the beginning of the string if

there i1s no previous line feed.

top-level-init
top-level-init-started
top-level-exit
top-level-prompt
top-level-read
top-level-eval®
top-level-print
top-level-times
top-level-print-times
top-level-init-times
top-level-saved-times
top-level-saved-print-times
top-level-threshold-time
+

++

+++

*

*® %

* %k *k

VALUE: The top level executes—

'LISP Global Variable!
'LISP Global Variable]
‘LISP Global Variable!
'LISP Global Variable]
[LISP Global Variable]
[LISP Global Variable|
'LISP Global Variable!
'LISP Global Variable]
\LISP Global Variable|
\LISP Global Variable|
[LISP Global Variable]
[LISP Global Variable]
[LISP Global Variable|
[LISP Global Variable]
[LISP Global Variable]
[LISP Global Variable]
[LISP Global Variable]
[LISP Global Variable]
[LISP Global Variable]

Printed April 27, 1989

FRANZ EXTENSIONS 3-29

(setq *top-level-init-started* ()

(funcall *top-level-init*)

(find and load the (status top-level-rc-files))

(remove and process any —/ and —FE options at the
the beginning of the argument list)

" (setq *top-level-saved-times* *top-level-times*)
(setq *top-level-saved-print-times* *top-level-print-times*)

(setq *top-level-init-times* (funcall *top-level-saved-times*))

(¢f (and *is-compiler* (there are more arguments))
(process arguments as for liszt compiler and exit))

just before printing the first prompt after loading. It never executes this again
during the current process, but will re-execute it when the process is first
dumped by dumplisp and then the resulting file is ezxec’ed.

top-level-init-started is nil from the beginning of loading until the execution of
the above.

The top level then begins the read-eval-print loop, which is roughly-

(let ((prompt *top-level-prompt*)
(read *top-level-read?®)
(times *top-level-times*)
(eval *top-level-eval®)
(print *top-level-print*)
(print-times *top-level-print-times*)
expression value pre-eval-times post-eval-times)
(funcall prompt p_port)
(setg expression (funcall read p_port g_eof-value))
... check for read errors and end of file ...
(setg pre-eval-times (funcall times))
(setq value (funcall eval expression)
(setq post-eval-times (funcall times))
(setq +++ ++
++ +
+ expression)
k% k%

(setq

*¥x X

* value)
(funcall print value p_port)
(funcall print-times post-eval-times pre-eval-times p_port)))

Here the various functions used are saved at the beginning of the read-eval-print
loop iteration, so any changes made to them will not become effective till the
next iteration. Changes to these functions should be synchronized by including

Printed April 27, 1989

FRANZ EXTENSIONS 3-30

them in a single progn which is read all at once by the reader.

Any call to the ezit function results in executing

(funcall *top-level-exit*)

(funcall *top-level-saved-print-times*
(funcall *top-level-saved-times*)
top-level-init-times poport)

before the normal exit actions are taken. Here again the values of *top-level-
times* and *top-level-print-times* have been saved when *top-level-init-times*
was set, to avoid incompatibilities when these variables are reset.

BREAK AND TRACE: Break and trace also use—

top-level-prompt
*top-level-read”
top-level-eval
top-level-print

In addition the top level values of the global variables *line-length*,
prinlength, and prinlevel are temporarily restored every time *fop-
level-print* is called.

DEFAULT VALUES:
top-level-init A no-operation function.
top-level-times A function that retuns—
‘(,@(ptime) ,(number gc’s)).
top-level-print-times A function that prints execution times if the

total time is larger than *fop-level-
threshold-time* seconds.

top-level-threshold-time | 1.0

top-level-prompt A function that prints "—> "
top-level-read read
top-level-eval eval
top-level-print pretty-print
(sstatus top-level-rc-files (s_rc-file ...)) [LISP Function]
(status top-level-re-files) [LISP Function]

SIDE EFFECT: Whenever a LISP environment is loaded by UNIX, then after the function
specified by *top-level-init” is called, the list of files s_rc-file ... is examined
to find the first file that exists, and that file is loaded. If none of the files

exists, no action is taken. The load-search-path is not used to locate the
files.

DEFAULT VALUE: In sketch the default value is—
(sketch.rc ../sketch.rc ../../sketch.rc ~/sketch.rc)

and in the compiler, sketchcom, the default i1s

Printed April 27, 1989

FRANZ EXTENSIONS 3-31

(sketchcom.rc .. sketchcom.rc ../.. 'sketchcom.rc “sketchcom.rc).

(sstatus top-level-switches (s_switch ...)) [LISP Function]
(status top-level-switches) [LISP Function]

SIDE EFFECT: Whenever the argument list to the current LISP environment begins with
one of the switches in the s_switch list, that switch and any following
arguments it requires are processed after the *top-level-init* function is
called and any top-level-rc-files file loaded. To be processed the switch
must be one of the following-

-I file-name The file is load’ed, using
load-search-path to find the fle.
-E "expression” | The expression is read and evaluated.

Arguments processed by this mechanism are removed from the list of
UNIX command arguments by using the argv-shift function. Errors
encountered while processing these arguments will cause the program to
exit with an exit code of 2.

DEFAULT VALUE:
(-] -E).

(use-ptport 'p_port) [LISP Function!

USE ONLY WHEN: Woriting C or FORTRAN functions that do their own printing. Helps
obey the conventions involving ptport (which is used by demo).

RETURNS: ¢ if output sent to p_port is also to be sent to ptport according to the stan-
dard conventions for using ptport.

EXAMPLE:
(ccheck (_xxx_print port ...))
(if (use-ptport port) (ccheck (_xxx_print ptport ...)))
(vrefi-double 'V_vector 'x_index) [LISP Special Function|

EQUIVALENT TO: Vrefi-long but for flonum’s, i.e. double precision floating point
numbers. Can be setf. A flonum index is in 8 byte units (0 is the
beginning of V_vector).

Printed April 27, 1989

FRANZ EXTENSIONS 3-32

(vsize-long V_vector) [LISP Function|
(vsize-double V_vector) [LISP Function]
RETURNS: The number of a-long’s or a-double’s i a vector.

(xtime ’g_expression) [LISP Function]
RETURNS: The time in seconds taken on the average to execute g_expression. To com-

pute this, g_expression is executed many times, until several seconds have
passed. The time reported is the average time in seconds of one execution,
excluding time taken by the garbage collector.

Printed April 27, 1989

CHAPTER 4

ATOMS

1. INTRODUCTION. A SKETCH atom is a number, pointer, or small structure
that is passed as an argument or return value by copying the atom itself, rather than by
copying a pointer to the atom. (It is not to be confused with a LISP atom, which is any
object that is not a non-empty list or hunk, and is an anachronism to be avoided.)

The atoms required by SKETCH are numbers and pointers to LISP values. Most ol
this ATOMS package is concerned with interfacing these atoms to the C language.

2. NUMERIC ATOMS. The numeric atom types supported by SKETCH are listed in
Table 4.1. All the types but a-ubit and an-lbit have C type names: e.g. char. The C types
uchar, ushort, and ulong are standard SKETCH-defined abbreviations for unsigned char,
unsigned short, and unsigned long, respectively.

All the types except int and unsigned have associated SKETCH types (see the
SKETCH OBJECTS package chapter), such as a-floal, and can therefore be designated as
the element types of SKETCH arrays (see the SKETCH ARRAYS Package).

All the types store numbers, except the wan-lbit type, which stores nil or ¢,
represented in C as an off bit or an on bit respectivelv.

Several of the types can be used for arguments to C functions. These have an asso-
ciated Argument Prefix: e.g. f_ for double precision floating point. The 2_ prefix for int's
and the f_ prefix for double’s were chosen to be the same as the prefixes for the
corresponding LISP argument types, fiznum and flonum.

Most of these types have C macros or global variables equal to the minimum and
maximum numeric values storable in variables of the type (of course 0 is the minimum
value for unsigned integers). For example,

if (x > SAT_CMAXIMUM) x = SAT_CMAXIMUM,;
else if (z < SAT_CMINIMUM) z = SAT_CMINIMUM,;

clips a value stored in a variable x If that value is outside the range of a char variable.

The signed number types have a special value which denotes a missing value. E.g.
SAT_CMISSING is stored in a char variable to denote a missing value. In LISP missing
values are denoted by nil. Thus il the value of a SIKETCH array element with type a-
char is returned to LISP, the missing value will be returned as nil.

However, C routines that return integers or floating point numbers to LISP cannot
return nil, which is not a number. They must return either a fiznum or flonum, and use
the values stored in the LISP Global Constants _SA T_IMISSING or _SAT_DMISSING,
respectively, to denote the missing value. These LISP constants are equal numerically to
the corresponding C constants SAT_IMISSING and SAT_DMISSING.

ATOMS 4-1

ATOMS 4-2
TABLE 4.1
SKETCH NUMERIC ATOM TYPES
C Type Size C Minimum Value
Arg. Meaning In
SKETCH | Prefix Bits C Maximum LISP Missing
Type
- 1-bit true/false 1
an-lbit logical bit
= 1-bit unsigned 1 0
a-ubit integer 1
uchar 8-bit unsigned 8 0
a-uchar integer SAT_UCMAXIMUM
char 8-bit signed 8 SAT_CMINIMUM SAT_CMISSING
a-char integer SAT_CMANINUM —
ushort 16-bit unsigned 16 0
a-ushort integer SAT_USMAXIMUM
short 16-bit signed 16 SAT_SMINIMNUM SAT_SMISSING
a-short integer SAT_SMAXIMUN —
ulong ulx_ 32-bit unsigned 32 0
a-ulong integer SAT_ULMAXIMUN
long Ix_ 32-bit signed 32 SAT_LMINIMUM SAT_LMISSING
a-long integer SAT_LMAXIMUM —
unsigned ux_ 32-bit unsigned 32 0
— integer SAT_UMAXIMUM
int X 32-bit signed 32 SAT_IMINIMUM SAT_IMISSING
— integer SA T_IMAXIMUM _SAT_[MISSING
float 32-bit floating 32 SAT_FMINIMUM SAT_FMISSING
a-float point number SAT_FMAXIMUM —
double 64-bit floating 64 SAT_DMINIMUM SAT_DMISSING
a-double point number SAT_DMAXIMUM _SAT_DMISSING

3. NUMERIC FUNCTIONS. The ATOMS Package contains some miscellaneous C
functions and macros for handling numbers, such as sat_round for converting a floating
point number to a long integer after scaling and rounding. These are listed with a brief
explanation in Table 4.2. See the glossary for details.

4. FOREVER IN C. The macro forever is defined to be ‘for (;;) as an aid to writing
more readable code.

Printed April 27, 1989

ATOMS

TABLE 4.2

C LANGUAGE NUMERIC FUNCTIONS AND MACROS

sat_ceiling (f_number, x_exp)

The smallest long integer that is not less
than {_number times 2-°*F,

sat_floor (f_number, x_exp)

The largest long integer that is not greater
than f_number times 2*-°*P,

sat_log (f_number)

The logarithm base 2 of the smallest power
of 2 greater than or equal to the absolute
value of f_number, or SAT_IMISSING f
f_number is 0.

sat_mad (Ix_m1l, Ix_m2,

Ix_a, Ix_d)

(Ix_m1*Ix_m2+Ix_a)/Ix_d. The product and
sum are stored internallv as 64-bhit integers.

sat_mas (Ix_ml, Ix_m2,
ux_a0, x_al,
x_shift)

(l.\'_ml*l.\'_m‘2+'23"’*x_al+ux_a0'_) < <
x_shift. The product and sum are stored
internally as 64-bit integers. II' x_shift << 0
then the shift i1s a right shift by —x_shift.

sat_rmas (Ix_m1l, Ix_m2)
sat_rset (x_shift)
sat_rdeclare

Some macros that permit a set of sali_mas
operations to be done with a common
x_shift value, and with common ux_a0 and
x_al values which round the shifted result if
x_shift < 0.

sat_round ({_number, x_exp)

Converts [_number to a long integer by mul-
tiplying it by 2%-**? and then rounding.

4-3

5. YES, NO, AND EXCEPTION IN C. To represent the concepts of yes, no, and
there-was-an-exceptional-case, the following macros have been defined as aids to writing

readable code—

SAT_NO (comment) 0

SAT_YES (comment) 1

SAT_EXCEPTION (comment) —1

The comment can be any legal C macro argument (it must not contain commas).

Some examples—

Printed April 27, 1989

ATOMS 4-4

return (SAT_YES (everything was done OK));
return (SAT_NO (we could not find the body));

return (SAT_EXCEPTION (the number is too big to compute with));

6. LEFT-TO-RIGHT AND RIGHT-TO-LEFT COMPUTERS. A left-to-right
computer stores integers with the highest order byte at the lowest address. Thus when
bytes are printed left to right in order of increasing address, the highest order byte is
printed leftmost, as people are accustomed to seeing it.

A right-to-left computer stores integers with the lowest order byte at the lowest
address. Thus when bytes are printed right to left in order of increasing address, the
highest order byte is printed leftmost, as people are accustomed to seeing it.

IBM, Motorola, and related computers are generally left-to-right. DEC and INTEL
computers are generally right-to-left.

No matter what type the computer is, bit arrays are stored as if the computer was
left-to-right. This is because I/O devices, such as frame buffers, standardly use this
method of storage.

In C the macro SAT_LEFT_TO_RIGHT is defined as 1 if the computer is a left-to-
right computer, and 0 if it is right-to-left. The LISP global variable */eft-to-right* is
similarly defined. Lastly, there is a utility function, integer-to-bytes, to convert an integer
into a list of bytes according to the machine type.

7. LISP VALUES IN C. LISP values are designated in SKETCH as having the
sat_lvalue C type and the g_ argument prefix. All LISP values are pointers to LISP
objects: even fiznum’s are represented by a pointer to an integer stored in garbage collec-
tible memory. A LISP value (i.e. the object it points at) can be of many different sub-
types: e.g. list’s, fiznum’s, symbol's, etc. Table 4.3 lists these subtypes, the C names for
the elements of the subtypes, and the C function usable to create a new LISP object of
the given subtype.

Each subtype is known in three different ways: to LISP it is known by a symbol
returned by the LISP typep function; to SKETCH it is known by a-type value returned by
the has-type macro (see the SKETCH OBJECTS package); and to C it is known by the
sob_type value returned by the sob_ltype macro (also see the SKETCH OBJECTS pack-
age).

Whenever C code allocates a new LISP object, the garbage collector may be called,
and will destroy any previous LISP objects that is not referencible by starting from the
global variables or the LISP local variables on the LISP (not C) stack. If C code allocates
two LISP objects before returning to LISP, it must store the LISP value pointing to the
first object in some place where it will be referencible. A good place is inside some other
LISP object that is referencible, such as one passed as an argument to the C function by
LISP code, or a global variable. C local and global variables are not referencible.

8. STRINGS. LISP values that are strings are in fact C char * pointers to NUL ter-
minated C strings. The argument prefix ¢_ is used for both LISP and C string arguments.

Printed April 27, 1989

ATOMS

4-5

TABLE 4.3: PART 1
LISP VALUES

typep Type

has-type Type Expression Meaning

sob_ltype Type

g value—>sat_lint The int value of a fiznum.
fixnum
A fixnum sat_nfiznum (x_n) Creates a new firnum = x_n.
SOB_FIXNUM | set_nsfiznum (x_n) Ditto but requires that —128 < x_n
< 255 and is more efficient.
flonum g_value—> sat_ldouble The double value of a flonum.
a-flonum sat_nflonum (f_n) Creates a new flonum = {_n.
SOB_FLONUM
string & g_value—>sat_Ichar The char * value of a string. The
a-string string 1s @ normal NUL terminated C
SOB_STRING String.
. g_value—> sat_lfirst The first element of a list (i.e. the
hSt: car).
a-list W
SOB_LIST g_value—>sat_lIrest The restl of a list (1.e. the cdr).
sat_nlist (g_first, g_rest) | Creates a new list with given first
element and rest of list.
sat_nil The nil value.
g_value—> The x_index+1st element of the
sat_hvalue[x_index| hunk: i.e. the (czr x_index g_value),
hunkO value.
hunkl g_value—> sat_Ilfirst The first element of the hunk: i.e. the
hunk2 car of the hunk.
hunk3 g_value—> sat_Irest The restl element of the hunk: ie.
hunk4 the cdr of the hunk.
hunks sat_nhunk (x_size) Creates a new hunk with x_size ele-
hunk6 ments all set to nil.

—— sat_empty If a hunk is supposed to have x_size
s elements, it actually has more ele-
SOB_HUNK ments if x_size is not a power of 2,

and the extra elements are set to
sal_empty.

Printed April 27, 1989

ATOMS 4-6

TABLE 4.3: PART I

LISP VALUES
typep Type
has-type Type Expression Meaning
sob_ltype Type
g_value—>satl_svalue The value element of the symbol
g_value.
g_value—> sal_splist The property list element (head) of

the symbol g_value.

g_value—>sat_sfunction | The function definition element of
the symbol g_value.

g-value—> sat_slink The hash table link element of the
symbol ¢_value.
g_value—>sat_spname The print name element of the sym-
symbol
bol g_value.
a-symbol

SOB_SYMBOL | sat_nsymbol (t_string) Returns the existing symbol with the
print name t_string, if one exists and
is in the hash table. Otherwise
creates a new symbol with print
name t_string and puts it in the hash

table.
sat_nil The symbol nil.
sal_t The symbol ¢
sat_cmil The value stored in the value ele-

ment of an unbound symbol.

Printed April 27, 1989

ATOMS

4-7

TABLE 4.3: PART III

" LISP VALUES

typep Type
has-type Type
sob_ltype Type

Expression

Meaning

g value—> sat_vchar|x_index]

The x_index+1st char in an
immediate vector.

g_value—>> saf_vuchar|x_index!

Ditto for uchar.

g_value—> sat_vshort!x_index]

Ditto for short.

g_value—>> sat_vushort|x_index

Ditto for ushort.

g_value—>saf_vlong[x_index|

Ditto for long.

vectori g_value—> sat_vulong|x_index! | Ditto for ulong.
an-immediate-vector | ¢ vajue—> saf_vfloat/x_index) Ditto for float.
SOB_IVECTOR g_value—> sal_vdouble'x_index. [Ditto for double.
g_value—>sal_vprop The property list element of
an immediate vector.
g_value—> sal_vsize The size of an immediate vec-
tor in bytes.
sat_nivector (x_size) Creates a new immediate vec-
tor with x_size bytes
g_value—>sal_vvalue|x_index] | The x_index+1'st element of
the LISP vector g_value.
g_value—>sat_uvplist The property list element of
:elci:orvector the LISP vector g_value.
SOBp_LVECTOR g_value—> saf_vsize The size of the LISP vector

g_value in bytes.

sat_nlvector (x_size)

Creates a new LISP vector
with x_size elements.

Printed April 27, 1939

ATOMS 4-8

TABLE 4.3: PART IV

LISP VALUES
typep Type
has-type Type Expression Meaning
sob_ltype Type
g_value—> sat_afunction | The function element of a LISP ar-
ray.
art:ay g_value—> sal_aaur The aux element of a LISP arrav.
g-g;BTX;{QAY g_value—> sal_adala The data element of a LISP array.
g_value—>sal_alength The length element of a LISP arrav.
g_value—>sal_adelta The delta element of a LISP array.
port g_value—>sal_lport The C port, or FILE * value, associ-
a-port ated with a LISP port.
SOB_PORT
value g_value—> sal_lvalue The value of a LISP value object.
a-value
SOB_VALUE

9. FORMATING READABLE STRINGS. There are several C functions for print-
ing strings in a format that can be read by the LISP read function. For example, an arbi-
trary file name string can be printed to be read as a symbol by the LISP reader via a call
such as—
printf ("(cannot open the file %s)", sat_sformat (filenaime));
where filename is a C char * string. If filename were to equal—
"/usr /foo/fancy"”

then the printf would print—

(cannot open the file /usr/foo/fancy)
but if filename were to equal—

“#play”
then the printf would print—
(cannot open the file |#play])

Sat_tformat is a similar function for printing a string so it will be read as a string by the

LISP reader.

Because these functions return a pointer to a static character string bufler allocated
inside the function, two calls to one of these functions cannot he used inside one call to
printf. See the GLOSSARY for details.

Printed April 27, 1989

ATOMS 4-9

10. HITLIST. Empty for the moment.

11. GLOSSARY.

t- [Argument Prefix]

DENOTATION: In C, denotes arguments of double float (double) type. In LISP, denotes
arguments of flonum type.

forever [C Macro|

EQUIVALENT TO: Jor (;;).

(integer-to-bytes 'x_integer) [Lisp Function]

RETURNS: A list of the 4 consecutive bytes (fiznum’s from O through 255) that would be
stored consecutively in memory to represent the integer. The list has an’
order on right to left machines, such as VAX’es, which 1s the opposite of its
order on left to right machines, such as 68000’s.

left-to-right™ (LISP Global Variable|

VALUE: Non-ml if computer stores bytes in an integer from left to right (high order to
low order, like IBM and MOTOROLA). Nilil the bytes are stored from right to
left (low order to high order, like DEC and INTEL).

Ix_ Argument Prefix]

ulx_ |Argument Prefix,

DENOTATION: In C, denotes arguments of long int (long) or unsigned long int (ulong)
Ly pe.

PI [C Macro|

VALUE: The constant .

g_larray—>sat_afunction [C Macro|
g-larray—>sat_aaux [C Macro|
g_larray—>sat_adata [C Macro]
g_larray—>sat_alength {C Macro|
g_larray—>sat_adelta (C Macro]

WHERE: G_larray must be a LISP array.

VALUE: The various parts of g_larray: function, aux, data, length, and delta. Sat_adata
1s a pointer to the array data, which is a block of contiguous memory in a page
with the appropriate data type for the array elements (fiznum, flonum, or
value).

WHEN ASSIGNED: Changes the part of g_larray.

Printed April 27, 1989

ATOMS

sat_ceiling (f_number, x_exponent)

4-10

|C Function]

VALUE: A long equal to the smallest integer greater than or equal to [_number times

gX_exponent

SAT_CMAXIMUM
SAT_CMINIMUM
SAT_CMISSING
SAT_UCMAXIMUM
SAT_SMAXIMUM
SAT_SMINIMUM
SAT_SMISSING
SAT_USMAXIMUM
SAT_LMAXIMUM
SAT_LMINIMUM
SAT_LMISSING
SAT_ULMAXIMUM
SAT_IMAXIMUM
SAT_IMINIMUM
SAT_IMISSING
SAT_UMAXIMUM
SAT_FMAXIMUM
SAT_FMINIMUM
SAT_FMISSING
SAT_DMAXIMUM
SAT_DMINIMUM
SAT_DMISSING

sat_cmissing (x_number)
sat_smissing (x_number)
sat_lmissing (x_number)
sat_imissing (x_number)
sat_fmissing ({_number)
sat_dmissing (f_number)

[C Constant]
[C Constant|
[C Constant]
[C Constant]
[C Constant]
[C Constant]
[C Constant]
(C Constant|
[C Constant]
[C Constant]
|C Constant]
[C Constant]
[C Constant]
[C Constant]
.C Constant|
[C Constant]
[C Global Variable]
[C Global Variable]
(C Global Variable]
[C Global Variable]
[C Global Variable]
[C Global Variable]

[C Macro]
[C Macro]
[C Macro]
[C Macro]
[C Macro]
(C Macro]

VALUES: The constants and variables are the largest value, smallest value, and missing
value for various data types according to the table below. For types with a

missing value,

missing value

SAT_... MIMINIM through SAT_.. MAXIMUM inclusive.

of the range from

Printed April 27, 1989

ATOMS

WARNING:

WARNING:

RETURNS:

4-11

SAT_IMAXIMUM il SAT_UMAXIMUM unsigned
SAT_IMINIMUM
SAT_IMISSING

SAT_LMAXIMUM | long || SAT_ULMAXIMUM | ulong
SAT_LMINIMUM
SAT_LMISSING
SAT_SMAXIMUM | short || SAT_USMAXIMUM | ushor!
SAT_SMINIMUM
SAT_SMISSING
SAT_CMAXIMUM | char SAT_UCMAXIMUM | uchar
SAT_CMINIMUM
SAT_CMISSING
SAT_FMAXIMUM | float || SAT_DMAXIMUM double
SAT_FMINIMUM SAT_DMINIMUM
SAT_FMISSING SAT_DMISSING

On some IEEE hardware,
SAT_FMISSING == SAT_FMISSING

and
SAT_DMISSING == SAT_DMISSING

are both false. Therefore the macros sat_fimissing and sal_dmissing have
been provided to test for missing values.

Some C compilers cannot convert SAT_ULMAXIMUM to a double precision
floating point number properly: they insist on going through an il as an
intermediate step and get -1.0 as a result. To ensure proper results use—

sat_ultod (SA T_ULMAXIMUM).

The macros sat_cmissing, ..., sat_dmissing return true if and only if the
number they are testing is a missing value of the given type.

The tests for a particular type of missing value may be made on a copy of the
missing value held in a variable of some other type, provided that the other
type is large enough to hold all values of the missing value's type. E.g.
SAT_CMISSING may be copied into a double variable and tested there by
sat_cmissing. Similarly SAT_FMISSING may be copied into a double vari-
able before being tested.

Printed April 27, 1989

ATOMS 4-12

sat_cnil [C Constant;

VALUE: A sat_lvalue specially used as the value of unbound symbols and in other places
where the LISP interpreter needs to distinguish a missing value from nil.

_SAT_DMISSING [LISP Global Constant]
VALUE: The flonum used to denote the double missing value by C and FORTRAN code.

sat_empty [C Constant]

VALUE: A sat_lvalue which is specially used as a value for unused elements at the end of
a LISP hunk. E.g., a 3 element hunk is actually represented by a 4 element hunk
(rounding the length up to a power of 2) whose last element is equal to

sat_empty.
sat_floor ([_number, x_exponent) [C Function]
VALUE: A long equal to the largest integer less than or equal to [_number times
gX_exponent
g_hunk—>sat_hvalue|x_index| [C Macro!
g_hunk—>sat_lfirst [C Macro]
g_hunk—>sat_lrest [C Macro]

WHERE: G_hunk must be a LISP hunk or the value sat_nil.

VALUE: Sat_hvalue [x_index] is the x_index+1'th element of g_hunk. Hunks can be used
like dotted pairs, with sat_[first and sat_[lrest accessing car and cdr of the hunk.
These are the first two elements of the hunk, but the order of these first two ele-
ments is implementation dependent. Sat_nil may be treated like a hunk il only
the first two elements are to be read; both these will equal sat_nil.

WHEN ASSIGNED: Changes the element of g_hunk. G_hunk must not be saf_nil.

_SAT_IMISSING [LISP Global Constant]
VALUE: The fiznum used to denote the int missing value by C and FORTRAN code.

