
ESD-TR-89-118

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

SKETCH 4B

AN IMAGE UNDERSTANDING

OPERATING SYSTEM

14 JUNE 1989

Prepared for the Defense Advanced Research Projects
Agency under Air Force Contract F19628-85-C-0002.

Approved for public release; distribution is unlimited.

LINCOLN MANUAL 163

A\)f\2Cclbl7

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

SKETCH 4B
AN IMAGE UNDERSTANDING OPERATING SYSTEM

R. WALTON

J. VERLY

P. VAN HOVE

Group 21

LINCOLN MANUAL 163

14 JUNE 1989

Prepared for the Defense Advanced Research Projects
Agency under Air Force Contract F19628-85-C-O002.

Approved for public release; distribution is unlimited.

LEXINGTON MASSACHUSETTS

The report is based on studies performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology. The work was
sponsored by the Defense Advanced Research Projects Agency under Air Force
Contract F19628-85-C-0002.

The views and conclusions contained in this document are those of the contractor
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the United States Government.

The ESD Public Affairs Office has reviewed this report,
and it is releasable to the National Technical Information
Service, where it will be available to the general public,
including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

/vW /, Scru&d/

Hugh L. Southall, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

SKETCH 4B

AN IMAGE UNDERSTANDING

OPERATING SYSTEM

by

Robert Walton

Jacques Verly

Patrick Van Hove

April 1989

MIT Lincoln Laboratory

1. SKETCH LICENSE REQUIREMENTS.

2. SKETCH MANUAL.

3. SKETCH DEMONSTRATION PROGRAMS.

4. SOURCE FILES OF A REPRESENTATIVE SKETCH PACKAGE.

COPYRIGHT C 1988 BY MIT; ALL RIGHTS RESERVED
DEVELOPED AT LINCOLN LABORATORY.

SKETCH LICENSE REQUIREMENTS

April 1989

WARNING

TO RECEIVE SKETCH YOU MUST HAVE THE FOLLOWING:

1. PERMISSION FROM MIT.

2. BERKELEY UNIX ON VAX OR SUN3.

3. WESTERN ELECTRIC DEVICE INDEPENDENT TROFF
(UNLESS YOU DO NOT WANT TO PRINT DOCUMENTATION)

4. FRANZ LISP FROM FRANZ INC. IF SUN3
(NOT NECESSARY IF VAX).

SKETCH MANUAL

VERSION 4B

April 1989

by

Robert Walton

Jacques Yerly

Patrick Van Hove

MIT Lincoln Laboratory

COPYRIGHT C 1988 BY MIT; ALL RIGHTS RESERVED.
DEVELOPED AT LINCOLN LABORATORY.

CHAPTERS

1 INTRODUCTION.

2. LISP TUTORIAL.

3. FRANZ EXTENSIONS.

4. ATOMS.

5. OBJECTS.

6. CATALOGS.

7. ARRAYS.

8. BASIC ARITHMETIC.

9. BIT GRAPHICS.

10. ANALYTIC GEOMETRY

11. DISPLAY.

12. HISTOGRAMS.

13. EDGES.

14. LINEAR FIT.

15. TEXTURE.

APPENDDCES

A INDEX.

B. CONFIGURATION.

C. MAKING FILES.

D. WRITING MANUALS

E. FRANZ FLXES.

F. DISPLAY DAEMON.

CHAPTER 1

INTRODUCTION

1. PURPOSE. SKETCH is an image understanding operating system designed for use
by the serious programmer who is trying to construct and debug complex AI Image
Understanding programs. The emphasis in SKETCH is on being small, efficient, and
llexible, and on promoting modularity of the final program. SKETCH is not intended to
be an image processing system for non-programmers.

SKETCH is also useful, in the hands of an experienced programmer, for evaluating
the performance of algorithms, complex or simple, against large data sets, and for storing
resulting images and tables on disk for rapid review and reference.

2. REQUIREMENTS. SKETCH strives to meet the following requirements.

2.1. SKETCH IS LISP BASED. An interpretive language is desirable for control,
because the programmer productivity of an interpretive language is at least o0% better
than that of a compiled language.

Little use of disk should be made during the computation, for speed reasons.

The best standard language for these purposes is LISP.

2.2. SKETCH USES FORTRAN AND C FOR SIGNAL PROCESSING. No
LISP, including COMMON LISP in most of its current implementations, seems to be able
to handle numeric computations in a cost effective manner. Therefore, array oriented
algorithms need to be written in FORTRAN or C.

2.3. SKETCH INTERFACES WITH EXISTING DATA. Tapes in existing data
libraries usually do not have to be reformated.

2.4. SKETCH PROCESSES MODERATE AMOUNTS OF DATA. Develop-
ment of AI Image Understanding algorithms requires testing against many thousands of
images. Although this is usually not practical, because the CPU time requirements are
excessive, it is at least practical to test against hundreds of small images each day, given
proper support. This involves batch runs, storing results on disk for rapid review and
reference, and interactively repeating alternative computations on any input image that
requires further analysis.

2.5. SKETCH INTERFACES WITH EXISTING AI PACKAGES. Existing AI
software packages, like OPS5, PEARL, etc., should be integrable with SKETCH.
SKETCH should not prejudge the representation of symbolic data, because different
representations have different efficiencies in different applications.

INTRODUCTION 1-1

INTRODUCTION 1-2

2.6. SKETCH PROMOTES MODULARITY. Users of the SKETCH should gen-
erally be able to write signal processing modules without regard to interfaces other than
those defined by the SKETCH.

3. MAJOR SKETCH COMPONENTS. SKETCH supports several general purpose
object data types that facilitate communications between user subroutines in the same
way that the floating point number types do: by providing easy to use standards that
everyone can use without much thought. Specifically provided are SKETCH array, cata-
log, and display data types, and extra support for the LISP S-expression data type when
it is used for messages to human users. SKETCH also provides an object package with
specific support for defining semantic networks and storing them in catalogs (i.e., files).

3.1. THE ARRAY PACKAGE. SKETCH tries to do for array computations what
the floating point number did for simple arithmetic: provide a single array data type
everyone can share, and reduce user bookkeeping operations to a minimum.

SKETCH arrays support element values not supported in other systems. Block
floating point elements are supported: that is, elements that are stored as integers, with
all elements of the same array being multiplied by the same power of two. Block floating
point arrays are useful to compact array storage on disk or in MOS memory, and have
been useful in the past to speed computation on computers with slow floating point
hardware. Missing values are also supported for array elements, even in block floating
point and on computers without IEEE floating point.

More precisely, SKETCH supports arrays with 8-, 16-, and 32- bit signed or
unsigned block floating point numbers, 1-bit unsigned integers, and 32- or 64- bit floating
point numbers. Any array with signed numeric values may store missing values.

SKETCH allows a subroutine that has received an array to request that the array be
put in the format of the subroutine's choice. The subroutine can ask for the array to
have single precision floating point elements, for example, and if the array does not
already have these, it will be converted to have them. In image processing work, it is also
often desirable to add extra rows and columns around the edges of a 2D array by mirror-
ing the rows and columns near the edges, and this can be requested by the subroutine at
the same time.

Thus the programmer is relieved from the burden of having to present arrays in the
right format to each subroutine. There is no debilitating speed penalty for conversion of
array element types and provision of boundary extension values, as this is accomplished
by working with data in blocks, rather than one element at a time.

Similarly, because arrays are allocated in a garbage collected memory, the program-
mer is relieved from managing memory, or allocating output arrays for a subroutine he is
calling. Each subroutine merely allocates its own output arrays with the element format
it prefers, and returns these arrays as values to its caller.

In SKETCH, arrays are not just collections of elements, but are in fact a vector of
elements plus a linear map of array subscripts to vector subscripts. Two arrays may
share the same vector, and as any linear subscript map is allowed, one array may be a
window into the other, or a transpose of the other.

SKETCH also solves the problem of writing functions that deal with arrays of any
dimension; for example, elementwise addition of arrays of any dimension. SKETCH

Printed May 1, 1989

INTRODUCTION 1-3

makes all arrays 6 dimensional, with unused dimensions set to size 1. An elemenlwise
array addition program checks all its arrays for identical dimension sizes, and then exe-
cutes 6 nested loops, with the outermost loops iterating only once for unused dimensions
The 6 nested loops are embedded in a macro, so the fact that there are as many as 6 loops
is generally invisible to the programmer.

SKETCH arrays have several facilities aiding input/output. First,.the array control
information is stored separately from the array elements on disk. The control informa-
tion is stored as ASCII LISP S-expressions, human readable and editable, in files called
catalogs (catalogs are discussed in more detail below). The array elements are stored in
binary form, in separate files called array caches, and are pointed to by the control infor-
mation, which contains the file name and offset of where the elements are stored

As a consequence of this arrangement, array control information may be copied
between catalog files without copying the binary elements. Different catalogs may be
created without duplicating array elements.

Arrays have a property list like LISP symbols, permitting the user to add
identification and other information to arrays. This information is stored with the array
control information in catalogs, and may be used to select arrays from a catalog.

When an array, i.e., its control information, is read from a catalog, the array in
MOS memory has no elements, but continues to point at the elements on disk. If the ele-
ments of an array are wanted in a particular format by some subroutine, and the ele-
ments are not in MOS memory but are on disk, then the elements are read from disk.
Before altering elements of an array, a program indicates that it wants to write the
array, and the array is marked as no longer having valid elements on disk. But if the
array elements are not altered, the array continues to remember where its elements are
stored on disk.

When an array is written into a catalog file, the array elements will be written into
an appropriate array cache file, if an only if these elements do not already exist some-
where on disk.

Thus catalogs containing arrays can be copied and edited without copying array ele-
ments unnecessarily.

A general underlying idea of SKETCH is that the elements of an array can be in
many different formats in many different places. SKETCH, as it now exists, makes less
use of this notion than it might, but uses it enough to work well. Future versions
designed for parallel computers would necessarily make extensive use of the notion,
because in addition to changing the element format of an array, and adding mirrored
edges to image arrays, different subroutines would also want arrays to be laid out in
different ways in parallel memory.

3.2. THE OBJECT PACKAGE. The object package is used to store information
about arrays and other objects. It combines significant features of the LISP defstruct
facility, LISP property lists, and objects in the SMALLTALK language. Objects are LISP
values which have a type and attributes. The attributes play the role of properties in a
property list, defstruct slots, or SMALLTALK messages.

The storage of objects and access to their attributes can be optimized after the
manner of defstruct. The method for doing this is extensible, and the SKETCH object
system should be integrable with the data storage systems of other AI tool?, e.g. PEARL.

Printed May 1, 1989

INTRODUCTION 1-4

Currently the SKETCH object package is well integrated with the C language structure
defining facility.

An important feature of SKETCH is that attribute labels and object types do not
have to be predeclared, nor is it necessary to specify in advance all the attributes that can
be attached to a SKETCH object or all the types of SKETCH objects. Input data can
create attribute labels and object types on the fly, as can interpreted code. With special
syntax, compiled code can do this too. In this respect, SKETCH objects are similar to
LISP property lists. The SKETCH data cataloging facility makes important use of this
feature.

It is possible to have access to an attribute of a SKETCH object trigger a function,
and to pass extra arguments to that function. By this means the basic capabilities of
SMALLTALK objects are supported. Operations not having to do with attribute access
can also be defined on objects. These are generic in that they have different definitions
when applied to different object types.

The SKETCH objects package permits both a function and a macro to be supplied
for operations on objects and attributes. The macro is used to obtain efficiency when
there is sufficient information about object types available at macro expansion time. The
function performs the operation when such information is not available until later.

The SKETCH objects package also facilitates I/O of recursive semantic networks by
providing a system for naming objects with analogs of symbol print names, and a system
for forward referencing named objects pointed at by other objects being read into
memory. In a catalog a reference to a named object is represented by just the type and
name of the object. When a forward reference to an object is read, a place holder, or
stub, is allocated for the object. Later, when the full object is read, the stub is filled in
with the rest of the object attributes.

3.3. THE CATALOG PACKAGE. The catalog package stores information in the
file system concerning arrays and other LISP values. A catalog is just a sequence of
objects stored in an ASCII file.

Catalog entries are LISP values that are read and evaluated to create objects.
Because they are evaluated, they can represent objects by giving algorithms for comput-
ing them, rather than just by providing a direct representation of the object.

To write an object in a catalog, one unevaluates the object and prints the resulting
expression. Unevaluation is a standard objects package operation that can be defined
according to object type. The unevaluate-print-read-evaluate mechanism of data storage
and retrieval is a very powerful mechanism for representing complex objects in catalogs.

Catalogs can include other catalogs. A special include entry can be placed in one
catalog to cause the contents of a second catalog to appear to replace the include entry in
the first catalog.

Catalogs can be defined as applying filters to other catalogs. A filter is a function of
one variable. If one catalog is a filter of a second catalog by a particular function, the
function is applied to each object in the second catalog to make the corresponding object
of the first catalog. This is done incrementally whenever an object is to be read from the
first catalog. By returning the special value phase-ignore, the function can cause objects
from the second catalog to be deleted, in the sense they will be skipped when objects are
read from the first catalog.

Printed May 1, 1989

INTRODUCTION 1-5

An index for a catalog may be built and saved on disk, so random access in the cata-
log is fast.

It is generally easy to write programs which read existing datasets and produce
SKETCH catalogs listing the arrays in these datasets. These cataloged array objects can
contain whatever parameters describe the data. In particular, they may include new
attributes not declared to SKETCH code.

3.4. THE DISPLAY PACKAGE. The display package implements display objects
and the means of displaying them on a monitor. Display objects are basically memories
that describe 2D arrays of pixels. Included is an intensity array which typically has one
8-bit unsigned integer code per pixel. Display objects reference color maps that map pixel
intensity codes to colors. Display objects can additionally have up to 32 bitgraph planes,
each with one bit per pixel. Pixels with a '1' bit in a bitgraph plane are overlaid with a
color code determined by the plane. Each bitgraph plane is individually erasable, permit-
ting somewhat dynamic displays.

Bitgraph planes are used to store text and vectors. A display can also store text and
vectors in an S-expression based format that can be used to redraw this portion of the
display in a different resolution.

The display package emphasizes display device independence and the pie-
computation of displays for rapid browsing. Display objects can be stored in catalogs,
after the manner of any SKETCH object some of whose attributes are SKETCH arrays

3.5. THE TOP LEVEL PACKAGE (TO BE IMPLEMENTED). The top level
package will contain functions commonly used to control SKETCH runs. Computations
of objects from other objects are defined by tables so that when an object is required it
can be computed in the most efficient possible manner. Information about generating
displays is similarly defined by tables. Given these tables, a user can quickly customize
interactive jobs that compute and display objects, and batch jobs that precompute
objects and displays for later use. The user can also quickly modify the form of the
display and the objects displayed.

Detailed CPU timing statistics will also be automatically recorded.

Currently the top level package does not exist.

4. MANUAL CONVENTIONS. SKETCH is a set of packages, each of which is
documented in its own manual chapter (or appendix). The last section of a package
chapter is the GLOSSARY, which describes all the global names defined in the package.
Also described are a few technical terms used in the package documentation. Names
defined in the glossary are italicized wherever they appear in the manual. There is an
index of all glossary names in Appendix A.

The sections of the package chapter before the GLOSSARY are called the tutorial
for the package. The glossaries by themselves are complete reference documentation: the
package tutorials are not generally complete. If there is no tutorial, it is recommended
that one first read the demonstration program listings for the package that appear after
the manual, looking up the new names encountered in the glossary as you go.

Just before a package glossary there is often a section titled HITLIST which lists
known problems with the package which we would like to fix, plus enhancements we

Printed May 1, 1989

INTRODUCTION 1-6

might like to make.

See APPENDIX D for more details on writing package chapters.

5. GETTING STARTED. To get started invoke the sketch program as a UNIX com-
mand. This program is in the SKETCH root directory (you must ask where this root
directory is on your system). It is a lisp environment with all the features of the FRANZ
lisp(l) program, plus the additional features of SKETCH. For example, if you invoke
sketch and at the prompt'—>' you type—

(print-array (an-array has-sizes '(10 10) by-expression '(sum X Y)))

then SKETCH will print out a 10X10 array with each element equal to the sum of the
subscripts that reference the element.

SKETCH should be learned by trying things out as you read the manual. In lieu of
this, you may consult the demonstration listings at the end of the manual. Demonstra-
tion programs are run as if they had been typed into sketch, one line at a time, and the
resulting display was made into a listing. Such demonstration programs are used to
debug programs initially, to recheck programs after changes, and to act as examples for
new users. Demonstration programs with names of the form xxx_xdemo.l may be found
in package subdirectories of the SKETCH root directory.

The SKETCH compiler, named sketchcom, is used just like FRAXZ lis:l(\).
Sketchcom is also in the SKETCH root directory.

SKETCH C code can be compiled with the normal C compiler, provided you
^include the appropriate package ./i files. These are in the package subdirectories of the
SKETCH root directory, and you should compile with UNIX commands such as—

cc -O -c -/<SKETCH-root-directory> <filel>.c ...

which permit the SKETCH .h files to be found.

Each package has a file named <xxx/xxx_defs.h> relative to the SKETCH root
directory. This .h file includes everything that C language code needs to use the package.
Here xxx is the package prefix, the same prefix as on all global names defined by the pack-
age. E.g., if you use sar_array, defined by the ARRAYS package, #include
<sar/sar_defs.h>.

The ARRAYS package ./» file, <sar/sar_defs.h>, includes the .h files of all packages
appearing before it in this manual. Since most programs do not use C global names that
are defined in packages after the ARRAYS package in this manual, one can often just
include this ARRAYS package .h file and nothing else.

There is also a sophisticated and fairly easy to use SKETCH file-making facility
built on top of the UNIX make program. See APPENDIX C for details.

Printed May 1, 1989

CHAPTER 2

LISP TUTORIAL

1. APOLOGY Sorry, but we have not yet finished converting the very old SKETCHl
version of this chapter to something correct for current SKETCH.

LISP TUTORIAL 2-1

CHAPTER 3

FRANZ EXTENSIONS

1. FRANZ EXTENSIONS. This package consists of a set of miscellaneous functions
that extend the capabilities of FRANZ LISP in many different directions. Tables on this
and the following pages briefly describe the functions and global variables defined by this
package. All these are defined in more detail in the glossary, but those marked with a
dagger (f) are also mentioned in the tutorial sections before the glossary.

2. PRETTY PRINTING. The philosophy of SKETCH is that messages intended for
people can be organized as LISP lists. The messages are usually like sentences with the
left parenthesis '(' serving in place of initial capitalization and the right parenthesis ')'
serving as the period. Paragraphs are just lists of sentences, with an extra '(' serving as
paragraph beginning and an extra ')' as paragraph end.

The pretty-print function prints arbitrarily complex lists, and is the heart of the sys-
tem for outputting messages. Unlike most other programming languages, this system
does formatting almost automatically, relieving the programmer of a very substantial

ARITHMETIC

(ceiling ?n_number) Computes the smallest integer that is not less than
n_number.

(floor 'n_number) Computes the largest integer that is not larger than
n_number.

P>
sqrt-pi

The constant pi and its square root.

(round 'n_number) Computes the nearest integer to a given number.

ENVIRONMENT

is-compiler Non-nil in a SKETCH compiler environment, and nil in a
SKETCH evaluator environment.

SFE_LINT f C Macro. 1 if macro expansion is being done for lint, 0 if
for the C compiler.

SFE.VAX C Macro. 1 if compilation is for a DEC VAX. 0 if not.

SFE_MC68000 C Macro. 1 if compilation is for a Motorola 6S000. 0 if not.

FRANZ EXTENSIONS 3-1

FRANZ EXTENSIONS 3-2

ERROR CHECKING AND HANDLING

(assert 'g_condition ['g_message]) LISP macro. Evaluates g_condition, and if
it is nil, calls error with g_message.

(ccheck 'g_value) f A LISP function to check whether a C func-
tion that has just been called has signaled an
error by calling sfe_error. If yes, reads the
error message stored by sfe^error and passes
it to error. If no returns g_value.

(error '!_message) f Signals that an error has occurred, taking as
a single argument an error message,
Lmessage, which is a list to be pretly-
print'ed.

(error-trace 's_switch) Sets a switch that if on causes the system to
continuously keep records that allow the de-
tailed state of the stack to be printed if an
error should occur. Unfortunately, this
record keeping can be quite consumptive of
CPU cvcles.

*exit-on-error"' If non-»j/, causes the program to exit on an
error.

sfe_assert (g_test, t_message) f
sfe_assertl (g_test, t_message, ...)
sfe_assert2 (g_test, t_message, ...)
sfe_assert3 (g_test, t_message, ...)
sfe_assert4 (g_test, t_message, ...)
sfe_assert5 (g_test, t_message, ...)

A C Macro. Evaluates g_test, and if false
(0), calls sfe_error with t_message and the
other arguments (...) to signal the error, and
then calls sje_return to take an error return
from the current C function.

sfe_check () f A C macro. Checks whether a C function
just called signaled an error by calling
sfe_error. If yes, calls sfe_return to take an
error return from the current C function.

sfe_error (t_message, ...) f A C function. Called with a message to sig-
nal an error. T_message and the other argu-
ments (...) are as for sprintf. Sets an error
switch that is read and reset by ccheck, and
stores the error message in a buffer for
ccheck to read and pass to error.

sfe_iserror () f A C macro that returns true (non-zero) if
the error switch set by sfe_error is on.

sfe_return; f A C macro. Returns from the current C
function. For use if an error has occurred.

Printed April 27, 1989

FRANZ EXTENSIONS 3-3

FILE HANDLING

(demo 's_input-file \t]
['s_output-file \t\\)

Reads from s_input-file and produces output as if
the lines of s_input-file were typed in. The output
may be redirected to s_output-file.

(search-path '(s_directory ...)
's_file ['s_mode])

Searches for and returns the full pathname of a file
given a list of directories, the user supplied partial
pathname s_file, and an access mode, s_mode, which
is 'r, 'w, or '« to denote read, write, or append.

(split-filename 's_filename) Separates the directory part of s_filename from the
basename part, returning the two element list:
(directory-name base-name).

(stringopen 't_string 'x_size f
's_mode ['t_name])

Opens a port that makes t_string into a file. X_size
is the number of bytes in t_string, and s_mode is V,
t_string are not treated specially, and Vs. 'ws, or 'as
for read, write, or append where NUL's are specially
treated as the end-of-file.

(use-ptport 'p_port) Indicates when output sent to p_port is also being
sent to ptport. Useful for making C code that uses
printf work right with demo.

LIST HANDLING

(copy-list 'Llist
['xjength 'g_fill])

Copies Llist, without recursively copying sublists
(unlike copy). Can optionally fill the resulting list
to a specific x_length with elements equal to g_fill.
or truncate the result to x_length.

(equal-filled-lists
'Uist-1 'Llist-2 'g_fill)

Tests equality of lists, filling the shorter list with
elements equal to g_fill, if the lists are not of equal
length.

(list-depth 'g_value) Computes the nesting depth of sublists of g_value
Returns 0 if g_value is not a list.

(list-length 'gjist
['u_predicate])

Computes the length of g_list, verifies that the list
terminates with a TIJV, and can optionally check
whether the list elements satisfy u_predicate. Re-
turns the list length if all is well, or -1 otherwise.

Printed April 27, 1989

FRANZ EXTENSIONS 3-4

LOADING AND DUMPING

(cload *([s_disciplinej s_function ...) f
'(s_file [sjibrary]))

Loads C language s_file.o file containing
definitions of s_function ... with calling dis-
cipline s_discipline. Sjibrary specifies C o
file libraries to be searched after loading
s_file.o.

(dumplisp s_fi!e) f Dumps the current evaluator or compiler en-
vironment into a file, s_file, which becomes a
new evaluator or compiler.

MEMORY MANAGEMENT

(carray 'a_array) Returns address of first element of a_array as a
fixnum. so that can be passed to a C function.

gc-history
gc-history-count
gc-count

Variables that hold records of garbage collector ac-
tivity.

(purearray ...)
(*purearray ...)

Like the LISP array macro or *array function, but
allocates an array whose elements are ignored by
the garbage collector. This speeds up garbage col-
lection.

(puresegment s_type _size) Returns the first of x_size contiguous LISP objects
of typep type s_type. Like segment, but the allocat-
ed elements are ignored by the garbage collector.
This speeds up garbage collection.

Printed April 27, 1989

FRANZ EXTENSIONS 3-5

MEMORY REFERENCE

(copy-setf-function 's_symbol
's_source)

Makes s^symbol have the same self behavior
as s^source.

(defsetf s_function ...) Defines the set} behavior of s_function.

(dpb 'x_value #oPPSS 'x_number) Returns x_number with the field specified by
#oPPSS (see ldb below) replaced by x_value.

(has-setf-function 's_symbol) Returns non-nil if s_symbol has a self
behavior.

(ldb #oPPSS 'x_number) Returns the bit field obtained by right shift-
ing x_number by PP bits and masking off
the low order SS bits. PP and SS are octal
numbers.

(vrefi-double 'V_vector 'x_index) Accesses the x_index+l'st flonxtm stored in
the immediate vector Y_vector.

(vsize-long 'V_vector)
(vsize-double Y_vector)

Returns the number of 3*2 bit long fiznum's
or 64 bit double flonum'a stored in the im-
mediate vector, V_vector.

Printed April 27, 1989

FRANZ EXTENSIONS 3-6

PRINTING AND PRETTY PRINTING

float-format The C format in which LISP flonum's are
printed Defaults to "%.6jf in SKETCH.

* line-length* The line length in columns for pretty print-
ing. Defaults to 80.

(pretty-form at 'g_value
['xjevel])

Returns the format of g_value for pretty
printing. Such a format gives detailed in-
structions for controlling optional carriage
return insertion.

(pretty-print 'g_value t
['p_port
['x_margin
['s_string
['x_repeat
['x_right-margin||!|])

Prints g_value in a pretty format by insert-
ing carriage returns and tabs. In detail, first
prelty-format's the value and then pretty-
print-format's the resulting format.

(pretty-print-format
'g_format
['p_port
['x_margin
['s^string
['x_repeat
|'x_right-marginl!H!)

Pretty prints a format. g_format. returned
by pretty-format.

(pretty-tab 'x_margin
['p_port
j's^string
['x_repeat|]D

Tabs to the x_margin+rst column. Permits
special line headers to indicate indentation
of tracing or similar matters.

(print-size 'g_value
['x_maximum])

Computes the number of characters that
would be outputted by prmt'ing g_value.

Printed April 27, 1989

FRANZ EXTENSIONS 3-7

TIMING

(fdelay f_time) Delays until f_time. F_time is as measured
by ftime.

(ftime) Returns a finely measured time- The error
of measurement is 1/60'th second or less.
The time returned is measured in seconds
from midnight, Jan. 1. 1970. GMT.

ptime-counts-per-second The number of ticks per second for the value
returned by the ptime function.

(xtime 'g_expression) Measures the CPU time in seconds taken by
the evaluation of g_expression, exclusive of
garbage collection time.

Printed April 27, 1989

FRANZ EXTENSIONS 3-8

TOP LEVEL

(argv-shift ['x_number)) Removes x_number arguments from the be-
ginning of the list of UNIX command line ar-
guments which are individually returnable
by argv.

top-level-in it
* top-level-ex it*
top-level-prompt
top-level-read
top-level-eval
top-level-print
top-level-times
top-level-print-times

Global variables which are set to the func-
tions that perform various parts of the top
level algorithm. May be reset to control
that algorithm.

* top- level- in it-started *
top-level-init-times
top-level-saved-times
top-level-saved-print-times

Global variables used by the top level to
save information.

(status top-level-rc-files) f The list of places to look for a parameter file
to be read during initialization of a
SKETCH evaluator or compiler.

(status top-level-switches) f The list of switches (-E and -/) that will be
recognized and processed at the beginning of
the UNIX argument list to a SKETCH
evaluator or compiler.

top-level-threshold-time | The minimum time in seconds that must be
consumed by evaluating an expression read
by the top level before timing statistics for
evaluating the expression will be printed out.

+ t
++t
-r-r+t

The last (+), next-to-last (+-1-), and next-to-
next-to-last (ill) expression read by the
top level.

•t
**t

The last (*), next-to-last (**), and next-to-
next-to-last (***) result of evaluating an ex-
pression read by the top level.

burden. Also, SKETCH pretty-print is somewhat more sophisticated than most other
LISP pretty printers.

As an example, consider the LISP expression —

(pretty-print '(cannot open ,file for writing))

which is intended to output an error message in the case a file cannot be opened lor out-
put. There is no need for the programmer to worry about line feeds in long error mes-
sages, such as when the file has a very long name. The pretty-print function will insert
line feeds for him. However, the programmer must put line feeds after messages, using

Printed April 27, 1989

FRANZ EXTENSIONS 3-9

the terpri function, as pretty-print does not do this.

The normal FRANZ LISP error function, which signals that an error has occurred
and outputs an error message, has been modified to take a single list argument as the
error message which is to be pretty printed. E.g.—

(error '(cannot open .file for writing))

Although LISP does have formatted print routines similar to those of C and FOR-
TRAN, their use is avoided in SKETCH, because they do not automatically insert car-
riage returns or indent for readability.

3. RC FILES. Whenever any version of a SKETCH evaluator or of a SKETCH com-
piler is loaded, it searches for files in the list returned by —

(status top-level-rc-files)

and applies the LISP load function to the first such file found. The usual default values
for these lists are—

(sketch.re ../sketch.re ../../sketch.re .sketch.re)

for the SKETCH evaluator and—

(sketchcom.rc ../sketchcom.rc ../../sketchcom.rc , sketchcom.rc)

for the SKETCH compiler.

4. SKETCH SWITCHES. When a SKETCH evaluator or compiler is loaded. A\U\

after any top-level-rc-files are loaded, the following argument flags are processed. Any

-/ file-name

arguments cause the file-name to be loaded by the LISP load function. Any

-E "expression"

arguments cause the expression to be read by the LISP read function and evaluated by
the LISP eval function. Any errors occurring during these loadings and evaluations will
terminate the SKETCH program. The arguments so processed must be at the beginning
of the argument list, and will be removed from the argument list. The rest of the argu-
ment list may then be accessed as if these removed arguments had never existed.

5. TOP LEVEL VARIABLES. The top level reads an input expression, evaluates it,
and prints the resulting value. The global variables +, ++, and +++ are set respectively
to the last, next-to-last, and next-to-next-to-last expressions read. The global variables *,
, and * are set respectively to the results of evaluating the last, next-to-last, and
next-to-next-to-last expressions read.

If evaluation of an expression takes more than *'top-level-threshold-time* seconds
(including time for garbage collections), then after the evaluation result is printed, a mes-
sage indicating how long evaluation took and how much of that time was spent garbage
collecting is printed. In the message the phrase compute-time refers to CPU time not
spent garbage collecting, while the phrase gc-time refers to CPU time spent running the
normal FRANZ LISP garbage collector. *top-level-threshold-time* defaults to 1 second

Printed April 27. 1989

FRANZ EXTENSIONS 3-10

6. STRING FILES. SKETCH supports the use of character strings in memory as
files. This permits output to be prepared for displays without having to first write the
output on disk. It is also used for passing error messages from C to LISP. This facility is
implemented by the strmgopen function described in the glossary.

7. DUMPLISP. The FRANZ LISP dumplisp function has been extended so that it will
correctly dump a SKETCH evaluator or compiler environment. The resulting file can be
executed as a new variant of the sketch evaluator or compiler.

When a SKETCH compiler is called without arguments (other than —E or —I), it
will read and evaluate its standard input, just like any LISP environment. Statements in
this input may load files and then call dumplisp.

8. LOADING C AND FORTRAN FILES. Loading C and FORTRAN .o files
should be done with the chad function, which is described in the glossary. This function
allows C and FORTRAN .o files to be reloaded into the current LISP environment. It
does this by taking as an argument a list of all the global function names and initialized
variables in the .o file, and removing these from the symbol table before reloading the file.

To fully understand argument passing, it is necessary to read the section on foreign
functions in the FRANZ LISP manual chapter on functions. However, the following will
suffice for many purposes. Numeric arguments and values will be appropriately passed
without problems. Functions with the c-function discipline return integers which become
LISP fixnum's, and functions with the double-c-junction discipline return floating point
numbers that become LISP flonum's. Lists, symbols, character strings, hunks, and vec-
tors may be passed as arguments, and will be passed as pointers equal to their respective
addresses. Except for character strings, these are all structures defined in the SKETCH
ATOMS package.

[C functions that return LISP values are currently difficult to write because FRANZ
lacks a discipline for them. This should be fixed.]

9. PASSING ERROR MESSAGES FROM C TO LISP. The sfe_error function
can be called from C to record an error message and set an error switch. This function
takes the same arguments as printf. The message is written into a string file (see above),
and is later read by the LISP read function and passed to the LISP error function. Thus
the message must be a valid representation of a LISP value. An example is-

sfe_error ("(cannot open %s for writing)",
sat_sformat (file_name));

where the sat_sformat function from the ATOMS package reformats the character string
file_name, if necessary, so that it is a valid LISP symbol (e.g. #play becomes |#play|).

Upon returning to LISP from C the error switch is checked by the cclieck function.
If set, it is cleared, the error message is read using read, and the error function is called
with the LISP value read. The form for employing cclieck is usually

(ccheck (_some_C_function ...))

in which ccheck, if it finds the error switch off, returns the value of its argument, which is
the value returned by _jsome_C_function.

There are a variety of C utility functions for working with the error handling facil-
ity just described. The sfe^assert macro makes a test and calls s/e_error if the test fails.

Printed April 27, 1989

FRANZ EXTENSIONS 3-11

E.g.-

sfe_assert (count > 0, "(count argument is <= Of);

In the failure case, sfe_assert also returns from the current function. It does this by exe-
cuting the sfe_return macro, which defaults to return (0), but. which can be redefined by
the programmer if it is necessary for the current C function to clean up on an error
return, or if 0 is incompatible with the data type of the value returned by the function.
Sfe_assert is heavily used to test for errors in C functions.

It is moderately rare for SKETCH C functions to call each other. When they do,
the caller may have to check the error switch upon return from the called function. This
is done with the sfe_iserror macro. The sfe_check macro combines this test with an call
to sfe_retnrn if the error switch is on. E.g.—

my_function (...);
sfe_clieck{);

10. DEFINING FUNCTIONS AND GLOBAL VARIABLES FOR LINT. It is
important to lint C functions to find errors. When doing so. all functions callable in C
code outside the file in which they are defined should be given public definitions sufficient
to specify the types of their arguments. This is done by including code such as-

#ifSFE_LINT
#xfnde! PPP3'IMMM_C

/* ARGSUSED */
some_function (argument_l, ...)

type_l argument_l; ... { returns (0); }
endif
endif

in the ./i file of the package that defines the function. The statement

^define PPP_MMMM_C

must also be included before any #include statements in the file pppjnmmm.c that gives
the normal definition of the function.

This code works as follows. If a file other than ppp_mmmm.c is being linted,
SFEJLINT will be 1 and PPP_MMMM_C will be undefined. Therefore, the definition of
some_function given in the .h file will actually be used by lint. If ppp_mmmm.c is being
linted, this definition will be suppressed by the #ifndef PPP_MMMM_C. If a file is being
compiled instead of linted, this definition will be suppressed because SFE_LINT will be 0.

The function definition accessed by lint needs to declare the type of each argument
and the type of the value returned. The body of this function definition should consist
only of a valid return statement if the function returns a value. If the function returns no
value, the body should be empty. The special line-

/* ARGSUSED V

must be placed before this function definition to keep tint from complaining that the
arguments are not used in the function body.

A similar thing must be done for global variables. To keep lint happy, these must
be given an explicit extern in the normal part of the ./» file, and then redefined without the
extern inside #«/ SFE_LINT and #:/n<fe/PPP_MMMM_C.

Printed April 27, 1989

FRANZ EXTENSIONS 3-12

11. HITLIST

(1) Provide library directories and searching for autoload.

Make chad handle composite files consisting of many o files linked together. These
will load faster in autoload situations.

(2) Add general-c-function discipline to return lisp values from C functions.

(3) Speed up pretty-print.

(4) Possibly add argument processing facility.

(5) Possibly add new reader/printer that uses expression syntax and operator hierarchy.

(6) Add abbreviation handler.

(7) Make error set prinlength and pnnlevel to reasonable values.

12. GLOSSARY.

(argv-shift j'x_number]) [LISP Functionj

SIDE EFFECT: Remove x_number arguments from the beginning of the command line
arguments returnable by argv. Specifically, remove the arguments
returned by (argv I) through (argv x_number). (argvO) is left untouched.
X_number defaults to 1.

(assert 'g_condition ['g_message]) [LISP Macro]

SIDE EFFECT: Evaluates g_condition, and if false evaluates (error g_message).
G_message defaults to '(g_condition is false). Note that g_message is
evaluated only if given and g_condition is false.

(carray 'a_array) [LISP Macro]

RETURNS: An integer equal to the address of the first data word of the array. This can
be passed to a c-function as the address of the beginning of the array.

(ccheck 'g_value) [LISP Function]

WHERE: 'g_value is usually a call to a C or FORTRAN function loaded by chad: e.g., as
in-

(ccheck (_sar_copy x y))

RETURNS: G_value.

SIDE EFFECT: A check is made to see if a C function has called sfe^error since the last
call to ccheck. If the answer is yes, error is called with the LISP expres-
sion read from the character string generated by the call to sfe_error.

Printed April 27, 1989

FRANZ EXTENSIONS 3-13

(ceiling n_number) {LISP Function'

RETURNS: The smallest integer greater than or equal to n_number.

(check-list 'g_list ['u_predicatej) [LISP Function]

RETURNS: -1 if g list is not a normal nil-terminated list each element of which satisfies
u_predicate. if that is given. Otherwise returns the number of elements in
g_list(0, 1. ...).

(cload '([s_discipline] s_function ...) [LISP Function!
's_file)

(cload '([s_discipline] s_function ...) [LISP Function]
'(s_file [sjibrary]))

WHERE: S_file.o (s_file with the extension .o added) is an object file of some foreign
language, most likely C but maybe FORTRAN or PASCAL. This file is
assumed to contain the functions with global load names s_function In
order to allow reloading of this file, these global names should be an exhaustive
list of all global functions defined in the file. Note that if the names are those
of C global functions, they must being with _, as the load names of all global C
functions have _ prefixed by the C compiler.

S_cliscipline is one of the FRANZ function disciplines or the symbol constant,
which refers to initialized global data. The default is c-function, which refers to
a C language function that returns an integer. Some other possibilities are
double-c-function which is a C function returning a real number, lisp-c-function
which is a C function returning a lisp value, integer-function which is a FOR-
TRAN function returning an integer, and real-function which is a FORTRAN
function returning a real. See the FRANZ LISP documentation on functions
for other disciplines and a precise explanation of the calling linkages.

The first argument is a list of s_discipline's and s_function's, with each
s_discipline applying to all the functions following it and an implicit c-functton
at the beginning of the list. No function name may be the same as a discipline.
The possible disciplines are listed in the global constant *function-disciplines*

Sjibrary is passed as a character string to the UNIX loader (Id) as the library
to be searched for undefined globals. It may also be a list of more than one
library: e.g.

'Mm -lVfoo.a|.

SIDE EFFECT: Loads s_file.o, searching the directories in the list (status load-search-path)
just as the load function does. Defines the function definitions of
s_function ... to refer to the entry points of the same names in the files.

Does nothing if the file is already loaded (this cload has already been exe-
cuted, and the file found by searching directories does not have a more
recent modification time than the version of the file that was previously
loaded.

Printed April 27, 1989

FRANZ EXTENSIONS 3-14

BUG: If a C or FORTRAN function is referred to by other C or FORTRAN functions,
then reloading the first function will leave these other C or FORTRAN functions
referring to the old version of the function, and not the newly reloaded version.
This can be corrected only by subsequently reloading all the functions that refer to
the reloaded function.

NOTE: You should not use initialized global variables in your programs, as it is impossi-
ble to reload the files containing them. One can get out of this problem partially
by listing the global variable name in the chad function call as if it were the
name of a function. But then one has the problem that functions loaded before
the global variable was reloaded will still refer to the old global variable, and not
the newly reloaded one. This is OK only if the global variable is really a con-
stant. Such a variable should be given the discipline constant.

"compiler" [SKETCH Term]

MEANS: A SKETCH environment built on top of the liszt program which compiles
SKETCH code, but does not have all the apparatus to evaluate arbitrary
SKETCH functions. A compiler is as opposed to an evaluator.

computer-format [LISP Global Constant]

VALUE: The type of the computer, from the point of view of the data formats it uses.
Thus all DEC vax's have the type dec, all Motorola 68000's have the type
motorola, most all IBM computers have the type ibm, and most all INTEL com-
puters have the type intel. Note that ibm and motorola use the same integer
formats but different floating point formats. Ditto for dec and intel. Note that
all computers use the same formats for arrays with 1-bit or 8-bit elements (this
format is determined by 10 devices, and is IBM compatible).

(copy-list 'IJist ['xjength 'g_fill]) [LISP Function]

RETURNS: A copy of Llist. Only the top level list cells are copied, unlike the copy func-
tion (which copies list cells recursively). If the last element of Llist is dotted,
so is the last element of the returned value. If xjength is given, the result
will have exactly xjength list cells. If Llist is too short for this, cells con-
taining g_fill will be added (and the result will be dotted if Llist is). If Llist
is too long, it will be truncated (and will not be dotted even if Llist is).

(copy-setf-function 's_symbol 's_source) [LISP Function]

EQUIVALENT TO: (defsetf s_symbol ...) where ... was whatever appeared in a previous
(defsetf s_jsource ...). If s_source has no current setf expansion func-
tion, s_symbol will be set to have no setf expansion function.

Printed April 27, 1989

FRANZ EXTENSIONS 3-15

(copy-string 't_string) [LISP Function]

RETURNS: A copy of t_string that does not share memory with t_string or any other
string.

(defcache s_function (g_size s_equal s_cache) Larguments [LISP Macro]
. Lbody)

WHERE: G_size defaults to 10, s_equal to e</, and s_cache to *s_function-c«c/je*

SIDE EFFECT: Defines s_function after the manner of defun to be a function that looks
items up in a cache and maps them onto values. The first argument to
s_function is the item to be looked up, and the function returns the value
found.

The cache is maintained in the global variable s_cache. which is declared
after the manner of defvar. The size of the cache, the number of items
remembered, is g_size. The most recently used g_size item/value pairs
are retained in the cache, and the other items are discarded. The function
used to test for equality between items is s_equal.

If the item is not found in the cache, its value is computed by the function
body, Lbody, whose last expression produces the value. The new
item/value pair is added to the cache. L_aiguments is a normal defun
argument list for the function, and arguments other than the first may be
used by the function body to compute the value

(defsetf s_function (s_expression s_value) [LISP Macro]
g_statement ...)

SIDE EFFECT: Defines a lambda function like defun with two arguments named
s_expression and s_value, and with a body g_statement However, this
lambda function is not named s_function, but is rather attached to the
property list of s_function in such a way that whenever the self macro is
called by an expression of the form —

(sei/(s_function ...) g_value)

then the set/macro will call

(funcall <lambda-function> '(s_function ...) 'g_value))

to produce the macro expansion of setf. Thus g_statement ... should
return the setf expansion given that the s_expression argument is bound
to (s_function ...) and the s_value argument is bound to g_value.

IMPLEMENTATION: FRANZ actually implements this, but does not document it.

Printed April 27, 1989

FRANZ EXTENSIONS 3-16

(demo i's_in put-file \l\ l's_output-file jfjjj) I.ISP Function]

SIDE EFFECT: Does a read-eval-print loop reading from s_input-file and printing into
s_outpnt-file. All expressions read from piport are also printed, each fol-
lowed by an end of line. Atoms read by ratom and characters read by
readc or /yi are similarly printed (but not followed by an end of line)

Prompts are printed, and in general the behavior of the standard top level
is faithfully simulated with this redirected input and output

Calls to break cause the equivalent of control-D to be typed and the read-
eval-print loop to be resumed. Calls to exit terminate demo only: not the
program that called demo.

The t switch following s_input-rile causes the program to wait after print-
ing each prompt for a control-D to be typed on the standard input. If an
expression is typed instead, it is evaluated and printed, another prompt is
typed, and the program waits again.

The / switch following s_output-file causes output to go into both
s_output-file and the standard output.

DEFAULTS: Output goes by default to the standard output.

If no arguments are given, those from the last call to demo are used.

NOTE: While demo is running, poport, piport, and ptport are changed to input from
s_input-file and output to the standard output or s_output-file as appropriate.
Thus other functions can read and print. Also, the read, ratom. readc, and tyi
functions are modified to print what they read if they read it from piport.

XOTE: The demo read-eval-print loop is the same as the SKETCH top level read-eval-
print loop, operating in a slightly different mode. In particular, functions such as
top-levet-prompt, are used.

BUG: The characters read from piport are not individually printed, but only the results
returned by read. Thus comments are lost and new lines are inserted after every
expression read, even if this is inappropriate. On the other hand, if *top-level-
print* is a pretty printer, the print alignment of expressions read can be much
improved.

Similarly new lines and comments are lost when using ratom.

BUG: Untyi does not work, and it is suggested that tyipeek be used instead.

BUG: Exec works and the standard output from the command it executes is captured in
s_output-file, but the standard error output from the command is not captured in
s_output-file, and goes to the standard error output no matter what.

BUG: If you use the call—

(demo s_input-file t 's_output-file /)

and type an expression in place of "D, the expression will not be printed in
s_output-file, but the value it evaluates to will be.

Printed April 27, 1989

FRANZ EXTENSIONS 3-17

(dpb 'x_value #oPPSS '._number) JL1SP Function!

RETURNS: x_number with the field specified by #oPPSS (see Idb) replaced by _value

idumplisp s_file) (LISP macro)

SIDE EFFECT: Dumps the current LISP environment into the file named s_file. Either an
evaluator or a compiler environment can be clumped. S_file becomes a
program that can be invoked as a UNIX command to restart, the environ-
ment.

(environment ...)
(environment-maclisp ...)
(environment-lmlisp ...)

"m-environment

[LISP Macro]
[LISP Macro]
!LISP Macro]

LISP Global Variable]

CHANGES: These now maintain the global variable *in-enuironment* which is t when
load is called by a files clause in one of the various environment statements,
and 7ii7 otherwise.

(equal-filled-lists ljist-l 'l_list-2 'g fill) iLISP Function]

RETURNS: t if Llist-1 equals l_list-2, and nil otherwise. However, for the purposes of
this comparison, the two lists are made of equal length by filling the shorter
out with elements equal to g_fill. Neither list may be dotted.

(error M_message) ;LISP Function
(error 's/t_message ['g_data_l [*g_data_2]]) [LISP Function,

EXTENSION : May be called with a single argument which is a list explaining the error.
This will be pretty printed. Use of this feature allows complex error expla-
nations without worrying about printed line lengths.

SIDE EFFECT : Signals an exception, as per the chapter on EXCEPTION HANDLING in
the Franz Manual. The error type will be 'ER%err, the unique id will be
1, and the error will not be continuable. If an errset is active, nil will be
returned from the errset call.

If s/t_message is a string or a symbol, it will become the error message
string (it will be made into a symbol for that purpose, if it is a string),
and g_data_l and g_data_2, if present, will become the error data If
L_message is not a string or symbol, the error message will be '|| and
l_message will become the error data (in this case g_data_l and g_data_2
may not be given).

It is expected that when printing an error with error message equal to '||,
the first and only error datum will be pretty-print'ed, whereas when
printing any other error, the error message and all data will be patom'ed.

BUGS: More than two error data should be allowed.

Printed April 27, 1989

FRANZ EXTENSIONS 3-18

(error-trace 's_switch) [LISP Function]

SIDE EFFECT: Turns error tracing on if s_s\vitch is non-/u7, or off if s_switch is nil. If on,
error tracing causes information to be created in the stack during normal
execution that allows a detailed trace to be printed upon an error. Unfor-
tunately, creating this information is costly: LISP bound programs typi-
cally run 2.5 times slower with error tracing on than with error tracing
off. The default is for error tracing to be on.

IMPLEMENTATION: Currently error tracing is implemented by (*rset t) and (sstatus
transliiik nil).

"evaluator" [SKETCH Term]

MEANS: A SKETCH environment built on top of the lisp program which can evaluate
any SKETCH function call, but. does not compile SKETCH code. An evaluator
is as opposed to a compiler.

exit-on-error [LISP Global Variable]

VALUE: If non-m7 causes any error (routed trough ER%lpt) to exit from the current pro-
gram using the value of *exit-on-error* as the exit code. The default value of
* exit-on-error* is nil, and the recommended non-nt7 value is 2.

(fdelay 'Ltime) [LISP Function]

SIDE EFFECT: Delay until Ltime, which is measured in seconds since 00:00:00 GMT, Jan
1, 1970. F_time may have the same resolution as the value returned by
/time. If the delay is over a second, the CPU will be given up to other
users during most of the delay.

(filestat-atime ...) [LISP Function
(filestat-ctime ...) [LISP Function
(filestat-dev ...) [LISP Function
(filestat-gid ...) [LISP Function
(filestat-ino ...) [LISP Function
(filestat-mode ...) [LISP Function
(filestat-mtime ...) [LISP Function
(filestat-nlink ...) [LISP Function
(filestat-rdev ...) [LISP Function
(filestat-size ...) [LISP Function
(filestat-type ...) [LISP Function
(filestat-uid ...) [LISP Function

USE: Use these function names instead of file$tat:atime etc. so that code will work in
those versions of SKETCH based on Franz LISP with packages (Opus 42 and
later), as well at those without packages (Opus 38).

EQUIVALENT TO: The Franz Opus 38 functions filestat.atime, etc.

Printed April 27, 1989

FRANZ EXTENSIONS 3-19

float-format [LISP Global Variable]

VALUE: The C language prtntf format used by piilom etc. to print flonutns. Default
value is "%.16g" in normal FRANZ LISP, but is "^.6g" in SKETCH

(floor n_number) (LISP Function)

RETURNS: The largest integer less than or equal to n_number.

(ftime) [LISP Function]

RETURNS: The time in seconds since 00:00:00: GMT. Jan. 1, 1970; as a flonxim with an
accuracy of at least 1/60 second.

gc-hbtory [LISP Global Variable]
gc-history-Iength [LISP Global Variable]
gc-count [LISP Global Variable]
gc-errors [LISP Global Variable]
gc-dumpfile [LISP Global Variable]

VALUE: *gc-history* is a list of messages summarizing the first *gc-hislory-length* gar-
bage collections since the process started. The default value of *gc-histnry-
length* is 20.

gc-count is the number of garbage collections since the current process
started.

gc-errors is the number of garbage collector errors that have occurred since
the beginning of time (the count is not zeroed by dumplisp and reload). After
the first garbage collection that has errors, a dumplisp is done to the file named
gc-dumpfile (before *gc-history* is updated). The default value of *gc-
dutnpfile* is 'gc-error-dump.

NOTE: The *gc-history* messages are of two types: compute messages specify am
amount of CPU time used by non-garbage collection computation between two
garbage collections; and gc messages specify an amount of CPU time used by one
garbage collection. The messages are in the order that the actions occur, but
gc-history may be slightly delayed relative to the current state of the process

The gc messages list the number of pages allocated to each of several types of
data: e.g. fixnum's. One of these numbers may be of the form N -I-M: the N is
the number of pages that was allocated before garbage collection, and the M is
the number of fresh pages allocated by the garbage collector to try to avoid
another collection for a while. The data type for which the number of pages has
this N + M form is the data type whose exhaustion caused the garbage collection.

Printed April 27, 1989

FRANZ EXTENSIONS 3-20

(gentemp) [LISP Function]

USE: Use gentemp instead of gensym in macros, because the latter will foul up when
macros are expanded for execution at the top level during load in versions of Franz
that have packages.

The problem is that gensym produces macros such as—

{{lambda #:gO0052) {sutn #:g00052 5))

where the two unintered generated symbols are not eq when read.

EQUIVALENT TO: {intern {gensym T)). The equivalence is exact in SKETCH based on
Franz Opus 38, and near in SKETCH based on Franz Opus 42 and
later Franz's. In the later case see the Franz documentation for the
exact definition.

(has-setf-function 's_symbol) [LISP Function]

RETURNS: Non-ntV if s_symbol has a ser/expansion function defined for it by defsetf.

NOTE: The setf expansion functions of some symbols are defined only when they are
needed. E.g., caaaar may be so handled.

* is-compiler* [LISP Global Variable]

VALUE: Non-mi if the current environment is a compiler, and nil if the current environ-
ment is an evaluator.

(ldb #oPPSS 'x_number) [LISP Function]

RETURNS: The bit field obtained by right shifting x_number by PP bits and masking off
the low order SS bits. PP and SS are octal numbers.

(list-depth 'g_value) [LISP Function]

RETURNS: The depth of the list nesting in g_value. Atoms (and hunks) including nil
have depth 0. Dotted lists are handled.

pi [LISP Global Constant]
sqrt-pi [LISP Global Constant]

VALUE: The indicated constant floating point number. Sqrt-pi is the square root of pi.

Printed April 27, 1989

FRANZ EXTENSIONS 3-21

(port-string ;p_port) (LISP Function]

RETURNS: The string associated with p_port by stringopen if p_port was created by
stringopen, or m7 if p_port was not created by stringopen and therefore has
no associated string. Note that for the string returned to be valid, a NUL
must have been written at its end.

(pretty-form at 'g_value j'xjevelj) [LISP Macro]
pretty-format-hook [LISP Global Variable]
(self (get 's_symbol 'pretty-format) [LISP Property]

'(character s_prefix x_prefix-size))
(set/ (get 's_jsymbol 'pretty-format) [LISP Property]

'(breaks s_break x_count [*] ...))
prinlevel [LISP Global Variable]
prinlength [LISP Global Variable]

RETURNS: The pretty-print format of g_value. This format contains a specification of
how to print g_value that is more precise than g_value itself.

X_level is the number of parentheses that will finally surround the pretty
printed version of g_value. If it is equal to or greater than prinlevel, the ele-
ments of a composite g_value should not be printed. At most prinlength ele-
ments should be printed in any case.

FORMAT SYNTAX: A pretty print format may be a list or an atom. If it is an atom. it. is
to be printed as is. If it is a list, then it contains a list of items which
are themselves pretty-print formats, plus other information that con-
trols the insertion of carriage returns during the printing process.

< The syntax of the reverse of a pretty print format list is—

([x_prefix-size s_prefix] [s_break g_item] ... [x_postfix-size s_postfix])

Note that for efficiency reasons the actual pretty print format is the
reverse of this list.

The s_prefix and s_postfix are symbols that are patom'ed before and
after the g_item's. For efficiency x_prefix-size and x_postfix-size are
also given: these are just the number of characters that will be
printed by pa/om'ing s_prefix and s_postfix, respectively. Either the
prefix information or the postfix information may be omitted if there
is no prefix or posfix.

If possible the prefix, g_items, and s_postfix will all be printed on one
line, with a single space separating each pair of g_items, but no space
after the prefix or before the postfix.

If everything will not fit on one line, there are several cases. In
describing these we will refer to the 'g_item + string following an
s_break'. This is the g_item following the s_break, plus any subse-
quent pairs of the form '+ g_item-2' following that. That is, the
longest following list of g_item's separated by s_break's that are +,

Printed April 27, 1989

FRANZ EXTENSIONS 3-22

including these s_breaks.

In the simplest, case, the first s_break is / or '/. The item margin is
then set to the first column of the printed prefix, plus 3 columns. A
// s_break will always return to the item margin. A / s_break will
return to the item margin if necessary to avoid line overflow while
printing the following g_item -I- string. A -I- s_break will return to
the item margin plus 3 columns if necessary to avoid such line
overflow.

In the more complex case, the first s_break is +. The first item will
then be printed immediately after the prefix, and the item margin will
be set to one column after the end of the first item's printout. After
this a + s_break will return to the item margin if necessary to avoid
line overflow while printing the following g_item + string. When the
first s_break that is not a + is encountered, a decision will be made
about reseting the item margin. If necessary to conserve horizontal
space, the item margin will be reset to the starting column of the
prefix plus 3 columns, and a carriage return will be inserted. After
this point, whether the line margin is reset or not, printing precedes
as in the simpler case above.

•PRETTY-FORMAT-HOOK*: Pretty-format is a macro that works by handling symbols,
numbers, and strings inline, and executing—

(funcall *pretty-jormat-liook* (j_value x_level)

to handle anything else. A series of functions are be written
in the form —

(defvar *my-format-hook* {progl *pretty-format-hook*
(setq *pretty-format-hook*

'my-format-hook)))

(defun my-format-hook (the-argument the-level)
(or(progn ...)

(Juncall *my-format-hook*
the-argument the-level)))

Each of these functions processes the-argument if it is able to
(in the progn block), and returns a non-ni7 format. Or the
function returns nil if it is not able to process the-argument.
The last function defined, the one named in *pretty-format-
hook*, has the first crack at the-argument.

PRETTY-FORMAT PROPERTY: If a symbol has a pretty-format property on its property
list, the default *pretty-format-hook* routine will take spe-
cial action. This property may have one of two forms.

If it has the form —

(character s_prerix x_prefix-size)

then the symbol is like the quote function, a function of

Printed April 27, 1989

FRANZ EXTENSIONS 3-23

one argument with a special printed representation con-
sisting of s_prefix followed by the argument. Thus quote
has the pretty-formal property —

(character |'| 1)

X_prefix-size is just the print-size of s_prefix, and is
included to improve efficiency by eliminating the recompu-
tation of this size every time it is needed.

If the pretty-formal property has the form—

(breaks s_break-l x_count-l s_break-2 x_count-2 ... [*] ...)

then the symbol is treated as a function of many argu-
ments, like selq or do. In the format of a list beginning
with the symbol, the first x_count-l s_break's will equal
s_break-l, the next x_count-2 s_break's will equal
s_break-2, etc. A star (*) before an s_break indicates that
when the breaks list is exhausted, it is to repeat beginning
with the s_break just after the star. For example, the
pretty-formal property for selq is—

(breaks + 1 * / 1 + l)

and lor do is—

(breaks + 3 * //' 1)

BUG: Does not handle strings or symbols containing embedded line feeds correctly.

(pretty-print 'g_value |'p_port ['x_margin [LISP Function]
['s_string ['x_repeat ['x_right_marginj]j]])

•line-length* [LISP Global Variable]

EQUIVALENT TO: (print 'g_value ['p_port]) but uses the line length in the global variable
line-lenglh, and uses indentation. Each line begins with x_repeat
s_strings followed by space till the column equals x_margin. At least
'x_right-margin spaces must be left at the end of the last line (into
which to put left parentheses for lists containing 'g_value).

DEFAULTS: The default p_port is poport, the default x_margin is the current column as
found by nwritn, the default s_string is '||, the default x_repeat is 1, and the
default x_right-margin is 0.

Line-lenglh defaults to 76, which allows for various things like dij){l) list-
ings using the first few columns of a line, and terminals or editors using or
abusing the last column.

NOTE: If the line is not long enough to hold a sensible representation of some part of
g_value, the indent may be moved back to the beginning of the line. The lines
where the indent has been moved back are bracketed by comment lines in the
form —

Printed April 27, 1989

FRANZ EXTENSIONS 3-24

; <<<N
: N>>>

where N is the current depth of parentheses.

RETURNS: Number of carriage returns printed.

BUG: Does not handle strings or symbols containing embedded line feeds correctly.

(pretty-print-format 'g_format ['p_port j'x_margin [LISP Function]
['s_string ['x_repeat ['x_right_margin]]]]])

EQUIVALENT TO: Pretty-print but takes as input the result g_format of applying pretty-
format to the item to be pretty-print'ed.

WARNING: If g_format is a list, it is destroyed.

(pretty-tab 'x_margin ['p_port ['s_jstring [LISP Function]
['x_repeat]]])

SIDE EFFECT: Spaces until the current column equals x_margin. If the current column is
initially > x_margin, a terpri is done first. Whenever spacing is begun at
the beginning of a line, x_repeat s_string's are printed before spacing is
done. The default p_port is poporL the default s_string is ||, and the
default x_repeat is 1.

RETURNS: Number of carriage returns printed.

(print-size 'g_value ['x_maximumj) [LISP Function]

RETURNS: The number of characters needed to print g_value, or x_maximum, whichever
is smaller.

BUG: A line feed in a string value counts as one character.

ptime-counts-per-second [LISP Global Constant]

VALUE: The number of ticks per second of the ptime function clocks.

(puresegment 's_type 'x_size) [LISP Function]

EQUIVALENT TO: (segment 's_type \x_size) but the resulting segment is allocated to pure
memory and is never garbage collected.

(round n_number) [LISP Function]

RETURNS: The nearest integer to n_number.

Printed April 27, 1989

FRANZ EXTENSIONS 3-25

(search-path '(s_directory ...) s_file j's_modej) LISP Function!

WHERE: "S_mode is either V for "read", 'w lor "write", or 'a for "append", and defaults
to 'r.

RETURNS: An interned symbol naming a file which has a name of the form
s_directory/s_file. For the r s_mode, s_directory is the first symbol in the
list '(s_directory ...) for which the file s_directory/s_file-exists, but nil is
returned if no such file exists. For the w s_mode, s_directory is just the first
symbol on the list '(s_directory ...), for which the directory
s_directory/s_subdirectory exists, where s_subdirectory is the directory part
of s_file (see split-filename). For the o s_mode, s_directory is as for the r
s_mode if some file exists, and otherwise as for the tos_mode.

No check is made for file readability, writability. or ci eat ability just
existence.

For s_directory equal to the symbol 1.1, the name s_tile is used in place of
./s_file. If s_file begins with a slash (/) or tilde ("), no search is done, but the
existence of the file or subdirectory is checked for. and nil returned if the file
or subdirectory does not exist.

sfe_assert (g_test. t_message)
sfe_assertl (g_test, t_message, g_argument_l)
sfe_assert2 (g_test, t_message, g_argument_l, g_argument_2)
sfe_assert3 (g_test, t_message, g_argument_l, ..., g_argument_3)
sfe_assert4 (g_test, t_message, g_argument_l, ..., g_argument_-l)
sfe_assert5 (g_test, t_message, g_argument_l, ..., g_argument_5)

SIDE EFFECT: Evaluate g_test and if false (zero) call

sfe_error (t_message, g_argument_l, ...)

C Macro
[C Macro
[C Macro
[G Macro
C Macro
,C Macro

and then execute sfe_return, which is a macro that defaults to return (0).

The digit at the end of sfe_assert counts the number of g_argument's.
The C macro preprocessor will complain if it is wrong.

sfe_check () [C Macro]

SIDE EFFECT: If the error flag set by sje_error is on, executes the sfe_retum macro,
which by default does a return (0).

Printed April 27, 1989

FRANZ EXTENSIONS 3-26

sfe_error (t_format, g_argument, ...) [C Function]

SIDE EFFECT: An error flag is set, and the arguments cause an error message string to be
produced after the manner of sprtnlf.

When control returns to LISP, the ccheck function will see the error flag,
reset it, read the error message string using read, and send the value read
to error.

The error flag can also be tested using the C macros sfe_check and
sfe_iserror.

The error message must be a rentable LISP value.

sfe_iserror () [C Macro]

RETURNS: True if the error flag set by sfe_error is on. False otherwise.

SFEJLINT [C Macro]

VALUE: 1 if lint is running, 0 if not.

sfe_return [C Macro]

DEFAULT: return (0)

USE: Executed by sfe_assert and sfe_check in order to return from the current function
upon detecting an error. Can be changed if 0 is not acceptable as a return value.

SFEJVAX [C Macro]
SFE_68XXX [C Macro]
SFEJBSD [C Macro]
SFE_SUN [C Macro]
SFEJFRANZ [C Macro]
SFE.SKETCH [C Macro]

VALUE: If a SKETCH is running on a DEC VAX processor, SFE_VAX is non-zero and
equals the type number of the processor: e.g. 780, 785, etc. If a SKETCH is run-
ning on a MOTOROLA 68000 processor, SFE_68XXX is non-zero and equals the
type number of the processor: e.g. 68010, 68020, etc.

If a SKETCH is running under a Berkeley Software Distribution version of
UNIX, SFE_BSD is non-zero and equals the version number of the distribution.
If a SKETCH is running under a SUN Microsystems version of UNIX, SFE_SUN
is non-zero and equals the version number of the distribution.

If a SKETCH is using Franz LISP, SFE_FRANZ is non-zero and equals the ver-
sion number of the Franz LISP being used.

SFE_SKETCH is always non-zero and equals the version number of SKETCH

Printed April 27, 1989

FRANZ EXTENSIONS 3-27

that is being used.

Software version numbers are written as a version number followed by six
digits: the first 3 for the minor version number, and the next three for the micro
version number. E.g., 4.3 is written 4003000, while 42.16.1 is written 42016001
Where versions are denoted as 'a\ 'b', V, etc., these are represented by 1,2,3.

The macros just described are always defined: they equal zero if their hardware
or software is not being used.

•sketch-version* [LISP Global Constant)
franz-version [LISP Global Constant)

VALUE: These are the version numbers of the SKETCH and FRANZ LISP that are being
used. They are floating point numbers, generally, with the major version
number as the integer part, and each minor verson number as three decimal
places. Thus FRANZ version 42.16.1 is represented by 42.016001. Minor ver-
sions 'a', 'b', V, etc. are represented by 1, 2, 3, ... (and given 3 decimal places).
Thus SKETCH version 4b is represented as 4.002.

(split-filename 's_file) [LISP Function!

RETURNS: The pair (s_directory s_basename) such that s_file is equivalent to—

s_di rectory/s_basename

If there is no slash / in s_file, s_directory equals '|.|. Slashes are removed
from the end of s_directory. Thus an s_directory value of '|| means the root
directory.

(stringopen 't_string 'x_size 's/t_mode ['t_name]) [LISP Function]

WHERE: X_size is the number of bytes in t_string. Currently the best way to get such a
string is to call (puresegment 'string x_pages) where x_size = 512 * x_pages.
T_name is the name of the port, and defaults to "stringfile".

RETURNS: If s/t_mode is 'r (or "r"), returns a port which when read from will read the
string. An end of file will occur after the x_size'th byte. An end of file will
not occur before a NUL byte: the NUL byte will be read.

If s/t_mode is 'rs (or "rs"), behaves as for 'r, but an end of file will occur just
before the first NUL byte in the string, if there is one, or after the x_size'th
byte, if there is no NUL.

If s/t_mode is 'w (or "w"), returns a port which when written will write into
the string. An end of volume is returned when trying to write beyond the
x_size'th byte.

If s/t_mode is 'a (or "a"), behaves just as for 'w, but sets the initial position
of the port to the first NUL byte in the t_string, or just after the end of
t_string if there are no NUL bytes.

Printed April 27, 1989

FRANZ EXTENSIONS 3-28

If s/t_mode is 'ws or 'as (or "ws" or "as") behaves like w or a. but writes
NUL's into the part of the string to be written, and arranges for an end of
volume just before the last byte of the string (which is Nl'L). Ensures there
is a NUL in the string. If 'as is used with a string that has no NUL. the last
byte of the string is set to NUL.

The close, drain, terpri, /seek, and nwritn functions can be used on these ports
in the normal way.

The string may be used as a normal string after the port is closed, as long as
the string is NUL terminated.

NOTE: Fseek can be use to determine the location of the current position in one of these
ports relative to the beginning of the string, and to reset that position.

Nwritn can be used to determine the number of characters between the current
position and any previous line feed in the string, or the beginning of the string if
there is no previous line feed.

*top-
*top-
*top
*top-
*top
*top
*top
"top
*top
*top-
*top-
*top-
*top-
+
++
+++
*

* * *

VALUE: The top level executes—

level-init*
level-init-started*
level-exit*
level-prompt*
level-read*
level-eval*
level-print*
level-times*
level-print-times*
level-init-times*
level-saved-times*
level-saved-print-times*
level-threshold-time*

LISP
LISP
;LISP
LISP
[LISP
iLISP
LISP
LISP
[LISP
[LISP
•LISP
LISP
[LISP
[LISP
[LISP
[LISP
[LISP
[LISP
I'LISP

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

Variable;
Variable]
Variable]
Variable]
Variable]
Variable]
Variable]
Variable]
Variable]
Variable]
Variablej
Variable]
Variable]
Variable]
Variable]
Variable]
Variable]
Variable]
Variable]

Printed April 27, 1989

FRANZ EXTENSIONS 3-29

(setq *top-level-intt-started* t)

(funcall * top-level-init*)
(find and load the (status top-level-re-files))
(remove and process any —/and —Eoptions at the

the beginning of the argument list)

(setq *top-level-saved-times* *top-level-times*)
(setq *top-lcvel-saved-print-times* *top-level-print-times*)

(setq *top-level-init-times* (funcall *top-level-saved-times*))

(if (and *is-compiler* (there are more arguments))
(process arguments as for liszt compiler and exit))

just before printing the first prompt after loading. It never executes this again
during the current process, but will re-execute it when the process is first
dumped by dumplisp and then the resulting file is ciec'ed.

top-lerel-init-started is nil from the beginning of loading until the execution of
the above.