& g.string—>sat_lchar [C Macro]

VALUE: The char * value of a string g_string. This string ends with a NUL character, as
per C conventions. Remember the ‘&’; g_string—>sat_Ichar is just the first
character.

Printed April 27, 1989

ATOMS 4-13

g _number—>-sat_ldouble |C Macro|
VALUE: The double value of a flonum g_number.

SAT_LEFT_TO_RIGHT [C Macro)

VALUE: 1 if the high order byte of an int has a lower address than the low order byte of
an int, so that printing the bytes from left to right as addresses ascend will print
the high order byte first. O otherwise, in which case printing from right to left
will print the high order byte first.

g_list—>sat_Ifirst [C Macro]
g_list—>sat_lrest [C Macro]

SEE ALSO: Sat_hvalue.
WHERE: G_list must be a dotted pair (list value) or the value sat_nil.

VALUE: Sal_lfirst @ the first element of g_list, and sat_Irest is the rest of g_list after the
first element. If g_list is sat_nil, both these return the value sat_nil.

WHEN ASSIGNED: Changes the first element or the rest of g_list. G_list must not be
sat_nil.

g_number—>sat_lint IC Macro|

VALUE: The int value of a fiznum g_number.

sat_log (f_number) 'C Function]

RETURNS: The logarithm base 2 of the smallest power of 2 which is greater than or
equal to the absolute value of {_number, or SAT_IMISSING if {_number is 0.

g_port—>sat_lport 1C Macro
VALUE: The FILE * port associated with a LISP port object.

sat_lvalue (C Type]
;. [Argument Prefix]

VALUE: A lisp value. The prefix ¢g_ is used in the documentation of C functions to
denote such a value.

g-value—>sat_lvalue [C Structure Element|
VALUE: The value of a LISP value object.

Printed April 27, 1989

ATOMS 4-14

sat_mad (Ix_multiplicand, Ix_multiplier, :C macro!
Ix_addend, Ix_divisor)

WHERE: All arguments are automatically cast to longs.
RETURNS: (multiplicand * multiplier + addend) / divisor as a long.

NOTE: The numerator is computed as a 64 bit signed quantity and then divided to pro-
duce a 32 bit long quotient.

sat_mas (Ix_multiplicand, Ix_multiplier, [C macro]
ux_addendO, x_addend1, x_shift)

WHERE: Multiplicand, and multiplier are automatically cast to longs.

RETURNS: (multiplicand * multiplier + addend0 + (addendl << 32)) < < shift as a
long.

NOTE: The quantity to be shifted is computed with 64 bit signed arithmetic, and trun-
cated to 32 bits after shifting. A negative < < shift is equivalent to > > -shift.

sat_nfixnum (x_number) |C Function!
sat_nsfixnum (x_number) {C Macro|

RETURNS: A saf_lvalue equal to a new LISP fiznuw with sat_lial value x_number. Note,
however. that i’ x_number is near 0 the fizaum returned will he one of a
small table of constant fiznum's whose sat_linl’s cannot be changed.

Sat_nsfirnuin may be used for greater efficiency in place of sat_ufizaum when
it is certain that x_number is in the range from -128 through 255 inclusive.

SIDE EFFECT: May call the garbage collector when creating a new firnum.

sat_nflonum ({_number) (C Function]
RETURNS: A sat_lvalue equal to a new LISP flonum with sat_ldouble value {_number.
SIDE EFFECT: May call the garbage collector when creating a new flonum.

sat_nhunk (x_size) |C Function]

RETURNS: A saf_lvalue equal to a new LISP hunk with at least x_size elements. Actu-
ally, the hunk is a power of two elements in size (128 elements is the max-
imum). The first x_size elements are set to saf_nil, and the rest to saf_empty.

SIDE EFFECT: May call the garbage collector when creating a new hunk.

Printed April 27, 1989

ATOMS 4-15

sat_nil [C Constant]
VALUE: The LISP symbol nil.

sat_nivector (x_size) [C Function]

RETURNS: A sat_lvalue equal to a new LISP immediate vector (rector:) object with
x_size bytes. Note the size is in bytes. The sat_vprop of the immediate vec-
tor will be sat_nal.

SIDE EFFECT: May call the garbage collector when creating a new immediate vector.

sat_nlist (g_first g_rest) [C Function]

RETURNS: A sat_[lvalue equal to a new LISP list with g_first as the first element and
g_rest as the rest of the list.

SIDE EFFECT: May call the garbage collector when creating a new list.

sat_nlvector (x_size) [C Function]

RETURNS: A sal_lvalue equal to a new LISP vector with x_size elements. The sat_vprop
of the vector will be sat_nil.

SIDE EFFECT: May call the garbage collector when creating a new vector.

sat_nsymbol (t_string) {C Macro]

RETURNS: A sat_lvalue equal to the LISP symbol in the symbol table whose print name
1s t_string. If this symbol does not already exist, a new symbol is created.

SIDE EFFECT: May call the garbage collector when creating a new symbol.

sat_rmasN (Ix_multiplier, Ix_multiplicand) [C Macro]
sat_rsetN (x_shift) [C Macro]
sat_rdeclarelN; [C Macro]

WHERE: N is either nothing, or is one of the digits 1, 2, 3, or 4.
SIDE EFFECT: Sat_rdeclareN declares the variables shiftN, roundNO, and roundNI,
sat_rsetN sets these variables; and sat_rmasN uses them.

RETURNS: Sat_rmasN returns Ix_multiplicand * Ix_multiplier left shifted by x_shift.
The 64 bit product is computed and shifted, before being truncated to a 32
bit long. If x_shift is negative, the product is right shifted by - x_shift with
rounding induced by roundNO and roundN1 having been set to the proper
values.

Sat_rmasN(z,y) expands to—
sat_mas (x, y, roundNO, roundN1, shiftN).

Printed April 27, 1989

ATOMS 4-16

sat_round ({_number, x_exponent) [C Function|

VALUE: A longequal to f_number times 2%-¢P°M rqunded to the nearest integer.
g €q g

sat_snformat (t_string, X_count) [C Function]
sat_sformat (t_string) [C Function]
sat_tnformat (t_string, x_count) [C Function]
sat_tformat (t_string) [C Function]

WHERE: X_count is the maximum length of t_string in case the latter is not NUL ter-
minated.

RETURNS: A string (char * pointer to a static area inside the routine) that is the same as
t_string reformatted for input to LISP as a symbol (for sat_snformat or
sat_sformat) or as a string (for sat_tnformat or sat_tformat). For symbols not
containing any special characters, t_string is returned as i1s (or more pre-
cisely, a copy of t_string in the static area is returned). In all other cases,
t_string is surrounded by quotes (] or "), and a backslash is prepended to any
quote or \ characters.

WARNING: If output would be longer than 4000 characters. exclusive of surrounding ['s
or s, then the end of the part of the output inside the |'s or "’s may be trun-
cated.

WARNING: The same static area is used by all calls to these functions, which may result
in strange effects unless the caller finishes with the result of one call before
making another call. Thus the call—

printf ("%s = %s", sat_sformat (x), sat_tformat (v));
will not work, and should be replaced by something like

char temp [1001];
temp|1000] = 0;

printf ("%s = %s", strncpy (temp, sat_sformat (x), 1000),
sat_tformat (y));

NOTE: These functions are contained in the file saf_csform.c, which is written so it does
not have any #include statements, and can be moved to any location and used
independently of the rest of SKETCH. A declaration such as—

extern char * sat_sformat(}, * sat_snformat(),
* sat_tformat(), * sat_tnformat();

will be required in SKETCH-independent code that calls functions in this file.

Printed April 27, 1989

ATOMS 4-17

g_symbol—>sat_svalue [C Macro
g—symbol—>sat_splist [C Macro
g_symbol—>sat_sfunction [C Macro
g-symbol—>sat_slink [C Macroj
g_symbol—>sat_spname |C Macro]

WHERE: G_symbol must be a LISP symbol.

VALUE: The various parts of the symbol object: value, property list (plist), [unction
definition (function), and print name (pname).

Sat_slink exists in the current version of FRANZ and chains to the next entryv in
a hash table queue. The last entry has sat_cnil as a link value.

WHEN ASSIGNED: Changes the part of the symbol object. The link and print name
should not normally be changed. G_symhol should not be sat_nil or
sat_L.

sat_t 'C Constant|
VALUE: The LISP symbol ¢.

sat_ultod (ul_x) [C Macro]

RETURNS: Ul_x converted to a double precision floating point number. This is necessary
because some C compilers do not do it right: they convert to inf as an inter-
mediate step, and thus get false results like SAT_ULMAXIMUM ==-1.0.

g_ivector—>sat_vchar|x_index| [C Macro|
g_ivector—>sat_vuchar(x_index]| {C Macro|
g_ivector—>sat_vshort|x_index| [C Macro|
g_ivector—>sat_vushort|x_index| [C Macro]
g_ivector—>sat_vlong|x_index] (C Macro]
g_ivector—>sat_vulong|(x_index| [C Macro]
g_ivector—>sat_vfloat(x_index| [C Macro]
g_ivector—>sat_vdouble[x_index]| [C Macro]
g_ivector—>sat_vprop [C Macro]
g_ivector—>sat_vsize [C Macro]
WHERE: G_ivector must be a LISP immediate vector (vectors).

VALUE:

Sat_vchar [x_index] is the x_index+1'th char of g_ivector;
sat_vuchar [x_index] is the x_index+1’th uchar of g_ivector;
sat_vshort [x_index] is the x_index+1’th short of g_ivector;
sal_vushort [x_index) is the x_index—+1'th ushort of g_ivector;
sat_vlong [x_index] is the x_index+1'th long of g_ivector;
sat_vulong [x_index] is the x_index+1'th ulong of g_ivector;
sat_vfloat [x_index] is the x_index+1"th float of g_ivector; and
sat_vdouble [x_index| is the x_index+1’th double of g_ivector.

Sat_uvprop is the sat_lvalue property list of g_ivector, and sal_vsize is the int size
of g_ivector in bytes.

Printed April 27, 1989

ATOMS 4-18

WHEN ASSIGNED: Changes the element of g_ivector.

g_lvector—>sat_vvalue|x_index] |C Macro|
g_lvector—>sat_vprop [C Macro|
g_lvector—>sat_vsize [C Macro|

WHERE: G_vector must be a LISP vector.

VALUE: Saf_vvalue [x_index| is the saf_lvalue x_index+1'th element of g_lvector.
Sat_vprop is the sat_lvalue property hst of g_lvector, and sat_vsize is the int size
of g_lvector in bytes.

WHEN ASSIGNED: Changes the element of g_lvector.

SAT_YES (<comment>) |C Macro|
SAT_NO (<comment>) [C Macro|
SAT_EXCEPTION (<comment>) |C Macro]

WHERE: <comment> is any C macro argument (e.g., it must not contain commas out-
side parentheses).

VALUES: SAT_YES (<comment>) equals 1, SAT_NO (<comment>) equals 0, and
SAT_EXCEPTION (<comment>) equals -1. The <comment> is ignored.

uchar [C Typel
EQUIVALENT TO: Unsigned char.

ulong [C Type|
EQUIVALENT TO: Unsigned long.

ushort (C Type]
EQUIVALENT TO: Unsigned short.

x_ [Argument Prefix]
ux_ [Argument Prefix]

DENOTATION: In C, denotes arguments of int or unsigned int (unsigned) type. In LISP,
z_ denotes arguments of fiznum type.

Printed April 27, 1989

CHAPTER 5

'OBJECTS

1. OBJECTS. A SKETCH object has a type and a list of attributes. Each attribute
has a label and a value. The types of SKETCH objects have names beginning with ‘a-’ or

‘an-’. The attribute labels of SKETCH objects have names beginning with ‘has-’ or ‘is-’,
or, in general, with any auxiliary verb or preposition followed by a hyphen.

A SKETCH object may be represented by an expression that evaluates to the object,
such as—

(a-man has-weight 174 has-height 70).

The ‘a-man’ macro called by this expression 1s the same as the name ol the object type,
and the argument list consists of attribute label/value pairs. with each label (e.g. ‘has-
weight’) lollowed by its value (e.g. ‘174’).

SKETCH types are themselves SKETCH objects whose type is the SKETCH type
a-type. SKETCH attribute labels are themselves SKETCH objects whose type is the
SKETCH type an-attribute. Thus the existence ol the above object implies the existence
of other objects such as—

(a-type has-name ‘a-man ...)
(an-attribute has-name "has-weight)

(an-attribute has-name 'has-height)
and these in turn imply the existence of—

(a-type has-name 'a-type ...)
(a-type has-name ’an-attribute ...)

(an-attribute has-name 'has-name).

2. MAKING OBJECTS. A SKETCH object can be made by evaluating an expres-
sion that represents it, such as—

(a-man has-weight 174 has-height 70).

Symbols naming the type and attribute Iabels are used in this expression, along with the
values of the attributes. In this expression, all the attribute labels and values are
evaluated, so that the expression gives the same result as—

(a-man has-weight (plus 100 74) has-height (difference 72 2)).
Use is made of the facts that the symbol ‘a-man’ is defined as a macro which creates
objects of type ‘a-man’, and that the symbols ‘has-weight’ and ‘has-height’ evaluate to
an-attribute SKETCH objects that serve as attribute labels.

OBJECTS 5-1

OBJECTS 5-2

The object that results Irom evaluating one ol these expressions can bhe bound to a
variable, as in—

(setq george (a-man has-weight 174 has-height 70)).

This actually stores a pointer to the a-man object in the variable george, aud we will
describe in more detail what this means at the end of the next section.

It is also possible to use one object as a prototype to supply default values for the
attributes of a new object. Writing—

(a-man george has-weight 169 has-age 57)
uses george as such a prototype, and makes the object represented by —
(a-man has-weight 169 has-age 57 has-height 70).

The prototype, if present, is the first thing after the type. a-man. in the expression mak-
ing the new object.

3. GETTING AND SETTING ATTRIBUTES. Attributes can be gotten by

expressions such as—
(has-weight george),

which, given the above definition of george, has the value ‘171", or—
(has-height george).

which has the value ‘70’. The type of an object can be gotten as il it were the object’s
has-type attribute, via—

(has-type george),
which has the value—
(a-type has-name ’a-man ...).

Objects with has-name attributes often print as just their names, so il you print out this
last object you may get just ‘a-man’.

The LISP setf macro can be used to change attributes, as in—
(setf (has-weight george) 185),
after which george will equal—
(a-man has-weight 185 has-height 70)
New attributes can be defined for an object, as in—
(setf (has-age george) 34),
after which george will equal—
(a-man has-weight 185 has-height 70 has-age 34).

If an attempt is made to get an attribute that an object does not have, nil will be

returned, as in—
(has-waist-size george).

This is not an error. Setting an attribute to the value ni generally makes the attribute
disappear (‘generally’ means that exceptions are rare, and noted in documentation). Thus
after—

Printed Apnil 27, 1989

OBJECTS 5-3

(setf (has-weight george) nil)
george will equal—
(a-man has-height 70 has-age 34).
In general, saying that an object does not have an attribute, and saying that it has
the attribute value nil, are two ways of saying the same thing.

If the attribute to be gotten is not known till eval time, the gef-attribute function
may be used to get the attribute. Examples are—

(setg x (an-attribute has-name "has-height))
(get-attribute x george),

in which the second expression evaluates to 70, and—

(setf (get-attribute x george) 85),
which changes george to—

(a-man has-height &5 has-age 34)

In the above examples, george is just a variable that is always evaluated. [If one had
executed—
(setq y george)

first, one could use y and george interchangeably above.

When two variables, such as y and george, are both bound to the same object, they
in fact both contain equal pointers to the object. Any change to the object will appear to
eflect both variables. Thus if george equals—

(a-man has-height 85 has-age 34),
so will y, and after—
(setf (has-age y) 35),
both y and george will equal—
(a-man has-height 85 has-age 35).

The type of an object cannot be changed:

(setf (has-type george) ...)
is in error.

4. NAMES. If an object has a has-name attribute that has a non-nil value, that value
must be a symbol, and that symbol will be set equal to the object. For example, evalua-
tion of the expression—

(a-man has-name 'Bill has-weight 143 has-height 68)
will make an object and set the variable Bill equal to that object.

When the print function is asked to print an object with a has-name attribute, the
value of this attribute will be printed as the complete representation of the object. Thus

(print Bill)

will print just ‘Bill’. Other forms of printing objects with has-name attributes are

Printed April 27, 1989

OBJECTS 5-4

available, and are described below (see PRINTING AND UNEVALUATING OBJECTS).

After an object with a name is made, it can be referenced by an expression that
appears to make a new object with the same lhas-name but no other attributes. In this
case, evaluating the expression—

(a-man has-name 'Bill)

will not make a new object, but will instead return the already made object that is the
value of the variable Bill.

An object that has a type and a has-name attribute, but has no other non-nil attri-
butes, is called a stub. In general, an attempt to make a stub for an object that already
exists will not make a new object, but will merely return the existing object.

The order of making stubs and objects can be reversed. If the stub is made first, an
attempt to make the object will not make a new object. Instead, it will fill in the attri-
butes of the stub, and return that stub, which will no longer be a stub any more. Thus
the code—

(a-man has-name 'Bill has-wife (a-woman has-name 'Jill))
(a-woman has-name 'Jill has-husband (a-iman has-name 'Bill))

will work, making only two objects, and setting the variables Bill and Jill. This code
would give the same result if we reversed the order of its two statements. The value of—

(has-wife Bill)
is the same as the value of the variable Jill, while the value of—
(has-husband Jill)
is the same as the value of the variable Bill.

If an object with a has-name is to be made, and another object with the same name
exists before hand, and if neither object is a stub, then the two objects are tested for
equality of their attributes (using the compare-object function that ignores hidden attri-
butes: see the GLOSSARY). If there is equality, a new object is not made, and the old
object is returned as the result of the expression that might have made the new object. If
there is no equality, an error is signaled. Thus a named object may be made many times
if it is always made the same way.

The notion of a name may be generalized to use attributes other than has-name to
denote an object. Such generalized naming is referred to as ‘indexing’, and is discussed
later in more detail. Indexing also includes placing objects on hidden cross-reference lists
that may be used to retrieve the object.

We have discussed ‘making’ objects in SKETCH, and not ‘creating’ them. In
SKETCH, ‘creating’ an object is a suboperation of ‘making’ the object, and does not
include any indexing.

5. DYNAMIC TYPE AND ATTRIBUTE CREATION. New types and attributes
can be created by expressions such as—

Printed April 27, 1989

OBJECTS 5-5

(a-type has-name 'a-man)
(an-attribute has-name 'has-weight)
(an-attribute has-name ’has-height)

(an-attribute has-name 'has-age).

However, types and attributes mentioned in data and interpreted code, but not in com-
piled code, need not be created before they are used. Instead, they may be given names
that begin with one of several specific prefixes, in which case they will be created
automatically when they are used.

For types, the prefixes are a- and an-. For attributes, the standard prefixes are has-,
ts-, and 1snt-, and any auxiliary verb or preposition followed by a hyphen may he added
to this list as needed (see define-object-name-prefiz in the GLOSSARY).

For example, evaluating—
(a-man has-name 'George has-age 53 has-wife (a-woman has-name 'Jill))

when a-man, has-age, has-wife, and a-woman are unhound variables will automatically
cause the expressions—

(a-type has-name ’a-man)
(an-attribute has-name 'has-age)
(an-attribute has-name "has-wife)

(a-type has-name 'a-woman)
to be evaluated.

Thus data bases stored in files may use types and attributes previously unknown to
the program.

Types and attributes explicitly mentioned in compiled code, however, should be
made before they are used. This may be done by executing expressions such as—

(eval-when (compile load eval)
(a-type has-name 'a-man)
(an-attribute has-name 'has-age)
(an-attribute has-name 'has-wife)
(a-type has-name ’a-woman)).

The eval-when is necessary to ensure that the types and attributes are created both in the
compiler and at eval time.

If an object with a non-nil has-name attribute is made in the compiler environment,
the name of that object will automatically be declared to be specral, thus permitting
reference to it in code. Objects made in the compiler environment should also be made in
the evaluation environment, so the code will reference the right object. The eval-when
(compile load eval) in the above example does just this.

Often the declare-hunk-type or declare-vector-type macros described in the next sec-
tion are used to create types and attributes, instead of the more direct methods just

Printed April 27, 1989

OBJECTS 5-6

described.

6. BASIC TYPES. In SKETCH one builds types on top of one another. Generally,
one starts with a basic type that is made by an expression such as—

(declare-hunk-type an-event

has-password *event-password*

has-name has-start-time

1s-read-init-private

has-stop-time

i1s-hidden 1s-private

has-previous-event).
Declare-hunk-type is a macro whose arguments are generally not evaluated (like declare).
However, there is a- similar function, define-hunk-type. whose arguments are evaluated.
Both the macro and the function make one a-type object with the given name {c¢.g. an-
event), and several an-attribute objects with given names (e.g. has-name, has-start-time,
has-stop-time, and has-previous-event).

An-attribute-descriptor objects are also created for each attribute label, and an-
operalion-descriptor objects are made for each operation (e.g. make-object, object-is,
uneval-object, format-object) that is to be defined in a type specific manner. See the sec-
tions below and the GLOSSARY for details of making these objects

The above call defines a new type: an-event. The attributes of this type that are
known to the compiler are—

has-name has-start-time has-stop-time has-previous-event.

These attributes are packed into objects of the new type, and are efficiently accessed (the
objects are actually hunks, and the access is by indexing elements of the hunks). Other
attributes may be set and gotten for an-event object, but these will be stored in a pro-
perty list where their access will be slower.

By default, attributes can be initialized and read, but not written (i.e. not self). The
1s-read-1nit-private keyword signifies that subsequent attributes can also be written if the
password, in this case the symbol *event-password®, is included, as in—

setf (has-stop-time x *event-password*) y).
p-

We will use the fact that has-stop-time can be written with a password in the section on
THE FORMAT-OBJECT OPERATION below.

The 1s-private keyword signifies that subsequent attributes cannot be initialized, but
can be read or written if the password is include, as in—

(has-previous-event x *event-password*)
and—
(setf (has-previous-event x *event-password*) y).
Assuming that code in one program package does not use the password of another

package, a private attribute may be protected from incorrect access by code outside the
package that defined the attribute.

Other keywords that play a role similar to is-read-init-privale and is-private are is-
read-init, which is the default and disallows writing the attribute but allows reading and

Printed April 27, 1989

OBJECTS 5-7

initializing it; #s-read-snit-write which allows reading, mtializing, and writing; and 1s-
read-private which allows reading but not initializing, and allows writing, but only with a
password.

By default, attributes are printed out when the object is printed, and are included in
the result of unevaluating the object (see PRINTING AND UNEVALUATING OBJECTS
below). The 1s-hidden keyword signifies that subsequent attributes are not to be printed
or appear in the unevaluated object. Such hidden attributes are often used for cross-
reference lists between objects. These cross-reference lists can be very bulky to print, and
should not be transmitted between different memory loads (which is the purpose of
unevaluated objects).

Hidden attributes are also ignored when testing two objects for equality, as is done
when two objects with the same name are made (see NAMES above, and compare-object
in the GLOSSARY):

The is-visible keyword is the opposite of is-hidden. and signifies that subsequent
attributes are to be printed, appear in the unevaluated object, and be considered during
tests for object equality. In the OTHER ATTRIBUTE SWITCHES section below, we
describe how an attribute can be made hidden in some wayvs and visible in others.

The declare-vector-type macro is similar to declare-hunk-type but defines objects
that are LISP immediate vectors (see the FRANZ LISP manual) and C structures. A typ-
ical use might be—

(declare-vector-type an-event
has-password *event-password*
a-value has-name
a-long has-start-time
ts-read-init-private
a-long has-stop-time
1s-hidden is-private
a-value has-previous-event).

In a declare-vector-type call, the data type of the attributes can be declared to be be a C
numeric type, such as char, long, or float, rather than just a LISP value. This is done by
including type names such as a-char, a-long, and a-float in front of the attribute labels for
the attributes that are to have the given type. The type name a-value refers to LISP
values, and is the default at the beginning of the attribute list. The first element of the
vector stores the type of the object, as a LISP value. The property list of the vector (see
the FRANZ LISP manual) is a hunk that stores a copy of all the LISP values stored in
the vector, so that the garbage collector will know about these values.

Both declare-hunk-type and declare-vector-type expand into an—
(eval (compile load eval) ...)

form, so they will be effective at all times. If appropriate extra arguments are given to
these macros, and if the global variable *C-definition-port* is set to a port when either of
these macros is called (e.g. loaded or compiled), then C structure definitions are written
into this port so that C code can access the information in the object.

For example, the declaration—

Printed April 27, 1989

OBJECTS 5-8

(declare-vector-lype (an-event ev_event ev_)

has-password *event-password*

a-value (has-name nil ev_name)

a-float (has-start-time nil ev_start)

i1s-read-inil-privale

a-float (has-stop-time nil ev_stop)

1s-hidden is-private

an-event (has-previous-event nil ev_previous))
will output the C structure definitions—

typedef sirucl ev_struct * ev_event;
struct ev_struct {
union {int SOB_VSIZE (1]

sal_lvalue * SOB_VPLIST 1];

sob_type SOB_VTYPE; } SOB_VFIRST,
define ev_type SOB_VFIRST.SOB_VTYPE
define ev_plist SOB_VFIRST.SOB_VPLIST|-1}[0]
define ev_vsize SOB_VFIRST.SOB_VSIZE|-2]
sal_lvalue ev_name;
floal ev_start;
float ev_stop:
ev_event ev_previous;
%

#define ev_alloc(x,y) struct ev_struct (x) [v]

H 33k

See the GLOSSARY entries on declare-hunk-type and declare-veclor-type for more
information.

7. CHECKING TYPES. It is often necessary to check whether an object is of a par-
ticular type. This can be most efficiently done by the object-is function, as in—

(object-1s an-event x),

which evaluates to non-ni If x is an-event. If it is necessary to discover the type of an
object, this may be done less efficiently by the has-type function, as in—

(has-type x),
which evaluates to—
(a-type has-name an-event ...)

if x Is an-event,

8. PRINTING AND UNEVALUATING OBJECTS. Printing objects is best done
by the pretty-print function, as in—

(pretty-print x).
This function contrives to insert line feeds as necessary to make the object fit within lines.
No part of the object is to the left of the initial print position, and every attribute value

is indented with respect to its label. The number of line leeds inserted is returned by this
function.

Printed April 27, 1989

OBJECTS 5-9

Il an object x has an attribute with value y, and if y has a has-name attribute with
value z, then when x is pretty-print'ed, z will be printed in place of y. Thus v is
represented by its name. However, this will not be done for x itself. which will always be
printed as a type and list of attributes.

The top level printer uses pretty-print to print evaluation results, unless a result has
a non-nil has-name attribute value which is not identical to the expression evaluated to
get the result, in which case just the has-name value is printed. Thus after evaluating—

(a-man has-name 'Bill has-wife (a-woman has-name 'Jill))
(a-woman has-name 'Jill has-husband (a-man has-name 'Bill}),

evaluating ‘Bill’ at the top level prints—
(a-man has-name 'Bill has-wife Jill).
while evaluating—
(has-husband Jill)

prints just ‘Bill’.

One cannot copy the printed representation of an object into a file, read back the
file, and get the object again. This sort of thing can be done for some LISP values, but
not for SKETCH objects. However, the wumneval-object tunction will transform any

SKETCH object into a LISP object that has this print-re-read ability. and which, when
evaluated, will yield the SKETCH object. Thus the code—

(setq y (uneval-object x))

(pretly-print v some-output-port)

(setq z (read corresponding-input-port))
(setq w (eval z))

will generally cause w to equal x (and z to equal y).

Here, also, if some attribute value of x is an object with a has-name attribute, that
attribute of x will be represented in y by just its type and name, as in—

(a-man has-name 'Bill).

So an equal object of the same name must be made to exist in the environment that
evaluates z. However, x itself will not be represented by its name, if it has one, but will
always be represented as a type and list of attributes.

Thus the unevaluation of ‘Bill’ above is—
(a-man has-name 'Bill has-wife (a-woman has-name 'Jill)),
while the unevaluation of ‘Jill’ is—

(a-woman has-name 'Jill has-husband (a-man has-name 'Bill)).

9. OPERATIONS. Operations can be defined which are like functions that have
different definitions depending upon the type of their first argument. Operations can also
have both a macro definition, used at macro expansion time if the type of the first argu-
ment can be deduced at that time, and a function definition, used at evaluation time, if
the type of the first argument is not known at macro expansion time.

To define an operation called "move-forward” we write—

Printed April 27, 1989

OBJECTS 5-10

(eval-when (eval load compile)
(an-operation has-name "'move-forward)).

To define how it will be applied to an-event object we write—

(eval-when (eval load compile)
(an-operation-descriptor has-name "*move-event-forward-descriptor*
has-type an-event
has-operation move-forward
has-function 'move-event-forward-function
has-macro 'move-event-forward-macro
has-parameters <some-parameter >)).

Now the call—
(move-forward x v)
were X is an-event will evaluate the same as—
(funcall 'move-event-forward-function
move-event-forward-descriptor move-lorward
Xy)
Move-event-forward-function can access the has-parameters attribute ol *move-event-

forward-descriptor* if it wants to. This can allow one function to serve lor several
related operations.

Move-event-forward-function will be used instead ol move-event-lorward-macro
because the type of x is not known at macro expansion time. However, the call—

(move-forward (an-event x) v)
will be macro expanded to—

(move-event-forward-macro #.*move-event-forward-descriptor® #.move-event
(an-event x) y)

which will expand in turn. Note that the first two arguments are not expressions, but
rather an-operation-descriptor object and an-operation object (the ‘#.’ instructs the LISP
reader to both read and evaluate the next expression, and return the result of the evalua-
tion as the thing read). The has-parameters attribute of the former could be accessed by
move-event-forward-macro.

Macro arguments like the first two to move-event-forward-macro are called ‘pre-
evaluated’. Such arguments are actual values, rather than expressions which evaluate to
values at some later time. Pre-evaluated macro arguments provide parametric informa-
tion to macros efficiently. However, pre-evaluated arguments must not be used in the
expansion of the macro, unless the macro expands to a call on another macro that also
accepts pre-evaluated arguments.

If move-event-forward-macro were not given (the has-macro attribute of *move-
event-forward-descriptor* was omitted), then—

(move-forward (an-event x) y)
would be macro expanded to—

(move-event-forward-function *move-event-forward-descriptor* move-event
(an-event x) y).

Omitting move-event-forward-function (the has-function attribute of *move-event-

Printed April 27, 1989

OBJECTS 5-11

forward-descriptor®), is not permitted.
By defining another operation descriptor, such as—

(eval-when (eval load compile)
(an-operation-descriptor has-name "*move-truck-forward-descriptor*
has-type a-truck
has-operation move-forward
has-function 'move-truck-forward-function
has-macro 'move-truck-forward-macro
has-parameters <some-parameter>)),

the move-forward operation could be defined differently on events and trucks.

10. PARENT OPERATIONS. it is possible to redefine an operation in such a way
that the new definition uses the old definition. Suppose we have defined the move-lorward
operation as above, and write—
(eval-when (eval load compile)
(an-operation-descriptor has-name "*newer-move-event-forward-descriptor*
has-type an-event
has-operation move-forward
has-function ‘newer-move-event-forward-function
has-macro 'newer-move-event-forward-macro
has-parameters <some-parameter>)).
Now the call—
(move-forward x v)
were X Is an-event will evaluate the same as—
(funcall 'newer-move-event-forward-function
*newer-move-event-forward-descriptor® move-tforward
xXy)

However the previous definition of move-forward has not been lost. Whenever an-
operation-descriptor with particular has-descriptor-type and has-descriptor-operation
attributes 1s made, the most recently made operation descriptor with the same /las-
descriptor-type and has-descriptor-operation, \f any, becomes the parent of the new
descriptor. In our case, the parent operation can be executed by the call—

(execute-parent-operation *newer-move-event-forward-descriptor*
move-forward x y),

which will evaluate the same as—

(funcall 'move-event-forward-function
move-event-forward-descriptor move-forward

X y).
Similarly the call—

(execute-parent-operation *newer-move-event-forward-descriptor®
move-forward (an-event x) v)

will macro expand to—

Printed Aprit 27, 1989

OBJECTS 5-12

(move-event-forward-macro #.*move-event-forward-descriptor* #. move-forward
(an-event x) y).

There can be a problems with reloading a code file into an environment into which
the file has previously been loaded, such as after fixing bugs in the file during debugging,
if the file contains attribute descriptor definitions such as that in the eval-when above.
Normally, any newly made descriptor is added to all the previously existing descriptors,
so the new version of the descriptor and the old version would both be active, with the
old version being an ancestor of the new. However, if the descriptor has a has-name attri-
bute, remaking it will merely return the old descriptor in place of the new descriptor,
without making any new active descriptor. This is what should happen, so descriptors
should be named. They are usually named anyway, to facilitate their use in ezecute-
parent-operation calls. '

But now a different problem appears: the reloaded descriptor must be identical with
the previously loaded descriptor to prevent an error (see NAMES above). Thus one can-
not fix a bug in the descriptor definition without reloading from scratch.

11. CREATE-OBJECT OPERATIONS. Often the creation of an object of a par-
ticular type should be accompanied by checks on the attribute values of the object. These
may be performed by a special create fuuction for the object.

First note that the create-object operation is invoked by calls such as—

(create-object (list an-event has-start-time 1100
has-stop-time 1330)
nil)

in which the first argument is a list which represents the object, and the second argument
is a prototype object, which is missing (i.e. nil) in this case. The list which represents the
object is called an ‘abnormal object’. It has the object type as its first element, and the
object’s attribute label/value pairs as its remaining elements. The prototype object, were
it present, would be used to supply default values for attributes not specified in the
abnormal object.

Now given the declare-hunk-type-definition of an-event above, we may evaluate—

(eval-when (compile load eval)
(an-operation-descriptor
has-name "*create-event-descriptor*
has-descriptor-operation create-object
has-descriptor-type an-event
has-function 'create-event)),

and thereby introduce a new function, create-event, to take over the job of creating an-
event objects. This function might be written as—

Printed April 27, 1989

OBJECTS 5-13

(defun create-event (the-operation-descriptor the-operation
the-object the-prototype
&aux the-event)
(setg the-event (create-parent-object *create-event-descriptor®
the-object the-prototype))
(cond ((not (object-1s-a-stub (an-event the-event)))
(assert (fizp (has-start-time (an-event the-event)))
'(has-start-time attribute is not a fixnum))
(assert (fizp (has-stop-time (an-event the-event)))
'(has-stop-time attribute is not a fixnum))
(assert (not (lessp (has-stop-time (an-event the-event))
(has-start-time (an-event the-event))))
'(has-stop-time attribute is less than has-start-time attribute))))
the-event).

This function first uses the object creation lacility provided by the parent descriptor
of *create-event-descriptor®: that is, by the descriptor lor the create-object operation on
an-event type objects that existed just before *create-event-descriptor* was made. This
parent is invoked by the call—

(create-parent-object *create-event-descriptor*® the-object the-prototype),
which is almost equivalent to—

(execute-parent-operation *create-event-descriptor® create-object
the-object the-prototype),
but differs in that it does not try to extract the type of the-object by executing—
(has-type the-object),
but uses—
(first the-object)

instead, because the-object is not an-event object, but rather an abnormal object.

Our function then checks the attribute values, and returns the object created. We
must not check the attributes in the case when the object created is a stub (see NAMES
above).

Note that we write ‘(an-event the-event)’ instead of simply ‘the-event’ whenever we
reference an attribute of the-event. The compiler uses the extra information that the-
event is an-event to compile much more efficient code for accessing the event. In fact, the
code that is compiled for element references executes in about 1 microsecond in this case,
whereas if the information is omitted the compiled code might take more than 100
microseconds.

12. MAKE-OBJECT OPERATIONS AND INDEXING. The act of making an
object is different from creating it. Making an object first creates it, and then indexes it.
We can add a make function special to an-event by writing—

Printed April 27, 1989

OBJECTS 5-14

(eval-when (compile load eval)
(an-operation-descriptor
has-name *make-event-descriptor*
has-descriptor-operation make-object
has-descriptor-type an-event
has-function 'make-event))

to introduce the new function make-event for making an-event objects. The make-event
function could be defined as follows—

(defvar *event-list*) ; List of all events sorted by has-start-time.

(defun make-event (the-operation-descriptor the-operation
the-object the-prototvpe
&uauz the-event)
(setg the-event (make-parent-object *make-event-descriptor*
the-object the-prototype))
(cond ((not (has-start-time (an-event the-event))))
((or (null *event-list*)
(lessp
(has-start-time (an-event the-event))
(has-start-time (an-event (first *event-list*)))))
(push the-event *event-list*))
(t
(do ((the-list *event-list* (rest1 the-list)))
((or (null (rest1 the-list))
(lessp
(has-start-time (an-event the-event))
(has-start-time (an-event (second the-list)})))
(setf (has-previous-event the-event *event-password®)
(first the-list))
(if (rest! the-list)
(setf(has-previous-event (second the-list)
event-password)
the-event))
(setf (restl the-list)
‘(,the-event . (restI the-list)))))))
the-event).

This function first uses the object making facility provided by the parent descriptor of
make-event-descriptor®. This facility is invoked by the call to make-parent-object which
behaves like create-parent-object (see last section: the-object is an abnormal object here
too). Our function then indexes the new event, by setting its has-previous-event attribute
to the nearest previous event, if any, and by push’ing it into the *event-list*. However,
this indexing is not done if the newly created event is a stub, which would be true if and
only if its has-start-time is nil (because of the checks made by the create-event Function
above).

The reason why the has-previous-event attribute is hidden (see the section above on
BASIC TYPES) should now be clear. If the has-previous-event attribute were to be
printed when an-event object is printed, its value would be another event object, which

Printed April 27, 1989

OBJECTS 5-15

when printed would contain another has-previous-event attribute, which would print yet
another an-event object, and so on recursively. Also, if an-event object is copied from one
memory load to another. the has-previous-event list in the target memory might be
different from that in the source memory. So the has-previous-event attribute should not
be copied, but should be recomputed when the object arrives in the target memory.

13. STANDARD OPERATIONS. Table 5.1 is a synopsis of all the operations that
are known to the object system. All but the ones that index descriptors are standardly
defined for all SKETCH objects by declare-hunk-type, declare-vector-type, or the
SKETCH dynamic type creation mechanism (see BASIC TYPES and DYNAMIC TYPE
AND ATTRIBUTE CREATION above). Compare-object and uneval-object are also
defined for LISP objects, such as numbers and lists.

14. ATTRIBUTE DESCRIPTORS. There are a number ol different operations
associated with a given attribute and a given type—

(1) Get the value of the attribute from an object of the given
type.

(2) Set the value of the attribute for an object of the given
tvpe.

(3) Inspect and optionally change an initial value of the attri-
bute for an object of the given type which 1s being made.

(4) Provide the default value of the attribute for an object of
the given type which is being made.

(5) Determine whether the attribute is to appear in a pretty-
printed version of an object of the given type, and optional-
ly format the attribute value in a special manner when 1t is
to be part of such a pretty-printing.

(6) Determine whether the attribute is to appear 1n an
unevaluated version of an object of the given type, and op-
tionally unevaluate the attribute value in a special manner
when it i1s to be part of such an unevaluation.

(7) Determine whether the attribute’s values are to be com-
pared when objects of the given type are compared, and op-
tionally compare the attribute’s values in a special manner
when such objects are compared:

Printed April 27, 1989

OBJECTS 5-16

TABLE 5.1

STANDARD OBJECT OPERATIONS

make-object Makes an object. First applies has-init- functions
and macros to attribute values destined for the ob-
ject, and finds default values for attributes not
specified. Then creates the object, and lastly
indexes the object.

create-object Creates an object. Does no indexing. Does not use
default values or has-init- functions or macros.

object-is Tests objects to see if thev are of a given tvpe.

object-is-a-stub Tests objects to see if thev are a stub.

compare-object Tests objects for equality of all non-hidden attri-
butes.

move-object Sets all the attributes of the second object to the

values of the attributes of the first object, and then
discards the first object (it cannot be further used
again).

uneval-object For an object, returns a LISP object that will evalu-
ate to the object, and which can be printed and re-
read without being changed.

format-object For an object, returns a format that can be pretty-
print-format’ed to pretty-print the object.

index-operation-descriptor | Records the existence of a new operation descriptor
for a type (see an-operation-descriptor in the GLOS-
SARY).
index-attribute-descriptor | Records the existence of a new attribute descriptor
for a type (see an-attribute-descriptor in the GLOS-
SARY).

(8) Determine whether the attribute value is to be tested for nil
when an object of the given type is tested to see if it is a
stub, and optionally perform this test in a special manner
when such an object is tested.

Rather than have an-operation-descriptor for each of these 8 operations, we have
an-attribute-descriptor which provides information for all 8 operations. The attribute
descriptor in turn references an-attribute-function-table which has functions and macros
for the first 3 of the above operations. Specifically, the attribute function table has the
attributes—

Printed April 27, 1989

OBJECTS 5-17

has-get-function hus-get-macro
has-set-fanction has-set-macro
has-init-functron has-rnit-macro

which play the same roles as the has-function and has-macro attributes of an-operation-
descriptor.

For the fourth operation above, default value specification, the attribute descriptor
does not provide a function or macro. Instead it provides an expression which is
evaluated when an initial value is needed.

For the last 4 operations the attribute descriptor contains a switch, which behaves
something like an-operation-descriptor has-function attribute. The switches can also take
the values yes or no, whose meaning depends upon the type of switch. For example, a2 no
value for the has-pretty-format switch that controls prettv-printing means the attribute is
not to be included when its containing object is pretty-printed; a yes value means it is to
be included; a nil value expresses no opinion on inclusion (if no one expresses an opinion,
yes is assumed); and any other value is taken to be a function that is called in place of
pretty-format to format the attribute value for pretty-printing.

Below we will discuss the get operation, delault value, and pretty-format switch in
more detall. See the GLOSSARY lor details on the set and init operations and the
uneval, compare, and is-a-stub switches. All the operations and switches mentioned in
this section are reviewed in Table 5.2.

15. HAS-GET-FUNCTION'S. The following attribute descriptor definition supplies

special functions to get and set the has-duration attribute ol an-event—

(eval-when (compaile load eval)
(an-attribute-descriptor

has-name "*get-event-has-duration-descriptor*

has-descriptor-attribute has-duration

has-descriptor-type an-event

has-functions
(an-attribute-function-table
has-get-function 'event-duration-get-function
has-set-function 'never-set-function
has-tnat-function 'never-init-function)))

(defun event-duration-get-function (the-descriptor the-attribute the-object)
(difference (has-stop-time (an-event the-object))
(has-start-time (an-event the-object)))).

This definition specifies that if x is an-event,
(has-duration x)
will be computed by calling—
(funcall 'event-duration-get-function *get-event-has-duration-descriptor® has-duration x)
This call will return the difference of the stop and start times for x.

The first argument to event-duration-get-function is the descriptor just made above,
the one that triggered the call to event-duration-get-function. This descriptor is not used

Printed April 27, 1989

OBJECTS 5-18

TABLE 5.2

ATTRIBUTE OPERATIONS, VALUES, AND SWITCHES

Attribute of
An-Attribute-Descriptor Use

Attribute of
An-Attribute-Function-Table

has-functions

Get the value of the attribute from an object

has-get-function of the given type.

has-get-macro

has-functions

Set the value of the attribute for an object

has-set-function ol tlie Ziven Pk,

has-set-macro

has-functions Inspect and optionally change an initial
has-init-function value of the attribute for an ohject of the
has-init-macro given type which is being made.

has-default-value Find the default value of the attribute for an

object of the given tvpe which is being made.

has-format-switch Determine whether the attribute is to appear
in a pretty-printed version of an object of
the given type, and optionally format the at-
tribute value in a special manner when it is
to be part of such a prettv-printing.

has-uneval-switch Determine whether the attribute is to appear
in an unevaluated version of an object of the
given type, and optionally unevaluate the at-
tribute value in a special manner when it is
to be part of such an unevaluation.

has-compare-switch Determine whether the attribute’s values are
to be compared when objects of the given
type are compared, and optionally compare
the attribute’s values in a special manner
when such ohjects are compared.
has-is-a-stub-switch Determine whether the attribute value is to
be tested for nt/ when an object of the given
type is tested to see if it is a stub, and op-
tionally perform this test in a special
manner when such an object is tested.

in the above example, but in general it may be used to allow one function to get many

Printed April 27, 1989

OBJECTS 5-19

different attributes. The descriptor has-parameters attribute can be used as a parameter
by this function.

This has-parameters attribute is an integral part of the descriptor so that it can be
efficiently accessed. Other attributes special to an application may be defined for the
descriptor, but they will not be accessed as efficiently (as they will be placed on the
descriptor’s property list).

The event-duration-get-function i1s the has-get-function of the attribute descriptor
defined above. The has-set-function of the same descriptor specifies that—

(setf (has-duration x) y)
will be computed by calling—
(funcall 'never-set-function y *get-event-has-duration-descriptor® has-curation x).

Never-sel-function is a standard function supplied by SKETCH which will print an error
message saying that has-duration can never he set {or objects ol an-event type. Never-
inal-function is similar, and prohibits has-duration from being initialized when an-event is
made.

For details on has-get-function’s, has-set-function’s, and has-inl-function’s. see an-
attribute-function-table in the GLOSSARY.

16. HAS-GET-MACRO’S. The expression—
(has-duration (an-event x))

will expand into a funcall to event-duration-get-Tunction, given the above definitions. It
would be nice to allow event-duration-get-function to be a macro, so it could produce
more efficient in-line code. But this is not always possible, because an expression such
i

(has-duration x)

does not know the type of x at compile time, and therefore must expand into something
that does not locate the event-duration-get-function until eval time. Since compiled code
cannot call macros at eval time, event-duration-get-function cannot be a macro.

However, if we change the attribute descriptor definition to add a has-get-macro. as

(eval-when (compile load eval)
(an-attribute-descriptor

has-name "*get-event-has-cduration-descriptor*

has-descriptor-attribute has-duration

has-descriptor-type an-event

has-functions
(an-attribute-function-table
has-get-function ’event-duration-get-function
has-get-macro 'event-duration-get-macro
has-set-function 'never-set-function
has-init-function 'never-init- function))),

then—

(has-duration (an-event x))

Printed April 27, 1989

OBJECTS 5-20

will expand into—

(event-duration-get-macro #.*get-event-has-duration-descriptor® #.has-curation
(an-event X)),

where the first two macro arguments are pre-evaluated (see OPERATIONS above).
Event-duration-get-macro should be a macro, and may be defined by—

(defmacro event-duration-get-macro (the-descriptor the-attribute the-object)
‘(let ((x ,the-object))
(difference (has-stop-time (an-event x))
(has-start-time (an-event x))))).

Event-duration-get-function must still exist, and will be called by the expansion of—
(has-duration x),

which does not specify the type of x at macro expansion time.

17. DEFAULT VALUES. Default values may be specified when types arc defined by
declare-hunk-type or declare-vector-type, as in—

(declare-hunk-type an-event
has-password *event-password*
has-name (has-start-time 0)
1s-read-init-private
(has-stop-time *default-duration*)
ts-hidden is-private
has-previous-event),
where the default values are ‘0’ and ‘*default-duration*’. These delault values become
the has-default-value attributes of appropriate attribute descriptors.

Default values are expressions which are evaluated when needed. They may refer to
global variables, such as ‘*default-duration®’, but not to local variables. Also, if one
wants nil to be a default value, one must use the non-nil expression "nil (with a quote) as
a default value expression.

When an object is made, a search is made for default values declared for attributes
and associated with the type of the object being made (see SEARCHING FOR DESCRIP-
TORS below). Default values are found as the has-default-value attribute of an-attribute-
descriptor’s whose has-descriptor-type is the type of the object being made (or an ancestor
of that type: see the has-parent attribute of a-type object in the GLOSSARY), and whose
has-descriptor-attribute is the attribute which has the default value (neither has-
descriptor-type or has-descriptor-attribute may be nil). If a non-nil default value is [ound,
it is an expression which is evaluated to produce an initial value for an attribute in an
object being made.

Default values are inherited. If a has-default-value attribute is initialized to nil when

an-attribute-descriptor is made, the attribute will be reset to the value of the parent
descriptor’s has-default-value attribute.

18. PRETTY-FORMAT SWITCHES. A format-object operation is provided for
each SKETCH object type to perform the duities of the pretty-format macro for objects of
that type. The default format-object operations provided by declare-hunk-type and
declare-vector-type will only include in the resulting format attributes actually stored in

Printed April 27, 1989

OBJECTS 5-21

the object which is to be pretty-printed. Also, only attributes with non-nil values are
included.

These default format-object operations search attribute descriptors for has-format-
switch’s in the same way as default make-object operations search for has-default-value's.
The format switch found for an attribute is used to control inclusion of the attribute
value in the object’s format, and may also control the formatting of the attribute value.

(1) If the format switch is no, the attribute value is not included in the object format.

(2) If the format switch is yes, the attribute value is included, and the pretty-format
macro is used to format the attribute value for inclusion.

(3) If the format switch is a symbol other than yes, no, or nil, that symbol is used as a
function called with the same arguments as pretty-format to format the attribute
value. If the function returns a non-nil value, the attribute is included in the object
format, and the function’s return value is taken to be the format of the attribute
value. If the function returns nil, the attribute value is not included.

(4) A nal format switch, which is the same as no format switch being provided by any
attribute descriptor, is taken as equivalent to a yes format switch.

(5) Note that if an attribute has a nil value, it is not included in the object format. and
no check of the attribute’s format switch is mode.

19. OTHER ATTRIBUTE SWITCHES. Attribute descriptors have three other
kinds of switches.

The has-uneval-switch attribute is just like the has-format-switch attribute, except it
is for the uneval-object operation rather than for the format-object operation.

The has-compare-switch attribute is similar, but it is for the compare-object opera-
tion. Here a no means not to test the attribute values when comparing two objects, while
a yes or nil means to test the values with the equal function. Any other symbol as the
switch value means to test by calling the symbol as a replacement for the equal function.
The symbol compare-object-function may be used just so to cause attribute values to be
themselves compared piece by piece, after the manner of compare-object. Fqual, on the
other hand, will consider SKETCH objects to be different if they do not occupy the same
position in memory, even if the objects have identical parts.

The has-1s-a-stub attribute is similar, but tests attribute values for nsl in order to
determine whether an object is a stub (see NAMES above).

A hidden attribute, as described in the BASIC TYPES section above, has no as the
value of its has-format-switch, has-uneval-switch, and has-compare-switch. A visible attri-
bute has nil as the value of these switches. By chosing different values for these switches,
an attribute may be made partly visible and partly hidden. See declare-hunk-type and
declare-vector-type in the glossary for how to specify values for these switches.

20. THE FORMAT-OBJECT OPERATION. The format-object operation does
the work of pretty-format for SKETCH objects. It is common to want to adjust the
pretty-printed version of the object beyond what can be done with format switches. This
1s usually done by creating a new copy of the object and tinkering with the attribute
values in the copy. For example, to pretty-print an-event objects with a has-duration
attribute in place of has-stop-time, the following might be used—

Printed April 27, 1989

OBJECTS 5-22

(eval-when (compile load eval)
(an-operation-descriptor
has-name **format-event-descriptor*
has-descriptor-operation format-object
has-descriptor-type an-event
has-function format-event))

(defun format-event (the-operation-descriptor the-operation
the-object
optional the-level
&auz the-event)
(setq the-event (create-parent-object *create-event-descriptor®
(list an-event) the-object))
(cond ((has-start-time (an-event the-event))
(setf (get-parent-attribute
get-event-has-duration-descriptor has-duration
{(an-event the-event))
(diff (has-stop-time (an-event the-event))
(has-start-time (an-event the-event))))
(setf (has-stop-time (an-event the-event) *event-password*)
i)
(ezecute-parent-operation *format-event-descriptor* format-object
(an-event the-event) the-level)).

This function creates a copy of the-object, called the-event. If the-event is not a
stub, then the function stores an actual has-duration attribute value in the-event, so that
that attribute will print, and sets the actual has-stop-time attribute of the-event to nil, so
that attribute will not print. Lastly, the function formats the-event using ezecute-
parent-operation.

In order to set the actual has-duration attribute of the-event, the function must use
the parent of *get-event-has-duration-descriptor®, which was first introduced in the HAS-
GET-FUNCTION'S section above. The get-parent-attribute macro aids in this.

21. SEARCHING FOR DESCRIPTORS. When an operation, such as make-object,
is to be performed for a particular type, a search for an-operation-descriptor is made. All
the descriptors searched must have their has-descriptor-operation attribute equal to the
operation to be performed.

First, an operation descriptor whose has-descriptor-type is the particular type of the
object being operated on (or an ancestor of that type: see a-type in the GLOSSARY) is
searched for. Such an operation descriptor is specific to the particular type of object
being operated on. The search is made in most-recently-made-first order.

Then, if no such specific descriptor is found, a global operation descriptor valid for
all types is searched for. Such a global descriptor has nil as its has-descriptor-type.
Again the search is made in most-recently-macde-first order.

The descriptor that is found is passed as an argument to the function or macro
designated by that descriptor.