The top level then begins the read-eval-print loop, which is roughly-

(let ((prompt *top-level-prompl*)
(read * lop-level-read*)
(times *top-level-times*)
(eval * top-level-eval*)
(print *top-level-prtnt*)
(print-times *top-level-print-times*)
expression value pre-eval-times post-eval-times)

(funcall prompt p_port)
(setq expression (funcall read p_port g_eof-value))
... check for read errors and end of file ...
(setq pre-eval-times (funcall times))
(setq value (funcall eval expression)
(setq post-eval-times (funcall times))
(setq +++ ++

++ +
+ expression)

(setq *** **

* value)
(funcall print value p_port)
(funcall print-times post-eval-times pre-eval-times p_port)))

Here the various functions used are saved at the beginning of the read-eval-print
loop iteration, so any changes made to them will not become effective till the
next iteration. Changes to these functions should be synchronized by including

Printed April 27, 1989

FRANZ EXTENSIONS 3-30

them in a single proyn which is read all at once by the reader.

Any call to the exit function results in executing

(funcall *top-level-exit*)
(funcall *top-level-saved-print-times*

(funcall *top-levet-saved-times*)
*top-levet-init-time$ * poport)

before the normal exit actions are taken. Here again the values of *top-level-
times* and *top-level-print-times* have been saved when *top-level-init-times*
was set, to avoid incompatibilities when these variables are reset.

BREAK AND TRACE: Break and trace also use—

* top-level-prompt *
top-tevel-read
* top-level-eval*
* top-level-print*

In addition the top level values of the global variables *line-length*,
prinlengtli. and prinlevel are temporarily restored every time *top-
level-print* is called.

DEFAULT VALUES:

top-level-init A no-operation function.

* top-level-times* A function that retuns—
l{ ,@[ptime) ,(number gc's)).

top-level-print-times A function that prints execution times if the
total time is larger than *top-level-
threshold-time* seconds.

* top-level-threshold-time* 1.0

top-level-prompt A function that prints "—> ".

* top-level-read* read
top-level-eval eval
top-level-print pretty-print

(sstatus top-level-rc-files (s_rc-file ...)) [LISP Function]
(status top-level-rc-files) [LISP Function]

SIDE EFFECT: Whenever a LISP environment is loaded by UNIX, then after the function
specified by *top-level-init* is called, the list of files s_rc-file ... is examined
to find the first file that exists, and that file is loaded. If none of the files
exists, no action is taken. The load-search-path is not used to locate the
files.

DEFAULT VALUE: In sketch the default value is-

(sketch.rc ../sketch.re ../../sketch.re '/sketch.re)

and in the compiler, sketchcom, the default is

Printed April 27, 1989

FRANZ EXTENSIONS 3-31

(sketchcom.rc ../sketchcom.rc ../..'sketchcom.rc /sketchcom.rc).

(sstatus top-level-switches (s_5\vitch ...)) [LISP Function]
(status top-level-switches) [LISP Function]

SIDE EFFECT: Whenever the argument list to the current LISP environment begins with
one of the switches in the s_switch list, that switch and any following
arguments it requires are processed after the *top-level-mit* function is
called and any top-level-rc-files file loaded. To be processed the switch
must be one of the following-

-I file-name The file is loafed, using
load-search-path to find the file.

-E "expression" The expression is read and evaluated.

Arguments processed by this mechanism are removed from the list of
UNIX command arguments by using the argv-shift function. Errors
encountered while processing these arguments will cause the program to
exit with an exit code of 2.

DEFAULT VALUE:

(-I-E).

(use-ptport p_port) [LISP Function]

USE ONLY WHEN: Writing C or FORTRAN functions that do their own printing. Helps
obey the conventions involving ptport (which is used by demo).

RETURNS: t if output sent to p_port is also to be sent to ptport according to the stan-
dard conventions for using ptport.

EXAMPLE:
(ccheck (_xxx_print port ...))
(if (use-ptport port) (ccheck (_xxx_print ptport ...)))

(vrefi-double 'V_vector 'x_index) [LISP Special Function]

EQUIVALENT TO: Vrefi-long but for flonum's, i.e. double precision floating point
numbers. Can be setf. A flonum index is in 8 byte units (0 is the
beginning of V_vector).

Printed April 27, 1989

FRANZ EXTENSIONS 3-32

(vsize-long V_vector) [LISP Function)
(vsize-double V_vector) [LISP Function]

RETURNS: The number of a-long's or a-double's in a vector.

(xtime 'g_expression) [LISP Function]

RETURNS: The time in seconds taken on the average to execute g_expression. To com-
pute this, g_expression is executed many times, until several seconds have
passed. The time reported is the average time in seconds of one execution,
excluding time taken by the garbage collector.

Printed April 27, 1989

CHAPTER 4

ATOMS

1. INTRODUCTION. A SKETCH atom is a number, pointer, or small structure
that is passed as an argument or return value by copying the atom itself, rather than by
copying a pointer to the atom. (It is not to be confused with a LISP atom, which is any
object that is not a non-empty list or hunk, and is an anachronism to be avoided.)

The atoms required by SKETCH are numbers and pointers to LISP values. Most of
this ATOMS package is concerned with interfacing these atoms to the C language.

2. NUMERIC ATOMS. The numeric atom types supported by SKETCH are listed in
Table 4.1. All the types but a-ubit and an-lbil have C type names: e.g. char. The C types
uclxtr, ushort, and ulong are standard SKETCH-definecl abbreviations for unsigned char,
unsigned short, and unsigned long, respectively.

All the types except int and unsigned have associated SKETCH types (see the
SKETCH OBJECTS package chapter), such as a-flout, and can therefore be designated as
the element types of SKETCH arrays (see the SKETCH ARRAYS Package).

All the types store numbers, except the an-tbit type, which stores nil or /.
represented in C as an off bit or an on bit respectively.

Several of the types can be used for arguments to C functions. These have an asso-
ciated Argument Prefix: e.g. /_ for double precision floating point. The x_ prefix for t'ni's
and the /_ prefix for double's were chosen to be the same as the prefixes for the
corresponding LISP argument types, fixnum and flonum.

Most of these types have C macros or global variables equal to the minimum and
maximum numeric values storable in variables of the type (of course 0 is the minimum
value for unsigned integers). For example,

t/(x > SAT_CMAXIMUM) x - SAT_CMAXIMUM;
else if(x < SAT_CMINIMUM) x = SAT_CMINIMUM;

clips a value stored in a variable x if that value is outside the range of a char variable.

The signed number types have a special value which denotes a missing value. E.g.
SAT^CMISSING is stored in a char variable to denote a missing value. In LISP missing
values are denoted by nil. Thus if the value of a SKETCH array element with type a-
char is returned to LISP, the missing value will be returned as nil.

However, C routines that return integers or floating point numbers to LISP cannot
return nil, which is not a number. They must return either a fixnum or flonum, and use
the values stored in the LISP Global Constants _SAT_IMISSING or _SAT_DMISSI.\G.
respectively, to denote the missing value. These LISP constants are equal numerically to
the corresponding C constants SAT_IMISSING and SA T_DMISSIl\'G.

ATOMS 4-1

ATOMS 4-2

TABLE 4.1

SKETCH NUMERIC ATOM TYPES

CType

SKETCH
Type

Arg.
Prefix

Meaning
Size
In

Bits

C Minimum

C Maximum

Value

LISP Missing

an-lbit
1-bit true/false
logical bit

1

a-ubit
1-bit unsigned
integer

1 0
1

uchar
a-uchar

8-bit unsigned
integer

8 0
SAT_UCMAXIMUM

char
a-char

8-bit signed
integer

8 SAT_CMINIMUM
SAT_CMAXIMUM

SA T_C.MISSI\G

ushort
a-ushort

16-bit unsigned
integer

16 0
SATJUSMAXIS1UM

short
a-short

16-bit signed
integer

16 SA T_S.MINI.MUM
SATJSMAXIMUM

SA T_SMISSING

ulong
a-ulong

ulx_ 32-bit unsigned
integer

32 0
SAT_UL.MAXIMi'M

long
a-long

lx_ 32-bit signed
integer

32 SA T_LMINIMUM
SA TJLMAXIMUM

SATJ.MISSING

unsigned ux_ 32-bit unsigned
integer

32 0
SAT_UMAXIMUM

int x_ 32-bit signed
integer

32 SATJMINIMUM
SA TJMAXIMUM

SA TJMISSING
_SA TJMISSING

float
a-float

32-bit floating
point number

32 SAT_FMINIMUM
SA TJFMAXIMUM

SA T_F\fISSING

double
a-double

f_ 64-bit floating
point number

64 SA T_DMINIMUM
SA T_DMAXIMU.M

SA T_DMISSING
_SA r_D.MlS.SlNG

3. NUMERIC FUNCTIONS. The ATOMS Package contains some miscellaneous C
functions and macros for handling numbers, such as sat_round for converting a floating
point number to a long integer after scaling and rounding. These are listed with a brief
explanation in Table 4.2. See the glossary for details.

4. FOREVER IN C. The macro forever is defined to be 'for (;;)' as an aid to writing
more readable code.

Printed April 27, 1989

ATOMS 4-3

TABLE 4.2

C LANGUAGE NUMERIC FUNCTIONS AND MACROS

sat_ceiling (f_number, x_exp) The smallest long integer that is not less

than f_number times 2x-'xp.

sat_floor (f_number, x_exp) The largest long integer that is not greater

than f_number times 2x-'xp.

sat_log (f_n umber) The logarithm base 2 of the smallest power
of 2 greater than or equal to the absolute
value of f_number, or SAT_IMISSL\G if
f_number is 0.

sat_mad (lx_ml, lx_m2,
lx_a, lx_d)

(Ix_ml*lx_m2+lx_a)/lx_d. The product, and
sum are stored internally as 64-bit integers.

sat_mas (lx_ml. Ix_m2,
ux_aO, x_al,
x_shil't)

(lx_ml*lx_m2+2:}-*x_al-kix_a0) < <
x_shift. The product and sum are stored
internally as 64-bit integers If _shift < 0.
then the shift is a right shift by — x_shift.

sat_rmas (lx_ml, lx_m2)
sat_rset (x_shift)
sat_rdeclare

Some macros that permit a set of nat_nuis
operations to be done with a common
x_shift value, and with common ux_a0 and
x_al values which round the shifted result if
x_shift < 0.

sat_round (f_number, x_exp) Converts f_number to a long integer by mul-
tiplying it by 2x-txp and then rounding.

5. YES, NO, AND EXCEPTION IN C. To represent the concepts of yes, no, and
there-was-an-exceptional-case, the following macros have been defined as aids to writing
readable code—

SAT_NO (comment) 0

SAT_YES (comment) 1

SAT_EXCEPTION (comment) -1

The comment can be any legal C macro argument (it must not contain commas).

Some examples-

Printed April 27, 1989

ATOMS 4-4

return (SAT_YES(everything was done OK));

return (SAT_NO (we could not find the body));

return (SAT_EXCEPTION(the number is too big to compute with));

6. LEFT-TO-RIGHT AND RIGHT-TO-LEFT COMPUTERS. A left-to-right
computer stores integers with the highest order byte at the lowest address. Thus when
bytes are printed left to right in order of increasing address, the highest order byte is
printed leftmost, as people are accustomed to seeing it.

A right-to-left computer stores integers with the lowest order byte at the lowest
address. Thus when bytes are printed right to left in order of increasing address, the
highest order byte is printed leftmost, as people are accustomed to seeing it.

IBM, Motorola, and related computers are generally left-to-right. DEC and INTEL
computers are generally right-to-left.

No matter what type the computer is, bit arrays are stored as if the computer was
left-to-right. This is because I/O devices, such as frame buffers, standardly use this
method of storage.

In C the macro SAT_LEFT_TO_RIGHT is defined as 1 if the computer is a left-to-
right computer, and 0 if it is right-to-left. The LISP global variable * I eft-to-right* is
similarly defined. Lastly, there is a utility function. inte<jer-to-bytes, to convert an integer
into a list of bytes according to the machine type.

7. LISP VALUES IN C. LISP values are designated in SKETCH as having the
sat_lvalue C type and the g_ argument prefix. All LISP values are pointers to LISP
objects: even fixnum's are represented by a pointer to an integer stored in garbage collec-
tible memory. A LISP value (i.e. the object it points at) can be of many different sub-
types: e.g. list's, fixnum's, symboPs, etc. Table 4.3 lists these subtypes, the C names for
the elements of the subtypes, and the C function usable to create a new LISP object of
the given subtype.

Each subtype is known in three different ways: to LISP it is known by a symbol
returned by the LISP typep function; to SKETCH it is known by a-type value returned by
the has-type macro (see the SKETCH OBJECTS package); and to C it is known by the
sob_type value returned by the sob_ltype macro (also see the SKETCH OBJECTS pack-
age).

Whenever C code allocates a new LISP object, the garbage collector may be called,
and will destroy any previous LISP objects that is not referencible by starting from the
global variables or the LISP local variables on the LISP (not C) stack. If C code allocates
two LISP objects before returning to LISP, it must store the LISP value pointing to the
first object in some place where it will be referencible. A good place is inside some other
LISP object that is referencible, such as one passed as an argument to the C function by
LISP code, or a global variable. C local and global variables are not referencible.

8. STRINGS. LISP values that are strings are in fact C char * pointers to NUL ter-
minated C strings. The argument prefix t_ is used for both LISP and C string arguments.

Printed April 27, 1989

ATOMS 4-5

TABLE 4.3: PART I

LISP VALUES

typep Type
has-type Type
sob_ltype Type

Expression Meaning

fixnum
a-fixnum
SOBJTXNUM

g_value—>sat_lint The int value of a fixnum.

sat_nfixnum (x_n) Creates a new fixnum = x_n.

sat_nsfixnum (x_n) Ditto but requires that —128 < x_n
< 255 and is more efficient.

flonum
a-flonum
SOB_FLONUM

g_value—> sat_ldouble The double value of a flonum.

sat_nflonum (f_n) Creates a new flonum = f_n.

string
a-string
SOB_STRING

& g_value—>sat_lchar The char * value of a string. The
string is a normal NUL terminated C
string.

list
a-list
SOBJJST

g_value—> sat_lfirst The first element of a list (i.e. the
car).

g_value—> sat_lrest The restl of a list (i.e. the cdr).

sat_nlist (g_first, g_rest) Creates a new list with given first
element and rest of list.

sat_Tiil The nil value.

hunkO
hunkl
hunk2
hunk3
hunk4
hunk5
hunk6

a-hunk
SOB_HUNK

g_value—>
sat_hvalue[x_incle\\

The x_index+lst element of the
hunk: i.e. the (cxr x_index g_value).
value.

g_value—> sat^lfirst The first element of the hunk: i.e. the
car of the hunk.

g_value—> sat_lrest The restl element of the hunk: i.e.
the cdr of the hunk.

sat_nhunk (x_size) Creates a new hunk with x_size ele-
ments all set to nil.

sat_empty If a hunk is supposed to have x_size
elements, it actually has more ele-
ments if x_jsize is not a power of 2,
and the extra elements are set to
sat_empty.

Printed April 27, 1989

ATOMS 4-6

TABLE 4.3: PART H

LISP VALUES

lypep Type
has-type Type
sob_ltype Type

Expression Meaning

symbol
a-symbol
SOB_SYMBOL

g_value—> sat_svalue The value element of the symbol
g_value.

g_value—> sat_splist The property list element (head) of
the symbol g_value.

g_value—> sat_sfu7iction The function definition element of
the symbol R_value.

g_value—> sat_slink The hash table link element of the
symbol g_value.

g_va!ue—> sat_spname The print name element of the sym-
bol g_value.

sat_nsymbol (t_string) Returns the existing symbol with the
print name t_string, if one exists and
is in the hash table. Otherwise
creates a new symbol with print
name t_string and puts it in the hash
table.

sat_nil The symbol nil.

sat_t The symbol /.

sat_cnil The value stored in the value ele-
ment of an unbound svmbol.

Printed April 27, 1989

ATOMS 4-7

TABLE 4.3: PART III

LISP VALUES

typep Type
has-type Type
sob_ltype Type

Expression Meaning

vectori
an-immediate-vector
SOB_TVECTOR

g_value—>sa<_t;c/iar[x_index] The x_index+lst char in an
immediate vector.

g_value—>s«/_t;uc/i<ir|x_index! Ditto for uchar.

g_value—>s«/_i's/»or/[x_inclex| Ditto for short.

g_value—> sat_vushort\x_\r\(\ex Ditto for ushort.

g_value—> sat_vlong\x_\ndex} Ditto for long.

g_value—> su<_ t'»/oTi<?|x_inclexi Ditto for ulong.

g_value—> sat_ ufloal_\nc\e\} Ditto for float.

g_value—>$<it_vdottble x_inclex, Ditto for double.

g_value—> sat_ uprop The property list element of
an immediate vector.

g_value—>sat_usize The size of an immediate vec-
tor in bvtes.

sat_nivector (x_size) Creates a new immediate vec-
tor with x_size bytes.

vector
a-lisp-vector
SOB_L VECTOR

g_value—>5d<_i/'Vfl/ue[x_inclexj The x_index+l'st element of
the LISP vector g_value.

g_value—> sat_vplist The property list element of
the LISP vector g_value.

g_value—> sat_vsizc The size of the LISP vector
g_value in bytes.

sat_nlvector (x_size) Creates a new LISP vector
with x_size elements.

Printed April 27, 1989

ATOMS 4-8

TABLE 4.3: PART IV

LISP VALUES

typep Type
has-type Type
sob_ltype Type

Expression Meaning

array
a-lisp-array
SOBJLARRAY

g_value—>sat_afunctio7i The function element of a LISP ar-
ray.

g_value—>sat_aaux The aux element of a LISP array.

g_value—>sat_adata The data element of a LISP array.

g_value—> sal_alength The length element of a LISP array.

g_value—> sat_adelta The delta element of a LISP array.

port
a-port
SOB_PORT

g_\ alue—> sat_lport The C port, or FILE * value, associ-
ated with a LISP port.

value
a-value
SOB_VALUE

g_value—> sat_lvalue The value of a LISP value object.

9. FORMATING READABLE STRINGS. There are several C functions for print-
ing strings in a format that can be read by the LISP read function. For example, an arbi-
trary file name string can be printed to be read as a symbol by the LISP reader via a call
such as—

prtn//("(cannot open the file %s)", sat_sformat (filename));

where filename is a C char * string. If filename were to equal—

"/usr/foo/fancy"

then the printf would print—

(cannot open the file /usr/foo/fancy)

but if filename were to equal—

"#play"

then the printf would print—

(cannot open the file |#play|)

Sat_tformat is a similar function for printing a string so it will be read as a string by the
LISP reader.

Because these functions return a pointer to a static character string buffer allocated
inside the function, two calls to one of these functions cannot be used inside one call to
printf. See the GLOSSARY for details.

Printed April 27, 1989

ATOMS 4-9

10. HITLIST. Empty for the moment.

11. GLOSSARY.

f_ [Argument Prefix]

DENOTATION: In C, denotes arguments of double float (double) type. In LISP, denotes
arguments of flonum type.

forever [C Macro]

EQUIVALENT TO. for (;;).

(integer-to-bytea 'x_integer) [Lisp Function]

RETURNS: A list of the 4 consecutive bytes (fixnum's from 0 through 255) that would be
stored consecutively in memory to represent the integer. The list has an
order on right to left machines, such as VAX'es, which is the opposite of its
order on left to right machines, such as 68000's.

left-to-right [LISP Global Variable]

VALUE: Non-/»V if computer stores bytes in an integer from left to right (high order to
low order, like IBM and MOTOROLA). Nil if the bytes are stored from right to
left (low order to high order, like DEC and INTEL).

lx_ [Argument Prefix]
ulx_ jArgument Prefix]

DENOTATION: In C, denotes arguments of long int (long) or unsigned long int (ulong)
type.

PI [C Macro]

VALUE: The constant 7r.

gjarray—>sat_afunction [C Macro]
g_larray—>sat_aaux |C Macro]
gjarray—>sat_adata [C Macro]
g_larray—>sat_alength [C Macro]
g_larray—>sat_adelta [C Macro]

WHERE: Gjarray must be a LISP array.

VALUE: The various parts of gjarray: function, aux, data, length, and delta. Sat_adata
is a pointer to the array data, which is a block of contiguous memory in a page
with the appropriate data type for the array elements (fixnum, flonum, or
value).

WHEN ASSIGNED: Changes the part of gjarray.

Printed April 27, 1989

ATOMS 4-10

sat_ceiling (f_number, x_exponent) jC Function]

VALUE: A long equal to the smallest integer greater than or equal to f_number times
QX_ exponent

SAT_CMAXIMUM [C Constant
SAT.CMINIMUM [C Constant
SAT_CMISSING [C Constant
SAT_UCMAXIMUM [C Constant
SAT_SMAXIMUM [C Constant
SAT.SMINIMUM [C Constant
SAT_SMISSING [C Constant
SAT_USMAXIMUM [C Constant
SATJLMAXIMUM [C Constant
SAT_LMINIMUM [C Constant
SAT_LMISSING [C Constant
SAT_ULMAXIMUM [C Constant
SAT_IMAXIMUM [C Constant
SAT_IMINIMUM [C Constant
SAT_IMISSING [C Constant
SAT_UMAXIMUM [C Constant]
SATJFMAXIMUM [C Global Variable
SAT_FMINIMUM [C Global Variable
SAT_FMISSING [C Global Variable
SAT_DMAXIMUM [C Global Variable
SAT_DMINIMUM [C Global Variable
SAT_DMISSING [C Global Variable

sat_cmissing (x_number) [C Macro
sat_smissing (x_number) [C Macro
sat_lmissing (x_number) [C Macro
sat_imissing (x_number) [C Macro
sat_fmissing (f_number) [C Macro
sat_dmissing (f_number) [C Macro

V.\LUES: The constants and variables are the largest value, smallest value, and missing
value for various data types according to the table below. For types with a
missing value, the missing value is not part of the range from
SAT_...MIMINIM through SA71...MAXIMUM inclusive.

Printed April 27, 1989

ATOMS 4-11

SATJMAXIMUM
SAT_IMINIMUM
SAT_IMISSING

int SAT_UMAXIMUM unsigned

SAT_LMAXIMUM
SATJLMINIMUM
SATJLMISSING

long SAT_ULMAXIMUM uiong

SAT_SMAXIMUM
SAT_SMINIMUM
SAT_S MIS SING

short SAT_US MAXIMUM ushort

SAT_CMAXIMUM
SAT_CMINIMUM
SAT_CMISSING

char SAT.UCMAXIMUM uchar

SAT_FMAXIMUM
SATJFMINIMUM
SATJPMISSING

float SAT_DMAXIMUM
SAT.DMINIMUM
SAT_DMISSING

double

WARNING: On some IEEE hardware,

SA T-fMISSING = 5.4 T_FMISSING
and

SA TJ)MISSING == SA T_DMISSING

are both false. Therefore the macros sat^fmissing and sat_dmissing have
been provided to test for missing values.

WARNING: Some C compilers cannot convert SAT_ULMAXIMUM to a double precision
floating point number properly: they insist on going through an int as an
intermediate step and get -1.0 as a result. To ensure proper results use—

sat_ultod {SA T_ULMAXIMUM).

RETURNS: The macros sat_cmissing, ..., sat_dmissing return true if and only if the
number they are testing is a missing value of the given type.

The tests for a particular type of missing value may be made on a copy of the
missing value held in a variable of some other type, provided that the other
type is large enough to hold all values of the missing value's type. E.g.
SAT_CMISSING may be copied into a double variable and tested there by
sat^cmissing. Similarly SAT_FMISSING may be copied into a double vari-
able before being tested.

Printed April 27, 1989

ATOMS 4-12

sat_cnil [C Constant]

VALUE: A satjvalue specially used as the value of unbound symbols and in other places
where the LISP interpreter needs to distinguish a missing value from nil.

_SAT_DMISSING [LISP Global Constant]

VALUE: The flonum used to denote the double missing value by C and FORTRAN code.

sat_empty [C Constant)

VALUE: A sat_lvalue which is specially used as a value for unused elements at the end of
a LISP hunk. E.g., a 3 element hunk is actually represented by a 4 element hunk
(rounding the length up to a power of 2) whose last element is equal to
sat_emply.

sat_floor (f_number, x_exponent) [C Function]

VALUE: A long equal to the largest integer less than or equal to f_number times
•)X_*xponenl

g_hunk—>sat_hvalue[x_index] [C Macro]
gjiunk—>sat_lfirst [C Macro]
g_hunk—>sat_lrest [C Macro]

WHERE: G_hunk must be a LISP hunk or the value sat_nil.

VALUE: Sat_hvalue [x_index] is the x_index+l'th element of g_hunk. Hunks can be used
like dotted pairs, with sat_lfirst and sat_lrest accessing car and cdr of the hunk.
These are the first two elements of the hunk, but the order of these first two ele-
ments is implementation dependent. Sat_nil may be treated like a hunk if only
the first two elements are to be read; both these will equal sat_nil.

WHEN ASSIGNED: Changes the element of g_hunk. G_hunk must not be sat_nil.

_SAT_IMISSING [LISP Global Constant]

VALUE: The fixnum used to denote the int missing value by C and FORTRAN code.

& g^string—>sat_lchar [C Macro]

VALUE: The char * value of a string g_string. This string ends with a NUL character, as
per C conventions. Remember the '&'; g_string—>sat_lchar is just the first
character.

Printed April 27, 1989

ATOMS 4-13

g_uumber—>sat_ldouble [C Macro]

VALUE: The double value of a flonum g_number.

SAT_LEFT_TO_RIGHT [C Macro]

VALUE: 1 if the high order byte of an int has a lower address than the low order byte of
an int, so that printing the bytes from left to right as addresses ascend will print
the high order byte first. 0 otherwise, in which case printing from right to left
will print the high order byte first.

g_list—>sat_lfirst [C Macroj
gjist—> sat Jrest [C Macro]

SEE ALSO: Sat_hvalue.

WHERE: G_list must be a dotted pair (list value) or the value sat_nil.

VALUE: Sat^lfirst tm the first element of gjist, and satjrest is the rest of gjist after the
first element. If gjist is sat_nil, both these return the value sal_nil.

WHEN ASSIGNED: Changes the first element or the rest of g_list. Gjist must not be
sat_nil.

g_number—>satjint [C Macroj

VALUE: The int value of a fixnum g_number.

satjog (f_number) [C Function]

RETURNS: The logarithm base 2 of the smallest power of 2 which is greater than or
equal to the absolute value of f_number, or SATJMISS1NG if f_number is 0.

g_port—>satJport [C Macro]

VALUE: The FILE * port associated with a LISP port object.

satjvalue [C Type]
g_ [Argument Prefix]

VALUE: A lisp value. The prefix g_ is used in the documentation of C functions to
denote such a value.

g_value—>satjvalue [C Structure Element]

VALUE: The value of a LISP value object.

Printed April 27, 1989

ATOMS 4-14

sat_mad (lx_multiplicancl, lx_multiplier, jC macro;
lx_addend, lx_clivisor)

WHERE: All arguments are automatically cast to longs.

RETURNS: (multiplicand * multiplier + addend) / divisor as a long.

NOTE: The numerator is computed as a 64 bit signed quantity and then divided to pro-
duce a 32 bit long quotient.

sat_mas (lx_multiplicand, lx_multiplier, [C macro|
ux_addendO, x_addendl. x_shift)

WHERE: Multiplicand, and multiplier are automatically cast to longs.

RETURNS: (multiplicand * multiplier + addendO -I- (addendl << 32)) << shift as a
long.

NOTE: The quantity to be shifted is computed with 64 bit signed arithmetic, and trun-
cated to 32 bits after shifting. A negative < < shift is equivalent to > > -shift.

sat_nfixnum (x_number) [C Function]
sat_nsfixnum (x_number) [C Macro]

RETURN'S: A sat_lvalue equal to a new LISP fixnum with sat_lint value x_number. Note,
however, that if x_number is near 0 the fixnum returned will be one of a
small table of constant fixnum's whose $at_lint's cannot be changed.

Sat^nsfixnum may be used for greater efficiency in place of sat_nfixnum when
it is certain that x_number is in the range from -128 through 255 inclusive.

SIDE EFFECT: May call the garbage collector when creating a new fixnum.

sat_nflonum (f_number) [C Function]

RETURNS: A sat_lvalue equal to a new LISP flonum with sat_ldouble value f_number.

SIDE EFFECT: May call the garbage collector when creating a new flonum.

sat_nhunk (x^size) [C Function]

RETURNS: A sat_lvalue equal to a new LISP hunk with at least x_size elements. Actu-
ally, the hunk is a power of two elements in size (128 elements is the max-
imum). The first x_size elements are set to sat_nil, and the rest to sat_empty.

SIDE EFFECT: May call the garbage collector when creating a new hunk.

Printed April 27, 1989

ATOMS 4-15

sat_nil [C Constant]

VALUE: The LISP symbol nil.

sat_nivector (x_size) [C Function]

RETURNS: A sat_lvalue equal to a new LISP immediate vector (vectori) object with
x_size bytes. Note the size is in bytes. The sat_vprop of the immediate vec-
tor will be sat_nil.

SIDE EFFECT. May call the garbage collector when creating a new immediate vector.

sat_nlist (g_first g_rest) [C Function]

RETURNS: A sat_lvalue equal to a new LISP list with g_first as the first element and
g_rest as the rest of the list.

SIDE EFFECT: May call the garbage collector when creating a new list.

sat_nlvector (x_size) [C Function]

RETURNS: A sat_lvalue equal to a new LISP vector with x_size elements. The sat_vprop
of the vector will be sal^nil.

SIDE EFFECT: May call the garbage collector when creating a new vector.

sat_nsymbol (t_string) ;C Macro]

RETURNS: A sat_lvalue equal to the LISP symbol in the symbol table whose print name
is t_string. If this symbol does not already exist, a new symbol is created.

SIDE EFFECT. May call the garbage collector when creating a new symbol.

sat_rmasN (lx_multiplier, lx_multiplicand) [C Macro]
sat_rsetN (x_shift) [C Macro]
sat_rdeclareN; [C Macro]

WHERE: N is either nothing, or is one of the digits 1, 2, 3, or 4.

SIDE EFFECT: Sat_rdeclareN declares the variables sliiftN, roundNO, and roundNl;
sat_rsetN sets these variables; and sat_rmasN uses them.

RETURNS: Sat_rmasN returns lx_multiplicand * lx_multiplier left shifted by x_shift.
The 64 bit product is computed and shifted, before being truncated to a 32
bit long. If x_shift is negative, the product is right shifted by - x_shift with
rounding induced by roundNO and roundNl having been set to the proper
values.

Sat_rmasN(x,y) expands to—

sat_mas(x, y, roundNO, roundNl, shiftN).

Printed April 27, 1989

ATOMS 4-16

sat_round (Lnumber, x_exponent) [C Function)

VALUE: A long equal to f_number times 2x-expon*nt rounded to the nearest integer.

sat_snformat (t_string, x_count) [C Function]
sat_sformat (t_string) [C Function]
sat_tnformat (t_string, x_count) [C Function]
sat_tformat (t_jstring) [C Function]

WHERE: X_count is the maximum length of t_string in case the latter is not NUL ter-
minated.

RETURNS: A string (char * pointer to a static area inside the routine) that is the same as
t_string reformatted for input to LISP as a symbol (for sat_sn/ormat or
sat_s/ormat) or as a string (for sat_Lt)format or sut_tformat). For symbols not
containing any special characters, t_string is returned as is (or more pre-
cisely, a copy of t_string in the static area is returned). In all other cases,
t_string is surrounded by quotes (| or "), and a backslash is prepended to any
quote or \ characters.

WARNING: If output would be longer than 4000 characters, exclusive of surrounding |'s
or "'s, then the end of the part of the output inside the |'s or "'s may be trun-
cated.

WARNING: The same static area is used by all calls to these functions, which may result
in strange effects unless the caller finishes with the result of one call before
making another call. Thus the call—

print/("%s = %s", sat_s/ormat (x), sat_t/ormat (y));

will not work, and should be replaced by something like

char temp [1001];
temp[l000] =0;

print/("%s =%s", strncpy (temp, sat_s/ormat (x), 1000),
sat_t/ormat (y));

NOTE: These functions are contained in the file sat_c$/orm.c, which is written so it does
not have any #include statements, and can be moved to any location and used
independently of the rest of SKETCH. A declaration such as—

extern char * sat_s/ormat(), * sat_sn/ormat(),
* sat_t/ormat(), * sat_tn/ormat();

will be required in SKETCH-independent code that calls functions in this file.

Printed April 27, 1989

ATOMS 4-17

g_symbol—>sat_svalue [C Macro
g_symbol—>sat_splist [C Macro
g^symbol—>sat_sfunction [C Macro
g_symbol—>sat_slink [C Macro;
g_symbol—>sat_spname [C Macro)

WHERE: G_symbol must be a LISP symbol.

VALUE: The various parts of the symbol object: value, property list (plist), function
definition (function), and print name (pname).

Sat_slink exists in the current version of FRANZ and chains to the next entry in
a hash table queue. The last entry has sat_cnil as a link value.

WHEN ASSIGNED: Changes the part of the symbol object. The link and print name
should not normally be changed. G_symbol should not. be sat_nil or
sat_t.

sat_t

VALUE: The LISP symbol t.

'C Constant!

sat_ultod (ul_x) [C Macroj

RETURNS: Ul_x converted to a double precision floating point number. This is necessary
because some C compilers do not do it right: they convert to int as an inter-
mediate step, and thus get false results like SAT_ULMAXIMUM == -1.0

g_ivector—>sat_vchar[x_index]
g_ivector—>sat_vuchar[x_index]
g_ivector—>sat_vshort[x_index]
g_ivector—>sat_vushort[x_index]
g_ivector—>sat_vlong[x_index]
g_ivector—>sat_vulong[x_index]
g_ivector—>sat_vfloat[x_index]
g_ivector—>sat_vdouble[x_index]
g_ivector—>sat_vprop
g_ivector—>sat_vsize

WHERE: G_ivector must be a LISP immediate vector (vectort).

VALUE:

[C Macro
[C Macro
[C Macro
jC Macro
[C Macro
[C Macro
[C Macro
[C Macro
[C Macro
[C Macro

Sat_vchar [x_index] is the x_index+l'th char of g_ivector;
sat_vuchar [x_index] is the x_index+l'th uchar of g_ivector;
sat_vshort [x_index] is the x_index+l'th short of g_ivector;
sat_vushort [x_index] is the x_index-fl'th ushort of g_ivector;
sat_vlong [x_index] is the x_index+l'th long of g_ivector;
sat_vulong [x_index] is the x_index-)-rth ulong of g_ivector;
sat_vfloat [x_index] is the x_index+l'th float of g_ivector; and
sat_vdouble [x_index] is the x_index-t-l'th double of g_ivector.

Sat_vprop is the sat_lvalue property list of g_ivector, and sat_vsize is the int size
of g_ivector in bytes.

Printed April 27, 1989

ATOMS 4-18

WHEN ASSIGNED: Changes the element of gjvector.

gjvector—>sat_walue[x_index] }C Macro)
gjvector—>sat_vprop [C Macro)
gjvector—>sat_vsize [C Macro)

WHERE: G_vector must be a LISP vector.

VALUE: Sat_vvalue [x_index] is the sat_lvalue xjndex+1'th element of gjvector.
Sat_vprop is the sat_tvalue property list of gjvector, and sat_vsize is the int size
of gjvector in bytes.

WHEN ASSIGNED: Changes the element of gjvector.

SAT_YES (<comment>) [C Macro]
SATJMO (<comment>) [C Macro)
SATJEXCEPTION (<comment>) [C Macro)

WHERE: <comment> is any C macro argument (e.g., it must not contain commas out-
side parentheses).

VALUES: SAT_YES (<comment>) equals 1, SAT_NO (<comment>) equals 0, and
5.4r_£'.VC£'P7,/O.V(<comment>) equals-1. The <comment> is ignored.

uchar

EQUIVALENT TO: Unsigned char.

ulong

EQUIVALENT TO: Unsigned long.

ushort

EQUIVALENT TO: Unsigned short.

[CType]

[C Type!

[C Type)

x_ [Argument Prefix]
ux_ [Argument Prefix]

DENOTATION: In C, denotes arguments of int or unsigned int (unsigned) type. In LISP,
i_ denotes arguments of fixnum type.

Printed April 27, 1989

CHAPTER 5

OBJECTS

1. OBJECTS. A SKETCH object has a type and a list of attributes. Each attribute
has a label and a value. The types of SKETCH objects have names beginning with 'a-' or
'an-'. The attribute labels of SKETCH objects have names beginning with 'has-' or 'is-',
or, in general, with any auxiliary verb or preposition followed by a hyphen.

A SKETCH object may be represented by an expression that evaluates to the object,
such as—

(a-man has-weight 174 has-height 70)

The 'a-man' macro called by this expression is the same as the name of the object type,
and the argument list consists of attribute label/value pairs, with each label (e.g. 'has-
weight') followed by its value (e.g. '174').

SKETCH types are themselves SKETCH objects whose type is the SKETCH type
a-type. SKETCH attribute labels are themselves SKETCH objects whose type is the
SKETCH type an-attribute. Thus the existence of the above object implies the existence
of other objects such as—

[a-type has-name a-man ...)

(an-attribute lias-name 'has-weight)

[an-attribute has-name ?has-height)

and these in turn imply the existence of—

(a-type has-name 'a-type ...)

(a-type has-name 'an-attribute ...)

(an-attribute has-name 'has-name).

2. MAKING OBJECTS. A SKETCH object can be made by evaluating an expres-
sion that represents it, such as—

(a-man has-weight 174 has-height 70).

Symbols naming the type and attribute labels are used in this expression, along with the
values of the attributes. In this expression, all the attribute labels and values are
evaluated, so that the expression gives the same result as—

(a-man has-weight (plus 100 74) has-height (difference 72 2)).

Use is made of the facts that the symbol 'a-man' is defined as a macro which creates
objects of type 'a-man', and that the symbols 'has-weight' and 'has-height' evaluate to
an-attribute SKETCH objects that serve as attribute labels.

OBJECTS 5-1

OBJECTS 5-2

The object that results from evaluating one of these expressions can be bound to a
variable, as in —

(setq george (a-man has-weight 174 has-height 70)).

This actually stores a pointer to the a-man object in the variable george. and we will
describe in more detail what this means at the end of the next section.

It is also possible to use one object as a prototype to supply default values for the
attributes of a new object. Writing—

(a-man george has-weight 169 has-age 57)

uses george as such a prototype, and makes the object represented by—

(a-man has-weight 169 has-age 57 has-height 70).

The prototype, if present, is the first thing after the type, a-man. in the expression mak-
ing the new object.

3. GETTING AND SETTING ATTRIBUTES. Attributes can be gotten by
expressions such as—

(has-weight george),

which, given the above definition of george, has the value '17-1*, or—

(has-height george).

which has the value '70'. The type of an object can be gotten as if it were the object's
lias-type attribute, via—

(has-type george),

which has the value—

(a-type has-name 'a-man ...).

Objects with has-name attributes often print as just their names, so if you print out this
last object you may get just 'a-man'.

The LISP set/macro can be used to change attributes, as in —

(self (has-weight george) 185),

after which george will equal—

(a-man has-weight 185 has-height 70)

New attributes can be defined for an object, as in—

(ser/(has-age george) 34),

after which george will equal—

(a-man has-weight 185 has-height 70 has-age 34).

If an attempt is made to get an attribute that an object does not have, nil will be
returned, as in—

(has-waist-size george).

This is not an error. Setting an attribute to the value nil generally makes the attribute
disappear ('generally' means that exceptions are rare, and noted in documentation). Thus
after-

Printed April 27, 1989

OBJECTS 5-3

(self (has-weight george) nil)

george will equal—

(a-man has-height 70 has-age 34).

In general, saying that an object does not have an attribute, and saying that it has
the attribute value nil, are two ways of saying the same thing.

If the attribute to be gotten is not known till eval time, the get-attribute function
may be used to get the attribute. Examples are—

(setq x [an-attribute has-name 'has-height))
[get-attribute x george),

in which the second expression evaluates to 70, and—

[set'J (get-attribute x george) 85),

which changes george to—

(a-man has-height 85 has-age 34)

In the above examples, george is just a variable that is always evaluated. If one had
executed—

(setq y george)

first, one could use y and george interchangeably above.

When two variables, such as y and george, are both bound to the same object, they
in fact both contain equal pointers to the object. Any change to the object will appear to
effect both variables. Thus if george equals—

(a-man has-height 85 has-age 34),

so will y, and after—

(set} (has-age y) 35),

both y and george will equal—

(a-man has-height 85 has-age 35).

The type of an object cannot be changed:

(setf (has-type george) ...)

is in error.

4. NAMES. If an object has a has-name attribute that has a non-mi value, that value
must be a symbol, and that symbol will be set equal to the object. For example, evalua-
tion of the expression—

(a-man has-name 'Bill has-weight 143 has-height 68)

will make an object and set the variable Bill equal to that object.

When the print function is asked to print an object with a has-name attribute, the
value of this attribute will be printed as the complete representation of the object. Thus

(print Bill)

will print just 'Bill'. Other forms of printing objects with has-name attributes are

Printed April 27, 1989

OBJECTS 5-4

available, and are described below (see PRINTING AND UNEVALUATING OBJECTS).

After an object with a name is made, it can be referenced by an expression that
appears to make a new object with the same lias-name but no other attributes. In this
case, evaluating the expression—

(a-man has-name 'Bill)

will not make a new object, but will instead return the already made object that is the
value of the variable Bill.

An object that has a type and a has-name attribute, but has no other non-mY attri-
butes, is called a stub. In general, an attempt to make a stub for an object that already
exists will not make a new object, but will merely return the existing object.

The order of making stubs and objects can be reversed. If the stub is made first, an
attempt to make the object will not make a new object. Instead, it will fill in the attri-
butes of the stub, and return that stub, which will no longer be a stub any more. Thus
the code—

(a-man has-name 'Bill has-wife (a-woman has-name 'Jill))
(a-woman has-name 'Jill has-husband (a-man has-name 'Bill))

will work, making only two objects, and setting the variables Bill and Jill. This code
would give the same result if we reversed the order of its two statements. The value of—

(has-wife Bill)

is the same as the value of the variable Jill, while the value of—

(has-husband Jill)

is the same as the value of the variable Bill.

If an object with a has-name is to be made, and another object with the same name
exists before hand, and if neither object is a stub, then the two objects are tested for
equality of their attributes (using the compare-object function that ignores hidden attri-
butes: see the GLOSSARY). If there is equality, a new object is not made, and the old
object is returned as the result of the expression that might have made the new object. If
there is no equality, an error is signaled. Thus a named object may be made many times
if it is always made the same way.

The notion of a name may be generalized to use attributes other than has-name to
denote an object. Such generalized naming is referred to as 'indexing', and is discussed
later in more detail. Indexing also includes placing objects on hidden cross-reference lists
that may be used to retrieve the object.

We have discussed 'making' objects in SKETCH, and not 'creating' them. In
SKETCH, 'creating' an object is a suboperation of 'making' the object, and does not
include any indexing.

5. DYNAMIC TYPE AND ATTRIBUTE CREATION. New types and attributes
can be created by expressions such as-

Printed April 27, 1989

OBJECTS 5-5

(a-type has-name 'a-man)

[an-attribute has-name 'has-weight)

(an-attribute has-name 'has-height)

(an-attribute has-name 'has-age).

However, types and attributes mentioned in data and interpreted code, but not in com-
piled code, need not be created before they are used. Instead, they may be given names
that begin with one of several specific prefixes, in which case they will be created
automatically when they are used.

For types, the prefixes are a- and an-. For attributes, the standard prefixes are has-,
is-, and isnt-, and any auxiliary verb or preposition followed by a hyphen may be added
to this list as needed (see define-object-name-prefix in the GLOSSARY).

For example, evaluating—

(a-man has-name 'George has-age 53 has-wife (a-worn an has-name 'Jill))

when a-man, has-age, has-wife, and a-woman are unbound variables will automatically
cause the expressions—

(a-type has-name a-man)

[an-attribute has-name 'has-age)

[an-attribute has-name 'has-wife)

[a-type has-name 'a-woman)

to be evaluated.

Thus data bases stored in files may use types and attributes previously unknown to
the program.

Types and attributes explicitly mentioned in compiled code, however, should be
made before they are used. This may be done by executing expressions such as—

[eval-when [compile load evat)
[a-type has-name 'a-man)
[an-attribute has-name 'has-age)
[an-attribute has-name 'has-wife)
[a-type has-name 'a-woman)).

The eval-when is necessary to ensure that the types and attributes are created both in the
compiler and at eval time.

If an object with a non-nil has-name attribute is made in the compiler environment,
the name of that object will automatically be declared to be special, thus permitting
reference to it in code. Objects made in the compiler environment should also be made in
the evaluation environment, so the code will reference the right object. The eval-when
[compile load eval) in the above example does just this.

Often the declare-hunk-type or declare-vector-type macros described in the next sec-
tion are used to create types and attributes, instead of the more direct methods just

Printed April 27, 1989

OBJECTS 5-6

described.

6. BASIC TYPES. In SKETCH one builds types on top of one another. Generally,
one starts with a basic type that is made by an expression such as—

(declare-hunk-type an-event
has-password *event-password*
has-name has-start-time
is-read-init-private
has-stop-time
is-hidden is-private
has-previous-event).

Declare-hunk-type is a macro whose arguments are generally not evaluated (like declare).
However, there is a- similar function, define-hunk-type, whose arguments are evaluated.
Both the macro and the function make one a-type object with the given name (e.g. an-
event), and several an-attribute objects with given names (e.g. has-name. has-start-time,
has-stop-time, and has-previous-event).

An-attribute-descriptor objects are also created for each attribute label, and an-
operation-descriptor objects are made for each operation (e.g. make-object, object-is,
itneval-object, format-object) that is to be defined in a type specific manner. See the sec-
tions below and the GLOSSARY for details of making these objects.

The above call defines a new type: an-event. The attributes of this type that are
known to the compiler are-

nas-name has-start-time has-stop-time has-previous-event.

These attributes are packed into objects of the new type, and are efficiently accessed (the
objects are actually hunks, and the access is by indexing elements of the hunks). Other
attributes may be set and gotten for an-event object, but these will be stored in a pro-
perty list where their access will be slower.

By default, attributes can be initialized and read, but not written (i.e. not self). The
is-read-init-private keyword signifies that subsequent attributes can also be written if the
password, in this case the symbol *event-password*, is included, as in—

(set/(has-stop-time x *event-password*) y).

We will use the fact that has-stop-time can be written with a password in the section on
THE FORMAT-OBJECT OPERATION below.

The is-private keyword signifies that subsequent attributes cannot be initialized, but
can be read or written if the password is include, as in—

(has-previous-event x *event-password*)

and—

(scf/(has-previous-event x *event-password*) y).

Assuming that code in one program package does not use the password of another
package, a private attribute may be protected from incorrect access by code outside the
package that defined the attribute.

Other keywords that play a role similar to is-read-init-private and is-private are is-
read-init, which is the default and disallows writing the attribute but allows reading and

Printed April 27, 1989

OBJECTS 5-7

initializing it; is-read-init-write which allows reading, initializing, and writing; and JS-

read-private which allows reading but not initializing, and allows writing, but only with a
password.

By default, attributes are printed out when the object is printed, and are included in
the result of unevaluating the object (see PRINTING AND UNEVALUATING OBJECTS
below). The is-htdden keyword signifies that subsequent attributes are not to be printed
or appear in the unevaluated object. Such hidden attributes are often used for cross-
reference lists between objects. These cross-reference lists can be very bulky to print, and
should not be transmitted between different memory loads (which is the purpose of
unevaluated objects).

Hidden attributes are also ignored when testing two objects for equality, as is done
when two objects with the same name are made (see NAMES above, and compare-object
in the GLOSSARY):

The ts-visible keyword is the opposite of is-hidden. and signifies that subsequent
attributes are to be printed, appear in the unevaluated object, and be considered during
tests for object equality. In the OTHER ATTRIBUTE SWITCHES section below, we
describe how an attribute can be made hidden in some ways and visible in others.

The declare-vector-type macro is similar to declare-hunk-type but defines objects
that are LISP immediate vectors (see the FRANZ LISP manual) and C structures. A typ-
ical use might be—

(declare-vector-type an-event
has-password *event-password*
a-value lias-name
a-long has-start-time
is-read-init-private
a-long has-stop-time
is-hidden is-private
a-value has-previous-event).

In a declare-vector-type call, the data type of the attributes can be declared to be be a C
numeric type, such as char, long, or float, rather than just a LISP value. This is done by
including type names such as a-char, a-long, and a-float in front of the attribute labels for
the attributes that are to have the given type. The type name a-value refers to LISP
values, and is the default at the beginning of the attribute list. The first element of the
vector stores the type of the object, as a LISP value. The property list of the vector (see
the FRANZ LISP manual) is a hunk that stores a copy of all the LISP values stored in
the vector, so that the garbage collector will know about these values.

Both declare-hunk-type and declare-vector-type expand into an —

(eval (compile load eval) ...)

form, so they will be effective at all times. If appropriate extra arguments are given to
these macros, and if the global variable *C-definition-port* is set to a port when either of
these macros is called (e.g. loaded or compiled), then C structure definitions are written
into this port so that C code can access the information in the object.

For example, the declaration-

Printed April 27, 1989

OBJECTS 5-8

(declare-vector-type (an-event ev_event ev_)
has-password *event-password*
a-value (has-name m/ev_name)
a-floal (has-start-time nil ev_start)
is-read-init-privale
a-floal (has-stop-t ime nil ev_stop)
is-htdden is-private
an-event (has-previous-event nil ev_previous))

will output the C structure definitions—

typedef struct ev_struct * ev_event;
struct ev_struct {

union {int SOB_VSIZE [lj;
suljcalue * SOB_\ PLIST [lj;
sobjijpe SOB_VTYPE; } SOBJV'FIRST;

define ev.type SOB_VFIRST SOBJVTYPE
define ev_plist SOB_VFIRST.SOB_VPLIST[-l][0]
define ev_vsize SOB_VFlRST.SOB_VSIZE(-2]

sat_lvalue ev_name;
float ev_start;
float ev_stop:
ev_event ev_previous;

}:
#define ev_alloc(\',y) struct ev_struct (\) [y]

See the GLOSSARY entries on declare-liunh-type and declare-vector-type for more
information.

7. CHECKING TYPES. It is often necessary to check whether an object is of a par-
ticular type. This can be most efficiently done by the object-is function, as in—

(object-is an-event x),

which evaluates to non-m7 if x is an-event. If it is necessary to discover the type of an
object, this may be done less efficiently by the has-txjpe function, as in —

(lias-type x),

which evaluates to—

(a-type has-name an-event ...)

if x is an-event.

8. PRINTING AND UNEVALUATING OBJECTS. Printing objects is best done
by the pretty-print function, as in—

(pretty-print x).

This function contrives to insert line feeds as necessary to make the object fit within lines.
No part of the object is to the left of the initial print position, and every attribute value
is indented with respect to its label. The number of line feeds inserted is returned by this
function.

Printed April 27, 1989

OBJECTS 5-9

If an object x has an attribute with value y, and if y has a lias-name at tribute with
value •£, then when x is pretty-print'ed, z will be printed in place of y Thus y is
represented by its name. However, this will not be done for x itself, which will always be
printed as a type and list of attributes.

The top level printer uses pretty-print to print evaluation results, unless a result has
a non-ni7 has-name attribute value which is not identical to the expression evaluated to
get the result, in which case just the has-name value is printed. Thus after evaluating—

(a-man has-name 'Bill has-wife (a-woman has-name 'Jill))
(a-woman has-name 'Jill has-husband (a-man has-name 'Bill)),

evaluating 'Bill' at the top level prints—

(a-man has-name 'Bill has-wife Jill).

while evaluating—

(has-husband Jill)

prints just 'Bill'.

One cannot copy the printed representation of an object into a file, read back the
file, and get the object again. This sort of thing can be done for some LISP values, but
not for ^KETCH objects. However, the uneval-ohjecl function will transform any
SKETCH object into a LISP object that has this print-re-read ability, and which, when
evaluated, will yield the SKETCH object. Thus the code—

(setq y (uneval-object x))
(pretty-print y some-output-port)
(ser<7 z [read corresponding-input-port))
(setq w (eval z))

will generally cause w to equal x (and z to equal y).

Here, also, if some attribute value of x is an object with a has-name attribute, that
attribute of x will be represented in y by just its type and name, as in —

(a-man has-name 'Bill).

So an equal object of the same name must be made to exist in the environment that
evaluates z. However, x itself will not be represented by its name, if it has one, but will
always be represented as a type and list of attributes.

Thus the unevaluation of 'Bill' above is—

(a-man has-name 'Bill has-wife (a-woman has-name Jill)),

while the unevaluation of 'Jill' is—

(a-woman has-name 'Jill has-husband (a-man has-name 'Bill)).

9. OPERATIONS. Operations can be defined which are like functions that have
different definitions depending upon the type of their first argument. Operations can also
have both a macro definition, used at macro expansion time if the type of the first argu-
ment can be deduced at that time, and a function definition, used at evaluation time, if
the type of the first argument is not known at macro expansion time.

To define an operation called "move-forward" we write—

Printed April 27, 1989

OBJECTS 5-10

(eval-when (eval load compile)
(an-operation lias-name 'move-forward)).

To define how it will be applied to an-event object we write—

(eval-when (eval load compile)
(an-operation-descriptor has-name '*move-event-forward-descriptor*

has-type an-event
has-operation move-forward
has-function 'move-event-forward-function
has-macro 'move-event-forward-macro
has-parameters <some-parameter>)).

Now the call—

(move-forward x y)

were x is an-event will evaluate the same as—

(funcall 'move-event-forward-function
move-event-forward-descriptor move-forward
xy).

Move-event-forward-function can access the has-parumeters attribute of *move-event-
forward-descriptor* if it wants to. This can allow one function to serve for several
related operations.

Move-event-forward-function will be used instead of move-event-forward-macro
because the type of x is not known at macro expansion time. However, the coll —

(move-forward (an-event x) y)

will be macro expanded to—

(move-event-forward-macro #.*move-event-forward-descriptor* #.move-event
(an-event x) y)

which will expand in turn. Note that the first two arguments are not expressions, but
rather an-operation-descriptor object and an-operation object (the '#.' instructs the LISP
reader to both read and evaluate the next expression, and return the result of the evalua-
tion as the thing read). The has-parameters attribute of the former could be accessed by
move-event-forward-macro.

Macro arguments like the first two to move-event-forward-macro are called 'pre-
evaluated'. Such arguments are actual values, rather than expressions which evaluate to
values at some later time. Pre-evaluated macro arguments provide parametric informa-
tion to macros efficiently. However, pre-evaluated arguments must not be used in the
expansion of the macro, unless the macro expands to a call on another macro that also
accepts pre-evaluated arguments.

If move-event-forward-macro were not given (the has-macro attribute of *move-
event-forward-descriptor* was omitted), then—

(move-forward (an-event x) y)

would be macro expanded to—

(move-event-forward-function *move-even t-for ward-descriptor* move-event
(an-event x) y).

Omitting move-event-forward-function (the has-function attribute of *move-event-

Printed April 27, 1989

OBJECTS 5-11

forward-descriptor*), is not permitted.

By defining another operation descriptor, such as—

(eval-when (eval load compile)
(an-operation-descriptor has-name '*move-truck-forward-descriptor*

has-type a-truck
lias-operation move-forward
lias-function 'move-truck-forward-function
has-macro 'move-truck-forward-macro
lias-parameters <some-parameter>)),

the move-forward operation could be defined differently on events and trucks.

10. PARENT OPERATIONS. It is possible to redefine an operation in such a way
that the new definition uses the old definition. Suppose we have defined the move-forward
operation as above, and write—

(eval-when (eval load compile)
(an-operation-descriptor lias-name '*newer-move-event-forward-descriptor*

has-type an-event
lias-operation move-forward
has-funcfion 'newer- move-even t-forward-fu net ion
lias-macro 'newer-move-event-for ward-macro
lias-parameters <some-parameter >)).

Now the call —

(move-forward x y)

were x is an-event will evaluate the same as—

(funcall 'newer-move-event-for ward-function
newer-move-e ven t-forward-descrip tor move-for ward
xy)

However the previous definition of move-forward has not been lost. Whenever an-
operation-descriptor with particular lias-descriptor-type and lias-descriptor-operation
attributes is made, the most recently made operation descriptor with the same has-
descriptor-type and has-descriptor-operation, if any, becomes the parent of the new
descriptor. In our case, the parent operation can be executed by the call-

execute-parent-operation * newer-move-event-for ward-descriptor*
move-forward x y),

which will evaluate the same as—

(funcall 'move-event-forward-function
move-event-forward-descriptor move-forward
xy).

Similarly the call-

execute-parent-operation * newer-move-event-for ward-descriptor*
move-forward (an-event x) y)

will macro expand to-

Printed April 27, 1989

OBJECTS 5-12

(move-event-forward-macro #.* move-event- for ward-descriptor* #. move-forward
(an-event x) y).

There can be a problems with reloading a code file into an environment into which
the file has previously been loaded, such as after fixing bugs in the file during debugging,
if the file contains attribute descriptor definitions such as that in the eval-whcn above.
Normally, any newly made descriptor is added to all the previously existing descriptors,
so the new version of the descriptor and the old version would both be active, with the
old version being an ancestor of the new. However, if the descriptor has a lias-name attri-
bute, remaking it will merely return the old descriptor in place of the new descriptor,
without making any new active descriptor. This is what should happen, so descriptors
should be named. They are usually named anyway, to facilitate their use in execute-
parent-operation calls.

But now a different problem appears: the reloaded descriptor must be identical with
the previously loaded descriptor to prevent an error (see NAMES above). Thus one can-
not fix a bug in the descriptor definition without reloading from scratch.

11. CREATE-OBJECT OPERATIONS. Often the creation of an object of a par-
ticular type should be accompanied by checks on the attribute values of the object. These
may be performed by a special create function for the object.

First note that the create-object operation is invoked by calls such as—

(create-object (list an-event has-start-time 1100
has-stop-time 1330)

nil)

in which the first argument is a list which represents the object, and the second argument
is a prototype object, which is missing (i.e. nil) in this case. The list which represents the
object is called an 'abnormal object'. It has the object type as its first element, and the
object's attribute label/value pairs as its remaining elements. The prototype object, were
it present, would be used to supply default values for attributes not specified in the
abnormal object.

Now given the declare-hunk-typedefinition of an-event above, we may evaluate—

(eval-when (compile load eval)
(an-operation-descriptor
has-name '*create-event-descriptor*
has-descriptor-operation create-object
has-descriptor-type an-event
has-function 'create-event)),

and thereby introduce a new function, create-event, to take over the job of creating an-
event objects. This function might be written as-

Printed April 27, 1989

OBJECTS 5-13

(defun create-event (the-operation-descriptor the-operation
the-object the-prototype
&aux the-event)

(setq the-event (create-parent-object *create-event-descriptor*
the-object the-prototype))

{cond ((not (objcct-is-a-stub (an-event the-event)))
(assert (fixp (has-start-time (an-event the-event)))

'(has-start-time attribute is not a fixnum))
(assert (fixp (has-stop-time (an-event the-event)))

'(has-stop-time attribute is not a fixnum))
(assert (not (lessp (has-stop-time (an-event the-event))

(has-start-time (an-event the-event))))
'(has-stop-time attribute is less than has-start-time attribute))))

the-event).

This function first uses the object creation facility provided by the parent descriptor
of *create-event-descriptor*: that is, by the descriptor lor the create-object operation on
an-event type objects that existed just before *create-event-descnptor* was made. This
parent is invoked by the call—

(create-parcnt-object *create-event-descnptor* the-object the-prototype),

which is almost equivalent to—

(execute-parent-operation *create-event-descriptor* create-object
the-object the-prototype),

but differs in that it does not try to extract the type of the-object by executing—

(has-type the-object),

but uses—

(first the-object)

instead, because the-object is not an-event object, but rather an abnormal object.

Our function then checks the attribute values, and returns the object created. We
must not check the attributes in the case when the object created is a stub (see NAMES
above).

Note that we write '(an-event the-event)' instead of simply 'the-event' whenever we
reference an attribute of the-event. The compiler uses the extra information that the-
event is an-event to compile much more efficient code for accessing the event. In fact, the
code that is compiled for element references executes in about 1 microsecond in this case,
whereas if the information is omitted the compiled code might take more than 100
microseconds.

12. MAKE-OBJECT OPERATIONS AND INDEXING. The act of making an
object is different from creating it. Making an object first creates it, and then indexes it.
We can add a make function special to an-event by writing-

Printed April 27, 1989

OBJECTS 5-14

[eval-when (compile load eval)
((i n-operat ion-descriptor
has-name '* make-event-descriptor*
has-descriptor-operation make-object
has-descriptor-type an-event
has-function 'make-event))

to introduce the new function make-event for making an-event objects. The make-event
function could be defined as follows—

(dejvar *event-list*) ; List of all events sorted by has-start-time.

(defun make-event (the-operation-descriptor the-operation
the-object the-prototype
faux the-event)

(setq the-event (make-parent-object *make-event-descriptor*
the-object the-prototype))

(cond ((not (has-start-time (an-event the-event))))
((or (null *event-list*j

(lessp
(has-start-time (an-event the-event))
(has-start-time (an-event (first *event-list*)))))

(push the-event *event-list*))

[t
(do ((the-list *event-list* (restl the-list)))

((or (null (restl the-list))
(lessp
(has-start-time (an-event the-event))
(has-start-time (an-event (second the-list)))))

(ser/(has-previous-event the-event *event-password*)
(first the-list))

(if (restl the-list)
(setf (has-previous-event (second the-list)

event-pass\vord)
the-event))

(setf (restl the-list)
'(.the-event . ,(restl the-list)))))))

the-event).

This function first uses the object making facility provided by the parent descriptor of
make-event-descriptor. This facility is invoked by the call to make-parent-object which
behaves like create-parent-object (see last section: the-object is an abnormal object here
too). Our function then indexes the new event, by setting its has-previous-event attribute
to the nearest previous event, if any, and by pus/i'ing it into the *event-list*. However,
this indexing is not done if the newly created event is a stub, which would be true if and
only if its has-start-time is nil (because of the checks made by the create-event function
above).

The reason why the has-previous-event attribute is hidden (see the section above on
BASIC TYPES) should now be clear. If the has-previous-event attribute were to be
printed v^hen an-event object is printed, its value would be another event object, which

Printed April 27, 1989

OBJECTS 5-15

when printed would contain another has-previous-event attribute, which would print yet
another an-event object, and so on recursively. Also, if an-event object is copied from one
memory load to another, the has-previous-event list in the target memory might be
different from that in the source memory. So the has-previous-event attribute should not
be copied, but should be recomputed when the object arrives in the target memory.

13. STANDARD OPERATIONS. Table 5 1 is a synopsis of all the operations that
are known to the object system. All but the ones that index descriptors are standardly
defined for all SKETCH objects by declare-hunk-type, declare-vcctor-type, or the
SKETCH dynamic type creation mechanism (see BASIC TYPES and DYNAMIC TYPE
AND ATTRIBUTE CREATION above). Compare-object and uneval-object are also
defined for LISP objects, such as numbers and lists.

14. ATTRIBUTE DESCRIPTORS. There are a number of different operations
associated with a given attribute and a given type—

(1) Get the value of the attribute from an object of the given
type.

(2) Set the value of the attribute for an object of the given
type.

(3) Inspect and optionally change an initial value of the attri-
bute for an object of the given type which is being made.

(4) Provide the default value of the attribute for an object of
the given type which is being made.

(5) Determine whether the attribute is to appear in a pretty-
printed version of an object of the given type, and optional-
ly format the attribute value in a special manner when it is
to be part of such a pretty-printing.

(6) Determine whether the attribute is to appear in an
unevaluated version of an object of the given type, and op-
tionally unevaluate the attribute value in a special manner
when it is to be part of such an unevaluation.

(7) Determine whether the attribute's values are to be com-
pared when objects of the given type are compared, and op-
tionally compare the attribute's values in a special manner
when such objects are compared."

Printed April 27, 1989

OBJECTS 5-16

TABLE 5.1

STANDARD OBJECT OPERATIONS

make-object Makes an object. First applies has-init- functions
and macros to attribute values destined for the ob-
ject, and finds default values for attributes not
specified. Then creates the object, and lastly
indexes the object.

create-object Creates an object. Does no indexing. Does not use
default values or has-init- functions or macros.

object-is Tests objects to see if they are of a given type.

object-is-a-stub Tests objects to see if they are a stub.

compare-object Tests objects for equality of all non-hidden attri-
butes.

move-object Sets all the attributes of the second object to the
values of the attributes of the first object, and then
discards the first object (it cannot be further used
again).

uneval-object For an object, returns a LISP object that will evalu-
ate to the object, and which can be printed and re-
read without being changed.

format-object For an object, returns a format that can be pretty-
print-format1 td to pretty-print the object.

index-operation-descriptor Records the existence of a new operation descriptor
for a type (see an-operation-descriptor in the GLOS-
SARY).

index-attribute-descriptor Records the existence of a new attribute descriptor
for a type (see an-attribute-descriptor in the GLOS-
SARY).

(8) Determine whether the attribute value is to be tested for nil
when an object of the given type is tested to see if it is a
stub, and optionally perform this test in a special manner
when such an object is tested.

Rather than have an-operation-descriptor for each of these 8 operations, we have
an-attribute-descriptor which provides information for all 8 operations. The attribute
descriptor in turn references an-attribute-function-table which has functions and macros
for the first 3 of the above operations. Specifically, the attribute function table has the
attributes-

Printed April 27, 1989

OBJECTS 5-17

has-get-function hux-aet-macro
has-set-Junction hus-set- macro
haS'init-function ha*- init- macro

which play the same roles as the lias-Junction and lias-macro attributes of an-operation-
descriptor.

For the fourth operation above, default value specification, the attribute descriptor
does not provide a function or macro. Instead it provides an expression which is
evaluated when an initial value is needed.

For the last 4 operations the attribute descriptor contains a switch, which behaves
something like an-opcration-descriptor lias-Junction attribute. The switches can also take
the values yes or no, whose meaning depends upon the type of switch. For example, a no
value for the has-pretty-Jormut switch that controls pretty-printing means the attribute is
not to be included when its containing object, is pretty-printed; a yes value means it is to
be included; a nil value expresses no opinion on inclusion (if no one expresses an opinion,
yes is assumed); and any other value is taken to be a function that is called in place of
pretty-Jormat to format the attribute value for pretty-printing.

Below we will discuss the get operation, default value, and pretty-format switch in
more detail. See the GLOSSARY lor details on the set and init operations and the
uneval, compare, and is-a-stub switches. All the operations and switches mentioned in
this section are reviewed in Table 5.2.

15. HAS-GET-FUNCTION'S. The following attribute descriptor definition supplies
special functions to get and set the has-duration attribute of an-event—

(eval-when (compile load eval)
(an-attribute-descriptor

lias-name '*get-event-has-du rat ion-descriptor*
has-descriptor-attribute has-duration
has-descriptor-type an-event
lias-Junctions

(an-attribute-Junction-table
has-get-Junction 'event-duration-get-function
has-set-Junction ' never-set-junction
has-init-Junction 'never-init-Junction)))

(dejun event-duration-get-function (the-descriptor the-attribute the-object)
(difference (has-stop-time (an-event the-object))

(has-start-time (an-event the-object)))).

This definition specifies that if x is an-event,

(has-duration x)

will be computed by calling—

(Juncall 'event-duration-get-function *get-event-has-cluration-descriptor* has-duration x).

This call will return the difference of the stop and start times for x.