Printed April 27, 1989

OBJECTS 5-23

When a [lunction, such as the has-get-function, is required for a particular
type/attribute pair, a search is first made among all attribute descriptors whose has-
descriptor-attribute equals the attribute. As for operations, the search begins in most-
recently-made-first order with descriptors whose has-descriptor-type equals the type.of the
object whose attribute is being gotten (or an ancestor of that type), and then continues,
again in most-recently-made-first order, to descriptors whose fhas-descriptor-type is nil
However, in this case, il no descriptor is found, the search continues further to descriptors
whose has-descriptor-attribute 1s nil, but whose has-descriptor-type is the type of the
object whose attribute is being gotten (or an ancestor of that type). Again, this last
search is made in most-recently-made-first order.

Another difference in the attribute descriptor case is that not all the descriptors
searched will have a has-get-function. Those without such a function cannot be used, and
are ignored.

The descriptor that supplies the has-get-function is passed as an argument to that
function.

The searches lor has-set-function's and has-init-function’s are similar. Searches for
macros (e.g. has-get-macro), will be satisfied by a descriptor that has either a macro or a
function. If only the [unction is present (e.g. only has-get-function and not has-get-
mucro), 1t will be used as if a macro existed that simply called the function.

Ezxecute-parent-operation and get-parent-atiribute continue searches rom the point
where they left off. Il a first search for an-operation-descriptor found a descriptor D,
then—

(ezecute-parent-operation D ...)

continues the search [rom the point where it left off. Get-parent-attribute can be used
with setf to continue searches for setting attributes.

Make-parent-object and create-parent-object are used in place of execute-parent-
object for the make-object and create-object operations, because these latter operations do
not have a first argument which is an object of the type to be used in searching for the
descriptor. Rather the first argument is a list whose first element is that type. Similarly
parent-object-is is used for the object-is operation, whose first argument is the type itsell.
Other non-standard operations can be created with help from the find-operation-
descriptor macro (see the GLOSSARY).

Searching [or switches and default values is similar to searching for has-get-
Junction’s, except that one searches instead for non-nil has-defaull-value's, has-format-
switch’es, has-uneval-switch’es, has-compare-swilch’es, or has-is-a-stub-switch’es.

22. GENERALIZED INDEXING. Suppose we want to create a data base contain-
ing people defined by—

Printed April 27, 1989

OBJECTS 5-24

(declare-hunk-type a-person
has-height has-weight has-age ...

g has-1s-a-stub-switch ‘yes
has-name

has-is-a-stub-switch 'no
has-social-security-number).

We want each person to be uniquely defined by his social security number, but not by his
name. Looking back at the previous section on NAMES, we see that we want to define
the concept of a-person stub to be a-person object with all attributes missing (nil) except
for has-social-security-number. This is done by the two has-1s-a-stub-switch lines in the
above definition. The lirst ensures that the has-name attribute of a-person must be n:l in
a stub: by default 1t would not have to be nil. The second allows the has-social-security-
number attribute of a-person in a stub to be non-nil.

The next step is to define a special make-object function for a-person objects—

Printed April 27, 1989

OBJECTS 5-25

(eval-when (eval load compile)
(an-operation-descriptor has-descriptor-fype a-person
has-descriptor-operation mnake-object ,
has-function 'make-person-function))

(defun make-person-function (the-operation-descriptor the-operation
the-abnormal-object the-prototyvpe
&auz the-new-object the-social-security-number the-previous-object)
(setq the-new-object
(create-object (process-attributes the-abnormal-object the-prototype)
the-prototype))
(setq the-social-security-number
(has-social-security-number (a-person the-new-object)))
(assert (and the-social-security-number
(symbolp the-social-security-number))
'(has-social-security-number attribute is not a non-nil symbol))
(setq the-previous-object
(and (boundp the-social-security-number)
(symeval the-social-security-number)))
(assert (or (not the-previous-object)
(object-ts a-person the-previous-ohject))
‘ ‘(previous value of ,the-social-security-number is not a-person))

(cond ((not the-previous-object)

(set the-social-security-number the-new-object))

((object-1s-a-stub (a-person the-new-object))
the-previous-object)

((object-1s-a-stub (a-person the-previous-object))
(move-object the-new-object the-previous-object)
the-previous-object)

((compare-object (a-person the-new-object)

(a-person the-previous-object))
the-previous-object)

(t (error '(object made is not equal to previous

person with same social security number)))))

The first step in the make-person-function i1s to apply process-attributes to the
abnormal version of the object being made (see abnormal objects in CREATE-OBJECT
OPERATIONS above). E.g.—

(make-person-function <an-attribute-descriptor D> make-object
(list a-person has-social-security-number ’'40-90-000|
has-name 'George has-height 72 has-weight 200)
nal)

is a typical call to make-person-function, in which the third argument is an abnormal

‘ object. The process-attributes function alters the abnormal object by filling in default
values of attributes not specified (using the has-default-value attributes of attribute-
descriptors: see DEFAULT VALUES above). It also applies has-init-functions, if any, to
non-default attribute values.

Printed April 27, 1989

OBJECTS 5-26

The modified abnormal object is passed to create-object to create the a-person
object. The has-social-security-number is extracted from the resulting object. and
checked to be sure it is a legal non-mi! symbol (in FRANZ lisp. 40-90-000 is read as a sym-
bol, even if not surrounded by vertical bars).

The social security number is supposed to be a unique identifier for the person, so in
this example we simply set the symbol value of the social security number to the person
object. Thus if there was a previous object with the same social security number, it can
be found as the value of the social security number.

The rest of the function is as follows—

(1) If there is no previous object, we set the social security number symbol
value to the new ohject, and return the new object.

(2) Otherwise, if the new object is a stub, we return the previous object.

(3) Otherwise, if the previous object is a stub, we move the new object into
the previous object and return the latter.

(4) Otherwise, we compare the new and previous objects, and return the latter
if the two objects are equal.

(5) Otherwise, we signal an error.

We also need to provide special format-object and uneval-object operations to output
stubs such as—

(a-person has-social-security-number ’H0-90-000)

in place of the full object when the object is an attribute value of another object. The
situation where the stub should be output is recognized by a non-zero level argument to
Jormat-object, or a non-nil index-switch argument to uneval-object (see the GLOSSARY).

23. C TYPES. The OBJECTS package contains some C language support code that is
a continuation of the ATOMS package. This continuation makes use of a-type objects,
which is why this code is not included in the ATOMS package to begin with (the ATOMS
package does not depend upon the OBJECTS package).

C code can obtain a pointer to any object with a has-name attribute by calling—
sob_nobject ("<name>")
In particular, the system has already done this for basic a-type objects, such as a-

char, and stored the results away in C global variables, such as SOB_CHAR. The follow-
ing table lists all the global C variables set to a-type objects in this manner—

Printed April 27, 1989

OBJECTS 5-27

C Global SKETCH C Global SKETCH

Variable a-type Object Variable a-type Object
SOB_ATTRIBUTE | an-attribute SOB_LONG a-long
SOB_BIGNUM a-bignum SOB_LVECTOR a-lisp-vector
SOB_BINARY a-binary-function SOB_NONLISP a-non-lisp-value
SOB_CHAR a-char SOB_PORT a-port
SOB_DOUBLE a-double SOB_SHORT a-short
SOB_FIXNUM a-fiznum SOB_STRING a-string
SOB_FLOAT a-float SOB_SYMBOL a-symbol
SOB_FLONUM a-flonum SOB_TYPE a-type
SOB_HUNK a-hunk SOB_UBIT a-ubit
SOB_INT an-int SOB_UCHAR a-uchar
SOB_IVECTOR an-immediate-vector || SOB_ULONG a-ulong
SOB_LARRAY a-lisp-array SOB_UNSIGNED | au-unsigned
SOB_LBIT an-lbat SOB_USHORT a-ushort
SOB_LIST a-list SOB_VALUE a-ralue

The C data type sob_type is defined to be a pointer to «-type object. The C data
type sob_altribute is defined to be a pointer to an-attribute object.

There 1s a C equivalent of the has-lisp-type Function: sob_Iltype. This is actually a
last macro. An example of its use is—
if (sob_ltype (x) == SOB_FIXNUM)
There s also a C function, sob_tsize, to get the has-size attribute ol a-type object (the
number of bits taken by a datum of the given type when it is an array element)

To allow code that deals with different types of numbers to use the C case statement
(which can only test integers known at compile time, and cannot test pointers), there is a
function, sob_tcase, that returns an integer code for numeric types. E.g..

sob_tcase (SOB_CHAR)

returns an integer equal to the C manifest constant SOB_CCASE. The following is a
table of the codes returned—

Printed April 27, 1989

OBJECTS 5-28
Ty_type Value Code Returned | Numeric Type
SOB_UBIT SOB_UBCASE | unsigned 1 hit integer
SOB_CHAR SOB_CCASE signed 8 bit integer
SOB_UCHAR SOB_UCCASE | unsigned 8 bit integer
SOB_SHORT SOB_SCASE signed 16 bit integer
SOB_USHORT SOB_USCASE | unsigned 16 bit integer
SOB_LONG SOB_LCASE signed 32 bit integer
SOB_INT
SOB_ULONG SOB_ULCASE | unsigned 32 bit integer
SOB_UNSIGNED
SOB_FLOAT SOB_FCASE signed 32 bit floating point number
SOB_DOUBLE SOB_DCASE unsigned 64 bit floating point number

There is another function, sob_tmissing, what will return the missing value for particular
numeric type, given the sob_case code of that type. The missing value returned is always
a double. For example,

sob_tmissing (SOB_C'CASE)

returns SOB_CMISSING cast to a double. T'or unsigned integers, sob_tmissing returns
some value that can never be taken by the integer.

24. HITLIST.

(1)

Possibly add inheritance under the constraint that the underving format of related
ohjects is the same.

Possibly make compare-object really test equality of fixnums with flonums.

Find out why (get-attribute xxx yyy) (type of yyy not available at compile time) is
so slow and try to fix it. Also make compiled version more compact. Maybe use C
code?

Possibly make has-vector-C-element-type attribute be non-hidden.

Consider not allocating separate hunk part ol vector object with 2 element hunk
part until property list is set (use constant hunk part in the meantime).

Possibly return component length as part of pretty-print format, so better judge-
ments can be made using prinlength.

Possibly implement diflerent levels of verbosity in printing.
Possibly make sob_unbound handle abbreviations.

Possibly disable special consideration of has-name by delault declare-hunk-type and
declare-vector-type provided format-object and uneval-object functions if its has-is-
a-stub-switch is not no.

Possibly outlaw allowing the parentheses to be omitted [rom (s_attribute), on the
grounds that misspelled options (e.g. is-read instead of is-read-private) are mistaken
for attributes.

Printed April 27, 1989

OBJECTS

25. GLOSSARY.

a-bignum
a-binary-function
a-char

a-double
a-fixnum

a-float

a-flonum
a-hunk
an-immediate-vector
an-int

an-lbit
a-lisp-array
a-lisp-vector
a-list

a-long
a-non-lisp-value
a-port

a-short

a-string
a-symbol

a-ubit

a-uchar

a-ulong
an-unsigned
a-ushort
a-value

5-29

'SKETCH Type|
[SKETCH Type|
[SKETCH Type|
[SKETCH Type,
" [SKETCH Type|
[SKETCH Type|
[SKETCH Type|
[SKETCH Type|
[SKETCH Type|
ISKETCH Type|
[SKETCH Type|
[SKETCH Type
[SKETCH Type]
[SKETCH Type!
[SKETCH Type
[SKETCH Type
[SKETCH Type
SKETCH Type
'SKETCH Type
[SKETCH Type
[SKETCH Type
[SKETCH Type
‘SKETCH Type
(SKETCH Type
[SKETCH Type|
[SKETCH Type,

USE: These are types of C and LISP values according to the following table—

Printed April 27, 1989

OBJECTS 5-30

a-bignum LISP bignum: large integer.
a-binary-function LISP binary: compiled function.
a-char C char: 8 bit signed integer.
a-double C double: 64 bit floating point number.
a-fixnum LISP fiznum: small integer.
a-float C float: 32 bit floating point number.
a-flonum LISP flonum.
a-hunk LISP hunk0, hunkl, ..., or hunké.
an-immediate-vector | LISP vector:.
an-int C int: 32 bit signed integer.
an-lbit C 1 bit unsigned integer for which the value
0 denotes ni and the value 1 denotes &.

a-lisp-array LISP array.
a-lisp-vector LISP vector.
a-list LISP list.
a-long C long: 32 bit signed integer.
a-non-lisp-value LISP other.
a-port LISP 1/0 port.
a-short C short: 16 bit signed integer.
a-string LISP string.
a-symbol LISP symbol.
a-ubit C 1 bit unsigned integer.
a-uchar C uchar: 8 bit unsigned integer.
a-ulong C ulong: 32 bit unsigned integer.
an-unsigned C unsigned: 32 bit unsigned integer.
a-ushort C ushort: 16 bit unsigned integer.
a-value LISP value.

‘“abnormal object” [SKETCH Term|

USE: An ‘abnormal object’ is a list which represents an object. The first list element is
the type of the object, and the rest of the elements are attribute label/value pairs.
The object type is itselfl a-type object, and not the symbol naming the type. Simi-
larly the attribute labels are an-attribute objects, and not symbols.

An example of an abnormal object is—

(list a-person has-weight 99 has-age 13)

Printed April 27, 1989

OBJECTS 5-31

(abnormal-object-for-macro ‘(list s_type s_attribute g_value ...)) (LISP Function)|
RETURNS: The list—
(s~type s_attribute g_value ...)

if the argument is formatted as indicated and the type and all the attributes
are represented by their names. In this case get may be applied to get
g_value’s from the returned list.

Otherwise returns nil (and does NOT call error).

(an-attribute has-name 's_name) [SKETCH Type Macro|
an-attribute [SKETCH Type|
at_ [SKETCH Argument Prefix]

USE: An-attribute serves as a label for an attribute value of a SKETCH object. See
s_attribute.

Whenever an attribute is gotten, set, initialized, pretty-printed, unevaluated, or
compared, the attribute and the type of the object being referenced are used
together to find an-attribute-descriplor that specifies functions, macros, and param-
eters to do these tasks. See an-attribute-descriptor.

ARGUMENT PREFIX: Attribute arguments are indicated by the prefix at_.

HAS-NAME: Each attribute MUST have a name which is a symbol. By convention, this
name should begin with an auxiliary verb or a preposition followed by a
hyphen: e.g. has-parent and has-parameters. See has-name.

INDEXING: Whenever an attribute is indexed, the name of the attribute has its function
definition set if it was previously nil. This is also done for stubs, as a stub
may be a completely defined attribute.

(an-attribute-descriptor [has-descriptor-type 'ty_type] [SKETCH Type Macro|
[has-descriptor-attribute 'at_attribute]
[has-functions 'aft_attribute-function-table]
[has-parameters 'g_parameters]
[has-info 'g_info]
(has-default-value 'g_default-value]
[has-1s-a-stub-switch ’s_is-a-stub-switch]
[has-compare-switch 's_compare-switch|
[has-format-switch ’s_format-switch]
[has-uneval-switch 's_uneval-switch])

an-attribute-descriptor [SKETCH Type]
atd_ [SKETCH Argument Prefix|
(has-parent ’atd_descriptor) [SKETCH Attribute Macro|
(has-descriptor-type 'atd_descriptor) [SKETCH Attribute Macro|
(has-descriptor-attribute ’atd_descriptor) [SKETCH Attribute Macro|
(has-functions ’atd_descriptor) [SKETCH Attribute Macro|
(has-parameters ’atd_descriptor) [SKETCH Attribute Macro]
(has-info ’atd_descriptor) [SKETCH Attribute Macro|
(has-default-value 'atd_descriptor) [SKETCH Attribute Macro]

Printed April 27, 1989

OBIJECTS 5-32

(has-is-a-stub-switch ‘atd_descriptor) [SKETCH Attribute Macroj
(has-compare-switch atd_descriptor) [SKETCH Attribute Macroj
(has-format-switch "atd_descriptor) [SKETCH Attribute Macro]
(has-uneval-switch "atd_descriptor) [SKETCH Attribute Macro|

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

USE: An-attribute-descriptor describes how a particular attribute, at_attribute, is stored
in objects of a particular type, ty_type. At_attribute may be nil/ to indicate that
the descriptor applies to all attributes of objects of type ty_type. Ty_type may be
nil to indicate that the descriptor applies to at_attribute for all objects, regardless
of type. At_attribute and ty_type may not both be nil.

See SEARCH ORDER below to find which attribute descriptor is used when
several have the same at_attribute and ty_type.

ARGUMENT PREFIX: Attribute descriptor arguments are indicated by the prefix afd_.
HAS-DESCRIPTOR-ATTRIBUTE: At_attribute: an-attribute or nil.
HAS-DESCRIPTOR-TYPE: Ty_type: a-type or nil.

HAS-FUNCTIONS: .dn-attribute-function-table or nil. The functions and macros in this
table are used to get values from, set values into. and check initial
values of the attribute.

\When two attribute descriptors are compared by compare-object. their
has-functions attributes are compared by compare-object instead of by
equal. This permits an-atiribute-descriptor with a has-name to be
repeatedly defined as long as all the definitions are the same, even if
the has-functions attribute value does not itself have a name (see s/ub).

HAS-PARAMETERS: Any LISP value. Used by the has-functions functions and macros.
Can be setf.

HAS-INFO: Just like has-parameters but is not visible: is not printed or represented in the
unevaluated attribute descriptor. Useful for cross reference lists.

HAS-DEFAULT-VALUE: An evaluatable LISP expression. Evaluated when an object is
made to provide a default value for the attribute. Cannot refer to
local variables.

If initialized to nil, will be set to the default value of the parent of
this descriptor (see below), if any.

HAS-1S-A-STUB-SWITCH: A symbol. If no, this attribute is not tested to see if it has any
particular value (such as nil) in order to verify that an object is
a stub. If yes, the attribute is tested by the not function, and
must be nil if the object is a stub. If nil, no opinion on testing
the attribute is expressed (if everyone expresses no opinion, the
result is the equivalent of yes). If some other symbol, then this
1s the name of a function which is called in place of not to test
the value of the attribute to see if it is acceptable for a stub.

If initialized to ni, will be set to the is-a-stub switch of the

Printed April 27, 1989

OBJECTS

HAS-COMPARE-SWITCH:

HAS-FORMAT-SWITCH:

HAS-UNEVAL-SWITCH:

5-33

parent of this descriptor (see below), if any.

A svmbol. If no, this attribute is not tested when two objects
are compared for equality. If yes, the attribute values for the
two objects are tested by the equal function if they are numbers,
strings, or lists, and by the egq function otherwise. If nil, no
opinion on testing the attribute is expressed (if everyone
expresses no opinion, the result is the equivalent of yes). If some
other symbol, then this is the name of a function which is called
in place of equal or eq to test the two value of the attribute to
see if they are equal.

If initialized to nil, will be set to the compare switch of the
parent of this descriptor (see below), if any.

A symbol. If no, pretty-printing this attribute is suppressed. If
yes, pretty-printing is required, and pretty-format is called to for-
mat the value of the attribute for printing. If n:/, no opinion on
printing is expressed (if everyone expresses no opinion, the result
is the equivalent of yes). If some other symbol, then this is the
name of a function which is called in place of pretty-format to for-
mat the value of the attribute. However, should this function
return ntl, the attribute will not be printed.

Il initialized to nil, will be set to the format switch of the parent
of this descriptor (see below), if any.

A syvmbol. If no, inclusion of this attribute in the results of
uneval-object is suppressed. If yes, inclusion is required. If nil, no
opinion on inclusion is expressed (if everyone expresses no opinion,
the result is the equivalent of yes). If some other symbol, then
this is the name of a function which is called in place of uneval-
object to unevaluated the value of the attribute. However, should
this function return ntl, the attribute will not be included in the
results. The function may return 'ntl to force inclusion of the
attribute with the value nil.

If initialized to nil, will be set to the uneval switch of the parent
of this descriptor (see below), if any.

HAS-PARENT: An-attribute-descriptor or nil. Automatically set (may not be initialized or

setf) to

the last attribute descriptor indexed before this one which has the

same at_attribute and either the same ty_type, or a type that is an ances-
tor of ty_type. The parent of an attribute descriptor, the parent’s parent,
the parent’s parent’s parent, etc. are said to be ancestors of the attribute
descriptor.

SEARCH ORDER: When an attribute, at_attribute, is gotten from or set into an object of

type

ty_type, or set to an initial value when the object 1s made, an-

attribute-descriptor must be found, and the appropriate has-functions
function selected to perform the get, set, or init. A search is made of
three groups of descriptors. Each group consists of all descriptors with

Printed April 27, 1989

OBJECTS 5-34

particular values of their has-descriptor-atiribute and has-descriptor-
type attributes as follows—

group | has-descriptor-atiribute | has-descriptor-type

1 at_attribute ty_type or an
ancestor of ty_type

2 at_attribute nil

3 il ty_type or an

ancestor of ty_type

The search examines each of the three groups in order. Each group is
examined by examining all descriptors in the group in most-recently-
made-first order. This can be done by examining first the most recently
made descriptor in each group, called the head of the group, and then
examining the head descriptor’s parent, that parent’s parent, and so
forth, until all ancestors of the group head have been examined.

The search stops when a descriptor is found whose has-get-function,
has-sel-function, or has-init-function is non-nil.

When an object of type ty_type is made, a similar search is made for
non-nil has-defanlt-value’s. \When an object is tested by object-is-a-stub
or compare-object, a similar search is made for non-nil has-is-a-stub-
switch’'s or has-compare-switch’s. When an object is pretty-print'ed or
uneval-object'ed, a similar search is made for non-nil has-format-
swilch’s or has-uneval-swilch’s.

Sometimes a search does not begin at the beginning, but instead begins
just after a particular descriptor in the order, thus in effect continuing
the previous search which found that descriptor.

ORDER OF MAKING: The assumption is made that all attribute descriptors with the same
has-descriptor-lype and has-descriptor-attribute are made in the
same order in both the compile and evaluation environments. The
get-attribute-descriptor function and all the macros that use it ‘
depend upon this assumption.

It is an error to make a descriptor with a non-nil ty_type if ty_type
is the ancestor of any other type. Thus all the descriptors for a type
must be made before the type is made a parent of another type.

NIL DEFAULT VALUES: To set a has-default-value attribute to an expression which evalu-
ates to mil, one must use

(an-attribute-descriplor ... has-default-value "nil ...)

This is necessary only if a non-nil default value from some ances-
tor of the descriptor must be overridden. If there are no non-nil
default values, the default value will be nil.

Printed April 27, 1989

OBJECTS 5-35

INDEXING: An-attribute-descriptor may be indexed by a has-name attribute in the nor-
mal way. It is also referenced by a variety of indices which enable the search
described above. Just before indexing,

(ezecute-found-operation
(find-operation-descriptor nil indez-attribute-descriptor ty_type)
indez-atlribute-descriptor atd_descriptor ty_type)

is executed if the call to find-operation returns non-nil. The value returned
by this operation replaces atd_descriptor as the value to be returned by the
descriptor making operation. This value is the descriptor that is indexed,
provided it is not a stub and has never been indexed before. The returned
value may be a stub, or any attribute descriptor, either previously indexed,
or never bhefore indexed.

(an-attribute-function-table [SKETCH Type Macro|
[has-get-function 's_get-function
[has-get-macro 's_get-macrol|
[has-set-function 's_set-function
[has-set-macro 's_set-macro)
thas-init-function ’s_init-function
|has-init-macro 's_init-macro||)

an-attribute-function-table SKETCH Tyvpe]
aft_ [Argument Prefix|
(has-get-function ’aft_table) [SKETCH Attribute Macro)
(has-get-macro 'aft_table) [SKETCH Attribute Macro)
(has-set-function ’aft_table) [SKETCH Attribute Macro]
(has-set-macro 'aft_table) [SKETCH Attribute Macro
(has-init-function ’'aft_table) [SKETCH Attribute Macro|
(has-init-macro ’aft_table) {SKETCH Attribute Macro]

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

ARGUMENT PREFIX: An-attribute-function-table arguments are indicated by the prefix

aft_.

USE: An-attribute-function-table provides a set of functions and macros to access an
attribute, at_attribute, of an object, ob_object, of a particular type, ty_type.
Functions and macros are provided to get or set the attribute value, and to inspect
and change initial values of the attribute.

Let s_attribute be the name of at_attribute, and s_type be the name of ty_type.
Let atd_descriptor be the attribute descriptor which is to be used to access the
attribute, and whose has-functions equals the attribute function table that is to
supply the functions and macros. Then the function table has the following com-
ponents, all of which are functions callable by funcall or macros callable by expan-
sions of other macros.

HAS-GET-FUNCTION: Calls of the form—

(s_attribute ob_object ...)
and—

Printed April 27, 1989

OBJECTS 5-36

(get-attribute at_attribute ob_object ...)
may be computed by the call—

(funcall s_get-function atd_descriptor at_attribute ob_object ...)

HAS-GET-MACRO: Calls of the form—
(s—attribute (s_type ob_object ...) ...)
and—
(get-attribute s_attribute (s_type ob_object ...) ...)
may be expanded by macros into—
(s_get-macro atd_descriptor at_attribute (s_type ob_object ...) ...)
where at_attribute and atd_descriptor are pre-evaluated.
HAS-SET-FUNCTION: Calls of the form—
(setf (s_attribute ob_object ...) g_value)
and—
(setf (get-attribute at_attribute ob_object ...) g_value)
may be computed by the call—
(funcall s_set-function g_value atd_descriptor at_attribute
ob_object ...)
HAS-SET-MACRO: Calls of the form—
(setf (s_attribute (s_type ob_object ...} ...) g_value)
and—

(setf (get-attribute s_attribute (s_type ob_object ...) ...)
g_value)

may be expanded by macros into—

(s_set-macro g_value atd_descriptor at_attribute
(s_type ob_object ...} ...)
where at_attribute and atd_descriptor are pre-evaluated.
HAS-INIT-FUNCTION: Calls to make an object of type ty_type invoke either a has-inat-
Junction or a has-init-macro on all explicitly given initial attribute

values for which these functions or macros are available. However,
such calls are never made for default attribute values.

The call to a has-init-function has the form—

(funcall s_init-function g_value atd_descriptor at_attribute
ty_type)

The value returned by this call is used as the value to assign to the

attribute.

HAS-INIT-MACRO: The call to a has-init-macro (see HAS-INIT-FUNCTION above) has
the form—

Printed April 27, 1989

OBJECTS 5-37

(s_init-macro g_value atd_descriptor at_attribute ty_type)

where ty_type, at_attribute, and atd_descriptor are pre-evaluated.
The value returned by this expression when it is evaluated is used as
the value to assign to the attribute.

CONSTRAINT: If a macro attribute of an-attribute-function-table is non-nil, the associ-
ated function attribute must also be non-nil. The reverse is not true: if a
macro is needed, and only a function is found, the function will be used in
place of the macro.

(an-operation has-name 's_name [SKETCH Type Macro|
has-indez-subscript 'x_index-subscript)

an-operation [SKETCH Type|

op_ [SKETCH Argument Prefix]

operation-index-size [LISP Global Variable|

(has-index-subscript 'op_operation) [SKETCH Attribute Macro

USE: An-operation serves as a name for an operation that may he performed on different
types of SKETCH object in a manner depending upon the type of the object
operated on. See s_operation.

Whenever an operation is performed upon an object of a given type, the operation
and type together are used to select an-operation-descriptor that supplies a func-
tion and additional parameters to that function to perform the operation. A
macro may also be supplied to expand the operation more efficiently at compile
time.

ARGUMENT PREFIX: Operation arguments are indicated by the prefix op_.

HAS-NAME: Each operation MUST have a name which is a symbol. By convention, this
name usually contains an active verb: e.g., make-object and format-object.
See has-name.

HAS-INDEX-SUBSCRIPT: Each type has an operation index table associated with it which
is used to more rapidly look up operation descriptors associated
with the type. Operation objects can be assigned an integer,
their has-indez-subscript, which is their subscript in these tables.
Assigning such a subscript speeds up execution of the operation.

No two operations may have the same subscript, unless the two
operations are never defined for the same type. On the other
hand, if every operation were assigned a different subscript, the
index tables would be exceptionally large.

If the has-indez-subscript attribute is not initialized, its value
becomes ntl, and the operation is not speeded up. If the attri-
bute is initialized to an integer, that integer is used as a sub-
script. If the attribute is initialized to a non-ntl, non-integer
value, the value of the global variable *operation-indez-size” is
becomes the actual value of the has-indez-subscript attribute,
and that variable is incremented by 1. The value of this variable

Printed April 27, 1989

OBJECTS 5-38

1s the size of any newly allocated index table. In any case, the
value of this variable i1s maintained at one larger than the max-
imum of all operation has-1ndez-subscript attributes.

Previously allocated tables are not increased in size, and there-
fore subscript assignment may not speed new operations added
to old types. Index tables are not defined for a type until the
first definition of an operation descriptor for the type is made.
Thus it is desirable to define all operations used with a type
before defining any operation descriptors for the type.

INDEXING: Whenever an-operation is indexed, the name of the operation has its function
definition set if it was previously nil. This is also done for stubs, as a stub
may be a completely defined operation. See s_operation.

Replacement of non-nil, non-integer has-indez-subscript attributes and updat-
ing *operation-indez-size* is also done at operation indexing time.

(an-operation-descriptor [has-descriptor-type 'ty_type) [SKETCH Type Macro!
has-descriptor-operation 'op_operation
has-function ’s_operation-function
'has-macro ’s_operation-macro|
[has-parameters 'g_parameters|
[has-info ’g_info))

an-operation-descriptor [SKETCH Type!
opd_ ISKETCH Argument Prefix|
(has-parent 'opd_descriptor) [SKETCH Attribute Macroj
(has-descriptor-type 'opd_descriptor) [SKETCH Attribute Macro|
(has-descriptor-operation ’opd_descriptor) [SKETCH Actribute Macro]
(has-function ’opd_descriptor) [SKETCH Attribute Macro]
(has-macro 'opd_descriptor) [SKETCH Attribute Macro)
(has-parameters 'opd_descriptor) [SKETCH Attribute Macro)
(has-info 'opd_descriptor) [SKETCH Attribute Macro)

USE ONLY WHEN: Defining non-standard SKETCH types and operations.

USE: An-operation-descriptor describes how a particular operation, op_operation, is exe-
cuted for objects of a particular type, ty_type. Ty_type may be nil to indicate
that the descriptor applies to op_operation for all objects, regardless of type.
Op_operation may not be nil.

ARGUMENT PREFIX: Operation descriptor arguments are indicated by the prefix opd_.
HAS-DESCRIPTOR-OPERATION: Op_operation: an-operation.

HAS-DESCRIPTOR-TYPE: Ty_type: a-type or nil.

HAS-FUNCTION: A non-ni symbol. Calls such as those of the form—

(s_operation ob_object ...),

(ezecute-operation op_operation ob_object ...)

Printed April 27, 1989

OBJECTS

HAS-MACRO:

5-39

and
(ezecute-found-operation opd_descriptor op_operation ob_object ...)

may be computed by the call—

(funcall s_operation-function opd_descriptor op_operation ob_object ...)

Calls such as those of the form—

(s—operation (s_type ob_object ...} ...)

(ezecute-operation op_operation (s_type ob_object ...) ...)
or

(exzecute-found-operation opd_descriptor op_operation
(s_type ob_object ...) ...)

may be expanded by macros into—
(s_operation-macro opd._descriptor op_operation (s_type ob_object ...) ...)

In this last call op_operation and opd_descriptor are pre-evaluated.

HAS-PARAMETERS: Any LISP value. Used by the has-function function and has-macro

macro. Can be setf.

HAS-INFO: Just like has-parameters but is not visible: is not printed or represented in the
unevaluated operation descriptor. Useful for cross reference lists.

HAS-PARENT:

An-operation-descriptor or nil. Automatically set (may not be initialized
or setf) to the last operation descriptor indexed before this one which has
the same op_operation and either the same ty_type, or a type that is an
ancestor of ty_type. The parent of an operation descriptor, the parent’s
parent, the parent’s parent’s parent, etc. are said to be ancestors of the
operation descriptor.

SEARCH ORDER: When an operation, op_operation, is to be executed for an object of

type ty_type, an-operation-descriptor must be found. A search is made
of two groups of descriptors. Each group consists of all descriptors
with particular values of their has-descriptor-operation and has-
descriptor-type operations as follows—

group | has-descriptor-operation | has-descriptor-type

1 op_operation ty_type or an
ancestor of ty_tvpe

(3

op_operation nil

The search examines each of the two groups in order. Each group is

Printed April 27, 1989

OBJECTS

5-40

examined by examining all descriptors in the group in most-recently-
made-first order. This can be done by examining first the most recently
made descriptor in each group, called the head of the group, and then
examining the head descriptor’s parent, that parent’s parent, and so
forth, until all ancestors of the group head have been examined.

The search stops when a descriptor is found (all operation descriptors
must have non-nil has-function attributes, so any operation descriptor
examined will do).

Sometimes the search does not begin at the beginning, but instead
begins just after a particular descriptor in the order, in effect resuming
the previous search which found that descriptor.

ORDER OF MAKING: The assumption is made that all operation descriptors with the

INDEXING:

same has-descriptor-type and has-descriptor-operation are made in
the same order in both the compile and evaluation environments.
The get-operation-descriptor function and all the macros that use it
depend upon this assumption.

It i1s an error to make an-operation-descriptor with a non-ml ty_type
if ty_type is the ancestor of any other type. Thus all the operation
descriptors for a type must be made before the type is made a
parent of another type.

An-operation-descriptor may be indexed by a has-name operation in the nor-
mal way. [t is also referenced by a variety of indices which enable the search
described above. Just before indexing,

(ezecute-found-operation
(find-operation-descriptor nil indez-operation-descriptor ty_type)
indez-operation-descriptor opd_descriptor ty_type)

is executed if the call to find-operation-descriptor returns non-nil. The value
returned by this operation replaces opd_descriptor as the value to be
returned by the descriptor making operation. This value is the descriptor
that is indexed, provided it is not a stub and has never been indexed before.
The returned value may be a stub, or any operation descriptor, either previ-
ously indexed, or never before indexed.

Printed April 27, 1989

OBJECTS 5-41

(s_attribute 'ob_object ...) [SKETCH Attribute Macro!
(s_attribute (s_tvpe ob_object ...) ...) [SKETCH Attribute Macro!

WHERE: S_attribute is the name of some SKETCH attribute, at_attribute: e g. has-
name, has-functions.

RETURNS: The value of the attribute labeled at_attribute for ob_object. If the attribute
has never been assigned a value for the object, nil is returned.

WHEN SETF: The value of the attribute is changed.

EFFICIENCY: The form with (s_type ob_object ...) rather than just ob_object is often
more efficient when compiled, because s_type tells the compiler the type of
ob_object.

NOTE: By default, attributes can be initialized but not setf. Attributes that are other-
wise are marked as such in documentation.

Attributes can be declared to have non-standard behaviors for certain types of
object, and such behaviors will be documented.

EQUIVALENT TO: (get-altribule s_attribute ob_object ...)

However, it is permissible to override this definition by setting the
function definition of s_attribute. The delault macro defimition of
s_attribute will not replace an existing definition.

NOTE: All symbols beginning with an auxiliary verb (has, is, do, etc.) or preposition fol-
lowed by a hyphen should naine SKETCH attributes, and all SKETCH attributes
should have naines heginning with such prefixes.

(a-type has-name 's_name (SKETCH Type Macro]
[has-size 'x_size]
[has-parameters 'g_parameters|
[has-1nfo 'g_info|
[has-parent 'ty_parent|)

a-type [SKETCH Type]
ty_ [SKETCH Argument Prefix]
(has-attribute-descriptors 'ty_type) [SKETCH Attribute Macro|
(has-operation-descriptors 'ty_type) [SKETCH Attribute Macro|
(has-allocation-count 'ty_type) [SKETCH Attribute Macro|
(has-children ’ty_type) [SKETCH Attribute Macro]
(has-size 'ty_type) [SKETCH Attribute Macro]
(has-parameters 'ty_type) [SKETCH Attribute Macro]
(has-info 'ty_type) [SKETCH Attribute Macro]
(has-parent 'ty_type) [SKETCH Attribute Macro]

USE: A-type is the type of SKETCH objects. E.g., (has-type an-attribute) is eq a-type
and so is (has-type a-type).

ARGUMENT PREFIX: Arguments with the ty_ prefix are a-type values.

HAS-NAME: Type objects MUST have a name beginning with a- or an-: eg., an-
operation. See has-name.

Printed April 27, 1989

OBJECTS 5-42

HAS-SIZE: The size in bits of a datum ol this type when it is an element of a vector or
array. Nilif unknown or not useful.

HAS-PARAMETERS: Parameters for use by the operations on objects of the type. May be
setf.

HAS-INFO: Just like has-parameters but is not visible: is not printed or represented in the
unevaluated type object. Uselul for cross reference lists.

HAS-PARENT: Another type used in place of this type if this type does not have some
operation or attribute descriptor that is needed. E.g., this type inherits
operations such as create-object [rom its parent.

A type’s parent, its parent’s parent, etc. are the ancestors of a type. A
tvpe inherits all the attribute descriptors and operation descriptors of its
ancestors (see an-attribute-descriptor and an-operation-descriptor).

HAS-ALLOCATION-COUNT: The number of objects of this type that have been created.

If mil, this count is not maintained. Code that does not main-
tain this count can be slightly more efficient than code which
does.

Defaults to nal. If initialized to any non-nil value, the value O
will be substituted for the initial value. If initialized to a
non-nil value in the compiler environment, must be initialized
to a non-nil value in the evaluator environment.

Can be setf.

HAS-ATTRIBUTE-DESCRIPTORS: A list of the heads of all the attribute descriptor groups
for this type (these are the groups labeled by 1 in the
documentation of an-atiribute-descriptor). Cannot be
initialized.

HAS-OPERATION-DESCRIPTORS: A list of the heads of all the operation descriptor groups
for this type (these are the groups labeled by 1 in the
documentation of an-operation-descriptor). Cannot be
initialized. e

HAS-CHILDREN: A list of all the other types whose parents are this type. Cannot be ini-

tialized.

ORDER OF MAKING: All attribute descriptors and operation descriptors for a type must
be made before the type is made a parent of any other type.

INDEXING: Whenever a type is indexed, the name of the type has its function definition
set if it was previously nil. This is also done for stubs, as sometimes a stub is
a completely defined type (it will cease to be a stub when operation or attri-
bute descriptors are associated with it). See s_type.

Printed April 27, 1989

OBJECTS 5-43

(a-vector-element-C-type has-parent-type 'ty_parent-type| [LISP Function|
[has-C-type-format (g_C-type-format-part-1 ...)|
|has-C-type-repeat-format (g_C-type-repeat-format-part-1 ...)|
has-size x_size
has-alignment x_alignment
(has-initial-value g_initial-value|
has-get-function s_get-function
has-get-macro s_get-macro
has-set-function s_set-function
has-sel-macro s_set-macro
[has-parameters g_parameters]
|has-info g_infol)

a-vector-element-C-type [SKETCH type|
veCty_ [Argument Prefix|
(has-parent-type 'veCty_type) [SKETCH Attribute Macro|
(has-C-type-format ’veCty_type) [SKETCH Attribute Macro|
(has-C-type-repeat-format 'veCty_type) [SKETCH Attribute Macro|
(has-size 'veCty_type) [SKETCH Attribute Macro]
(has-alignment 'veCty_type) [SKETCH Attribute Macro!
(has-initial-value 'veCty_type) ISKETCH Attribute Macro|
(has-get-function 'veCty_type) SKETCH Attribute Macro]
(has-get-macro 'veCty_type) [SKETCH Attribute Macro|
(has-set-function 'veCty_type) [SKETCH Attribute Macro|
(has-set-macro 'veCty_type) SKETCH Attribute Macro]
(has-paramters 'veCty_type) [SKETCH Attribute Macro|
(has-info 'veCty_type) [SKETCH Attribute Macro|
USED ONLY WHEN: Defining new C data types for inclusion in declare-vector-type defined
objects.

USE: A-vector-element-C-type defines a C data type that can be used for elements of
declare-vector-type defined objects. Such a C data type corresponds to a-lype
object which has a has-vector-element-C-type attribute that is a-vector-element-C-
type with descriptive information. The a-type object is used to denote the resulting
type. Examples are a-char and a-short.

ARGUMENT PREFIX: Arguments with the veCty_ prefix must be a-vector-element-C-type
values.

HAS-PARENT-TYPE: This is the a-type object used to denote the a-vector-element-C-type
object. The latter is the has-vector-element-C-type attribute of the
former.

HAS-C-TYPE-FORMAT:

HAS-C-TYPE-REPEAT-FORMAT: '(g_type-format-part-1 ...) is a list of elements which may
be patom’ed to declare a variable. The symbol NAME in
this list is replaced by the name of the variable. No semi-
colon or carriage return should be included.

An example 1s—

Printed April 27, 1989

OBJECTS 5-44

(khort | NAME)

for a-short.

Has-C-type-repeat-format is the same thing, but is used in
case there is an x_repeat-count (see declare-vector-type).
The symbol REPEAT is replaced by the repeat count.
For example—

(lkxx_alloc (| NAME |, | REPEAT))))

for a structure allocated by the xxx_alloc macro with a
required repeat count (see C CODE SIDE EFFECTS
under declare-vector-type).

An expression which is itself a list may be an element ol
these format lists, in which case the expression i1s not
patom’ed, but rather is eval’ed with NAME bound to the
variable name and REPEAT to the repeat count. and the
result is patom’ed.

The symbol REPEAT is also recognized in has-C-type-
format and replaced by 1. If has-C-type-repeat-format is
nil, has-C-type-format will be used 1n its place.

The has-C-type-format and has-C-type-repeal-formal are
currently unused if the has-size attribute is less than 8. as
the C language requires special treatment lor fields.

HAS-SIZE: X_size is the number of bits in the element. This must be an integer above 0.

HAS-ALIGNMENT: X_alignment is a number which must exactly divide the displacement
of the element in bits within any vector. It must equal 1, 2, 4, 8, 16,
32, or 64. X_size must be an exact multiple of x_alignment.

If x_size is less than 8, then it must equal x_alignment. If x_size is 8
or greater, then so must be x_alignment.

HAS-INITIAL-VALUE: The initial value, g_initial-value, may be stored into the vector
using the s_set-function to get a default initial value appropriate for
the element.

HAS-GET-FUNCTION:

HAS-GET-MACRO: S_get-function and s_get-macro may be used to return the value of the
element in a vector. The calls are—

(funcall s_get-function veCt_type x_index V_vector ...)
and
(s_get-macro veCt_type x_index V_vector ...)

where veCt_type is the vector-element-C-type object in which s_get-
function or s_set-macro was found, x_indeyx is the displacement of the
element within V_vector measured in units of x_alignment bits,

Printed April 27, 1989

OBJECTS

5-45

V_vector is the immediate vector containing the element. and .. are
any extra arguments that might be of use in selecting part of the ele-
ment, instead of the whole element. The veCt_type argument to this
macro is pre-evaluated.

HAS-SET-FUNCTION:

HAS-SET-MACRO: S_set-function and s_set-macro may be used to return the value of the

element in a vector. The calls are—
(funcall s_set-function g_value veCt_type x_index V_vector ...)
and
(s—set-macro g_value veCt_type x_index V_vector ...)

where g_value i1s the value to be stored, veCt_type is the vector-
element-C-type object in which s_set-function or s_set-macro was
found, x_index is the displacement of the element within V_vector
measured in units of x_alignment bits, V_vector is the immediate vec-
tor containing the element, and ... are any extra arguments that might
be of use in selecting part of the element, instead ol the whole element
The veCt_type argument to this macro is pre-evaluated.

HAS-PARAMETERS:

HAS-INFO:

NOTE: Wh
the
set

These attributes are parameters for s_get-function, s_get-macro. s_set-
function, and s_set-macro. The has-parameters attribute i1s visible, and the
has-info attribute hidden: otherwise there 1s no difference.

Both of these attributes can be setf.

en included in declare-vector-type objects, an element may be included in both
vector and the hunk part of the object. If this is done, it is not permitted to
parts of the element, although parts can be read. It is important, in this case,

that the the copy of the element stored in the hunk be read-only, like a number,
as it may be shared: no attempt is made to copy it.

(compare-object 'ob_object-1 'ob_object-2) [SKETCH Operation Macro]
(compare-object-function 'ob_object-1 'ob_object-2) [LISP Function|
compare-object [SKETCH Operation|
RETURNS: Non-nilif ob_object-1 equals ob_object-1. Otherwise nal.

Compare-object and compare-object-function do the same things, except the
first is a macro with in-line optimizations, and the second is a function with
no optimizations. However, the second can be used as a has-compare-switch
value, and in other places where only a function will do.

Compare-object is the same as equal when comparing numbers, strings, sym-
bols, ports, and lists. Other objects are equal if the object types are eq and
all the object attributes compare equal according to their has-compare-switch
values. If no explicit has-compare-switch value is given for an attribute, or
the value is given as yes, then the two attribute values are tested by equal If
the switch has the value no the attributes are not tested at all. If the switch

Printed April 27, 1989

OBJECTS 5-46

has some other symbol as a value, that symbol is used in place of equalto test
the attribute values for equality. See HAS-COMPARE-SWITCH under an-
attribute-descriptor.

Non-standard equality tests may also be defined for any object type.

WARNING: Fqual considers a fiznum and a flonum to be unequal, even if they have the
same value. E.g., 1 does not equal 1.0.

EFFICIENCY: This macro compiles more efficient code if ob_object-1 or ob_object-2 is
either a literal or an expression of the form—

(s—type ...)
whose type s_type is specified at compile time.

The code to test equality of numbers, strings, symbols, lists, and ports is
compiled in-line.

(create-object (ty_type at_attribute g_value ...) [SKETCH Operation Macro|
[’ob_prototype])
(create-parent-object 'opd_descriptor [LISP Macro]
'(ty_type at_attribute g_value ...) "ob_prototype})
create-object [SKETCH Operation|

USE ONLY WHEN: Create-parent-object is used only when defining non-standard
SKETCH types.

EQUIVALENT TO: Make-object and make-parent-object, except that
(1) Stubs are not handled.
(2) Objects returned are not indexed.

(3) Default values are not added to the at_attribute/g_value list if
ob_prototype is nil.

(4) Has-init-function’s and has-init-macro’s are not invoked.
It is possible to get the effects mentioned in (3) and (4) by applying

process-attributes or process-attributes-for-macro to the first argument
before calling create-object.

Printed April 27, 1989

OBJECTS 5-47

(declare-hunk-type (s_type [s_C-type s_C-prefix|) [LISP Macro]

[s_attribute-visibility|

[has-is-a-stub-switch s_is-a-stub-switch)|
[has-compare-switch s_compare-switch|
(has-format-switch s_format-switch]|

[has-uneval-switch s_uneval-switch|
[s_attribute-protection| [has-password s_password]
[has-allocation-count g_allocation-count

s_attribute-1

(s_attribute-2 g_default-value-2 [s_C-attribute-name-2|)

)

(define-hunk-type (list 'ty_type ['s_C-type 's_C-prefix|) [LISP Function|

[’at_attribute-visibility|

(has-1s-a-stub-switch 's_is-a-stub-switch|

[has-compare-switch 's_compare-switch|

(has-format-switch 's_format-switch|

(has-uneval-switch 's_uneval-switch|

['at_attribute-protection| [has-password ’s_password|
(has-allocation-count *g_allocation-count|

‘at_attribute-1

(l1st 'at_attribute-2 'g_default-value-2 ['s_C-attribute-name-2|)

)

C-definition-code-port [LISP Global Variable|

WHERE:

Declare-hunk-type and define-hunk-type take substantially the same arguments
and do the same thing, except that the first i1s a macro that does not evaluate
its arguments, and the second is a function that does. For the macro, types
and attributes are specified by their symbol names, whereas for the function,
the types and attributes themselves may be given. The function will accept
stubs of types and attributes, and will also accept symbols naming types and
attributes, making the stubs itself.

If s_C-type and s_C-prefix are omitted, (s_type) may be abbreviated to s_type
and (list ’ty_type) may be abbreviated to ’'ty_type. Similarly s_attribute-1
abbreviates (s_attribute-1), and ’at_attribute-1 abbreviates (list ’at_attribute-

1).

For define-hunk-type, in what follows, s_type, s_attribute-visibility,
s_attribute-protection, s_attribute-1, and s_attribute-2 are the names of
ty_type, at_attribute-visibility, at_attribute-protection, at_attribute-1, and
at_attribute-2.

The arguments consist of options (s_attribute-visibility, s_is-a-stub-switch,
s_compare-switch, s_format-switch, s_uneval-switch, s_attribute-protection,
and s_password, and g_allocation-count) and attributes. The options may be
listed in any order, and may be repeated. Each option applies to all attributes
following 1t, and supercedes any previous option of the same kind.
G_allocation-count is an exception, and should appear at most once.

Printed April 27, 1989

OBJECTS

5-48

S_attribute-visibility specifies the print and uneval characteristics of attributes
following it. The possible values of s_attribute-visibility are—

is-visible | Include in all compare-object tests, pretty-print’s, and
uneval-object’s. This is the default effective at the begin-
ning of the argument list. Equivalent to has-compare-
switch nil, has-format-switch nil, and has-uneval-switch nil.

is-hidden | Do not include in compare-object tests, uneval-object’s, or
pretty-print's. Equivalent to has-compare-switch no, has-
format-switch no, and has-uneval-switch no.

It is also possible to specify the compare, format, and uneval switches more
explicitly using the has-compare-switch, has-format-switch, and has-uneval-
switch options. These are useful for specifying function names for these
switches: see an-attribute-descriptor.

S_attribute-protection specifies the protection of all the attributes following it,

and is one of —

is-read-init

Readable by everyone, but not writable. Can be ini-
tialized. This is the default effective at the begin-
ning of the argument list.

is-read-init-write

Readable and writable by everyone. Can be initial-
1zed.

is-private

Readable and writable only by calls of the form
(s_attribute ob_object s_password ...)
that contain s_password as the second argument.

Cannot be initialized (i.e., will always be initially set
to the default value).

is-read-private

Readable by everyone, but writable only by calls
that contain s_password as the-second argument.
Cannot be initialized (i.e., will always be initially set
to the default value).

is-read-init-private

Readable by everyone, but writable only by calls
that contain s_password as the-second argument.
Can be initialized.

The has-password option specifies the password, s_password, to be used by all
private attributes following this option.

S_password will be made into a global constant, and should follow the naming
conventions for such (have *'s at the beginning and end).

Printed April 27, 1989

OBJECTS 5-49

RETURNS:

The default value of g_allocation-count is non-nil, which enables maintenance of
the has-allocation-count attribute of s_tvpe. This attribute counts the number
of objects of type s_type which have been created. A value of nil disables
maintenance of the attribute.

An attribute may be specified either by a single s_attribute label, or by a list
(s_attribute g_default-value [s_C-attribute-name|) in which the default value is
an expression not referencing local variables which is to be evaluated and used
as the value of the s_attribute attribute whenever a new object of type s_type is
made and no explicit value is given for the attribute. Giving a default value of
nil is the same as giving no default value at all.

S_C-type, s_C-prefix and s_attribute-name-2 are symbols used to generate C
code: see C CODE SIDE EFFECTS below.

The a-type object made.

SIDE EFFECTS: Makes a-type named s_type whose objects are hunks with attribute ele-

ments s_attribute-1 An-attribute objects named s_attribute-1 ... are
also made if they do not previously exist.

An-attribute-descriptor s made for s_tvpe and each s_attribute-1. An-
operation-descriptor is made for s_type and the each of the following
operations: make-object, create-object, object-is, object-is-a-stub,
compare-object, move-object, uneval-object, format-object.

The attribute elements specified in the call to declare-hunk-type are ele-
ments of hunks and are very quickly accessible by indexing (czr). In
addition, any other attributes not specified in the call to declare-hunk-
type or define-hunk-type may be set for an object of type s_type, but
these will be put on a property list for the object, and will not be
accessed as efficiently.

A (defvar s_password ’'s_password) is generated for each password. It is
important that a password evaluate to itsell, so that s_password can be
used as an argument to both macro and function calls.

C CODE SIDE EFFECTS: If the global variable *C-definition-code-port® is non-nil, if s_C-

prefix is non-nil, and if *in-environment* is ni (we are not being
loaded by an environment statement), then a structure definition
will be written into *C-definition-code-port® (which must be a-
port). This structure definition will have the form—

Printed April 27, 1989

OBJECTS 5-50

NOTE:

NOTE:

NOTE:

NOTE:

typedef struct <s_C-prefix>struct * <s_C-type>:
struct <s_C-prefix>struct {

sat_lvalue <s_C-prefix>plist;

sob_type <s_C-prefix>type;

sal_lvalue <s_C-attribute-name-2>;

>
#define <s_C-prefix> alloc(x,y) struct <s_C-prefix> struct (x) [y]
where the exact order of the structure element definitions will be
implementation dependent.

Declare-hunk-type expands into a call to define-hunk-type nested inside an eval-
when (compile eval load).