The first argument to event-duration-get-function is the descriptor just made above,
the one that triggered the call to event-duration-get-function. This descriptor is not used

Printed April 27, 1989

OBJECTS 5-18

TABLE 5.2

ATTRIBUTE OPERATIONS, VALUES, AND SWITCHES

Attribute of
An-Attribute- Descriptor Use

Attribute of
An-Attribute-Function-Table

h as-functions
Get the value of the attribute Irom an object
of the given type. has-get-function

has-get-macro

h as-functions
Set the value of the attribute tor an object
of the given type. h as-set-function

h as-set-macro

h as-functions Inspect and optionallv change an initial
value of the attribute for an object of the
given type which is being made.

has-init-function
has-in it-macro

has-defau It- value Find the default value of the attribute for an
object of the given tvpe which is being made.

has-format-switch Determine whether the attribute is to appear
in a pretty-printed version of an object of
the given type, and optionally format the at-
tribute value in a special manner when it is
to be part of such a pretty-printing.

h as- u neval-switch Determine whether the attribute is to appear
in an unevaluated version of an object of the
given type, and optionally unevaluate the at-
tribute value in a special manner when it is
to be part of such an unevaluation.

has-compare-s witch Determine whether the attribute's values are
to be compared when objects of the given
type are compared, and optionally compare
the attribute's values in a special manner
when such objects are compared.

h as- is- a-stu b-switch Determine whether the attribute value is to
be tested for nil when an object of the given
type is tested to see if it is a stub, and op-
tionally perform this test in a special
manner when such an object is tested.

in the above example, but in general it may be used to allow one function to get many

Printed April 27, 1989

OBJECTS 5-19

different attributes. The descriptor has-paramelers attribute can be used as a parameter
by this function.

This has-parameters attribute is an integral part of the descriptor so that it can be
efficiently accessed. Other attributes special to an application may be defined for the
descriptor, but they will not be accessed as efficiently (as they will be placed on the
descriptor's property list).

The event-duration-get-function is the has-get-Junction of the attribute descriptor
defined above. The has-set-junction of the same descriptor specifies that—

(set/(has-duration x) y)

will be computed by calling—

(funcaWnever-set-function y *get-event-has-duration-descriptor* has-duration x).

Mever-set-function is a standard function supplied by SKETCH which will print an error
message saying that has-duration can never be set for objects of an-event type. Never-
imt-Junction is similar, and prohibits has-duration from being initialized when an-event is
made.

For details on has-get-function's, has-set-function's, and has-init-function's. see (u>-
attribute-function-table in the GLOSSARY.

16. HAS-GET-MACRO'S. The expression-

(has-duration (an-event x))

will expand into a funcall to event-duration-get-function, given the above definitions It
would be nice to allow event-duration-get-function to be a macro, so it could produce
more efficient in-line code. But this is not always possible, because an expression such
as—

(has-duration x)

does not know the type of x at compile time, and therefore must expand into something
that does not locate the event-duration-get-function until eval time. Since compiled code
cannot call macros at eval time, event-duration-get-function cannot be a macro.

However, if we change the attribute descriptor definition to add a has-get-viacro. ;us
in —

(eval-when (compile load eval)
(an- attribute-descriptor

has-name '*get-event-has-duration-descriptor*
has-descriptor-attribute has-duration
has-descriptor-type an-event
has-functions

(an- attribute-function-table
has-get-function 'event-duration-get-function
has-get-macro 'event-duration-get-macro
has-set-function ' never-set-function
has-init-function 'never-init-function))),

then —

(has-duration (an-event x))

Printed April 27, 1989

OBJECTS 5-20

will expand into—

(event-duration-get-macro #.*get-event-has-duration-descriptor* #. lias-duration
(an-event x)),

where the first two macro arguments are pre-evaluated (see OPERATIONS above).
Event-duration-get-macro should be a macro, and may be defined by—

(defmacro event-duration-get-macro (the-descriptor the-attribute the-object)
'(lei ((x ,the-object))

[difference (has-stop-time (an-event x))
(has-start-time (an-event x))))).

Event-duration-get-function must still exist, and will be called by the expansion o(—

(has-duration x),

which does not specify the type of x at macro expansion time.

17. DEFAULT VALUES. Default values may be specified when types ore defined by
declare-hunk-type or declare-veclor-type, as in —

(declare-hunk-type an-event
has-password *event-password*
has-name (has-start-time 0)
is-read-i nit-private
(has-stop-time *defauIt-duration*)
is-lndden is-private
has-previous-event),

where the default values are '0' and '*default-duration*'. These default values become
the has-default-value attributes of appropriate attribute descriptors.

Default values are expressions which are evaluated when needed. They may refer to
global variables, such as '*default-duration*', but not to local variables. Also, if one
wants nil to be a default value, one must use the non-nil expression 'nil (with a quote) as
a default value expression.

When an object is macfe, a search is made for default values declared for attributes
and associated with the type of the object being made (see SEARCHING FOR DESCRIP-
TORS below). Default values are found as the has-default-value attribute of an-altribute-
descriptor's whose has-descriptor-type is the type of the object being made (or an ancestor
of that type: see the has-parent attribute of a-type object in the GLOSSARY), and whose
has-descriptor-attribute is the attribute which has the default value (neither has-
descriptor-type or has-descriptor-attribute may be nif). If a non-?u7 default value is found,
it is an expression which is evaluated to produce an initial value for an attribute in an
object being made.

Default values are inherited. If a has-default-value attribute is initialized to nit when
an-attribute-descriptor is made, the attribute will be reset to the value of the parent
descriptor's has-default-value attribute.

18. PRETTY-FORMAT SWITCHES. A format-object operation is provided for
each SKETCH object type to perform the duities of the pretty-format macro for objects of
that type. The default format-object operations provided by declare-hunk-type and
declare-veclor-type will only include in the resulting format attributes actually stored in

Printed April 27, 1989

OBJECTS 5-21

the object which is to be pretty-printed. Also, only attributes with non-m7 values are
included.

These default format-object operations search attribute descriptors for has-format-
switch's in the same way as default make-object operations search for has-default-value's.
The format switch found for an attribute is used to control inclusion of the attribute
value in the object's format, and may also control the formatting of the attribute value

(1) If the format switch is no, the attribute value is not included in the object format

(2) If the format switch is yes, the attribute value is included, and the pretty-format
macro is used to format the attribute value for inclusion.

(3) If the format switch is a symbol other than yes, no, or nil, that symbol is used as a
function called with the same arguments as pretty-format to format the attribute
value. If the function returns a non-m7 value, the attribute is included in the object
format, and the function's return value is taken to be the format of the attribute
value. If the function returns nil, the attribute value is not included.

(4) A nU format switch, which is the same as no format switch being provided by any
attribute descriptor, is taken as equivalent to a yes format switch.

(5) Note that if an attribute has a nil value, it is not included in the object format, and
no check of the attribute's format switch is mode.

19. OTHER ATTRIBUTE SWITCHES. Attribute descriptors have three other
kinds of switches.

The has-uneval-switch attribute is just like the has-format-switch attribute, except it
is for the uneval-object operation rather than for the format-object operation.

The has-compare-switch attribute is similar, but it is for the compare-object opera-
tion. Here a no means not to test the attribute values when comparing two objects, while
a yes or m7 means to test the values with the equal function. Any other symbol as the
switch value means to test by calling the symbol as a replacement for the equal function
The symbol compare-object-function may be used just so to cause attribute values to be
themselves compared piece by piece, after the manner of compare-object. Equal, on the
other hand, will consider SKETCH objects to be different if they do not occupy the same
position in memory, even if the objects have identical parts.

The has-is-a-stub attribute is similar, but tests attribute values for nil in order to
determine whether an object is a stub (see NAMES above).

A hidden attribute, as described in the BASIC TYPES section above, has no as the
value of its has-format-switch, has-uneval-switch, and has-compare-switch. A visible attri-
bute has nil as the value of these switches. By chosing different values for these switches,
an attribute may be made partly visible and partly hidden. See declare-hunk-type and
declare-vector-type in the glossary for how to specify values for these switches.

20. THE FORMAT-OBJECT OPERATION. The format-object operation does
the work of pretty-format for SKETCH objects. It is common to want to adjust the
pretty-printed version of the object beyond what can be done with format switches. This
is usually done by creating a new copy of the object and tinkering with the attribute
values in the copy. For example, to pretty-print an-event objects with a has-duration
attribute in place of has-stop-time, the following might be used-

Printed April 27, 1989

OBJECTS 5-22

(eval-when (compile load eval)
(an-operation-descriptor
has-name '*format-event-descriptor*
has-descriptor-operation format-object
has-descriptor-type an-event
has-function 'format-event))

(defun format-event (the-operation-descriptor the-operation
the-object
&optional the-level
&aux the-event)

(setq the-event (create-parent-object *create-event-descriptor*
(list an-event) the-object))

(cond ((has-start-time (an-event the-event))
(set/ (get-parent-attribute

get-event-has-duration-descriptor has-duration
(an-event the-event))

(rfj/f (has-stop-time (an-event the-event))
(has-start-time (an-event the-event))))

(se//(has-stop-time (an-event the-event) *event-pass\vord*)
ml)))

(execute-parent-operation *format-event-descriptor* format-object
(an-event the-event) the-level)).

This function creates a copy of the-object, called the-event. If the-event is not a
stub, then the function stores an actual has-duration attribute value in the-event, so that
that attribute will print, and sets the actual has-stop-time attribute of the-event to nil, so
that attribute will not print. Lastly, the function formats the-event using execute-
parent-operation.

In order to set the actual has-duration attribute of the-event, the function must use
the parent of *get-event-has-duration-descriptor*, which was first introduced in the HAS-
GET-FUNCTION'S section above. The get-parent-attribute macro aids in this.

21. SEARCHING FOR DESCRIPTORS. When an operation, such as make-object,
is to be performed for a particular type, a search for an-operation-descriptor is made. All
the descriptors searched must have their has-descriptor-operation attribute equal to the
operation to be performed.

First, an operation descriptor whose has-descriptor-type is the particular type of the
object being operated on (or an ancestor of that type: see a-type in the GLOSSARY) is
searched for. Such an operation descriptor is specific to the particular type of object
being operated on. The search is made in most-recently-made-first order.

Then, if no such specific descriptor is found, a global operation descriptor valid for
all types is searched for. Such a global descriptor has nil as its has-descriptor-type.
Again the search is made in most-recently-made-first order.

The descriptor that is found is passed as an argument to the function or macro
designated by that descriptor.

Printed April 27, 1989

OBJECTS 5-23

When a function, such as the lias-get-functton, is required for a particular
type/attribute pair, a search is first made among all attribute descriptors whose has-
descriptor-attribute equals the attribute. As for operations, the search begins in most-
recently-made-first order with descriptors whose has-descriptor-type equals the type.of the
object whose attribute is being gotten (or an ancestor of that type), and then continues,
again in most-recently-made-first order, to descriptors whose has-descriptor-type is nil.
However, in this case, if no descriptor is found, the search continues further to descriptors
whose has-descriptor-attribute is nil, but whose has-descriptor-type is the type of the
object whose attribute is being gotten (or an ancestor of that type). Again, this last
search is made in most-recently-made-first order.

Another difference in the attribute descriptor case is that not all the descriptors
searched will have a has-get-function. Those without such a function cannot be used, and
are ignored.

The descriptor that supplies the has-get-function is passed as an argument to that
function.

The searches for has-set-function's and has-init-function's are similar. Searches for
macros (e.g. has-get-macro), will be satisfied by a descriptor that has either a macro or a
function. If only the function is present (e.g. only has-get-function and not. has-get-
macro), it will be used as if a macro existed that simply called the function.

Execute-parent-operation and get-parent-attribute continue searches from the point
where they left off. If a first search for an-operation-descriptor found a descriptor D,
then —

(execute-parent-operation D ...)

continues the search from the point where it left off. Get-parent-atlribute can be used
with setf to continue searches for setting attributes.

Make-parent-object and create-parent-object are used in place of execute-parent-
object for the make-object and create-object operations, because these latter operations do
not have a first argument which is an object of the type to be used in searching for the
descriptor. Rather the first argument is a list whose first element is that type. Similarly
parent-object-is is used for the object-is operation, whose first argument is the type itself.
Other non-standard operations can be created with help from the find-operation-
descriptor macro (see the GLOSSARY).

Searching for switches and default values is similar to searching for has-get-
functioris, except that one searches instead for non-nt7 has-default-value's, has-format-
switch'es, has-uneval-switch'ts, has-compare-switch'es, or has-is-a-stub-switch'es.

22. GENERALIZED INDEXING. Suppose we want to create a data base contain-
ing people defined by-

Printed April 27, 1989

OBJECTS 5-24

(dectare-hunk-type a-person

has-height has-weight has-age ...

has-is-a-stub-switch 'yes
has-name

has-is-a-stub-switch 'no
has-social-security-number).

We want each person to be uniquely defined by his social security number, but not by his
name. Looking back at the previous section on NAMES, we see that we want to define
the concept of a-person stub to be a-person object with all attributes missing (nil) except
for has-social-security-number. This is done by the two has-is-a-stub-switch lines in the
above definition. The first ensures that the has-name attribute of a-person must be nil in
a stub: by default it. would not have to be nil. The second allows the has-social-security-
number attribute of a-person in a stub to be non-nz7.

The next step is to define a special make-object function for a-person objects-

Printed April 27, 1989

OBJECTS 5-25

(cval-when (era/ load compile)
(an-operation-descriptor has-descriptor-type a-person

lias-descriptor-operatwn make-object,
has-f unction 'make-person-function))

(defun make-person-function (the-operation-descriptor the-operation
the-abnormal-ol)ject the-prototype
&aux the-new-ol)ject the-social-security-number the-previous-object)

(setq the-new-object
(create-object (process-attributes the-abnormal-object the-prototype)

the-prototype))
(setq the-social-security-number

(has-social-security-number (a-person the-new-object)))
(assert (and the-social-security-number

(symbolp the-social-security-number))
'(has-social-security-number attribute is not a non-nil symbol))

(setq the-previous-object
(and (boundp the-social-security-number)

(symeval the-social-security-number)))
(assert (or (not the-previous-object)

(object-is a-person the-previous-object))
'(previous value of ,the-social-security-number is not a-person))

(cond ((not the-previous-object)
(set the-social-security-number the-new-object))

((object-is-a-stub (a-person the-new-object))
the-previous-object)

((object-is-a-stvb (a-person the-previous-object))
(move-object the-new-object the-previous-object)
the-previous-object)

((compare-object (a-person the-new-object)
(a-person the-previous-object))

the-previous-object)
(/ (error '(object made is not equal to previous

person with same social security number)))))

The first step in the make-person-function is to apply process-attributes to the
abnormal version of the object being made (see abnormal objects in CREATE-OBJECT
OPERATIONS above). E.g.-

(make-person-function <an-attribute-descriptor D> make-object
(list a-person has-social-security-number '[40-90-0001

has-7iame 'George has-height 72 has-weight 200)
nil)

is a typical call to make-person-function, in which the third argument is an abnormal
object. The process-attributes function alters the abnormal object by filling in default
values of attributes not specified (using the lias-default-value attributes of attribute-
descriptors: see DEFAULT VALUES above). It also applies has-init-functions, if any, to
non-default attribute values.

Printed April 27, 1989

OBJECTS 5-26

The modified abnormal object is passed to create-objecl to create the a-person
object. The has-social-security-number is extracted from the resulting object, and
checked to be sure it is a legal non-»»7 symbol (in FRANZ lisp. 40-90-000 is read as a sym-
bol, even if not surrounded by vertical bars).

The social security number is supposed to be a unique identifier for the person, so in
this example we simply set the symbol value of the social security number to the person
object. Thus if there was a previous object with the same social security number, it can
be found as the value of the social security number.

The rest of the function is as follows—

(1) If there is no previous object, we set the social security number symbol
value to the new object, and return the new object.

(2) Otherwise, if the new object is a stub, we return the previous object.

(3) Otherwise, if the previous object is a stub, we move the new object into
the previous object and return the latter.

(4) Otherwise, we compare the new and previous objects, and return the latter
if the two objects are equal.

(5) Otherwise, we signal an error.

We also need to provide special formal-object and uneval-object operations to output
stubs such as—

(a-person has-social-security-number |40-90-000|)

in place of the full object when the object is an attribute value of another object. The
situation where the stub should be output is recognized by a non-zero level argument to
format-object, or a non-7»7 index-switch argument to uneval-object (see the GLOSSARY).

23. C TYPES. The OBJECTS package contains some C language support code that is
a continuation of the ATOMS package. This continuation makes use of a-type objects,
which is why this code is not included in the ATOMS package to begin with (the ATOMS
package does not depend upon the OBJECTS package).

C code can obtain a pointer to any object with a lias-name attribute by calling—

sob_nobject ("<name>")

In particular, the system has already done this for basic a-type objects, such as o-
char, and stored the results away in C global variables, such as SOB_C'HAR. The follow-
ing table lists all the global C variables set to a-type objects in this manner-

Printed April 27, 1989

OBJECTS 5-27

C Global SKETCH C Global SKETCH
Variable a-type Object Variable a-type Object

SOB_ATTRIBUTE aii-attribute SOBJLONG a-lony
SOB JBIG NUM a-bignum SOBJL VECTOR a-lisp-vector
SOBJ3INARY a-binary-function SOB_NONLISP a-no n-lisp-value
SOB_CHAR a-char SOBJPORT a-port
SOBJOOUBLE a-double SOB.SHORT a-short
SOBJFDCNUM a-fixnum SOB_STRING a-slrmg
SOBJFLOAT a-float SOB_SYMBOL a-symbol
SOBJFLONUM a-flonum SOB_TYPE a-type
SOBJHUNK a-hunk SOB_UBIT a- ubit
SOBJNT an-int SOB.UCHAR a-uchar
SOB_IVECTOR an-immediate- vector SOB_ULONG a- along
SOBJ^ARRAY a-lisp-array SOB_UNSIGNED an-unsigned
SOBJLBIT an-lbit SOB_USHORT a-ushort
SOB_LIST a-list SOB_VALUE a-value

The C data type sob_type is defined to be a pointer to u-type object. The C data
type sob_attribitte is defined to be a pointer to an-altribule object.

There is a C equivalent of the has-lisp-lype function: sob_ltype. This is actually a
last macro. An example of its use is—

tf{sob_ltype (x) == SOBJPIXNUM) ...

There is also a C function, sob_tsize, to get the lias-size attribute of a-lype object (the
number of bits taken by a datum of the given type when it is an array element)

To allow code that deals with different types of numbers to use the C case statement
(which can only test integers known at compile time, and cannot test pointers), there is a
function, sob_tcase, that returns an integer code for numeric types. E.g..

sob_tcase {SOB_CHAR)

returns an integer equal to the C manifest constant SOB_CCASE. The following is a
table of the codes returned —

Printed April 27, 1989

OBJECTS 5-28

Ty_type Value Code Returned Numeric Type
SOB_UBIT SOBJUBCASE unsigned 1 bit integer

SOB_CHAR SOB.CCASE signed 8 bit integer

SOB_UCHAR SOB.UCCASE unsigned 8 bit integer

SOB_SHORT SOB.SCASE signed 16 bit integer

SO B_USHORT SOB_USCASE unsigned 16 bit integer

SOB_LONG
SOBJNT

SOB_LCASE signed 32 bit integer

SOB_ULONG
SOB_UNSIGNED

SOB.ULCASE unsigned 32 bit integer

SOB_FLOAT SOB_FCASE signed 32 bit floating point number

SOB_DOUBLE SOB_DCASE unsigned 6-1 bit floating point number

There is another function, sob.tmissing, what will return the missing value for particular
numeric type, given the sob_case code of that type. The missing value returned is always
a double. For example,

sob_lmissiny (SOB_CCASE)

returns SOB^CMISSING cast to a double. For unsigned integers, sob_fmissing returns
some value that can never be taken by the integer.

24. HITLIST.

(1) Possibly add inheritance under the constraint that the underlying format of related
objects is the same.

Possibly make compare-object really test equality of fixnums with flonums.

Find out why (get-attribute xxx yyy) (type of yyy not available at compile time) is
so slow and try to fix it. Also make compiled version more compact. Maybe use C
code?

Possibly make has-vector-C-element-type attribute be non-hidden.

Consider not allocating separate hunk part of vector object with 2 element hunk
part until property list is set (use constant hunk part in the meantime).

Possibly return component length as part of pretty-print format, so better judge-
ments can be made using prinlength.

Possibly implement different levels of verbosity in printing.

Possibly make sob_unbound handle abbreviations.

Possibly disable special consideration of has-name by default declare-hunk-type and
declare-vector-type provided format-object and uneval-object functions if its has-is-
a-stub-switch is not no.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10) Possibly outlaw allowing the parentheses to be omitted from (s_attribute), on the
grounds that misspelled options (e.g. is-read instead of is-read-private) are mistaken
for attributes.

Printed April 27, 1989

OBJECTS 5-29

25. GLOSSARY.

a-bignum [SKETCH Type)
a-binary-function (SKETCH Typej
a-char (SKETCH Type]
a-double [SKETCH Type]
a-fixnum ' (SKETCH Type]
a-float [SKETCH Type]
a-flonum [SKETCH Type]
a-hunk [SKETCH Type]
an-immediate-vector [SKETCH Type]
an-int (SKETCH Type]
an-lbit [SKETCH Type]
a-lisp-array [SKETCH Type1

a-lisp-vector [SKETCH Type]
a-list [SKETCH Type'
a-long [SKETCH Type!
a-non-lisp-value [SKETCH Type]
a-port [SKETCH Type]
a-short [SKETCH Type]
a-string [SKETCH Type!
a-symbol [SKETCH Type]
a-ubit [SKETCH Type!
a-uchar [SKETCH Type!
a-ulong [SKETCH Type
an-unsigned [SKETCH Type]
a-ushort [SKETCH Typej
a-value (SKETCH Type]

USE: These are types of C and LISP values according to the following table-

Printed April 27, 1989

OBJECTS 5-30

a-bignum LISP bignum: large integer.

a-binary-f unction LISP binary: compiled function.

a-char C char: 8 bit signed integer.

a-double C double: 64 bit floating point number.
a-fixnum LISP fixnum: small integer.

a-float C float: 32 bit floating point number.

a-flonum LISP flonum.

a-hunk LISP hunkO, hunkl, ..., or hunk6.

an-immediate-vector LISP vectori.

an-int C int: 32 bit signed integer.

an-lbit C 1 bit unsigned integer for which the value
0 denotes nil and the value 1 denotes t.

a-lisp-array LISP array.

a-lisp-vector LISP vector

a-list LISP list.

a-long C long: 32 bit signed integer.

a-non-lisp-value LISP other.

a-port LISP I/O port.

a-short C short: 16 bit signed integer.

a-string LISP string.

a-symbol LISP symbol.

a-ubit C 1 bit unsigned integer.

a-uchar C uchar: 8 bit unsigned integer.

a-u long C ulong: 32 bit unsigned integer.
an-unsigned C unsigned: 32 bit unsigned integer.
a-ushort C ushort: 16 bit unsigned integer.
a-value LISP value.

"abnormal object" [SKETCH Term]

USE: An 'abnormal object' is a list which represents an object. The first list element is
the type of the object, and the rest of the elements are attribute label/value pairs.
The object type is itself a-type object, and not the symbol naming the type. Simi-
larly the attribute labels are an-attribute objects, and not symbols.

An example of an abnormal object is—

[list a-person has-weight 99 has-age 13)

Printed April 27, 1989

OBJECTS 5-31

(abnormal-object-for-macro '(list s_type s_attribute g_value ...)) [LISP Function]

RETURNS: The list—

(s_type s_attribute g_value ...)

if the argument is formatted as indicated and the type and all the attributes
are represented by their names. In this case get may be applied to get
g_value's from the returned list.

Otherwise returns nil (and does NOT call error).

fan-attribute has-name 's_name) (SKETCH Type Macro]
an-attribute [SKETCH Type)
at_ [SKETCH Argument Prefix]

USE: An-attribute serves as a label for an attribute value of a SKETCH object. See
s_attribute.

Whenever an attribute is gotten, set, initialized, pretty-printed, unevaluated, or
compared, the attribute and the type of the object being referenced are used
together to find an-attribute-descriptor that specifies functions, macros, and param-
eters to do these tasks. See an-attribute-descriptor.

ARGUMENT PREFIX: Attribute arguments are indicated by the prefix at_.

HAS-NAME: Each attribute MUST have a name which is a symbol. By convention, this
name should begin with an auxiliary verb or a preposition followed by a
hyphen: e.g. has-parent and has-parameters. See lias-name.

INDEXING: Whenever an attribute is indexed, the name of the attribute has its function
definition set if it was previously nil. This is also done for stubs, as a stub
may be a completely defined attribute.

(an-attribute-descriptor [has-descriptor-type 'ty_type] [SKETCH Type Macro]
[has-descriptor-attribute 'at_attribute]
[has-functions 'aft_attribute-function-table]
[has-parameters 'g_parameters]
[has-info 'g_info]
[has-default-value 'g_defauIt-value]
[has-is-a-stub-switch 's_is-a-stub-switch]
[has-compare-switch 's_compare-switch]
[has-format-switch 's_format-switch]
[has-uneval-switch 's_uneval-switch])

an-attribute-descriptor [SKETCH Type
atd_ [SKETCH Argument Prefix
(has-parent 'atd_descriptor) [SKETCH Attribute Macro
(has-descriptor-type 'atd_descriptor) [SKETCH Attribute Macro
(has-descriptor-attribute 'atd_descriptor) [SKETCH Attribute Macro
(has-functions 'atd_descriptor) [SKETCH Attribute Macro
(has-parameters 'atd_descriptor) [SKETCH Attribute Macro
(has-info 'atd_descriptor) [SKETCH Attribute Macro
(has-default-value 'atd_descriptor) [SKETCH Attribute Macro

Printed April 27, 1989

OBJECTS 5-32

jhas-is-a-stub-switch :atd_descriptor) [SKETCH Attribute Macro!
(has-compare-switch 'atd_descriptor) [SKETCH Attribute Macro)
(has-format-switch atd_descriptor) [SKETCH Attribute Macro)
f has-uneval-switch 'atcl_descriptor) [SKETCH Attribute Macro]

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

USE: An-attribute-descriptor describes how a particular attribute, at_attribute, is stored
in objects of a particular type, ty_type. At_attribute may be nil to indicate that
the descriptor applies to all attributes of objects of type ty_type. Ty_type may be
nil to indicate that the descriptor applies to at_attribute for all objects, regardless
of type. At_attribute and ty_type may not both be nil.

See SEARCH ORDER below to find which attribute descriptor is used when
several have the same at_attribute and ty_tvpe.

ARGUMENT PREFIX: Attribute descriptor arguments are indicated by the prefix atd_.

HAS-DESCRIPTOR-ATTRIBUTE: At_attribute: an-attribute or nil.

HAS-DESCRIPTOR-TYPE: Ty_type: a-type or nil.

HAS-FUNCTIONS: An-attribute-function-table or nil The functions and macros in this
table are used to get values from, set values into, and check initial
values of the attribute.

When two attribute descriptors are compared by compare-object, their
lias-functions attributes are compared by compare-object instead of by
equal. This permits an-attribute-descriptor with a has-name to be
repeatedly defined as long as all the definitions are the same, even if
the has-functions attribute value does not itself have a name (see stub).

HAS-PARAMETERS: Any LISP value. Used by the has-functions functions and macros.
Can be setf.

HAS-INFO: Just like has-parameters but is not visible: is not printed or represented in the
unevaluated attribute descriptor. Useful for cross reference lists.

HAS-DEFAULT-VALUE: An evaluatable LISP expression. Evaluated when an object is
made to provide a default value for the attribute. Cannot refer to
local variables.

If initialized to nil, will be set to the default value of the parent of
this descriptor (see below), if any.

HAS-IS-A-STUB-SW1TCH: A symbol. If no, this attribute is not tested to see if it has any
particular value (such as nil) in order to verify that an object is
a stub. If yes, the attribute is tested by the not function, and
must be nil if the object is a stub. If nil, no opinion on testing
the attribute is expressed (if everyone expresses no opinion, the
result is the equivalent of yes). If some other symbol, then this
is the name of a function which is called in place of not to test
the value of the attribute to see if it is acceptable for a stub.

If initialized to nil, will be set to the is-a-stub switch of the

Printed April 27, 1989

OBJECTS

HAS-COMP ARE-SWITCH:

HAS-FORMAT- SWITCH:

5-33

parent of this descriptor (see below), if any.

A symbol. If no, this attribute is not tested when two objects
are compared for equality. If yes, the attribute values for the
two objects are tested by the equal function if they are numbers,
strings, or lists, and by the eq function otherwise. If nil, no
opinion on testing the attribute is expressed (if everyone
expresses no opinion, the result is the equivalent of yes). If some
other symbol, then this is the name of a function which is called
in place of equal or eq to test the two value of the attribute to
see if they are equal.

If initialized to nil, will be set to the compare switch of the
parent of this descriptor (see below), if any.

A symbol. If no. pretty-printing this attribute is suppressed If
yes, pretty-printing is required, and pretty-format is called to for-
mat the value of the attribute for printing. If nil, no opinion on
printing is expressed (if everyone expresses no opinion, the result
is the equivalent of yes). If some other symbol, then this is the
name of a function which is called in place of pretty-format to for-
mat the value of the attribute. However, should this function
return nil, the attribute will not be printed.

HAS-UNEVAL-SWITCH:

If initialized to ml, will be set to the format switch of the parent
of this descriptor (see below), if any.

A symbol. If no, inclusion of this attribute in the results of
uneval-object is suppressed. If yes, inclusion is required. If nil, no
opinion on inclusion is expressed (if everyone expresses no opinion,
the result is the equivalent of yes). If some other symbol, then
this is the name of a function which is called in place of uneval-
object to unevaluated the value of the attribute. However, should
this function return nil, the attribute will not be included in the
results. The function may return 'nil to force inclusion of the
attribute with the value nil.

If initialized to nil, will be set to the uneval switch of the parent
of this descriptor (see below), if any.

HAS-PARENT: An-attribute-descriptor or nil. Automatically set (may not be initialized or
self) to the last attribute descriptor indexed before this one which has the
same at_attribute and either the same ty_type, or a type that is an ances-
tor of ty_type. The parent of an attribute descriptor, the parent's parent,
the parent's parent's parent, etc. are said to be ancestors of the attribute
descriptor.

SEARCH ORDER: When an attribute, at_attribute, is gotten from or set into an object of
type ty_type, or set to an initial value when the object is made, an-
attribute-descriptor must be found, and the appropriate has-functions
function selected to perform the get, set, or init. A search is made of
three groups of descriptors. Each group consists of all descriptors with

Printed April 27, 1989

OBJECTS 5-34

particular values of their has-descriptor-attribute and has-descriptor-
type attributes as follows—

group has-descriptor-attribute has-descriptor-type

1 at_attribute ty_type or an
ancestor of ty_type

2 at_attribute ml

3 ml ty_type or an
ancestor of ty_type

The search examines each of the three groups in order. Each group is
examined by examining all descriptors in the group in most-recently-
made-first order. This can be clone by examining first the most recently
made descriptor in each group, called the head of the group, and then
examining the head descriptor's parent, that parent's parent, and so
forth, until all ancestors of the group head have been examined.

The search stops when a descriptor is found whose has-get-function,
has-set-funclion, or has-init-function is non-nil.

When an object of type ty_type is made, a similar search is made for
non-m7 has-default-vahie's. When an object is tested by object-is-a-stub
or compare-object, a similar search is made for non-ni7 has-is-a-stub-
sivitch's or has-compare-switch's. When an object, is pretty-print'ed or
uneval-object'ed, a similar search is made for non-?i»7 has-format-
switch's or has-uneval-switch's.

Sometimes a search does not begin at the beginning, but instead begins
just after a particular descriptor in the order, thus in effect continuing
the previous search which found that descriptor.

ORDER OF MAKING: The assumption is made that all attribute descriptors with the same
has-descriptor-type and has-descriptor-attribute are made in the
same order in both the compile and evaluation environments. The
get-attribute-descriptor function and all the macros that use it
depend upon this assumption.

It is an error to make a descriptor with a non-nil ty_type if ty_type
is the ancestor of any other type. Thus all the descriptors for a type
must be made before the type is made a parent of another type.

NIL DEFAULT VALUES: To set a has-default-value attribute to an expression which evalu-
ates to nil, one must use

(an-attribute-descriptor ... has-default-value "nil...)

This is necessary only if a non-ni/ default value from some ances-
tor of the descriptor must be overridden. If there are no non-n«7
default values, the default value will be nil.

Printed April 27, 1989

OBJECTS 5-35

INDEXING: An-attrtbute-descriptor may be indexed by a lias-name attribute in the nor-
mal way. It is also referenced by a variety of indices which enable the search
described above. Just before indexing,

(execute-found-operation
(find-operation-descriptor nil index-attribute-descriptor ty_type)
index-attribute-descriptor atd_descriptor ty_type)

is executed if the call to find-operation returns non-ni7. The value returned
by this operation replaces atd_descriptor as the value to be returned by the
descriptor making operation. This value is the descriptor that is indexed,
provided it is not a stub and has never been indexed before. The returned
value may be a stub, or any attribute descriptor, either previously indexed,
or never before indexed.

(an-attribute-function-table [SKETCH Type VlacroJ
[has-get-Junction 's_get-function
[has-get-macro 's_get-macro]]

[has-set-function 's_set-function
[lias-set-macro 's_set-macro]]

[has-init-function 's_init-function
[has-init-macro 's_init-macroj])

an-attribute-function-table SKETCH Type]
aft_ [Argument Prefix
(has-get-function 'aft_table) [SKETCH Attribute Macro
(has-get-macro 'aft_table) [SKETCH Attribute Macro
(has-set-function 'aft_table) [SKETCH Attribute Macro
(has-set-macro 'aft_table) [SKETCH Attribute Macro
(has-init-function 'aft_table) [SKETCH Attribute Macro
(has-in it-macro 'aft_table) [SKETCH Attribute Macro

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

ARGUMENT PREFIX: An-attribute-function-table arguments are indicated by the prefix
aft_.

USE: An-attribute-function-table provides a set of functions and macros to access an
attribute, at_attribute, of an object, ob_object, of a particular type, ty_type.
Functions and macros are provided to get or set the attribute value, and to inspect
and change initial values of the attribute.

Let s_attribute be the name of at_attribute, and s_type be the name of ty_type.
Let atd_descriptor be the attribute descriptor which is to be used to access the
attribute, and whose has-functions equals the attribute function table that is to
supply the functions and macros. Then the function table has the following com-
ponents, all of which are functions callable by June all or macros callable by expan-
sions of other macros.

HAS-GET-FUNCTION: Calls of the form-

(s_attribute ob_object ...)

and—

Printed April 27, 1989

OBJECTS 5-36

{get-attribute at_attribute ob_object ...)

may be computed by the call—

(funcalls_get-function atd_descriptor at_attribute ob_object ...)

HAS-GET-MACRO: Calls of the form-

(s_attribute (s_type ob_object ...) ...)

and—

(get-attribute s_attribute (s_type ob_object ...) ...)

may be expanded by macros into—

(s_get-macro atd_descriptor at_attribute (s_type ob_object ...) ...)

where at_attribute and atd_descriptor are pre-evaluatecl.

HAS-SET-FUNCTION: Calls of the form-

(se//(s_attribute ob_object ...) g_value)

and —

(set/(get-attribute at_attribute ob_object ...) g_value)

may be computed by the call—

(/unca//s_set-function g_value atd_descriptor at_attribute
ob_object ...)

HAS-SET-MACRO: Calls of the form-

(ser/(s_attribute (s_type ob_object ...) ...) g_value)

and—

(set/(get-attribute s_attribute (s_type ob_object ...) ...)
g_value)

may be expanded by macros into—

(s_set-macro g_value atd_descriptor at_attribute
(s_type ob_object ...) ...)

where at_attribute and atd_descriptor are pre-evaluated.

HAS-INIT-FUNCTION: Calls to make an object of type ty_type invoke either a has-init-
function or a has-init-macro on all explicitly given initial attribute
values for which these functions or macros are available. However,
such calls are never made for default attribute values.

The call to a has-init-function has the form —

(funcall s_\nit-function g_value atd_clescriptor at_attribute
ty-type)

The value returned by this call is used as the value to assign to the
attribute.

HAS-INIT-MACRO: The call to a has-init-macro (see HAS-INIT-FUNCTION above) has
the form —

Printed April 27, 1989

OBJECTS 5-37

(s_init-macro g_value atd_clescriptor at_attribute ty_type)

where ty_type, at_attribute, and atcl_descriptor are pre-evaluated.
The value returned by this expression when it is evaluated is used as
the value to assign to the attribute.

CONSTRAINT: If a macro attribute of an-attribute-Junction-table is non-nil, the associ-
ated function attribute must also be non-m7. The reverse is not true: if a
macro is needed, and only a function is found, the function will be used in
place of the macro.

(an-operation has-name 's_name [SKETCH Type Macro]
ha3-index-subscript 'x_index-subscript)

an-operation [SKETCH Type]
op_ [SKETCH Argument Prefix]
operation-index-size [LISP Global Variable]
(has-index-subscript 'op_operation) [SKETCH Attribute Macro]

USE: An-operation serves as a name for an operation that may be performed on different
types of SKETCH object in a manner depending upon the type of the object
operated on. See s_operation.

Whenever an operation is performed upon an object of a given type, the operation
and type together are used to select an-operation-descriptor that supplies a func-
tion and additional parameters to that function to perform the operation. A
macro may also be supplied to expand the operation more efficiently at compile
time.

ARGUMENT PREFIX: Operation arguments are indicated by the prefix op_.

HAS-NAME: Each operation MUST have a name which is a symbol. By convention, this
name usually contains an active verb: e.g., make-object and format-object.
See has-name.

HAS-INDEX-SUBSCRIPT: Each type has an operation index table associated with it which
is used to more rapidly look up operation descriptors associated
with the type. Operation objects can be assigned an integer,
their has-index-subscript, which is their subscript in these tables.
Assigning such a subscript speeds up execution of the operation.

No two operations may have the same subscript, unless the two
operations are never defined for the same type. On the other
hand, if every operation were assigned a different subscript, the
index tables would be exceptionally large.

If the has-index-subscript attribute is not initialized, its value
becomes nil, and the operation is not speeded up. If the attri-
bute is initialized to an integer, that integer is used as a sub-
script. If the attribute is initialized to a non-nil, non-integer
value, the value of the global variable *operation-index-size* is
becomes the actual value of the has-index-subscript attribute,
and that variable is incremented by 1. The value of this variable

Printed April 27, 1989

OBJECTS 5-38

is the size of any newly allocated index table. In any case, the
value of this variable is maintained at one larger than the max-
imum of all operation has-index-subscript attributes.

Previously allocated tables are not increased in size, and there-
fore subscript assignment may not speed new operations added
to old types. Index tables are not defined for a type until the
first definition of an operation descriptor for the type is made.
Thus it is desirable to define all operations used with a type
before defining any operation descriptors for the type.

INDEXING: Whenever an-operation is indexed, the name of the operation has its function
definition set if it was previously nil. This is also done for stubs, as a stub
may be a completely defined operation. See s_operation.

Replacement of non-m7, non-integer has-index-subscript attributes and updat-
ing * operation-index-size* is also done at operation indexing time.

(an-operation-descriptor [has-descriptor-type 'ty_type] [SKETCH Type Macro1

has-descriptor-operation op_operation
has-function 's_operation-function
has-macro 's_operation-macro]
[has-parameters ?g_parameters]
[has-info 'g_info])

an-operation-descriptor
opd_
(has-parent 'opd_descriptor)
(has-descriptor-type 'opd_descriptor)
(has-descriptor-operation 'opd_descriptor)
(has-function 'opd_descriptor)
(has-macro 'opd_descriptor)
(has-parameters 'opd_descriptor)
(has-info 'opd_descriptor)

USE ONLY WHEN: Defining non-standard SKETCH types and operations.

USE: An-operation-descriptor describes how a particular operation, op_operation, is exe-
cuted for objects of a particular type, ty_type. Ty_type may be nil to indicate
that the descriptor applies to op_operation for all objects, regardless of type.
Op_operation may not be nil.

ARGUMENT PREFIX: Operation descriptor arguments are indicated by the prefix opd_.

HAS-DESCRIPTOR-OPERATION: Op_operation: an-operation.

HAS-DESCRIPTOR-TYPE: Ty_type: a-type or nil.

HAS-FUNCTION: A non-m7 symbol. Calls such as those of the form —

(s_operation ob_object ...),

[SKETCH Type]
[SKETCH Argument Prefixj
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
SKETCH Attribute Macro

(execute-operation op_operation ob_object ...)

Printed April 27, 1989

OBJECTS 5-39

and

(execute-found-operation opcLdescriptor op_operation ob_object ...)

may be computed by the call—

(Juncall s_operation-function opd_descriptor op_operation ob_object ...)

HAS-MACRO: Calls such as those of the form—

(s_operation (s_type ob_object ...) ...)

(execute-operation op_operation (s_type ob_object ...) ...)

or

(execute-found-operation opd_descriptor op_operation
(s_type ob_object ...) ...)

may be expanded by macros into—

(s_operation-macro opd_descriptor op_operation (s_type ob_object ...) ...)

In this last call op_operation and opd_descriptor are pre-evaluated.

HAS-PARAMETERS: Any LISP value. Used by the has-function function and lias-macro
macro. Can be setf.

HAS-IXFO: Just like lias-parameters but is not visible: is not printed or represented in the
unevaluated operation descriptor. Useful for cross reference lists.

HAS-PARENT: An-operation-descriptor or nil. Automatically set (may not be initialized
or setf) to the last operation descriptor indexed before this one which has
the same op_operation and either the same ty_type, or a type that is an
ancestor of ty_type. The parent of an operation descriptor, the parent's
parent, the parent's parent's parent, etc. are said to be ancestors of the
operation descriptor.

SEARCH ORDER: When an operation, op_operation, is to be executed for an object of
type ty_type, an-operation-descriptor must be found. A search is made
of two groups of descriptors. Each group consists of all descriptors
with particular values of their has-descriptor-operation and has-
descriptor-type operations as follows—

group has-descriptor-operation has-descriptor-type

1 op_operation ty_type or an
ancestor of ty_type

2 op_operation JIZV

The search examines each of the two groups in order. Each group is

Printed April 27, 1989

OBJECTS 5-40

examined by examining all descriptors in the group in most-recently-
made-first order. This can be done by examining first the most recently
made descriptor in each group, called the head of the group, and then
examining the head descriptor's parent, that parent's parent, and so
forth, until all ancestors of the group head have been examined.

The search stops when a descriptor is found (all operation descriptors
must have non-nt7 has-function attributes, so any operation descriptor
examined will do).

Sometimes the search does not begin at the beginning, but instead
begins just after a particular descriptor in the order, in effect resuming
the previous search which found that descriptor.

ORDER OF MAKING: The assumption is made that all operation descriptors with the
same has-descriptor-type and has-descriptor-operation are made in
the same order in both the compile and evaluation environments.
The get-operation-descriptor function and all the macros that use it
depend upon this assumption.

It is an error to make an-operation-descriptor with a noiwu/ ty_type
if ty_type is the ancestor of any other type. Thus all the operation
descriptors for a type must be made before the type is made a
parent of another type.

INDEXING: An-operation-descriptor may be indexed by a has-name operation in the nor-
mal way. It is also referenced by a variety of indices which enable the search
described above. Just before indexing,

{execute-found-operation
{find-operation-descriptor nil index-operation-descriptor ty_type)
index-operation-descriptor opd_descriptor ty_type)

is executed if the call to find-operation-descriptor returns non-niV. The value
returned by this operation replaces opd_descriptor as the value to be
returned by the descriptor making operation. This value is the descriptor
that is indexed, provided it is not a stub and has never been indexed before.
The returned value may be a stub, or any operation descriptor, either previ-
ously indexed, or never before indexed.

Printed April 27, 1989

OBJECTS 5-41

(s_attribute 'ob_object ...) [SKETCH Attribute Macro
(s_attribute (s_tvpe ob_object ...) ...) [SKETCH Attribute Macro

WHERE: S_attribute is the name of some SKETCH attribute, at_attribute: e.g. has-
namc, has-functions.

RETURNS: The value of the attribute labeled at_attribute for ob_object. If the attribute
has never been assigned a value for the object, nil is returned.

WHEN SETF: The value of the attribute is changed.

EFFICIENCY: The form with (s_type ob_object ...) rather than just ob_object is often
more efficient when compiled, because s_type tells the compiler the type of
ob^object.

NOTE: By default, attributes can be initialized but not set/. Attributes that are other-
wise are marked as such in documentation.

Attributes can be declared to have non-standard behaviors for certain types of
object, and such behaviors will be documented.

EQUIVALENT TO: {get-attribute s_attribute ob_object ...)

However, it is permissible to override this definition by setting the
function definition of s_attnbute. The default macro definition of
s_attribute will not replace an existing definition.

NOTE: All symbols beginning with an auxiliary verb (has, is, do, etc.) or preposition fol-
lowed by a hyphen should name SKETCH attributes, and all SKETCH attributes
should have names beginning with such prefixes.

(a-type has-name 's_name [SKETCH Type Macro!
[has-size 'x_sizej
\has-paramelers 'g_parameters]
[has-info 'g_infoj
[has-parent 'ty_parent])

a-type [SKETCH Type]
ty_ [SKETCH Argument Prefix]
(has-attribute-descriptors 'ty_type) [SKETCH Attribute Macro]
(has-operation-descriptors 'ty_type) [SKETCH Attribute Macro]
I has-allocation-count 'ty_type) [SKETCH Attribute Macro]
(has-children 'ty_type) [SKETCH Attribute Macro]
(has-size 'ty_type) [SKETCH Attribute Macro]
(has-parameters 'ty_type) [SKETCH Attribute Macro]
(has-info 'ty_type) [SKETCH Attribute Macro]
(has-parent 'ty_type) [SKETCH Attribute Macro]

USE: A-type is the type of SKETCH objects. E.g., (has-type an-attribute) is eq a-type
and so is (has-type a-type).

ARGUMENT PREFIX: Arguments with the ty_ prefix are a-type values.

HAS-NAME: Type objects MUST have a name beginning with o- or an-: e.g., an-
operation. See has-name.

Printed April 27, 1989

OBJECTS 5-42

HAS-SIZE: The size in bits of a datum of this type when it is an element of a vector or
array. Nil if unknown or not useful.

HAS-PARAMETERS: Parameters for use by the operations on objects of the type. May be
set/.

HAS-INFO: Just like has-parameters but is not visible: is not printed or represented in the
unevaluated type object. Useful for cross reference lists.

HAS-PARENT: Another type used in place of this type if this type does not have some
operation or attribute descriptor that is needed. E.g., this type inherits
operations such as creatc-object from its parent.

A type's parent, its parent's parent, etc. are the ancestors of a type. A
type inherits all the attribute descriptors and operation descriptors of its
ancestors (see an-attribute-descriptor and an-operation-descriptor).

HAS-ALLOCATION-COUNT: The number of objects of this type that have been created.

If nil, this count is not maintained. Code that does not main-
tain this count can be slightly more efficient than code which
does.

Defaults to nit. If initialized to any non-ni/value, the value 0
will be substituted for the initial value. If initialized to a
non-m7 value in the compiler environment, must be initialized
to a non-n:7 value in the evaluator environment.

Can be set}.

HAS-ATTRIBUTE-DESCRIPTORS: A list of the heads of all the attribute descriptor groups
for this type (these are the groups labeled by 1 in the
documentation of an-atlribute-descriptor). Cannot be
initialized.

HAS-OPERATION-DESCRIPTORS: A list of the heads of all the operation descriptor groups
for this type (these are the groups labeled by 1 in the
documentation of an-operation-descriptor). Cannot be
initialized.

HAS-CHILDREN: A list of all the other types whose parents are this type. Cannot be ini-
tialized.

ORDER OF MAKING: All attribute descriptors and operation descriptors for a type must
be made before the type is made a parent of any other type.

INDEXING: Whenever a type is indexed, the name of the type has its function definition
set if it was previously nil. This is also done for stubs, as sometimes a stub is
a completely defined type (it will cease to be a stub when operation or attri-
bute descriptors are associated with it). See s_type.

Printed April 27, 1989

OBJECTS 5-43

(a-vector-element-C-type has-parent-type 'ty_parent-tvpe] [LISP Function]
\has-C-type-format (g_C-type-format-part-l ...)]
[has-C-type-repeat-format (g_C- type- repeat- for mat-part-1 ...)|
has-size x_size
has-alignment x_alignment
[has-initial-value g_initial-value]
has-get-function s_get-function
has-get-macro s_get-macro
has-set-function s_set-function
has-set-macro s_set-macro
[has-parameters g_parameters]
[has-info g_info])

a-vector-element-C-type
veCty_
(has-parent-type 'veCty_type)
(has-C-type-format 'veCty_type)
(has-C-type-repeat-format 'veCty_type)
(has-size 'veCty_type)
(has-alignment 'veCty_type)
(has-initial-value 'veCty_type)
(has-get-function 'veCty_type)
(has-get-macro 'veCty_type)
(has-set-function 'veCty_type)
(has-set-macro 'veCty_type)
(has-paramters 'veCty_type)
(has-info 'veCty_type)

USED ONLY WHEN: Defining new C data types for inclusion in declare-vector-type defined
objects.

A-vector-element-C-type defines a C data type that can be used for elements of
declare-vector-type defined objects. Such a C data type corresponds to a-type
object which has a has-vector-element-C-type attribute that is a-vector-element-C-
type with descriptive information. The a-type object is used to denote the resulting
type. Examples are a-char and a-short.

Arguments with the veCty_ prefix must be a-vector-element-C-type
values.

[SKETCH type)
'Argument Prefix]

[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro

USE:

ARGUMENT PREFIX:

HAS-PARENT-TYPE: This is the a-type object used to denote the a-vector-element-C-type
object. The latter is the has-vector-element-C-type attribute of the
former.

HAS-C-TYPE-FORMAT:

HAS-C-TYPE-REPEAT-FORMAT: '(g_type-format-part-l ...) is a list of elements which may
be patom'ed to declare a variable. The symbol NAME in
this list is replaced by the name of the variable. No semi-
colon or carriage return should be included.

An example is—

Printed April 27, 1989

OBJECTS 5-44

([short \NAME)

for a-short.

Has-C-type-repeat-format is the same thing, but is used in
case there is an x_repeat-count (see declare-vector-type).
The symbol REPEAT is replaced by the repeat count.
For example—

(|xxx_alloc (| NAME \, \ REPEAT |)|)

for a structure allocated by the xxx_alloc macro with a
required repeat count (see C CODE SIDE EFFECTS
under declare-vector-type).

An expression which is itself a list may be an element of
these format lists, in which case the expression is not
potom'ed, but rather is eval'ed with NAME bound to the
variable name and REPEAT to the repeat count, and the
result is patom'ed.

The symbol REPEAT is also recognized in has-C-tijpe-
format and replaced by 1. If has-C-type-repeat-formal is
nil, has-C-type-format will be used in its place.

The has-C-type-format and lias-C-type-repeat-formal are
currently unused if the lias-size attribute is less than 8. as
the C language requires special treatment for fields.

HAS-SIZE: X_size is the number of bits in the element. This must be an integer above 0.

HAS-ALIGNMENT: X_alignment is a number which must exactly divide the displacement
of the element in bits within any vector. It must equal 1, 2, 4, 8, 16,
32, or 64. X_size must be an exact multiple of x_alignment.

If x_jsize is less than 8, then it must equal x_alignment. If x_size is 8
or greater, then so must be x_alignment.

HAS-INITIAL-VALUE: The initial value, g_initial-value, may be stored into the vector
using the s_set-function to get a default initial value appropriate for
the element.

HAS-GET-FUNCTION:

HAS-GET-MACRO: S_get-function and s_get-macro may be used to return the value of the
element in a vector. The calls are—

(funcall s_get-function veCt_type x_index V_vector ...)

and

(s_get-macro veCt_type x_index V_vector ...)

where veCt_type is the vector-element-C-type object in which s_get-
function or s_set-macro was found, x_index is the displacement of the
element within V_vector measured in units of x_alignment bits,

Printed April 27, 1989

OBJECTS 5-45

V_vector is the immediate vector containing the element, and ... are
any extra arguments that might be of use in selecting part of the ele-
ment, instead of the whole element. The veC't_type argument to this
macro is pre-evaluated.

HAS-SET-FUNCTION:

HAS-SET-MACRO: S^set-f unction and s_set-macro may be used to return the value of the
element in a vector. The calls are—

(funcall s_set-function g_value veCt_type x_index V_vector ...)

and

(s^set-macro g_value veCt_type x_index V_vector ...)

where g_value is the value to be stored, veCt_type is the vector-
element-C-type object in which s_set-function or s_set-macro was
found, x_index is the displacement of the element within V_vector
measured in units of x_alignment bits, V_vector is the immediate vec-
tor containing the element, and ... are any extra arguments that might
be of use in selecting part of the element, instead of the whole element.
The veCt_type argument to this macro is pre-evaluated.

HAS-PARAMETERS:

HAS-INFO: These attributes are parameters for s_get-function. s_get-macro. s_set-
function, and s_set-macro. The has-parameters attribute is visible, and the
has-info attribute hidden: otherwise there is no difference.

Both of these attributes can be set/.

NOTE: When included in declare-vector-type objects, an element may be included in both
the vector and the hunk part of the object. If this is done, it is not permitted to
set parts of the element, although parts can be read. It is important, in this case,
that the the copy of the element stored in the hunk be read-only, like a number,
as it may be shared: no attempt is made to copy it.

(compare-object 'ob_object-l 'ob_object-2) [SKETCH Operation Macro]
(compare-object-function 'ob_object-l 'ob_object-2) [LISP Function]
compare-object [SKETCH Operation]

RETURNS: Non-m7 if ob_object-l equals ob_object-l. Otherwise nil.

Compare-object and compare-object-function do the same things, except the
first is a macro with in-line optimizations, and the second is a function with
no optimizations. However, the second can be used as a has-compare-switch
value, and in other places where only a function will do.

Compare-object is the same as equal when comparing numbers, strings, sym-
bols, ports, and lists. Other objects are equal if the object types are eq and
all the object attributes compare equal according to their has-compare-switch
values. If no explicit has-compare-switch value is given for an attribute, or
the value is given as yes, then the two attribute values are tested by equal. If
the switch has the value no the attributes are not tested at all. If the switch

Printed April 27, 1989

OBJECTS 5-46

has some other symbol as a value, that symbol is used in place of equal to test
the attribute values for equality. See HAS-COMPARE-SVVITCH under an-
attribute-descriptor.

Non-standard equality tests may also be defined for any object type.

WARNING: Equal considers a fixnum and a flonum to be unequal, even if they have the
same value. E.g., 1 does not equal 1.0.

EFFICIENCY: This macro compiles more efficient code if ob_object-l or ob_object-2 is
either a literal or an expression of the form—

(s_type ...)

whose type s_type is specified at compile time.

The code to test equality of numbers, strings, symbols, lists, and ports is
compiled in-line.

(create-object '(ty-tyP6 at_attribute g_value ...) [SKETCH Operation Macro]
['ob_prototype])

(create-parent-object 'opd_descriptor (LISP Macro]
'(ty_type at_attribute g_value ...) ,'ob_prototype])

create-object [SKETCH Operation]

USE ONLY WHEN: Create-parent-object is used only when defining non-standard
SKETCH types.

EQUIVALENT TO: Make-object and make-parent-object, except that

(1) Stubs are not handled.

(2) Objects returned are not indexed.

(3) Default values are not added to the at_attribute/g_value list if
ob_prototype is TIJV.

(4) Has-init-functioris and has-init-macro's are not invoked.

It is possible to get the effects mentioned in (3) and (4) by applying
process-attributes or process-attributes-for-macro to the first argument
before calling create-object.

Printed April 27, 1989

OBJECTS 5-47

(declare-hunk-type (s_type [s_C-type s_C-prefix|) [LISP Macro]
[s_attribute-v isibility]
\has-is-a-stub-switch s_is-a-stub-switch]
[has-compare-switch s_compare-switch]
[has-format-switch S_SOTmat-switch]
[has-uneval-switch s_uneval-switch]
[s_attribute-protection] [has-password s_password]
[has-allocation-count g_allocation-count]
s_attribute-l
(s_attribute-2 g_default-value-2 [s_C-attribute-name-2])

(define-hunk-type (list 'ty_type ['s_C-type 's_C-prefix|) [LISP Function]
['at_attribute-visibility]
[has-is-a-stub-switch 's_is-a-stub-switch]
[has-compare-switch 's_compare-switch]
[has-format-switch 's_format-switch]
[has-uneval-switch 's_uneval-switch]
j'at_attribute-protection) [has-password 's_passworcl]
[has-allocation-count 'g_allocation-count]
at_attribute-l

(list 'at_attribute-2 'g_default-value-2 ['s_C-attribute-name-2])
...)

C-dennition-code-port [LISP Global Variable]

WHERE: Declare-hunk-type and define-hunk-type take substantially the same arguments
and do the same thing, except that the first is a macro that does not evaluate
its arguments, and the second is a function that does. For the macro, types
and attributes are specified by their symbol names, whereas for the function,
the types and attributes themselves may be given. The function will accept
stubs of types and attributes, and will also accept symbols naming types and
attributes, making the stubs itself.

If s_C-type and s_C-prefix are omitted, (s_type) may be abbreviated to s_type
and (list 'ty_type) may be abbreviated to 'ty_type. Similarly s_attribute-l
abbreviates (s_attribute-l), and 'at_attribute-l abbreviates (list 'at_attribute-

1).

For define-hunk-type, in what follows, s_type, s_attribute-visibility,
s_attribute-protection, s_attribute-l, and s_attribute-2 are the names of
ty_type, at_attribute-visibility, at_attribute-protection, at_attribute-l, and
at_attribute-2.

The arguments consist of options (s_attribute-visibility, s_is-a-stub-switch,
s_compare-switch, s_format-switch, s_uneval-switch, s_attribute-protection,
and s_password, and g_allocation-count) and attributes. The options may be
listed in any order, and may be repeated. Each option applies to all attributes
following it, and supercedes any previous option of the same kind.
G_allocation-count is an exception, and should appear at most once.

Printed April 27, 1989

OBJECTS 5-48

S_at tribute-visibility specifies the print and uneval characteristics of attributes
following it. The possible values of s_attribute-visibility are—

is-visible Include in all compare-object tests, pretty-print's, and
vneval-objcct's. This is the default effective at the begin-
ning of the argument list. Equivalent to has-compare-
switch nil, has-for mat-switch nil, and has-uneval-switch nil.

is-hidden Do not include in compare-object tests, uneval-objcct's, or
pretty-print's. Equivalent to has-compare-switch no, has-
format-switch no, and has-uneval-switch no.

It is also possible to specify the compare, format, and uneval switches more
explicitly using the has-compare-switch, has-Jormat-switch, and has-uneval-
switch options. These are useful for specifying function names for these
switches: see an-attribute-descriptor.

S_attribute-protection specifies the protection of all the attributes following it,
and is one of—

is-read-in it Readable by everyone, but not writable. Can be ini-
tialized. This is the default effective at the begin-
ning of the argument list.

is- read- in it-write Readable and writable by everyone. Can be initial-
ized.

is-private Readable and writable only by calls of the form

(s_attribute ob_object s_password ...)

that contain s_password as the second argument.
Cannot be initialized (i.e., will always be initially set
to the default value).

is-read-private Readable by everyone, but writable only by calls
that contain s_password as the-second argument.
Cannot be initialized (i.e., will always be initially set
to the default value).

is-read-in it-private Readable by everyone, but writable only by calls
that contain s_password as the-second argument.
Can be initialized.

The has-password option specifies the password, s_password, to be used by all
private attributes following this option.

S_password will be made into a global constant, and should follow the naming
conventions for such (have *'s at the beginning and end).

Printed April 27, 1989

OBJECTS 5-49

The default value of g_allocation-couru is non-nil, which enables maintenance of
the has-allocation-count attribute of s_type. This attribute counts the number
of objects of type s_type which have been created. A value of nil disables
maintenance of the attribute.

An attribute may be specified either by a single s_attribute label, or by a list
(s_attribute g_default-value [s_C-attribute-name]) in which the default value is
an expression not referencing local variables which is to be evaluated and used
as the value of the s_attribute attribute whenever a new object of type s_type is
made and no explicit value is given for the attribute. Giving a default value of
nil is the same as giving no default value at all.

S_C-type, s_C-prefix and s_attribute-name-2 are symbols used to generate C
code, see C CODE SIDE EFFECTS below.

RETURNS: The a-type object made.

SIDE EFFECTS: Makes a-type named s_type whose objects are hunks with attribute ele-
ments s_attribute-l An-attribute objects named s_attribute-l ... are
also made if they do not previously exist.

An-attribute-descriptor is made for s_type and each s_attribute-l. An-
operation-descriptor is made for s_type and the each of the following
operations: make-object, create-object, object-is, object-is-a-stub,
compare-object, move-object, uneval-object, format-object.

The attribute elements specified in the call to declare-hunk-type are ele-
ments of hunks and are very quickly accessible by indexing (cxr). In
addition, any other attributes not specified in the call to declare-hunk-
type or define-hunk-type may be set for an object of type s_type, but
these will be put on a property list for the object, and will not be
accessed as efficiently.

A (defvar s_password 's_password) is generated for each password. It is
important that a password evaluate to itself, so that s_password can be
used as an argument to both macro and function calls.

C CODE SIDE EFFECTS: If the global variable *C-definition-code-port* is non-nil, if s_C-
prefix is non-ni7, and if *in-environment* is nil (we are not being
loaded by an environment statement), then a structure definition
will be written into *C-definition-code-port* (which must be a-
port). This structure definition will have the form-

Printed April 27, 1989

OBJECTS 5-50

NOTE:

NOTE:

NOTE:

NOTE:

typedef struct <s_C-prefix>struct * <s_C-type>:
struct <s_C-pTefi\>struct {

sat_U>alue <s_C-prefix>plist;
sob_lype <s_C-prefix> type;

sat_lvalue <s_C-attribute-name-2>;

#define <s_C-prefix>a//oc(x,y) struct <s_C-prefix>struct (x) [y]

where the exact order of the structure element definitions will be
implementation dependent.

Declare-hunk-type expands into a call to define-hunk-type nested inside an eval-
when (compile eval load).

Attribute and operation descriptors can be made for a hunk type after the call to
declare-hunk-type or define-hunk-type that makes the type. If a new descriptor is
for an attribute or operation declared by the execution of declare-hunk-type or
define-hunk-type. the descriptors declared by that execution will become ances-
tors of the new descriptor.

A call to declare-hunk-type or define-hunk-type may be repeated more than once.
Only the first call will make or change anything. Subsequent calls will merely
test that they are essentially identical to the first call, and complain if they are
not.

The compare-object, object-is-a-stub, format-object, and uneval-object functions
defined by declare-hunk-type or define-hunk-type use only the attributes actually
stored in the objects, and get these attributes using the functions and macros
defined by declare-hunk-type or define-hunk-type. Attribute descriptors not
defined by declare-hunk-type or define-hunk-type are ignored for the purposes of
getting these attributes. However, these latter attribute descriptors are not
ignored for purposes of getting the necessary switchs: has-compare-switch, has-
is-a-stub-switch, has-format-switch, and has-uneval-switch.

All attribute descriptors that provide switches for an object of a given type
should be defined before the first object of that type is created. This is because
optimizing information for performing operations such as format-object is com-
puted at that time.

IMPLEMENTATION: The current implementation (which is subject to change) uses hunks
that have two more elements than the number of attributes. The
first two elements are used as the first cell of a disembodied property
list. The object type is stored in the first element of the hunk, and a
pointer to the first attribute label on the property list is stored in the
restl element of the hunk. The attributes s_attribute-l, ... are
assigned to hunk elements with indices 2, 3, ..., in the order in which
the attributes appear as arguments to declare-hunk-type.

Attributes made for a hunk type after the execution of declare-
hunk-type or define-hunk-type will not be assigned to elements of the
hunk, But will be put on the property list.

Printed April 27, 1989

OBJECTS 5-51

(declare-vector-type (s_type [s_C-type s_C-prefix!) LISP Macro)

[has-allocation-cotmt g_allocation-countj
[has-C-type-vector-element-name s_C-type-vector-element-name]
\has-C-plist-vcctor-element-name s_C-plist-vector-element-name]
\has-C-vsizc-vectoT-element-name s_C-vsize-vector-element-name]
[has-pointer-C-type s_pointer-C-type]
[has-allocate-C-type s_allocate-C-type]

[s_attribute-type] |s_attribute-location] (s_attribute-visibility]
[has-is-a-stub-switch s_is-a-stub-switch]
\has-compare-switch s_compare-switch]
[has-format-switch s_format-switch]
[has-uneval-switch s_uneval-switch]
[s_attribute-protection] [has-password s_passwordj

[x_repeat-count] s_attribute-l
[x_repeat-count] (s_attribute-2 g_default-value-2 [s_C-attribute-name-2])

(define-vector-type (list 's_type ('s_C-type 's_C-prefixj) |L1SP Function]

[has-C-type-vector-element-name 's_C-type-vector-element-name]
[has-C-plist-vector-element-name 's_C-piist-vector-element-name)
[has-C-vsize-vector-element-name 's_C-vsize-vector-element-name]
[has-pointer-C-type 'ty_pointer-C-type]
[has-allocate-C-type 'ty_allocate-C-type|

['ty_attribute-type] ['at_attribute-location] ['at_attribute-visibility]
[has-is-a-stub-switch 's_is-a-stub-switch]
[has-compare-switch 's_compare-switch]
[has-format-switch 's_format-switch]
[has-uneval-switch 's_uneval-s\vitch]
['at_attribute-protection] [has-password "s_password]
[has-atlocation-count 'g_allocation-count]

['x_repeat-count] 'at_attribute-l
j'x_repeat-count] (list 'at_attribute-2 'g_default-value-2

['s_C-attribute-name-2])

•••)

C-definition-code-port [LISP Global Variable]
(has-vector-type 'ty_type) [SKETCH Attribute Macro]

WHERE: Declare-vector-type and define-vector-type take substantially the same argu-
ments and do the same thing, except that the first is a macro that does not
evaluate its arguments, and the second is a function that does. For the macro,
types and attributes are specified by their symbol names, whereas for the func-
tion, the types and attributes themselves may be given. The function will
accept stubs of types and attributes, and will also accept symbols naming types

Printed April 27, 1989

OBJECTS 5-52

and attributes, making the stubs itself.

If s_C-type and s_C-prefix are omitted, (s_type) may be abbreviated to s_type,
and (list 'ty_type) may be abbreviated to 'ty_type. Similarly s_attribute-l
abbreviates (s_attribute-l), and 'at_attribute-l abbreviates (list 'at_attribute-

I).

For define-vector-type, in what follows, s_type, s_pointer-C-type, s_allocate-C-
type, s_attribute-type, s_attribute-location, s_attribute-visibility, s_attribute-
protection, s_attribute-l, and s_attribute-2 are the names of ty_type,
ty_pointer-C-type, ty_allocate-C-type, ty_attribute-type, at_attribute-location,
at_attribute-visibility, at_attribute-protection, at_attribute-l, and
at_attribute-2.

The arguments consist of options (s_C-type-vector-element-name, s_C-plist-
vector-element-name, s_C-vsize-vector-element-name, s_pointer-C-type,
s_allocate-C-type, s_attribute-type, s_attribute-location, s_attribute-visibility,
s_is-a-stub-switch, s_compare-switch, s_format-switch, s_uneval-switch,
s_attribute-protection, s_password, and g_allocation-count) and attributes.
Most options may be listed in any order, and may be repeated. Each option
applies to all s_attribute's following it, and supercedes any previous option of
the same kind. S_C-type-vector-element-name, s_C-plist-vector-element-name,
s_C-vsize-vector-element-name, s_pointer-C-type, s_allocate-C-type, and
g_allocation-count are exceptions, should appear at most once, and must appear
before other arguments.

Declare-vector-type and define-vector-type define a type named s_type such that
objects of that type are represented by the combination of an immediate vector
and a hunk. Attributes may be assigned to either the vector or the hunk or
both.

Attributes that hold pointers may be of type a-value. A-value attributes are
usually assigned to both the vector and the hunk. They are assigned to the vec-
tor so they will be readily available to C functions, which are given a pointer to
the vector when called with the object as a parameter, and they are assigned to
the hunk so the garbage collector will know about them.

Other attributes, such as numeric ones, are commonly assigned only to the vec-
tor, and are stored as numbers proper, and not as pointers. However, the value
nil may also be stored for signed numeric types by representing it as a special
missing value.

S_attribute-type specifies the type of the attributes, and may be one of the fol-
lowing-

Printed April 27, 1989

OBJECTS 5-53

Number o rBits
1 8 16 32 64

an-lbit
a-ubit

a-uchar
a-char

a-ushort
a-short

a-ulong
a-long
an-int
an-unsigned
a-float
a-value

a-double

When a value of one of these types is stored in the immediate vector, it is
packed according to the associated C type (the C type associated with a-value is
sat_lvalue, and the C type associated with either an-lbit or a-ubit is unsigned:!).

A-value is the default attribute type effective at the beginning of the argument
list.

Additional types can be allowed as vector elements by defining a-vector-
element-C-type object describing them. Also see s_pointer-C-t.ype and
s_allocate-C-type below (under C CODE SIDE EFFECTS). Types for which
this has not been done can still be used as tn-hunk elements (see next para-
graph).

S_attribute-location is one of the following—

in-vector Assign to the immediate vector only.

in-hunk Assign to the hunk only.

in-one Assign a-value attributes to the hunk and other attributes
to the immediate vector.

in-default Assign a-value attributes to both the immediate vector and
the hunk, and other attributes to the immediate vector
only. This is the default attribute location effective at the
beginning of the argument list.

in-both Assign attributes to both the immediate vector and the
hunk.

S_attribute-visibility specifies the print and uneval characteristics of attributes
following it. The possible values of s_attribute-visibility are-

Printed April 27, 1989

OBJECTS 5-54

is-visible Include in all compare-object tests, pretty-print's, and
uneval-object's. This is the default effective at the begin-
ning of the argument list. Equivalent to has-compare-
switch nil, has-format-switch nil, and has-uneval-switch nil.

is-hidden Do not include in compare-object tests, uneval-object's, or
pretty-print's. Equivalent to has-compare-switch no, has-
format-switch no, and has-uneval-switch no.

It is also possible to specify the compare, print, and uneval switches more expli-
citly using the has-compare-switch, has-format-switch, and has-uneval-switch
options. These are useful for specifying function names for these switches: see
an-attribute-descriptor.

The is-a-stub switch can similarly be specified explicitly by has-is-a-stub-switch.
This switch defaults to nil and is not affected by s_attribute-visibility.

S_attribute-protection specifies the protection of all the attributes following it,
and is one of—

is-read-in it Readable by everyone, but not writable. Can be ini-
tialized. This is the default effective at the begin-
ning of the argument list.

is-read-init-write Readable and writable by everyone. Can be initial-
ized.

is-private Readable and writable only by references of the
form

(s_attribute ob_object s_password ...)

that contain s_password as the second argument.
Cannot be initialized (i.e. is always set to the de-
fault value on initialization).

is-read-private Readable by everyone, but writable only by calls
that contain s_password as the second argument.
Cannot be initialized (i.e. is always set to the de-
fault value on initialization).

is-read-in it-private Readable by everyone, but writable only by calls
that contain s_password as the second argument.
Can be initialized.

The has-password option specifies the password, s_password, to be used by all
private attributes following this option.

S_password will be made into a global constant, and should follow the naming

Printed April 27, 1989

OBJECTS 5-55

conventions for such (have *'s at the beginning and end).

The default value of g_allocation-count is non-n«/, which enables maintenance of
the has-allocation-count attribute of s_type. This attribute counts the number
of objects of type s_type that have been created. A value of nil disables
maintenance of the attribute.

An attribute may be specified either by a single s_attribute label, or by a list
(s_attribute g_default-value [s_C-attribute-name]) in which the default value is
an expression not referencing local variables which is to be evaluated and used
as the value of the s_attribute attribute whenever a new object of type s_type is
made and no explicit value is given for the attribute. Giving a default value of
nil is the same as giving no default value at all.

An attribute may have a repetition count, x_repeat-count. provided the attri-
bute is in the vector but not the hunk. The C code version of the attribute will
get the dimension specifier '[x_repeat-count]', and will therefore be repeated in
the vector x_repeat-count times.

If the attribute is gotten a list of x_repeat-count element values will be
returned, and such a list may be written to the attribute. If an extra argument
x_N is supplied to the attribute access expression, the x_N-t-l'st element of the
x_repeat-count elements will be accessed. E.g.—

(s_attribute V_object x_N)

accesses the x_N+l's s_attribute element of V_object.

S_C-type, s_C-prefix, and s_C-attribute-name are symbols used to generate C
code: see C CODE SIDE EFFECTS below.

Elements less than 8 bits long may have an x_repeat-count, but any s_C-
attribute-name will refer to only the first of the sequence of x_repeat-count ele-
ments, as C does not support vector indexing of such elements.

RETURNS: The a-type object made.

SIDE EFFECTS: Makes a-type named s_type whose objects are immediate vectors with
attribute elements s_attribute-l The property list of these vectors
begins with a hunk that contains additional information about the
object.

An-attribute objects named s_attribute-l ... are also made if they do not
previously exist.

An-attribute-descriptor is made for s_type and each s_attribute-l. An-
operation-descriptor is made for s_type and each of the following opera-
tions: make-object, ,create-object, object-is, object-is-u-stub, compare-
object, move-object, uneval-object, format-object.

The attribute elements specified in the call to declare-vector-type are

Printed April 27, 1989

OBJECTS 5-56

elements of vectors and hunks, and are quickly accessible by indexing (see
vrefi-xxx and cxr). In addition, any other attributes not specified in the
call to declare-vector-type or define-vector-type may be set for an object

' of type s_type, but these will be put on a property list for the object, and
will not be accessed as efficiently.

A (defvar s_password 's_password) is generated for each password. It is
important that a password evaluate to itself, so that s_password can be
used as an argument to both macro and function calls.

C CODE SIDE EFFECTS: If the global variable *C-definition-code-port* is non-ntY, if s_C-
prefix is non-m7, and if *in-environment* is nil (we are not being
loaded by an environment statement) then a structure definition
will be written into *C-definition-code-port* (which must be o-
port). This structure definition will have the form —

typedef struct <s_C-prefix>s/r«cr * <s_C-type>;
struct <s_C-prefix>struct {

union {
int SOB_VSIZE [lj;
satjvalue * SOBJVTLIST (lj;
sob^type SOB_VTYPE; } SOBJV'FIRST;

define <s_C-type-vector-element-name> SOB_VFIRST.SOB_VTYPE
define <s_C-plist-vector-element-name> SOB_VFIRST.SOB_VPLIST[-l][0]
define <s_C-vsize-vector-element-name> SOB_VFIRST.SOB_VSIZE[-2]

<C-attribute-type-l> <s_C-attribute-name-l>;

define <s_C-attribute-name-2> SOB_VFIRST.SOB_VPLIST[-lj [<x2>]

};'
#define <s_C-prefix>a//oc(x,y) struct <s_C-prefix>struct (x) [y]

The default value of s_C-type-vector-element-name is <s_C-
prefix>type if s_C-prefix is non-ni7, or nil otherwise. If s_C-
type-vector-element-name is non-ni7, it is the C structure element
name of the first element of the C accessible vector which is
defined to be a-type value designating the type of the vector. If
s_C-type-vector-element-name is nil, this value will not be
included as the first element of the vector (it can still be found by
LISP via the property list element of the vector).

If s_C-type-vector-element-name is ml, the SOB_VFIRST union
and all ftdefine's using it will be omitted. This means that C
code will not be able the access the type or vsize of the vector or
any part of the hunk.

S_C-plist-vector-element-name and s_C-vsize-vector-element-

Printed April 27, 1989

OBJECTS 5-57

name are the names of the C structure elements that may be
used to access the object property list and object vector size in
bytes. They default to <s_C-prefix>plist and <s_C-
prefix>vsize, respectively. If s_C-plist-vector-element-name is
nil, its definition will be omitted (it will also be omitted if s_C-
type-vector-element-name is nil). Similarly for s_C-vsize-vector-
element-name.

If s_pointer-C-type is non-ni/, it is taken as the name of a-type
which can be used as an s_attribute-type for elements which are
pointers to objects of type s_type. The default value of
s_pointer-C-type is s_type. S_pointer-C-type may be used in the
current declaration: i.e. the type may be defined in terms of
itself. The associated C data type is s_C-type, which must be
non-nt7, or s_pointer-C-type will be ignored.

If s_allocate-C-type is non-n:7, it is taken as the name of a-type
which can be used as an s_attribute-type for vector elements
which are direct inclusions of objects of type s_type. The
<s_C-prefix>alloc macro is used in C for such inclusions. The
default value of s_allocate-C-type is ml. It will be ignored if
s_C-prefix is nil S_allocate-C-type cannot be used in the current
declaration.

<C-attribute-type-l> is an appropriate C data type, such as
long, short, uchar, or sat_lvalue. S_C-attribute-name-2 is
assumed here to be an attribute included in the hunk only, at
position <x2> in the hunk.

Because the exact form of storage of a vector is subject to
change, the definitions of SOB_VPLIST, SOB_VFIRST,
SOB_VTYPE, SOBJ/SIZE, and <s_C-prefix>vsize may be
withdrawn. The other definitions may change though their usage
should not.

If an attribute is present in both the vector and the hunk, only a
way of accessing the vector attribute is provided.

With these definitions one can use statements such as—

<s_C-type> y - ...;

One should not set attributes from C code if they occur in both
the vector and the hunk.

<S_c-prefix>alloc should not be used if any reference to the
hunk part of the resulting object is required, as it does not

Printed April 27, 1989

OBJECTS 5-58

allocate the hunk.

HAS-VECTOR-TYPE: Ty_allocate-C-type and ty_pointer-C-type, if given, are assigned the
has-vector-type attribute value ty_type. If ty_type is the same as
ty_pointer-C-type, it is given itself as its has-vector-type attribute.

NOTE: Declare-vector-type expands into a call to define-vector-type nested inside an
eval-when [compile eval load).

NOTE: Attribute and operation descriptors can be made for a vector type after the call
to declare-vector-type or define-vector-type that makes the type. If a new
descriptor is for an attribute or operation declared by the execution of declare-
vector-type or define-vector-type, the descriptors declared by that execution will
become ancestors of the new descriptor.

IMPLEMENTATION: The current implementation (which is subject to change) represents
the object by an immediate vector whose property (see vprop) is a
hunk. The first element of the hunk is set to the object type, and
the restl element is set to the property list for the object. The rest
of the hunk elements are the attributes assigned to the hunk in the
order of their appearance in the call to declare-vector-type or define-
vector-type.

The first 4 bytes of the immediate vector optionally hold a pointer to
the object type (a copy of the first element of the hunk). The
remaining bytes hold the attributes assigned to the vector, in the
order of their appearance in the call to declare-vector-type or define-
vector-type. Each attribute is aligned by inserting zero padding so
that its displacement within the vector is an exact multiple of its
length. 1-bit attributes are assigned from the high order bits to the
low order bits within one byte.

Attributes made for a vector type after the execution of declare-
vector-type or define-vector-type will not be assigned to elements of
the vector or hunk, but will be put on the property list.

(define-attribute 'sjiame) [LISP Function)

USE ONLY WHEN: Using define-object-name-prefix.

EQUIVALENT TO: [an-attribute has-name s_name)

Printed April 27, 1989

OBJECTS 5-59

(define-object-name-prefix 's_prefix 's_function) [LISP Functionj

USE ONLY WHEN: Adding a new attribute name prefix for attribute names that will be
used in data bases.

SIDE EFFECT: Specifies that whenever the value of an unbound symbol beginning with
s_prefix is gotten, s_function will be called with the symbol as its only
argument in order to bind the symbol. Similarly, if the symbol has a nil
function definition and is called or setf, s_function is called (the cmacro
property of the function should also be nil, or it may be used as the func-
tion definition).

If sjunction is nil, no function will be called for the prefix.

NOTE: The default object name prefixes include—

a- define-type
an- define-type
has- define-attribute
do- define-attribute
dont- define-attribute
is- define-attribute
isnt- define-attribute

NOTE:

As a general rule, any auxiliary verb (has, have, do, is. should, ...) or preposition
(to, by, ...) followed by a hyphen may be declared a prefix for attribute names.

In order to make s_prefix indicate that a symbol is a-type name (like a- and an-),
s_function should be define-type. In order to make s_prefix indicate that a sym-
bol is an-attribute name (like lias-), s_function should be define-attribute.

(define-type 's_name)

USE ONLY WHEN: Using define-object-name-prefix.

EQUIVALENT TO: {a-type lias-name s_name).

[LISP Function]

(equal-property-lists 'l_list-l 'Llist-2) [LISP Function]

WHERE: Both 1 list-1 and LHst-2 are assumed to have an even number of elements and
be organized as attribute label/value pairs, where no attribute label appears
twice. It is assumed that no attribute value is nil in either list.

RETURNS: Non-m7 if the attributes of l_list-l and l_list-2 are equal. Note that the attri-
bute labels are compared using eq instead of equal.

Printed April 27, 1989

OBJECTS 5-60

(equal-property-lists-with-switches 'I list-1 'Llist-2 LISP Function]
'Linfo)

USE ONLY WHEN: Building new object subpackages: like those of declare-lmnk-type or
declare-vector-type.

WHERE: L_list-1 and Llist-2 are property lists each with an even number of elements
and no attribute whose value is nil. L_info is the value returned by —

(get-switch-info ty_type ... #'get-compare-xwitch)

and is used to quickly find the value of—

(get-compare-switch at_attribute ty_type)

for any at_attnbute that can be in either 1 list-1 or Llist-2.

WARNING: The types of the arguments are not checked.

RETURNS: Nil if Llist-1 and l_list-2 have an unequal attribute, and (otherwise. Equal-
ity of the two values of the attribute labeled at_attribute-l is tested accord-
ing to the value of—

(get-compare-switch at_a (tribute ty_type)

as computed using the third argument to equal-properlij-liftls-trilh-xtrilrlies.
If this switch is yes or nil, the two values are tested with equal. II it is no, the
two values are presumed equal no matter what their actual values are: i.e. the
test for equality is skipped over. If it is any other value, its is called in place
of the equal function to test the two values for equality.

SIDE EFFECT: If an attribute is not found in the third element of Linfo. it is found by
calling get-switch-from-info which adds the attribute to the third element,
of Linfo.

(execute-operation 'op_operation 'ob_object ...)
(execute-found-operation 'opd_descriptor 'op_operation ...)
(execute-parent-operation 'opd_descriptor 'op_operation

'ob_object ...)
(lexpr-execute-found-operation 'opd_descriptor 'op_operation ...)
(lexpr-execute-parent-operation 'opd_descriptor 'op_operation

'ob_object ...)

USE ONLY WHEN: Execute-found-operation, execute-parent-operation,
found-operation, and lexpr-execute-parent-operation are used only
when defining non-standard SKETCH operations.

WHERE: The last argument to lexpr-execute-found-operation or lexpr-execute-parent-
operation is treated as the last argument to lexpr-funcall. namely, as a list of
the remaining arguments necessary to make a call to execute-found-operation or
execute-parent-operation.

[LISP Macro]
[LISP Macro]
[LISP Macro]

[LISP Macro]
[LISP Macro]

lexpr-execute-

Op_operation and opd_descriptor may be pre-evaluated.

RETURNS: The value of the operation op_operation applied to the the arguments with
opd_descriptor and op_operation omitted. Except for (lexpr-execute-found-
operation, the argument ob_object is necessary to provide a type used in
finding the operation descriptor needed to execute the operation.

Printed April 27, 1989

OBJECTS 5-61

EFFICIENCY: These macros may find the operation descriptor required to execute the
operation at macro expansion time, and produce much more efficient com-
piled code, if op_operation is the name, s_operation, of an-operation, if
ob_object is an expression of the form

(s_type ...)

where s_type is the name of a-type, and if opd_descriptor is pre-evaluated
or is the name, s_descriptor, of an operation descriptor.

If the descriptor can be determined at macro expansion time, and a lias-
macro attribute is available from the descriptor, then that macro can be
invoked to get even further efficiency. However, this macro cannot be
invoked by the lexpr forms of the above macros.

DESCRIPTOR SEARCH: Execute-found-operation performs the operation using the given
opd_descriptor, which was presumably found by calling find-
operation-descriptor.

Execute-operation searches for an appropriate descriptor by cal-
ling-

(find-operation-descriptor nil op_operation (lias-type ob_object)).

Execute-parent-operution searches for an appropriate descriptor,
starting with the parent of opd_descriptor, by calling—

(find-operation-descriptor opd_descriptor op_operation
(has-type ob_object)).

EQUIVALENT TO:

(execute-operation ...)

is equivalent to—

(execute-parent-operation nil ...).

(find-get-attribute-descriptor 'atd_descriptor 'at_attribute [LISP Function]
'ty.type)

(find-set-attribute-descriptor 'atd_descriptor 'at_attribute [LISP Function]
'ty.type)

(find-get-attribute-descriptor-for-macro 'g_descriptor 'g_attribute [LISP Function]
'g_type)

(find-set-attribute-descriptor-for-macro 'g_descriptor 'g_attribute [LISP Function]
'g_type)

WHERE: For the for-macro functions the arguments are macro expansion time expres-
sions which will evaluate at eval time into arguments for the non-for-macro
versions of these functions.

RETURNS: An-attribute-descriptor with a non-m7 has-get-function (for find-get-attribute-
descriptor) or has-set-function (for find-set-attribute-descriptor) in its has-
functions table.' This descriptor is found by searching using at_attribute and
ty_type, starting the search with the parent of atcLclescriptor. If
atd_descriptor is nil, all applicable descriptors are searched. Nil is returned ;f

Printed April 27, 1989

OBJECTS 5-62

the descriptor cannot be found.

It is permissible for the at_attribute or ty_type arguments to be nit, indicat-
ing an absence of information. In this case it may not be possible to complete
the search, and nil will be returned to indicate this fact.

The for-macro versions of these functions assume that they are running at
macro expansion time and have been passed the expressions which are to be
evaluated at eval time in a call to the associated non-for-macro function. The
for-macro functions attempt to deduce at macro expansion time what the
result will be at eval time, and return that result if they can make the deduc-
tion. They return nil if they cannot make the deduction. They apply object-
expression-is to their type, attribute, and attribute descriptor arguments, and
thus understand arguments which are names of descriptors, attributes, or
types, arguments which are pre-evaluated, and arguments of the form —

(has-type (s_type ...)).

NOTE: If ty_type is a a-type stub, the call—

(define-type-stub ty_type)

is made to fill it in.

(find-operation-descriptor 'opd_descriptor 'op_operation 'ty_type) (LISP Macro]
(find-operation-descriptor-for-macro 'opd_descriptor [LISP Function]

'op_operation 'ty_type)

RETURNS: An-operation-descriptor found by searching using op_operation and ty_type,
starting the search with the parent of opd_descriptor. If opcLdescriptor is
nil, all applicable descriptors are searched. Nil is returned if the descriptor
cannot be found.

Ty_type or op_operation may be nil to indicate lack of information. In this
case it may not be possible to find the descriptor, and nil will be returned,
even though a descriptor could be found if both ty_type and op_operation
were known.

The for-macro version of this function assumes that it is running at macro
expansion time and has been passed the expressions which are to be evaluated
at eval time in a call to the associated non-/or-macro function. The for-
macro function attempts to deduce at macro expansion time what the result
will be at eval time, and return that result if it can make the deduction. It
returns nil if it cannot make the deduction. It applies object-expression-is to
its type, operation, and operation descriptor arguments, and thus under-
stands arguments which are names of descriptors, operations, or types, argu-
ments which are pre-evaluated, and arguments of the form—

(has-type (s_type ...)).

Printed April 27, 1989

OBJECTS 5-63

(format-object 'ob_object 'xjevel) -LISP Macro]

WHERE: Where xjevel (0, 1, 2, ...) is the depth of parentheses or brackets within which
ob_object is being printed.

RETURNS: A LISP value which when pretty-print-formatted will print a representation of
ob_object on an appropriate number of lines with appropriate indentation
The format of the returned value is discussed under pretty-print-format.

All SKETCH objects indexed by their has-name attribute will be represented
by their index, the symbol which is the value of that attribute. If xjevel is 0,
an exception will be made, and ob_object will be represented as a type and
attribute list in the usual way.

Other kinds of indexing may or may not behave similarly.

EFFICIENCY: This macro compiles more efficient code if ob_object is an expression of the
form —

(s_type ...)

whose type s_type is specified at compile time.

HAS-FORMAT-SVVITCH: If an attribute, at_attribute, of an object of type ty_type has a
non-nil value of—

(get-format-switch ty_type at_attribute),

then in any call to format-object, this value will control inclusion
of the attribute in the format returned. If the switch is no, the
attribute will not be included. If the switch is yes or nil, the
attribute will be included, and its value will be formatted by cal-
ling pretty-format. If the switch is another symbol, that symbol
will be taken as the name of a function to be called in place of
pretty-format to format the attribute value. The value returned
by this function will be used as the format of the attribute value
inside the object format, unless this returned value is nil, in which
case the attribute will not be included in the object format. See
HAS-FORMAT-SWITCH under an-attribute-descriptor.

(get-attribute 'at_attribute 'ob_object ...) [LISP Macro]
(get-found-attribute 'atd_descriptor 'at_attribute (LISP Macro]

'ob_object ...)
(get-parent-attribute 'atd_descriptor 'at_attribute [LISP Macro]

'ob_object ...)
(Iexpr-get-found-attribute 'atd_descriptor 'at_attribute [LISP Macro]

'ob_object ...)
(lexpr-get-parent-attribute 'atd_descriptor 'at_attribute [LISP Macro]

'ob_object ...)

USE ONLY WHEN: Get-found-attribute, gel-parent-attribute, Iexpr-get-found-attribute, and
lexpr-get-parent-attribute are only used when defining non-standard
SKETCH attributes.

Printed April 27, 1989

OBJECTS 5-64

WHERE: The last argument to lexpr-get-found-attribule and lexpr-get-parent-attribute is
treated as the last argument to lexpr-June all, namely as a list of the remaining
arguments necessary to make a call to gel-found-attribute or get-parent-
attribute.

At_attribute and atd_descriptor may be pre-evaluated.

RETURNS: The value of the attribute labeled at_attribute for ob_object. If the attribute
has never been assigned a value for the object, nil is returned. See DESCRIP-
TOR SEARCH below to determine which attribute descriptor is used to get
the attribute value.

WHEN SETF: The value of the attribute is changed. See DESCRIPTOR SEARCH below
to determine which attribute descriptor is used to set the attribute value.

EFFICIENCY: These macros may find the attribute descriptor they need to get or set the
attribute value at macro expansion time, and be much more efficient when
compiled, if at_attribute is the name s_attribute of an-attribute, ob_object
is an expression of the form —

(s_type ...)

where s_type is the name of a type, and atd_descriptor is the name.
s_descriptor, of a descriptor, or is pre-evaluated.

If the descriptor can be determined at macro expansion time, then the
has-get-macro or has-set-macro macros for the attribute may be invoked if
they are defined, to get even further efficiency (see an-attribute-Junction-
table). However these latter macros cannot be invoked by the lexpr forms
of the above macros.

DESCRIPTOR SEARCH: Get-found-attribute gets the attribute using the given
atd_descriptor. This descriptor must have an associated has-get-
function.

Get-attribute searches for an appropriate descriptor by calling—

(find-get-attribute-descriptor nil at_attribute (has-type ob_object)).

Get-parent-attribute searches for an appropriate descriptor, start-
ing with the parent of the atd_descriptor argument, by calling—

(find-get-attribute-descriptor atd_descriptor at_attribute
(has-type ob_object)).

If an attribute is being set, instead of gotten, find-set-attribute-
descriptor is used instead of find-get-attribute-descriptor to find
descriptors.

Printed April 27, 1989

OBJECTS 5-65

(get-attribute-descriptor atd_descriptor) [LISP Function)

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

RETURNS: An expression which evaluates to atd_descriptor in the eval environment.
This is non-trivial when get-attribute-descriptor is called at compile time.

If atd_descriptor has a non-m'i has-name attribute, that attribute is returned
as the value of get-attribute-descriptor at compile time.

WARNING: The assumption is made that all the descriptors with the same has-
descriptor-type and has-descriptor-attribute as atd_descriptor are made in the
same order in both the compile and evaluation environments.

WARNING: Although get-attribute-descriptor performs the same function as a macro, it
cannot be called like a macro. The reason it is not a macro is that some
dumb macro expanders exist which will recursively expand top level macros
but will not expand arguments to functions, and would end up trying to out-
put attribute descriptors as literals in program binaries.

(get-default-value 'at_attribute 'ty_type ['atd_descriptor])
(get-is-a-stub-switch 'at_attribute 'ty_type ['atd_descriptor!)
(get-compare-switch 'at_attribute 'ty_type)'atd_descriptor|)
(get-format-switch 'at_attribute 'ty_type j'atd_descriptor])
(get-uneval-switch 'at_attribute 'ty_type]'atd_descriptor])

[LISP Function]
[LISP Function)
[LISP Function)
[LISP Function,
[LISP Function)

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

RETURNS: The first non-m7 has-default-vatue, lias-is-a-stub-switch, or lias-compare-
switcli has-format-switch, or has-uneval-switch obtained by searching the
attribute descriptors in the order indicated under an-attribute-descriptor.
Returns nil if no non-mi value found.

If the atd_descriptor argument is present and non-mV, only descriptors after
atd_descriptor in the search order are searched.

(get-operation-descriptor 'opd_descriptor) [LISP Function)

USE ONLY WHEN: Defining non-standard SKETCH types and operations.

RETURNS: An expression which evaluates to opd_descriptor in the eval environment.
This is non-trivial when get-operation-descriptor is called at compile time.

If opd_descriptor has a non-ni/ has-name attribute value, that value is
returned as the value of get-operation-descriptor at compile time.

WARNING: The assumption is made that all the operation descriptors with the same
has-descriptor-type and has-descriptor-operation as opd_descriptor are made
in the same order in both the compile and evaluation environments.

WARNING: Although get-operation-descriptor performs the same function as a macro, it
cannot be called like a macro. The reason it is not a macro is that some
dumb macro expanders exist which will recursively expand top level macros
but will not expand arguments to functions, and would end up trying to out-
put attribute descriptors as literals in program binaries.

Printed April 27, 1989

OBJECTS 5-66

(get-switch-from-info at_attribute 'Linfo s_switch) [LISP Macro]

USE ONLY WHEN: Building new object subpackages: like those of declare-hunk-type or
declare-vector-type.

WHERE: L_info is a result returned by get-switch-info and has the form—

(ty_type (s_switch-l ...) ((at_attribute s_s\vitch-2) ...) s_default-switch)

and s_switch is one of the symbols—

has-is-a-stub-switch
has-compare-switch
has-format-switch
has-uneval-switch

Note that s_switch is an unevaluated argument.

RETURNS: The switch value obtained by searching the third element of Linfo, the list—

((at attribute s_switch-2) ...)

for a match to at_attribute. If not found, the switch is retrieved by invoking
an abbreviated form of the get-xxx-switch function (where s_switch equals
has-xxx) which bypasses the search for group 1 attribute descriptors (those
with both type and attribute specified: see SEARCH ORDER under an-
atlribute-descriptor) and uses the fourth element of Linfo in place of the
search for group 3 descriptors (those with the given type but any attribute).
The switch found by this method, even if nil, is pushed onto the third element
of Linfo, so it will be found the next time it is used.

All this is clone with in-line code for speed.

(get-switch-info 'ty_type '(atd_descriptor ...) 'LISP Function]
'u_get-switch-function)

USE ONLY WHEN: Building new object subpackages: like those of declare-hunk-type or
declare-vector-type.

WHERE: LLget-switch-function is #'get-uneval-switch, #'get-format-switch or some simi-
lar function.

WARNING: The types of the arguments are not checked.

RETURNS: A list (called the switch info) of the form —

(ty_type (s_switch-l ...) ((at_attribute s_switch-2) ...) s_default-switch)

The sublist (s_switch-l ...) corresponds to the list—

(atd descriptor ...)

with s_switch equal to—

(funcall u_get-switch-function (has-descriptor-attribute atd_descriptor) ty_type).

The sublist—

((at_attribute s_switch-2) ...)

is made by taking for each descriptor D in the list-

Printed April 27, 1989

OBJECTS 5-67

(has-attribute-descriptors ty_type),

the attribute A equal to—

(has-descriptor-at tribute D),

and the pair P equal to—

'(,A ,(funcall u_get-switch-function A ty_type)),

and including P in the output list if the attribute A is not the attribute of
any element of the

(atd_descriptor ...)

list.

The s_default-switch is the value of the switch found by using u_get-switch-
function to search for a switch ignoring group 1 and 2 attribute descriptors
(see SEARCH ORDER under an-attribute-descriptor).

(has-lisp-type g_value) [LISP Function]

RETURNS: The SKETCH type corresponding to the LISP type of g_value, according to
the following table—

LISP TYPE SKETCH TYPE LISP TYPE SKETCH TYPE

fixnum a-fixnum binary a-binary-function

biqnum a-bignum value a-value

flonum a-flonum hunkO a-hunk

string a-string hunkl a-hunk

symbol a-symbol Iiunk2 a-hunk

port a-port hunkS a-hunk

list a-list liunkj a-hunk

vector a-lisp-vector hunk5 a-hunk

vectori an-immediate-vector hunk6 a-hunk

array a-lLsp-array

NOTE: The type returned is not the type of g_value as a SKETCH object, but rather its
type as a LISP object. Thus—

(has-lisp-type an-attribute)

would be something like a-hunk, depending on implementation, whereas—

(has-type an-attribute)

would always be a-type.

Printed April 27, 1989

OBJECTS 5-68

(has-name 'ob_object) [SKETCH Attribute]
make-name-function [LISP Function Name]
make-name-macro [LISP Macro Name]

VALUE: (has-name ob_object) is the name of ob_object. This is a symbol whose value is
always equal ob_object, provided the symbol is not nil.

WHEN SETF: (has-name ob_object) cannot be set/.

INDEXING: For most object types, an object made by the call—

(s_type has-name 's_name ...)

is indexed by the symbol s_name's being set equal to the object.

STUBS: A SKETCH object with its has-name attribute a non-n»7 symbol, but no other
attribute non-ni7, is called a stub.

If a stub is made by a call such as—

(s_type has-name 's_name),

and an object with the same has-name already exists, the stub is discarded, and
the previously existing object returned as the result of making the object.

If an object which is not a stub is made, and a stub already exists with the same
has-name, then the attributes of the existing stub are set to those of the newly
created object, the newly created object is discarded, and the existing object,
now no longer a stub, is returned as the result of the call making the object.

If an object which is not a stub is made, and another object not a stub already
exists with the same has-name, then the two objects are tested for equality by
compare-object, and, if equal, the new object is discarded, and the existing object
returned as the result of the call making the object. It is an error if the objects
are not equal.

This behavior may be modified for some types of objects, in which case the
modified behavior is documented.

COMPILE TIME DECLARATIONS: Making an object with a non-m'/symbol has-name attri-
bute at compile time causes the symbol to be declared to
be special.

NON-SYMBOL VALUES: Has-name attribute values must normally be symbols.

IMPLEMENTATION: Has-name indexing is implemented by make-name-junction and
make-name-macro which are used as the make-object an-operation-
descriptor has-Junction and has-macro values for basic data types
(e.g. those defined by declare-hunk-type).

The default has-is-a-stub-switch value for has-name is no, while the
default has-set-function makes setting a has-name attribute illegal,
and the default has-init-Junction makes it illegal to initialize a has-
name attribute to a non-svmbol value.

Printed April 27, 1989

OBJECTS 5-69

(has-size 'ty_type) [SKETCH Attribute!

VALUE: The length in bits of a datum of type ty_type from the point of view of the C
language. E.g., (has-size a-value) is 32. Used in allocating arrays of objects of
the given type.

(has-type 'ob_object) . [LISP Function)
(has-type 'g_object) [LISP Function]
has-type [SKETCH Attribute]

USE: The has-type attribute value of a SKETCH object, ob_object, is the type of
ob_object, and specifies the format of the object.

The has-type function applied to any LISP object, g_object, which is not a
SKETCH object, will return the value returned by has-lisp-lype.

INITIALIZATION: It is illegal to initialize the has-type attribute in the way that other
attributes are initialized.

WHEN SETF: It is illegal to set/the has-type attribute.

(is-typed-expression 'g_expression) LISP Macro]

USE ONLY WHEN: Defining non-standard SKETCH types

RETURNS: The type named by s_type if g_expression has the form —

(s_type ...)

where s_type is the name of a-type. Otherwise returns nil.

"make" [SKETCH Term]
"create" [SKETCH Term]
"index" (SKETCH Term]

USE: Creating an object and indexing an object are part of making an object.

To make an object is to—

(1) Apply initial value functions or macros to all attribute
values provided by the user.

(2) Find default values for all attributes for which values were
not provided by the user, but for which non-m7 default
values were provided for the type of the object being creat-
ed (or one of the ancestors of this type).

(3) Create the object.

Printed April 27, 1989

OBJECTS 5-70

(4) Index the object. That is, place the object in cross refer-
ence lists; and do processing related to stubs (see lias-
name).

(make-object '(ty_type at_attribute g_value ...) [SKETCH Operation Macro]
['ob_prototype])

(make-parent-object 'opd_descriptor [LISP Macro]
'(ty_type at_attribute g_value ...) ['ob_prototype])

make-object [SKETCH Operation]

USE ONLY WHEN: Make-parent-object is used only when defining non-standard SKETCH
types.

WHERE: Here ... is a list of attribute label/value pairs, like 'at_attribute g_value'. The
entire first argument is called an 'abnormal object' because it represents an
object as a list, the first of whose elements is the type of the object, and the rest
of whose elements are attribute label/value pairs.

Ob_prototype defaults to nil.

Ob_prototype, if non-»:7, must have type ty_type.

Opd_descriptor may be pre-evaluated.

RETURNS: An object of type ty_type with attribute at_attribute set to g_value, and
other attributes specified similarly by the If ob_prototype is non-nil, it
provides default values for all unspecified attributes. Otherwise, default
values are provided by attribute default values (see HAS-DEFAULT-VALUE
under an-attribute-descriptor). Attribute init functions or macros (see HAS-
INIT-FUNCTION and HAS-IN1T-MACRO under an-attribute-function-table)
are applied to explicitly given attribute values (not those that are default
values). The object returned is both created and indexed (see "make" and
"stubs").

DEFAULT MAKE: The default behavior of make is usually provided by the make-name-
function and make-name-macro, which consider objects with not attri-
bute but a has-name to be stubs. See this function and macro in the
glossary.

EFFICIENCY: For make-object to produce efficient code during compilation, the first
argument should have the form—

(list s_type s_attribute g_value ...)

where ty_type is represented by its name s_type, and each attribute label
is represented by its name s_attribute. Furthermore, ob_prototype must
either be the nil expression, or an expression of the form —

(s_type ...)

(which promises that ob_prototype is a non-r»i7 object of type named by
s_type). Then much of the work of make-object is done at macro expan-
sion (i.e. compile) time.

Printed April 27, 1989

OBJECTS 5-71

Otherwise all the work will be done at eval time.

PROCESSING ATTRIBUTES: At some point during the make operation, create-objecl is
called to create the object (if it is not a stub). Just before
this is done, the abnormal object is processed by either
process-attributes or process- attributes-for-macro. These
functions handle default values and has-init-function's for
attributes. The default make function and macro, make-
name-function and make-name-macro, call these functions
and create-object.

EQUIVALENT TO: Make-parent-object is equivalent to—

(execute-found-operation (find-operation make-object
opd_descriptor
ty_type)

make-object
(list ty_type at_attribute g_value ...) ob_prototype)

where the find-operation is performed at macro expansion time if pos-
sible, and steps are taken to avoid evaluating ty_type twice.

Make-object is equivalent to make-parent-object with a nil
opd_descriptor.

(merge-property-lists 'l_list-l 'l_list-2) [LISP Function]

WHERE: Both 1 list-1 and 1 list-2 are assumed to have an even number of elements and
be organized as attribute label/value pairs, where no attribute label appears
twice.

RETURNS: L_list-1 with any properties on l_list-2 which are not on 1 1 ist-1 appended to
Llist-1. Properties with a nil value are removed from 1 list-1, but do serve to
suppress appending of l_list-2 properties of the same name. L_list-1 is des-
troyed.

(move-object 'ob_object-l 'ob_object-2) [SKETCH Operation Macro]
move-object [SKETCH Operation]

RETURNS: Ob_object-2 after modifying it.

SIDE EFFECT: Moves ob_object-l into ob_object-2. This means ob_object-2 will get
exactly the same attribute values as ob_object-l.

WARNING: It is assumed that ob_object-l will be discarded immediately after the move.
Thus any property lists that are part of ob_object-l may be moved to
ob_object-2 without creating new list elements, for example.

EFFICIENCY: This macro compiles more efficient code if ob_object-l is an expression of
the form —

(s_type ...)

whose type s_type is specified at compile time, but not if ob_object-2 is of
that form.

Printed April 27. 1989

OBJECTS 5-72

(never-set-function 'g_value [LISP Function]
'atd_descriptor 'at_attribute 'ob_object ...)

(never-init-function 'g_value [LISP Function]
'atd_descriptor 'at_attribute 'ty_type)

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

SIDE EFFECT: Calls error with a message that at_attribute cannot be setf or init'ed for
an object of type (has-type ob_object) or ty_type.

USE: Usable as the has-set-function or has-init-Junction value for an-attribute-function-
table.

(null-property-list-with-switches 'Uist 'Linfo) [LISP Function]

USE ONLY WHEN: Building new object subpackages: like those of declare-hunk-type or
declare- vector- type.

WHERE: L_list is a property list with an even number of elements and no attribute
whose value is nil. L_info is the value returned by—

(get-switch-info ty_type ... #: get-is-a-stub-switch)

and is used to quickly find the value of—

(get-is-a-stub-switch at_attribute ty_tvpe)

for any at_attribute that can be in Uist.

WARNING: The types of the arguments are not checked.

RETURNS: Nil if Uist has all absent attributes, and t otherwise. Whether or not the
value of the attribute labeled at_attribute is absent is tested according to the
value of—

(get-is-a-stub-switch at_attribute ty_type)

as computed using the third argument to null-property-list-with-switches. If
this switch is yes or nil, the value is tested with not, and thus is absent only if
it is nil (i.e., missing from the property list). If it is no, the value is presumed
absent, no matter what it is: i.e. the test is skipped over. If it is any other
value, it is called in place of the not function to test the value for absence.

SIDE EFFECT: If an attribute is not found in the third element of Linfo, it is found by
calling get-switch-from-info which adds the attribute to the third element
of Unfo.

Printed April 27, 1989

OBJECTS 5-73

(object-expression-is 'ty_type 'g_expression) [LISP Macro]

RETURNS: The object that g_expression will evaluate to at eval time, if this can be
determined at compile time, and if this object is of type ty_type. Or, if
g_expression is an object of type ty_type, returns g_expression (as in pre-
evaluated arguments to macros). Otherwise returns nil.

If g_expression is a symbol which is the has-name of an object of type
ty_type, that object is returned. If the symbol is unbound, it will first be
automatically bound by the define-object-name-prefix facility, if possible.

As a special case, if g_expression has the form—

(has-type (s_type ...))

and ty_type is a-type, then g_expression is replaced by s_type.

(object-is 'ty_type 'ob_object) [SKETCH Operation Macro]
(parent-object-is 'opd_descriptor 'ty_type 'ob_object) [LISP Macro]

USE ONLY WHEN: Parent-object-is should be used only when defining non-standard
SKETCH types.

WHERE: Opd_descriptor may be pre-evaluated.

RETURNS: Non-m7 if ob_object has the type ty_type. Otherwise nil.

EFFICIENCY: This is much more efficient than—

{eq ty_type {has-type ob_object)),

when ty_type is specified by its name, s_type, at compile time, or when
opd_descriptor is given and is either pre-evaluated or is a descriptor name.

EQUIVALENT TO:

{execute-found-operation object-is
(find-operation-descriptor opd_descriptor object-is

ty-type)
ty_type ob_object)

where opd_descriptor is nil for object-is, the call to find-operation is
performed at macro expansion time if possible, and steps are taken to
avoid evaluating ty_type twice.

Printed April 27, 1989

OBJECTS 5-74

(object-is-a-stub 'ob_object) [SKETCH Operation Macro]
object-is-a-stub [SKETCH Operation]

RETURNS: Non-m7 if ob_object is a stub. Otherwise nil.

The standard test for an object being a stub is to test each attribute as
specified by the attribute's its has-is-a-stub-switch value: see HAS-IS-A-
STUB-SWITCH under an-attribute-descriptor. If this switch is nil or yes, the
attribute is tested by the not function, and is therefore required to be nil. If
this switch is no, the attribute is not tested at all. If this switch is some
other symbol, that symbol is used in place of not to test the attribute value.
All attributes must pass their tests for the object to be a stub.

Standardly has-name attributes have the no has-is-a-stub-switch value, and
the value of this switch for all other attributes is not specified (nil).

(object-symeval 's_symbol) [LISP Macro]

RETURNS: The value of the symbol if it has one or can be bound by the define-object-
name-prefix facility; nil if the symbol is unbound and cannot be bound by
that facility.

(s_operation ;ob_object. ...) [SKETCH Operation Macro]
(s_operation (s_type ob_object ...) ...) [SKETCH Operation Macro]

WHERE: S_operation is the name of some SKETCH operation, op_operation: e.g. make-
object, format-object.

RETURNS: The value of executing op_operation on the arguments.

EFFICIENCY: The form with (s_type ob_object ...) rather than just ob_object is often
more efficient when compiled, because s_type tells the compiler the type of
ob_object.

NOTE: Some operations do not take an object as their first argument. E.g. make-object
and create-object take a list whose first element is the type used to control the
operation behavior, while object-is takes that type directly as the first argument.

EQUIVALENT TO:

(execute-operation s_operation 'ob_object ...).

However, it is permissible to override this definition by setting the
function definition of s_operation. The default macro definition will
not replace an existing definition.

Printed April 27, 1989

OBJECTS 5-75

(patom ...) [LISP Function]

EQUIVALENT TO: Normal LISP patom, except that objects which have a lias-name attri-
bute are represented by the value of that attribute.

"pre-evaluated" [SKETCH Term]

USE: An argument to a macro is said to be pre-evaluated if it is the intended argument
value itself, as opposed to an expression which is to be evaluated at some later time
to the intended value. Thus for a number argument, this would be the number
itself, which can also serve as an expression that evaluates to itself. Other pre-
evaluated arguments, however, are not expressions that evaluate to themselves,
and cannot be passed to code that expects expressions and not values.

Attributes, attribute descriptors, operations, and operation descriptors are often
passed to macros as pre-evaluated arguments. One must be careful not to output
these in the expansion of the macro, unless that expansion also calls a macro that
expects pre-evaluated arguments.

(pretty-print 'ob_object ...) [LISP Function]

EQUIVALENT TO: For SKETCH Objects (those for which has-type differs from lias-lisp-
type) pretty-print uses format-object. Also, lists in the format of
abnormal objects, either using symbols to name the type and attri-
butes, or using the type and attribute objects themselves, are formated
like objects: the attribute values are indented with respect to the attri-
bute labels.

(print ...) [LISP Function]

EQUIVALENT TO: Normal LISP print, except that objects which have a lias-name attri-
bute are represented by the value of that attribute.

(process-attributes '(ty_type at_attribute g_value ...) [LISP Function]
'ob_prototype)

(process-attributes-for-macro '(/is* s_type s_attribute g_value ...) [LISP Function]
'g_prototype)

USE ONLY WHEN: Defining non-standard SKETCH make-object operations.

WHERE: In the arguments to process-attributes-for-macro, s_type, s_attribute, g_value,
and g_prototype are expressions which will evaluate at eval time to the
corresponding components of the arguments to process-attributes.

The first argument to process-attributes is an abnormal object: see make-object.

RETURNS: Process-attributes returns the list—

(ty_type at_attribute g_value ...)

with default values appended for the missing attributes that, depending upon
ty_type, should have default values, and lias-init-function's called for expli-
citly given attributes that, depending upon ty_type, have these functions
defined. The default values are not appended if ob_prototype is not nil.

Printed April 27, 1989

OBJECTS 5-76

Process-attributes-for-macro is similar but returns the list—

[list ty_type at_attribute g_value ...)

and applies has-init-macro's instead of calling lias-hut-Junction's.

Process-attributes obtains default values by eva/Mng default value expressions
associated with the at_attribute's and ty_type. It applies has-init-Junction's
s_init-function by calling—

(Juncall s_init-function g_value atd_descriptor at_attribute ty_type)

for each explicitly given g_value (not for default values) which has such a
function associated with its at_attribute and ty_type. Here atd_descriptor is
the attribute descriptor that contributed s_init-function.

Process-attributes-Jor-macro inserts unevaluated default expressions into the
returned list. It replaces each unevaluated explicitly given g_value by the
result of applying the has-init-macro s_init-macro to the form —

'(,s_init-macro ,g_value ,atd_descriptor ,at_attribute ,ty_type)

if there is an associated has-init-macro, or by the form—

'(.s_init-function ,g_value {get-attribute .atd_descriptor)
,(has-name at.attribute) ,(has-name ty_type))

if there is only an s_init-function. Note that in the application of s_init-
macro the arguments at_attribute, atcLdescriptor, and ty_type are
preevaluated, whereas g_value is unevaluated.

Calls to init functions or macros are not made for default values or for attri-
butes for which there is no has-init-function associated with at_attribute and
ty_type.

In the case of process-attributes-for-macro, s_type, s_attribute, and g_value
in the abnormal object list are yet unevaluated, and it is not possible to call
init functions or macros or to append default values unless s_type and all the
attribute labels s_attribute are represented by their names. If this is not the
case, or if g_prototype is non-n«7 and does not have the form—

(s_type ...),

process-attributes-Jor-macro will return nil, but not call error.

Lastly, error checking is done on the list and prototype. Process-attributes
calls error if it discovers that the first element of the list is not a type, or the
even numbered elements are not attributes, or the list length is not odd. It
also calls error if the prototype is not nil and does not have a type equal to
the first element of the list. Process-attributes-for-macro simply returns ni7 if
there is any problem with the list.

SIDE EFFECT: The results returned are copies of the input lists, and the input lists are
not changed.

Printed April 27, 1989

OBJECTS 5-77

read-write-password-attribute-functions (LISP Global Variable]
read-private-password-attribute-functions [LISP Global Variable]
private-password-attribute-functions [LISP Global Variable]

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

USE: These are named an-attribute-function-table's which may be used to define an-
attribute-descriptor that makes an attribute handle passwords. The password must
be a symbol whose value equals itself, and must be the has-parameters attribute of
the attribute descriptor whose has-functions attribute is one of the above function
tables.

Thus a typical use is—

(an-attribute-descriptor has-descriptor-attribute at_attribute
has-descriptor-type ty_type
has-functions *read-private-password- attribute- fund ions*
has-parameters s_password)

SIDE EFFECT: In some cases a password argument must be used with the attribute.
When required, the password argument must be the first extra argument
to the attribute, as in any of the following—

(s_attribute ob_object s_password ...)

(get-attribute at_attribute ob_object s_pass\vorcl ...)

(get-parent-attribute atd_descriptor at_attribute ob_object
s_password ...)

The password must be used to read the attribute if the function table is
private-password- attribute- functions.

The password must be used to write the attribute if the function table is
private-password- attribute-functions or *read-private-password-
attribute-functions*\

In other cases the password is optional: it may be used or omitted.

In the case where a password must be used and is not, error will be called
with a message that at_attribute is private and cannot be gotten or setf in
objects of the type of ob_object.

In all cases, if the attribute read or write is allowed, the parent get or set
attribute descriptor will be used, and any password present will be
removed from the extra argument list and not passed to the parent.

Printed April 27, 1989

OBJECTS 5-78

(remove-abnormal-attributes [do-return-really-nil\ [LISP Function]
'(ty_type at_aUribute-l g_value-l ...)
'at_attribute-ll 'at_attribute-l2 ...)

(get-abnormal-attributes [do-return-really-nil] [LISP Function]
'(ty_type at_attribute-l g_value-l ...)
'at_attribute-ll 'at_attribute-12 ,..)

USE ONLY WHEN: Writing create and make functions which have abnormal object argu-
ments.

RETURNS: A list of the values of the attributes at_attribute-ll, at_attribute-12, ...
found in the abnormal object

'(ty_type at_attribute-l g_value-l ...)

If the do-return-really-nil switch is present, the value returned for an attri-
bute which has a nil value in the abnormal object is the symbol really-nil,
whereas the value returned for an attribute with no abnormal value is nil.
Without the do-return-really-nil switch, nil is returned in both cases.

SIDE EFFECT: Remove-abnormal-attributes removes the attributes it gets from the
abnormal object. Get-abnormal-atlribute* dovs not.

"SKETCH object" (SKETCH Term]
ob_ [SKETCH Argument Prefix]

USE: A SKETCH object is one whose SKETCH lias-type value is a type defined by
declare-hunk-type or declare-vector-type. Note that types that appear in data but
have not been declared to the program are implicitly declared in one of these ways,
and are SKETCH object types.

LISP numbers, strings, symbols, lists, and ports are not SKETCH objects.

ARGUMENT PREFIX: SKETCH object arguments are indicated by the ob_ argument
prefix. This is less general than the g_ prefix, which includes both
SKETCH objects and other LISP objects such as numbers and lists.

sob_attribute [C Type]
at_ [Argument Prefix]

VALUE: A lisp value which is a pointer to a SKETCH an-attribute object.

Printed April 27, 1989

OBJECTS 5-79

SOB.ATTRD3UTE
SOB_BIGNUM
SOBJ3INARY
SOB.CHAR
SOBJDOUBLE
SOBJTXNUM
SOB_FLOAT
SOB_FLONUM
SOBJHUNK
SOB_INT
SOBJTVECTOR
SOB_LARRAY
SOB_LBIT
SOB_LIST
SOB_LONG
SOBJLVECTOR
SOB_NONLISP
SOB_PORT
SOB_SHORT
SOB_STRING
SOB_SYMBOL
SOB_TYPE
SOB_UBIT
SOB_UCHAR
SOB_ULONG
SOB_UNSIGNED
SOB.USHORT
SOB_VALUE

VALUE: An sat_lvalue equal
table—

[C Global
[C Global
[C Global
[C Global
[C Global
[C Global
(C Global
[C Global
[C Global
[C Global
[C Global
[C Global
[C Global
[C Global
[C Global
[C Global
[C Global
[C Global
[C Global
JC Global
[C Global
[C Global
(C Global
[C Global
[C Global
[C Global
[C Global
[C Global

Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

to a SKETCH a-type object, according to the following

SOB_ATTRIBUTE an-attribute SOBJLONG a-long
SOB_BIGNUM a-bignum SOBJLVECTOR a-lisp-vector
SOBJBINARY a-binary-function SOB_NONLISP a-non-lisp-value
SOB_CHAR a-char SOBJPORT a-port
SOB_DOUBLE a-double SOB_SHORT a-short
SOBJTXNUM a-fixnum SOB_STRING a~string
SOB_FLOAT a-float SOB_SYMBOL a-symbol
SOB_FLONUM a-flonum SOB_TYPE a-type
SOBJUUNK a-hunk SOB_UBIT a-ubit
SOB_INT an-int SOB.UCHAR a-uchar
SOBJVECTOR an-immediate-vector SOB.ULONG a-ulong
SOB_LARRAY a-lisp-array SOB_UNSIGNED an-unsigned
SOBJLBIT an-lbit SOB_USHORT a-ushort
SOB_LIST a-list SOB_VALUE a-value

Printed April 27, 1989

OBJECTS 5-80

sob_case (ty_type) [C Function]

RETURNS: An integer code that discriminates between different numeric types and is
suitable for use in a case statement. The codes returned have names such as
SOB_UBCASE as per the following table-

Ty_type Value Code Returned Numeric TvDe
SOB_UBIT SOB_UBCASE unsigned 1 bit integer

SOB.CHAR SOB.CCASE signed 8 bit integer

SOB_UCHAR SOB.UCCASE unsigned 8 bit integer

SOB_SHORT SOB_SCASE signed 16 bit integer

SOB.USHORT SOB_USCASE unsigned 16 bit integer

SO BELONG
SOB_INT

SOBJLCASE signed 32 bit integer

SOB_ULONG
SOB_UNSIGNED

SOB_ULCASE unsigned 32 bit integer

SOB_FLOAT SOB_FCASE signed 32 bit floating point number

SOB_DOUBLE SOB_DCASE unsigned 64 bit floating point number

If ty_type is not listed in the above table, 0 is returned.

sob_ltype (g_value) [C Macro]

RETURNS: The sob^type for the SKETCH type associated with the LISP type of g_value.
This LISP type is the same as returned by has-lisp-type. Thus if g_value
were an-attribute, sob_ltype would return something like SOB^HUNK: see
has-lisp-type\

sob_missing (x_type_case) [C Function]

RETURNS: The missing value appropriate to the data type ty_type with—

x_type_case = sob_case (ty_type).

This value is returned as a double. If ty_type has no missing value, some
value is returned which is never taken by ty_type values: this is invariably
SAT_DMISSING.

Printed April 27, 1989

OBJECTS 5-81

sob_nobject (t_name) [C Function]

RETURNS: The sat_lvalue which is the object whose has-name attribute value is the sym-
bol sat_nsymbol (t_name).

BUG: Behavior is undefined if there is no such object but there is a bound symbol with
the name t_name. An error is detected only if the symbol t_name is unbound.

sob_tsize (ty_type) [C Function)

RETURNS: The size in bits of a datum of type ty_type, or 0 if ty_type is not a valid type
or has no specified size. This size in bits is the same as the has-size attribute
of ty_type in LISP.

sob_type (C Type)
ty_ [Argument Prefix]

VALUE: A lisp value which is a pointer to a SKETCH a-type object.

sob_vcreate (ty_type) [C Function]

RETURNS: A newly created object of type ty_type. The object is the same as would be
created by—

(create-object {list ty_type) nil),

except that element default values which are not constants, but which require
computation to produce, are ignored, and their elements take the values they
would have if no defaults were ever given for them.

Ty_type must have been defined by declare-vector-type or define-vector-type.

Note for purposes of lint that the value returned is of type sat_lvalue.

sob_vinit (ob_object ty_type) [C Function]

RETURNS: Ob_object after initializing it.

Note that for purposes of lint both ob_object and the value returned is of
type sat_lvalue.

SIDE EFFECT: Sets all of the vector part of ob_object just as they would have been set
had the object been created by—

(create-object (list ty_type) nil).

Ty_type must have been defined by declare-vector-type or define-vector-
type. The hunk part of the object is not touched, and in fact the vector
size and property list elements of the vector do not have to exist.

USE: To initialize vector objects created in the stack. E.g.—

Printed April 27, 1989

OBJECTS 5-82

function (...) ... {
sag_talloc (transform, 1);

sob.vinit (transform, SAGJTRANSFORM);

allocates a SAG_TRANSFORM object in the stack and initializes it.

"stub" [SKETCH Term]

USE: A stub is an object most of whose attributes are yet undefined, but which has
enough defined attributes to provide some kind of unique referent (e.g. name) for
the object. -Stubs are considered to be part of indexing, and are handled by the
make-object operation. The general rules concerning stubs are as follows:

(1) If a stub is created while making an object, and an object with the same
referent already exists, the stub is discarded, and the pre-existing object is
returned as the result of making the object. An error check is made to be
sure the pre-existing object and the newly created stub have the same
type.

(2) If a non-stub is created while making an object, and a stub with the same
referent already exists, the attributes of the pre-existing stub are filled in
with the attribute values from the newly created object (by move-object),
the newly created object is discarded, and the pre-existing object (the
former stub) is returned as the result of making the object. An error
check is made to be sure the pre-existing stub and the newly created object
have the same type.

(3) If a non-stub is created while making an object, and a non-stub with the
same referent already exists, the two objects with the same referents are
checked for equality by compare-object. Inequality is an error. The newly
created object is then discarded, and the pre-existing object is returned as
the result of making the object.

(syrnbol-init-function 'g_value [LISP Function]
'atd_descriptor 'at_attribute 'ty_type)

(symbol-init-macro 'g_value [LISP Macro]
atd_descriptor at_attribute ty_type)

USE ONLY WHEN: Defining non-standard SKETCH types and attributes.

SIDE EFFECT: Checks that g_value is a symbol, and calls error if not with a message
that at_attribute must be initialized to a symbol for an object of type
ty_type.

USE: Usable as the has-init-function or has-init-macro value for an-attribute-function-
table.

Printed April 27, 1989

OBJECTS 5-83

(symeval 's_jsymbol) [LISP Special Function]

WARNING: When compiled, FRANZ symeval does not check for unbound variables and
automatically bind them. Use object-symeval instead in compiled code that
is to automatically bind unbound variables.

•top-level-print* [LISP Global Variable]

SIDE EFFECT: This variable, which is defined and used by the top level in the FRANZ
EXTENSIONS package, is set by the OBJECTS PACKAGE to print only
the name of any expression value with a non-n»7 has-namc attribute,
unless that name is eq to the expression that was evaluated (as stored in
the global variable + by the top level).

(s_type 'at_attribute 'g_value ...) [LISP Macro]
(s_type 'ob_object) [LISP Macro]
(s_type 'ob_object 'at_attribute 'g_value ...) [LISP Macro]

WHERE: S_type is the name of a SKETCH type, ty_type.

RETURNS: The form with no ob_object returns a SKETCH object of type ty_type,
at_attribute value g_value, and other attribute values as given by
Unspecified attributes will be given default values determined by s_type and
at_attribute. This form is equivalent to—

(make-object (list s_type at_attribute g_value ...) nil)

It is more efficient if each at_attribute is specified by its name, s_attribute.

The form with a single argument, ob_object, macro expands to ob_object
This form is used to tell other macros that ob_object is necessarily an object
of type ty_type. For example,

(has-name (an-attribute x))

may be compilable to more efficient code than—

(has-name x).

However, this one argument form does not usually check to see that the type
of ob_object in fact is ty_type, so the programmer must avoid mistakes.

The form with the ob_object argument and at_attribute/g_value argument
pairs makes a new object. Attributes not specified by the
at_attribute/g_value pairs are taken from the corresponding attributes of
ob_object, rather than being given default values. The type of ob_object
must be ty_type. This form is equivalent to—

(make-object (list s_type at_attribute g_value ...) (s_type ob_object))

It is more efficient if each at_attribute is specified by its name, s_attribute,
and ob_object is an expression of the form —

(s_type ...)

which promises a non-ni7 value of the correct type.

NOTE: All symbols beginning with o- or an- should name SKETCH types, and all
SKETCH types should have names beginning with these prefixes.

Printed April 27, 1989

OBJECTS 5-84

NOTE: It is permissible to override this definition by setting the function definition of
s_type. The default macro definition of s_type will not replace an existing
definition.

(uneval-object 'g_object [SKETCH Operation Macro]
['g_index-switch ['g_backquote-switchj])

uneval-object [SKETCH Operation]

WHERE: We have written g_object instead of ob_object simply to emphasize that any
LISP value can be considered to be a SKETCH object for the purposes of
uneval-object.

RETURNS: A LISP value which when evaPed will evaluate to g_object. More impor-
tantly, when pretty-print'td, re-read, and then cm/'ed this value will evaluate
to g_object. This is the only general means that a SKETCH object may be
transmitted from one program through a file to another program.

The result of uneval-object may contain calls to the fictitious macros
backquote and comma, which will pretty-print as ' and , respectively. The
argument to backquote may have the form of a clotted list, as in—

(backquote (... . (comma ...)))

Backquote is defined as a macro, and its presence also signals pretty-print to
process the list specially.

Comma cannot occur outside a backquote d argument.

A SKETCH object which is indexed by having a has-name attribute will be
represented by an expression of the form —

(s_type has-name 's_name)

which evaluates to a stub for the object. If g_index-s\vitch is absent or nil, an
exception will be made for the g_object itself, which will be represented as a
type and attribute list even if it has a has-name attribute. However no such
exception will be made for the attribute values of g_object.

By using these rules, it is possible to output in any order a set of named
objects which cross reference each other, and get the cross referencing right
when the objects are input into another program load.

The behavior of the last two paragraphs is the behavior of the default
uneval-object functions defined by declare-hunk-type and declare-vector-type.
This default behavior can be overridden by defining special uneval-object
functions for a particular type.

Sometimes the results of uneval-object are to be included as part of an argu-
ment to backquote. In this case, the result of an uneval-object will not to be
evaluated unless it is a call to the comma pseudo-function. This situation is
indicated by a present, non-m/ g_backquote-switch. Otherwise, uneval-object
is to operate normally, assuming that the result will be evaluated to obtain

Printed April 27, 1989

OBJECTS 5-85

g_object. For example,

(nneual-object 'x nil t)

will return just x, whereas—

(uneval-object 'x nil nil)

will return 'x.

EFFICIENCY: This macro compiles more efficient code if g_object is an expression of the
form—

(s_type ...)

whose type s_type is specified at compile time.

Also, if g_backquote-switch is not given or has a known value (nil or t) at
compile time, and if g_object does not have the form-

Is. type ...),

uneval-object compiles in-line code to check whether g_object is a number,
string, or symbol, and returns g_object or ;g_object as its value in that
case.

UNEVAL-SWITCH: If an attribute, at_attribute. of an object of type ty_type has a non-nil
value of

(get-uneval-switch ty_type at_attribute),

then in any call to uneval-object, this value will control the uneval-
object'ing of the attribute value. If the switch is no, the attribute will
not be included as part of the unevaled object. If the switch is yes or
nil, the attribute will be included. If the switch is another symbol,
that symbol will be taken as the name of a function to be called in
place of uneval-object to uneval the attribute value. See HAS-
UNEVAL-SWITCH under an-attribute-descriptor.

(unpre-evaluate-object 'ob_object) [LISP Function]

USE ONLY WHEN: Referencing pre-evaluated macro arguments in calls to error returned
by the macro.

RETURNS: An expression which crudely attempts to undo possible pre-evaluation of
macro arguments. Returns—

(uneval-object ob_object)

after stripping any quote function therefrom.

Printed April 27, 1989

CHAPTER 6

CATALOGS

1. CATALOG FILES AND FILE CATALOGS. A catalog file is a file that stores a
sequence of LISP and SKETCH objects in ASCII text. Each object is represented by a
LISP expression which may be read (by the LISP read function) and evaluated (by the
LISP eval function) to produce the object. Virtually any LISP or SKETCH object can be
represented in this manner.

An object can be written into a catalog by first unevaluating it (using the SKETCH
uneval-object macro), and then printing the result (using the SKETCH pretty-print macro,
or LISP print function).

A file catalog is a-catalog object with a has-file attribute that is a symbol naming a
catalog file. E.g.—

(setq the-catalog (a-catalog has-file 'my-file.ca))

where my-file.ca is the name of the catalog file. Note that the file name extension c<i is
preferred for catalog files (but not required).

You can read this catalog by —

(setq the-object (read-catalog the-catalog))

which returns the next object in the catalog. The first object returned from a new cata-
log is the first object in the catalog. If you want to reset the catalog to the beginning.
you can execute—

(close-catalog the-catalog)

which does not destroy the catalog object, but does release operating system resources
used by that catalog, and causes the next read-catalog to begin back at the beginning of
the catalog. There is no explicit open-catalog operation: it is implied by the first read (or
write) of a catalog.

Executing—

(setq the-object (read-catalog the-catalog))

when the catalog is positioned at its end will return the symbol end-of-catalog as the
value of the-object.

The-object may be written at the end of the catalog by—

(write-catalog the-catalog the-object)

Note that write-catalog always appends to the end of the catalog; it never causes informa-
tion to be lost from the catalog. When you are done writing objects into the catalog, you
should use—

(close-catalog the-catalog)

to be sure everything you wrote is properly transferred to disk.

CATALOGS 6-1

CATALOGS 6-2

After you start reading from a catalog, you should not write to the catalog until you
have closed it. Similarly, after you start writing, you should not read until you have
closed the catalog.

To start writing at the beginning of a catalog you first truncate the catalog. For
catalog files, this is done with—

(setq the-catalog (new-catalog 'my-file.ca));

which truncates my-file.ca and sets the-catalog to—

(a-catatog lias-file 'my-file.ca)

It is also possible to read from a random location in a catalog file. To find the loca-
tion of the last object read from the catalog by read-catalog, or written into the catalog
by write-catalog, use—

(setq the-location (get-catalog-location the-catalog)),

after which the last object can be read at any later time by—

(setq the-object (read-catalog the-catalog the-location)),

regardless of where the catalog is positioned when this last statement is executed.

If you look at the value of the-location. by the way, you will find it to be a list of
several numbers. Its complexity is due to the fact that objects in a catalog are sometimes
packed (automatically) by referring to a previous object in the catalog, so that to position
to an arbitrary object in a catalog requires positioning to the first previous unpacked
object, and then reading forward to the desired object, unpacking as you read.

When opening catalog files, the directories searched are those in the list of directory
names (represented by symbols) returned by—

(status catalog-search-path)

which is typically set by placing the statement

(sstatus catalog-search-path (\. | s_directory ...))

in the sketch.rc file (which is loaded whenever sketch is started).

2. INDEX CATALOGS. An index catalog permits objects in a second catalog to be
referenced by meaningful names, called keys. The second catalog is called the indexed
catalog. The keys are defined by an index function that returns the key of an object when
called with the object as an argument. The keys become the locations returned by get-
catalog-location and used by read-catalog when these functions are applied to the index
catalog.

Suppose we have a catalog file named mine.ca containing objects some of which have
a non-n«7 has-id attribute that we wish to use as a key. Then the following creates the
appropriate index catalog—

(a-catalog is-index-of (a-catalog has-file 'mine.ca)
has-index-function '(lambda (x y) (has-id x)))

Here the indexed catalog is (a-catalog has-file 'mine.ca), the value of the is-index-of attri-
bute of the index catalog. Also, we have introduced a lambda index function, instead of
just using has-id directly, because has-id is actually a macro (like all attribute names),
and because the index function must take a second argument.

Printed April 27, 1989

CATALOGS 6-3

The second argument, y, is the number (1, 2, 3, ...) of the object in the indexed cata-
log. So to use the object's number as its key, just use the index function —

'(lambda (x y) y).

There is a predefined function named catalog-mimber that equals this last lambda, so the
symbol catalog-number may be used as the index function when you want object keys to
equal the number of the object in the indexed catalog. In this case—

(read-catalog ca_index-catalog 4)

would read the 4'th object in the indexed catalog.

By the way: one must not replace '(lambda ...) by #'(lambda ...), for those of you
who know that this trick will compile the lambda function, because the index function
should be something we can save in a file, as we shall see in a moment.

If the index function returns nil for an object, that object has no key. After reading
that object get-catalog-location will return nil, which cannot be passed as a location to
reud-catalog.

The default index function, or what you get when you specify nil as an index func-
tion, returns a key only for objects that are pairs of the form —

(catalog-key g_key)

For such an object g_key is returned as the key. Putting such objects at selected points
in a catalog file enables one to position to these points. Note that what actually appears
in the catalog file is the quoted list—

'(catalog-key g_key).

At the end of every catalog the symbol end-oj-catalog appears as if it were an object
in the catalog. This symbol always has itself as its key. regardless of how the index func-
tion is defined. That is,

(read-catalog ca_index-catalog 'end-of-catalog)

will always position both index and indexed catalogs at their ends and return the symbol
end-of-catalog.

Note that operations on an index catalog are equivalent to operations on its indexed
catalog, except that object location values are different.

If you use one of the index catalogs defined above that index mine.ca, then after clos-
ing the index catalog you will find a new file, mine.ci. The index function and the index
itself are written into this file when the index catalog is closed. The index is roughly a list
of triples each consisting of a key, the number of an object in the indexed catalog, and the
location of the object in the indexed catalog. The index may not be complete. Later, if
another index catalog is defined that indexes mine.ca with the same index function, the
mine.ci file will be used to read the index, and save the time of having to read the entire
mine.ca file to rebuild the index. Also, no index function need be specified for the index
catalog if mine.ci exists; it will be read from mine.ci.

You can provide the name of a file to serve as mine.ci for any index catalog. It is a
symbol which is the value of the index catalog's has-index-file attribute. Note that the
index stored in one of these files may be incomplete, as the index is built incrementally as
it is needed, and not completed until the end of the indexed catalog is read. See HAS-
INDEX-FILE under a-catalog in the GLOSSARY.