Attribute and operation descriptors can be made for a hunk tyvpe after the call to
declare-hunk-type or define-hunk-type that makes the type. If a new descriptor is
for an attribute or operation declared by the execution of declare-hunk-type or
define-hunk-type. the descriptors declared by that execution will become ances-
tors of the new descriptor.

A call to declare-hunk-type or define-hunk-type may be repeated more than once.
Only the first call will make or change anything. Subsequent calls will merely
test that they are essentially identical to the first call, and complain if they are
not.

The compare-object, object-is-a-stub, format-object, and uneval-object functions
defined by declare-hunk-type or define-hunk-type use only the attributes actually
stored in the objects, and get these attributes using the functions and macros
defined by declare-hunk-type or define-hunk-type. Attribute descriptors not
defined by declare-hunk-type or define-hunk-type are ignored for the purposes of
getting these attributes. However, these latter attribute descriptors are not
ignored for purposes of getting the necessary switchs: has-compare-switch, has-
ts-a-stub-switch, has-format-switch, and has-uneval-switch.

All attribute descriptors that provide switches for an object of a given type
should be defined before the first object of that type is created. This is because
optimizing information for performing operations such as format-object is com-
puted at that time.

IMPLEMENTATION: The current implementation (which is subject to change) uses hunks

that have two more elements than the number of attributes. The
first two elements are used as the first cell of a disembodied property
list. The object type is stored in the first element of the hunk, and a
pointer to the first attribute label on the property list is stored in the
rest] element of the hunk. The attributes s_attribute-1, ... are
assigned to hunk elements with indices 2, 3, ..., in the order in which
the attributes appear as arguments to declare-hunk-type.

Attributes made for a hunk type after the execution of declare-

hunk-type or define-hunk-type will not be assigned to elements of the
hunk, but will be put on the property list.

Printed April 27, 1989

OBJECTS 5-51

(declare-vector-type (s_type [s_C-type s_C-prefix]|) 'LISP Macro|

[has-allocation-count g_allocation-count|
|has-C-type-vector-element-name s_C-type-vector-element-name|
[has- C-plist-vector-element-name s_C-plist-vector-element-name|
[has-C-vsize-vector-element-name s_C-vsize-vector-element-name|
[has-pointer-C-type s_pointer-C-type]

[has-allocate-C-type s_allocate-C-type|

[s_attribute-type] [s_attribute-location| [s_attribute-visibility]
[has-is-a-stub-switch s_is-a-stub-switch|

[has-compare-switch s_compare-switch|

[has-format-switch s_format-switch|

[has-uneval-switch s_uneval-switch|

[s_attribute-protection| [has-password s_password)|

[x_repeat-count]| s_attribute-1
[x_repeat-count| (s_attribute-2 g_default-value-2 [s_C-attribute-name-2|)

)

(define-vector-type (list 's_type ['s_C-type 's_C-prefix]) 'LISP Function]

[has-C-type-vector-element-name 's_C-type-vector-element-name|
[has-C-plist-vector-element-name 's_C-plist-vector-element-name)|
[has-C-vsize-vector-element-name 's_C-vsize-vector-element-name|
[has-pointer-C-type 'ty_pointer-C-type|

[has-allocate-C-type 'ty_allocate-C-type]

[ty_attribute-type] ['at_attribute-location| ['at_attribute-visibility|
|has-1s- a-stub-switch ’s_is-a-stub-switch]

|has-compare-switch ’s_compare-switch)|

|has-format-switch ’s_{format-switch]

[has-uneval-switch ’s_uneval-switch|

[’at_attribute-protection| [has-password 's_password|
[has-allocation-count 'g_allocation-count|

[’x_repeat-count| ’at_attribute-1
['x_repeat-count] (list "at_attribute-2 'g_default-value-2
[’s_C-attribute-name-2])

C-definition-code-port [LISP Global Variable|
(has-vector-type 'ty_type) [SKETCH Attribute Macro|
WHERE: Declare-vector-type and define-vector-type take substantially the same argu-

ments and do the same thing, except that the first i1s a macro that does not
evaluate its arguments, and the second is a function that does. For the macro,
types and attributes are specified by their symbol names, whereas {or the func-
tion, the types and attributes themselves may be given. The function will
accept stubs of types and attributes, and will also accept symbols naming types

Printed April 27, 1989

OBJECTS 5-52

and attributes, making the stubs itself.

If s_C-type and s_C-prefix are omitted, (s_type) may be abbreviated to s_type,
and (list 'ty_type) may be abbreviated to 'ty_type. Similarly s_attribute-1
abbreviates (s_attribute-1), and ’at_attribute-1 abbreviates (list 'at_attribute-

1).

For define-vector-type, in what follows, s_type, s_pointer-C-type, s_allocate-C-
type, s_attribute-type, s_attribute-location, s_attribute-visibility, s_attribute-
protection, s_attribute-1, and s_attribute-2 are the names of ty_type,
ty_pointer-C-type, ty_allocate-C-type, ty_attribute-type, at_attribute-location,
at_attribute-visibility, at_attribute-protection, at_attribute-1I, and
at_attribute-2.

The arguments consist of options (s_C-type-vector-element-name, s_C-plist-
vector-element-name, s_C-vsize-vector-element-name, s_pointer-C-type,
s_allocate-C-type, s_attribute-type, s_attribute-location, s_attribute-visibility,
s_is-a-stub-switch, s_compare-switch, s_format-switch, s_uneval-switch,
s_attribute-protection, s_password, and g_allocation-count) and attributes.
Most options may be listed in any order, and may be repeated. Each option
applies to all s_attribute’s following it, and supercedes any previous option of
the same kind. S_C-type-vector-element-name, s_C-plist-vector-element-name,
s_C-vsize-vector-element-name, s_pointer-C-type, s_allocate-C-type, and
g_allocation-count are exceptions, should appear at most once, and must appear
before other arguments.

Declare-vector-type and define-vector-type define a type named s_type such that
objects of that type are represented by the combination of an immediate vector
and a hunk. Attributes may be assigned to either the vector or the hunk or
both.

Attributes that hold pointers may be of type a-value. A-value attributes are
usually assigned to both the vector and the hunk. They are assigned to the vec-
tor so they will be readily available to C functions, which are given a pointer to
the vector when called with the object as a parameter, and they are assigned to
the hunk so the garbage collector will know about them.

Other attributes, such as numeric ones, are commonly assigned only to the vec-
tor, and are stored as numbers proper, and not as pointers. However, the value
nil may also be stored for signed numeric types by representing it as a special
missing value.

S_attribute-type specifies the type of the attributes, and may be one of the fol-
lowing—

Printed April 27, 1989

OBJECTS 5-53

Number of Bits
1 8 16 32 64
an-lbit { a-uchar | a-ushort | a-ulong
a-ubit a-char a-short a-long
an-int
an-unsigned :
a-float a-double
a-value

When a value of one of these types is stored in the immediate vector, it 1s
packed according to the associated C type (the C type associated with a-value is
sat_lvalue, and the C type associated with either an-lbit or a-ubit is unsigned:1).

A-value is the default attribute type effective at the beginning of the argument
list.

Additional types can be allowed as vector elements by defining a-vector-
element-C-type object describing them. Also see s_pointer-C-type and
s_allocate-C-type below (under C CODE SIDE EFFECTS). Types for which
‘ this has not been done can still be used as in-hunk elements (see next para-

graph).

S_attribute-location is one of the following—

in-vector Assign to the immediate vector only.

in-hunk Assign to the hunk only.

in-one Assign a-value attributes to the hunk and other attributes
to the immediate vector.

in-default | Assign a-value attributes to both the immediate vector and
the hunk, and other attributes to the immediate vector
only. This is the default attribute location effective at the
beginning of the argument list.

in-both Assign attributes to both the immediate vector and the
hunk.

S_attribute-visibility specifies the print and uneval characteristics of attributes
following it. The possible values of s_attribute-visibility are—

Printed April 27, 1989

OBJECTS 5-54

is-visible Include in all compare-object tests, pretly-print's, and
uneval-object’s. This is the default effective at the begin-
ning of the argument list. Equivalent to has-compare-
swilch nil, has-format-switch nil, and has-uneval-switch nil.

is-hidden | Do not include in compare-object tests, uneval-object’s, or
pretty-print's. Equivalent to has-compare-switch no, has-
format-switch no, and has-uneval-switch no.

It is also possible to specify the compare, print, and uneval switches more expli-
citly using the has-compare-switch, has-format-switch, and has-uneval-switch
options. These are useful for specifying function names for these switches: see
an-attribute-descriptor.

The is-a-stub switch can similarly be specified explicitly by has-1s-a-stub-swiich.
This switch defaults to nil and is not affected by s_attribute-visibility.

S_attribute-protection specifies the protection of all the attributes following it,
and is one of — :

is-read-init Readable by everyone, but not writable. Can be ini-
tialized. This is the default effective at the begin-
ning of the argument list.

is-read-init-write Readable and writable by everyone. Can be initial-
ized.

is-private Readable and writable only by references of the
form

(s_attribute ob_object s_password ...)

that contain s_password as the second argument.
Cannot be initialized (i.e. is always set to the de-
fault value on initialization).

is-read-private Readable by everyone, but writable only by calls
that contain s_password as the second argument.
Cannot be initialized (i.e. is always set to the de-
fault value on initialization).

is-read-init-private | Readable by everyone, but writable only by calls
that contain s_password as the second argument.
Can be initialized.

The has-password option specifies the password, s_password, to be used by all
private attributes following this option.

S_password will be made into a global constant, and should follow the naming

Printed April 27, 1989

OBJECTS 5-55

RETURNS:

conventions for such (have *’s at the beginning and end).

The default value of g_allocation-count is non-nil, which enables maintenance of
the has-allocation-count attribute of s_type. This attribute counts the number
of objects of type s_type that have been created. A value of nil disables
maintenance of the attribute.

An attribute may be specified either by a single s_attribute label, or by a list
(s—attribute g_default-value [s_C-attribute-name|) in which the default value is
an expression not referencing local variables which is to be evaluated and used
as the value of the s_attribute attribute whenever a new object of type s_type is
made and no explicit value is given for the attribute. Giving a default value of
nil is the same as giving no default value at all.

An attribute may have a repetition count, x_repeat-count. provided the attri-
bute is in the vector but not the hunk. The C code version of the attribute will
get the dimension specifier ‘|x_repeat-count|’, and will therefore be repeated in
the vector x_repeat-count times.

If the attribute 1s gotten a list of x_repeat-count element values will be
returned, and such a list may be written to the attribute. Il an extra argument
x_N is supplied to the attribute access expression, the x_N+1’st element of the
x_repeat-count elements will be accessed. E.g.—

(s—attribute V_object x_N)

accesses the x_IN+1’s s_attribute element of V_object.

S_C-type, s_C-prefix, and s_C-attribute-name are symbols used to generate C
code: see C CODE SIDE EFFECTS below.

Elements less than 8 bits long may have an x_repeat-count, but any s_C-
attribute-name will refer to only the first of the sequence of x_repeat-count ele-
ments, as C does not support vector indexing of such elements.

The a-type object made.

SIDE EFFECTS: Makes a-type named s_type whose objects are immediate vectors with
attribute elements s_attribute-1 The property list of these vectors
begins with a hunk that contains additional information about the
object.

An-attribute objects named s_attribute-1 ... are also made if they do not
previously exist.

An-attribute-descriptor is made for s_type and each s_attribute-1. An-
operation-descriptor is made for s_type and each of the following opera-
tions: make-object, create-object, object-is, object-is-a-stub, compare-

object, move-object, uneval-object, format-object.

The attribute elements specified in the call to declare-vector-type are

Printed April 27, 1989

OBJECTS

5-56

elements of vectors and hunks, and are quickly accessible by indexing (see
vrefi-xxx and czr). In addition, any other attributes not specified in the
call to declare-vector-type or define-vector-type may be set for an object

' of type s_type, but these will be put on a property list for the object, and
will not be accessed as efficiently.

A (defvar s_password ’s_password) is generated for each password. It is
important that a password evaluate to itself, so that s_password can be
used as an argument to both macro and function calls.

C CODE SIDE EFFECTS:

If the global variable *C-definition-code-port* is non-nil, if s_C-
prefix is non-nil, and if *in-environment* is nil (we are not being
loaded by an environment statement) then a structure definition
will be written into *C-definition-code-port* (which must be a-
port). This structure definition will have the form—

typedef struct <s_C-prefix>struct * <s_C-type>;
struct <s_C-prefix> struct {

union {

int SOB_VSIZE [1];
sat_lvalue * SOB_VPLIST (1;
sob_type SOB_VTYPE; } SOB_VFIRST;

FHF I

define <s_C-type-vector-element-name> SOB_VFIRST.SOB_VTYPE
define <s_C-plist-vector-element-name> SOB_VFIRST.SOB_VPLIST[-1][0]
define <s_C-vsize-vector-element-name> SOB_VFIRST.SOB_VSIZE|[-2]

< C-attribute-type-1> <s_C-attribute-name-1>;

define <s_C-attribute-name-2> SOB_VFIRST.SOB_VPLIST[-1] [<x2>]

#define <s_C-prefix> alloc(x,y) struct <s_C-prefix> struct (x) [y]

The default value of s_C-type-vector-element-name is <s_C-
prefix>type if s_C-prefix is non-nil, or nil otherwise. If s_C-
type-vector-element-name is non-ntl, it is the C structure element
name of the first element of the C accessible vector which is
defined to be a-type value designating the type of the vector. If
s_C-type-vector-element-name is nil, this value will not be
included as the first element of the vector (it can still be found by
LISP via the property list element of the vector).

If s_C-type-vector-element-name is nil, the SOB_VFIRST union
and all #define’s using it will be omitted. This means that C

code will not be able the access the type or vsize of the vector or
any part of the hunk.

S_C-plist-vector-element-name and s_C-vsize-vector-element-

Printed April 27, 1989

OBJECTS

5-587

name are the names of the C structure elements that may be
used to access the object property list and object vector size in
bytes. They default to <s_C-prefix>plist and <s_C-
prefix>vsize, respectively. If s_C-plist-vector-element-name is
nil, its definition will be omitted (it will also be omitted if s_C-
type-vector-element-name is ni). Similarly for s_C-vsize-vector-
element-name.

If s_pointer-C-type is non-nil, it is taken as the name of a-type
which can be used as an s_attribute-type for elements which are
pointers to objects of type s_type. The default value of
s_pointer-C-type is s_type. S_pointer-C-type may be used in the
current declaration: i.e. the type may bhe defined in terms of
itself. The associated C data type is s_C-type, which must be
non-nl, or s_pointer-C-type will be ignored.

If s_allocate-C-type is non-nil, it is taken as the name of a-type
which can be used as an s_attribute-type for vector elements
which are direct inclusions of objects of tvpe s_type. The
<s_C-prefix>alloc macro is used in C for such inclusions. The
default value of s_allocate-C-type i1s mil. [t will be ignored if
s_C-prefix is nil. S_allacate-C-type cannot be used in the current
declaration.

< C-attribute-type-1> is an appropriate C data type, such as
long, short, uchar, or sat_lvalue. S_C-attribute-name-2 is
assumed here to be an attribute included in the hunk only, at
position <x2> in the hunk.

Because the exact form of storage of a vector is subject to
change, the definitions of SOB_VPLIST, SOB_VFIRST,
SOB_VTYPE, SOB_VSIZE, and <s_C-prefix>vsize may be
withdrawn. The other definitions may change though their usage
should not.

If an attribute is present in both the vector and the hunk, only a
way of accessing the vector attribute is provided.

With these definitions one can use statements such as—

<s_C-type> y =...;

One should not set attributes from C code if they occur in both
the vector and the hunk.

<S_c-prefix>alloc should not be used f any reference to the
hunk part of the resulting object is required, as it does not

Printed April 27, 1989

OBJECTS 5-58

allocate the hunk.

HAS-VECTOR-TYPE: Ty_allocate-C-type and ty_pointer-C-type, if given, are assigned the
has-vector-type attribute value ty_type. If ty_type is the same as
ty_pointer-C-type, it is given itsell as its has-vector-type attribute.

NOTE: Declare-vector-type expands into a call to define-vector-type nested inside an
eval-when (compile eval load).

NOTE: Attribute and operation descriptors can be made for a vector type after the call
to declare-vector-type or define-vector-type that makes the type. If a new
descriptor is for an attribute or operation declared by the execution of declare-
veclor-type or define-vector-type, the descriptors declared by that execution will
become ancestors of the new descriptor.

IMPLEMENTATION: The current implementation (which is subject to change) represents
the object by an immediate vector whose property (see vprop) is a
hunk. The first element of the hunk is set to the object type, and
the restl element is set to the property list for the object. The rest
of the hunk elements are the attributes assigned to the hunk in the
order of their appearance in the call to declare-vector-type or define-
veclor-type.

The first 4 bytes of the immediate vector optionally hold a pointer to
the object type (a copy of the first element of the hunk). The
remaining bytes hold the attributes assigned to the vector, in the
order of their appearance in the call to declare-vector-type or define-
vector-type. Each attribute is aligned by inserting zero padding so
that its displacement within the vector is an exact multiple of its
length. 1-bit attributes are assigned from the high order bits to the
low order bits within one byte.

Attributes made for a vector type after the execution of declare-
veclor-type or define-vector-type will not be assigned to elements of
the vector or hunk, but will be put on the property list.

(define-attribute 's_name) [LISP Function|
USE ONLY WHEN: Using define-object-name-prefiz.
EQUIVALENT TO: (an-attribute has-name s_name)

Printed April 27, 1989

OBJECTS 5-59

(define-object-name-prefix 's_prefix 's_function) [LISP Function|

USE ONLY WHEN: Adding a new attribute name prefix for attribute names that will be
used in data bases.

SIDE EFFECT: Specifies that whenever the value of an unbound symbol beginning with
s_prefix is gotten, s_function will be called with the symbol as its only
argument in order to bind the symbol. Similarly, if the symbol has a nil
function definition and is called or setf, s_function is called (the cmacro
property of the function should also be nil, or it may be used as the func-
tion definition).

If s_function is nil, no function will be called for the prefix.

NOTE: The default object name prefixes include—

a- define-type

an- define-type

has- define-attribute
do- define-attribute
dont- define-attribute
is- define-attribute
isnt- define-attribute

As a general rule, any auxiliary verb (has, have, do, is, should, ...) or preposition
(to, by, ...) followed by a hyphen may be declared a prefix for attribute names.

NOTE: In order to make s_prefix indicate that a symbol is a-type name (like a- and an-),
s_function should be define-type. In order to make s_prefix indicate that a sym-
bol is an-attribute name (like has-), s_function should be define-attribute.

(define-type 's_name) [LISP Function
USE ONLY WHEN: Using define-object-name-prefiz.
EQUIVALENT TO: (a-type has-name s_name).

(equal-property-lists ’|_list-1 ’l_list-2) [LISP Function|

WHERE: Both I_list-1 and I_list-2 are assumed to have an even number of elements and
be organized as attribute label/value pairs, where no attribute label appears
twice. It is assumed that no attribute value is nil in either list.

RETURNS: Non-nil if the attributes of I_list-1 and I_list-2 are equal. Note that the attri-
bute labels are compared using eq instead of equal.

Printed April 27, 1989

OBJECTS 5-60

(equal-property-lists-with-switches ’I_list-1 ’"I_list-2 LISP Function]
’|__info)

USE ONLY WHEN: Building new object subpackages: like those of ideclure-liunk-type or
declare-vector-type.

WHERE: L_list-1 and I_list-2 are property lists each with an even number of elements
and no attribute whose value is nil. L_info is the value returned by—

(get-switch-info ty_type ... # get-compare-suntch)
and is used to quickly find the value of—
(get-compare-switch at_attribute ty_type)
for any at_attribute that can be in either I_list-1 or I_list-2.
\WWARNING: The types of the arguments are not checked.

RETURNS: Vi if I_list-1 and I_list-2 have an unequal attribute, and ¢ otherwise. Equal-
ity of the two values of the attribute labeled at_attribute-1 1s tested accord-
ing to the value of—

(get-compare-switch at_attribute ty_ty pe)

as computed using the third argument to equal-properiy-lists-with-switches.
IT this switch is yes or nil, the two values are tested with equal. 11t 15 1o, the
two values are presumed equal no matter what their actual values are: 1.e. the
test for equality is skipped over. If it is any other value. its ts called in place
of the equal function to test the two values lor equality.

SIDE EFFECT: If an attribute is not found in the third element ol I_info. 1t is found by
calling get-switch-from-info which adds the attribute to the third element

of I_info.
(execute-operation 'op_operation 'ob_object ...) .LISP Macro)
(execute-found-operation 'opd_descriptor ’op_operation ...) [LISP Macro]
(execute-parent-operation 'opd_descriptor 'op_operation [LISP Macro|
'ob_object ...)
(lexpr-execute-found-operation 'opd_descriptor 'op_operation ...) [LISP Macro]
(lexpr-execute-parent-operation 'opd_descriptor 'op_operation [LISP Macro]

‘ob_object ...)

USE ONLY WHEN: Ezecute-found-operation, ezecule-parent-operalion, lexpr-ezecute-
found-operation, and lexpr-ezecute-parent-operation are used only
when defining non-standard SKETCH operations.

WHERE: The last argument to lezpr-ezecute-found-operation or lexpr-execute-parent-
operation is treated as the last argument to lexpr-funcall, namely, as a list of
the remaining arguments necessary to make a call to execute-found-operation or
execute-parent-operation.

Op_operation and opd_descriptor may be pre-evaluated.

RETURNS: The value of the operation op_operation applied to the the arguments with
opd_descriptor and op_operation omitted. Except for (lezpr-)ezecute-found-
operation, the argument ob_object is necessary to provide a type used in
finding the operation descriptor needed to execute the operation.

Printed April 27, 1989

OBJECTS 5-61

EFFICIENCY: These macros may find the operation descriptor required to execute the
operation at macro expansion time, and produce much more efficient com-
piled code, if op_operation is the name, s_operation, of an-operation, if
ob_object is an expression of the form

(s_type ...)

where s_type is the name of a-type, and if opd_descriptor is pre-evaluated
or is the name, s_descriptor, of an operation descriptor.

If the descriptor can be determined at macro expansion time, and a has-
macro attribute is available from the descriptor, then that macro can be
invoked to get even further efficiency. However, this macro cannot be
invoked by the lezpr forms of the above macros.

DESCRIPTOR SEARCH: FEzecute-found-operation performs the operation using the given
opd_descriptor, which was presumably found by calling find-
operation-descriptor.

Ezecute-operation searches for an appropriate descriptor by cal-
hng—
(find-operation-descriptor nil op_operation (has-type ob_obhject)).

Ezecute-parent-operation searches for an appropriate descriptor,
starting with the parent of opd_descriptor, by calling—

(find-operation-descriptor opd_clescriptor op_operation
(has-type ob_object)).
EQUIVALENT TO:
(ezecute-operation ...)
Is equivalent to—

(ezecute-parent-operation nil ...).

(find-get-attribute-descriptor ’atd_descriptor ’at_attribute {LISP Function]
'ty_type)
(find-set-attribute-descriptor ’atd_descriptor 'at_attribute [LISP Function]
"ty_type)
(find-get-attribute-descriptor-for-macro ’g_descriptor 'g_attribute [LISP Function|
'g_type)
(find-set-attribute-descriptor-for-macro ’g_descriptor 'g_attribute |[LISP Function]
'g_type)

WHERE: For the for-macro functions the arguments are macro expansion time expres-
sions which will evaluate at eval time into arguments for the non-for-macro
versions of these functions.

RETURNS: An-attribute-descriptor with a non-nil has-get-function (for find-get-attribute-
descriptor) or has-set-function (for find-set-atiribute-descriptor) in its has-
functions table. This descriptor is found by searching using at_attribute and
ty_type, starting the search with the parent of atd_descriptor. If
atd_descriptor is nil, all applicable descriptors are searched. Milis returned f

Printed April 27, 1989

OBJECTS 5-62

the descriptor cannot be found.

It is permissible for the at_attribute or ty_type arguments to be nil, indicat-
ing an absence of information. In this case it may not be possible to complete
the search, and ntl will be returned to indicate this fact.

The for-macro versions of these functions assume that they are running at
macro expansion time and have been passed the expressions which are to be
evaluated at eval time in a call to the associated non-for-macro function. The
for-macro functions attempt to deduce at macro expansion time what the
result will be at eval time, and return that result if they can make the deduc-
tion. They return nilif they cannot make the deduction. They apply object-
expression-1s to their type, attribute, and attribute descriptor arguments, and
thus understand arguments which are names of descriptors, attributes, or
types, arguments which are pre-evaluated, and arguments of the form—

(has-type (s_type ...)).
NOTE: If ty_type is a a-type stub, the call—
(define-type-stub ty_type)

i1s made to fill it in.

(find-operation-descriptor ’opd_descriptor 'op_operation 'ty_type) [LISP Macro]
(find-operation-descriptor-for-macro ’opd_descriptor [LISP Function|
'op_operation 'ty_type)

RETURNS: An-operation-descriptor found by searching using op_operation and ty_type,
starting the search with the parent of opd_descriptor. If opd_descriptor is
nil, all applicable descriptors are searched. Nil is returned if the descriptor
cannot be found.

Ty_type or op_operation may be nil to indicate lack of information. In this
case it may not be possible to find the descriptor, and nil will be returned,
even though a descriptor could be found if both ty_type and op_operation
were known.

The for-macro version of this function assumes that it is running at macro
expansion time and has been passed the expressions which are to be evaluated
at eval time in a call to the associated non-for-macro function. The for-
macro function attempts to deduce at macro expansion time what the result
will be at eval time, and return that result if it can make the deduction. It
returns nil if it cannot make the deduction. It applies object-expression-is to
its type, operation, and operation descriptor arguments, and thus under-
stands arguments which are names of descriptors, operations, or types, argu-
ments which are pre-evaluated, and arguments of the form—

(has-type (s_type ...)).

Printed April 27, 1989

OBJECTS 5-63

(format-object 'ob_object 'x_level) .LISP Macro]

WHERE: Where x_level (0, 1, 2, ...) is the depth of parentheses or brackets within which
oh_object is being printed.

RETURNS: A LISP value which when pretty-print-format’ed will print a representation of
ob_object on an appropriate number of lines with appropriate indentation.
The format of the returned value is discussed under pretty-print-format.

All SKETCH objects indexed by their has-name attribute will be represented
by their index, the symbol which is the value of that attribute. If x_level is O,
an exception will be made, and ob_object will be represented as a type and
attribute list in the usual way.

Other kinds of indexing may or may not behave similarly.

EFFICIENCY: This macro compiles more efficient code if ob_object is an expression of the
form—

(s—type ...)
whose type s_type is specified at compile time.