Printed April 27, 1989

CATALOGS 6-4

When index files are being used, keys must be objects that will equal themselves
when printed and re-read. Integers, symbols, character strings, and lists of these will
work. Floating point numbers that originated when character strings with 5 or fewer
digits were read into the computer may also work.

If you use an index catalog to write a catalog file like mine.ca, the index file, mine.ci,
will be made when the index catalog is closed. Once mine.ci is completed, the index func-
tion is actually never needed again. In particular, it may be a symbol that has no func-
tion definition in environments in which mine.ca is read with an index catalog.

3. INCLUDED CATALOGS.

4. FILTER CATALOGS.

5. RANDOM PORTS.

6. TAPE VOLUMES.

7. HITLIST.

(1) Finish tutorial documentation.

(2) Implement tape volumes.

(3) Possibly improve packing algorithm.

8. GLOSSARY.

(a-catalog [has-file 's_file-name] SKETCH Object]
[lias-filter '(u_function ,ca_input-catalog)]
[«s-»n<iei-o/ca_indexed-file|
[has-index-file 's_index-file]
[has-index-function 'u_index-function])

(has-file 'ca_catalog) [SKETCH Attribute Macro]
(has-filter 'ca_catalog) [SKETCH Attribute Macro]
(is-index-of 'ca_catalog) [SKETCH Attribute Macro]
(has-index-file 'ca_cata!og) [SKETCH Attribute Macro]
(has-index-function 'ca_catalog) [SKETCH Attribute Macro]

catalog-key [LISP Symbol]
(catalog-number ob_x x_number) [LISP Function]

VALUE: A catalog object that may be used to read or write LISP objects. There are
several different kinds of catalogs, distinguishable by their attributes.

HAS-FILE: A file catalog has a file name in the lias-file attribute. The file contains a
sequence of LISP expressions which can be read and then eva/uated to produce
LISP values. These LISP expressions may be packed: each expression may be
represented in a special notation that describes only its differences from the
previous expression in the file.

A file catalog can be written as well as read. The values written are converted

Printed April 27, 1989

CATALOGS 6-5

using uneval-object into an expression that will evaluate into the value being
written. The values written are packed, but after packing 50 values a value is
intentionally left unpacked to speed repositioning when reading the catalog.

HAS-FILTER: The value of this attribute consists of a two element list, or pair, of the
form-

(u_function ca_input-catalog)

The function is a function of one variable which is applied to each value
read from ca_input-catalog to produce an output value for the current
catalog. If the function returns the symbol ^lease-ignore, the correspond-
ing ca_input-catalog value is ignored.

A filter catalog cannot be written.

IS-INDEX-OF:

HAS-1NDEX- FUNCTI ON:

HAS-INDEX-F1LE: The value of the is-index-of attribute is a catalog, ca_indexed-catalog,
called the indexed catalog. The current catalog is called the index cata-
log. Operations on the index catalog are equivalent to operations on
the indexed catalog, except for operations involving locations. The
locations of an index catalog are keys determined by u_index-function.
This function is called by-

(funcall u_index-function ob_object x_number)

where ob_object is the x_number'th object in ca_indexed-catalog. The
function (which must not have side effects) returns a key which is used
to name the location of the object in the index catalog. The function
may also return nil to indicate that the object does not have a well
defined location in the index catalog.

Thus if u_index-function equals—

{lambda (x y) y),

the x_number'th object in the indexed catalog will have x_number as
its key. The function catalog-number is defined to be equal to this par-
ticular function, and is more mnemonic.

The keys must be lisp objects that equal themselves when printed and
re-read. E.g. integers, symbols, character strings, and lists of such.
The keys must be unique: a non-unique key used as a location for the
index catalog will locate any of the several objects in the indexed cata-
log that have that key. The symbol end-of-catalog is automatically the
key of the end of the end-of-catalog symbol returned at the end of
ca_indexed-catalog (regardless of the definition of u_index-function),
and must not be a key of any object in ca_inclexed-catalog.

If the lias-index-function attribute is nil, the key for any object of the
form —

Printed April 27, 1989

CATALOGS 6-6

{catalog-key g_x),

will be g_x, while no other objects will have a key.

The index catalog keeps an index table that translates keys into loca-
tions in the indexed catalog. This table may be incomplete if the entire
indexed catalog has not.been read and translated into keys. If a
request is made to locate to an object with a key not yet in the index
table, the remainder of the indexed catalog is read until the object with
the key is found, or until the end-of-catalog is reached, in which case an
error is signaled.

If s_index-file, the has-index-file attribute, is non-ni7 and names a read-
able file, then when the index is first needed, the has-index-function
value and the index itself will be read from s_index-file. The has-
index-function value, which must be a symbol or a printable lambda
list, will be read from the beginning of s_index-file. The index will then
be read.

There are two cases when the contents of s_index-file are ignored.
First, if the has-index-function has a non-nil value before the file is
read, and this value is not equal to the index function read from the
file, then it is assumed that the contents of the file are not valid for the
current application. Second, if the indexed catalog has a has-file attri-
bute whose file has been modified more recently than s_index-file, it is
assumed that the index stored in the file is not valid, though the index
function read will still be used to replace a nil has-index-function value.

If the has-index-file attribute is non-nil and s_index-file is writable or
creatable when the index catalog is closed, the has-index-function attri-
bute and the index itself are written into that file, unless they are both
identical to what was read from the file previously. In particular, if the
index catalog was being used to write the indexed catalog, the complete
index will be written. However, if the index file was merely being used
to read the indexed file, and if end-of-catalog had not been reached,
then only a partial index will be written.

In searching for the directory containing s_index-file, the same pro-
cedure is used as when searching for a catalog file.

If the has-index-file attribute is nil, and the indexed catalog is a file
catalog whose file name ends in xa, then a file name made by replacing
the .ca by .ci will be used as if it were the value of the has-index-file,
unless such a file already exists and contains a has-index-function value
that disagrees with a non-mi initial value of that attribute for the index
catalog.

If no file is available for use as the index file, the index is lost when the
index catalog is closed. If the index catalog is not closed, any index

Printed April 27, 1989

CATALOGS 6-7

constructed in MOS memory that would have been written out were
the catalog closed will be lost. However, when SKETCH exits, all open
index catalogs will be automatically closed.

WARNING: When using a .ex file with a ca file that includes other catalog files, the index
will not be automatically invalidated when the included catalog files are
changed. To invalidate the index the user should louch(l) the including .ca
file.

NOTE: The has-index-file and ci files can be used by several SKETCH processes at once,
and are (hopefully) protected against the various abnormal states that may arise
during such use.

(a-tape-volume [SKETCH Object]
has-tape-format '(x_record_length ...)
\has-naine 's_name]
\has-drivc 'x_drive]
[has-file-number 'x_file-number]
\has-record-number 'x_record-number]
\is-modified 's_modified-switch])

WARNING: Tape volumes and operations thereupon are not yet implemented.

USE: A-tape-volume is an object describing the format of a magnetic tape. The contents
of the tape are not described in detail: only the format.

This object is stored in the file named s_name (accessible using the data-search-
path directory list. The optional attributes (including has-name) are supplied by
SKETCH software when the tape volume is mounted (see mount-tape) and are not
part of the object stored in the s_name file.

HAS-TAPE-FORMAT: This list describes the tape format. It is a list with one element for
each file on the tape. That element is the record size in bytes of
records in the file.

For input files, the record size may be an overestimate: the max-
imum possible size in bytes of any record in the file. For output
files all records will be exactly the given size.

Files on the tape are separated by file marks. When a tape is writ-
ten, two consecutive file marks are written after the last file.

HAS-NAME: S_name serves as a file name for a file containing nothing but the a-tape-
volume object. The file named is found by searching the (status catalog-
search-path) list of directories.

The file named by s_name is called the volume object file for the tape
volume. It is read when the tape is mounted, and may be written when the
tape is dismounted if its has-tape-files attribute has been modified.

S_name is also used as the name of the volume inside the LISP environment.

Printed April 27, 1989

CATALOGS 6-8

It is strongly recommended that s_name end with the extension .tv standing
for "tape volume".

HAS-DRIVE: A symbol or number naming the tape drive. The following are standard—

0—9 Magnetic tape drive 0 through 9.

HAS-FILE-NUMBER: The number (1, 2, ...) of the file in which the tape is currently posi-
tioned.

HAS-RECORD-NUMBER: The number (1, 2, ...) of the record just before which the tape is
currently positioned.

IS-MODIFIED: Non-ni7 if the has-tape-format list has been modified since the tape volume
was mounted.

"catalog file-' [SKETCH Term]
.ca [UNIX File Extension]

FILE FORMAT: A catalog file is a file created by new-catalog, write-catalog, and close-
catalog. It holds a sequence of LISP values, including SKETCH objects
such as an-array objects. Each LISP value is represented by a LISP
expression which can be read and then evaluated to produce the value.

The preferred extension for catalog files is ca.

(catalog-pack 'g_next-expression 'g_last-expression) [LISP Function)

USE ONLY WHEN: Maintaining catalog package.

RETURNS: The packed version of the unpacked g_next-expression in the context where
the value returned is to be written into a packed file of LISP expressions, and
the unpacked version of the previous expression written is g_last-expression.

NOTE: If g_next-expression cannot be packed, it is returned. Packing will have occurred
only if the value returned is not eq g_next-expression.

{status catalog-search-path) [LISP Function]
(sstatus catalog-search-path (s_directory ...)) [LISP Function]
catalog-key [LISP Symbol]

VALUE: The list (s_directory ...) is a list of the names of directories which are searched
for catalog files to be input. The first directory named in the list is the place
where new catalog files are created (unless the name given the new file contains
a directory name).

Printed April 27, 1989

CATALOGS 6-9

(catalog-unpack 'g_next-expression 'gjast-expression) LISP Function]

USE ONLY WHEN: Maintaining catalog package.

RETURNS: The unpacked version of the packed g_next-expression in the context where
g_next-expression has been read from a packed file of LISP expressions, and
the unpacked version of the previous expression read is g_last-expression.

NOTE: If g_next-expression was already unpacked, it is returned. Unpacking will have
occurred only if the value returned is not eq g_next-expression.

.ci [UNIX File Extension]

FILE FORMAT: A catalog index file associated with a .ca file. See has-index-file under a-
catalog.

(close-catalog ca_catalog) LISP Function]

SIDE EFFECT: Closes the catalog, flushing all information stored in ports associated with
the catalog.

(copy-catalog 'g_input 'g_output j'(g_key ...)]) ;LISP Function]
(append-catalog 'g_input 'g_output ['(g_key ...)]) LISP Function]

WHERE: G_input is either a-catalog, or a symbol naming a file from which the catalog—

(a-catalog has-file g_input)

is made; and g_output is similar.

RETURNS: The number of items copied.

SIDE EFFECT: Items are read from the input catalog and written to the output catalog
until and end-of-catalog is read. Both catalogs are then closed.

If g_output is a symbol, copy-file uses new-catalog to create the output
catalog and truncate the file, whereas append-catalog simply creates the
output catalog without truncating the file, and thereby appends to the file.

If '(g_key ...) is given, the catalogs must be in indexed catalog (if it is not,
they are replaced by index catalogs whose is-index-of attributes are the
original catalogs). The input is copied by first copying the object at loca-
tion g_key and all objects following it that have no key; then doing the
same for the object whose location is the next key in the (g_key ...) list,
and so forth to the end of the list. If an object at location g_key is not of
the form—

(catalog-key ...)

then the object—

(catalog-key g_key)

is output just before it (but this last object is not included in the returned
count of objects copied).

Printed April 27, 1989

CATALOGS 6-10

[status data-search-path) [LISP Function]
(sstatus data-search-path (s_directory ...)) [LISP Function)

VALUE: The list (s_directory ...) is a list of the names of directories which are searched
for data files to be input. The first directory named in the list is the place where
new data files are created (unless the name given the new file contains a direc-
tory name).

(dismount-tape ('x_drivej) [LISP Function]
[dismount-tape j's_volume-name]) [LISP Function]

SIDE EFFECT: Dismounts the indicated a-tape-volume object: i.e. undoes mount-tape.
Closes the drive. Writes the a-tape-volume object back to its file if it has
been modified.

(get-catalog-keys 'ca_index-catalog) [LISP Function]

RETURNS: The list of all keys defined for an index catalog.

SIDE EFFECT: Reads to the end of the catalog.

(get-catalog-location 'ca_catalog) [LISP Function;

RETURNS: The location of the last value read from or written to ca_catalog. This loca-
tion is some LISP value that can be understood by read-catalog.

(get-random-port 'p_port ['gjocation 's_direction [LISP Function]
['(s_directory-name •••)]])

USE ONLY WHEN: Copying between memory and random locations in the file system or
on magnetic tape.

WHERE: Gjocation specifies a byte location within a file. It has one of the following
forms:

s_file-name
(s_file-name [x_offset])
(s_file-name end-of-file)
(s_volume-name x_file x_record [x_offset])
(s_volume-name end-of-volume)
(s_volume-name x_file end-of-file)

S_file-name is the name of a file that is searched for in the directories
(s_directory ...). The directory list defaults to (status data-search-path). If an
output file does not already exist in one of these directories, it is created in the
first directory in the list (unless the output file name contains a directory name:
see the write mode of search-path).

S_volume-name is the name of a tape, x_file the number of a file on that tape
(1, 2, 3, ...), and x_record the number of a record in that file (1, 2, 3, ...).

X_offset is the number of bytes in the file or tape record before the first byte to
be read or written. For a file, end-of-file denotes the x_oflset value to position

Printed April 27, 1989

CATALOGS 6-11

to the end of the file (which is, in fact, the current length of the file).

For a tape volume end-of-volume denotes the x_file and x_record values neces-
sary to start a new file at the end of the volume, while end-oj-file denotes the
x_record value necessary to add a record to the end of the file designated by
x_file. In these cases the port must be for writing, and not for reading.

's_direction is either 'read ox 'write.

RETURNS: A port positioned to the location gjocation, or nil if it is not possible to pro-
duce such a port, or if gjocation itself is missing (see SIDE EFFECT for this
last case).

The port is suitable for reading if s_direction is 'read, or for writing if
s_direction is 'write.

SIDE EFFECT: The random i/o package keeps a cache of ports which it repositions and
passes to users. P_port is a user port being returned to this cache.
P_port may be nil if no port is being returned.

The value of get-random-port is a port, taken from the cache and posi-
tioned to gjocation. If gjocation is missing no pott will be taken from
the cache and the value returned will be nil. A call with missing
gjocation may be used to return a previously acquired port.

NOTE: The user may reposition a returned port to a different offset, or find its current
offset. Other operations, aside from reading and writing, should not be per-
formed on the port.

NOTE: The offset's in locations are identical to the port offsets that can be changed and
inspected by /seek. This means that each tape record is treated like a complete
file all by itself, with offset 0 corresponding to the beginning of the record. The
port for a tape location will suffer an end-of-file at the end of the record.

NOTE: The user may not posses multiple ports referencing the same tape volume.

BUG: If you unlink a file for which you have recently had a random port, and then get a
random port with the same file name, the port you get may be for the old file,
which is now nameless. This is because the port associated with the file name is
not closed and reopened. However, you can truncate a file successfully without
unlinking it, because the ports are drained (but not closed) when they have no
users.

Printed April 27, 1989

CATALOGS 6-12

(get-random-port-location 'p_port) [LISP Function]

USE ONLY WHEN: Copying between memory and random locations in the file system or
on magnetic tape.

RETURNS: The current location of p_port, assuming the latter was gotten by a call to
get-random-port. This location is one of the forms where x_offset is an expli-
cit number.

(has-function 'ca_catalog) [SKETCH Attribute]

USE ONLY WHEN: Defining new types of catalog.

VALUE: The has-function attribute is automatically set from the other attributes when it
is gotten. Thus most users need not worry about it.

The function calls

(read-catalog ca_catalog [g_location])
(uT»/e-caia/0<7ca_catalog g_value)
[get-catalog-location ca_catalog)
(close-catalog ca_catalog)

normally translate into

(funcall (has-function ca_catalog) 'read ca_catalog [g_location])
(funcall (has-function ca_catalog) 'write ca_catalog g_value)
(funcall (has-function ca_catalog) 'locate ca_catalog)
(funcall (has-function ca_catalog) 'close ca_catalog)

The call

(funcall (has-function ca_catalog) 'read ca_catalog)

must return 'end-of-catalog at an end of file.

Some possible values for the has-function attribute are 'file-catalog, which uses
the has-file attribute, 'filter-catalog which uses the has-filter attribute, and
'index-catalog which uses the is-index-of attribute.

When

(funcall (has-function ca_catalog) 'read ca_catalog)

returns a list of the form

(please-include ca_included-catalog)

the read-catalog function alters ca_catalog so that future requests to read it will
return values from ca_include-catalog until the end of the latter.

Printed April 27, 1989

CATALOGS 6-13

(has-include 'ca_catalog) [SKETCH Attribute)

USE ONLY WHEN: Maintaining catalog package.

VALUE: When another catalog is being included in this catalog, a two element list of the
form-

(ca_included-catalog g_location-of-included-catalog)

The location is the location within this catalog of the value of the form-

(please-include ca_included-catalog)

which caused the inclusion to start. If there is no inclusion currently in pro-
gress, the has-include attribute value is nil.

(lookat-tape ['x_clrive]) [LISP Function]
(lookat-tape ['s_volume-name]) [LISP Function]

RETURNS: The a-tape-volume object for the given drive number or volume name, if one
is mounted. When this prints its has-drive, has-file-number, and has-record-
mtmber attributes tell the drive and current position.

(make-catalog-index 'g_catalog ['s_index-file]) [LISP Function]

WHERE: G_catalog is either a-catalog or a symbol naming a file from which the catalog —

(a-catalog lias-file g_input)

is made.

If s_index-file is not given, g_catalog must be a symbol ending in .ca, or a has-
file catalog with a lias-file attribute which is a symbol ending in .ca, and this
symbol with ca replaced by ci will be used as the s_index-file value. The has-
index-Junction is taken if available from the previous version of s_index-file, or
is nil.

RETURNS: The number of items read from g_catalog.

SIDE EFFECT: Builds an index file named s_index-file suitable for use as the has-index-file
attribute of an index file whose is-index-of attribute is g_catalog.
S_index-file is initially truncated.

Printed April 27, 1989

CATALOGS 6-14

(mount-tape 's_volume-name ['x_drivej) [LISP Function)

RETURNS: The a-tape-volume object for the tape volume mounted.

SIDE EFFECT: Mounts the a-tape-volume object indicated. Reads this object from the file
named s_volume-name. Assigns a has-name attribute to the object, (which
is not assigned in the file's version of the object). Assigns the drive to the
object and opens the drive.

(new-catalog 's_file-name) [LISP Function]

RETURNS: A new, empty, catalog with has-file attribute value s_file-name. If any previ-
ous catalog existed with that name, it is emptied (its file is truncated).

(new-data-file 's_file-name) [LISP Function]

RETURNS: The name of the file found by

(search-path (status data-search-path) s_file-name 'a)

SIDE EFFECT: The file whose name is returned is truncated to 0 length if it exists, or
created as a file of 0 length if it does not exist.

(read-catalog 'ca_catalog ['gjocation]) [LISP Function]

please-ignore [LISP Symbol]
(please-include ca_catalog) [LISP List]

RETURNS: Returns the next value read from ca_catalog. If gjocation is given, it must
be a location returned from the call

(get-catalog-location ca_catalog)

and the value returned will be the value at the given gjocation.

At the end of ca_catalog, the symbol end-of-catalog will be returned.

NOTE: If the symbol please-ignore is to be returned from read-catalog, that function
skips that value and continues to the next value in the catalog.

NOTE: If a value of the form

(please-include cajncluded-catalog)

is to be returned from read-catalog, that function instead returns the first value
from cajncluded-catalog (using read-catalog recursively to read that catalog),
and in subsequent calls keeps returning values from cajncluded-catalog until the
symbol end-of-catalog is to be returned. Then the read-catalog function returns
instead the next value read from ca_catalog.

Printed April 27, 1989

CATALOGS 6-15

•tv [UNIX File Extension]

FILE FORMAT: These files contain a-tape-volume object, describing a single tape volume.
There is only one such object per file.

i write-catalog 'ca_catalog 'g_value) [LISP Function]

SIDE EFFECT: Writes g_value at the end of ca_catalog. Notice that no part of
ca_catalog can be overwritten (but see new-catalog, which truncates cata-
log files). The actual writing operation is essentially done by executing-

(pretty-print (uneval-object g_value) ...)

Printed April 27, 1989

CHAPTER 7

ARRAYS

1. ROADMAP Since the tutorial has not yet been written, the following will have to
do. Start with the an-array glossary entry, and then read the sar_clemo.ou demonstra-
tion output listing, looking up the glossary entries as you go. C programmers should
them read the sar_array glossary entry, followed by all the subsequent entries for names
beginning with sar_ or SAR_.

2. HITLIST

(1) Write tutorial documentation.

(2) Possibly change prepare-array to use array-copy-ezponent whenever making a new
array, even if it is the same element type as the old array. This means revising
many calls to prepare-array to have an explicit exponent.

(3) Define compare-object so constant arrays may have has-name attributes. In general,
compare-object currently makes no sense for arrays.

(4) Document sar_slice, sar_duplicate, sar_aduplicate.

(5) Change sar_print output format to produce a LISP expression.

(6) Fix the bug in mirror-array involving dimension parity.

3. GLOSSARY.

(altered-duplicate-of-array 'ar_array 'ty_element-type [LISP Function]
['x_exponent ['x_offset ['x^size]]])

USE ONLY WHEN: Creating from an array of-structures an array of substructures, or
numbers. Also occasionally used to change the apparent element type
of an array.

RETURNS: A new array which is like that returned by slice-of-array but has a change of
element type to ty_element-type and exponent to x_exponent. The parent
and slice of the new array are equal, and are equal to the current slice of
ar_array if no x_offset or x^size are given. Here equality means that the
addresses of the elements with the same subscripts are the same, but the the
element types and exponents need not be.

If x_offset is given but x_size is not, the addresses of the new array elements
are offset from the addresses of the corresponding ar_array elements by
x_offset times the size of the new array elements (determined by ty_element-
type). The elements of the new array must lie within the corresponding ele-
ments of the old array.

ARRAYS 7-1

ARRAYS 7-2

If both x_offset and x_size are given, a new X dimension of size x_size is
created for the new array, such that the new array elements with given Y, Z,
T, U, V subscript values form a contiguous block of memory within an ele-
ment of ar_array whose X, Y, Z, T, and U subscripts respectively equal the
Y, Z, T, U, and V subscripts for the new array. In other words, the dimen-
sions of the old array are pushed down in forming the new array: X becomes
Y, Y becomes Z, Z becomes T, T becomes U, U becomes V, and V is dis-
carded. The new array elements with 0 X subscript have addresses offset
from the old array elements that contain them by x_offset times the size of
the new array elements (determined by ty_element-type). SIDE EFFECT
The elements of ar_array are first allocated, if this has not already been done.

DEFAULTS: X_exponent defaults to 0.

BUG: The size in bits of the new array elements must be an exact divisor of the size of
the old array elements. This restriction is unfortunate, and is a consequence of
storing the has-increments attributes in units of one element size. No fix is likely.

NOTE: The new array elements share memory with the corresponding elements of
ar_array, so that changes to these ar_array elements will change the correspond-
ing new array elements and vice versa.

NOTE: The has-been-changed and is-readonly attributes of the new array are set to the
corresponding attributes of the old array. The is-immovable attribute is set to
nil

(an-array has-sizes '(x_xsize [x_ysize ...]) [SKETCH Type Macro]
[has-element-type 'ty_element-type]
[has-exponent 'x_exponent]
[by-expression 'g_expression]
[by-value 'g_value]
[has-array-file 'g_array-file]
[has-offsets ,(n_xoffset [n_yoffset ...])]
[has-scales '(n_xscales [n_yscales ...])])

(an-array has-parent-sizes '(x_xparent-size [x_yparent-size ...]) [SKETCH Type Macro]
[has-parent-increments '(x_xparent-increment [x_yparent-increment ...])
[has-parent-offsets '(n_xparent-offsets [n_yparent-offsets ...])
[has-parent-scales '(n_xparent-scales [n_yparent-scales ...])
[has-desired-sizes '(x_xdesired-sizes [x_ydesired-sizes ...])
[has-desired-origins '(x_xdesired-origins [x_ydesired-origins ...])
[has-steps '(x_xsteps [x_ysteps ...])
[has-element-type 'ty_element-type]
[has-exponent 'x_exponent]
[by- express ion 'g_expression]
[by-value 'g_value]
[has-array-file 'g_array-file]
[is-readonly 'g_readonly-switch]
[is-immovable "g_immovable-switch])

(an-array 'ar_prototype [SKETCH Type Macro]
[do-share-elements g_share-elements]

Printed April 27, 1989

ARRAYS 7-3

[LISP Macro!

[SKETCH Type Object
[Argument Prefix
[Argument Prefix
[Argument Prefix
[Argument Prefix
[Argument Prefix
[Argument Prefix
[Argument Prefix
[Argument Prefix
[Argument Prefix
[Argument Prefix

[SKETCH Attribute Macro
[SKETCH Attribute Macro

(allocate-array 'ar_array)

an-array
ar_
car_
sar_
lar_
far_
dar_
ubar_
ucar_
usar_
ular_
has-element-type 'ar_array)
has-exponent 'ar_array)

has-sizes 'ar_array ['at/x_length])
has-parent-sizes 'ar_array ['at/x_length])
has-desired-sizes 'ar_array ['at/x_length;)
has-origins 'ar_arrav j'at/x_lengthl)
has-desired-origins ar_array ['at/x_Iength])
has-steps 'ar_array ('at/x_length|)
has-increments 'ar_array [?at/x_lengthj)
has-parent-increments ar_array ['at/x_lengthj)
has-parent-offsets 'ar_array pat/x_lenglh;)
has-offsets 'ar_array ['at/x_length])
has-parent-scales 'ar_array ['at/x_length])
has-scales 'ar_array ['at/xjength])

by-expression 'ar_array)
by-value 'ar_array)
has-array-file 'ar_array)
haa-array-format 'ar_array)
has-been-changed 'ar_array)
is-readonly 'ar_array)
is-immovable 'ar_array)
default-array-element-type
•default-array-long-exponent*
default-array-short-exponent

OVERVIEW: A SKETCH array object is an array of elements which are numbers or other
. SKETCH objects: any SKETCH object type with a has-size attribute speci-

fying the length of objects of that type in bits can be the value of the array
has-element-type.

A numeric element type can be either fixed point or floating point. For
fixed point element types [a-ubit, a-char, a-uchar, a-short, a-ushort, a-long,
or a-ulong), the array has a has-exponent attribute such that actual value of
an element equals the stored value times—

[SKETCH
[SKETCH
[SKETCH
(SKETCH
.SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH

Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute

Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro

[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro

[LISP Global Variable
[LISP Global Variable
[LISP Global Variable

Printed April 27, 1989

ARRAYS 7-4

.-yhit-exponent attribute

A SKETCH array object actually defines two arrays: a parent array, and a
slice of that parent. The slice is a part of the parent, defined by giving ori-
gins for the slice in the parent, sizes for the slice, and multipliers called
steps for converting slice subscripts into parent subscripts. These slice
parameters can be changed, allowing the slice to move around inside the
parent. The parent has some parameters of its own: sizes, increments,
offsets, and scales, which cannot be changed.

SKETCH arrays have exactly 6 dimensions, named X, Y, Z, T, U, and V, in
that order. Later dimensions may have their size set to 1 if they are not
needed.

SKETCH arrays have two modes: allocated and unallocated. In allocated
mode memory is allocated for the elements of the array, while in unallo-
cated mode no memory is allocated for the elements. Arrays are initially
unallocated, and become allocated only when their elements are referenced.
The allocate-arruy macro checks whether an array is allocated, and allocates
it elements if not. The call—

(ullocate-array ar_array)

returns ar_array as its value, while ensuring that the elements of ar_array
are allocated.

When the elements of an array are allocated, their initial values may be pro-
vided by the has-array-file, by-expression, or by-value attributes explained
below.

Most computation on SKETCH arrays is done by C code. The call to
allocate-array just given is typically used as an argument expression to a
LISP call of a C function, in order to ensure that the array passed to the C
function is allocated. E.g.—

(ccheck (_my_C_function (allocate-array my-array) ...))

Array elements can be stored in MOS memory, or in files, or in both places.
Arrays which are stored in files have a has-array-file attribute, and an asso-
ciated has-been-changed attribute. These keep track of where the array is
stored in the file system, and whether the in-MOS version still matches the
in-file version.

THE PARENT: The parent array is described by its sizes, increments, offsets, and scales.

The parent array subscript for a given dimension may range from 0 to the
size of the dimension minus 1. Each time the subscript is incremented by
1, the address of the element referenced is incremented by the size of the
element times the increment of the dimension. Thus if the dimension
increment were 4, each unit increment in the subscript would increment

Printed April 27, 1989

ARRAYS 7-5

the address by 4 times the element size.

THE SLICE:

Parent subscripts may be mapped onto a real number scale which is used
for display purposes. Each dimension may have a scale and an offset.
Subscript I is mapped onto the real number—

I * scale + offset +05* scale,

where the last term is present because subscript I is thought of as denot-
ing the interval—

[1-0.5, I +0.5)

and offset corresponds to the lower bound of the real number interval
which the subscript 0 maps onto.

The slice is determined by the parent and by the following parameters: sizes,
origins, and steps. The sizes are the dimension sizes of the slice. The origins
are the parent array subscripts onto which the slice 0 subscripts map. The
steps are the parent array subscript changes that correspond to a the slice
subscript changes of +1. Thus for each dimension—

parent-subscript = origin + step * slice-subscript
0 < slice-subscript < slice-size

It is possible to try to specify a slice that does not fit inside the parent, array.
If this happens, the actual slice sizes and origins are modified until the slice
does fit inside the parent, or if this is impossible, the slice sizes are all set to
0. Thus the slice has two sets of sizes: desired sizes and actual sizes: and two
sets of origins: desired origins and actual origins. The actual sizes and ori-
gins are computed from the desired sizes and origins, plus the steps and
parent parameters, by a process called clipping

CLIPPING: Clipping reduces the actual sizes and changes the actual origins of the slice so
that it will fit inside the parent array.

One form of clipping changes the actual slice origins until they are legal
parent array subscripts. This is done by repetitively adding the the
dimension's slice step to the actual slice origin until the actual origin is legal,
and reducing the actual slice size by 1 for each step added. If this process will
not work (because adding the step would move the origin away from 0
instead of toward 0), the actual size will be made 0.

The other form of clipping merely reduces the actual slice sizes until the larg-
est slice subscripts map onto legal parent subscripts.

If any actual size is reduced to 0 by clipping, then all the actual sizes are
forced to 0.

ARGUMENT PREFIXES: Prefixes such as ubar_ and sar_ specify that the argument is of
an-array type and has a particular element type, according to the
following table-

Printed April 27, 1989

ARRAYS 7-6

Argument
Prefix

ar_ —
ubar_ a- ubit
car_ a-char
ucar_ a-uchar
sar_ a-short
usar_ a-ushort
lar_ a-long
ular_ a-ulong
far_ a-float
dar_ a-double

HAS-ELEMENT-TYPE:

Element Type

unspecified
1-bit unsigned integer.
8-bit signed integer.
8-bit unsigned integer.
16-bit signed integer.
16-bit unsigned integer.
32-bit signed integer.
32-bit unsigned integer.
32-bit floating point number.
64-bit floating point number.

The type of the elements of an array. A-type object. Possible
values include a-long, a-short, and a-char for signed 32. 16. and 8
bit integers; a-along, a-ushort, u-uchar, and a-ubit for unsigned 32.
16, 8, and 1 bit integers; and a-double and a-float for 64 and 32 bit
floating point numbers.

Other values are possible: array elements may be C .structures.

The default element type for array creation is stored in the global
variable *default-array-elenient-type*. which itself defaults to ci-
ting.

Any element type value must have a lias-size attribute specifying
the length of the array element in bits if the array elements are
allocated. For example, (lias-size a-long) equals 32. The lias-size
attribute of the element type does not have to be known for arrays
whose elements are never allocated.

A fixnum: block floating point elements of ar_array should be con-
sidered as integers which are multiplied by 2x-expone"1 to get the true
numeric value of the element, where x_exponent is the lias-exponent
attribute of ar_array.

If ar_array's element type is a-long, the lias-exponent attribute defaults
to the value of the global variable *dejault-array-long-erponenl*, which
itself defaults to -16. If ar_array's element type is a-short, the has-
exponent attribute defaults to the value of the global variable *default-
array-shorl-exponent*, which itself defaults to -8. Otherwise the has-
exponent attribute defaults to 0.

The lias-exponent attribute is not used if the element type is not a-long,
a-ulong, a-short, a-ushort, a-char, a-uchar, or a-tibit.

AT/X_LENGTH: Many array attributes are lists of numbers, one for each dimension.
Examples are lias-sizes, lias-increments, and luis-origins. When one of

HAS-EXPONENT:

Printed April 27, 1989

ARRAYS 7-7

these attributes is gotten, a list of 6 numbers is normally returned, since
that is the normal number of dimensions of an array.

If the at/x_length parameter is given as a positive integer while getting
one of these attributes, then it specifies the length of the list returned.
The numbers added to the end of the list, if this number is larger than 6,
depend upon the particular attribute: e.g., has-sizes adds l's, has-
incremenls adds the minimum number of elements required, to hold the
array, and has-origins adds O's.

If the at/x_length parameter is given the value do-shorten, the list got-
ten is shortened by omitting from its end any numbers equal to the
number that would be added to the end of the list if it were to be
lengthened. E.g., l's are omitted from the end of has-sizes, and O's from
the end of has-origms.

For some attributes, like has-offsets, nil may be an element of the attri-
bute value list, just as if it were a number. For these attributes nil is
the element added to lengthen a list, or the element removed from the
end to shorten the list.

HAS- SIZES:

HAS-PARENT-SIZES:

HAS-DESIRED-S1ZES: The list of the integer dimension sizes of the array. There are three
such lists: the parent sizes, the desired slice sizes, and the actual
slice sizes. If the slice is the same as the parent, all three lists are
the same, and may be denoted by the has-sizes attribute.

The parent sizes may be set when the array is initialized, but not
setf. The desired sizes may be setf at any time, to change the
definition of the slice. The actual sizes are computed according to
the rules of CLIPPING above.

Allowable subscripts for a given dimension range from 0 through the
actual dimension size minus 1.

The has-sizes attribute returns the actual sizes when it is read.
However, it sets the desired sizes when it is setf. It also serves as the
default for both parent and desired sizes when an array is initialized.

The integer sizes must be non-negative. If any are 0, the parent or
slice is empty. Size integer lists may be abbreviated by omitting l's
at the end, as long as the list does not become empty.

When the has-sizes, has-parent-sizes, or has-desired-sizes attributes
are read, an extra at/x_length argument may be given to specify the
length of the list of sizes returned. This list will then be either trun-
cated, filled out by adding l's, or shortened by omitting l's from the

Printed April 27, 1989

ARRAYS 7-8

end.

When the has-sizes or has-desired-sizes element is set/, nil may be
used as a new dimension size in order to indicate that the
corresponding dimension size is not to be changed. Also, sizes omit-
ted from the end are taken to be nil in this sense, and are not
assumed to be 1. For example,

(set/(lias-sizes x '(nil 8)))

will change only the 2'nd (Y) dimension's desired size.

When an-array is printed or unevaluated, the has-parent-sizes attri-
bute label is replaced by the has-sizes attribute label in the output.
If both desired and parent sizes are the same, only one sizes attri-
bute is output, with the has-sizes label.

HAS-ORIGINS:

HAS-DESIRED-ORJGINS: A list of the origins of the current ar_array slice within its parent
array. The origins are the parent subscripts to which the slice 0
subscripts correspond. Because of clipping, there are two sets of
origins: the desired origins, and the actual origins. The desired
origins may be set}, but the actual origins are computed accord-
ing to the rules of CLIPPING above.

An origin list may be of any length with O's omitted from the
end.

The has-origins attribute returns the actual origins when it is
read, but sets the desired origins when it is self or used as an ini-
tial value.

When the has-origins or has-desired-origins attributes are read,
an extra at/x_length argument may be given to specify the
length of the list of origins returned. This list will then be either
truncated, filled out by adding O's, or shortened by omitting O's
from the end.

A value being set} to the desired origins may have a nil origin for
a particular dimension, in which case the value of that
dimension's desired origin will not be changed. Origins omitted
from the end are taken to be nil in this sense, and are not
assumed to be 0.

When an-array is printed or unevaluated, the has-desired-origins
attribute label is replaced by the has-origins attribute label in the
output.

HAS-STEPS: A list of the integer steps of the current slice within the parent array. For
each dimension, the step is the increment in the parent array subscript that
correspond.5- to a unit increment in the slice subscript. A step may be

Printed April 27, 1989

ARRAYS 7-9

negative or zero. The steps may be set/.

The list may be of any length with l's omitted from the end.

When the lias-steps attribute is read, an extra at/x_length argument may be
given to specify the length of the list or steps returned. This list will then be
either truncated, filled out by adding l's, or shortened by omitting l's from
the end.

When the steps are set/, the new value may have a nil step for a particular
dimension, in which case the value of that dimension's step will not be
changed. Steps omitted from the end are taken to be nil in this sense, and
are not assumed to be 1.

HAS-INCREMENTS:

HAS-PARENT-INCREMENTS: A list of the integer increments for the array. An array is
mapped onto a one dimensional vector by multiplying each
subscript by its corresponding increment, summing these
products, adding a vector origin, and using the result as a
vector index. The vector origin specifies the array element
which has all zero subscripts, and the index is measured in
units one array element long.

Increments are therefore measvired in units that are one
array element long. Thus for elements of type a-ubrt, incre-
ments are measured in units of 1 bit, whereas for elements of
type a-long, increments are measured in units of 32 bits.

There are two sets of increments. The parent increments are
set when the array is initialized, and cannot be set/. The
slice increments always equal the parent increments times
the steps, for each dimension. They cannot be setf, but
change when the steps change.

A list of increments may be of any length. A value omitted
from the end of a list of parent increments must equal the
size N, in units of one array element, of the smallest vector
that will include all elements with the subscripts of the pre-
vious dimensions ranging over their entire range, according
to the sizes and increments of these previous dimensions.
Here the dimensions are those of the parent array, and not
the slice.

The has-increments attribute returns the slice increments
when it is read, but sets the parent increments when it is
used as an initial value. Neither kind of increments can be
setf.

When *he has-increments or has-parent-mcrements

Printed April 27, 1989

ARRAYS 7-10

HAS-OFFSETS:

HAS-PAJRENT-OFFSETS:

HAS-SCALES:

HAS- PARENT-SCALES:

attributes are read, an extra at/x_length argument, may be
given to specify the length of the list of increments returned.
If N is as above, then the list returned will be either trun-
cated, filled out by adding N's, or shortened by omitting N's
from the end.

When an-array is printed or unevaluated, the has-parenl-
increments attribute label is replaced by the has-increments
attribute label in the output. Slice increments are never
printed and never appear in an unevaluated array.

A list of niFs or flonum's. Each flonum is the value that -0.5 is
mapped onto by the ruler associated with the corresponding
dimension. A nil indicates there is no ruler for the dimension.
Values omitted from the end of the offsets list must equal »//.

There are two such lists: the offsets of the parent array, and
those of the slice. The latter may be computed from the parent
offsets and scales, and the slice origins, by the formula—

slice-offset = parent-offset + parent-scale * actual-slice-origin.

A slice offset is nil if the corresponding parent offset or scale is
nil.

The has-offsets attribute returns the slice offsets when it is read,
but sets the parent offsets when it is used as an initial value or
setf. The parent offsets can be setf only when their previous
value is nil. Slice offsets cannot be initialized or setf.

When the has-offsets or has-parent-offsets attributes are read, an
extra at/x_length argument may be given to specify the length of
the list of offsets returned. This list will then be either trun-
cated, filled out by adding nil's, or shortened by omitting nil's
from the end.

When an-array is printed or unevaluated, the has-parent-offsets
attribute label is replaced by the has-offsets attribute label in the
output.

A list of niPs or flonum's. Each flonum is the scale of the ruler
associated with the corresponding dimension. The scale is the
increment in ruler range for 1 unit increment in ruler domain. A
nil indicates there is no ruler for the dimension. Values omitted
from the end of the offsets list must equal nil.

There are two such lists: the scales of the parent array, and those
of the slice. The latter is the product of the parent scales and the

Printed April 27, 1989

ARRAYS 7-11

slice steps

The has-$cales attribute returns the slice scales when it is read,
but sets the parent scales when it is used as an initial value or set/.
The parent scales can be self only if their previous value is nil
The slice scales cannot be set/.

When the has-scales or has-pare?it-scales attributes are read, an
extra at/x_length argument may be given to specify the length of
the list of scales returned. This list will then be either truncated,
filled out by adding nil's, or shortened by omitting niTs from the
end.

PROTOTYPES:

DO- SHARE- ELEMENTS:

When an-array is printed or unevaluated. the has-parent-scales
attribute label is replaced by the lias-scales attribute label in the
output.

Evaluating an expression such as—

(an-array ar_prototype has-element-type a-sliort ...)

will make a copy of ar_prototype, replacing any ar_prototype
attributes by those given explicitly in the expression.
Ar_prototype is called the prototype.

BY-EXPRESSION:

If the elements of ar_prototype have been allocated, then the ele-
ments of the result will be allocated, and will be copies of the ele-
ments of ar_prototype. In this case the parent sizes of the result
must equal those of ar_prototype. Because array elements must
be copied, only numeric type elements can be handled. The
result's has-exponent will be computed by array-copy-exponent if
the result does not have the same element type as ar_prototype
and the has-exponent attribute is not explicitly given a numeric
value in the expression above. Array-copy-exponent will also be
used if the has-exponent attribute is explicitly given the value nil
in the expression above, even if the result has the same element
type as ar_prototype.

If g_share-elements is present and non-m7, the elements of
ar_prototype will be allocated if that has not already been done,
and the result will share elements with ar_prototype. In this case
no attempt must be made to change the parent size, parent incre-
ments, element type, or exponent of the prototype while making
the result.

If the by-expression attribute value, g_expression, is noiwu/, it will be
used to compute an initial value for each element of the parent array
when the array's elements are allocated. The variables X, Y, Z, T, U
and V may be used in g_expression as the parent element subscripts.
No other variables should be used in g_expr;ssion (variables may be

Printed April 27, 1989

ARRAYS 7-12

substituted into the expression when the expression is computed by
using ' and ,).

The by-expression attribute of an array is set to nit right after it is used
to initialize the array elements.

Currently the element type of the array must be numeric for by-
expression to work.

Because the interpreter is used, this way of initializing an array is very
slow if the array is large.

BY-VALUE: If the by-value attribute value, g_value, is non-nt7, it will be used to compute
an initial value for each element of the parent array, when the array's ele-
ments are allocated. G_value is a list of sublists of sublists ... of element
values that are used to initialize the elements. The innermost lists
correspond to the first (X) dimension: e.g.—

(an-array has-sizes "(2 3)
by-value '((00 01) (10 11) (20 21)))

and—

(an-array has-sizes (2 3)
by-expression'(plus X{product 10 }')))

give the same initial elements.

If elements or sublists are omitted from the end of a list, nil values will be
assumed.

The by-value attribute of an array is set to nil right after it is used to initial-
ize the array elements.

Currently the element type of the array must be numeric for by-value to
work.

Because the interpreter is used, this way of initializing an array is very slow
if the array is large.

HAS-ARRAY-FILE:

HAS_ARRAY_FORMAT:

HAS-BEEN-CHANGED: The has-array-file attribute value g_array-file can be a symbol—

s_file-name

equal to the name of the file in which the parent array is stored, or
a list of the form —

(s_file-name x_ofl'set)

specifying the name of a file in which the parent array is stored
beginning at the given offset, or a list of the form-

Printed April 27, 1989

ARRAYS 7-13

(s_volume-name x_file-number x_record-number x_oflset)

specifying the name of a magnetic tape volume containing the
parent array, the file number of the file on the tape that contains
the array, the record number of the record in the file that contains
the array, and the offset of the parent array in that record.

The form —

s_file-name

is equivalent to—

(s_file-name 0).

The offset specified is the ofTset of the first byte of the parent
array, which need not be the first byte of the (000000) element
if the parent array has negative increments.

The has-been-changed attribute keeps track of whether the MOS
memory and file system versions of an array are equal. It is / if
array elements are allocated and any parent element has been
changed since the array was last written to or read from its has-
array-file attribute. It is nil otherwise.

The has-been-changed attribute can be self to /, but cannot be self
to nil or initialized. Any non-n/7 value is equivalent to /. Setting it
to t will allocate the array elements if that has not already been
done.

The mechanism for keeping track of changes is imprecise, in that
whenever two arrays share elements, setting the has-been-changed
attribute of one to t will set the same attribute of the other to t.
And if this second array shares an element with a third array, the
third array will also have its has-been-changed attribute to t, even
if it does not share any elements with the first array. The errors in
this bookkeeping will always set has-been-changed to (when it
should be left nil. It will never be set nil when it should be left t.

The has-array-format attribute is the value of the *computer-
format* global variable at the time the array was written on disk
(it is nil if has-array-file is nil. This specifies the binary format
used to store numbers on disk. Sometimes arrays written on one
computer may be read on another computer with different number
formats, provided an appropriate conversion routine is provided
(there is currently no mechanism for doing this implicitly).

IS-READONLY: The is-readonly attribute is t if it is not permissible to write elements of
ar_array; nil if it is permissible.

Can be setf. When setf, any non-m7 value is equivalent to t.

Printed April 27, 1989

ARRAYS 7-14

Overlapping arrays may still be writable even if this array is not, in
which case this array's elements might still get changed even if it is
readonly.

IS-IMMOVABLE: The is-immovable attribute is t if it is not permissible to change the
ar_array attributes which control the position of the current ar_array
slice, namely the has-desired-sizes, has-desired-origins, and lias-steps
attributes; nil if these can be changed.

Can be setf. When set/, any non-ni/ value is equivalent to t.

GARBAGE COLLECTION: Array elements (but not the array proper) may be garbage col-
lected if the array is not stored in a local or global variable, as a
function argument or return value, or as an element of a list
stored in one of these placed (but not as an element of a sublist
of a list stored in one of these places).

An array whose elements have been garbage collected in this
way has its is-collected attribute set to t. Normal array func-
tions will signal an error if passed such an array. .

Thus it is impossible to store arrays in complex data bases,
unless these arrays are bolted down by storing them in a global
variable, or as an element of a list stored in a global variable.

The purpose of this form of element garbage collection is to
allow the mark and sweep algorithm for rinding unused arrays
to run much faster than the similar algorithm that finds unused
objects. This permits array allocation to use memory at a fas-
ter rate than normal object allocation, without the garbage col-
lector becoming a major drain of CPU time.

(an-array-summary has-count 'x_count
has-missing-count 'x_missing-count
has-mean 'f_mean
has-standard-deviation 'f_standard-deviation
has-maximum 'f_maximum
has-minimum 'f_minimum
has-sum 'f_sum
has-sum-squares T_sum-squares)

[SKETCH Object]

an-array-summary
asum_
(has-count 'asum^summary)
(has-missing-count 'asum_summary)
(has-mean 'asum_summary)
(has-standard-deviation 'asum_summary)
(has-maximum 'asum_summary)
(has-minimum 'asum^summary)
(has-sum 'asum_summary)
(has-sum-squares 'asum_summary)

[SKETCH Type
[Argument Prefix

[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro
[SKETCH Attribute Macro

Printed April 27, 1989

ARRAYS 7-15

VALUE: An object that summarizes the elements of an array. In the various summary
statistics missing values are not counted, except of course in has-missing-count
which is the count of missing values. Has-count is the count of non-missing
values, only. Some of the statistics may be missing (nil) if there are not enough
non-missing values.

.ar [UNIX File Extension]

FILE FORMAT: A file containing array elements: e.g. a file such as cache.ar written when
uneval-object is called by write-catalog and referenced in the has-array-file
attributes of an-array objects.

array-block-region-siies [LISP Global Variable]

USER ONLY WHEN: Having problems with memory overflow.

USE: *array-block-region-sizes* is a list of the sizes in bytes of the contiguous regions
that will be allocated to hold array element blocks.

A new region is allocated when an array is to be allocated that will not fit into
existing regions. Elements of the *array-block-region-sizes* list are removed until
one is removed that is larger than the size of the array. All the removed elements
are added to determine the size of the new region.

If the array is too large for this to work, no elements of the list are removed, and a
region just large enough for the array is allocated. This desparation strategy is
likely to cause later problems.

Setting *array-block-region-$izes* to a list whose only element is the total amount
of storage available for arrays is the best way to avoid running out of space
because, it avoids array storage fragmentation. However, such a setting will lead
to a substantial delay when the single large region is allocated.

•array-blocks-history* [LISP Global Variable]
array-blocks-history-length [LISP Global Variable]

VALUES: *array-blocks-history* is a history of the time spent in sweeping and compact-
ing array blocks. Its length is limited to *array-blocks-history-length* entries,
and the latter defaults to 50.

Printed April 27, 1989

ARRAYS 7-16

(array-copy-exponent "ar_array 'ty_element-type) [LISP Function]

WHERE: Ty_element-type and the element type of ar_array are both numeric.

RETURNS: The has-exponent value most appropriate for a copy of ar_array which has
element type ty_element-type.

If ty_element-type is a-float, a-double, or a-ubit, the exponent is 0.

If ty_element-type is a-long or a-ulong, the elements of the array are scaled to
fit into the low order 24 bits of the 32 bit integers.

If ty_element-type is a-short, a-ushort, a-char, or a-uchar, the elements are
scaled to use all available precision of ty_element-type without any clipping
on copying.

If ar_array has all zero or missing value elements, the exponents are -16 for
a-long and a-ulong, -8 for a-short and a-short, and 0 for a-char and a-uchar.

(bounds-of-array 'ar_array [n_factor]) [LISP Function]

WHERE: N_factor defaults to 0.00001.

RETURNS:

(n_lower-bound n_upper-bound),

where n_lower-bound is the minimum of all the elements of ar_array minus
epsilon, and n-upper-bound is the maximum of all the elements of ar_array,
plus epsilon. Epsilon is chosen to be—

factor * ((maximum of all array elements) - (minimum of all array elements))

in order to expand the interval slightly. If epsilon would be zero, n_factor is
substituted for it. If epsilon cannot be computed because the array has no
non-missing elements,

(-n_factor n_factor)

is returned.

(collect-array-blocks) [LISP Function]

USE ONLY WHEN: Playing with the array block garbage collector (which is normally
automatic).

SIDE EFFECT: Calls first sweep-array-blocks and then compact-array-blocks.

RETURNS: The sum of the number of fixnum's in all the free blocks.

Printed April 27, 1989

ARRAYS 7-17

(compact-array-blocks) [LISP Function]
compact-array-blocks-count [LISP Global Variable]
compact-array-blocks-time [LISP Global Variable]
compact-array-blocks-bytes [LISP Global Variable]

USE ONLY WHEN: Playing with the array block garbage collector (which is normally
automatic).

SIDE EFFECT: Compacts all the blocks in the array block allocation area. Does not mark
the free blocks first: call sweep-array-blocks to do that.

compact-array-blocks-count is incremented every time compact-array-
blocks is called, *compact-array-blocks-time* has the time taken by the
call added to it, and *compact-array-blocks-bytes* has the number of bytes
moved by the compactification added to it. All these variables are initial-
ized to 0. The time is measured in the same units as ptime: see *pttme-
counts-per-second*.

RETURNS: The sum of the number of fixnum's in all the free blocks.

(copy-array 'ar_output 'ar_input) [LISP Function]

WHERE: Ar_output and ar_input are similar.

RETURN: Ar_output. Copies ar_input elements to the corresponding ar_output ele-
ments. Both arrays must have numeric element types, but these and the
exponents need not agree.

BUG: Currently cannot handle non-numeric element types.

(copy-of-array 'ar_input) [LISP Function]

RETURN: A new array which is a copy of the current ar_input slice and has the same ele-
ment type, exponent, offsets, scales, and parities as ar_input. More explicitly,
the parent sizes, ofTsets, and scales of the result equal the slice sizes, offsets,
and scales of ar_input.

BUG: Currently cannot handle non-numeric element types.

(duplicate-of-array 'ar_array) [LISP Function]

RETURNS: A new array which shares elements with ar_array, and has the exact same
standard array attributes, except for the is-immovable, has-array-file, by-
expression, and by-value attributes, which are set to nil in the result.

The elements of ar_array are allocated if this has not already been done.

Attributes of ar_array which are not documented in this package are not
copied to the result.

Printed April 27, 1989

ARRAYS 7-18

(format-object ar_array ...) 'LISP Function]

EQUIVALENT TO: The usual format-object, except that ar_array's has-parent-sizes, has-
parent-increments, has-desired-sizes, has-desired-origins, has-steps,
has-parenl-offsets, has-parent-scales, and has-parities values are
printed with some editing. The ends of the list values of these attri-
butes are truncated in the same manner as the do-shorten option trun-
cates the lists when they are gotten. Also, has-parent-sizes is renamed
has-sizes, has-parent-increments is renamed has-increments, has-
parent-offsets is renamed has-offsets, and has-parenl'-scales is renamed
has-scales.

(has-array-descriptor 'ar_array) TISP Macro]

EQUIVALENT TO:

(altocate-array ar_array)

Has-array-descriptor is an anachronism and will be removed in the
future.

(has-element 'ar_array 'x^subscript ...) [SKETCH Attribute]
(has-element rar_array '(x_subscript ...)) SKETCH Attribute!

WHERE: The element type of ar_array must be numeric, or un-lbit. or a vector type
declared by declare-vector-type.

These latter vector elements should not have any single subelement that is
stored in both the vector and hunk part (e.g. in-both subelements).

VALUE: The element of the current ar_array slice corresponding to the given subscripts.

A numeric value may be nil if the array element type allows signed numbers.

Numeric values will be fixnum if they are exact integers and flonuin otherwise.

For vector values, only in-vector subelements are remembered in the array, and
all in-hunk subelements will be set to nil in the element value read.

Subscripts range from 0 to 1 less than the size of the corresponding dimension.
O's may be omitted from the end of the subscript list.

WHEN SETF: Numeric values will be automatically converted from fixnum to flonuin and
vice versa if necessary.

Non-m7 an-lbit values will be converted to t.

Only the in-vector subelements of a vector value will be stored in the array:
the in-hunk subelements will not be stored, and will return as nil when the
array element is read.

BUG: If for a vector element there is a subelement in both the vector and hunk part, the
value returned will have inconsistent values for the subelement in the two different
places it is stored, unless the subelement value is nil.

Printed April 27, 1989

ARRAYS 7-19

(has-parent-ruler ar_array x_climension) 'SKETCH Attribute Macro^
(has-ruler 'ar_array x_dimension) :SKETCH Attribute Macro

VALVE: The rulers associated with the x_clmieiision dimension of ar_array These are—

'(.size ('•flset nil) .scale)

where I he size, offset, and scale are lor either the parent dimension or the slice
dimension. This ruler map* -0 5 out" the offset and has the given scale.

Has-parent-ruler always refers to the parent dimension, while has-ruler refers to
the slice dimension when gotten, and the parent dimension when setf

Return.- /(//when gotten unless both offset and scale are non-»i»7

(inspect-array "ar_array (LISP Function]
"(i_size) (Lorigin ...) ('(i_-tep ...)]]•)

SIDE E1TFCT: Applies tlice-of-arruy to the argument list and prints the resulting slice
using print-array Then echo.- the current slice desired origins, and wails
loi the user lo type a command. Typing one of the 8 letters surrounding
V on the standard terminal keyboard moves the slice in the corresponding
direction: left, right, up. clown, or diagonal Here a lower case letter
moves by hall the size of the slice X or Y dimension, and an upper case
letter move? by the full size of the dimension.

Typing a sei of integers in parentheses sets the origins to the values indi-
cated (use a nil value for no-change).

Typing a control-D or $ exits the inspect-array function.

Except for the control-D, multiple commands may be typed on one line, in
which case all are executed first, and then the current slice is printed on
the console terminal. Just typing a carriage return by itself reprints the
current slice.

(integerize-ruler 'rul_ruler) (LISP Function]

WHERE: RuLruler is a possibly unnormalized ruler that can be normalized.

RETURNS: A ruler with the same mapping as ruLruler, but with a possibly different
domain which is represented by a single non-negative integer N. N is chosen
to be the largest integer such that—

(N-1.5 N-0.5)

intersects the domain of ruLruler. if N is non-negative. If N would be nega-
tive, N is chosen to be 0. The domain of the ruler returned is—

(-0.5 N-0.5).

The ruler returned is normalized except for its domain description, which
consists of just the integer N, rather than a list of two bounds.

Printed April 27, 1989

ARRAYS 7-20

(log-bound-of-array ar_anay '._sign) [LISP Function'

RETURNS: The logarithm base 2 ol the smallest power of 2 such that all non-missing ele-
ments of ar_array have an absolute value less than that power of 2. If x_sign
is given and > 0. all negative elements will be treated as missing, while if
x_sign is given and < 0. all positive elements will be treated as missing. Zero
elements are always treated as missing. If all the elements of ar_array are
missing, nil is returned

(lookat-arrays ps_name ...j) [LISP Function]

RETURNS: A list of pairs (s_name ar_value) for all symbols s_name whose value is an
array.

If no arguments are given, the arguments are taken to be the list of all sym-
bols in the symbol table.

(map-by-ruler n_numbcr ruLrulei) [LISP Function'

WHERE: RuLruler should be normalized. No checking is performed for invalid
ruLrulers (for efficiency reasons).

RETURNS: The number obtained by applying the affine transformation defined by
ruLruler to n_number.

(mirror-array 'ar_output 'ai_input) [LISP Function.

WHERE: There is a list of integers '(Lwidth ...) corresponding to dimensions such that
the size of ar_output for a dimension equals the size of ar_input for the dimen-
sion plus 2 times the i_width value for the dimension. Each i_width must be
non-negative, but may be zero

RETURNS: Ar_output after setting its elements.

SIDE EFFECT: Ar_input is copied into—

(slice-of-array ar_output
(has-sizes ar_input) '(Lwidth ...)).

The rest of ar_output is filled in by mirror reflections of the slice. E.g.,
just "above" and "below" the slice in any dimension is placed a copy of the
slice which is identical to the slice except its subscript order is reversed for
the given dimension.

NOTE: The element types of ar_output and ar_input may differ, as long as both are
numeric.

BUG: Currently each Lwidth may not exceed the size of the corresponding ar_input
dimension.

BUG: Really each dimension should be given a parity which determines whether the ele-
ments with subscript 0 or size—1 should be duplicated or not. I.e., should a dupli-
cate of the top row be placed just above the top row, or should a duplicate of the
second row down be placed just above the top row, leaving the top row undupli-
cated. Sometimes the answer is yes and sometimes no, depending on the array,
and the answer, or 'dimension parity', can be computed automatically. Currently

Printed April 27, 1989

ARRAYS 7-21

the top row i> always duplicated

(mirror-of-array ar_array (i_widih ...)) [LISFJ Function

RETURNS: A newly created array each of whose dimensions is larger than the
corresponding ar_array dimension by 2 times the corresponding Lwidth. The
new array is set by calling the mirror-array function with it as the output
and ar_array a* input

(move-array ar_ariay rx_d intension x_change) [LISP Function]
(move-array 'ai_airay '(x_change ...)) [LISP Function]

RETURNS: Ar_array after its current slice is modified.

SIDE EFFECT: The form with x_dimension (see X-dimensrov) changes the origin of the
specified dimension by the amount x_change * step, where step is the slice
step parameter for the dimension. The form with the list of changes
applies these changes to the X, Y, Z, T. U, and V dimensions in order,
with changes not given or being given as nil being taken as 0 (no change).

(normalize-ruler ruLruler) [LISP Function

RETURNS. RuLruler alter it is normalized. An error occurs if ruLruler cannot be nor-
malized or docs not have the format of a valid ruler.

(place-array ar_array *x_dimension rx_size [LISP Function
i x_origin !'x_step;)

(place-array ar_array '(x_size ...) [LISP Function]
|'(x_origin ...) ;'(x_step ...)!:)

WHERE: Any x_size's must be non-negative, but x_origin's and x_step's may equal any
integer.

RETURNS: Ar_array after its current slice is modified.

SIDE EFFECT: Modifies the current slice of ar_array by setting the parameters of its
dimensions. The three parameters, x_size, x_origin, and x_step, refer to
the desired size of the slice dimension, the desired value of the parent
array subscript corresponding to slice subscript 0, and the desired incre-
ment in the parent array subscript that corresponds to a unit increment of
the slice subscript. They are the same values as integers listed in the
array's has-desircd-sizes, has-desired-origins, and has-stcps attributes.

The form with x__dimension given (see X-dirnension) sets the three param-
eters for the specified dimension.

The form with the lists of x_size's, x_origin's, and x_step's sets the
parameters for all dimensions in the usual order X, Y, Z, T, U, V.

Omitted parameters, or parameters explicitly given the value nil, default
to the current slice parameter values: i.e. to no change in the parameter.

Printed April 27, 1989

ARRAYS 7-22

(prepare-array ar_array "(x_ex panel ...) (LISP Function)
'ty_element-type 'x_exponent , mmst-copy)

array-expander [LISP Global Variable^

RETURNS: Either ar_array, or a new array which is a copy of the current slice of
ar_array. or an expanded version thereof The array returned will have the
given element type and exponent, if they are given and not nil.

If the '(x_expand ...) list is nt7, or all x_expand values are 0, the array
returned will have the same sizes as the current slice of ar_array. In this
case, if ar_array has the correct element type and exponent, and if the must-
copy switch is absent. ar_array itself will be returned. Otherwise a new array
will be returned whose elements are copies of those of ar_array.

11 x_expand is non-»/7. a new array is created whose sizes are larger than
those of ai_array by the values in the '(x_expand ...) list rounded up to the
next even integers. Then the call —

(funcall * array-expander* ar_new-array ar_array)

is executed, and its result returned as the value of prepare-array. The usual
value for 'array-expander* is mirror-array, which is in fact the default value
of *arruy-erpander*.

The above call to *array-expander* will be made if the element type or
exponent of the array must be changed, even if the sizes are not being
changed.

NOTE: If no exponent is specified when changing the type of numeric elements to a block
floating point type, an exponent is computed automatically using array-cdpy-
exponent. If the element type is not changed, array-copy-exponent will not be
used.

BUG: Cannot not handle non-numeric array element types.

(print-array ar_array [p_port [xjength]]) [LISP Function]

WHERE: The element type of ar_array must be numeric or an-lbit.

DEFAULTS: P_port defaults to poport and xjength defaults to the value of *line-length*
(which itself defaults to 80).

SIDE EFFECT: The array is printed to the p_port. A line length of xjength columns is
assumed. The X dimension is the columns dimension, the Y dimension is
the rows dimension.

If the length is 80 columns, either 5, 10 or 80 columns will print on the
first line of a row, depending on the array element type. Excess columns
for a row are printed on subsequent lines which are each indented by
increasing amounts.

If the Z, T, U, or V dimension sizes are above 1, then multiple two dimen-
sional arrays are printed, each labeled by (* * Z T U V).

Printed April 27, 1989

ARRAYS 7-23

Missing values arc printed a.s /)//.

Bl'G: The output format is not LISP readable and leaves something to be desired when a
row spills onto more than one line. It will probably be changed in the future.

(read-array-elements ;ar_array 'g_anay-file) [LISP Function:

RETURNS: Ai_array after its elements have been modified.

SIDE EFFECT: Reads from the file location specified by g_array-file into the parent array
of ar_array Sets the ha$-array-file attribute of ar_array to g_array-file.
Sets the has-been-changed attribute to nil.

See HAS-ARRAY-FILE under on-orray for the layout of g_array-file.

(reorganization-of-array "ar_array '(x_\origin ...) [LISP Function'
"(N_xsize ...) ;'(x_xincrement ...)i)

USE ONLY WHEN: A crazy array reorganization is required.

WHERE: Unspecified origins default to 0. unspecified sizes default to 1, and unspecified
increments are computed in the same manner that they are computed when a
new array is created by an-array.

RETURNS: A new array that shares elements with ar_array. The parent sizes of the new
array are x_xsize ... and the parent increments are x_xincrement. The
parent origin element of the new array is the element of ar_array designated
by the subscripts x_xorigin

The current slice of the new array equals the new array's parent.

WARNING: If one is not careful, some elements of the new array may not be elements of
ar_array. However, they will be elements of some ancestor of ar_array (a
parent of ar_array, or of an array from which ar_array was made by slice-
of-array. or something like that).

It is an error if there is no ancestor in which the new array will fit.

(reset-array 'ar_array)

RETURNS. Ar_array after it is modified..

SIDE EFFECT: Resets the array slice so that it equals the parent.

[LISP Function]

Printed April 27, 1989

ARRAYS 7-24

(restrict-array "ar_array 'x_dim elision jLISP Function]
x_size *x 01 igi 11 _siep')

RETURNS: Ar_airay alter its current slice is modified

EQUIVALENT TO: {plnce-armij ar_:irray D x_size x_origin x_step) for all D > =
x_dimension.

(reverse-array 'ar_arr;iy 'x_dimcnsion) [LISP Function:

RETURNS: Ar_array alter its current slice is modified

SIDE EFFECT: Reverses the order of subscripts in the dimension specified by x_dimension
within the current ar_array slice by negating the dimension's step and
changing the dimension's desired origin appropriately to-

ok! desired origin -f (desired size - 1) * (old step).

(round-ruler 'ruLruler iijactor Lpattern) [LISP Function,

WHERE: NJactor > 0.

RETURNS: A ruler made by from ruLruler by the following alterations. First. ruLruler
is normalized. Second, the ruler scale is rounded away from zero until it is an
exact multiple of n_I'nctor. Third, the ruler is matched against Lpattern. and
any bound that mate IKS a ml in Lpattern is changed to nil. There should be
only one such bound and changing it to n*7 will provide the freedom neces-
sary to recompute it and make the ruler valid.

The resulting ruler is unnormalized, since it has a nil bound.

L_pattern defaults to ((/ /) (/ nil)), which allows the second range bound to
change.

"ruler" [SKETCH Term]
"normalized ruler"|SKETCH Term]
ruL [Argument Prefix]

NORMALIZED RULERS: A normalized ruler is basically a list in the format—

((f_domain-bound-l f_domain-bound-2)
(f_range-bound-l f_range-bound-2)
f_scale),

where all the numbers are floating point. This list specifies an
affine map from the oriented real interval—

[f_domain-bound-l f_domain-bound-2)

to the oriented real interval—

[f_range-bound-l f_range-bound-2).

Note that these intervals may have their bounds switched: that
is—

f_domain-bound-l > f_domain-bound-2

or—

Printed /.pril 27, 1989

ARRAYS 7-25

l_range-bound-l > f_range-bound-2

are allowed In any case, the map sends f_domain-bound-l onto
l_range-bound-l. and f_doniain-boiind--2 onto f_range-bound-2.

F_scale is the multiplier used in the ruler affine map. A ruler is
invalid unless—

(f_range-bound-2 - f_range-bound-l) ==
f_scale * (f_domain-bound-2 - f_domain-bound-1).

INTEGER PARAMETERS: If any of the five parameters in n ruler are integers, the ruler is
considered to be unnormalized. It may be normalized in this
case simply by replacing the integers by their floating point
equivalents.

CONVERSION" TO DISCRETE BINS: To convert the real line to discrete bins, we assign each
real number to the nearest integer: we round As a
consequence, each integer can be thought of as the mid-
point of an interval of length 10 If the integers from
0 through N-l are to represent N bins covering the real
interval LI), the ruler that should be used to
represent this fact is—

((-0.5 N-0.5) (L I!)).

A real interval in a ruler can be replaced by a single
integer N. This integer stands for the interval—

[-0.5 N-0.5).

Such a ruler is an unnormalized ruler, and can be nor-
malized by replacing the integer by the interval it
represents.

PARTIAL RULERS: If any one of the five parameters of a ruler is omitted, it can be com-
puted from the others. Rulers are permitted with mil as one of the
parameter values. These are unnormalized rulers that may be nor-
malized by replacing the nil with a computed value.

An exception is made if Lscale is nil and f_domain-bound-l =
f_domain-bound-2, in which case the ruler cannot be normalized, and
is considered invalid.