HAS-FORMAT-SWITCH: If an attribute, at_attribute, of an object of tvpe ty_type has a
non-nil value of—

(get-format-switch vy_type at_attribute),

then in any call to format-object, this value will control inclusion
of the attribute in the format returned. If the switch i1s no, the
attribute will not be included. If the switch is yes or nil, the
attribute will be included, and its value will be formatted by cal-
ling pretty-format. If the switch is another symbol, that symbol
will be taken as the name of a function to be called in place of
pretty-format to format the attribute value. The value returned
by this function will be used as the format of the attribute value
inside the object format, unless this returned value is nil, in which
case the attribute will not be included in the object format. See
HAS-FORMAT-SWITCH under an-attribute-descriptor.

(get-attribute ’at_attribute 'ob_object ...) [LISP Macro]

(get-found-attribute ’atd_descriptor 'at_attribute [LISP Macro|
"ob_object ...)

(get-parent-attribute 'atd_descriptor ’at_attribute [LISP Macro]
'ob_object ...)

(lexpr-get-found-attribute ’atd_descriptor 'at_attribute [LISP Macro]

‘ob_object ...)
(lexpr-get-parent-attribute 'atd_descriptor ’at_attribute [LISP Macro)

‘ob_object ...)

USE ONLY WHEN: Get-found-attribute, get-parent-attribute, lexpr-get-found-attribute, and
lexpr-get-parent-attribute are only used when defining non-standard

SKETCH attributes.

Printed April 27, 1989

OBJECTS 5-64

WHERE: The last argument to lezpr-get-found-attribute and lexpr-get-parent-attribute is
treated as the last argument to lexpr-funcall, namely as a list of the remaining
arguments necessary to make a call to get-found-attribute or get-parent-
attribute.

At_attribute and atd_descriptor may be pre-evaluated.

RETURNS: The value of the attribute labeled at_attribute for ob_object. If the attribute
has never been assigned a value for the object, nil is returned. See DESCRIP-
TOR SEARCH below to determine which attribute descriptor is used to get
the attribute value.

WHEN SETF: The value of the attribute is changed. See DESCRIPTOR SEARCH below
to determine which attribute descriptor is used to set the attribute value.

EFFICIENCY: These macros may find the attribute descriptor they need to get or set the
attribute value at macro expansion time, and be much more efficient when
compiled, if at_attribute is the name s_attribute of an-attribute, ob_object
is an expression of the form—

(s_type ...)

where s_type is the name of a type, and atd_descriptor is the name,
s_descriptor, of a descriptor, or is pre-evaluated.

If the descriptor can be determined at macro expansion time, then the
has-get-macro or has-set-macro macros for the attribute may be invoked if
they are defined, to get even further efficiency (see an-attribute-function-
table). However these latter macros cannot be invoked by the lerpr forms
of the above macros.

DESCRIPTOR SEARCH: Get-found-attribute gets the attribute using the given
atd_descriptor. This descriptor must have an associated has-get-
function.

Get-attribute searches for an appropriate descriptor by calling—
(find-get-attribute-descriptor nil at_attribute (has-type ob_object)).

Get-parent-attribute searches for an appropriate descriptor, start-
ing with the parent of the atd_descriptor argument, by calling—

(find-get-attribute-descriptor atd_descriptor at_attribute
(has-type ob_object)).

If an attribute is being set, instead of gotten, find-set-attribute-
descriptor is used instead of find-get-attribute-descriptor to find
descriptors.

Printed April 27, 1989

OBJECTS 5-65

(get-attribute-descriptor "atd_descriptor) [LISP Function|
USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

RETURNS: An expression which evaluates to atd_descriptor in the eval environment.
This is non-trivial when get-attribute-descriptor is called at compile time.

If atd_descriptor has a non-nil has-name attribute, that attribute is returned
as the value of gel-attribute-descriptor at compile time.

WARNING: The assumption is made that all the descriptors with the same has-
descriptor-type and has-descriptor-attribute as atd_descriptor are made in the
same order in both the compile and evaluation environments.

WARNING: Although get-attribute-descriptor performs the same function as a macro, it
cannot be called like a macro. The reason it is not a macro is that some
dumb macro expanders exist which will recursively expand top level macros
but will not expand arguments to functions, and would end up trying to out-
put attribute descriptors as literals in program binaries.

(get-default-value "at_attribute 'ty_type ['atd_descriptor|) [LISP Function|

(get-is-a-stub-switch ’at_attribute 'ty_type ['atd_descriptor]) [LISP Function|

(get-compare-switch ’at_attribute 'ty_type ['atd_descriptor|) [LISP Function]

(get-format-switch ’at_attribute 'ty_type |'atd_descriptor|) [LISP Function|

(get-uneval-switch ’at_attribute 'ty_type ['atd_descriptor]) [LISP Function|

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

RETURNS:

The first non-nil has-default-value, has-is-a-stub-switch, or has-compare-
switch has-format-switch, or has-uneval-switch obtained by searching the
attribute descriptors in the order indicated under an-attribute-descriptor.
Returns nil if no non-nil value found.

If the atd_descriptor argument is present and non-nil, only descriptors after
atd_descriptor in the search order are searched.

(get-operation-descriptor ’opd_descriptor) [LISP Function]
USE ONLY WHEN: Defining non-standard SKETCH types and operations.

RETURNS:

WARNING:

WARNING:

An expression which evaluates to opd_descriptor in the eval environment.
This is non-trivial when get-operation-descriptor is called at compile time.

If opd_descriptor has a non-nil has-name attribute value, that value 1s
returned as the value of get-operation-descriptor at compile time.

The assumption is made that all the operation descriptors with the same
has-descriptor-type and has-descriptor-operation as opd_descriptor are made
in the same order in both the compile and evaluation environments.

Although get-operation-descriptor performs the same function as a macro, it
cannot be called like a macro. The reason it is not a macro is that some
dumb macro expanders exist which will recursively expand top level macros
but will not expand arguments to functions, and would end up trying to out-
put attribute descriptors as literals in program binaries.

Printed April 27, 1989

OBJECTS 5-66

(get-switch-from-info ‘at_attribute ’l_info s_switch) [LISP Macro]

USE ONLY WHEN: Building new object subpackages: like those of declare-hunk-type or
declare-vector-type.

WHERE: L_info is a result returned by get-switch-info and has the form—
(ty_type (s_switch-1 ...) ((at_attribute s_switch-2) ...) s_default-switch)
and s_switch is one of the symbols—

has-1s-a-stub-switch
has-compare-switch
has-format-switch
has-uneval-switch

Note that s_switch is an unevaluated argument.
RETURNS: The switch value obtained by searching the third element of I_info, the list—
((at_attribute s_switch-2) ...)

for a match to at_attribute. If not found, the switch is retrieved by invoking
an abbreviated form of the get-zrz-switch function (where s_switch equals
has-xxx) which bypasses the search for group 1 attribute descriptors (those
with both type and attribute specified: see SEARCH ORDER under an-
attribute-descriptor) and uses the fourth element of I_info in place of the
search for group 3 descriptors (those with the given type but any attribute).
The switch found by this method, even if nil, is pushed onto the third element
of I_info, so it will be found the next time it is used.

All this is done with in-line code for speed.

(get-switch-info ’ty_type ’(atd_descriptor ...) (LISP Function|
"u_get-switch-function)

USE ONLY WHEN: Building new object subpackages: like those of declare-hunk-type or
declare-vector-type.

WHERE: U_get-switch-function is #'get-uneval-switch, # get-format-switch or some simi-
lar function.

WARNING: The types of the arguments are not checked.
RETURNS: A list (called the switch info) of the form—
(ty_type (s_switch-1 ...) ((at_attribute s_switch-2) ...) s_default-switch)
The sublist (s_switch-1 ...) corresponds to the list—
(atd_descriptor ...)
with s_switch equal to—
(funcall u_get-switch-function (has-descriptor-attribute atd_descriptor) ty_type).

The sublist—
((at_attribute s_switch-2) ...)

is made by taking for each descriptor D in the list—

Printed April 27, 1989

OBJECTS

5-67

(has-attribute-descriptors ty_type),

the attribute A equal to—

(has-descriptor-attribute D),

and the pair P equal to—

‘(LA ,(funcall u_get-switch-function A ty_type)),

and including P in the output list if the attribute A is not the attribute of

any element of the

list.

(atd_descriptor ...)

The s_default-switch is the value of the switch found by using u_get-switch-
function to search for a switch ignoring group 1 and 2 attribute descriptors

(see SEARCH ORDER under an-attribute-descriptor).

(has-lisp-type g_value)

|LISP Function|

RETURNS: The SKETCH type corresponding to the LISP type of g_value, according to
the following table— :
LISP TYPE | SKETCH TYPE LISP'TYPE | SKETCH TYPE
fixnum a-fixnum binary a-binary-function
bignum a-bignum value a-value
flonum a-flonum hunkQ a-hunk
siring a-string hunk1 a-hunk
symbol a-symbol hunk? a-hunk
porl a-port hunk$ a-hunk
list a-list hunk4 a-hunk
vector a-lisp-vector hunk5 a-hunk
veclory an-immediate-vector {| hunkf a-hunk
array a-lisp-array
NOTE: The type returned is not the type of g_value as a SKETCH object, but rather its

type as a LISP object. Thus—

(has-lisp-type an-attribule)

would be something like a-hunk, depending on implementation, whereas—

would always be a-type.

(has-type an-attributle)

Printed April 27, 1989

OBJECTS 5-68

(has-name ’ob_object) [SKETCH Attribute]
make-name-function [LISP Function Name)|
make-name-macro [LISP Macro Name]

VALUE: (has-name ob_object) is the name of ob_object. This is a symbol whose value is
always equal ob_object, provided the symbol is not nil.

WHEN SETF: (has-name ob_object) cannot be setf.
INDEXING: For most object types, an object made by the call—
(s—type has-name 's_name ...)
1s indexed by the symbol s_name’s being set equal to the object.

STUBS: A SKETCH object with its has-name attribute a non-nil symbol, but no other
attribute non-nil, 1s called a stub.

If a stub 1s made by a call such as—
(s_type has-name 's_name),

and an object with the same has-name already exists, the stub is discarded, and
the previously existing object returned as the result of making the object.

If an object which is not a stub is made, and a stub already exists with the same
has-name, then the attributes of the existing stub are set to those of the newly
created object, the newly created object i1s discarded, and the existing object,
now no longer a stub, is returned as the result of the call making the object.

If an object which is not a stub is made, and another object not a stub already
exists with the same has-name, then the two objects are tested for equality by
compare-object, and, if equal, the new object is discarded, and the existing object
returned as the result of the call making the object. It is an error if the objects
are not equal.

This behavior may be modified for some types of objects, in which case the
modified behavior is documented.

COMPILE TIME DECLARATIONS: Making an object with a non-nil symbol has-name attri-
bute at compile time causes the symbol to be declared to
be special.

NON-SYMBOL VALUES: Has-name attribute values must normally be symbols.

IMPLEMENTATION: Has-name indexing is implemented by make-name-function and
make-name-macro which are used as the make-object an-operation-
descriptor has-function and has-macro values for basic data types
(e.g. those defined by declare-hunk-type).

The default has-is-a-stub-switch value for has-name is no, while the
default has-set-function makes setting a has-name attribute illegal,
and the default has-init-function makes it illegal to initialize a has-
name attribute to a non-symbol value.

Printed April 27, 1989

OBJECTS 5-69

(has-size 'ty_type) SKETCH Attribute]

VALUE: The length in bits of a datum of type ty_type from the point of view of the C
language. E.g., (has-size a-value) is 32. Used in allocating arrays of objects of
the given type.

(has-type 'ob_object) . [LISP Function]
(has-type 'g_object) [LISP Function]
has-type [SKETCH Attribute]

USE: The has-type attribute value of a SKETCH object, ob_object, is the type of
ob_object, and specifies the format of the object.

The has-type function applied to any LISP object, g_object, which is not a
SIKETCH object, will return the value returned by has-lisp-type.

INITIALIZATION: It 1s illegal to initialize the has-type attribute in the way that other
attributes are initialized.

WHEN SETF: It is illegal to setf the has-type attribute.

(is-typed-expression 'g_expression) 'LISP Macroj
USE ONLY WHEN: Defining non-standard SKETCH types.
RETURNS: The type named by s_type if g_expression has the lorm—
(s_tvpe ...)
where s_type is the name of a-type. Otherwise returns nul.

“make” 'SKETCH Term|
“create’’ 'SKETCH Term|
“index” [SKETCH Term|

USE: Creating an object and indexing an object are part of making an object.

To make an object is to—

(1) Apply initial value functions or macros to all attribute
values provided by the user.

(2) Find default values for all attributes for which values were
not provided by the user, but for which non-nil default
values were provided for the type of the object being creat-
ed (or one of the ancestors of this type).

(3) Create the object.

Printed April 27, 1989

OBJECTS 5-70

(4) Index the object. That is, place the object in cross refer-
ence lists; and do processing related to stubs (see has-

name).
(make-object ’(ty_type at_attribute g_value ...) [SKETCH Operation Macro]
['ob_prototype])
(make-parent-object 'opd_descriptor [LISP Macro]
"(ty_type at_attribute g_value ...) ['ob_prototype])
make-object (SKETCH Operation]
USE ONLY WHEN: Make-parent-object is used only when defining non-standard SKETCH
types.

WHERE: Here ... is a list of attribute label/value pairs, like ‘at_attribute g_value’. The
entire first argument is called an ‘abnormal object’ because it represents an
object as a list, the first of whose elements is the type of the object, and the rest
of whose elements are attribute label/value pairs. -

Ob_prototype defaults to nal.
Ob_prototype, if non-nil, must have type ty_tvpe.

Opd_descriptor may be pre-evaluated.

RETURNS: An object of type ty_type with attribute at_attribute set to g_value, and
other attributes specified similarly by the If ob_prototype is non-nil, it
provides default values for all unspecified attributes. Otherwise, default
values are provided by attribute default values (see HAS-DEFAULT-VALUE
under an-attribute-descriptor). Attribute init functions or macros (see HAS-
INIT-FUNCTION and HAS-INIT-MACRO under an-attribute-function-table)
are applied to explicitly given attribute values (not those that are default
values). The object returned is both created and indexed (see ‘‘make” and
“stubs’).

DEFAULT MAKE: The default behavior of make is usually provided by the make-name-
function and make-name-macro, which consider objects with not attri-
bute but a has-name to be stubs. See this function and maecro in the
glossary.

EFFICIENCY: For make-object to produce efficient code during compilation, the first

argument should have the form—

(list s_type s_attribute g_value ...)

where ty_type is represented by its name s_type, and each attribute label
is represented by its name s_attribute. Furthermore, ob_prototype must
either be the nil expression, or an expression of the form~—

(s_type ...)
(which promises that ob_prototype is a non-nil object of type named by
s_type). Then much of the work of make-object is done at macro expan-
sion (i.e. compile) time.

Printed April 27, 1989

OBJECTS 5-71

Otherwise all the work will be done at eval time.

PROCESSING ATTRIBUTES: At some point during the make operation, create-object 1s
called to create the object (if it is not a stub). Just beflore
this is done, the abnormal object is processed by either
process-attributes or process-attributes-for-macro. These
functions handle default values and has-init-function’s for
attributes. The default make function and macro, make-
name-function and make-name-macro, call these functions
and create-object.

EQUIVALENT TO: Make-parent-object is equivalent to—

(ezecute-found-operation (find-operation make-object
opd_descriptor
ty_type)
make-object
(list ty_type at_attribute g_value ...) ob_prototype)

where the find-operation is performed at macro expansion time il pos-
sible, and steps are taken to avoid evaluating ty_type twice.

Make-object 1s equivalent to meke-parent-object with a il
opd_descriptor.

(merge-property-lists "I_list-1 'l_list-2) [LISP Function]

WHERE: Both I_list-1 and I_list-2 are assumed to have an even number of elements and
be organized as attribute label/value pairs, where no attribute lahel appears
twice.

RETURNS: L_list-1 with any properties on I_list-2 which are not on I_list-1 appended to
I_list-1. Properties with a nil value are removed from I_list-1, but do serve to
suppress appending of I_list-2 properties of the same name. L_list-1 is des-

troyed.
(move-object 'ob_object-1 'ob_object-2) [SKETCH Operation Macro|
move-object [SKETCH Operation|

RETURNS: Ob_object-2 after modifying it.

SIDE EFFECT: Moves ob_object-1 into ob_object-2. This means ob_object-2 will get
exactly the same attribute values as ob_object-1.

WARNING: It is assumed that ob_object-1 will be discarded immediately after the move.
Thus any property lists that are part of ob_object-1 may be moved to
ob_object-2 without creating new list elements, for example.

EFFICIENCY: This macro compiles more efficient code if ob_object-1 is an expression of

the form—
(s_type ...)
. whose type s_type is specified at compile time, but not if ob_object-2 is of
that form.

Printed April 27, 1989

OBJECTS 5-72

(never-set-function ’g_value [LISP Function]
"atd_descriptor ’at_attribute 'ob_object ...)
(never-init-function ’'g_value [LISP Function|

'atd_descriptor ’at_attribute 'ty_type)
USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

SIDE EFFECT: Calls error with a message that at_attribute cannot be setf or init’ed for
an object of type (has-type ob_object) or ty_type.

USE: Usable as the has-set-function or has-init-function value for an-attribute-function-
table.

(null-property-list-with-switches ’I_list ’l_info) [LISP Function]

USE ONLY WHEN: Building new object subpackages: like those of declare-hunk-type or
declare-vector-type.

\WHERE: L_list 1s a property list with an even number of elements and no attribute
whose value is nil. L_info is the value returned by—

(get-switch-info ty_type ... # get-is-a-stub-switch)
and 1s used to quickly find the value of —
(get-is-a-stub-switch at_attribute ty_type)
for any at_attribute that can be in I_list.
WARNING: The types of the arguments are not checked.

RETURNS: MNil if 1_list has all absent attributes, and ¢ otherwise. Whether or not the
value of the attribute labeled at_attribute is absent is tested according to the
value of —

(get-1s-a-stub-switch at_attribute ty_type)

as computed using the third argument to null-property-list-with-switches. If
this switch is yes or nil, the value is tested with not, and thus is absent only if
it is nil (i.e., missing from the property list). If it is no, the value is presumed
absent, no matter what it is: i.e. the test is skipped over. If it is any other
value, it is called in place of the not function to test the value for absence.

SIDE EFFECT: If an attribute is not found in the third element of I_info, it is found by
calling get-switch-from-info which adds the attribute to the third element
of I_info.

Printed April 27, 1989

‘ OBJECTS 5-73

(object-expression-is 'ty_type 'g_expression) [LISP Macro]

RETURNS: The object that g_expression will evaluate to at eval time, if this can be
determined at compile time, and if this object is of type ty_type. Or, if
g_expression is an object of type ty_type, returns g_expression (as in pre-
evaluated arguments to macros). Otherwise returns nil.

If g_expression is a symbol which is the has-name of an object of type
ty_type, that object is returned. If the symbol is unbound, it will first be
automatically bound by the define-object-name-prefiz facility, if possible.

As a special case, if g_expression has the form—

(has-type (s_type ...))
and ty_type is a-lype, then g_expression is replaced by s_type.

(object-is 'ty_type 'ob_object) [SKETCH Operation Macro)
(parent-object-is 'opd_descriptor 'ty_type 'ob_object) [LISP Macro]

USE ONLY WHEN: Parent-object-is should be used only when defining non-standard
SKETCH types.

WHERE: Opd_descriptor may be pre-evaluated.
‘ RETURNS: Non-nilif ob_object has the type ty_type. Otherwise nil.
EFFICIENCY: This is much more efficient than—
(eq ty_type (has-type ob_object)),
when ty_type is specified by its name, s_type, at compile time, or when
opd_descriptor is given and is either pre-evaluated or is a descriptor name.
EQUIVALENT TO:
(ezecute-found-operation object-is
(find-operation-descriptor opd_descriptor object-is
ty_type)
ty_type ob_object)
where opd_descriptor is nil for object-ts, the call to find-operation is

performed at macro expansion time if possible, and steps are taken to
avoid evaluating ty_type twice.

Printed April 27, 1989

OBJECTS 5-74

(object-is-a-stub ‘ob_object) [SKETCH Operation Macro|
object-is-a-stub [SKETCH Operation)|

RETURNS: Non-nil if ob_object is a stub. Otherwise nil.

The standard test for an object being a stub is to test each attribute as
specified by the attribute’s its has-1s-a-stub-switch value: see HAS-IS-A-
STUB-SWITCH under an-attribute-descriptor. If this switch is nil or yes, the
attribute is tested by the not function, and is therefore required to be nil. If
this switch is no, the attribute is not tested at all. If this switch is some
other symbol, that symbol is used in place of not to test the attribute value.
All attributes must pass their tests for the object to be a stub.

Standardly has-name attributes have the no has-1s-a-stub-switch value, and
the value of this switch for all other attributes is not specified (nal).

(object-symeval 's_symbol) " [LISP Macro]

RETURNS: The value of the symbol if it has one or can be bound by the define-object-
name-prefiz facility; nil if the symbol is unbound and cannot be bound by
that facility.

(s_operation ‘ob_object ...) [SKETCH Operation Macro|
(s_operation (s_type ob_object ...) ...) [SKETCH Operation Macro|

WHERE: S_operation is the name of some SKETCH operation, op_operation: e.g. make-
object, format-object.

RETURNS: The value of executing op_operation on the arguments.

EFFICIENCY: The form with (s_type ob_object ...) rather than just ob_object is often
more efficient when compiled, because s_type tells the compiler the type of
ob_object.

NOTE: Some operations do not take an object as their first argument. E.g. make-object
and create-object take a list whose first element is the type used to control the
operation behavior, while object-is takes that type directly as the first argument.

EQUIVALENT TO:

(ezecute-operation s_operation ’ob_object ...).

However, it is permissible to override this definition by setting the
function definition of s_operation. The default macro definition will
not replace an existing definition.

Printed April 27, 1989

OBJECTS 5-75

(patom ...) [LISP Function]

EQUIVALENT TO: Normal LISP patom, except that objects which have a has-name attri-
bute are represented by the value of that attribute.

“pre-evaluated”’ [SKETCH Term|

USE: An argument to a macro is said to be pre-evaluated if it is the intended argument
value itself, as opposed to an expression which is to be evaluated at some later time
to the intended value. Thus for a number argument, this would be the number
itself, which can also serve as an expression that evaluates to itself. Other pre-
evaluated arguments, however, are not expressions that evaluate to themselves,
and cannot be passed to code that expects expressions and not values.

Attributes, attribute descriptors, operations, and operation descriptors are often
passed to macros as pre-evaluated arguments. One must be careful not to output
these in the expansion of the macro, unless that expansion also calls a macro that
expects pre-evaluated arguments.

(pretty-print 'ob_object ...) [LISP Function]

EQUIVALENT TO: For SKETCH Objects (those for which has-type differs from has-lisp-
type) pretty-print uses format-object. Also, lists in the format of
abnormal objects, either using symbols to name the type and attri-
butes, or using the type and attribute objects themselves, are formated
like objects: the attribute values are indented with respect to the attri-
bute labels.

(print ...) [LISP Function]

EQUIVALENT TO: Normal LISP print, except that objects which have a has-name attri-
bute are represented by the value of that attribute.

(process-attributes ’(ty_type at_attribute g_value ...) [LISP Function]
‘ob_prototype)
(process-attributes-for-macro '(list s_type s_attribute g_value ...) [LISP Function]
'g_prototype)

USE ONLY WHEN: Defining non-standard SKETCH make-object operations.

WHERE: In the arguments to process-attributes-for-macro, s_type, s_attribute, g_value,
and g_prototype are expressions which will evaluate at eval time to the
corresponding components of the arguments to process-attributes.

The first argument to process-attributes is an abnormal object: see make-object.
RETURNS: Process-attributes returns the list—
(ty_type at_attribute g_value ...)

with default values appended for the missing attributes that, depending upon
ty_type, should have default values, and has-init-function’s called for expl-
citly given attributes that, depending upon ty_type, have these functions
defined. The default values are not appended if ob_prototype is not nil.

Printed April 27, 1989

OBJECTS 5-76

Process-attributes-for-macro is similar but returns the list—
(list ty_type at_attribute g_value ...)

and applies has-init-macro’s instead of calling has-tnit-function’s.

Process-attributes obtains default values by evaling default value expressions
associated with the at_attribute’s and ty_type. It applies has-init-function’s
s_init-function by calling—

(funcall s_init-function g_value atd_descriptor at_attribute ty_type)

for each explicitly given g_value (not for default values) which has such a
function associated with its at_attribute and ty_type. Here atd_descriptor is
the attribute descriptor that contributed s_init-function.

Process-attributes- for-macro inserts unevaluated default expressions into the

returned list. It replaces each unevaluated explicitly given g_value by the

result of applying the has-init-macro s_init-macro to the form—
‘(,s_init-macro ,g_value ,atd_descriptor ,at_attribute ,ty_type)

if there is an associated has-init-macro, or by the form—

‘(,s_init-function ,g_value (get-atiribute ,atd_descriptor)
,(has-name at_attribute) ,(has-name ty_type))

if there is only an s_init-function. Note that in the application of s_init-
macro the arguments at_attribute, atd_descriptor, and ty_type are
preevaluated, whereas g_value is unevaluated.

Calls to init functions or macros are not made {or default values or for attri-
butes for which there is no has-init-function associated with at_attribute and

ty_type.

In the case of process-attributes-for-macro, s_type, s_attribute, and g_value
in the abnormal object list are yet unevaluated, and it is not possible to call
init functions or macros or to append default values unless s_type and all the
attribute labels s_attribute are represented by their names. If this is not the
case, or if g_prototype is non-nil and does not have the form—

(s_type ...),
process-attributes-for-macro will return nil, but not call error.

Lastly, error checking is done on the list and prototype. Process-attributes
calls error if it discovers that the first element of the list is not a type, or the
even numbered elements are not attributes, or the list length is not odd. It
also calls error if the prototype is not nil and does not have a type equal to
the first element of the list. Process-attributes-for-macro simply returns nil if
there is any problem with the list.

SIDE EFFECT: The results returned are copies of the input lists, and the input lists are
not changed.

Printed April 27, 1989

OBJECTS 5-77
read-write-password-attribute-functions [LISP Global Variable]
read-private-password-attribute-functions® [LISP Global Variable]
private-password-attribute-functions [LISP Global Variable|

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

USE: These are named an-attribute-function-table’s which may be used to define an-
attribute-descriptor that makes an attribute handle passwords. The password must
be a symbol whose value equals itself, and must be the has-parameters attribute of
the attribute descriptor whose has-functions attribute is one of the above function

tables.