It is also possible to specify a domain or range by a T»7 list, which will
be replaced by (-0.5 nit). This is similar to having an integer
specification of the domain or range, and not knowing the value of the
integer.

If a ruler has a list (n_factor [Lpattern]) in place of f_scale, then the
ruler is unnormalized. To normalize the ruler, it is treated as a partial
ruler with missing scale, the scale is computed, and the function call—

{round-ruler the-ruler n_factor [Lpattern])

is called to compute a ruler which is then normalized and returned.

SCALE FACTORS:

Printed April 27, 1989

ARRAYS 7-26

sar_array [CTypej
ar_ jArgument Prefix]
SAR_ARRAY [C Global Constant;
ai_aii;iy —>sar_type [C Macro]
ai_array — >sar_etype [C Macro]
a i _a nay—> sar_esize |C Macro]
ai_anay—>sar_exponent [C Macro]
ar_array—>sar_ubbase [C Macro]
ar_array—>sar_cbase (C Macro]
ar_array—>sar_ucbase [C Macro]
a r_a nay—> sar_sbase [C Macro]
ai_arrny—>sar_usbase [C Macro]
ai_array—>sar_lbase [C Macro]
ar_anay—>sar_ulbase [C Macro]
a r_a nay—> sar_f base [C Macro]
ai_anay—>sar_dbase [C Macro]
ai_arr;iv—>sar_ubase [C Macro]
ar_array — >sar_ibase [C Macro]
ai_an ;iv —>sar_edimensions [C Macro]
ai_ai ray —>sar_cdimensions [C Macro;
ai_an;iy —>sar_dimensions + n [C Macro'
ar_array — >sar_xsize [C Macro]
ar_array—>sar_xincrement [C Macro]
ar_array—>sar_ysize [C Macro]
ar_a nay — >sar_y increment |C Macroj
ar_array—> sar_zsize [C Macro]
ar_array—>sar_zincrement [C Macro]
ar_array—>sar_tsize [C Macro]
ar_array—>sar_tincrement [C Macro]
ar_array—>sar_usize [C Macro]
ar_array—>sar_uincrement [C Macro]
ar_array—>sar_vsize [C Macro]
ar_array—>sar_vincrement [C Macro]

USE: An sar_array value is a pointer at an-array object.

SAR_ARRAYequals the LISP value an-array, and is the value of the sarjlypt ele-
ment of an-array object.

In the description that follows we assume the elements of the array are allocated,
as this is nearly always the case with C code. See UNALLOCATED ARRAYS
below.

ARGUMENT PREFIX: The ar_ prefix denotes C arguments of sar_array type.

SARJTYPE: Ar_array—>sar_lype equals SAR^ARRA Y, and is an sob_iype value. It may-
be used to verify that ar_array points at an array descriptor.

SAR_ETYPE: Ar_array—>sar_etype is the has-element-type attribute of ar_array. It is
an sob__type value.

Printed April 27, 1989

ARRAYS 7-27

SAB.ESIZE: Ar_array — >»or_et>ize is ^ize in bits of an element of ar_array. It is an int
value and equals $ob_isi:< (ar_array—>sar_elype), which is the same as the
ha#~sizt attribute of the Ims-elemenl-type of the array. Redundant, but use-
ful for speed.

SAR.EXPONENT: Ar_arrny—>»armmezponent is the lias-exponent attribute of ar_array. It
is an int value used lor a block floating point array. It should equal 0
for oilier kinds of arrays

SAR.UBBASE:

SAR.CBASE

SAR.UCBASE:

SAR.SBASE:

SAR.USBASE:

SAK.LBASE:

SAR.ULBASE:

SAE.FBASE:

SAE.DBASE:

SAR.UBASE:

SARJBASE: Ar_array — >.<mr_..ba*e i* the base address of the array elements: that is. the
address ol the element with subscripts (000000). The data type of tln-
address is given according to the following table—

sar_ubbase unsigned

sar_cbase char *

sar_ucbase uchar *

sar_sbase short *

sar_usbase ushort *

sar_lbase long *

sar_ulbase ulong *

sar_ibase int *

sar_ubase unsigned *

sar_fbase float *

sar_dbase double *

The various different versions of this structure element are used for the
different types of array element: e.g. sar_lbasc is used if the array elements
are long's.

The sar_vbbase value is exceptional in that it is a bit address for arrays of
unsigned bit elements (all other addresses are byte addresses). When right
shifted by 3 it addresses a byte. Its low order three bits address a bit within
the byte, with the high order bit being at address 0 and the low order bit at
address 7. This addressing system is compatible with most raster

Printed April 27, 1989

ARRAYS 7-28

input output devices

The *ar_cba$e value may be cast to any normal C pointer type in order to
get a pointer at the elements of the array. The only exception is for arrays
of unsigned bits, as noted above.

The convention is that bit addressing (sar__ubbase) is used if—

(ar_array —>sar_esize £ 07) != 0

and byte addressing (sar_cbu$e, ...) is used otherwise. I.e., byte addressing is
used if the element size is a multiple of one byte.

SAR.EDIMENSIONS: Ar_array — >$ar_edi mentions is the number of dimensions of
at_array with 0 size after clipping. If non-zero, it indicates that the
array is empty. Note, it is not the same thing as the number of 0
dimension $ar_size values, as all the later are zeroed if any of them
are zero.

SAR.CDIMENSIONS: Ar_array — >sar_cdtmensions is the number of dimensions of
ar_array which have been clipped, in the sense that their desired size
docs not equal their actual size.

SAR_D1MEN?I0NS: Ai_array—>sar_(limensioiis + n is a pointer to the array dimension
descriptor for the nth dimension of the array. The standard values
ol n are SAR_X. SAR_)\ $.\R_Z. SAR_T, SAR^U, and S.4/?_V.

SAR_\SIZE SAR_XINCREMEXT:

SAR.YSIZE SAR.YINCREMENT:

SAR_ZSIZE SAR.ZINCREMENT:

SAR.TSIZE SAR_TINCRE.ME.NT:

SARJJSIZE SARJJ1NCREMENT:

SAR_VSIZE SAR_VINCREMENT: Ar_array—>sar_xsize is equivalent to—

(ar_arra\—>sar_dimen$ions + SAR_X) —> sar_size

and ar_array—>sar_xincrcmcnt is equivalent to—

(ar_array—> sar_Himensions + SAR^X) —> sar^increment.

Similarly for the other dimensions.

UNALLOCATED ARRAYS: Arrays whose elements are not allocated appear to be very
much like allocated arrays. However, their sar base value is
set to point to a region of virtual memory that b unimple-
mented, in order to catch reference errors. Also, their sar_esize
element may be 0 (to allow for cataloged arrays whose element
types are unknown to the current program and which will never
be allocated by the current program).

Printed April 27, 1989

ARRAYS 7-29

sar_dimension (C Type]
adim_ [Argument Prefix]
aclim_tliniension — >sar_size [C Macro]
adim_dimension — >sar_increment (C Macro]

USE: An $ar_dimensinn value is a pointer at an array dimension description structure.
There is one such structure inside av-array object for each of the array's
SARJtfDIMENSlOKS dimensions.

ARGUMENT PREFIX: The adim_ prefix denotes C arguments of sar_dimenvion type

SAR_S1ZE: Aclim_dimension—>sar_si:e is the actual size of the array dimension (as got-
ten by the lias-sizes attribute of an-array object). It is an int value.

The dimension's subscripts are allowed to range from 0 through sar_size-l.
This size equal? the desired size if the dimension is not clipped, but will be less
than the desired size if the dimension is clipped

If the array is empty, this value will be zero, even if this dimension is not
empty. In other words, if any dimension's sar_si:e is zero, all the other
dimensions' sar_size's will be set to zero.

SARJNCREMENT: Adim_dimension — >s<ir_incremenl is number of array elements that
must be skipped in memory for each +1 change in the dimension's
subscript. Note that this number, which is an int, is in units of array
elements, and not bytes or bits. May be positive, negative, or zero

It is the same increment as gotten by the lias-increments attribute of
an-array object.

SAR_MDIMENSIONS [C Macro Constant]

VALUE: The maximum number of dimensions allowed in an array. Usual value is 6.

SARJMSIZE [C Macro Constant]

VALUE: The maximum sar^size of an individual dimension. Not commonly used, and
should not be used to unnecessarily restrict software. Sometimes, however, it is
convenient to allocate one dimension's worth of work area in the stack, and this
constant is for such purposes. The usual value is 8192.

Printed April 27, 1989

ARRAYS 7-30

sar_place (ar_array. x_dimension. !C Function]
x_s.ize. _oiigin. x_snp)

SIDE EFFECT: Sets tlie desired size, desired origin, and step of the given dimension
(5L4V?_Y SAl?_Y. ...) of ar_array. Errors are indicated by a call to
sJc_error followed by a return. The error switch should be checked for by
the caller

sar_similar (ar_arravl. ar_array2) [C Macro]
sar_xsimilar (ar_anayl, ar_arrav2. x_exclucle) [C Function]

RETURN'S: $AT_YES() if ar_arrayl and ar_array2 are both sar_array objects (they have
the right sar_lype element value) and these two arrays have identical dimen-
sion sur_(ii:e's for non-excluded dimensions. Otherwise returns SAT_I\rO{).

Sar_$iu>il<ir excludes no dimensions, while sar_xsimilar excludes those dimen-
sions D (D = 0. 1. ...) for which the bit 1 < <D is on in x_exclude.

sar_write (ar_array | [C Macro;

RETURNS: 5.-17'_V/7.1- (/ if ar_anay is writable (is-readonly attribute is nil), and
SA 7_AO // il nr_array is readonly.

SIDE EFFECT: Set.* the hw-htcn-clmntjetl attribute of ar_array to / if the array is writ-
able. This is very important in that it permits the array disk cacheing to
work correctly.

NOTE: This macro should be used on every array that is to be written by a C function.
The result returned by this macro should be checked by sfe_assert.

SAR_X [C Macro Constantj
SAR_Y [C Macro Constant]
SAR_Z [C Macro Constant]
SAR_T [C Macro Constant]
SAR_U [C Macro Constant]
SAR_V [C Macro Constant]

VALUE: The values 0 (SAR-X) through 5 (S.47?_l') denoting the first 6 dimensions of an
array. Arrays with fewer than 6 dimensions are treated as 6 dimensional arrays
whose later dimensions (closer to SAR_V) have size 1.

Printed April 27, 1989

ARRAYS 7-31

{sar_xfor_elements (ar_arrsiy. type, base) {
... I,

{sar_xfor_2_elements (ar_arrayl. lypel. basel.
ar_array2. type2. base'2) <t\ !

{sar_xfor_3_elements (ar_arrnvl. typel. base],
ar_array2. type'2. base2,
ar_array3. type3. base3) {

n
/1

{sar_xfor_4_elements (ar_arrayl. type], basel.
ar_array2. type2, base2.
ar_array3. type3, base3,
ar_array4, type-i. base4) {

ii

{sar_for_elements (ar_array, type) |
n ... ,,

{sar_for_2_elements (ar_arrayl. nr_array2, type) {
11

{sar_for_3_e)ements |ar_arrnyl, ar_airay2. ar_array3.
type) {

{sar_for_4_elements (nr_nrrayl. ai_anay2. ar_array3.
ar_array-l. type) {

1i

[C Macro;

[C Macro

(C Macro]

[C Macro;

X
Y
Z
T
U
V
xp

SIDE EFFECT: Sar_jJor_ekmtnts creates a loop which executes the
element of ar_array. This macro is equivalent to—

[C Macro]

|C Macro]

i [C Macro

(C Macro'

(C Local Variable]
[C Local Variable]
[C Local Variable]
[C Local Variable]
[C Local Variable]
[C Local Variable]
[C Local Variable]

body ... once for each

Printed April 27, 1989

ARRAYS 7-32

register type xp: register int A:
register type ///>: register nil } :
register type :p: register int Z:
register type tp: register int T:
register type up: register ml U:
register type rp: register int V\
ij'(ar_array—> sar_e(limenswiis == 0)
/or (l' = 0. f/(= (type) (base):

V< (ar_array)—>sar_vsize:
++ l". vp -t-= (ar_array)—>5ar_vt7icrewien<)

/or ([/ = 0. w/> = vp:
V < (ar_array)—>sar_usi:e.
++ I", up += (ar_array)—>$ar_uivcrement)

for(T = 0. f/> = »/):
T < (ar_array)—>sar_tsi:e:
-H" r. (/>+= (ar_array)—>snr_/»nfrcr/jcn/)

/or (Z = 0. -/) = //>:
Z < (ar_arra\)—> sar_zsize:
+-r Z. r;>-(-= (ar_airay)—>*(7r_r»ncrcmcHf)

/or()' = 0. (//- = sp:
V <. (ar_array)—>8ar^ysize:
++ Y. t//> -(-= (ar_array)—>sar_yivcrement)

for (A'= 0: J;I = (/;>:
A" < (ar_array)—>sar_jsi>e:
++ A", ip += (ar_array)—>sflr_rtncrcme«f)

Notice that, the macro begins with declarations, and that more declara-
tions may immediately precede the macro. The pointer xp tracks through
the elements of ar_array, and may be use in the array body to access the
current element. The type of this pointer is the type argument to the
macro. The address of the (000000) element is the base argument to
the macro. The variables X, Y, Z, T, U, and Vare the subscripts of the
current element.

The macros sar_xfor_£_elements, sar_xfor_8_elemcnts and
sar_xfor_4-elements are similar except that there are a separate set of
pointers xlp, x£p, xSp and x4p for the four arrays ar_arrayl, ar_array2,
ar_array3 and ar_array4. Thus on any iteration of the inner loop
corresponding elements of two, three, or four arrays are being pointed at.
Each of these arrays has its own base element address and element pointer
type. However, the subscripts are restricted by the sizes of ar_arrayl,
which should be the smallest of the arrays. There are variables yip, ySp,
ySp, yjp. zip, ..., v4p for the other dimensions.

Sar^for_elements (ar_array, type) is an abbreviation for—

sar_xfor_elements (ar_array, type, (ar_array)—>sar_cbase).

Sar_Jor_2_clements, sar_Jor_S_elements and sar_for_4_elements are

Printed April 27, 1989

ARRAYS 7-33

EXAMPLE:

similar abbreviations, where all arrays have the same element types and
"ar_cbase may be used for the ba.se address in each case.

The x in sar_rfor_elemen1f< stands for "extended". The forms without the
x are more com monk used.

/* Add inputl to in put 2 and store in output. */
{ sar_Jor_3_elemeiits (output, inputl, input2, long *) {

* rip = * r2p + * xSp, }}

{sar_xfor_matrices (ar_arrav. tvpe, base) { [C Macro]
... }}

{sar_xfor_2_matrices (ar_arrnyl, typel. basel. [C Macro]
ar_arrav2. tvpe2. base2) {

... }}
{sar_xfor_3_matrices (ar_arrayl, typel. basel. [C Macro]

ar_array2. type2. base2:

ar_arra\3. tvpe3. ba$e3) {
... }}

[sar_xfor_4_matrices (ar_arrayl. typel. basel. jC Macro1

ar_arrny2. type2. base2.
ar_array3. type3. base3.
ar_arrav4. tvpe-4. base4) {

... }}
{sar_for_matrices (ar_arrav. tvpe) { [C Macro'

.}}
{sar_for_2_matrices (ar_arravl, ar_arra>2, tvpe) { [C Macro]

...»
{sar_for_3_matrices (ar_arrayl, ar_array2, ar_array3, [C Macro]

type) {
...»

{sar_for_4_matrices (ar_arrayl, ar_array2, ar_array3, [C Macro]
ar_array4, tvpe) {

...»

SIDE EFFECT: Sar_xfor_matrices creates a loop which executes the body ... once for each
2 dimensional matrix of ar_array. This macro is equivalent to-

Printed April 27, 1989

ARRAYS 7-34

type :p: int Z\
type I]), int T,
type up, int U.
type VJI: int V:
if (ar_array—> sar_ediniensioiis == 0)
for (V = 0. vp = (type) (base);

V < (ar_array)—> sar_vsize,
+-f V. vp -f= (ar_array)—>sar_vincrement)

for ((= 0, up = vp:
V < (ar_array)—> sar_xisize;
++ V, up += (ar_array)—>sar_vivcremenl)

for (T = 0, fp = up:
T < (ar_array)—>sar_tsize,
++ T. <p += (ar_array)—>sar_tincreinent)

for{Z = 0. «p = tp;
Z < (ar_array)—> $ar_:size;
+•¥ Z, zp -r= (ar_array)—>sar_zin(reivent)

Notice that the macro begins with declarations, and that more declara-
tions may immediately precede the macro. The pointer zp tracks through
the matrices of ni_array. and may be use in the array bod^y as the address
of the (0 0) element of the current matrix. The type of this pointer is the
type argument to the macro. The address of the (000000) element of
ar_array is the base argument to the macro. The variables Z, T, U, and
Tare the subscripts of the current matrix.

The macros sar_xfor_2_mat rices, sar_xfor_8_matrices, and
sar_xfor_4_matrices are similar except that there are a separate set of
pointers zip, z2p, zSp and z4p for the three arrays ar_arrayl, ar_array'2,
ar_array3 and ar_array4. Thus on any iteration of the inner loop
corresponding matrices of two, three or four arrays are being pointed at.
Each of these arrays has its own base element address and element pointer
type. However, the subscripts are restricted by the sizes of ar_arrayl,
which should be the smallest of the arrays. There are variables tip, tSp,
tSp, Up, ulp, ..., v4p(or the other dimensions.

Sar_for_matrices (ar_array, type) is an abbreviation for—

sar_xfor_matrices (ar_array, type, (ar_array)—> sar_cbase).

Sar_for_£_matrices, sar_Jor_8_matriccs, and sar_Jor_4_matriccs are simi-
lar abbreviations where all arrays have the same element types and
sar_cbase may be used for the base address in each case.

The x in sar_xfor_matriccs stands for "extended". The forms without the
x are more commonly used.

Printed April 27, 1989

ARRAYS 7-35

{sar_xfor_matrix_elements (;*r_arrav. tvpe, base) { [C Macro'

..}}
{sar_xfor_2_matrix_elements (ar_arrayl, typel, baseL |C Macro]

ar_arrav2, tvpe2, base2) {
... }}

{sar_xfor_3_matrix_elements (ar_arrayl. type], basel, [C Macro]
ar_array2, type2, base2,
ar_arrav3. tvpe3, base3) {

...»
{sar_xfor_4_matrix_elements (ar_arrayl. typel, basel, [C Macro]

ar_array2, type2, base2,
ar_array3, type3, base3,
ar_arrav4, tvpe4, base4) {

... }}
{sar_for_matrix_elements (ai_nrrav, tvpe) { [C Macro]

... }}
{sar_for_2_matrix_elements (ar_arravl, ar_arrav2, tvpe) { [C Macro]

... }!
{sar_for_3_matrix_elements (ar_arrayl. ar_array2. ar_array3 [C Macro'

type) {
... }]

{sar_for_4_matrix_elements (ar_arrayl. ar_array2, ar_array3, (C Macro]
ar_arrav4, tvpe) {

... }}

SIDE EFFECT: Sar_ifor_ma1rix_elements creates a loop which executes the body ... once
for each element of a 2 dimensional matrix in ar_array. This macro is
equivalent to—

register type xp, register int X;
register type yp, register int Y,
j/(ar_array—> sar_edimensions == 0)
for (Y = 0, yp = (type) (base);

Y< (ar_array)—>sar_ysize,
+4- Y, yp += (ar_array)—> sar_yincrement)

for (X = 0, xp = yp,
X < (ar_array)—>sar_xsue;
++ X, xp += (ar_array)—> sar_xincrement)

Notice that the macro begins with declarations, and that more declara-
tions may immediately precede the macro. The pointer xp tracks through
the elements of a matrix of ar_array, and may be use in the array body to
access the current element. The type of this pointer is the type argument
to the macro. The address of the (0 0) matrix element is the base argu-
ment to the macro. The variables X and Y are the subscripts of the
current element.

The macros sar_xfor_S_matrix_elements, sar_xfor_8_matrix_elements and

Printed April 27, 1989

ARRAYS 7-36

$ar_xfor_.{_vi,ilri.r_elewcnts are similar except that there are a separate
sol of pointers ilp. r~/' xS]> and x4p for the three arrays ar_arrayl,
ar_array2, ar_array3 and ar_array4. Thus on any iteration of the inner
loop corresponding elements of iwo, three or four matrices are being
pointed at. Each of these matrices has its own base element address and
element pointer type. However, the subscripts are restricted by the sizes
of the X and Y dimensions of ar_arrayl, which should be the smallest of
the matrices There are variables yip, y2p, ySp, yjp for the Y dimension.

Sur^for^matrijr^eltnienlc (ar_array, type) is an abbreviation for—

tar_rfor_mafrix_eleinents (ar_array, type, zp).

and is intended to be used inside sar_Jor^matrices.
Sar^for_?_matri.r_clenieiils. sar_Jor_8_matrix_elcmenls and
*ur_^for_.{_matri.r_cleiiientf< are similar abbreviations where all arrays have
the same element type:? and zip. zSp. zSp and zjp are used as the base
ad dresses.

The x in *<ir_xfoi_v>nlri.r_elemenls stands for "extended". The forms
without ihe x are more common])' used.

(set-array-by-expression "ar_;irray ^.expression) [LISP Function,

WHERE: The element type of ar_array must be numeric.

RETURN'S: .-\r_nrray after its elements have been set.

SIDE EFFECT: Sets all the elements of ar_array using g_expression to compute a value
lor each element. G_expression is an expression to be evaluated for each
element. In that expression, the variables X, Y, Z, T, U, and Vevaluate
to the subscripts of the element. There should be no other variables in the
expression (variables may be substituted for in the expression when the
expression is created by using ' and ,).

(set-array-by-value 'ar_array ' g_value) [LISP Function]

RETURNS: Ar_array after setting its elements.

SIDE EFFECT: Sets the elements of ar_array using values taken from g_value. G_value is
a list of sublists of sublists ... of element values. The innermost lists
correspond to the first (X) dimension: e.g., if x is an array with sizes (2 3)
then—

{set-array-by-valut x '((00 01) (10 11) (20 21)))

and —

(set-array-by-expression
x '{plus X {product 10 Y}))

set the elements to the same values.

NOTE: If elements or sublists are omitted from the end of a list, nil values will be
assumed.

Printed April 27, 1989

ARRAYS 7-37

(slice-of-array ar_array) [LISP Function]
(slice-of-array nr_array '(x_sizc ...) ['(._origin ...) !'(x_$tep ...)]]) [LISP Function]
(slice-of-array ar_arrav x_diniension x_size |x_origin [x_step]]) JLISP Function]

RETURN'S: If only the ar_array argument is given, a new array whose parent is identical
to the current slice of ar_array. and whose current slice is identical to its
parent The elements of ar_array are first allocated, if this has not already
been clone.

If other arguments are given, (slice-of-array ar_array ...) is equivalent to
(place-array (slice-of-array ar_array) ...).

NOTE: The new array share? the elements of ar_array. so that changes to these ar_array
elements will change the corresponding new array elements and vice versa.

NOTE: The has-been-changed and is-readonly attributes of the new array are set to the
corresponding attributes of the old array. The is-immovable attribute is set to
nil.

(summary-of-array ar_anay) [LISP Function]

WHERE: The elements of ar_an ay must be numeric.

RETURNS: A-siimmary structure summarizing the array. All the usual an-array-
s u in mart/ structure attribute? are included.

(sweep-array-blocks) [LISP Function]
sweep-array-blocks-count [LISP Global Variable]
sweep-array-blocks-time [LISP Global Variable]
sweep-array-blocks-bytes [LISP Global Variable]

USE ONLY WHEN: Playing with the array block garbage collector (which is normally
automatic).

SIDE EFFECT: Marks as free all unused blocks in the array block memory allocation area
so they may be reused. Does not compact the block allocation area: call
compact-array-blocks subsequently to do that.

sxveep-array-blocks-count is incremented every time stveep-array-blocks
is called, * sweep-array-blocks-time* has the time taken by the call added
to it, and * sweep-arr ay-blocks-bytes* has the number of bytes recovered
by the sweep added to it. All these variables are initialized to 0. The
time is measured in the same units as ptime: see *ptime-counts-pcr-
second*.

RETURNS: The sum of the number of fixnum's in all the free blocks.

Printed April 27, 1989

ARRAYS 7-38

(transpose-array *ar_array :x_dimension-l :x_dimension-2) [LISP Function]

RETURNS: Ar_array after it is modified

SIDE EFFECT: Transposes (exchanges) the two specified dimensions within both the
current ar_array slice and its parent. The actual data elements are not
moved: rather all the dimension parameters in the array object are
exchanged.

(uneval-object 'ar_array [t]) [LISP Function]
default-array-file [LISP Global Variable]
cache.ar [UNIX File Name]

EQUIVALENT TO: The usual uneval-object, except that if the array has a / has-been-
clianged attribute, then—

[write-array-elements ar_array * default-array-file*)

is called. Also ar_array's lias-parent-sizes, has-parcut-increments,
has-desired-sizes. lias-desired-origins, has-steps. has-pareni- offsets,
has-parent-scales, and has-parities values are output with some edit-
ing The ends of the list values of these attributes are truncated in the
same manner as the do-shorten option truncates the lists when they
are gotten. Also, has-parenl-sizes is renamed has-sizes, has-parent-
in ere men Is is renamed has-incremenls, has-parent-offsets is renamed
has-offsets, and has-parent-scales is renamed has-scales.

NOTE: *defaull-array-file* is a global variable whose default value is—

(cache.ar end-of-file).

(write-array-elements 'ar_array 'g_array-file) [LISP Function]

SIDE EFFECT: Writes the parent of ar_array to the file location specified by g_array-file.
Sets the has-array-file attribute of ar_array to g_array-file, and the has-
array-format attribute to the value of * computer-format*. Sets the has-
been-changed attribute to nil.

See HAS-ARRAY-FILE under an-array for the format of g_array-file.

NOTE: G_array-file may have one of the forms—

(s_file-name end-of-file)
(s_volume-name end-of-volume)
(s_volume-name x_file-number end-of-file).

In these cases the last element of the g_array-file list will be changed to an
appropriate number before it is stored in the has-array-file attribute.

Printed April 27, 1989

ARRAYS 7-39

(write-catalog 'ca_catalog 'ar_arra\j [LISP Function]

SEE: Vneval-object (in this chapter), which is called to produce the exact value to be
written into the catalog

X-dimension [LISP Global Constant)
Y-dimension [LISP Global Constant]
Z-dimension [LISP Global Constant]
T-dimension [LISP Global Constant]
U-dimension [LISP Global Constant]
V-dimension [LISP Global Constant]

VALUE: The integers 0 [X-dimension) through 5 (V-dimension) identifying the different
dimensions of arrays.

NOTE: The X dimension is first when listing subscripts, dimension sizes, etc., and the V
dimension is last.

NOTE: The standard storage organization for arrays is a contiguous list of elements with
the X subscript varying fastest and the V subscript slowest. Other organizations
may be obtained by explicitly specifying the has-parent-increments attribute.

Printed April 27, 1989

CHAPTER 8

BASIC ARITHMETIC

1. GLOSSARY.

(absolute-value-array-elements lar_ontput |'lar_input]) [LISP Function]

WHERE: Both arrays arc similar and lai_input defaults to lar_output.

RETURNS: Lar_outpur alter it? elements have been set.

SIDE EFFECT Sets each element in lnr_output to the absolute value of the corresponding
element in lar_input Tin i\\c> arrays may have different exponents.

(accumulate-filter "lai_array _dimcnsion) [LISP Function'

RETURNS: Lar_array is relumed alter the lar_array elements are modified to hold the
desired result

SIDE EFFECT: Applies a liltei th;ii computes the sum of all values with equal or lower
subscripts for the given dimension of the given lar_array. Thus the out-
put for subscript j in the given dimension is the sum of the input for sub-
scripts 0. 1. j.

BUGS: Overflow is handled by doing modulo arithmetic.

(add-arrays 'lar_output 'lar_input-l [*lar_input-2]) [LISP Function]

WHERE: The arrays are similar and have the same exponent, and lar_input-2 defaults to
lar_output.

RETURNS: Lar_output after its elements have been modified.

SIDE EFFECT: Adds each element of lar_input-l to the corresponding element of
lar_input-2 and stores the result in the corresponding element of
lar_output.

BUG: The addition is done using modulo arithmetic in event of overflow.

BASIC ARITHMETIC 8-1

BASIC ARITHMETIC 8-2

(add-to-array-elements "1.11 ;i 11 :»> "11 siddfiid) [LISP Function:

RETURNS Lnr_arra\ alter it* elements have been modified.

SIDE EFFECT: Add- n_addeiul to fill elements of lar_array.

BUG: Tin- addition 1- done iiMttg modulo arithmetic in the event of overflow.

(arccos-array-elements *lar_outpui "lar inputj) [LISP Function]

WHERE: Boih array* are similar and lar_input defaults to lar_output.

RETURNS: Lai_outpui after its elements have been set.

SIDE EFFECT: Set? each element in lar_output to the arc cosine of the corresponding ele-
ment in lar_input. The two arrays may have different exponents.

(arcsin-array-elements 'lar_ouipni 'l;ir_jnputj) [LISP Function]

WHERE: Both arrays are similar and lar input defaults to lar_output.

RETURNS: Lar_onipiii after n- element* have been set.

SIDE EFFECT: Sets eadi element m Lu _ou t put to the arc sine of the corresponding ele-
ment in Lir_input. The two arrays may have different exponents.

(contrast-of a!_ni| in lx_width ..) jLISP Function
'i;_l..n kciC'lin-i u_cenlrr !

WHERE: Tin- x_\vidth arc noii-negativc integers and both n_background and n_center
default to 1.0.

RETURN'S: An output array. lar_output. whose elements are the "convolution" in the
sense of the conmlce function of ar_input and a kernel with a special form
which is parametrized by (x_\vidth ...). n_background. and n_center. The
kernel is of size-

(2 * x_width + 1. ...)

and has for all its elements except the center element the value-

- n_background / ((2 * x_width + 1) * ...)•

where the denominator is the area of the kernel. The center element has the
value-

n_center - n_background / ((2 * x_width + 1) * ...).

The effect is to output into each lar_output element (X, ...) n_center times
the ar_input element (X+x_width, ...) minus n_background times the average
of the ar_input elements in a (2*X_width+l ...) rectangular box centered on
the ar_input element just indicated.

BUGS: Missing values are not handled Overflow is handled by doing modulo arithmetic.

Printed April 27, 1989

BASIC ARITHMETIC 8-3

(convolution-of nr_inpui ar_k< mel) iLISP Function1

RETURN^- A (KM 2 dimensional array lar_omput with exponent the same a.s ar_input
(after its elements arc converted to u-long's) whose elements are computed by
passing it and ihe other parameters to the cmirolulion function Prepare-
array is applied to ar_input

(convolve "lar.outpiit "lar_input ar_kemel) jLISP Function!

WHERE: The arrays are treated as 2 dimensional, and the sizes of the lar_output dimen-
sions must be one more than sizes of the corresponding lar_input dimensions
minus the sizes of the corresponding ar_kernel dimensions.

RETURN'S- Lai_outpui after its elements are set.

SIDE EFFECT Stores the "convolution" of lar_input and ar_kernel in lar_output. To be
more precise, what is stored is the convolution of lar_input and the matrix
whose (X Y) th element is the (-X. -Y) tli element of ar_kernel: or in other
words, the (X. ^ I th element of lai_outpui is the tcalar-prodtict of the
;ii_keiiH'l and a slice of iar_input with origins (X. Y).

(cos-array-elements lai_oiupiii lar_input I [LISP Function

WHERE Both arrays are similar and lar_input defaults ID lai_output.

RETURN'S Lai_output alter its elements have been set.

SIDE EFFECT Sets each element in lnr_outpin to the cosine of the corresponding element
m lar_input. The two arrays may have difierent exponents.

(del2g-kernel |n_xwidth n_ywidth) (LISP Function]
i (n_xoffset n_yoflset))

WHERE: N_xoflset and n_yoffset are > 0 and default to 0.5.

RETURNS: A block floating point array with exponent -24 representing the kernel com-
puted as the minus of the Laplacian operator applied to the Gaussian func-
tion. The Laplacian operator is assumed to be scaled by n_xwidth and
n_y\vidth, so actually the second derivative with respect to x is multiplied by
n_x\vidth ** 2, and the second derivative with respect to y by n_ywidth ** 2.
The sizes of the X and Y dimensions are

2 * xsize -I- (ceiling n_xoffset) + 1

and

2 * ysize + (ceiling n_yoffset) -I- 1

where xsize and ysize are choosen as indicated below. The value of the point
with subscripts (X Y) is-

(1 / (pi * n_xwidth * n_ywidth))
* (1 - (n_X / n_xwidth) ** 2 - (n_Y / n.ywidth) ** 2)
* (exp (1 - (n_X / n_xwidth) ** 2 - (n_Y / n_ywidth) ** 2))

Printed April 27, 1989

BASIC ARITHMETIC 8-4

where

n_X = X - xsize - n_\oiiset

and

n_Y = Y - ysize - n_> offset

This function is positive inside the ellipse

(n_X , n_xwidth) ** 2 + (nJY n_ywidth) ** 2 < 1.

zero on that ellipse, and negative outside the ellipse. The total integral of the
function is 0. The function is normalized to have the integral +1 inside the
ellipse and the integral -] outside the ellipse, where for these purposes the
function is assumed to be continuous and extend to infinity.

Xsize and ysize are chosen to be large enough so that the integral of the con-
tinuous function over all points (X Y) outside the kernel returned by del~y-
kerncl is less than the value of the global variable 'kemel-cvloff*. In comput-
ing these sizes. n_xoflset and n_yoffset are assumed to be 0. as a worst case.

(derivative-filter lar_array '._dimension x_width) [LISP Function^

RETURNS: A slice of lar_array is returned after the lar_array elements are modified so
that the slice holds the desired result. The size of the given dimension for the
slice is x_width-l less than the size of that dimension for lar_array, and the
slice origin is 0 for that dimension. Other dimensions are not affected.

SIDE EFFECT: Applies a derivative filter of the given x_width for the given x_dimension
of the given lar_array. The derivative filter forms the sum of the terms -

(6 / (x_width ** 3 - x_width)) * (- x_width + 1 + 2 * i) * x (i)

for i = 0, 1, ..., x_width - 1. The normalization constant is chosen so that
if x(i) = i the result will be 1. The output for subscript j in the given
dimension is computed by letting x(i) equal the input for subscript j+i.

NOTE: The lar_array elements that are not in the returned slice are modified in
undefined ways.

BUGS: Missing values are not handled. Overflow is handled by doing modulo arithmetic.

Printed April 27, 1989

BASIC ARITHMETIC 8-5

(dither x_size) Lisp Function'
(cached-dither _size)
* default-dither-size*

WHERE: X_sizc is a power of two

RETURNS: Dilher and cacheil-dither return the Dither Matrix of the given size the

mutrices Dn of the paper Jams, J.F., Judice, C.N., and Ninke. W.H.. A Sur-
rey of Tehviques for the Display of Continuous Tone Pictures on Bilevel
Displays. Computer Graphics and Image Processing. 5, 13-40 (1976). where n
is the matrix size. x_size. The matrix is square.

Cached-dither remembers all dither matrices it has computed, saving them.
It returns previously computed matrices without recomputing them. Only
those of size <= 6-1 are saved at the moment.

'defaiill-tlithcr-si-e' is a global variable set to a default value suitable lor the
size parameter It itself defaults to 8.

(dxg-kernel |n_\wiclth n_ywiclth) iLISP Function
(n_xoflset n_yoflset))

WHERE _xoflset and n_yofiVl are > 0 and default to 0.5.

RETURN'S: A block floating point array with exponent -'24 representing the kernel com-
puted as the minus of the x partial derivative applied to the Gaussian func-
tion. The sizes of the X and Y dimensions are

2 * xsize •+ (ceiling n_xoffset) -I- 1

and

2 * ysize -I- (ceiling n_yoffset) + 1

where xsize and ysize are choosen as indicated below. The value of the point
with subscripts (X Y) is-

(2 / ((sqrt pi) * n_xwidth * n_vwidth))
* (n_X / n_xwidth)
* {exp (- (n_X / n_xwidth) ** 2 - (n_Y / n_ywidth) ** 2))

where

n_X = X - xsize - n_xoffset

and

n_Y = Y - ysize - n_yoffset.

This function is positive for X > 0 and negative for X < 0.

Printed April 27 1989

BASIC ARITHMETIC 8-6

The total integral of the function is 0. The function is normalized to have the
integral +1 on the hall plane X ';. 0 and the integral -1 on the halfplane X <
0. where for these purposes the function i* assumed to be continuous and
extend to infinity.

Xsize and ysize are chosen to be large enough so that the integral of the con-
tinuous function over all points (X Y) outside the kernel returned by dxg-
kervel is less than the value of the global variable *kernel-cutoff*. In comput-
ing these sizes. n_xoffset and n_yoh*set are assumed to be 0, as a worst case.

(expand-missing lar_output 'ar_input 'ar_original [LISP Function]
j'(x_xsize x_ysize) [:x_count]j)

WHERE: Lar_output, ar_input. and ar_original all have the same exponent and the same
dimension sizes except for the X and Y dimensions. Lar_output and ar_original
have the same X and Y dimensions, while the X and Y dimensions of ar_input
are respectively 2*x_xsize and 2*x_ysize larger than the X and Y dimensions of
lar_output.

X_xsize. X_ysize. and x_count all default to 1

RETURN?: The number of non-missing elements of ar_input replaced by missing values
in lar_output.

SIDE EFFECT: Copies the elements of ar_input to lar_output. replacing some of the non-
missing values by missing values. The purpose of this is to expand a sky
region (region of all missing values in a laser radar image) which has been
shrunk by shrink-vussivg. Ar_original is the original array before it was
shrunk by shrink-missing.

An element is replaced by a missing value when it is copied if (l) the ele-
ment is not missing in ar_input, (2) the element is missing in ar_original,
and (3) there are x_count or more missing values in the box in ar_input of
size

(2*x_xsize+l 2*x_ysize+l)

centered on the element, not counting the element itself.

Printed April 27, 1989

BASIC ARITHMETIC 8-7

(expand-missing-of ar_input ar_original [LISP Function!
(N_xsizf xj'MZf) [_count ._repeat ...!jj)

WHERE: Ar_input and aboriginal should have the same dimension sizes. X_repeat
defaults to infinity, and may also be given as nil to specify infinity.

The part of the argument list beginning with '(x_xsize x_vsize) may be repeated
as long as any repetition begins with a non-empty list value.

RETURNS: A new arr;i\ lar_output which is computed by passing ar_input and thcother
parameters through eipand-misaing x_repeat times. As an optimization, the
process stops when no more replacement is possible, so x_repeat can be a very
large number

If no replacement is done in computing lar_output, ai_input is returned in
place of lai_output.

Prepare-array is applied to ar_input.

If more than one set of size'count, repeat parameters is given, these parame-
ters arc removed from the parameter list as they are used, and the process is
repeated with the last l;ii_output substituted for ar_input.

(exponentiate-array-elements hn_output [lar_inputi) [LISP Function

WHERE Both arrays are similar and lar_input defaults to lar_output

RETURNS Lar_output after its elements have been set.

SIDE EFFECT: Sets each element in lar_output to the exponential function of the
corresponding element in lar_input. The two arrays may have different
exponents.

(gaussian-kernel '(n_xwidth n_ywidth) [LISP Function]
['(n_xoffset n_yoffset)])

WHERE: N_xoflset and n_yoffset are > 0 and default to 0.5.

RETURNS: A block floating point array with exponent -24 representing the kernel com-
puted by the Gaussian function. The sizes of the X and Y dimensions are

2 * xsize + (ceiling n_xoffset) -I- 1

and

2 * ysize -I- (ceiling n_y offset) + 1

where xsize and ysize are choosen as indicated below. The value of the point
with subscripts (X V) is-

(1 / (pi * n_xwidth * n_ywidth))
* (exp (- (n_X / n_xwidthj ** 2 - (n_Y / n.ywidth) ** 2))

Printed April 27, 1989

BASIC ARITHMETIC 8-8

where

ll_.\ — X - \MiH- - ll_N0ll-('l

and

it "S" = Y - ysizc - n_yollsci

Xsize and ysizc arc chosen to be large enough so that the integral of the con-
tinnon- function over all point? (X Y) outside the kernel returned by
(imtxtiun-kcriiel is less than the value of the global variable *kernel-culoff*. In
computing tlivsv size.-. n_xoffset and n_yoffset are assumed to be 0. as a worst
C.l.-M .

The normalization constant is chosen so that the integral of the kernel would
be l if it where a continuous function extending to infinity.

(interpolation-filter lar_array "x_dimension n_factor [LISP Function
ii_oll>et !

RETURNS A slir- of lar_array is returned after the lar_array elements are modified so
lliai 11.- slice holds the desired result. The size of the given dimension for the
slice l- as large as possible subject to the conditions that for all slice sub-
scrip;.- j

- epsilon < n_o(iset 4- j * n_factor
< ._input-dimension-size - 1 + epsilon.

where epsilon m 2' is included to compensate for rounding errors. The slice
origin is 0 for that dimension. Other dimensions are not affected.

SIDE EFFECT: Interpolates the input values for the given dimension so that the output
has the given size. Linear interpolition is used. Output subscript 0 has
the value associated with input subscript n_offset, and in general output
subscript j has the value associated with input subscript

n_offset + j * n_factor

Non-integer input subscripts given by this formula are handled by linearly
interpolating input elements with the next lower and higher integer sub-
scripts. Input subscripts less than 0 by an amount less than or equal to
epsilon are treated as 0, and similarly input subscripts larger than the
maximum input subscript by an amount less than or equal to epsilon are
treated as the maximum input subscript.

NOTE: The lar_array elements that are not in the returned slice are modified in
undefined wavs.

Printed April 27, 1989

BASIC ARITHMETIC 8-9

(interpolation-of ar_input (x_size)) (LISP Function!

WHERE: The x_size are non-negative

RETURNS: An output array. lnr_output. whose elements are the linear interpolation, in
the sense of the interpolation-filler function, of the elements of ar_input. The
dimension sizes of lar_output are (x_size ...). The expansion factors for
interpolation-filler are automatically chosen to be positive and to give the
right lai_output size? (and the offsets are chosen to be zero).

Bl:C. Overflow i* handled by doing modulo arithmetic. *

•kernel-cutoff* [LISP Global Variable]

VALUE: A floniim. defauli 0 0] The amount ol a kernel that may be discarded in order
to make a kernel of infinite extent lit into a small finite array. Measured as a
fraction bounding the integral of the discarded part of the kernel divided by the
integral of the kernel over the part of the space where the kernel has the same
sign ii do<-s in i he discarded part The measurement is generally made by using
integration o\' the continuous kernel function, not its descrete representation

(local-maxima-of ai_mpiu (x_size .11 (LISP Function:

WHERE The x_size are non-negative,

RETURNS: An output array lar_ouipul. whose element:- are the maxima of the elements
ol ;i rectangular box centered at the corresponding point of lar_input. The
sizes ol the box are C2_size+1. ...). The maximum is computed successively
along each dimension ol ar_input by calling the function maximum-filter for
that dimension. The dimensions of lar_output are made identical to the
dimensions of ar_input. by first expanding lar_input by appropriate amounts.
This, and the conversion of element type to a-long, are accomplished by pass-
ing the input array to the function prepare-array. The input array is
returned only when it has type a-long and the x_size ... arguments are all
zero.

(local-minima-of ar_input :(x_size ...)) [LISP Function]

WHERE: The x_size ... are non-negative.

RETURNS: An output array, lar_output. whose elements are the minima of the elements
of a rectangular box centered at the corresponding point of lar_input. The
sizes of the box are (2*x_size+l. ...). The minimum is computed successively
along each dimension of ar_input by calling the function minimum-filter for
that dimension. The dimensions of lar_output are made identical to the
dimensions of ar_input, by first expanding lar_input by appropriate amounts.
This, and the conversion of element type to a-long, are accomplished by pass-
ing the input array to the function prepare-array. The input array itself is
returned only when it has type a-long and the x_size ... arguments are all
zero.

Printed April 27, 1989

BASIC ARITHMETIC 8-10

I log-array-elements lar_oulpin lnr_input]) [LISP Function'

WHERE: Both arrays are similar and lar_input defaults to lar_output.

RETURNS: Lar_output alter it* elements have been set.

SIDE EFFECT: Set* each element in lar_output to the logrithm of the corresponding ele-
ment in lar input. The two arrays may have different exponents.

(mark-missing "lar_output 'ar_input [LISP Function!
'(n_minimum n_maximum)
;"(n_lo\\er n_upper) "(x_xsize x_ysize) j;x_countj]l)

WHERE: Lar_otitput and lar_input have the same exponent and the same dimension
sizes except for the X and Y dimensions. The X and Y dimensions of lar_input
are respectively 2*_Nsize and 2*x_ysize larger than the X and Y dimensions of
lar_output. N_minumum. n_maximum, x_xsize, x_ysize, x_count, n_lower,
and n_upper may be given as nil if they are missing. X_xsize and X_ysize
default to 1. and x_count defaults to 2 N_minimum and n_lower default to
negative infinity, while n_maximum and n_upper default to positive infinity.

RETURNS: The number of missing values in lar_output.

SIDE EFFECT: Copies or inpui to lai_out put replacing bad pixel values by the missing
value n*7. Values outside the range from minimum to maximum,
inclusive, arc bad

If either n_lower or n_upper is given, then a value is replaced by nil unless
the

(2*x_xsize+l 2*x_ysize+l)

box centered on the pixel contains at least x_count pixels (not counting
the center pixel) in the range

(pixel-value+n_lo\ver pixel-value+n_upper).

inclusive.

(mark-missing-of 'ar_input '(n_minimum n_maximum) [LISP Function]
['(njower n_upper) ['(x_xsize x_ysize) ['x_count]]])

RETURNS: A new array lar_output which is computed by passing it and the other
parameters to the mark-missing function. Preparc-array is applied to
ar_input.

Printed April 27, 1989

BASIC ARITHMETIC 8-11

(maximize-array-elements-with lai_array n_number) iLISP Function!

RETl'RNS: L:ir_nrrny alter its elements have been modified

SIDE EFFECT. Cadi element of the array is replaced by the maximum of the element
value and n_number. In other words, elements with values below
n_number are replaced by n_number.

(maximize-arrays lar_output lar_input-] ['lar_input-2]) [LISP Functionj

WHERE: The arrays are similar and have the same exponent, and lar_input-2 defaults to
lar_output

RETURNS: Lar_output after its elements have been modified.

SIDE EFFECT: Takes the maximum of each element of lar_input-l with the correspond-
ing element of lar_input-2 and stores the result in the corresponding ele-
ment of lar_output.

(maximum-filter lni_array "x_climension :x_widthj 'LISP Function]

RETURN'S: A slice of lai_anay is returned after the lar_array elements arc modified sc
that the slice holds the desired result The size of the given dimension for the
slice is x_width-| less than the size of that dimension for lar_arra\. and the
slice origin is 0 lor that dimension. Other dimensions are not affected

SIDE EFFECT: Applies a filter which forms the maximum of the last x_width input values
for the given dimension of the given lar_array. Thus the output for sub-
script j in the given dimension is the maximum of the input for subscripts
j. j+1. ...: j+x_vidth-l.

NOTE: The lar_array elements that are not in the returned slice are modified in
undefined ways.

BUG: Missing values are not handled.

(minimize-array-elements-with 'lar_array 'n_number) (LISP Function]

RETURNS: Lar_array after its elements have been modified.

SIDE EFFECT: Each element of the array is replaced by the minimum of the element
value and n_number. In other words, elements with values above
n_number are replaced by n_number.

(minimize-arrays Mar_output 'lar_input-l ['lar_input-2]) [LISP Function]

WHERE: The arrays are similar and have the same exponent, and lar_input-2 defaults to
lar_output.

RETURNS: Lar_output after its elements have been modified.

SIDE EFFECT: Takes the minimum of each element of lar_input-l with the corresponding
element of lar_input-2 and stores the result in the corresponding element
of lar_output.

Printed April 27, 1989

BASIC ARITHMETIC 8-12

(minimum-filter 'lar_array "x_dimension _\vichh) [LISP Function]

l.'ETt HNS: A slice of lar_array is returned alter the lar_array elements are modified so
that the slice holds the desired result. The size of the given dimension for the
slice is x_width-l less than the size of that dimension for lar_array, and the
slice origin is 0 for that dimension. Other dimensions are not affected.

SIDE EFFECT: Applies a filter which forms the minimum of the last _width input values
for the given dimension of the given lar_array. Thus the output for sub-
script j in the given dimension is the minimum of the input for subscripts
j, j+L ..., j+x.width-1.

NOTE The lar_array elements that are not in the returned slice are modified in
undefined ways.

BUG: Missing values are not handled.

Imultiply-array-elements lar_output [LISP Function]
:lar_input-] !"lar_input-2)

WHERE: All three arrays are similar and lar_input-2 defaults to lar_output.

RETURN'S: Lar_output after its elements have been set.

SIDE EFFECT: Sets each element in lar__output to the product of the corresponding ele-
ments in the two inputs. The three arrays may have different exponents

BUG: The multiplication is done using modulo arithmetic in event of overflow.

(multiply-array-elements-by lar_array ;n_multiplier) [LISP Function]

RETURNS: Lar_array after its elements have been modified.

SIDE EFFECT: Multiplies each element of lar_array by n_multiplier.

BUG: The multiplication is done using modulo arithmetic in event of overflow.

(overlay-missing 'lar_output 'lar_input) [LISP Function]

WHERE: Lar_output and lar_input must have the same dimension sizes and exponent.

RETURNS: Lar_output after setting some of its elements.

SIDE EFFECT: Replaces every missing element value in lar_output by the corresponding
element value in lar_input.

(power-array-elements Mar_output [Mar_input] 'n_exponent) [LISP Function]

WHERE: Both arrays are similar and lar_input defaults to lar_output.

RETURNS: Lar_output after its elements have been set.

SIDE EFFECT: Sets each" element in lar_output to the n_exponent power of the
corresponding element in lar_input. The two arrays may have different
exponents.

Printed April 27, 1989

BASIC ARITHMETIC 8-13

(scalar-product 'ar_input-l "ar_input-2) [LISP Funriion'

WHERE: The two arrays are similar

RETURNS: A number. The scalar product of the two arrays. More precisely, the sum of
the products ol corresponding elements in the arrays. A/7 is returned if either
array has any missing values.

(set-array-elements *lar_arrav n_value) [LISP Function;
(set-array-elements "lar_arrav nil) [LISP Function'

RETURN'S: Lar_array after its elements have been set.

SIDE EFFECT: Sets all elements of lar_array to n_value or nil.

(set-missing-to lar_anay n_valuej [LISP Function

RETURN'S. Lar_array after setting some of its elements.

SIDE EFFECT: Replaces every missing value in lar_nrray by n_value.

(shrink-missing 'lar_output ar_input x_countj) [LISP Function

WHERE: Lar_outpui and ai_inpui have the same exponent and the same dimension sizes
excepi for the X and Y dimensions The X and Y dimensions of ar_input are
larger by 2 than the X and Y dimensions of lar_output. X_count defaults to 2
and must be > — 2.

RETURNS: The number of missing values left in lar_output.

SIDE EFFECT: Copies the elements of ar_input to lar_output, replacing some of the miss-
ing values by estimates. In general the output element equals the input
element unless the input value is missing and has at least x_count non-
missing 2-dimensional 8-neighbors.

Missing values are replaced by values obtained through inspection of the
2-dimensional 8-neighbors of the missing value.

Given a pair of non-missing neighbors, the missing value is replaced by
their average. Generally there are many such pairs, from which one is
chosen whose two values are closest together. If there are many closest
pairs, one is choosen which has the lest bend in the line from one of the
pair points to the missing value point to the other pair point.

Printed April 27, 1989

BASIC ARITHMETIC 8-14

(shrink-missing-of 'ar_jnpm JL1SP Function]
_C0Ullt ... 1

WHERE More than one x_count value may be given.

RETURNS A new array lar_outpui which is computed by passing ar_input and x_count
through «lirhik-mi$$ing. Preyxire-array is applied to ar_input.

If more than one x_count parameter is given, each x_count parameter is
removed from the parameter list as it is used, and the process is repeated
with the last lar_output substituted for ar_input. As an optimization, the
process stops when there are no missing values left, in lar_output.

(sin-array-elements "lur_output lai_inpui) [LISP Function;

WHERE: Both arrays are similar and lar_input defaults to lar_output.

RETURNS: Lar_output after its elements have been set.

SIDE EFFECT: Sets each element in lar_output to the sine of the corresponding element
in]ar_mput. The two arrays may have different exponents.

(square-root-array-elements lar_output lar_input) [LISP Function,

WHERE Both arrays are similar and lar_input defaults to lar_output.

RETURN'S; Lar_ouiput after its elements have been set.

SIDE EFFECT: Set- each element in lar_output to the square root of the corresponding
element in lar_input. The two arrays may have different exponents.

(subtract-arrays lar_output i'lar_input-li :lar_input-2) [LISP Function]

WHERE: The arrays are similar and have the same exponent, and lar_input-l defaults to
lar_output.

RETURNS: Lar_output after its elements have been modified.

SIDE EFFECT: Subtracts each element of lar_input-2 from the corresponding element of
lar_input-l and stores the result in the corresponding element of
lar_output.

BUG: The subtraction is done using modulo arithmetic in event of overflow.

(sum-filter Mar_array 'x_dimension 'x_width) [LISP Function]

RETURNS: A slice of lar_array is returned after the lar_array elements are modified so
that the slice holds the desired result. The size of the given dimension for the
slice is x_width-l less than the size of that dimension for lar_array, and the
slice origin is 0 for that dimension. Other dimensions are not affected.

SIDE EFFECT: Applies a filter that computes the mean of the last x_width input values
for the given dimension of the given lar_array. Thus the output for sub-
script j in the given dimension is the mean of the input for subscripts j,
j+1, ...? j+x_width-l.

NOTE: The lar_array elements that are not in the returned slice are modified in
undefined wavs.

Printed April 27, 1989

BASIC ARITHMETIC 8-15

BUGS: Mining values are not handled Overllou is handled by doing modulo arithmetic.

Printed April 27, 1989

CHAPTER 9

BIT GRAPHICS

1. GLOSSARY.

(a-bitgraph-parameter-set has-liue-uidth :x_line-width [LISP Macro]
hue-1-width x_l-width lxas-1-height 'x_l-height
hus-5-width x_5-width has-5-height 'x_5-height
has-10-widfh '_10-width hus-10-hcight _10-height)

default-bitgraph-parameter-set [LISP Global Variable^

USE: A-hilyraph-purameler-fiel provides parameters for drawing bitgraphs that are
dependent upon the resolution of the bit-graph. E.g., such parameters as would be
different lor it 1 $00X1800 point screen and lor n 512X4S0 screen.

(lcfaull'bitgrapli'par(ime(er'sel1> i used b\ bit graph functions that need such
parameters as the default bitgraph parameter set.

HAS-LIXE-WIDTH: Tin* is the recommended minimum line width in pixels for drawing
lines.

HAS-] -WIDTH

HAS-1-HEIGHT:

HAS-5-WIDTH

HAS-5-HEIGHT:

HAS-10-WIDTH:

HAS-10-HEIGHT: These are the recommended width and height of ruler lines. x_10-height
and x_10-width are for the lines that, mark every 10 measurement units.
X_5-width and x_5-height are for the lines between these that mark
every 5 measurement units, and x_l-width and x_l-height are for the
other lines that mark every 1 measurement unit. Height (but not width)
may be 0 to eliminate a line.

BIT GRAPHICS 9-1

BIT GRAPHICS 9-2

(a-character-set has-file sjilo
has-font "s_font
has-sizes \x_xsize 'x_ysize||

a-character-set
cset_

(read-character-set 'cset_character-set)

(has-file 'cset_character-set)
(has-font 'cset_character-set)
(has-sizes 'cset_character-set)
(has-x-range cset_charactei-set)
(has-y-range 'cset_charncter-set)
(has-width-range 'cset_characier-set)
(has-width-estimate 'csel_character-sei)
(has-been-read "cset_characier-set)
(has-dispatch-array 'cset_character-set)
(has-bitgraph-array csct_(liaiacler-sei)

USE: A-character-set defines the bitgraph
stvie and size.

[SKETCH Type Macro

[SKETCH Type Object;
[Argument Prefixj

[SKETCH Attribute Macro]

[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH

Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute

Macro]
Macro]
Macro]
Macro]
Macro]
Macro'
Macro.
Macro:
Macro]
Macro

masks of a character set with a particular

The character set is delined in a file stored in the format of the Berkeley UNIX font
library: see vfont(o). This file is read into memory where its information is stored
in two arrays: the dispatch array and the bitgraph array. Reading the file and
creating the arrays is not done until the function read-characler-set is applied to
the character set. Until then the character set attributes not set when the charac-
ter set is created are nit.

HAS-BEEN-READ:

READ-CHARACTER-SET: The has-been-read attribute is nil if the character set has not
been read from the font file (has-file), or if the dispatch and bit-
graph array elements (see HAS-DISPATCH-ARRAY below) are
not allocated. This latter happens when the character set is
written into a catalog and read back from the catalog without
allocating the elements of these arrays.

Otherwise has-been-read is (.

The function call—

(read-character-set cset_character-set)

reads the character set and allocates the array elements, if these
have not already been done, and returns the character set as its
value in any case. This function call is usually used as the argu-
ment to C functions requiring the character set after it has been
read.

Printed April 27, 1989

BIT GRAPHICS 9-3

HAS-SIZES: These are the width (._xsize) and height (x_ysize) in pixels between charac-
ters. For a character set with variable width characters, the width may not
be the maximum width of any character, but should be the maximum likely
average width of the characters in any set of English words containing at
least 5 characters (including spaces).

X_xsize defaults to the value of the ha^-widtli-eatimale attribute, while
x_vsize defaults to the ceiling of has-y-range maximum minus the has-y-
range minimum times 1.2.

HAS-X-RANGE:

HAS-Y-RANGE:

HAS-W1DTH-RANGE: These are lists of the form '(x_minimum x_maxiinum) giving the
smallest and largest X and Y coordinates of any pixel in any charac-
ter of the character set; and giving the smallest and largest width of
any character in the character set. The width of a character is the
number of pixels the cursor is to be moved to the right when the
character is drawn (and has nothing to do with how many pixels the
character turns on).

HAS-WIDTH-ESTIMATE: This is the width of the widest capital letter other than M or \V.
It may be used to estimate the horizontal size of the character
set.

HAS-FONT: A symbol naming the font. Some of the fonts available and their has-sizes

Printed April 27, 1989

BIT GRAPHICS 9-4

Font

fiied-roman

hershey-bold

hershey-iluhc

hershey-romaii

nomt-bold

nomc-italir

nonit -) Oman

screen-bold

screen-roman

script

serij-roman

shadow

times-bold

times-italic

times-roman

Has-Sizes

(26 36).
(61 83).

(26 36),
(61 82),

(26 36),
(61 83),

(9 14). (12 21), (16 27). (19 32). (25 42)

13 19). (15 21). (18 25), (20 28). (22 31), (24 34)
31 42). (35 49) (40 54), (44 59). (48 66). (53 72)
79 107)

13 19). (15 21). (18 25), (20 27). (22 31), (24 33)
31 41). (35 48). (40 54), (44 59), (48 66), (53 71)
79 105)

13 19). (15 21). (18 25), (20 28). (22 34), (24 34)
31 42), (35 49). (40 54), (41 59). (48 66), (53 72)
79 107)

17 27). (21 32). (24 37)

16 27 j. (21 32). (24 371

10 27). (20 32). 123 37)

8 15). (9 17)

6 9). (7 12). (7 15). (8 17), (8 17)

51 51)

(7 13), (7 14), (7 15), (8 17), (9 19)

(31 42)

(13 16). (15 19), (17 24), (19 26), (22 29), (24 31), (26 34),
(30 39), (35 45), (39 50), (43 55), (48 61), (52 68), (60 78),
(78 100)

(12 17), (14 19), (16 23), (18 25), (20 28), (22 32), (24 34),
(28 39), (32 45), (36 50), (40 56), (44 61), (48 67), (56 77),
(72 99)

(14 19), (16 23), (18 26), (20 28), (23 32), (25 35), (27 37),
(32 45), (36 50), (41 56), (45 62), (50 69), (54 74), (63 88),
(81 112)

If a-character-set has non-mV font and has-sizes it is enterred in the font data
base maintained for use by the find-character-set function. See the descrip-
tion of that function.

Printed April 27, 1989

BIT GRAPHICS 9-5

HAS-FILE: The UNIX lout file (>te \Toni(5) for format). This file is searched for using the
directory list provided by—

(sialun fonl-search-pafli).

(bar-graph 'bgar_omput :lor inptil 'ruLruler [LISP Function,
|'s=_mode !

WHERE: Tiie X dimension size of bgar_output must be the X dimension size of lar_input
times some integer x_vidth > 0.

S_mode must be either draw, erase, reverse, or invisible: the default is draw

SIDE EFFECT Logically OR? (if s_niode is draw) a bar graph of Iar_input into
lar_output. The bars run vertically (in the Y dimension) upward (toward
negative Y values) lor some bar height chosen by the associated lar_input
element value The height of the bar is determined by mapping the ele-
ment value by I he inverse of the affine transformation defined by
ruLruler. and ro HM/* in g the result to the nearest integer. Bars with nega-
tive height arc not drawn, and bars with height larger than the Y dimen-
sion size of bgar_output are clipped to that Y dimension size.

The width ol each bar in the X direction is x_width.

Missing elements ol lar_input do not produce a bar

(bar-graph-of "ar_input x_height x_width;) [LISP Function'

WHERE: X_height > 0. x_wiclth > 0. X_width defaults to 1.

Lar_input must be one dimensional.

RETURNS: A new bitgraph array bgar_output whose elements are set by passing it to
bar-graph. Bgar_output has X dimension size equal to x_width times the X
dimension size of ar_input Bgar_output has Y dimension size equal to
x_height.

If ar_input's X dimension has a ruler, the ruler for bgar_output's X dimen-
sion is set to the ruler of ar_input's X dimension with the scale multiplied by
x_width.

If ar_input has any non-missing element, the ruler for bgar_output's Y
dimension is set to—

(x_height (0 x_maximum+l))

where x_maximum is the maximum value of any ar_input element. This
ruler is also passed to bar-graph.

Printed April 27, 1989

BIT GRAPHICS 9-6

(bitgraph-box bgat_output n_xminimum 'n_xniaximum [LISP Function;
n_y minimum n_ymaximum "s_model)

WHERE: The limits n_xminimum and n_xmaximum may be exchanged without effect,
and similarly n_yminimum and n_ymaximum.

S_mode must be either draw, erase, reverse, or invisible the default is draw.

RETURNS: Bifgraph-boi returns bgar_output after setting some of its bits.

SIDE EFFECT: Logically OR's (if s_mode is draw) a rectanglular box with horizontal and
vertical sides given by the lines—

X == (ceiling n_xminimum)
X == (floor n_xmaximum)
Y == (ceiling n_yminimum)
Y == (floor n_ymaximum)

into bgar_outpnt.

NOTE: (has-line-width 'default -bit graph-par a in eter-set*)

is a good minimum value for

n_xmaximum - n_xminimum + 1

or

n_ymaximum - n_yminimum + 1

when the purpose is to draw a line that bounds an image, graph, table, or other
figure.

(bitgraph-line bgar_output "n_xl 'n_yl "n_x2 'n_y2 (LISP Function]
!'n_width j's_mode]])

WHERE: N_width may be nil to mean the same thing as a missing n_width argument.

S_mode must be either draw, erase, reverse, or invisible: the default is draw.

RETURNS: Bgar_output after setting some of its bits.

SIDE EFFECT: Draws the line joining the point (xl, yl), and the point (x2, y2), by logi-
cally OR'ing (is s_mode is draw) a parallelogram containing that line into
bgar.output.

The parallelogram starts at the point

(xl - xw/2 - yw/2, yl - yw/2 + xw/2)

and has sides

(x2 - xl + xw, y2 - yl + yw)

and

(yw, - xw)

where

Printed April 27, 1989

BIT GRAPHICS 9-7

length =sqrt ((x2 -\1)**2 + (y2 -yl)**2)
x\v = n_width * (x"2 — xl) length
y\v = n_\vidth * (y2 — yl) length

If n_width is nil, then xu and yw are computed as above and then
transformed bv—

m = (l + 2~1&) * max (W, lywl)

vw = m * vw

which gives the smallest effective width that will draw a visible line.

In order to ensure that the line is drawn exactly the same way, no matter
how it is presented, and in spite of rounding errors, the end points are first
exchanged unless x2 > xl or x2 == xl and y2 > yl.

Before the parallelogram is drawn, the line is clipped so that xl and x2 lie
in approximately the range

(-0.874 +(lxw| +|yw|)/2. xsize -0.126 - (Ixwl +|yw|)/2)

and yl and y2 lie in approximately the range

(-0.874 4- (Ixwl + |ywl)/2. ysize - 0.126 - (Ixwl + lyw|)/2)

The order of operations is thus-

exchange of end points if necessary
clipping
specification of parallelogram
OR'ing of parallelogram

(bitgraph-lines 'bgar_output |n_dot-size] [s_mode] [LISP Function]
[has-origins '(n_xorigin n_yorigin)j
[has-zooms '(n_xzoom n_yzoom)]
['(n_x n_y) ...] [nil] ['ar_array ...j)

WHERE: N_dot-size, n_xzoom, and n_yzoom default to 1, while n_xorigin and n_yorigin
default to 0.

S_mode must be either draw, erase, reverse, or invisible: the default is draw.

RETURNS: Bgar_output after modifying it.

SIDE EFFECT: Logically OR's (if s_mode is draw) into bgar_output lines whose end
points are given by arguments of the form '(n_x n_y) or ar_array For
ar_array arguments, each row of the array represents a point, with the
first column (X subscript equal 0) being the point's X coordinate, and the
second column (X subscript equal l) being the point's Y coordinate. The
array must have exactly two columns (array's X dimension size).

Point arguments may also be missing: these are represented by nil

Printed April 27, 1989

BIT GRAPHICS 9-8

arguments, or by array rows whose elements are missing. The missing
points break the sequence of all points into subsequences of non-missing
points. Each such subsequence defines a broken line obtained by connect-
ing the subsequence points in order. It is these broken lines that are logi-
cally OR ed (ifs_niocle is draw) into bgar_output.

The lines are drawn by moving a circular dot whose size in pixels is
n_dot-size.

(bitgraph-parallelogram bgar_output 'n_\ 'n_y 'n_xl 'n_yl (LISP Function]
n_x- "n_y2 ['s_mode])

WHERE: S_mode must be either draw, erase, reverse, or invisible: the default is draw.

RETURNS. Bgar_output after setting some of its bits.

SIDE EFFECT: Logically OR s (is s_mode is draw) a parallelogram into bgar_output. The
sides are formed by the vectors (n_xl n_y'2) and (n_x2 n_y2) drawn from
the origin (n_x n_y). All the coordinates may be given as fractions.

Only one boundary in each direction has the property that points exactly
on it are turned on. The other boundary in the direction has the property
that point- exactly on it arc turned oil.

It may be wise to use fractional coordinates to be sure the right things are
turned on: e.g-

[bitgraph-parailclogram bgar_output -0.5 -0.5 0.5 -0.5 21 21)

will draw a 20 point line at a 45 degree angle from (0 0).

In order to ensure that the parallelogram is drawn exactly the same way,
no matter how it is presented, and in spite of rounding errors, transforma-
tions are made on the parameters to put them in cannonical form (for
instance, x y is changed to the leftmost point of the parallelogram in the
case where bgar_output has yincrement = 1).

A parallelogram any part of which lies outside the X and Y coordinate
ranges-

(-0.875, xsize - 0.125) (-0.875, ysize - 0.125)

will not be drawn.

Printed April 27, 1989

BIT GRAPHICS 9-9

(bitgraph-ruler "bgat_output ruLruler [LISP Function]
_xniininium x_xmaximum x_yba.se
s_mode
do-reverse g_reverse-switch]
has-bityrapli-puruvieter-set 'bgps_parameter-set])

WHERE: X_\niinimiim may be above x_xmaximum.

The ruLruler scale must be non-zero.

Bgar_output must have eitlier xincrement or yincrement equal to 1 or -1.

The default value of bgps_parameter-set is *default-bi(graph-parameler-$et*.
Bgp>_parametei-set contributes the parameters x_l-height. x_l-\\idth. x_5-
heiglit. x_5-\vidth. x_10-height, x_10-\vidth.

If g_re\ crse-s\\ itc h is non-m7 the signs of x_l-height, x_5-height. and x_10-
heiglii are effectively changed.

S_modv must be either draw. era*e. reverse, or invisible: the default is draw.

RETl'RNS: Ruler returns bgar_output after setting some of its bits.

SIDE EFFECT: Bilgruph-ruler makes ruler marks in bgar_output with the marks having a
base on the horizontal (X direction) line defined by x_xminimum.
x_xmaximum. and x_ybase. The marks themselves run in the Y direction.

The X coordinate is scaled so that unsealed coordinate x_x is mapped first
onto x_x— x_minimum and then by ruLruler to a real number called the
scaled X coordinate. Marks are placed at scaled X coordinates ..., -2, -1,
0. 1, 2, Marks at ..., -20, -10, 0, 10, 20, ... are of (Y coordinate)
height x_10-height and (unsealed X coordinate) width x_10-width Marks
at ..., -15, -5, 5. 15, ... have height x_5-height and width x_5-width The
rest of the marks have height x_l-height and width x_l-width.

If possible the ruler scale is multiplied by 10 repeatedly (without changing
the value x_minimum maps onto) until doing so further would cause the
marks to overlap. If necessary the ruler scale is divided by 10 repeatedly
until none of the marks overlap. In order not to overlap, marks are
required to have x_l-width space between them.

Marks can be surpressed by setting the appropriate heights to 0. However
the widths may not be 0, and the scale will still be choosen as if the marks
were being made.

If the heights are positive the marks are made in the positive Y coordinate
direction, which is down. If the heights are negative the marks will be
made in the opposite direction, up. The variable width marks are cen-
tered on their nominal X position A mark is not made if any part of it
would be outside the limits of bgar_output.

Printed April 27, 1989

BIT GRAPHICS 9-10

(bitgraph-text 'ub;u_output :(x_xorigin x_yoiigin) (LISP Function'
>_mode i'st_orientation s_adjust ...] 'csei_character-set

> t_stnng ...)

WHEPE. S_modc is </)</«• (the default), erase, reverse, or invisible.

S_orient:»tion is mirror. Icft-rotatc. left-mirror, lop-rotate, top-mirror, right-
rotate, or right-mirror.

S_adjllSI is left, right, over, or under.

AV/'s in the optinal part of the argument list are ignored.

SIDE EFFECT Text is drawn rit the indicated origin.

Each t_string argument is taken to be one or more separate lines of text.
Only printing characters, the single space character, the tab character,
and the line feed character arc permitted in the strings. Tab stops are set
every S characters from the beginning of each string, or from the previous
line feed character Tabs are translated into space characters.

The width and height of the total text consisting of all the lines is com-
puted This is u*cd to form an imaginary box around the text. The text
lines are then adjusted in the box according to some of the s_adjust
parameters. Lastly, the box is positioned in the ubar_output according to
the origin position. s_adjust parameters, and s_orientation parameter,
and the text is drawn.

Individual characters that will not fit completely inside ubar_output are
not drawn. Characters that will fit completely inside are always drawn.

S_ADJUST: The s_adjust parameters control the positioning of lines within the text box,
and the positioning of the box relative to the origin. The possible s_adjust
values are-

Printed April 27, 1989

BIT GRAPHICS 9-11

left The origin is placed just to the left of the
box

The lilies of text with the least amount of
blank space at their left are left justified in
tin- box. The lines with the next least
amount of blank space at their left have
their first non-blank character printed
directly under the character in the same
column of the first line above them that has
already been justified, if any, or the first line
below them if there is no such line above
And so forth, until all lines are justified.

right Like left but to the right instead of the left.

If neither left or rujlit is given, each line has
blank space at its beginning and ending re-
moved, and is then centered in the box. The
origin is placed at the center of the box in
the horizontal dimension.

under The origin is placed just under the box

over The origin is placed just over the box

If neither under or over is given, the origin is
placed at the center of the box in the verti-
cal dimension.

S_ORIENTATION: This is one of the values—

TJIV mirror
left-rotate left-mirror
top-rotate top-mirror
right-rotate right-mirror

The entire text is rotated as indicated around the origin position. Nil
means to do no rotation; top-rotate means to rotate 180 degrees to
make the bottommost part of the characters nearest the top of the
display The mirror forms do not cause the characters to be mirror-
imaged, nor do they reverse the order of the characters in the text.
But they do switch which side of the text the origin is on, left or right,
when viewed after anv rotation.

Printed April 27, 1989

BIT GRAPHICS 9-12

(find-character-set sjont (n_xsize n_vsize)) [LISP Function,

(clear-character-sets sjontj [LISP Function]
find-character-set [LISP Global Variable]
character-set-fonts [LISP Global Variable]

WHERE: *fiml-characler-sei* has the default value 'sbg/sbg...

RETURNS: Find-character-set returns a-character-set with the given has-font attribute
and the largest li(i$-$i:e(i attributes available that are less than or equal to the
given sizes.

If there are no character sets with the given has-Joni attribute, the catalog file
with the name —

(concat *fivd-character-set* s_font \ca)

is read. It will presumably have character sets with sjont as their lias-font.

Clear-chararter-seta clears the font data base of all character sets with a
given has-font, or all character sets if no argument is given. *character-sct-
/o»/.s* is A list of all the fonts in the font data base.

(get-character-bitgraph cset_charactei-set 's/x_eharacter [LISP Function]
i"s_orient ation j)

USE ONLY WHEN: Diagnosing character set appearance.

WHERE: S_orientation is nil, mirror, left-rotate, or right-mirror.

RETURNS: The bitgraph array of a character in cset_character-set. The character is the
first character of s_character, or has the ASCII code x_character.

The array presents the character in the given orientation; nil for normal, mir-
ror for mirror image, left-rotate for the rotated 90 degrees to the left, and
right-mirror for the mirrored character rotated 90 degrees to the right. In all
these cases the Y dimension increment equals 1, so the four orientations actu-
ally select four different arrays in memory.

(get-character-display 'cset_character-set 's/x_character) [LISP Function]

USE ONLY WHEN: Diagnosing character set appearence.

RETURNS: The a-bitgraph-character descriptor for a character in cset_character-set.
The character is the first character of s_character, or has the ASCII code
x_character.

i > rinted April 27, 1989

BIT GRAPHICS 9-13

sbg_bit _x [C Macro
sbg_tobit [x_x [C Macro
sbg_frombit jx_x [C Macro
sbg_shift |x_x] [C Macro
sbg_endbit [C Macro
sbg_endtobit [C Macro
sbg_endfrombit [C Macro
sbg_endshift [C Macro]

WHERE: 0<=x_x<=31.

REQUIRES: #include <sbg 'sbg_b]t.h>

RETURNS The subscripted expressions return a vlong which, when viewed as a one
dimensional 32 bit array with xinciement —— 1, has bit x_x only on in the
case of sbg_bil. has only bits 0. 1, N_X on in the case of sbg_tobit, or has.
only bits x_x 31 on in the case of sbg_Jrombit.

In the case of $bg_shifi bits x_x. ..., 7 are on within each of the A bytes within
the array: this is useful for right-to-left computers for masking a word in
which every byte is to be right shifted by x_x. The mask for a word in which
each byte is to be left shifted by x_x should be

" $bg_$hifi [S — x_x]

for 1 < = ,_x <= S.

sbg_bil. sbg_tobit. sbg_Jrombit: and sbg_sliifl are contiguous vectors of ulong's,
which may be stepped along by a vlong pointer p using a * p -H- expression.
The expressions sbg_endbit, sbg_endtobxt, sbg^endfrombit, and sbg_cndshijt are
pointers to uloug's that point at the first location after the respective vectors,
so expressions such as p < sbg_endbit may be used to terminate loops.

sbg_box (bgar_output. x_xmin, x_xmax, x_ymin, x_ymax, g_mode) [C Function]

WHERE: G_mode must be one of SBG_DRA M', SBG_ERASE, SBG_REVERSE, or
SBGJNVISIBLE.

SIDE EFFECT: Draws a box in bgar_output with the given minimum and maximum X
and Y coordinates.

NOTE: X_xmin and x_xmax may be reverse (x_xmin greater than x_xmax) without
effecting results (the function sorts these arguments). Similarly for x_ymin and
x_ymax. If the box is too big to fit in bgar_output, the box is clipped.

Printed April 'J7, 1989

BIT GRAPHICS 9-14

sbg_character [CTvpe
bgchar_ [Argument. Prefix
bgchar_character—>sbg_coffset [C Structure Element
bgchar_character—>sbg_corigin x_d intension1 [C Structure Element1

bgchar_character—>sbg_csize .x_dimen>ion [C Structure Element;
bgchar_character—>sbg_cwidth [C Structure Element

a-bitgraph-character (SKETCH Type Object;
an-allocate-bitgraph-character [SKETCH Type Object]
SBG^VCHARACTER [C Global Variable'

USE: This is an element in tlie dispatch array of a character set. It gives information
about one character. The sli(/_roffset is the index of the first long of the character's
a-tibit matrix within the character set's bitgraph array. This matrix has
sbg_csize\SAR_X\ columns (X size) and bg_ci:e\SAR_Y\ rows (Y size). Each row.
however, is expanded to an integral number of lovtfs by adding 0 bits on the end.
so the actual number of columns is—

((*lHi_cvze SAR_\': + 31) / 32) * 32

The character's bitgruph matrix is to be inserted in output at some displacement
from the cursor location This displacement is is given by sbg_corigin[SAR_X in
the X direction and $by_corigin SAR_Y in the Y direction.

After inserting the character, the cursor is to be moved $bg_cwidth columns to the
right.

A-BITGRAPH-CHARACTER:

AN-ALLOCATE-BITGRAPH-CHARACTER:

SBG_ACHARACTER: A-bitgraph-character is the SKETCH type of a sbg_characler object.
It is formally a pointer to a structure. An-allocate-bitgraph-
character is the SKETCH type used as an array has-element-type if
the bitgraph character structures are to be the array elements. It
refers to the structure proper, and not a pointer to it.
SBG_ACHARACTER is the C global variable equal to an-allocate-
bitgraph-character.

sbg_dot (ux_ubbase, x_xincrement, x_yincrement, [C Function]
x_xoffset, x_yoffset, x_xdelta, x_ydelta, x_size, s_mode)

WHERE: An output a-ubit array is located at base bit address ux_ubbase and has incre-
ments x_xincrement and y_yincrement.

X_xoffset, x_yoffset, x_xdelta, x_ydelta, and x_size are all measured in units of
1/2 pixel. X_xdelta and x_ydelta must be in the range from -2 through +2.
X_size must be in the range from 2 to 28 and have been previously initialized
by initialize-bitgraph-point-size.

S_mode is SBG_DRAW, SBGJSRASE, SBG_REVERSE, or SBGJNVISIBLE.

Printed April 27, 1989

BIT GRAPHICS 9-15

Either x_xincrement must equal 1, or x_xincrement and x_yincrement must
both be exactly divisible by 8.

SIDE EFFECT: A dot is put into the output array all along the straight line from the
position —

(x_xoffset-l-epsilon x_yoflset+epsilon),

to the position

(x_xoffset+x_xdelta+epsilon x_yoffset-hx_ydelta4-epsilon),

where these offset and delta coordinates are in units of 1/2'th pixel: i.e..
have 2 times the resolution of the X and Y coordinates in the output
array. The diameter of the dot is x_size, also in 1 ,/2'th pixel units

Epsilon is choosen to be a very small number, e.g 0.001. It prevents
anomalies such as some vertical lines with size = 2 being twice as wide as
others.

If s.mode is SBG_DRA\V the dot pixels are set to 1; if SBG_ERASE. the
pixels are set to 0; if SBG_REVERSE, the pixels are complemented: and if
SBGJ.W1SIBLE. the pixels are left untouched.

WARNING: No check is made to see if the dot will go, off the edge of the array. Memory
may be damaged if it does.

No check is made to see if the arguments are in their proper ranges

sbg_line (bgar_output. x_xl, x_yl, x_x2, x_y2, x_width, g_mode) [C Function]

WHERE: X_xl, x_yl, x_x2, x_\2, and x_width are all in units of 2**-16, and x_width
may equal SAT_MISSIS'G to represent a nil or missing value.

G_mode must be one of SBG_DRAW, SBG_ERASE, SBG_REVERSE, or
SBGJNVISIBLE.

SIDE EFFECT: Performs the same action as the LISP function call—

{bitgraph-line xl yl x2 y2 width)

where the LISP arguments are the floating point equivalents of the C
arguments.

Printed April 27, 1989

BIT GRAPHICS ' 9-16

sbg_or (UN_outp. N_oinc. *ulx_inp. x_xsize, x_ysize) jC Function]

I'SE ONLY WHEN: Maintaining the SKETCH bit graph package. Others may use this
function, but must beware that no error checking whatever is done by
the function.

WHERE An output a-ubit array is located rii bit address ux_outp (as for sar_ubbase).
and an input a-ubit array at address *ulx_inp. The xincrement of both arrays
must be 1: the yincrement must be x_oinc lor the output array and 32*x_xsize
lor the input array, the xsize must be 32*x_xsize for both arrays, and the ysize
must be _vsize for both arrays.

SIDE EFFECT: Logically OR s the input array into the output array. Is designed as a
high speed function used as a primitive function in the bitgraph package
for or'ing characters, pixel shades, contours, etc into a-ubit arrays.

BUG: The current code will not work on a right to left computer (in the tradition of
VAX and INTEL, not IBM or MOTOROLA) unless ulongs do not have to be
aligned (winch they do not on a VAX).

sbg_pgram (bgai.output. x_x. x_y. x_xl. x_yl. x_x"2. x_y'2, g_mode) [C Function]

WHERE N_x. x_y. x_xl. x_yl. x_xl. and x_yl are all in units of 2**-16.

G_ino.it must be one of SBGJDRAW, SBG_ERASE, SBG_REYERSE, or
SBGJ.WISIBLE.

SIDE EFFECT: Same as the LISP function-

(bitgraph-parallelogram output x y xl yl x2 y2)

sbg_ruler (bgar_output. f_xfirst, f_xstep. (C Function]
x_xminimum, x_xmaximum, x_ybase, x_lwidth, x_lheight,
x_5width, x_5height, x_10width, x_10height, g_mode)

WHERE: X_xminimum may be above x_xmaximum.

G_mode must be one of SBG_DRAW, SBG_ERASE, SBG_REVERSE, or
SBGJNVISIBLE.

SIDE EFFECT: Performs same action on bgar_output as the LISP function call—

(bitgraph-ruler output '((0 ...) (f_xfirst ...) f_xstep) xminimum xmaximum ybase mode
(a-bitgrapli-parameter-set kas-1-width 1-width

has-1-height 1-height
has-5-width 5-width
has-5-hcight 5-height
has-10-width 10-width
hos-10~hcight 10-height))

Printed April 27, 1989

BIT GRAPHICS 9-17

sbg_s_or (ux_outp. x_oinc. *u.*x_inp. ._\size. x_ysize) |C Function'

USE ONLY WHEN: Maintaining tin SKETCH bitgraph package. Others may use this
function, but must beware that no error checking whatever is done by
the function

WHERE: An output a-ulnt array is located at bit address ux_outp (as for sar_ubbase),
and an input a-ubil array at address *usx_inp. The xincrement of both arrays
must be 1; the yincrement must be x_oinc for the output array and 16 * x_xsize
for the input array, the xsize must be 16*x_xsize for both arrays, and the ysize
must be x_ysize for both arrays.

SIDE EFFECT: Logically OR's the input array into the output array. Is designed as a
high speed function used as a primitive function in the bitgraph package
for or'ing characters, pixel shades, contours, etc into arrays.

BUG: The current code will not work on a right to left computer (in the tradition of
VAX and INTEL not IBM or MOTOROLA) unless ushorts do not have to be
aligned (which iliey do not on a VAX).

NOTE: This function is similar to sb(j_or. the only difference being that ushorts (16 bits)
are used every where instead of ulnngs (32 bits)

Printed April 27, 1989

CHAPTER 10

ANALYTIC GEOMETRY

1. GLOSSARY.

* ld-zero-transform* [LISP Global Variable]
ld-to-2d-zero-transform [LISP Global Variable:
ld-to-3d-zero-transform [LISP Global Variable]
*2d-to- ld-zero-transform * [LISP Global Variable]
2d-zero-transform [LISP Global Variable'
2d-to-3d-zero-transform [LISP Global Variable;
3d-to-ld-zero-transform [LISP Global Variable]
3d-to-2d-zero-transform [LISP Global Variable!
* 3d- zero-transform* LISP Global Variable!
ld-unit-transform (LISP Global Variable
2d-u nit-transform [LISP Global Variable'
3d-u nit-transform [LISP Global Variable^

sag_ld_zero_transform [C Global Variable!
sag_ld_to_2d_zero_transform |C Global Variable;
8ag_ld_to_3d_zero_transform [C Global Variable]
sag_2d_to_ld_zero_transform [C Global Variable]
sag_2d_zero_transform [C Global Variable]
sag_2d_to_3d_rero_transform [C Global Variable]
sag_3d_to_ld_zero_transform (C Global Variable]
sag_3d_to_2d_sero_transform [C Global Variable]
sag_3d_zero_transform [C Global Variable]
sag_ld_unit_transform [C Global Variable]
sag_2d_unit_transform [C Global Variable]
sag_3d_u n it_transform (C Global Variable]

VALUE. Unit and zero transforms of the given dimensions.

ANALYTIC GEOMETRY 10-1

ANALYTIC GEOMETRY 10-2

*3d-
*3d
*3d
*2d-
*2d
*ld
*3d
*2d
*ld-
*0d

x-unit-vector*
y-unit-vector*
z- unit-vector*
x-unit-vector*
y-unit-vector*
x-unit-vector*
zero-vector*
zero-vector*
zero-vector*
vector*

[LISP
jLISP
;LISP

[LISP
[LISP
[LISP
[LISP
[LISP
[LISP
[LISP

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

Var
Var
Var
Var
Var
Var
Var
Var
Var
Var

[C Global Var
[C Global Var
!C Global Var
[C Global Var
|C Global Var

sag_3d_x_unit_vector
sag_3d_y_unit_vector
sag_3d_x_u n it_vector
sag_2d_x_unit_vector
sag_2d_y_unit_vector
sag_ld_x_unit_vector
sag_3d_zero_vector
sag_2d_zero_vector
sag_ld_zero_vector
sag_Od_vector

VALUE: Unit and zero vectors of the given dimensions and in the X. Y, and Z direct.

[C Global Var
[C Global Var
[C Global Var
[C Global Var
!C Global Var

ablej
ablej
able]
able]
able]
able]
able]
able]
able]
able]

able]
able]
able]
able]
able1

ablej
able]
able;
able;
able,

ons.

(a-cluster \has-point-urray "ar_point-arrayl
[has-point-list '(pt_point-l ...):
\is-chain 'g_chain-switchj
\is-maximal-polygon 'g_maximal-polygon-s\vitch])

a-cluster
cl_

has-point-array 'cLcluster)
has-point-list 'cLcluster)
is-chain 'cLcluster)
is-closed 'cLcluster)
is-maximal-polygon 'cLcluster)
has-dimension 'cLcluster)
has-count 'cLcluster)

chain"
'closed chain"
'edge of chain"
'maximal polygon"

sag_cluster
SAG.CLUSTER
cLcluster—>sag_ctype
cLcluster—>sag_cparray

[LISP Macro]

[SKETCH Type Object]
[Argument Prefix]

[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH

Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute

Macro]
Macro]
Macro]
Macro]
Macro]
Macro]
Macro]

[SKETCH Term]
[SKETCH Term]
[SKETCH Term]
[SKETCH Term]

[C Type]
[C Global Variable]

[C Structure Element]
[C Structure Element]

Printed April 28, 1989

ANALYTIC GEOMETRY 10-3

cLcluster—>sag_cplist [C Structure Element]
cLcluster— >sag_ccount [C Structure Elemenl
cLclustei — >sag_cdimension [C Structure Element;
cLcluster—>sag_cchain [C Structure Element]
cLcluster—>sag_cclosed [C Structure Element]
cLcluster—>sag_cmpolygon [C Structure Element]

USE: A-cluster is a set of points. All the points must have the same dimension: 1, 2, or
3.

The set of points can be specified by either giving the has-poinl-lisl or the has-
point-array attributes. The former is a list of a-vector's that represent points. The
later is an array whose X dimension size equals the dimension of the points and
whose Y dimension equals the number of points. The array X coordinate values 0.
1. and '2 correspond to the X. Y, and Z point coordinates. The array Y coordinate
values index the cliflerenl points

Only one of the two attributes, has-point-list or has-point-array, may be specified
when creating a cluster. The other will be computed if accessed.

.A-cluster is ;i chain if the first point is to be thought of as connected to the second
point, the second point is connected to the third point, etc. The chain is closed if
the last point is identical to the first point. More precisely, a-cluster is-closed if
and only if it is a chain with at least one point and the first point equals (in the
sense of object-compare) the last point (all chains with just one point are closed).

The edges of a chain are the line segments between consecutive points.

A maximal polygon is a closed chain of points lying in a plane whose edges equal
those of the convex hull in the plane of the chain's set of points. The is-maxxmal-
polygon attribute is / if the chain was computed in a way that makes it a maximal
polygon; but a chain may still accidentally be a maximal polygon, even if the value
of this attribute is nil.

HAS-POINT-ARRAY: The element type of this array is a-short. When a-cluster object is
created, arrays with other element types may be specified as the
has-point-array, but they will be copied if necessary to convert the
element type to a-short.

IS-MAX1MAL-POLYGON: This may be self (if it is belately realized that the cluster is in
fact a maximal polygon).

SAG.CPLIST:

SAG_CPARRAY: These are C sat_lvalue values. Sag_cparray must be cast to a C
sar_array value before used.

SAG_CCOUNT:

SAG.CDIMENSION: These are C ml values.

SAG.CCHAJN:

Printed April 28, 1989

ANALYTIC GEOMETRY 10-4

SAG.CCUJSED:

SAC.CMPOI.YGON: These are inhibit values which take the C values 0 and] for the LISP
values nil and /

SAG.CLVSTER:

SAG_CTVPF: A LISP a-cluster object is a C saii_cluster structure. Sag_ctype is first ele-
ment of an so </_r / a filer structure in C. It equals SAG_CLUSTER. which in
t urn equals—

sob_iwbject ("a-cluster")'.

(a-line has-start "pt_start
hasi'lenglli njcngth
Jinx-direction vec_direction)

(a-line has-start pt_stari
lias-end pt_end is-infinite gjnfinite-switch])

(a-line has-start pt_start
luis-segnient 'vec_segnient is-infinile 'gjnfinite-switch])

a-line
lin_

[LISP Macro;

[LISP Macro:

[LISP Macro1

[SKETCH Type;
[Argument Prefix

(has-length 'Imjine)
(has-start 'linjine)
(has-direction linjine)
(has-end 'linjine)
(is-infinite 'linjine)
(has-segment 'linjine)

sag_line
SAG.XINE
linjine—>sag_ltype
linjine—>sag_llength
linjine—>sag_linfinite
linjine—> sagjstart
linjine—> sagjend
linjine—>sag_ldirection

USE: A-line represents a finite or infinite oriented line.

[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]

[LISP Macro]
[LISP Macro]

[C Global
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure

[C Type
Variable
Element
Element
Element
Element
Element
Element

A finite line has a has-starl point and a has-end point. Its has-length is the distance
from the start point to the end point. If the length is non-zero, its has-direction
attribute is a unit vector directed from the start to the end. If the length is zero,
the has-direction is m7.

An infinite line has a has-direction attribute which is a unit vector in the direction
of the line, and a has-start attribute which is a point on the line, and which must
be perpendicular to the direction. The has-end and has-length attribute are nil

Printed April 28, 1989

ANALYTIC GEOMETRY]0-5

One can gel the lias-segment and is-infinite attributes of a line, but these are not
actually stored in the line. The hn*-segment attribute is the end of the line minus
the start of the line for a finite line, and nil for an infinite line The it-infinite
attribute is / for an infinite line and nil for a finite line.

Any finite line may also be made by giving its start and end, or by giving its start
and a has-segment value from which the end can be computed. An infinite line
may also be made by specifying a finite line as just mentioned and adding a t is-
tvfivile attribute.

Any direction given when a-iine is created does not have to be a unit vector: it will
be converted into one. It will also be converted to nil if the length is given as zero.
Similarly the start given for an infinite vector does not have to be perpendicular to
the direction: it will be changed 10 be so.

S(i(l_lleii<]lh in a C final which lakes the value S.AT_FMISSING if the line
is infinite. Sag^linfimte is a macro thai tests whether sag_llength is
missinti.

SAG.LLENGTH:

SAG_LINFIXITE:

SAG.LSTART:

SAG.LEND:

SAG_LDIRECT!ON: These are all ol C type satjxulue. and must be cast to the C type
sag_vectnr before they are used.

SAG_LINE:

SAG_LTYPE: A LISP a-lrne object is a C sayjine structure. Sag_ltype is first element of
a sag_line structure in C. It equals SAG-LINE, which in turn equals—

sob_nobject ("a-ljne").

WARNING ABOUT COKfPARE-OBJECT: A-ltne will not equal itself when unevaPed and then
re-eva/'ed. Two lines computed in different ways
may be unequal when compared with compare-
object even though they are supposed to be equal
in theorv.

(an-ellipsoid has-transform 'trans_ortho
has-xradii '(n_xradius [n_yradius jn_zradius]J)
[has-center 'vec_center])

(an-ellipsoid has-radius 'n_radius
has-center 'vec_center)

an-ellipsoid
ell_

(has-transform 'elLellipsoid)
(has-radii 'elLellipsoid)
(has-radius 'elLellipsoid)
(has-center 'elLellipsoid)

[LISP Macro]

[SKETCH Type]
[Argument Prefix]

(SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]

Printed April 28, 1989

ANALYTIC GEOMETRY 10-6

(has-dimension elLellipsoid) [SKETCH Attribute Macro!

RETURNS: An-ellipse object, which represents a finite 1. 2, or 3 dimensional ellipsoid.
For a 1 dimensional ellipsoid. n_yradius and n_zradius are nil Such an ellip-
soid is just a pair of points. For a 2 dimensional ellipsoid onlv n_zradius is
nil.

Transform_ortho is an orthogonal point transformation which defines a
transformed coordinate system. In the transformed coordinate system the
ellipsoid has the equation —

-\ ft • A £l o

(-)' + (-)' + (~)2 = l.o
v_Tr<><linx n_t/r(irf(w-5 n_zradiu$

(in which a coordinate is omitted if its corresponding radius is nil).

Trans_transl'oini is M dimensional if the space in which the ellipsoid lives is
M dimensional, even if the ellipsoid has fewer dimensions.

If n_radius and vec_center are given, all the radii are equal, the dimension M
of the containing space is the dimension of vec_center. the linear part of the
transform is the unit transform of the space, and vec_center is the has-
displacement pan of the transform.

HAS-RADIUS: Equal to the radii, such as n_xradius. if all the non-mV radii are equal and
the dimension of the space containing the ellipsoid equals the dimension of
the ellipsoid. Equal to nil if the radii are unequal or the dimension of the
ellipsoid is less than the dimension of the space.

HAS-CENTER: The center of the ellipse: - ?T-1, where 1 is the displacement part of
trans_transform and T is the linear part.

HAS-DIMENSION: The number of non-ntY radii from among n_xradius, n_yradius, and
n_zradius.

SAG.ELLIPSOID:

SAG_ETYPE: A LISP an-ellipsoid object is a C sag_ellipsoid structure. Sag_etype is first
element of an sag_ellipsoid structure in C. It equals SAG_ELLIPSOID,
which in turn equals—

3ob_nobject ("an-ellipsoid").

WARNING: An-ellipsoid will not equal itself when unevofed and then re-euafed. Two
ellipsoids computed in different ways may be unequal when compared with
compare-object, even though they are provably equal.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-7

(angle-between-lines lin_line-l lin_line-2) [LISP Macro]

RETURN'S The flonum angle in radians between the direction vectors of the lines. The
angle is in the range [O.Jrj. It one of the lines is a zero length finite line, the
re.suIt is nil.

(angle-between-vectors vec_vector-l 'vec_vector-2)

WHERE: Both vectors must have the same dimension.

(LISP Macro!

RETURNS: The flonum equal to the angle between the vectors in radians. Nil if one of
the vectors is of zero length.

In order to get accuracy, two different methods of computation are used: one
for the case where the vectors are nearly parallel, and one for the case where
the vectors are nearly perpendicular.

(a-transform hus-i:r ;n_xx. Iws-xy 'n_xy]
[has-x: :n_xz; [has-rl n_xl]
•has-y.r :n_yxj \has-yy n_yy]
\haft-y: n_yz has-yt n_yt
[has-zi n_zxj \has-zy 'n_zyj
has-:: n_zz has-zl 'n_zt,
'lias-ti n_tx] \has-ty n_tyj
[has-tz 'n_tz| \has-tt 'n_ttj
\is-orthogonal g_orthogonalj
\has-mput-dimensions 'x_input-dimensions]
[has-outpul-dimensions 'x_output-dimensions])

(a-transform \has-displacement 'vec_displacement]
has-axis 'vec_axis has-angle 'n_angle)

a-transform
trans_

[SKETCH Type Macro'

[SKETCH Type Macro]

[SKETCH Type Object
[Argument Prefix

has-inverse 'trans_transform)
has-determinant 'trans_transform)
has-ax is 'trans_transform)
has-angle 'trans_transform)
has-displacement 'trans_transform)
is-linear 'trans_transform)
is-affine 'trans_transform)
is-orthogonal 'trans_transform)
has-in put-dimension 'trans_transform)
has-output-dimension 'trans_transform)

'linear transform"
'projective transform"
'orthogonal transform"
'affine transform"

[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH

Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute

Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro

[SKETCH Term
[SKETCH Term
[SKETCH Term
[SKETCH Term

tinted April 28, 1989

ANALYTIC GEOMETRY 10-8

sag_transform
SAGJTRANSFORM
trans_transform—>sag_ttype
trans_transform —>sag_tlinear
trans_transform —>sag_taflfine
t ia ns_t ransform — > sag_torth ogon al
trans_transform — >sag_tidimension
trans_t ransform —>sag_todimension
trans_transform—>sag_txx
trans_t ransform —>sag_txy
trans_transform—>sag_txz
tra ns_transform — > sag_txt
trans_transform—>sag_tyx
trans_transform—>sag_tyy
trans_transform—>sag_tyz
trans_transform — >sag_tyt
trans_transl'orm — >sag_tzx
trans_transform —>sag_tzy
trans_transform —>sag_tzz
t rans_t ransform —>sag_tzt
trans_transform — >sag_ttx
t rans_t ransform —>sag_tty
trans_t ransform —>sag_ttz
trans_t ransform —>sag_ttt

[C Global
[C Structure
[C Structure
[C Structure
[C Structure
(C Structure
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure
jC Structure
(C Structure
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure
[C Structure

[C Type!
Variable:
Elementj
Element]
Element]
Element]
Element]
Element]
Element]
Element]
Element]
Element]
Element]
Element]
Element]
Element
Element]
Element]
Element]
Element]
Element
Element]
Element]
Element]

WHERE: Vec_axis, if given, must be a unit vector with lias-length equal to 1.0.

USE: A-lransform object which is a linear, affine, or projective transformation of points.
The points are represented by a-vector objects.

The has-xx, has-xy, ..., has-tt attributes are called the coordinates of the transfor-
mation. The kj'th coordinate of the transform multiplies the k'th coordinate of
the input point to produce a term in the j'th coordinate of the output point. The
coordinates are converted to flonum's. Missing coordinates are set to nil.

For one dimensional transforms, coordinates involving Y or Z are nil. For two
dimensional transforms, coordinates involving Z are nil. For a transform from 3
dimensional space to 2 dimensional space, the XZ, YZ, and ZZ coordinates are nil,
but the ZX and ZY coordinates are not. And so forth.

The T dimension is used for projective transforms. Points in N dimensions are
extended to N-t-1 dimensions by adding a T coordinate equal to 1. Then the N+l
dimensional point is transformed, the coordinates of the result are divided by the T
coordinate of the result, and the T coordinate of the result is removed.

A linear transformation is a non-projective transformation: one not involving the T
coordinate. If a transformation has each coordinate involving T equal to nil or to
either 0.0 for non TT coordinates or to 1.0 for the TT coordinate, then the
transformation is deemed to be linear and all coordinates involving T are set to nil.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-9

An affine transformation is a projective transformation which never changes the T
coordinate of a point (before division) Such is equivalent to a linear transforma-
tion followed by adding a vector, called the displacement vector of the affine
transformation (vec_displacement, actually).

If a non-linear transform has its XT, YT, and ZT coordinates equal to nil or 0.0,
and its TT coordinate equal to nil or 1.0, the transformation is deemed to be affine,
the TT coordinate is set to 1.0. and any of the XT, YT, and ZT coordinates for
which X. Y, or Z is an input dimension are set to 0.0.

A transform is orthogonal if it preserves distances and orientations. The later
means that no reflections are involved in the transformation. An orthogonal
transform may be linear or affine: but if it is not linear, it must be affine.

G_orthogonal is non-nil if the transform was computed in a way that made it
orthogonal. If g_orthogonal is nil. the transform may or may not be orthogonal by
accident.

The hat-displacement attribute gives an alternate representation of the TX. TY.
and TZ coordinates of an affine transformation

The hai-axis and has-angle attributes give an alternate representation of the XX,
XY. XZ, YX. YY. YZ. ZX. ZY. and ZZ coordinates of an orthogonal 3D transform
Yec_axis must be a unit vector with has-length equal 1.0, provided n_angle is not
0.0. If n_angle is 0 0, vec_axis will be set to nil, even if a non-m7 value is provided.
G_orthogonal is set to / if n_angle is not niV.

IS-LINEAR:

IS-AFFINE:

IS-ORTHOGONAL:

SAG.TLINEAR:

SAG.TAFFINE:

SAG_TORTHOGONAL: Attributes which specify the kind of transformation. See USE
above In LISP these are nil or t, in C they are 0 or 1.

HAS-XX...:

SAG_TXX . The coordinates of the transformation. See USE above. The LISP versions
are flonum's (other LISP numbers will be converted to flonum's when
stored). The C versions are float's.

HAS-INPUT-DIMENSIONS:

HAS-OUTPUT- DIMENS1ONS:

SAG_TIDlMENSIONS:

SAGJTODIMENSIONS: The dimension of the points input to or output from the transfor-
mation. 0, 1,2. or 3. The LISP versions are fiznum's; the C ver-
sions are inCs.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-10

Normally the dimensions are computed automatically. However,
the input dimension cannot be computed automatically when the
output dimension is 0. Also, when a transform is created from a
prototype and the dimensions are changed, the new dimensions
have to be given explicitly.

HAS-INVERSE: (has-inverse trans_transform) is a a-transform that is the inverse of
trans_transform. This attribute of trans_transform is computed the first,
time it is needed. For non-affine orthogonal transforms it is just the tran-
spose.

If the transform is not invertible, this attribute is nil when computed.
However, the fact that it has been computed and found to be nil is
remembered, so it will not be computed again.

If the transform is invertible,

(has-inverse [has-invcrse trans_transform))

is identical to trans_transform.

The inverse of an affine transform is affine. The inverse of an orthogonal
transform is orthogonal.

The inverse of a projective non-affine transform is only determined up to
a multiplier. The multiplier is set so the TT coordinate of the inverse is
1.0, if this is reasonable [check].

HAS-DETERMINANT: (has-determinant trans_transform) is a flonum which is the deter-
minant of the part of trans_transform that does not involve the T
coordinate. It is undefined (nit) for projective non-affine transfor-
mations.

It is computed the first time it is needed. For orthogonal
transforms it is equal 1.0.

HAS-AXIS: A-vector which is the axis of rotation of an orthogonal point transformation.
It is computed the first time it is needed. It is nil for non-orthogonal
transforms and for the unit orthogonal transform (the one with 0.0 rotation
angle).

HAS-ANGLE: A flonum which is the angle of rotation in radians of an orthogonal point
transformation, about its axis. It is computed the first time it is needed. It
is 0.0 for the unit transform, and nil for non-orthogonal transforms.

The axis and angle of rotation are always chosen so that the angle of rota-
jr JT

tion is always >= -— and < —.
2 2

HAS-D1SPLACEMENT: The displacement part of an affine transformation. Nil for non-
affine transformations.

SAG_TRANSFORM:

Printed April 28, 1989

ANALYTIC GEOMETRY 10-11

SAG_TTYPE: A LISP a-lransfonn object is a C sag_lransforiv structure. Sag_ttype is
first element of a sag^transform structure in C. It equals
SAG_TRANSFORM. which in turn equals-

sob_nobject ("a-transform").

COMPUTING TRANSFORMS IN C:

SAG_VADJUST: Transforms which are empty, that is have all attributes missing, can be
created in C by code such as—

sog_t alloc (tr, 1)

sob_vintl {(saljvalue) tr, SAG_TRANSFORM)

or

register sag_tran$fonu tr = ($ob_tran$form) sob_vcreate (SAG_TRANSFORM).

Note that in the first case the transform is in the stack, and cannot not
have any sag_taxis. sag_ldisplucement. or sag_tinverse elements Serious
problems can arise if one attempts to compute these elements for a stack
transform.

Note that in the second case the transform is in the heap and must be
protected from garbage collection before any more heap allocations are
done.

After an empty transform has been created, it may be completely defined
by setting its non-missing sag_txx, sag_txy, ... sag_ttt coordinates, its
sag_tidtmension and sag_todimension dimension sizes, and its
sag_torthogonal, sag_tlineor, and sag_taffine flags. The dimensions and
flags are best set by calling—

sag_tsdime7isions (tr)

after setting the coordinates.

The sag_orthogo7ial flag must be set before calling sag_tsdimensions, if it
applies to the xx, ..., zz coordinates. Sag_isdimensions will clear this flag
for projective transforms, but leaves it untouched for other kinds of
transformations.

The tx, ty, and tz coordinates can be set by calling—

sag_tsdisplacemcnt (tr, vec_displacement)

and the xx, xy, xz, yx, yy, yz, zx, zy, zz coordinates can be set by cal-
ling-

sag_tsangle (tr, f_angle, vec_axis).

This last function also sets sag_torthogonal. Vec_axis may be sat_nil if
f_angle is zero.

There are a variety of other functions for setting empty transforms: see
sag_lcompose, sag_tsum, sag_tdijference, sag_tpscalar, sag_tdiagonal, etc.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-12

WARNING ABOl'T COMPARE OBJECT. Because floating point numbers are not exact, out-
putting a-transform into a catalog and reading it
back will not read back a-transform that is exactly
the same as the original. Compare-object will gen-
erally consider the transforms to be different.

(a-vector \has-x 'n_x] \has-y ;n_y \has-z 'n_z]J

[has-length 'n_lengthj)

(has-x 'vec_vector)
(has-y 'vec_vector)
(has-z 'vec_vector)
(has-length 'vec_vector)
(has-dimension 'vec_vector)

a-vector
vec_
Pt_

sag_vector
SAG.VECTOR
vec_vector—>sag_vtype
vec_vector—>sag_vx
vec_vector—>sag_vy
vec_vector—>sag_vz
sag_vlength (vec_vector)
sag_vadjust (vec_vector, f_length)

ARGUMENT PREFIXES: Vec_ and pt_ both denote a-vector objects. The former is used to
emphasize that the object represents a displacement vector, and
the later to emphasize that the object represents a point in space.

USE: A-vector object represents a relative motion in space. It may also be used to
represent a point in space by specifying the displacement of the point from some
origin.

The X, Y, and Z coordinates are stored as flonum's. Missing y and z coordinates
are set to nil. A 1-dimensional point or vector has nil y and z coordinates, while a
2-dimensional point or vector has a nil z coordinate.

If njength is given, the vector coordinates are scaled so the vector is of the given
length. A unit vector can be made by specifying njength as being 1.0.

HAS-X, ...:

SAGJVX, ...: The coordinates of the point. See USE above. The C versions are float's.

HAS-LENGTH:

SAG_VLENGTH: A flonum which is the length of vec_vector. It is an attribute of
vec_vector which is computed the first time it is needed. For unit length

[SKETCH Type Macro]

[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]
[SKETCH Attribute Macro]

[SKETCH Type Object]
[Argument Prefix]
[Argument Prefix]

[C Type]
[C Global Variable']

[C Structure Element]
[C Structure Element]
[C Structure Element]
[C Structure Element]

[C Macro]
[C Function]

Printed April 28, 1989

ANALYTIC GEOMETRY 10-13

vectors it is equal 1.0.

The has-length attribute of a-vector is not printed when the vector is
printed unless it equals 1.0, signifying a unit vector. Similarly it is not
returned by uneval-objecl unless it is 1.0. Lastly, it does not participate
in compare-object comparisons of vectors.

The C form, sag_vlength (vec_vector), is a macro so it can check whether
the length attribute has been computed yet, and call a function to com-
pute it if not. This macro returns a float.

SAG.VECTOR:

SAG_VTYPE: A LISP a-vector object is a C sag_vector structure. Say_vtype is first ele-
ment of a sag_vector structure in C. It equals SAG_VECTOR, which in
turn equals—

sob_nobject ("a-vector").

COMPUTING VECTORS IN C:

SAG_V.AD.JUST: Vectors which are empty, that is have all attributes missing, can be
created in C by code such as—

sag_i>allor (v, l)

sob_vitnt Usatjvalue) v, SAG_VECTOR)

or

register sag_vector v = (sob_vector) sob_vcreate (SAG_VECTOR),

Note that in the second case the vector is in the heap and must be pro-
tected from garbage collection before any more heap allocations are done.
Also note that the V in 'sob_v' refers to a-lisp-vecior and not a-vector.

After an empty vector has been created, it may be completely defined by-
setting its non-missing sag_vx, sag_vy, and sag_vz coordinates. The rule
that sag_vx may not be missing if sag_vy is not missing, and neither
sag_vx nor sag_vy may be missing if sag_vz is not missing, must be
obeyed. No other attributes of the vector need be set.

The length of a vector may be set or changed after the vector coordinates
have been set by calling—

sag_vadjust (vec_vector, fjength).

The sag_-vx, sag_vy, and sag_vz coordinates of the vector are adjusted by
this call to make the vector length equal the desired length, if necessary.

There are a variety of other functions for setting empty vectors: see
sag_tpoint, sag_tvector, sag_tcovector, sag_vsum, sag_vdifference,
sag_vmove, sag_vpscalar, sag_vpbetween, sag_vunit, etc.

WARNING ABOUT COMPARE_OBJECT: Because floating point numbers are not exact, out-
putting a-vector into a catalog and reading it back

Printed April 28, 1989

ANALYTIC GEOMETRY 10-14

will not read back a-vector that is exactly the same
as the original. Compare-object will generally con-
sider the vectors to be different.

(center-of-gravity-of-cluster cLcluster) (LISP Function]

RETURNS: A point equal to the center of gravity of the points in the cluster (with equal
weighting of points). Returns nil if the cluster is empty.

(compose-transforms 'trans_transform-l 'trans_transform-2) [LISP Macro]

RETURNS: The composition of the two transforms. That is, the transform which moves
a point to the same place that it would be moved by first applying
trans_transform-l and then trans_transform-2.

(distance-between-lines 'lin line-1 'Iin_line-2) [LISP Macro]

RETURN'S: The flonum distance from lin_line-l to the lin_line-2. If both lines ate
infinite, nearly coplanar. and nearly parallel, the distance between the lines is
defined to be the distance between their has-start points.

(distance-between-point-and-line 'pt_point Min line) [LISP Macro]

RETURNS: The flonum distance between the point and the line.

(distance-between-points 'pt_pl 'pt_p2) [LISP Macro]

RETURNS: The flonum distance between points (represented by vectors). Both points
must have the same dimension.

(linearize-transform 'trans_transform) [LISP Macro]

RETURNS: A linear transform whose X, Y, and Z coordinates equal those of
trans_transform.

(lines-are-parallel lin_line_l, lin_line_2) [LISP Macro]

RETURNS: The symbol t if neither line is zero length and the directions of the lines are
parallel according to vectors-are-parallel. Otherwise returns nil.

(move-vector 'vec_vector 'n_x ['n_y ['n_z]]) [LISP Macro]

RETURNS: A-vector equal to vec_vector with n_x added to its x coordinate, n_y to its y
coordinate, and n_z to its z coordinate. There may be fewer n_x, n_y, and
n_z arguments than the dimension of vec_vector, with the omitted arguments
being treated as zero.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-15

(point-between-points 'pt_point-l 'pt_point-2 'n_scalar) (LISP Macro]

WHERE: Both points must have the same dimension.

RETURNS: Point-between-points returns a-vector equal to—

n_scalar * pt_point-l +(1 - n_scalar) * pt_point-2.

(product-of-scalar-and-transform 'n_scalar 'trans_transform) [LISP Macro]

RETURNS: A-transform equal to the scalar product of n_scalar and trans_transform.

(product-of-scalar-and-vector 'n_scalar 'vec_vector) [LISP Macro]

RETURNS: A-vector equal to the scalar product of n_scalar and vec_vector.

sag_Iangle (lin_line_l lin_line_2) [C Function]
sag_lpdistance (vec_point lin line) [C Function]
sag_ldistance (lin line 1 lin_line_2) [C Function]

RETURNS: A floating point number equal to—

sag_langle The angle in radians between the directions of the
lin_line_l and lin_line2. Or SAT_DMISSING if either line
is of zero length.

sag_lpdistance The distance from vec_point to lin_line.

sag_ldistance The distance between the lines. If the lines are both infinite
and are parallel according to sag_lparallel, then this is the
distance between their has-start points.

sag_lparallel (lin_line_l, lin_line_2) (C Function]

RETURNS: 1 if neither line is zero length and the directions of the lines are parallel
according to sag^vparallel. Otherwise returns 0.

sag_tpoint (pt_result, pt_point, trans_transform) [C Function]
sag_tvector (vec_result, vec_vector, trans_transform) [C Function)
sag_tcovector (vec_result, trans_transform, vec_covector) [C Function]

SIDE EFFECT: The empty vector vec_result (or pt_result) is set to the point, vector, or
covector transformed by trans_transform.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-16

sag_tsproduct (lrans_transform_l trans_transform_2) [C Function]

RETURNS: A llonting point number equal to the scalar product of trans_transform_l and
trans_transform_2. This is the sum of the products of corresponding ele-
ments, as in the scalar product of two vectors. If both transforms are linear,
the tt components are nol included in the sum.

sag_tsum (trans_transform_l, trans_transform_2. trans_transform_3) [C Function]
sag_tdifference (trans_transform_l, trans_transform_2. trans_transform_3)[C Function]
sag_tpscalar (trans_transform_l, f_scalar, trans_transform_2) [C Function]
sag_tdiagonal (trans_transform_l. X_d intension, f_scalar) [C Function]

SIDE EFFECT: The empty transform trans_transform_l is set as follows—

aagjtsum The sum of trans_transform_2 and trans_transform_3.

•sug_tdifference The difference trans_transform_2 minus trans_transform_3.

say_tp$cular The product of f_scalar and trans_transform_2.

suii_tdiagonal The x_dimensiona! transform with the value f_scalar for all
diagonal elements and zeros everywhere else.

The output transform can be one of the input transforms for any of these
functions. If there is an error in any of these functions, the output
transform may be set to an inconsistent state.

sag_vdimension (vec_vector) [C Function]

RETURNS: The dimension of vec_vector as an integer (0, 1, 2, or 3).

sag_vparallel (vec_vectorl, vec_vector2) [C Function]

RETURNS: 1 if vec_vectorl and vec_vector2 both have non-zero length and they are
parallel in the sense that the sin of the angle between them has absolute value
less than 0.001. Otherwise returns 0.

The number 0.001 is choosen because if the sin of the angle between the vec-
tors is X, the error of the computed unit vector that is perpendicular to the
two vectors may have a norm as large as 10**-6/X. The 10**-6 arrises
because the coordinates of vectors are stored in single precision floating point.

Thus if we quantize both the domain of angles and the domain of unit vec-
tors, we get—

(error in angle domain) * (error in unit vector domain) == 10**-6.

So 0.001 splits the difference between the two domains.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-17

sag_vsproduct (vec_vector_l vec_vec'tor_2) [C Function!
sag_vangle (vec_vector_l vec_vector_2) [C Function!
sag_vdistance (pt_point_l pt_point_2) [C Functionj

RETURNS: A floating point number equal to—

sag_vsproduct The scalar product of vec_vector_l and vec_vector_2.

sag_vangk The angle between vec_vector_l and vec_vector_2, in radi-
ans, in the range (0, nj; or the value SATJ)MISSING\{ont
of the vectors is of zero length.

In order to get accuracy, two different methods of computa-
tion are used: one for the case where the vectors are nearly
parallel, and one for the case where the vectors are nearly
perpendicular.

sag_vdistunce The distance between pt_point_l and pt_point_2 (length of
their difference).

sag_vsum (vec_vector_l, vec_vector_2, vec_vector_3) [C Function;
sag_vdifference (vec_vector_l. vec_vector_2. vec_vector_3) [C Function
sag_vpscalar (vec_vector_l, f_scalar. \ ec_vector_2) [C Function
sag_vvproduct (vec_vector_l, vec_vector_2. vec_vector_3) [C Function
sag_vpbetween (pt_point_l, pt_point_2, pt_point_3, f_scalar) [C Functionj
sag_vunit (vec_vector, x_unit_dimension, x_total_dimension) [C Functionj

SIDE EFFECT: The empty vector vec_vector_l (or pt_point_l) is set as follows—

sag_vsum The sum of vec_vector_2 and vec_vector_3.

sag_vdifference The difference vec_vector_2 minus vec_vector_3.

$ag_vpscalar The product of f_scalar and vec_vector_2.

sag^vvproduct The vector product of vec_vector_2 and vec_vector_3

sag_vpbetween The sum of f_scalar times pt_point_2 and (l.O — f_scalar)
times pt_point_3.

sag_wnit The unit vector with dimension x_total_dimension in the in
the x_unit_dimension direction (0 for X, 1 for Y, 2 for Z).

The output vector (or point) can be one of the input vectors for any of
these functions (even sag_vvector). If there is an error in any of these
functions, the output vector may be set to an inconsistent state.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-18

(scalar-product-of-transforms 'trans_transform-l 'trans_transform-2) [LISP Macro]

WHERE: Both transforms must have the same dimensions.

RETURNS: A flomnn equal to the scalar product of trans_transform-l and
trans_transform-2. The scalar product is the sum of the products of com-
ponents, as for a. vector. If both transforms are linear, the tt components are
not included in the sum.

(scalar-product-of-vectors \ec_vector-l 'vec_vector-2) [LISP Macro]

WHERE: Both vectors must have the same dimension.

RETURNS: A flonum equal to the scalar product of vec_vector-l and vec_vector-2.

(sum-of-transforms 'trans_tl 'trans_t2) [LISP Macro]
(difference-of-transforms 'trans_tl trans_t2) [LISP Macro]

WHERE: Both transforms must, have the same dimensions.

RETURN'S: A-transform equal to the sum of trans_tl and trans_t2, or the sum of
trans_tl and minus trans_t2.

(sum-of-vectors :vec_vl vec_v2) [LISP Macro!
(difference-of-vectors vec_vl 'vec_v2) [LISP Macro]

WHERE: Both vectors must have the same dimension.

RETURNS: A-vector equal to the sum of vec_vl and vec_v2, or the sum of vec_vl and
minus vec_v2.

(transform-line 'linjine 'trans_transform) [LISP Function]

RETURNS: A-line equal to linjine transformed into the coordinate system obtained by
transforming points by trans_transform (see transform-point).

This is just a matter of transforming the start, end, and direction of linjine
by trans_transform.

(transform-point 'pt_point 'trans_transform) [LISP Macro]
(transform-vector 'vec_vector 'trans_transform) [LISP Macro]
(transform-covector 'trans_transform 'vec_vector) [LISP Macro]

RETURNS: A-vector equal to the pt_point or vec_vector transformed by
trans_transform.

Transform-vector ignores the T coordinate, using only the XX, XY, YZ, YX,
YY, YZ, ZX, ZY, and ZZ coordinates of trans_transform. This has the effect
of transforming a displacement vector, rather than a point. It will not work
if trans_transform is projective but not afnne.

Transform-covector is like transform-vector but transforms the vector by the
transpose of the transformation. In general-

Printed April 28, 1989

ANALYTIC GEOMETRY 10-19

(scalar-product-of-vectors (transform-vector v T) \v)

(scalar-product-of-vectors v (transform-covector T vv)).

NOTE: The argument order is determined by thinking of vectors as row vectors, and
covectors as column vectors. The ik'th element of a transform corresponds to
row i and column k.

(transpose-transform 'trans_transform) [LISP Macro]

RETURNS: The transpose of the linear transform trans_transform.

(vector-product-of-vectors 'vec_vector-l 'vec_vector-2) [LISP Macro]

WHERE: The vector arguments must be 3D.

RETURNS: A-vector equal to the vector product, of vec_vector-l and vec_vector-2.

(vectors-are-parallel \ec_vector-l 'vec_vector-2) [LISP Macro]

WHERE: Both vectors must have the same dimension.

RETURNS: The symbol t if vec_vectorl and vec_vector2 both have non-zero length and
they are parallel in the sense that, the sin of the angle between them has abso-
lute value less than 0.001. Otherwise returns 0.

The number 0.001 is chosen because if the sin of the angle between the vec-
tors is X, the error of the computed unit vector that is perpendicular to the
two vectors may have a norm as large as l0**-6/X. The 10**-6 arises
because the coordinates of vectors are stored in single precision floating point.

Thus if we quantize both the domain of angles and the domain of unit vec-
tors, we get—

(error in angle domain) * (error in unit vector domain) == 10**-6.

So 0.001 splits the difference between the two domains.

(zero-transform 'x_dimension) [LISP Macro]
unit-transform 'x_dimension) [LISP Macro]

RETURNS: A zero or unit transform whose dimension is x_dimension.

Printed April 28, 1989

ANALYTIC GEOMETRY 10-20

(zero-vector 'x_total-dimension) [LISP Macro]
(unit-vector 'x_unit-dimension "_total-dimension) [LISP Macro]

RETURNS: A vector whose dimension is x_total-dimension. The vector components are
all zero for zero-vector, and are all zero except for the x_unit-dimension'th
component, which is 1.0. for unit-vector, where x_unit-dimension is 0, 1, or 2
to denote the X-dimension, Y-dimension, or Z-dimension.

Printed April 28, 1989

CHAPTER 11

DISPLAY

1. USING DISPLAYS. A display is an array of pixels. For example, the SUN low
resolution frame buffer is an array of 640X475 pixels: 640 pixels wide and 475 pixels high.

A display has an intensity array with stores for each pixel a code for a color and an
intensity. Usually this is an 8-bit code with 256 possible values. One value encodes black.
127 values encode 127 intensity levels of white, from dark gray to bright white. 16 levels
encode 16 intensity levels magneta (purple), from dark magenta to bright magneta.
There are also 16 intensity levels for each of 7 other colors: red, brown, yellow, cyan,
green, turquoise, and blue.

Just to stnrt out, the commands—

— > (clear-display)
— > (flush-display)

will clear the display. Most display functions just act on an in-computer-memory copy of
the display. Flush-display is required to move this out to the display proper.

You can write an image into the current display with the display-image function.
For example—

—> (display-image (an-array has-sizes '(64 64)
by expression '(+ X (* 64 Y))))

—> (flush-display)

will display the array as a black-and-white image. As an alternative—

—> (display-image (an-array has-sizes '(8 16)
by-expression'(+X(* SY)))

'(100 200) has-zooms '(20 10)
has-bounds '(-0.5 pseudocolor 127.5))

—> (flush-display)

will display an image so that its upper left point has coordinates (100 200) (100 pixels hor-
izontally from the left and 200 vertical down from the top), will make each pixel 20 times
as larger horizontally and 10 times as large vertically (the has-zooms), and will display
the image using a pseudocolor scale instead of a gray scale. In the pseudocolor scale there
are only 16 intensities, but each is modulated by 8 colors, in order to permit small
differences of intensity to show up. According to the has-bounds argument, the array ele-
ment value range from -0.5 through 127.5 is divided into 128 equal intervals each mapped
onto a different intensity code by the pseudocolor scale. See display-image in the GLOS-
SARY for details.

Instead of flushing the display to the display device, you can write the display into a
catalog, read it back, and display it by commands such as—

DISPLAY 11-1

DISPLAY 11-2

— > (sctq c (a-cutalog lias-file Too))
—> (wnte-display <)
—> [close-display c)

— > (playback-display (read-catalog c))

Sec wrile-display and playback-display in the GLOSSARY for more details.

A display can also have bitgraph planes. Each bitgraph plane has one bit per pixel.
The bitgraph planes are each associated with an intensity array code value that specifies a
color and an intensity. When a bitgraph plane pixel bit. has the value '1', the plane's code
value replaces, or overlays, the code value specified for the pixel by the display's intensity
array. But if the bit has the value '0\ there is no overlay, and the intensity array's code
value is used.

i
If there are several bitgraph planes, they have a priority ordering, with the higher

priority planes overlaying the lower priority ones. It is standard for a display to have the
following nine bitgraph planes—

blue turquoise cyan green yellow brown red magenta white.

Each of these bitgraph plains is displayed a.s the brightest intensity of the color which
names the plane. The priority of these planes is from lowest to highest in the above list:
while overlays everything, while blue is overlaid by all other planes.

Text can be displayed by commands such as the following—

— > [clear-display)

— > (display-patom '(Hello There| (20 300) 'right-rotate 'turquoise)

-> (display-text (20 '(300 50) 2.0 'left 'cyan)
(patom '[This is a list-1)
(terpri)
(pretty-print '((Feb 1 1987) (file 1) (image 1))))

—> (flush-display)

Display-patom displays the text 'Hello There' centered on the coordinates (20 300). This
text is rotated 90 degrees to the right, and displayed in the turquoise plane. Display-text
above displays the text written by the patom, terpri, and pretty-print statements within
the body of display-text. The pretty-print assumes a line length of 20. The text is located
in the cyan plane at the coordinates (300 50): it is vertically centered on these coordi-
nates, but horizontally it is left adjusted so these coordinates appear just to the left of the
text. The character size is 2.0 times the normal size. See display-text in the GLOSSARY
for more details.

Lines can be displayed by commands such as-

Printed April 28, 1989

DISPLAY 11-3

-> {display-lines 'yellow ;(300 0) '(500 0) '(500 100) '(300 150) '(300 0))

-> (sety m (quotient pi 180.0))
— > (selq circle (an-array hus-sizes '(2 361)

by-expression '(if [equal X 0)
(sin (product m Y))
(cos (product m Y)))))

—> (display-lines (new-window '(95 295) lias-zooms '(50 50)
lias-sizes '(2.2 2.2) /jos-c«rsor '(0.6 0.6))

'green 3.0 circle)
—> (flush-display)

The first display-lines command draws 4 straight lines between the successive points,
forming a box in the yellow plane. The second display-lines command draws straight lines
between successive points defined by a 2X36] array. The array has been defined so that
these points will outline a unit circle To position and size this circle, a window on the
display has been created by the new-window function. The window has apparent size
2.2X2.2. but the zooms are both 50, so the window is 110X110 display pixels in size. The
window has a cursor which is placed at the center of the window, because the circle will
be centered on the cursor (the circle coordinates range from -1 through +1). The reason
the center of the window is at coordinates (0.6 0.6) instead of (1.1 1.1), is that the origin
(0 0) is in the center of the upper left pixel of the window, so that the upper left corner of
the window has coordinates (-0.5 -0.5). The window must be made a little larger than the
circle to ensure that no lines of the circle are partly omitted, as they would be if any part
of them extended beyond the window.

The second display-lines command draws lines that are three display pixels wide, as
indicated by the 3.0. The first display-lines command draws lines that are the default of
1.0 display pixels wide. The widths of lines and sizes of text do not depend on the zooms,
unlike the sizes of pixels drawn with display-image.

The circle can be by using a-transform instead of a window. The commands—

—> (display-lines (a-transform has-xx30 has-zyO
has-yx 0 lias-yy 30
has-displacement (a-vector has-x 150 has-y 350))

'brown 2.0 circle)
—> (flush-display)

draw a concentric circle 3/5'ths as large as the previous circle (radius 30 instead of 50)
with a line width of 2.0 pixels instead of 3.0 pixels and the color brown instead of green.

See display-lines in the GLOSSARY for more details.

2. WINDOWS.

3. MAKING DISPLAYS.

Printed April 28, 1989

DISPLAY 11-4

4. GLOSSARY.

(a-display \luis-sizes (x_xsize x_ysize)]
[has-map s_map-namej
[has-device "(s_device-type ...)]
[lias-film 's_film]
\has-parevt :d\vin_window]
[has-bityraph-plunes (s_plane-type-name-l ...)]
[has-intensity-array 'ucar/usar/s_intensity-array]
\has-bilgraph-array 'ubar/s_bitgraph-array]
[has-bitgraph-programs 'h/s_bitgraph-programs])

dis_
a-display

"Bitgraph Plane Name"
bpn_

(has-sizes 'dis_display)
(has-map 'dis_display)
(has-device 'clis_clisplayj
(has-film 'dis_display)
(has-parent :dis_display)
(has-intensity-array 'dis_display)
(has-bitgraph-planes 'dis_display)
(has-bitgraph-array 'dis_display)
(has-bitgraph-programs 'dis_display)
(has-range 'dis_display)
(has-primary-colors 'dis_display)
(has-colors 'dis_display)
(has-scales 'dis_display)
(has-plane-types 'dis_display)

[SKETCH Type Macro]

[Argument Prefix]
[SKETCH Type Object]

[SKETCH Term]
[Argument Prefix]

[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr
[SKETCH Attr

bute Macro-
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]
bute Macro]

USE: A-display is a representation of a black-and-white or color image. The representa-
tion has three parts. First, there is an intensity array, which stores a gray or color
scale intensity image. Second, there is an ordered set of bitgraph programs, each
of which is a list of vectors, text, and fill areas that can be used to draw a binary
image which is called a bitgraph plane. Third, there is a bitgraph array, which
directly stores all the bitgraph planes as binary images.

Any of the three parts may be omitted.

A-display may be just a means of storing information, or it may be an actual out-
put device display. The latter has a non-nt7 has-device attribute that specifies the
nature of the output device. An output display can also store information in any
way a non-output display can, except that an output display cannot store informa-
tion its hardware cannot output.

Writing information into a display stores the information inside the computer.

Printed April 28, 1989

DISPLAY 11-5

For an output display, the copy of this information stored in the computer is usu-
ally not the same as the copy stored in the output device. To move the latest copy
from the computer to the output device, an additional operation, flush-display,
must be performed on the output display. This operation ensures that the output
device holds the same information as the computer.

A-display may be copied into part of a larger display by the mcrgc-display func-
tion. If the display has a non-m/ has-parent attribute, then an operation such as
flush-display that outputs the display will merge it into the parent and flush the
parent.

The X dimension of a display is horizontal with X increasing from left to right
The Y dimension is vertical with Y increasing from top to bottom. The coordi-
nates of display pixels and the sizes of display dimensions are integers (unlike
display windows where they are floating point).

A display ha.s X and Y dimension sizes given by x_\size and x_ysize. Both inten-
sity and bitgraph arrays have these same X and Y dimension sizes, and the infor-
mation stored in array elements with particular X and Y coordinates determines
what is displayed in the pixel at corresponding horizontal and vertical coordinates
on a display screen

The has-map attribute of a display is used to look up a-display-map (any one of
several with the same primary name will do), and the has-range, has-pnmary-
colors, has-colors, has-scales, and has-plane-types attributes of the display are
inherited from this display map. See a-display-map for the meanings of these attri-
butes.

If the has-device attribute is given, it implies that only certain has-sizes and has-
map values are legal. In fact, neither of these attributes need be given in this case,
for both will receive default values implied by the has-device value. Similarly the
has-parent attribute can imply these and other display attribute values.

If the has-primary-colors attribute is not ml, its length is the Z dimension size of
the intensity array, and its elments are the colors cooresponding to the different Z
coordinates (0, 1, 2, ... in that order). But if the kas-primary-colors attribute is ml,
the intensity array has Z dimension size 1, and th: array stores codes that are
mapped by some display map onto different colors. In this case the map from
codes to colors is determined from the software view by has-map, and from the
hardware view by has-map, has-device, and, when a camera is being used, by has-
film.

The has-bitgraph-planes attribute specifies a bitgraph plane type name for each bit-
graph plane. These type names are looked up in the has-plane-types attribute to
give a-plane-type object for each bitgraph plane. This specifies the color, line type
(solid, long-dashed, etc.), character font (display, times-roman, limes-bold, etc.),
area fill pattern, normal line width, and normal character size for the plane.

Printed April 28, 1989

DISPLAY 11-6

The bitgraph array stores one plane for each of its Z coordinates. Bitgraph planes
are named by the Z coordinates they would have were there a bitgraph array. The
elements of the has-bitgraph-planes list are for the planes with Z coordinates 0, 1,
2, ..., in that order. The number of elements in this list equals the Z dimension size
of the bitgraph array.

Bitgraph planes with higher Z coordinates overlay those with lower Z coordinates.

BITGRAPH PLANE NAMES:

BPN_: The name of a bitgraph plane in a-display can be its Z coordinate, which is an
integer. Or the name can be a pair, (type-name M), if the plane is the M'th plane
in the has-bitgraph-planes list that has the given type name. Lastly, the name can
be a type name by itself, to name the first plane with the given type name in the
has-bitgraph-planes list (i.e. M = 1 implied).

MERGING DISPLAYS: A display used to store information is often merged into a display
used to output information. This is easy and obvious when both
displays have the same resolution, has-map, and and has-bitgraph-
planes attributes, but can become difficult or impossible in other
cases

Intensity arrays can be scaled to output devices of different resolu-
tion, but usually the results will look nice only when the scale fac-
tors are integers or the resolution of the output display is very
much higher than that of the input display.

Bitgraph arrays simply cannot be scaled to different resolutions.

Bitgraph programs are easily scaled to any resolution. If bitgraph
planes are to be scaled later, they should be stored in bitgraph pro-
gram form, even if they are also stored (redundantly) in bitgraph
array form.

The has-scales attribute of a display is used when images is stored
in the intensity array, and cannot meaningfully be changed when
the intensity array is merged later into another display.

Similarly most of the has-plane-types attribute information is used
when images is stored in a bitgraph array, and cannot meaningfully
be changed when the bitgraph array is merged later into another
display. The one exception is the plane color, which can be changed
(see a-plane-type).

In fact, the colors of planes can be changed when they are merged
later into another display, as long as the planes are stored in bit-
graph array or bitgraph program form.

Any attribute inherited from the has-map display map can be
changed when a bitgraph program is merged later into another

Printed April 28, 1989

DISPLAY 11-7

display. This includes all the lias-plane-types information Thus
bitgraph programs are very flexible.

A-dtsplay objects can be stored on disk and played back: i.e., read
and merged into an output display. In general, storing information
solely in an intensity array is very device dependent, but provides
the fastest playback. Storing as much information as possible in
bitgraph programs maximizes device independence, but slows play-
back. Bitgraph arrays are an intermediate step between bitgraph
programs and intensity arrays, and their use provides some flexibil-
ity (colors can be changed and planes selected or omitted, but reso-
lution cannot be changed) with some playback speed loss.

HAS-SIZES: The horizontal, or X coordinate, size in pixels, and the vertical, or Y coordi-
nate, size in pixels.

The ha*-si:es attribute can be implied by the lias-device or has-parent attri-
bute, or can be directly specified, but must not end up being nil.

HAS-MAP: This attribute provides the primary part of the name of a-display-map. which
in turn provides the lias-range, lias-primary-colors, has-colors, lias-scales, and
has-plane-lypes attributes.

The has-map attribute can be implied by the lias-device or has-parent attri-
bute, or can be directly specified, but must not end up being nil.

The most common values for this attribute are standard for displays with
intensity arrays, and standard-bitgraph for arrays with no intensity arrays

Displays with the standard lias-map value store an 8-bit code for each pixel in
an intensity array that has a Z dimension size of 1 and a has-rangc attribute
equal to 256. The 8-bit codes are mapped to particular colors and intensities
by display maps with this primary name. The has-primary-colors attribute in
this case is nil.