Thus a typical use is—

(an-attribute-descriptor has-descriptor-attribute at_attribute

SIDE EFFECT:

has-descriptor-type ty_type
has-functions *read-private-password-attribule-functions*
has-parameters s_password)

In some cases a password argument must be used with the attribute
When required, the password argument must be the first extra argument
to the attribute, as in any of the following—

(s_attribute ob_object s_password ...}
(get-attribute at_attribute ob_object s_password ...)
(get-parent-attribute atd_descriptor at_attribute ob_object

s_password ...)

The password must be used to read the attribute if the function table 1s
*private-password-attribute-functions”.

The password must be used to write the attribute if the function table is
private-password-attribute-functions or *read-private-password-
attribute-functions”®.

In other cases the password is optional: it may be used or omitted.

In the case where a password must be used and is not, error will be called
with a message that at_attribute is private and cannot be gotten or setfin
objects of the type of ob_object.

In all cases, if the attribute read or write is allowed, the parent get or set

attribute descriptor will be used, and any password present will be
removed from the extra argument list and not passed to the parent.

Printed April 27, 1989

OBJECTS 5-78

(remove-abnormal-attributes [do-return-really-nil| [LISP Function]
(ty_type at_attribute-1 g_value-1 ...)
'at_attribute-11 ’at_attribute-12 ..)
(get-abnormal-attributes [do-return-really-nil) (LISP Function)]
(ty_type at_attribute-1 g_value-1 ...)
‘at_attribute-11 'at_attribute-12 ,..)

USE ONLY WHEN: Writing create and make functions which have abnormal object argu-
ments. .

RETURNS: A list of the values of the attributes at_attribute-11, at_attribute-12, ...
found in the abnormal object

"(ty—type at_attribute-1 g_value-1 ...)

If the do-return-really-nil switch is present, the value returned for an attri-
bute which has a nil value in the abnormal object is the symbol really-nil,
whereas the value returned for an attribute with no abnormal value 1s nil
Without the do-return-really-nil switch, nilis returned in both cases.

SIDE EFFECT: Remove-abnormal-attributes removes the attributes it gets from the
abnormal object. Get-abnormal-atiributes does not.

“SKETCH object” ‘SKETCH Term|
ob_ [SKETCH Argument Prefix]

USE: A SKETCH object is one whose SKETCH has-type value is a type defined by
declare-hunk-type or declare-vector-type. Note that tyvpes that appear in data but
have not been declared to the program are implicitly declared in one ol these ways,
and are SKETCH object types.

LISP numbers, strings, symbols, lists, and ports are not SKETCH objects.

ARGUMENT PREFIX: SKETCH object arguments are indicated by the ob_ argument
prefix. This is less general than the g_ prefix, which includes both
SKETCH objects and other LISP objects such as numbers and lists.

sob_attribute [C Type]
at_ [Argument Prefix]

VALUE: A lisp value which is a pointer to a SKETCH an-atiribute object.

Printed April 27, 1989

OBJECTS

5-79

SOB_ATTRIBUTE [C Global Variable]
SOB_BIGNUM [C Global Variable]
SOB_BINARY [C Global Variable|
SOB_CHAR [C Global Variable|
SOB_DOUBLE [C Global Variable|
SOB_FIXINUM [C Global Variable]
SOB_FLOAT [C Global Variable|
SOB_FLONUM [C Global Variable|
SOB_HUNK [C Global Variable|
SOB_INT [C Global Variable|
SOB_IVECTOR [C Global Variable|
SOB_LARRAY [C Global Variable]
SOB_LBIT [C Global Variable]
SOB_LIST [C Global Variable]
SOB_LONG [C Global Variable|
SOB_LVECTOR [C Global Variable|
SOB_NONLISP [C Global Variable|
SOB_PORT [C Global Variable|
SOB_SHORT [C Global Variable]
SOB_STRING |C Global Variable]
SOB_SYMBOL [C Global Variable]
SOB_TYPE [C Global Variable]
SOB_UBIT [C Global Variable|
SOB_UCHAR [C Global Variable|
SOB_ULONG [C Global Variable]
SOB_UNSIGNED [C Global Variable|
SOB_USHORT [C Global Variable|
SOB_VALUE |C Global Variable|
VALUE: An saf_lvalue equal to a SKETCH a-type object, according to the following
table—
SOB_ATTRIBUTE | an-attribute SOB_LONG a-long
SOB_BIGNUM a-bignum SOB_LVECTOR a-lisp-vector
SOB_BINARY a-binary-function SOB_NONLISP a-non-lisp-value
SOB_CHAR a-char SOB_PORT a-port
SOB_DOUBLE a-double SOB_SHORT a-short
SOB_FIXNNUM a-fiznum SOB_STRING a-string
SOB_FLOAT a-float SOB_SYMBOL a-symbol
SOB_FLONUM a-flonum SOB_TYPE a-type
SOB_HUNK a-hunk SOB_UBIT a-ubit
SOB_INT an-int SOB_UCHAR a-uchar
SOB_IVECTOR an-immediate-vector || SOB_ULONG . a-ulong
SOB_LARRAY a-lisp-array SOB_UNSIGNED | an-unsigned
SOB_LBIT an-lbit SOB_USHORT a-ushort
SOB_LIST a-list SOB_VALUE a-value

Printed April 27, 1989

OBJECTS 5-80

sob_case (ty_type) |C Function|

RETURNS: An integer code that discriminates between different numeric tvpes and is
suitable for use in a case statement. The codes returned have names such as

SOB_UBCASE as per the following table—

Ty_type Value Code Returned | Numeric Type

SOB_UBIT SOB_UBCASE | unsigned 1 bit integer

SOB_CHAR SOB_CCASE signed 8 bit integer

SOB_UCHAR SOB_UCCASE | unsigned 8 bit integer
SOB_SHORT SOB_SCASE signed 16 bit integer
SOB_USHORT SOB_USCASE | unsigned 16 bit integer
SOB_LONG SOB_LCASE signed 32 bit integer

SOB_INT

SOB_ULONG SOB_ULCASE | unsigned 32 bit integer
SOB_UNSIGNED

SOB_FLOAT SOB_FCASE signed 32 bit floating point number
SOB_DOUBLE SOB_DCASE unsigned 64 bit floating point number

If ty_type is not listed in the above table, O is returned.

sob_ltype (g_value) [C Macro]

RETURNS: The sob_type for the SKETCH type associated with the LISP type of g_value.
This LISP type is the same as returned by has-lisp-type. Thus il g_value
were an-attribute, sob_ltype would return something like SOB_HUNK: see
has-lisp-type!

sob_missing (x_type_case) [C Function]
RETURNS: The missing value appropriate to the data type ty_type with—
x_type_case = sob_case (ty_type).

This value is returned as a double. If ty_type has no missing value, some
value is returned which is never taken by ty_type values: this is invariably

SAT_DMISSING.

Printed April 27, 1989

OBJECTS 5-81

sob_nobject (t_name) [C Function|

RETURNS: The sat_lvalue which is the object whose has-name attribute value is the sym-
bol sat_nsymbol (t_name).

BUG: Behavior is undefined if there is no such object but there is a bound symbol with
the name t_name. An error is detected only if the symbol t_name is unbound.

sob_tsize (ty_type) [C Function|

RETURNS: The size in bits of a datum of type ty_type, or 0 if ty_type is not a valid type
or has no specified size. This size in bits is the same as the has-size attribute
of ty_type in LISP.

sob_type [C Type]
ty_ [Argument Prefix|

VALUE: A lisp value which is a pointer to a SKETCH a-type object.

sob_vcreate (ty_type) [C Function]

RETURNS: A newly created object of type ty_type. The object is the same as would be
created by—

(create-object (list ty_type) nil),

except that element default values which are not constants, but which require
computation to produce, are ignored, and their elements take the values they
would have if no defaults were ever given for them.

Ty_type must have been defined by declare-vector-type or define-vector-type.
Note for purposes of lint that the value returned is of type sat_{lvalue.

sob_vinit (ob_object ty_type) [C Function)]
RETURNS: Ob_object after initializing it.

Note that for purposes of lint both ob_object and the value returned is of
type sat_lvalue.

SIDE EFFECT: Sets all of the vector part of ob_object just as they would have been set
had the object been created by—

(create-object (list ty_type) nil).

Ty_type must have been defined by declare-vector-type or define-vector-
type. The hunk part of the object is not touched, and in fact the vector
size and property list elements of the vector do not have to exist.

USE: To initialize vector objects created in the stack. E.g. —

Printed April 27, 1989

OBJECTS 5-82

function (...) ... {
sag_talloc (transform, 1);

sob_vinit (transform, SAG_TRANSFORM);
)

allocates a SAG_TRANSFORM object in the stack and initializes it.

“stub” [SKETCH Term|

USE: A stub is an object most of whose attributes are yet undefined, but which has
enough defined attributes to provide some kind of unique referent (e.g. name) for
the object. «Stubs are considered to be part of indexing, and are handled by the
make-objeet operation. The general rules concerning stubs are as follows:

(1) If a stub is created while making an object, and an object with the same
referent already exists, the stub is discarded, and the pre-existing object is
returned as the result of making the object. An error check is made to be
sure the pre-existing object and the newly created stub have the same

type.

(2) If a non-stub is created while making an object, and a stub with the same
referent already exists, the attributes of the pre-existing stub are filled in
with the attribute values from the newly created object (by move-object),
the newly created object is discarded, and the pre-existing object (the
former stub) is returned as the result of making the object. An error
check is made to be sure the pre-existing stub and the newly created object
have the same type.

(3) If a non-stub is created while making an object, and a non-stub with the
same referent already exists, the two objects with the same referents are
checked for equality by compare-object. Inequality is an error. The newly
created object is then discarded, and the pre-existing object is returned as
the result of making the object.

(symbol-init-function 'g_value [LISP Function]
"atd_descriptor 'at_attribute 'ty_type)

(symbol-init-macro 'g_value [LISP Macro|
atd_descriptor at_attribute ty_type) ‘

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

SIDE EFFECT: Checks that g_value is a symbol, and calls error if not with a message
that at_attribute must be initialized to a symbol for an object of type
ty_type.

USE: Usable as the has-init-function or has-init-macro value for an-attribute-function-

table.

Printed April 27, 1989

OBJECTS 5-83

(symeval ’s_symbol) [LISP Special Function]
WARNING: When compiled, FRANZ symeval does not check for unbound variables and

automatically bind them. Use object-symeval instead in compiled code that
is to automatically bind unbound variables.

top-level-print® [LISP Global Variable]

SIDE EFFECT: This variable, which is defined and used by the top level in the FRANZ
EXTENSIONS package, is set by the OBJECTS PACKAGE to print only
the name of any expression value with a non-nil has-name attribute,
unless that name is eq to the expression that was evaluated (as stored in
the global variable + by the top level).

(s_type 'at_attribute 'g_value ...) ILISP Macro)
(s_type 'ob_object) [LISP Macro]
(s_type ’ob_object 'at_attribute 'g_value ...) [LISP Macro|

WHERE: S_type is the name of a SKETCH type, ty_type.

RETURNS: The form with no ob_object returns a SIKETCH object of tvpe ty_tvpe,
at_attribute value g_value, and other attribute values as given by
Unspecified attributes will be given default values determined by s_type and
at_attribute. This form is equivalent to—

(make-object (list s_type at_attribute g_value ...) nil)

It 1s more efficient if each at_attribute is specified by its name, s_attribute.

The form with a single argument, ob_object, macro expands to ob_object
This form is used to tell other macros that ob_object 1s necessarily an object
of type ty_type. For example,

(has-name (an-attribute x))
may be compilable to more efficient code than—
(has-name x).

However, this one argument form does not usually check to see that the type
of ob_object in fact is ty_type, so the programmer must avoid mistakes.

The form with the ob_object argument and at_attribute/g_value argument
pairs makes a new object. Attributes not specified by the
at_attribute/g_value pairs are taken from the corresponding attributes of
ob_object, rather than being given default values. The type of ob_object
must be ty_type. This form is equivalent to—

(make-object (list s_type at_attribute g_value ...) (s_type ob_ob)ect))

It is more efficient if each at_attribute is specified by its name, s_attribute,
and ob_object is an expression of the form—

(s_type ...)
which promises a non-nil value of the correct type.

NOTE: All symbols beginning with a- or an- should name SKETCH types, and all
SKETCH types should have names beginning with these prefixes.

Printed April 27, 1989

OBJECTS 5-84

NOTE: It i1s permissible to override this definition by setting the function definition of
s_type. The default macro definition of s_type will not replace an existing

definition.
(uneval-object 'g_object [SKETCH Operation Macro]
[’g_index-switch ['g_backquote-switchj])
uneval-object [SKETCH Operation)

WHERE: We have written g _object instead of ob_object simply to emphasize that any
LISP value can be considered to be a SKETCH object for the purposes of
uneval-object.

RETURNS: A LISP value which when evaled will evaluate to g_object. More impor-
tantly, when pretty-print'ed, re-read, and then eval’ed this value will evaluate
to g_object. This is the only general means that a SKETCH object may be
transmitted from one program through a file to another program.

The result of uneval-object may contain calls to the fictitious macros
backquote and comma, which will pretty-print as * and , respectively. The
argument to backquofe may have the form of a dotted list, as in—

(backquote (... . (comma ...)))

Backquote is defined as a macro, and its presence also signals prefty-print to
process the list specially.

Comma cannot occur outside a backquote’d argument.

A SKETCH object which is indexed by having a has-name attribute will be
represented by an expression of the form—

(s_type has-name 's_name)

which evaluates to a stub for the object. If g_index-switch is absent or nil, an
exception will be made for the g_object itself, which will be represented as a
type and attribute list even if it has a has-name attribute. However no such
exception will be made for the attribute values of g_object.

By using these rules, it is possible to output in any order a set of named
objects which cross reference each other, and get the cross referencing right
when the objects are input into another program load.

The behavior of the last two paragraphs is the behavior of the default
uneval-object functions defined by declare-hunk-type and declare-vector-type.
This default behavior can be overridden by defining special uneval-object
functions for a particular type.

Sometimes the results of uneval-object are to be included as part of an argu-
ment to backquote. In this case, the result of an uneval-object will not to be
evaluated unless it is a call to the comma pseudo-function. This situation is
indicated by a present, non-nil g_backquote-switch. Otherwise, uneval-object
is to operate normally, assuming that the result will be evaluated to obtain

Printed April 27, 1989

OBJECTS 5-85

g_object. For example,
(uneval-object ’x nil t)
will return just x, whereas—
(uneval-object 'x nil nil)
will return ’x.
EFFICIENCY: This macro compiles more efficient code if g_object is an expression of the
form—
(s_type ...)
whose type s_type is specified at compile time.

Also, if g_backquote-switch is not given or has a known value (nil or {) at
compile time, and if g_object does not have the form—

(s_type ...),
uneval-object compiles in-line code to check whether g_object is a number,

string, or symbol, and returns g_object or ’g_object as its value in that
case.

UNEVAL-SWITCH: If an attribute, at_attribute. of an object of type ty_type has a non-nil
value of

(get-uneval-switch ty_type at_attribute),

then in any call to uneval-object, this value will control the uneval-
object'ing of the attribute value. If the switch is no, the attribute will
not be included as part of the unevaled object. If the switch is yes or
nil, the attribute will be included. If the switch is another symbol,
that symbol will be taken as the name of a function to be called in
place of uneval-object to uneval the attribute value. See HAS-
UNEVAL-SWITCH under an-attribute-descriptor.

(unpre-evaluate-object ‘ob_object) [LISP Function]

USE ONLY WHEN: Referencing pre-evaluated macro arguments in calls to error returned
by the macro.

RETURNS: An expression which crudely attempts to undo possible pre-evaluation of
macro arguments. Returns—

(uneval-object ob_object)

after stripping any quote function therefrom.

Printed April 27, 1989

CHAPTER 6

CATALOGS

1. CATALOG FILES AND FILE CATALOGS. A catalog file is a file that stores a
sequence of LISP and SKETCH objects in ASCII text. Each object is represented by a
LISP expression which may be read (by the LISP read function) and evaluated (by the
LISP eval function) to produce the object. Virtually any LISP or SIKETCH object can he
represented in this manner.

An object can be written into a catalog by first unevaluating it (using the SKETCH
uneval-object macro), and then printing the result (using the SKETCH pretty-print macro,
or LISP print function).

A file catalog is a-catalog object with a has-file attribute that is 2 symbol naming a
catalog file. E.g.—

(setq the-catalog (a-catalog has-file 'my-file.ca))

where my-file.ca 1s the name of the catalog file. Note that the file name extension .ca1s
preferred for catalog files (but not required).

You can read this catalog by—
(setq the-object (read-catalog the-catalog))

which returns the next object in the catalog. The first object returned from a new cata-
log is the first object in the catalog. If you want to reset the catalog to the beginning.
you can execute—

(close-catalog the-catalog)

which does not destroy the catalog object, but does release operating system resources
used by that catalog, and causes the next read-catalog to begin back at the beginning of
the catalog. There is no explicit open-catalog operation: it 1s implied by the first read (or
write) of a catalog.

Executing—
(setq the-object (read-catalog the-catalog))

when the catalog is positioned at its end will return the symbol end-of-catalog as the
value of the-object.

The-object may be written at the end of the catalog by—
(write-catalog the-catalog the-object)

Note that write-catalog always appends to the end of the catalog; it never causes informa-
tion to be lost from the catalog. When you are done writing objects into the catalog, vou
should use—

(close-catalog the-catalog)

to be sure everything you wrote is properly transferred to disk.

CATALOGS 6-1

CATALOGS 6-2

After you start reading from a catalog, you should not write to the catalog until vou
have closed it. Similarly, after you start writing, vou should not read until vou have
closed the catalog.

To start writing at the beginning of a catalog you first truncate the catalog. For
catalog files, this is done with—

(setq the-catalog (new-catalog 'my-file.ca)),
which truncates my-file.ca and sets the-catalog to—
(a-catalog has-file 'my-file.ca)
It i1s also possible to read from a random location in a catalog file. To find the loca-

tion of the last object read from the catalog by read-catalog, or written into the catalog
by write-catalog, use—

(setg the-location (get-catalog-location the-catalog)),
after which the last object can be read at any later time by—
(setq the-object (read-catalog the-catalog the-location)),
regardless of where the catalog is positioned when this last statement is executed.

If you look at the value of the-location, by the way, vou will find 1t to be a list of
several numbers. Its complexity is due to the fact that objects in a catalog are sometimes
packed (automatically) by referring to a previous object in the catalog, so that to position
to an arbitrary object in a catalog requires positioning to the first previous unpacked
object, and then reading forward to the desired object, unpacking as you read.

When opening catalog files, the directories searched are those in the list of directory
names (represented by symbols) returned by—

(status catalog-search-path)
which is typically set by placing the statement
(sstatus catalog-search-path (].| s_directory ...))

in the sketch.rc file (which is loaded whenever sketch is started).

2. INDEX CATALOGS. An index catalog permits objects in a second catalog to be
referenced by meaningful names, called keys. The second catalog is called the indexed
catalog. The keys are defined by an index function that returns the key of an object when
called with the object as an argument. The keys become the locations returned by get-
catalog-location and used by read-catalog when these functions are applied to the index
catalog.

Suppose we have a catalog file named mine.ca containing objects some of which have
a non-nil has-id attribute that we wish to use as a key. Then the following creates the
appropriate index catalog—

(a-catalog is-indez-of (a-catalog has-file 'mine.ca)
has-indez-function ’(lambda (x y) (has-id x)))

Here the indexed catalog is (a-catalog has-file 'mine.ca), the value of the s-indez-of attri-
bute of the index catalog. Also, we have introduced a lambda index function, instead of
just using has-id directly, because has-id is actually a macro (like all attribute names),
and because the index function must take a second argument.

Printed April 27, 1989

CATALOGS 6-3

The second argument, y, is the number (1, 2, 3, ...} of the object in the indexed cata-
log. So to use the object’s number as its key, just use the index function—

'(lambda (x y) y).

There is a predefined function named catalog-number that equals this last lambda, so the
symbol catalog-number may be used as the index function when you want object keys to
equal the number of the object in the indexed catalog. In this case—

(read-catalog ca_index-catalog 4)
would read the 4’th object in the indexed catalog.

By the way: one must not replace ’(lambda ...) by #(lambda ...), for those of you
who know that this trick will compile the lambda function, because the index function
should be something we can save in a file, as we shall see in a moment.

If the index function returns nil for an object, that object has no key. After reading
that object get-catalog-location will return nil, which cannot be passed as a location to
read-catalog.

The default index function, or what you get when yvou specily nil as an index func-
tion, returns a key only for objects that are pairs of the form—

(catalog-key g_kev).

For such an object g_key is returned as the key. Putting such objects at selected points
in a catalog file enables one to position to these points. Note that what actually appears
in the catalog file is the quoted list—

"(catalog-key g_key).

At the end of every catalog the symbol end-of-catalog appears as if it were an object
in the catalog. This symbol always has itself as its key, regardless of how the index func-
tion is defined. That is,

(read-catalog ca_index-catalog 'end-of-catalog)

will always position both index and indexed catalogs at their ends and return the symbol
end-of-catalog.

Note that operations on an index catalog are equivalent to operations on its indexed
catalog, except that object location values are different.

If you use one of the index catalogs defined above that index mine.ca, then after clos-
ing the index catalog you will find a new file, mine.ci. The index function and the index
itself are written into this file when the index catalog is closed. The index is roughly a list
of triples each consisting of a key, the number of an object in the indexed catalog, and the
location of the object in the indexed catalog. The index may not be complete. Later, if
another index catalog is defined that indexes mine.ca with the same index function, the
mine.ci file will be used to read the index, and save the time of having to read the entire
mine.ca file to rebuild the index. Also, no index function need be specified for the index
catalog if mine.ci exists; it will be read from mine.ci.

You can provide the name of a file to serve as mine.ci for any index catalog. It is a
symbol which is the value of the index catalog’s has-indez-file attribute. Note that the
index stored in one of these files may be incomplete, as the index is built incrementally as
it is needed, and not completed until the end of the indexed catalog is read. See HAS-
INDEX-FILE under a-catalog in the GLOSSARY.

Printed April 27, 1989

CATALOGS 6-4

When index files are being used. keys must be objects that will equal themselves
when printed and re-read. Integers, symbols, character strings, and lists of these will
work. Floating point numbers that originated when character strings with 5 or fewer
digits were read into the computer may also work.

If you use an index catalog to write a catalog file like mine.ca, the index file, mine.ci,
will be made when the index catalog is closed. Once mine.ci is completed, the index func-
tion is actually never needed again. In particular, it may he a symbol that has no func-
tion definition in environments in which mine.ca is read with an index catalog.

3. INCLUDED CATALOGS.
4. FILTER CATALOGS.

5. RANDOM PORTS.

6. TAPE VOLUMES.

7. HITLIST.

(1) Finish tutorial documentation.
(2) Implement tape volumes.
(

3) Possibly improve packing algorithm.
8. GLOSSARY.

(a-catalog |[has-file 's_file-name] 'SKETCH Object!
[has-filter ‘(u_function ,ca_input-catalog)|
[is-indez-of ca_indexed-file]
[has-indez-file ’s_index-file|
[has-indez-function 'u_index-function])

(has-file 'ca_catalog) [SKETCH Attribute Macro|
(has-filter ’ca_catalog) [SKETCH Attribute Macrol
(is-index-of ’ca_catalog) [SKETCH Attribute Macro|
(has-index-file 'ca_catalog) [SKETCH Attribute Macro|
(has-index-function 'ca_catalog) [SKETCH Attribute Macro)
catalog-key [LISP Symbol|
(catalog-number ob_x x_number) [LISP Function]

VALUE: A catalog object that may be used to read or write LISP objects. There are
several different kinds of catalogs, distinguishable by their attributes.

HAS-FILE: A file catalog has a file name in the has-file attribute. The file contains a
sequence of LISP expressions which can be read and then evaluated to produce
LISP values. These LISP expressions may be packed: each expression may be
represented in a special notation that describes only its differences from the
previous expression in the file.

A file catalog can be written as well as read. The values written are converted

Printed April 27, 1989

CATALOGS 6-5

using uneval-object into an expression that will evaluate into the value being
written. The values written are packed, but after packing 50 values a value is
intentionally left unpacked to speed repositioning when reading the catalog.

HAS-FILTER: The value of this attribute consists of a two element list, or pair, of the
form-

(u_function ca_input-catalog)

The function is a function of one variable which is applied to each value
read from ca_input-catalog to produce an output value for the current
catalog. If the function returns the symbol 'please-ignore, the correspond-
ing ca_input-catalog value is ignored.

A filter catalog cannot he written.
IS-INDEX-OF:
HAS-INDEX-FUNCTION:

HAS-INDEX-FILE: The value of the is-indez-of attribute is a catalog, ca_indexed-catalog,
called the indexed catalog. The current catalog is called the index cata-
log. Operations on the index catalog are equivalent to operations on
the indexed catalog, except for operations involving locations. The
locations of an index catalog are keys determined by u_index-function.
This function is called by-

(funcall u_index-function ob_object x_number)

where ob_object is the x_number’th object in ca_indexed-catalog. The
function (which must not have side eflects) returns a key which is used
to name the location of the object 1n the index catalog. The function
may also return nil to indicate that the object does not have a well
defined location in the index catalog.

Thus if u_index-function equals—
(lambda (x y) y),

the x_number’th object in the indexed catalog will have x_number as
its key. The function catalog-number is defined to be equal to this par-
ticular function, and is more mnemonic.

The keys must be lisp objects that equal themselves when printed and
re-read. E.g. integers, symbols, character strings, and lists of such.
The keys must be unique: a non-unique key used as a location for the
index catalog will locate any of the several objects in the indexed cata-
log that have that key. The symbol end-of-catalog is automatically the
key of the end of the end-of-catalog symbol returned at the end of
ca_indexed-catalog (regardless of the definition of u_index-function),
and must not be a key of any object in ca_indexed-catalog.

If the has-indez-function attribute is nil, the kev for any object of the
form—

Printed April 27, 1989

—_— 1

CATALOGS

6-6

(cataloy-key g_x),

will be g_x, while no other objects will have a key.

The index catalog keeps an index table that translates keys into loca-
tions in the indexed catalog. This table may be incomplete if the entire
indexed catalog has not.been read and translated into keys. If a
request is made to locate to an object with a key not yet in the index
table, the remainder of the indexed catalog is read until the object with
the key is found, or until the end-of-catalog is reached, in which case an
error is signaled.

If s_index-file, the has-index-file attribute, is non-nil and names a read-
able file, then when the index is first needed, the has-indez-function
value and the index itself will be read from s_index-file. The has-
indez-function value, which must be a symbol or a printable lambda
list, will be read from the beginning of s_index-file. The index will then
be read.

There are two cases when the contents of s_index-file are ignored.
First, if the has-index-function has a non-nil value before the file is
read, and this value is not equal to the index function read from the
file, then it is assumed that the contents of t