Displays with the standard-bitgraph has-map value have no intensity array,
but only bitgraph planes.

The has-map attribute value, s_map-name, is merely part of the name of the
display map that will actually be used. It is, however, the part of the name
important to the programmer. The other parts of the map name are used to
select slightly different maps depending on the monitor, camera film, frame
buffer, and display processor being used, but all the slightly different maps
with the same s_map-name are intended to give essentually the same visual
result.

See a-display-map

HAS-RANGE:

Printed April 28, 1989

DISPLAY 11-8

RAS-PRINL-YRY-COLORS:

HAS-COLORS

HAS-SCALES:

HAS-PLANE-TYPES: These attributes are inherited from a-display-map named by the
lias-map attribute. See HAS-MAP above and a-display-map.

HAS-BITGRAPH-PLANES: This attribute is a list whose elements are the type names of the
display's bitgraph planes. The type names are looked up in the
I)as-plane-types attribute to find a-plane-type objects that
specify the color, line type, character font, area fill pattern, nor-
mal character size, and normal line width associated with each
plane.

The elements of the has-bitgraph-planes list correspond to the
planes with Z coordinates 0, 1,2, ..., in that order. The length
of the list determines the number of planes. There may be at
most 32.

The has-bitgraph-planes attribute defaults to the bitgraph
planes of the has-parent attribute if this latter attribute is non-
nil.

RAS-INTENSITY-ARRAY

HAS-BITGRAPH- ARRAY:

The intensity array is an array of a-t/c/ior's if the has-range
attribute is not greater than 256, or an array of a-uslwrt's oth-
erwise. Its X and Y dimension sizes are x_xsize and x_ysize. Its
Z dimension size is 1 if the has-primary-colors attribute is nil,
and is otherwise the length of the has-primary-colors list.

This attribute may be given the explicit values nil or t when the
display is created, to indicate whether the intensity array is to
be absent or present. If no explicit value is given, an intensity
array is created for the display if the has-ranges attribute is not
nil, unless the display has a has-parent with no intensity array
or a has-device that does not support intensity arrays.

The bitgraph array is an array of a-ubit's. Its X and Y dimen-
sions are x_xsize and x_ysize. Its Z dimension is the number of
bitgraph planes, which equals the length of the has-bitgraph-
planes list.

This attribute may be given the explicit values ml or / when the
display is created, to indicate whether the bitgraph array is to be
absent or present. If no explicit value is given, a bitgraph array
is created for the display if the has-bitgraph-planes, has-colors,
and has-plane-types attributes are not nil, unless the display has
a has-parent with no bitgraph array or a has-device that does not
support bitgraph arrays.

HAS-BITGRAPH-PROGRAMS: This is a hunk whose length is the number of bitgraph planes
and whose elements are the bitgraph programs for the

Printed April 28, 1989

DISPLAY 11-9

planes, in Z coordinate order.

HAS-PARENT:

This attribute may be given the explicit, values nil or t when
the display is created, to indicate whether the bitgraph pro-
grams are to be absent or present. If no explicit value is
given, a bitgraph programs are created for the display if the
has-bitgraph-plaves attribute is not nil, unless the display has
a has-parent with no bitgraph programs or a has-dcvicc that
docs not support bitgraph programs.

If non-m7 this is a window into which the display is merged by—

(display-merge dis_display dwin_parent)
(jlask-display clwin_parent)

every time the display is flushed. Expose-display similarly merges the
display into its parent and calls expose-display on the parent. Lastly
close-display also calls itself on the parent.

HAS-DEY1CE:

A display also gets default values for its has-sizes, has-map, and has-
bilgroph-plunts attributes from its has-parent. The in addition the display
will not acquire has-inlensity-array. has-bilgraph-array, or has-bitgraph-
proyrams by default if its has-parent does not have them.

This is a list that describes the hardware that implements the display, if
there is such (many displays are merely used for storage) The following
are the possible values—

(network <host> <port> <device> <processor> <monitor> <camera>)

A display accessible through the network via the display
deamon system. The <host>, <port>, and <device>
are as described in the appendix on DISPLAY DEAMONS.
The <host> and <port> identify the server; the <dev-
ice> identifies a particular display device on the <host>
(the server services many displays on the same host).

The < processor>, <monitor>, and <camera> are as
described under a-display-map S_PROCESSOR,
S_MONITOR, and S.CAMERA. They are used to help
select the display device's pseudocolor map and camera
parameters (has-map-array and has-camera-parameters at-
tributes of a-display-map).

 <camera> may be omitted if there is none.

HAS-F1LM: This is as described under a-display-map, S_FILM. It is used to select the
pseudocolor map and camera parameters (has-map-array and has-camera-
parameters attributes of a-display-map) during an expose-display operation.
This has-film attribute may be self at any time in order to allow changing
films.

Printed April 28, 1989

DISPLAY 11-10

(a-display-map has-ids (SKETCH Type Macro]
'((s_map-nnme js_monitor js_film] (s_processor)]) ...)

[has-primary-colors (s_primarv-color-l ...)]
[has^range 'x_rangej
[has-mop-array "ucar_map-array]
[has-cam era-parameters 'g_camera-parameters]
[has-colors '((s_color-l (x_color-ll ...) ...))
[has-scales '((s_scale-l ucar/usar_scale-l) ...))]
[lias-plane-types :((s_plane-type-l plt_plane-type-l) ...))])

dmap_ [Argument Prefix]
a-display-map [SKETCH Type Object]

(has-ids :dmap_map) [SKETCH Attribute Macro]
(has-primary-colors 'dmap_mnp) |SKETCH Attribute Macro]
(has-range dmap_map) [SKETCH Attribute Macro]
(has-map-array :clmap_map) [SKETCH Attribute Macro]
(has-colors 'clmap_mnp) [SKETCH Attribute Macro]
(has-scales 'dmnp_mnp) [SKETCH Attribute Macro]
(has-plane-types dmnp_map) [SKETCH Attribute Macro]

USE: A-display-map provides various maps that relate to particular display hardware.

The has-map-array attribute is used with color displays whose intensity array
records only one integer per pixel. It maps these integers onto color intensity N-
tuples used by a color display monitor.

The lias-camera-parameters attribute is used with displays that have camera
hardware. Camera parameter settings determine how colors will look.

The has-colors attribute is an association list that maps color names onto intensity
array values. For example, a color named red would map onto the intensity array
value that gives the brightest red color.

The has-scales attribute is an association list that maps names of scales onto
scales. A scale maps a set of equal sized intervals onto intensity array values. For
example, a scale named red might map 16 intervals onto 16 different intensity lev-
els of the color red.

The has-plane-types attribute is an association list that maps names of bitgraph
plane types into a-plane-type objects that parameterize bitgraph planes. E.g. The
name red-italic might map onto a-plane-type object with has-color red and has-font
display-italic.

The has-range and has-primary-colors attributes of a display map parameterize the
intensity array of any display using the map. The has-range attribute specifies the
range of values that the elements of the array may take. The has-primary-colors
attributes specifies the Z dimension size of the array, and the color associated with
each Z coordinate. It is nil when the Z dimension size is 1 and the Z coordinate is

Printed April 28, 1989

DISPLAY 11-11

not associated with colors, as is the case when the map has a non-m7 has-map-arrny
attribute.

Display maps have ID s that name them. The IDs principal part is 's_map-name.
IDs have secondary parts. s_monitor. s_film, and s_processor, which name the
monitor, the film for camera monitors, and the display processor used by the
display hardware. Different display maps with the same s_map-name can be used
to provide different has-map-array's and has-camera-paranielers for different moni-
tors, films, and processors. The idea is that all display maps with the same
s_map-name should look the same to the person viewing the display, and the
differences in monitors, films, and processors should be compensated for by chang-
ing hus-map-array and has-camera-paramelers.

When a display map is made it is filed in a data base from whence it can be
retrivecl via the find-dtspluy-map function. It is filed in this data base under each
of its different ID's: and for each ID replaces any previous display map of that ID in
the data ba.se The function remake-display-maps is useful for revising this data
base.

Display map attributes are used only in certain contexts, and need not be present
or correct in contexts where they are not used. Hat-range, has-prinwry-colors,
has-colors, and lias-scales are used only for displays which have intensity arrays
Has-plane-types is used only for displays which have bitgraph programs. Has-
map-array is used only with displays that have display hardware; and has-camera-
parameters only with displays that have camera hardware.

All display maps with the same s_map-name should have the same has-range, has-
primary-colors, has-colors, has-scales, and has-plane-types attributes if the maps
are for displays with intensity and bitgraph arrays.

HAS-RANGE. The elements of the display's intensity array must be in the range from 0
through x_range—1.

X_range must not be greater than 65536. If x_range is not greater than
256, the intensity array elements must be of type a-uchar. Otherwise they
must be of type a-ushort.

The has-range attribute is n«7 if display's with this map have no intensity
array.

HAS-PRIMARY-COLORS: The primary colors,

(s_primary-color-l ...)

name the Z subscripts of a display's intensity array. A typical
value is—

(red green blue)

when the Z dimension size is 3.

If has-primary-colors is nil, the intensity array (if it exists) has

Printed April 28, 1989

DISPLAY 11-12

HAS-MAP- ARRAY

only one integer element per pixel, its Z dimension size equals 1.
and the haS'tnap-array attribute maps the intensity integers onto
color intensities (see below). The has-primary-colors attribute
must be nil if the hut-map-array attribute is non-m7.

For a display associated with a non-m7 has-map-array, ucar_map-
array. each pixel in the intensity array is represented by a single
integer that may be used as a Y coordinate to access a row of
ucar_map-array. The elements of this row represent the intensities of
colors in a manner understood by the hardware named by the lios-ids
attribute. Ucar_map-array has x_range rows.

Typically x_range is 256 and ucar_map-array has 3 columns with
intensities for the colors recl: green, and blue, in that order.

Ucar_anay may be nil when a-display-map is being used for the sake
of its lias-colors. has-scales. has-plane-lypes, and has-range attributes,
rather than for its ability to specify a map array for particular display
hardware. It must be nil when the has-primary-colors attribute is
non-nil. or when the hus-ranye attribute is nil.

HAS-CAMERA-PARA.METERS: The has-cameru-parameters attribute is a lisp object that
sets the camera parameters for the camera named by
s_camera (see HAS-IDS). Its form depends upon the type of
camera For the Matrix camera, it is a symbol which when
viewed as a character string equals the response given by
the camera to the pair of commands—

M

A typical value is for a color picture is—

|MCSA#1
P#l COLOR EX800 R(R500G750B650)

C(R095G084B108) B(R378G378B378)
I
while a typical value for a black and white picture is—

|MWNA#1
P#l NEG EX120 C077 B310
I

HAS-IDS: The map may be denoted by one of many ID's. These give a generic map
name, s_map-name, the name of a monitor, s_monitor, and the name of a
frame buffer processor, s_processor. An example ID is—

(standard mitsubishi-c-8910 sun-475).

Here standard names the map from the programmers point of view,
mitsubishi-c-8910 names the monitor (T.V. display), and sun-475 names the
display processor which stores the image in a digital frame buffer and converts
it to analogue monitor signals.

Printed April 28, 1989

DISPLAY 11-13

Another example ID is—

{standard matrix polaroid-559 sun-j75).

This ID is used with camera hardware. The camera monitor is a matrix which
includes one of several camera mounts, and the film type is polaroid-559. The
has-mup-array and lias-earnera-parameters attributes need to be matched to
the camera monitor and film type for best results.

An ID may be made less specific by omitting components at its end. Display
maps are stored in a data base when they are made, and may be retrieved by
the find-display-map function using the ID's to identify the map.

All display maps with the same s_map-name are intended to give the same
visual result. The s_monitor. s_film, and s_processor components of the name
are intended to make minor modifications to the map in order to give the same
visual result on different monitors and with different processors. All maps with
the same s_map-name should have equal has-range, has-primary-colors. has-
colors. lias-scales, and has-plane-types attribute values if the maps are for
displays that have intensity or bitgraph arrays. However, the display package
makes no check of this rule.

S_MAP-NAME: The most common value for s_map-name is standard. This map has an
x_range of 256 and is as follows—

Intensity Array
Element Value Color

Hardware
Intensities

0 black 0
1-127 white 32, 34,35, ...,255

128-143 magenta 85, 96, 108, ..., 255

144-159 red 85, 96, 108 255

160-175 brown 64, 77, 89, ..., 255

176-191 yellow 64, 77, 89, 255

192-207 green 64, 77, 89 255

208-223 cyan 64, 77, 89 255

224-239 turquoise 64, 77, 89, ..., 255

240-255 blue 85, 96, 108, 255

S_MONITOR:

If the actual hardware intensities for each color are on a scale from 0
through 255, they will be chosen so that the most intense color component
will have an actual hardware intensity equal to the hardware intensity
given in the above table.

The following are some possible s_monitor values-

Printed April 28, 1989

DISPLAY 11-14

mitsubishi-c-3910 Mitsubishi C-3910 monitor.
mitsubishi-c-3419 Mitsubishi C-3419 monitor.
mitsubishi-c-3919 Mitsubishi C-3919 monitor.

S.CAMERA: The following are some possible s_camera values-

matrix Matrix Camera.

S_FILM: The following are some possible s_film values—

polaroid-559 Polaroid 559 film.
polaroid-809 Polaroid 809 film.

polaroid-891 Polaroid 891 film.
polaroid-552 Polaroid 552 film.

kodak-VPS-III Kodak VPS III film.

S_PROCESSOR: Some possible values for s_processor are—

comtal-512 COMTAL Vision-One '20 display processor
organized as a 5l2X512x8-bit frame buffer.

sun-475 SUN 640X475X8-bit frame buffer.

HAS-COLORS: This attribute is a list of the form —

((s_color-l (x_color-ll x_color-12 ...)) (s_color-2 (x_color-22 ...)) ...)

which maps symbols naming colors to lists of integers that that represent
intensity array elements. The integers in one list represent the different Z
components of one intensity array pixel value. The number of integers in
the list must equal the Z dimension size of the intensity array. If this size
is 1, the list of one integer may be replaced by a single integer, as in—

((s_color-l x_color-l) (s_color-2 x_color-2) ...).

By way of example, any standard display map (see S_MAP-NAME above)
has the following value for its has-colors attribute—

((black 0) (white 127) (magenta 143) (red 159) (brown 175) (yellow 191)
(green 207) (cyan 223) (turquoise 239) (blue 255))

HAS-SCALES: A scale maps N equal sized intervals of the real line onto N different inten-
sity array pixel values. The scale does not itself specify the locations of the
intervals: it is merely a vector of N pixel values. This vector is actually an
array (e.g. ucar/usar_scale-l) whose Y dimension indexes the intervals.
Thus the Y dimension size is the number of intervals. The X dimension of
this scale array corresponds to the Z dimension of the display's intensity
array: each scale array row gives the Z components for one intensity pixel.

The has-scales attribute maps scale names such as s_scale-l onto scale

Printed April 28, 1989

DISPLAY 11-15

arrays such a.s ucar/usar_scale-l.

If s_map-name is standard, the following scale names are defined by has-
scales—

Scale
Name

Number of
Intervals Value

black 1 Pure black.

gray 127 Dark gray to bright white.

pseduocolor 128 16 intensity levels, near black to white,
modulated by 8 colors in the order magenta,
red, brown, yellow, green, cyan, turquoise,
blue.

positive 64 16 intensity levels, near black to white,
modulated by 4 colors in the order green,
cyan, turquoise, blue.

negative 64 16 intensity levels, white to near black,
modulated by 4 colors in the order magenta.
red. brown, yellow.

colors 9 9 colors on the order magenta, red, brown,
yellow, green, cyan, turquoise, blue, white.
Each color is represented by its brightest in-
tensity level.

magenta 16 16 intensity levels, from dark magenta to
bright magenta.

red 16 16 intensity levels, from dark red to bright
red.

brown 16 16 intensity levels, from dark brown to
bright brown.

yellow 16 16 intensity levels, from dark yellow to
bright yellow.

green 16 16 intensity levels, from dark green to bright
green.

cyan 16 16 intensity levels, from dark cyan to bright
cyan.

turquoise 16 16 intensity levels, from dark turquoise to
bright turquoise.

blue 16 16 intensity levels, from dark blue to bright
blue.

HAS-PLANE-TYPES: A-plane-type specifies parameters used in drawing a bitgraph plane:
color, line width in pixels, line type (solid, long-dashed, dot-dashed),
character size, character font (display, times-roman, times-italic,
times-bold), character size in pixels, and fill pattern (nil is the default
which means solid fill). The has-plane-types attribute maps plane
type names such as s_plane-type-l onto plane types such as

Prin-ed April 28, 1989

DISPLAY 11-16

plt_plane-type-l.

The standard-bit graph display map defines the plane names white,
magenta, red, brown, yellow, green, cyan, turquoise, and blue. If
color is available these all have the display font, a line width of 1.0,
and the line type solid. If color is not available these plane type
names are defined as follows—

Plane Type
Name Font

Line
Width

Line
Type

white roman 1.0 solid

red roman 1.0 long-dashed
green roman 1.0 dotted
turquoise roman 1 0 dot-dashed

yellow roman 1.0 short-dashed

magenta bold 2.0 long-dashed

cyan bold 2.0 dolled

blue bold 2.0 dot-dashed

brown bold 2 0 short-dashed

Standard display maps provide the same plane type names as
standard-bitgraph maps. Standard display maps work only with
displays that acutally have color available. In all cases the line type
is solid.

The normal character size for both standard and standard-bitgraph
plane type names is (6 12): that is, 6 pixels wide and 12 tall. The
display font provides different fonts for the character sizes (relative
to 6X12) 1.0, 1.2, 1.5, 2.0. 2.7, 3.2, and 4.2. The width of the charac-
ters is the controlling dimension, so for example the 1.5 character set
is 1.5*6 = 9 pixels wide.

(a-display-window has-parent 'dis/dwin_parent
\has-sizes '(n_xsize n_ysize)j
[has-upper-left 'dwpt_upper-left]
[has-lower-right 'dwpt_lower-right]
[has-origins 'dwpt_origins]
\has-zooms '(n_xzoom n_yzoom)]
\has-orientation 's_orientation]
[has-transform 'trans_transform]
[has-cursor 'dwpt_cursor]
[has-plane 'bpnjine-plane]
[has-line-plane 'bpn_line-plane]
[has-area-plane 'bpn_area-plane]
[has-text-plane 'bpn_text-plane])

[SKETCH Type Macro]

Printed April 28, 989

DISPLAY 11-17

dwin_
a-display-window

display window point"
dwpt_

(has-parent 'd\\in_display)
(has-sizes 'd\vin_display)
(has-up per-left 'd \vin_display)
(has-lower-right 'dwin_display)
(has-origins 'chvin_display)
(has-zooms 'd\vin_display)
(has-orientation 'dwin_display)
(has-transform ;dwin_display)
(has-cursor 'd\vin_display)
(has-plane 'd\vin_display)
(has-line-plane d\vin_display)
(has-area-plane !dwin_disp!ay)
(has-text-plane d\vin_display)

|Argument Prefix]
|SKETCH Type Object]

|SKETCH Term]
[Argument Prefix]

[SKETCH
JSKETCH
[SKETCH
[SKETCH
[SKETCH
(SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH
[SKETCH

Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute

Macro]
Macro]
Macro]
Macro]
Macro]
Macro]
Macro]
Macro]
Macro]
Macro]
Macro]
Macro]
Macro'

current-display-window [LISP Global Variable]
(get-current-display-window) (LISP Macro]
playback-display-window [LISP Global Variable]
(get-playback-display-window) [LISP Macro]

USE: A-display-windotr specifies the context parameters used by display commands.
Included are parameters for translating the command coordinates into display
coordinates, for clipping lines, images, and text that fall outside a rectangular
display region, for determining the current cursor position, and for selecting the
current bit plane with which characters and lines are drawn.

•CURRENT-DISPLAY-WINDOW:

GET-CURRENT-DISPLAY-WINDOW: The * current-display-window* variable holds o-
display-window value which is the display window
upon which most display commands operate by
default.

This variable can also hold a function or lambda
expression to be /tmca/f ed to return a-display-window
value. It is often denned to be a lambda expression
that sets * current-display-window* to a-display-
window value and returns that value.

A call to get-current-display-window will return o-
display- window derived from * cur rent-display-
window*, or will signal an error if no window is
obtainable in this way.

•PLAYBACK-DISPLAY-WINDOW:

Printed April 28, 1989

DISPLAY 11-18

GET-PLAYBACK-DISPLAY-WINDOW: * Playback-displuxj-window* and get-playback- display-
window are analogous to *cvrrtnt-display-window*
and gel-current-display-window, except that the win-
dow returned is used only by a few functions, in fact,
at the moment, only by the playback-display function.
However, the * current-display-window* is usually
defined in terms of the *playback-display-window*'.

HAS-PARENT: A-display-window is associated with a-display, the has-parent attribute of
the window. Drawing in the window actually draws in its parent display.

If a window is created with another window as a parent, the has-parent
attribute is changed to equal the parent display of the parent window, and
the has-sizes. has-zooms, has-orientation, has-origins, has-upper-left, and
has-lower-right parameters are adjusted accordingly.

H.A.S-SIZES: The window appears to be a rectangular display with sizes—

(n_xsize n_ysize).

This is mapped onto a box in the window's parent (see has-orientation, has-
zooms, etc. below).

The coordinates of a window are like those of a display. The upper left pixel
of the window has a center with zero coordinates. The X coordinates of this
pixel lie in the range from -0.5 to +0.5. Similarly for the Y coordinates. If
n_xsize and n_ysize are integers, the lower right pixel of the window has a
center with coordinates (n_xsize—1 n_ysize—1), X coordinates in the range
from n_xsize—1.5 to n_xsize-0.5, and Y coordinates in the range from
n_ysize—1.5 to n_ysize—0.5.

Any line written into the window that would be partly outside the window is
clipped: the parts outside are not drawn. Similarly any image written into
the window is clipped: the parts outside are not drawn. However, any char-
acter written into the window is omitted, and not written at all, if any part
of it would lie outside the window.

HAS-ORIENTATION:

HAS-ZOOMS:

HAS-UPPER-LEFT:

HAS-LOWER-RIGHT:

HAS-ORIGINS: A-display-window maps onto a box in its parent display. To specify the
box one typically gives its upper left corner and, indirectly, its sizes. The
sizes of the box are the products of the sizes of the window and the zooms
of the window, and it is these latter two quantities that are given directly.

The orientation of the window in the box is a symbol that tells how to
rotate the window to fit it into the box. Left-rotate, right-rotate, and top-
rotate mean to rotate the window 90 or 180 degrees so that the window's
bottom becomes the left, right, or top of the box. Nil (the default) means

Printed April 28, 1989

DISPLAY 11-19

not to rotate the window at all

The orientation may also be left-mtrror. right-mirror, or top-mirror to
specify that the left and right of the window are interchanged before it is
rotated; or the orientation may be just plain mirror to interchange left
and right without rotating.

The zooms are the ratios of the sides of the window to the sides of the box
they are mapped onto. Thus n_xzoom is the length of the side of the box
that the bottom (or top) of the window is mapped onto, divided by
n_xsize. Similarly for n_yzoom, the left (or right) of the box, and n_ysize

The has-upper-left and has-lower-righl attributes give the upper left and
lower right corners of the box onto which the window is mapped The
hat-origins attribute gives the point in the box that the upper left pixel of
the window is mapped onto. If the orientation is nil, then —

n_xupper-left — 0.5 = n_xorigin + (— 0.5) * n_xzoom

since the left edge of the upper left pixel of the window has x coordinate
—0.5. while the left edge of the box has x coordinate n_xupper-left—0.5. A
similar relation holds, for the y coordinate. The relations for the lower
right corner of the box. and for other orientations, can be derived simi-
larly, remembering that the right of the window has x coordinate
n_xsize—0.5. Thus, for example, if the orientation is rotate-left, then —

n_xupper-left — 0.5 = n_xorigin — (n_ysize — 0.5) * n_yzoom

since the rotation puts the origin near the upper right corner of the box
and also exchanges the X and Y axises.

Notice that the numbers n_xupper-left, n_yupper-left, n_xlower-right,
n_ylower-right, n_xorigin, n_yorigin, n_xsize, n_ysize, n_xzoom, and
n_yzoom may all be non-integer floating point numbers. In this respect
a-display-window is not like a-display, for the sizes of the latter must be
integers.

If the has-parent given to create a window is itself a-display-window, the
corners, origins, zooms, and orientation are all specified relative to the
parent window, but are converted to be relative to the parent display of
that window when the has-parent attribute is converted to be that parent
display (see HAS-PARENT above).

If has-origins is given, neither has-upper-left nor has-lower-right may be
given. It is illegal to give all four of the attributes has-upper-left, has-
lower-right, has-sizes, and has-zooms.

DEFAULT FOR HAS-SIZES:

DEFAULT FOR HAS-ZOOMS:

DEFAULT FOR HAS-UPPER-LEFT: If a window is created with a prototype, as in-

Printed April 28, 1989

DISPLAY 11-20

(a-display-window (get-current-display-window)
has-origins :(10 10) has-sizes (128 128))

the lias-origins, has-upper-left, has-lower-righl, lias-
sizes, and lias-zooms attributes are not inherited from
the prototype, unless none of these attributes are given,
and the lias-parent and has-orientation attributes are
also not given. (Giving a nil value is equivalent to not
giving n value for any of these attributes except has-
orienlation.)

Except in this case, has-upper-left defaults to '(0.0 0.0) if
neither it nor lias-origin nor has-lower-righl is given;
has-zooms defaults to '(1.0 1.0) unless it can be com-
puted because lias-sizes, has-upper-left. and has-lower-
riglit have all been given; and lastly, has-sizes defaults,
if it cannot be computed, to the largest value which will
allow the window to fit inside its has-parent.

WINDOW POINTS:

HAS- TRANSFORM:

DWPT_: A window point is a point in the coordinate system of a-display-window. The
window coordinate system places the point (0 0) at the center of the upper left
pixel of the window, and increases the X and Y coordinates by 1 as one moves 1
pixel right or down The X axis is horizontal and the Y axis vertical.

A window point can be specified directly as a pair of numbers (either fixnum's
or flonum's).

A window point can also be specified as a point in the sense of the ANALYTIC
GEOMETRY package (actually a-vector value), in which case it is transformed
into the window coordinate system by the value of the window's has-transform
attribute, which is a-transform value. A nil has-transform value is considered to
be equivalent to the unit transform of 2 dimensional space. See the ANALYTIC
GEOMETRY package for more details.

A dwpt_ argument is a window point: either a list of two numbers or a-vector
value. The later is converted into a list of two numbers. If a window point is
stored in a-display-window, it is always stored in the form of a list of two
numbers, and will be read in that form.

HAS-CURSOR: The cursor is a window point. It acts as an offset to the position where
objects (e.g. lines and images) are drawn in the window.

The has-cursor attribute can be self, and so can the its individual coordi-
nates. It may be setf to a window point (see WINDOW POINT above).

The cursor defaults to (0 0).

Printed April 28, 1989

DISPLAY 11-21

HAS-L1NE-PLANE:

HAS-TEXT-PLANE:

HAS-AREA-PLANE:

HAS-PLANE: Lines are drawn by default in the bitgraph plane specified by xjine-plane,
which is the Z coordinate of the plane. This attribute may be self anytime.
It may be self to the name of a plane (either a symbol or a symbol/integer
pair: see BITGRAPH PLANE NAMES under a-display), in which case the
name is converted to the plane Z coordinate before it is stored.

Characters are drawn similarly in the bitgraph plane specified by x_text-
plane; and areas are filled in the bitgraph plane specified by x_area-plane

The has-plane attribute, when self, sets all three of the other plane attri-
butes to the same value. Has-plane may be read without error only if all
three of the other plane attributes have the same value, which is, of course,
the value read.

The luii-line-plnne. has-area-plane, and has-lext-plane attributes default to
the value 0 if the window's parent display has a non-m7 has-bitgrapli-plane*
attribute: or to tlie value nil otherwise.

HAS-INTENS1TY-ARRAY:

HAS-B1TGRAPH-PLANES:

HAS-BITGRAPH-ARRAY:

HAS-B1TGRAPH-PROGRAMS:

HAS-DEV1CE:

HAS-FILM:

HAS-RANGE:

HAS-PRIMARY- COLORS:

HAS-COLORS:

HAS-SCALES:

HAS-MAP:

HAS-PLANE-TYPES: These are all attributes of the has-parent of a-display-window, but we
frequently abuse language and speak as if they were the attributes of
the window. They are not, and programs cannot treat them as such.

Printed April 28, 1989

DISPLAY 11-22

(a-plane-type ha*-color 's_colorj, |SKETCH Type Macro]
[has-fill-patlern 'ubar_fill-pattern]
Jias-live-type 'sjine-typej
Jias-line-width 'n_line-width]
\lius-churacler-font :s_character-font]
\has-character-sizes '(n_xcharacter-size n_ycharacter-size)j)

plt_ [Argument Prefix]
a-plane-type [SKETCH Type Object]

(has-color fplt_display) [SKETCH Attribute Macro]
(has-fill-pattern 'plt_display) [SKETCH Attribute Macro]
(has-line-type 'pk.display) [SKETCH Attribute Macro]
(has-Hne-width rplt_display) [SKETCH Attribute Macro]
(has-character-font 'plt_display) [SKETCH Attribute Macro]
(has-character-sizes 'plt_display) [SKETCH Attribute Macro]

USE: A-plane-lype parameterizes a bitgraph plane. It specifies color, fill pattern (a bit-
graph array) for filling areas, line type (solid, long-dashed, etc.), normal line width,
character font (display, limes-roman, etc.), and normal character sizes.

HAS-COLOR. A symbol naming the color of the plane's pixels: e.g. red. When the plane is
used, the color must appear in the display's has-colors list (which is inher-
ited from the display's map).

A mY value is equivalent to white.

HAS-FILL-PATTERN: A bitgraph array which is used to fill areas. This two dimensional
array of a-ubit's is replicated starting in the lefthand corner of a
display to make a mask that covers the entire display. When an
area in the display needs to be filled, the pixels in the area
corresponding to one bits in this mask are turned on.

A nil has-fill-pattern attribute value is equivalent to an array with
all its bits on, giving a solid area fill.

HAS-LINE-TYPE: This is a symbol chosen from the list—

solid
dotted

long-dashed
short-dashed
dot-dashed

It describes the type of line drawn by the display-lines function.

A nil value is equivalent to solid.

HAS-L1NE-WIDTH: Specifies the normal value for a line's width in pixels, for lines drawn
by the display-lines function. Fractional widths are possible: the
nearest available width is used. The actual line width used to draw a
line is the product of this number and the line width specified by the
display-lines function that draws the line.

Printed April 28, 1989

DISPLAY 11-23

A nil value is equivalent to 1.0.

HAS-CHAJUCTER-FONT: The style of the character set used by display-print and related
functions. See the has-Jont attribute of a-cliaracter-set in the
BITGRAPH ARRAYS package.

HAS-CHAFACTER-S1ZES:

A nil value is equivalent to display.

N_xcharacter-size and n_ycharacter-size are the width and
height in pixels of a box into which each character is to fit. The
character set choosen for use by a display-print or similar func-
tion is the largest whose characters will fit in the box, in a sense
we will now describe.

N_ycharacter-size is actually the distance between successive
lines of text, and must be somewhat greater than the actual
height of the characters. N_xcharacter-size is an upper bound
on the probable average horizontal spacing between characters,
for capitalized English words. For variable width fonts, words
with lower case letters generally have characters somewhat
closer together than n_xcharacter-size would indicate, while
strange words like HMMMMM might have characters farther
apart than x_character-size would indicate. See HAS-S1ZES
under a-churucler-$el for more details. The character set is
actually found using the find-character-set function.

The actual character sizes used to select a character set are the
product of these sizes and the character size number specified by
the display-print or similar function that draws the characters

"bitgraph programs"
(w (n_xsize n_ysize) (n_xorigin n_yorigin)

(n_xzoom n_yzoom) s_orientation <statement> ...)
(t [n_character-size]

[s_horizontal-adjust] [s_vertical-adjust]
[s_orientation] (n_xorigin n_yorigin) s/t_string ...)

(1 [n_width] (n_xorigin n_yorigin)
[(n_x n_y)] ... [nil]... [sar_array] ...)

(f (n_xorigin n_yorigin))

[SKETCH Term]
[Bitgraph Program Window]

[Bitgraph Program Statement]

[Bitgraph Program Statement]

[Bitgraph Program Statement]

VALUE: A bitgraph program is a list of bitgraph program windows. Each bitgraph pro-
gram window consists of a list with some window parameters followed by bit-
graph program statements. The statements are of three types: text statements
output text, line statements output lines, and fill statements fill areas (respec-
tively the t, I, and /statements above).

The window parameters define the sizes, zooms, origins, and orientation of the
window: see a-display-window.

See display-text for text statement parameters; display-lines for line statement

Printed April 28, 1989

DISPLAY 11-24

parameters; and fill-display-area for fill statement, parameters.

(check-bitgraph-program-syntax 'Lprogram) [LISP Function]

SIDE EFFECT: Checks the bitgraph program for syntax errors, and calls error if any are
found.

(clear-display |'s_backgroundj jdwin_window]) [LISP Function]
(clear-intensity ['s_bnckgroundj ! dwin_\vindowj) [LISP Function]
(clear-bitgraph ['bpn_planej [\lwin_window]) {LISP Function]

WHERE: S_background must be a symbol naming a has-color color of dwin_window
(default is black).

Bpn_plane may be nil or omitted to specify the set of all bitgraph planes.

D\vin_\vindo\v defaults to the value of the value of [get-current-display-window).

Nil arguments are ignored (so any argument may be nil).

SIDE EFFECT: Clears the intensity and bitgraph plane parts of a display window.
Clear-display clears everything; clear-intensity just clears the intensity
array: while clear-bitgraph just clears one or all bitgraph planes.

It is an error to try to clear a bitgraph plane if dwin_window does not
cover its parent display entirely and the parent display has bitgraph pro-
grams.

The intensity array is set to a specified value, s_background, when it is
cleared.

(close-display [dwin_display]) [LISP Function]

WHERE: Dwin_window defaults to the value of (get-current-display-window).

SIDE EFFECT: Releases the resources of the parent display of dwin_window. These
resources, things like the display monitor hardware and communications
channels to that hardware, are allocated the first time the display is
flushed. After closing the display, the resources will be reallocated the
next time the display is flushed.

Printed April 28, 1989

DISPLAY 11-25

(compose-display-orientations s_first s_second) [LISP Function]

RETVRNS: Returns the display orientation that is the composition of the display orienta-
tion s_first followed by the display orientation s_second Display orientations
are the possible values of the has-orientation attribute of a-display-window

(display-bitgraph ubar_array 's/'-name ['dwin_windowj [LISP Function]
J"dwpt_upper-left] [has-zooms '(n_xzoom n_yzoom)]
\h assizes '(n_xsize n_ysize)]
[lias-orientation 's_orientation])

(display-bitgraph 'ubar_array '(s/Lname-1 ...) ['dwin_window] [LISP Function]
|'d\vpt_upper-left] [has-zooms '(n_xzoom n_yzoom)]
[has-sizes '(n_\size n_ysize)j
\has-orientation 's_orientation])

USE ONLY WHEN: Displays have only bitgraph arrays and do not have bitgraph pro-
grams.

The display-bitgraph function is an anachronism that should be
replaced where possible by calls to display-text, display-lines, and fill-
(liaplay-area, because the latter are output resolution independent,
while display-bitgraph depends upon the application knowing the reso-
lution of the output display.

WHERE: The clwin_window. dwpt_upper-left, n_xzoom, n_yzoom. n_xsize, n_ysize and
s_orientation arguments are passed to the new-window function to get a win-
dow referred to as dwin_window below.

The zooms of dwin_window relative to its parent display must be 1.0. The pix-
els of dwin_window must be exactly aligned with the pixels of its parent
display.

If dwin_window has a bitgraph array, each s/Lname is a bitgraph plane name
of a plane in dwin_window into which a plane in ubar_array maps; or s/Lname
may be nil to indicate a plane in ubar_array is not to be merged into
dwin_window. The planes of ubar_array correspond to the Z coordinates of
ubar_array, and these taken in order (0, 1, 2, ...) correspond to the elements of
the list of s/Lnames's (if there is only one name it may be given directly,
instead of as in a list).

If dwin_window has no bitgraph array, but only an intensity array, each
s/Lname is just a symbol naming a color in the has-colors list of dwin_window;
or s/Lname is ml to indicate a plane in ubar_array is not to be merged into
dwin_window.

SIDE EFFECT: Copies the information in ubar_array into the bitgraph array of
dwin_window, if d\vin_window has one, or the intensity array of
dwin_window otherwise.

The merging is done just as it would be by merge-display if ubar_array
were an attribute of a-display. If dwin_window has a bitgraph array,

Printed April 28, 1989

DISPLAY 11-26

ubar_array is merged into that, if dwin_window has an intensity array,
but no bitgraph array. iibar_array is merged into the intensity array. It
is not an error for dwiii_window to have bitgraph programs, but they will
be unefiected by display-bit graph.

(display-image ai_array ['dwin_\vind<wj [LISP Function]
[!dwpt_upper-leftj [has-zooms '(n_xzoom n_yzoom)]
[has-si:es '(n_xsize n_ysize)]
[lias-orientation s_orientation]
[has-bovnds '(n_black n_white)j
[has-bounds '(n_bound-l [—] s_scale-l ... n_bound-N)]
[hat-missing 's_niissing-color]
\has-lou> 's_low-colorj
[has-high 's_higli-color;
[has-contrasts '(x_xcontra.st x_ycontrast)]
[do-pseudocolor 'g_pseudocolor-switch])

WHERE: The dwin_windo\\. dwpt_upper-leli. n_xzoom, n_yzoom, n_xsize, n_ysize and
s_orientation arguments are passed to the new-window function to get a win-
dow referred to as chvin_window below.

X_xcontrast and x_ycontrast, if given, must be > 0.

S_missing-color defaults to red.

There are two forms for the lius-bounds argument. The simple form (n_black
n_white) specifies the range of image values which will map onto the display's
gray scale (or pseudocolor scale with the do-pseudocolor option).

If the lias-bounds argument is nil, n_black and n_white default to the minimum
and maximum value in ar_image.

The more complex form of the has-bounds argument gives a list of bounds and
between each the name s_scale of a scale that is used to map the image values
between the bounds. Each s_scale names a vector that is associated with two
bounds, a lower bound and an upper bound. An image value that is greater
than or equal to the lower bound, and less than the upper bound, is converted
to a vector subscript by the formula

{floor ((image value — lower bound) *vector size)
/ (upper bound — lower bound))

This subscript indexes a vector element which yields a value for an intensity
array pixel.

The scales are defined by the has-scales attribute of the window's parent, which
is inherited from the parent's display map. See HAS-SCALES under a-display-
map for the scales available when the standard display map is in use.

In the case of the complex has-bounds list, the bounds must be in ascending

Printed April 28, 1989

DISPLAY 11-27

order However, any bound may be n»7. If the first bound is nil, it will be
replaced by the minimum of all the image elements and the first non-»j7 bound
Similarly, if the last bound is nil, it will be replaced by the maximum of all the
image elements and the last non-n>7 bound. If any other bounds are nil, they
will be replaced in a fashion that will make all the scales between each pair of
non-/)// bounds appear to be concatenated.

Nil bounds may be completely omitted from the list. Thus the bounds list-

-0.5 black red 99.5

effectively makes a new 17 interval scale by concatenating the 1 interval scale
black with the 16 interval scale red.

If a scale is immediately preceded by a — in the has-bounds list, the order of the
values in the scale is reversed: e.g. a black to white scale becomes a white to
black scale.

SIDE EFFECT: Displays the image in dwin_window. If the image is too small, it is placed
in the upper left corner of the window, and if too large, only the upper left
coiner of the image is displayed.

If the window has zooms that are not equal to 1.0, each pixel in the
window's parent display is given the value of the image pixel determined
by mapping the display pixel's coordinates back to image pixel coordinates
and rounding to the nearest image pixel.

If the has-contrasts argument is given, the image will have the average of
a rectangle of size

(2 * x_xcontrast -I- 1 2 * x_ycontrast + 1)

subtracted from each element by the contrasi-o/function.

The has-missing argument specifies the color in which missing values will
be displayed (default red). Has-low specifies the color in which values
below the lowest has-bound bound will be displayed. If has-low is nil (the
default), values lower than the lowest bound will be treated as equal to the
lowest bound. Similarly, has-high specifies the color in which values equal
to or above the highest has-bound bound will be displayed. If has-high is
nil (the default), these values are treated as being just below the highest
bound.

Prin'*d April 28, 1989

DISPLAY 11-28

(display-lines cl\vin_winclow] [n_width] [LISP Function]
!bpn_plane; !trans_transform]
|dwpt_pointj ... [nit] [[—] ar_array] ...)

WHERE: D\vin_\vindo\v defaults to the value of {get-current-display-window), n_width
defaults to 1.0, bpn_plane defaults to the has-line-plane attribute of
d\vin_\vindow, and trans_transform defaults to the has-transform attribute of
dwin_\vindow.

AW arguments before the first dwpt_point, —, or ar_array are ignored.

SIDE EFFECT: Draws in bpn_plane a sequence of straight lines connecting points in the
display window. Each point is either an argument (e.g. dwpt_point), or is
a row in an array argument (e.g. ar_array) whose first, second, and third
columns are the X, Y, and Z coordinates of the points, respectively (there
may be no Z coordinate, or even no Y coordinate). The points defined by
an array are transformed by trans_transform unless the array is pro-
ceeded by a -, in which case they are not transformed. Any dwpt_point
points that are a-vector objects are also transformed by trans_transform.

A niY argument separates a preceeding sequence of lines from a following
sequence. Thus many different sequences can be displayed by one call to
display-lines. An ar_array point with a missing coordinate separates line
sequences like the nil argument.

Line sequences are displayed by dragging a circular dot of size determined
by n_width in straight lines between line sequence points. If a line
sequence consists of a single point, at single dot is drawn at that point.

All line end points are offset from the window origin by the window cursor
position.

The boundaries of the window clip the lines. The line end points need not
lie inside the window.

(display-text ('x_line-length ['(n_xorigin n_yorigin)] [LISP Macro]
['bpn_plane] ['s_adjust ...] ['n_size] ['s_orientation] |'dwin_window])

g_statement ...)
(display-print 'g_value ['(n_xorigin n_yorigin) (LISP Function]

['bpn_plane] ['s_adjust ...] ['n_size] ['s_orientation] ['dwin_window])
|display-patom 'g_value ['(n_xorigin n_yorigin)] (LISP Function]

['bpn_plane] ['s_adjust ...] ['n_size] ['s_orientation] ['dwin_window])
(display-pretty-print 'x_line-length 'g_value [LISP Function]

['(n_xorigin n_yorigin)] ['bpn_plane] ['s_adjust ...] ['n_size]
['s_orientation] ['dwin_window])

(make-display-text-string 'x_string-size-in-bytes) [LISP Function]

WHERE: Dwin_window defaults to the value of {get-current-display-window), n_xorigin
and n_yorigin default to 0.0, n_size defaults to 1.0, and s_adjust and

Printed April 28, ,989

DISPLAY 11-29

s_orientation default to nil. Bpn_plane defaults to the has-tcxt-plane attribute
of cl\vin_window.

Nil arguments are ignored.

SIDE EFFECT: Text is drawn at the origin location in bpn_plane. The origin actually
used is that given by (n_xorigin n_yorigin) displaced by the window cur-
sor

The text is first written into a string buffer. The result may be 1 or more
lines (the last line need not end with a line feed). Display-print writes as
print; display-palom as patom, and display-pretty-print as pretty-print.
During the execution of dinplay-pretly-print the LISP global variable
line-length, the line length used by pretty-print, is bound to x_line-
length.

Display-text is a macro which (1) binds a port that writes into a string to
the normal output port, poport, (2) binds xjine-length to *line-length* for
use by pretty-print, (3) evaluates and remembers s_adjust, n_size,
s_orientation, and d\vin_window. (4) executes the body: g_jstatement
and (5) writes the the string into dwin_window using the remembered
s_adjust, n_size, and s_orientation.

After the text is written into the string buffer, the font and size of the
characters are determined The normal character size for the bit plane
being used is multiplied by n_jsize to determine character size. Then the
width and height of the text in pixel positions are computed. These is
used to form an imaginary box around the text. The text lines are then
adjusted in the box according to some of the s_adjust parameters (as
described below). Lastly, the box is positioned in the display window
according to the origin position, s_adjust, and s_onentation parameters,
and the text is drawn.

S_ADJUST: The s_adjust parameters control the positioning of lines within the text box,
and the positioning of the box relative to the origin. The possible s_adjust
values are—

Printed April 28, 1989

DISPLAY 11-30

left The origin is placed just to the left of the box.

The lines of text with the least amount of blank space at
their left are left justified in the box. The lines with the
next least amount of blank space at their left have their
first non-blank character printed directly under the charac-
ter in the same column of the first line above them that has
already been justified, if any, or the first already justified
line below them if there is no such line above. And so
forth, until all lines are justified.

right Like left but to the right instead of the left.

' " A.
If neither left or right is given, each line has blank space at
its beginning and ending removed, and is then centerred in
the box. The origin is placed at the center of the box in the
horizontal dimension.

under The origin is placed just under the box.

over The origin is placed just over the box.
— If neither under or over is given, the origin is placed at the

center of the box in the vertical dimension.

N_SIZE: This parameter is a number which multiplies the normal character size for the
bitgraph plane in which the text is placed. Both horizontal and vertical sizes
are multiplied by n_size. The character set actually used is the largest available
whose sizes do not exceed those requested. (Acutally, the horizontal size is made
as large as possible first, and then the vertical size.)

S_ORIENTATION: This is one of the values-

nil mirror
left-rotate left-mirror
top-rotate top-mirror
right-rotate right-mirror

The entire text is rotated as indicated around the origin position. M7
means to do no rotation; top-rotate means to rotate 180 degrees to
make the bottommost part of the characters near the top of the
display.

The mirror forms do not cause the characters to be mirror-imaged, nor
do they reverse the order of the characters in the text. But they do
switch which side of the text the origin is on, left or right, when viewed
after any rotation. An attempt is also made to keep the amount of
blank space between the text and the origin the same as it would have
been if the text had not been mirrored.

The orientation of the text specified by s_orientation is composed with
any orientation specified for the window in which the text is displayed
to get the orientation actually used for display of the text.

Printed April 28, 1989

DISPLAY 11-31

MAKE-DISPLAY-TEXT-STRING: The string used by display-print etc. is initialized when the
system is loaded and has a size of 16384 bytes. A call to
make-dtsplay-text-string will create a new string of a
different size for the use of display-print etc. This is useful
only if the old string is too small.

(expose-display ['x_count] ['dis/dwin_display]) [LISP Function]

WHERE: Dis/d\\in_display defaults to the value of (get-current-display-windoa).

X_count defaults to 1.

A'IY arguments are ignored (so any argument may be nil).

SIDE EFFECT: Flushes dis/dwin_display as per flush-display, and then takes x_count
identical pictures of the current state of the display. The has-dcvice attri-
bute value determines the procedure for doing this. A timer value is used
in the flush which allows enough time for the camera to take the pictures,
and expose-display returns before the camera is done.

The pseudocolor map in the display hardware may be changed tem-
porarily while the picture is being taken, causing the picture to look
different temporarily on any television monitor. This is done to compen-
sate for differences between the television monitor and the camera plus
film, so that after the film is developed, it will look the same as the televi-
sion monitor normally looks.

The has-camera-parameters attribute of the display map selected by the
display's lias-map and has-film attributes will be used to set the camera
parameters. See HAS-CAMERA-PARAMETERS under a-display-map.

(find-display-map '(s_map-name [s_monitor ...])) [LISP Function]
(find-display-map 's_map-name) (LISP Function]
(find-display-maps '(s_map-name [s_monitor ...])) [LISP Function]
(find-display-maps 's_map-name) [LISP Function]

RETURNS: Find-display-map returns the display map which has an ID that meet pre-
cisely matches the ID given as the argument. A match is more precise if
more components are given: e.g., '(standard matrix polaroid-891 sun-475)
matches '(standard) but matches '(standard matrix polaroid-891) more pre-
cisely. Find-display-map returns nil if there is no matching map.

Find-display-maps returns a list of all the display maps that whose ID
matches the ID given as the argument.

Printed April 28, 1989

DISPLAY 11-32

(flush-display ['fjdelayj [,dis/dwin_display] \l\) [LISP Function]

WHERE: Dis.'dwin_display defaults to ihe value of (get-currenl-display-window). If
dis.'dwin_display is a display window, it is replaced by its parent display.

Nil arguments are ignored (so any argument may be nil).

SIDE EFFECT: If dis_display has no hus-derice or has-parenl, this function does nothing.

If dis_display has a has-device, flush-display delays until all commands
sent to the display have actually been executed by the display hardware,
and then returns If f_delay is given, a timer is set which will ensure that
the display hardware will not accept any subsequent display command
until f_delay seconds alter the last of these commands is finished.

If dis_display ha.s a has-parevl, then dis_display is merged into this parent
by the merge-display function, and then flush-display is executed on the
parent.

A record is kept of which parts of the display have been changed since the
last flush, so as to avoid redundant work. The t argument causes this
Hush to believe the entire display has been changed since the last flush. It
is useful if the screen is destroyed accidentally and needs to be refreshed.

(make-display-map-array i*n_gamma. [LISP Function)
'(n_red n_green n_blue x_size [n_first [n_last]])

RETURNS: An array suitable for use as a-display-map has-map-array value for a display
that takes 8-bit red. blue, and green intensities (in that order). The array is
made by filling in x_size rows from each list argument of the form

(n_red n_green n_blue x_size (n_first [njast]]).

The first three elements of this list define the relative sizes of the red, green,
and blue components of some color.

The assumption is that the intensities on the screen are the gamma power of
the numbers in the pseudocolor map, and the total intensity of a color
(R G B) is

R ** gamma + G ** gamma + B ** gamma.

The numbers in the map are to give a linear scale of increasing total intensi-
ties.

N_first ** gamma is the desired intensity for the first element filled in.
Njast ** gamma is the desired intensity for the last element filled in. If
n_last is omitted or given as nil,

(red ** gamma + green ** gamma + blue ** gamma) ** (l/gamma).

is used as njast. If n_first is omitted or given as nil,

Printed April 28, 1989

DISPLAY 11-33

((njast ** n_gamma) /x_size) ** (l/gamma)

will be used as n_first

The X size of the resulting map array is 3. The Y size is the sum of all the
x_sizes.

N_gamma defaults to 1.0. Values for gamma can be inserted anywhere in the
argument list and will affect subsequent arguments only.

(merge-display 'dis_display |'dwin_window] [LISP Function]
['dwpt_upper-left] \has-zooms '(n_xzoom n_yzoom)]
[lias-$i:e$ \n_\size n_ysize)]
\has-orient at ion 's_orientation]
\has-plane-map '((bpn_source-l bpn_target-l) ...)]
\has-color-map '((s_source-l s_target-l) ...)]
[has-map-map '((s_source-l s_target-l) ...)])

display-plane-map (LISP Global Variable]
display-color-map [LISP Global Variable'
display-map-map [LISP Global Variable]

WHERE: The dwin_window, d\vpt_upper-left. n_xzoom, n_yzoom, n_xsize, n_ysize and
s_orientation arguments are passed to the new-window function to get a win-
dow referred to as dwin_window below.

The has-plane-map argument maps bitgraph plane names of dis_display onto
bitgraph planes of dwin_window. The entries consist of a dis_display plane
name followed by a dwin_window plane name. In addition, an entry of the
form —

(s_source s_target)

implies entries of the form —

((s_source x_N) (s_target x_N))

for each integer x_N, except for those x_N for which has-plane-map already has
an entry with bpn_source equal to (s_source x_N).

The has-color-map argument maps the names of colors associated with
dis_display to colors associated with dwin_window. It is only used when
dis_display has a bitgraph array or bitgraph programs, while dwin_window has
only an intensity array, and neither bitgraph array or programs. In this case
the bitgraph information of dis_display is merged directly into the intensity
array of dwin_window and a mapping of colors is possible.

The has-map-map argument maps display has-map names. This is nessary to
pass error checks if dwin_window's parent has a different has-map attribute
than dis_display, and both have intensity arrays.

The has-plane-map argument defaults to the value of the * display-plane-map*

Printed April 28, 1989

DISPLAY 11-34

global variable, which itself defaults to niY. The has-color-map argument
defaults to the value of the *disptay-color-map* global variable, which itself
defaults to nil. The has-map-map argument defaults to the value of the
* display-map-map* global variable, which itself defaults to nil.

SIDE EFFECT: Copies the information in dis_display into dwin_window. The upper left
corner of dis_display is copied to the upper left corner of dwin_window. If
dis_display is too small, the right or bottom of dwin_window is left
unchanged, and if dis_display is too large, its right or bottom is not
copied. The intensity array of dis.display is copied into the intensity
array of dwin_window, if both intensity arrays exist. The pixels of
dis_display are expanded by the zooms of dwin_window when copied.

If d»_display has bitgraph programs, and dwin_window has either bit-
graph programs or a bitgraph array or both, each bitgraph plane M of
dis_display is logically OR'eel into the bitgraph plane N of dwin_window
with the same bitgraph plane name.

If instead d\vin_window only has an intensity array, and no bitgraph pro-
grams or bitgraph array, the bitgraph planes of dis_display overlay the
intensity information in dwin_\viiulo\v. This overlay is done after any
intensity information in clis_display is copied into dwin_window. Informa-
tion from planes with higher numbers in dis_display overlays information
from planes with lower numbers The bitgraph array of dis_display is
used if it exists and dwin_window has zooms equal to 1. Otherwise
dis_display's bitgraph program is used, and the dis_display plane types
are recompiled for dwin_windo\v.

If dis_display and dwin_windo\v both have bitgraph arrays but no bit-
graph programs, and if the zooms of dwin_window equal 1.0, the bitgraph
planes of dis_display will be logically OR'ed into those of dwin_window as
indicated above. Similarly if instead dwin_window has an intensity array
but no bitgraph programs or bitgraph array.

It is not an error if only one of dis_display and dwin_window have inten-
sity arrays, or if only one has bitgraph planes. It is an error if dis_display
has a bitgraph array and no bitgraph programs, and either dwin.window
has bitgraph programs, or dwin_window has zooms not equal to 1 or an
upper left corner with non-integer coordinates.

Printed April 28, 1989

DISPLAY 11-35

(move-display-cursor-by 'n_xdisplacement n_vdisplacement [LISP Function]
['dwin_windowJ)

(move-display-cursor-by '(n_xdisplacement n_ydisplacement) [LISP Function]
['dwin_\vindowj)

(move-dbplay-cursor-by \ec_veetor |'dwin_window]) [LISP Function]
(move-display-cursor-to 'n_xposition 'n_yposition [LISP Function]

['d\vin_windo\v])
(move-display-cursor-to '(n_xposition n_yposition) [LISP Function]

['d\vin_\vindow])
(move-display-cursor-to 'pt_point |'dwin_window]) [LISP Function]

WHERE: Dwin_window defaults to the value of (get-current-display-window).

SIDE EFFECT: Resets the coordinates of the cursor point for the window. Move-display-
cursor-by adds displacements to the current coordinates, while move-
display-cursor-to replaces the coordinates. A nil displacement or position
may be used to indicate the associated cursor coordinate is not to be
modified.

(new-plane 'bpn_plane) [LISP Function]

EQUIVALENT TO: (set/(lias-plane (get-current-display-window)) bpn_plane).

(new-window ['dwin_windowj ['d\vpt_upper-)eft] ...) [LISP Function]

WHERE: Dv in_windo\v defaults to the value of (get-current-display-window) and
dwpt_upper_left defaults to '(0.0 0.0). The d\vin_window and dwpt_upper-left
arguments may be given in any order, and may be mixed with nil arguments
which are ignored.

EQUIVALENT TO:

(a-display-window dwin_window
has-parent dwin_window
has-uppcr-left dwpt_upper-left

•••)

except that dwpt_upper-left is offset by the dwin_window has-cursor
position.

Note that because dwin_window is both the prototype and the parent,
the new window will inherit has-transform and other attributes from
it, while also having its upper left corner, sizes, zooms, and orientation
defined in terms of it.

Printed April 28, 1989

DISPLAY 11-36

(playback-display 'dis_display ['dwin_window]) [LISP Function]
(playback-display fdwin_window]) [LISP Function)
(playback-display ca_catalog [:dwin_window]) [LISP Function]
(playback-display 's_file-name ['dwin_window]) [LISP Function]

WHERE: Dwin_window defaults to the value of (get-playback-display-window).

SIDE EFFECT: This function is used to play back displays stored in a catalog.

If dis_display is given the function is equivalent to—

(merge-display dis_display dwin_window)
(flush-display dwin_window)

If BO argument is given the function is equivalent to—

(flush-display dwin_window l)

If ca_catalog is given the function positions to the beginning of the catalog
and enters interactive mode wherein it types the prompt 'playback> '
and reads commands. A carriage return reads the next catalog entry and
displays it if it is a display, or pretty-prints it otherwise. A lisp expression
followed by a carriage return reads the catalog entry whose location
equals the lisp expression and displays or pretty-prints it. However, in
this case if the entry read has the form—

(catalog-key location-used-to-read-entry),

it is replaced by the catalog entry following it before being displayed or
pretty-printed. A '.' character lists all the allowable locations if
ca_catalog is an index catalog. A '?' character lists help information.
And a control-D or the character '$' causes the function to exit.

Giving s_file-name is just like giving the catalog—

(a-catalog is-index-of (a-catalog has-file 's_file-name)).

(remake-display-maps '(s_map-name [s_monitor ...]) [LISP Function]
'at_attribute 'g_value ...)

(remake-display-maps 's_map-name [LISP Function]
'at_attribute 'g_value ...)

EQUIVALENT TO:

(dolist (d (find-display-maps '(s_map-name [s_monitor] ...)))
(a-display-map d at_attribute g_value ...))

This is useful for resetting attributes like has-plane-types and has-
scales for all display maps matching a given ID.

Printed April 28, 1989

DISPLAY 11-37

(write-display 'ca_catalog] ['dis/dwin_display]) [LISP Function]

WHERE: Dis/d\vin_display defaults to the value of {get-current-display-window) If
dis/d\vin_display is a display window, it is replaced by its parent display.

Nil arguments are ignored (so any argument may be nil).

SIDE EFFECT: If dis_display has no has-parent, this function does the same thing as—

{write-catalog ca_catalog dis_display).

If dis_display has a has-parent, then dis_display is merged into this parent
by the merge-display function, and then write-display is executed on the
parent.

A display that has been written into a catalog can be read back from the
catalog and redisplayed with the merge-display function.

Printed April 28, 1989

CHAPTER 12

HISTOGRAMS

1. GLOSSARY.

(auto-dip Mar_array 'x_area 'n_range [LISP Function]
I'JDjinnimum n_maximum) ['n_extension]j)

RETURNS: Clipping bounds for lar_array in the form of a range specified by a list with
two elements:

(n_lo\ver-bound n_upper-bound).

X_area represents a number of points in lar_array, hence an area if lar_array
is two dimensional, a volume if three dimensional, etc. Lar_array is histo-
grammed with a resolution of n_range/10. Then a tight range is chosen as
small as possible so that no histogram interval of size n_range (10 histogram
points) wholy outside the tight range has as many as x_area points. This
implies that if lar_array is thought of as an image, any object with values
that are all within n_range of each other and whose values are also wholy
outside the tight range must be smaller than x_area points.

During the computation of the histogram points with missing values and
points with values outside the range (n_minimum n_maximum) are ignored.
Thus the tight range will be inside the range (n_minimum n_maximum)

Then a loose range is computed so that the difference between each loose
bound and its associated tight bound is = n_extension times the size of the
loose range. The default value of n_extension is 0.10.

Lastly the intersection of the loose range and the range (n_minimurn
n_maximum) is returned.

HISTOGRAMS 12-1

HISTOGRAMS 12-2

(histogram 'lar_output 'ar_input-l 'ruLruler-1 ... [LISP Function]
ar_input-N ;rul_ruler-N)

WHERE: Where, if there are N ar_input/rul_ruler pairs, lar_output is treated as N
dimensional. N must be from 1 through 4. Ar_input-1, ar_input-2, ...,
ar_input-N must all be similar. The exponent of lar_output must be 0 or nega-
tive.

RETURNS: Lar_output after modifying its elements.

SIDE EFFECT: Adds the N dimensional histogram of ar_input-l, ..., arJnput-N to
lar_output.

Each non-missing valued element from an input array is assigned a sub-
script obtained by applying the inverse of the affine transformation
defined by the ruler associated with the input array, and rounrfing the
result to the nearest integer.

Each corresponding set of elements in the input arrays is mapped onto N
subscripts, and these select an element of Iar_output. Ar_input-1 provides
the X-dimension subscripts; ar_input-2 the Y-dimension subscripts.
ar_input-3 the Z-dimension subscripts; and ar_input-4 the T-dimension
subscripts. The selected element of lar_output is incremented by 1. If
any element in a corresponding set of input elements is missing, or any
subscript defined by these elements is out of range, the corresponding set
is ignored.

NOTE: The elements in lar_output are not initialized to zero.

BUG: Lar_output elements may not have missing values.

(histogram-of 'ar_input-l 'ruLruler-1 ... [LISP Function]
'arJnput-N 'ruLruler-N)

WHERE: N must be from 1 through 4. Ar_input-1, ar_input-2, ..., ar_input-N must all
be similar.

If the range specification (second element) of rul_ruler-M is nil, the pair com-
puted by

(bounds-of-array ar_array-M)

will be substituted for it.

For example, the ruler (nil nil 2) will produce a histogram with bins of size 2
(the scale), with a lower bound on the first bin (first range bound) slightly
smaller than the lower bound of all the elements in the associated array, and
with as many bins as needed to ensure that all array elements are assigned to
some bin.

As another example, the ruler (128 nil (2)) will produce a histogram with 128
bins (histogram dimension size), a lower bound for the first bin (first range

Printed April 28, 1989

HISTOGRAMS 12-3

bound) equal to the lower bound of all the elements of the associated array, and
a bin size (scale) which is the smallest multiple of 2 that will fit all the array
elements into the 128 bins.

RETURNS: A new N dimensional array lar_output with exponent 0 whose elements are
computed by passing it and the other parameters to the histogram function.
Before being passed the rulers have integerize-ruler applied to them, and the
resulting domain size is used to determine the corresponding dimension size of
lar_output.

The has-ruler attributes for the lar_output dimensions are set to the rulers
used

Printed April 28, 1989

CHAPTER 13

EDGES

1. MAKING LINKED EDGE CHAINS

With the functions defined in this package, it is possible to detect and extract edges
in a 2-D array, where the edges are defined as the zero-crossings of the convolution with a
laplacian-of-gaussiMB operator or with some other contrast operator.

First, the input array must be convolved with the appropriate kernel; for example, if
al is the input array, its contrast array dgal is obtained by

(setq dgal (convolution-of al (del2g-kernel '(2.0 2.0))))

where the widths of the Gaussian kernel, here (2.0 2.0), must be adapted to the desired
scale of details. Second, the zero crossings of the contrast array and the slopes at these
zero-crossings are estimated and stored in the arrays eal, sal. respectively by

(desetq (sal eal) (zero-edges-of dgal '(2 2)))

At this point, a list lc of chains of linked edge points can be obtained as the value
returned by

(setq lc (linked-edges-of eal sal))

Each chain in lc has the attributes has-point-list set to the list of points in the edge and
has-strcngth to the average strength over the edge, as defined in the strength array sal.

In addition to the above procedure, it is also possible to generate edge chains with
information related to the ranges on each side on the edge. For this purpose, the initial
array al must first be convolved with a smoothing operator corresponding to the contrast
operator used to generate dgal. For example, the smoothed array gal is obtained with

(setq gal (convolution-of al (gaussian-kernel '(2.0 2.0) '(0.0 0.0))))

The list of extended edge chains xlc is then obtained with

(setq xlc (x-linked-edges-of eal sal gal)).

In addition to has-point-list and has-slrength, the chains in xlc have their has-minimum-
ranges attribute set to the list of ranges on the lower side of the edge, corresponding to
each point in has-point-list; the has-min-median is set to the median of the values in the
above list. Finally, the has-maximum-ranges and has-max-median attributes are set to
corresponding values.

2. ARRAY SIZES, OFFSETS, ETC.

The sizes of the various arrays described above are briefly discussed in this section.
Let the sizes of the input array al be (N M), and the kernel sizes be (K K). Note first
that (K K) is not equal to (2 2) in the above example, as (2 2) determines the side of the
main lobe of the laplacian-of-gaussian, not the size of the kernel array; with the default
*kernel-cuton"*I K=12 in this example. The array dgal obtained with the function

EDGES 13-1

EDGES 13-2

convolution-of has sizes (N+l M+l); the result array sizes are larger than the input by
one element whenever the kernel sizes are even. Furthermore, individual elements of
dgal must be considered as offset by (0.5 0 5) from the elements of al. In order to obtain
dgal, the function convolution-of internally expanded the array al to sizes (N+K M+K)

The arrays sal and eal have sizes (N M) and (N M 2) respectively. The function
zero-edges-of always expects its input array to be offset by half-pixels in each dimension,
and outputs arrays with sizes one less than the input sizes, and with no offsets. In order
to obtain the final results, the input array to zero-edges-of, dgal, which has sizes (N+l
M+l), is internally expanded to sizes (N+2W-1 M+2W-1), where W denotes the value of
each width argument to the function zero-edges-of. Reasonable values for the width argu-
ments are integers close to the widths of the kernel used to generate dgal.

In the case gf the extended edge chains, the minimum and maximum ranges are
estimated as the minimum and maximum on a 5x5 box in gal around each edge point.
The array gal must not be offset by half-pixels, so that the convolution kernel used for
gal is obtained by explicitly forcing the optional offsets to (0 0). Although the initial
array al itself could be supplied as the third argument to the x-linkcd-edges-of function,
using the smoothed array gal is more compatible with the detection of edges as zero
crossings of dgal which is equivalent to the laplacian of gal.

3. GLOSSARY.

(zero-edges ar_edges lar_input ['x_resolutionj) (LISP Function]

WHERE: The element type of ar_edges is a-char.

There are integers x_xwidth > 1 and x_ywidth >1 such that the X and Y
dimension sizes of ar_edges are 2*x_xwidth-l and 2*x_ywidth-l less than the
corresponding sizes of lar_input. The Z dimension size of ar_edge is exactly 2.

X_resolution defaults to the value of the *dcfault-edge-resolution* variable,
which itself defaults to 8.

RETURNS: Ar_edges after its elements are set.

SIDE EFFECT: Zero crossing edges are found in lar_input and stored in ar_edges
Ar_input should be the convolution of an image with a difference of gaus-
sians or other contrast operator. Its zero contours are the edges to be
found.

Each 2X2 box in lar_input is checked to see if it contains an edge (0 con-
tour). If it contains 1, that is output into ar_edges according to the
scheme below. If it contains 0 or more than 1, ar.edges is marked to indi-
cate the absence of an edge for the box. The rational for the more than 1
case is that the edges involved would have nearly zero strength (gradient
in lar_input at the edge location) and should not therefore be treated as
edges.

The 2X2 lar_input boxes are mapped onto RxR point boxes where R is
the resolution. If R were 8, the box would have 32 boundary points

Printed April 28, 1989

EDGES 13-3

numbered as follows:

0
31
30
29
28
27
26
25
24 23 22 21 20 19 18 17

8
9
10
11
12
13
14
15
16

The ar_edges elements with coordinates (X Y 0) and (X Y 1) receive a pair
of box boundary numbers from the 2X2 ar_input box whose upper left
corner subscripts are

(X+x_xwidth-l Y+x_ywidth-l).

This pair of points define a straight line which is the edge within the box.
The pair is chosen so that going from the (X Y 0) boundary point to the
(X Y 1) boundary point places the more intense part of the image on the
righthand side.

If there is no edge in the ar_input box, a pair of SAT_CMISSING values is
output to the two ar_edges elements.

To avoid redundancy edges equal to the right or bottom edge of the box
are surpressed (they will be the left or top edge of an adjacent box. Edges
are also surpressed if their two boundary points are equal (i.e. 0 length
edges, which would only occur at the box corners).

(zero-edges-of 'ar_input '(x_xwidth x_ywidth) [LISP Function]
['x_resolution])

WHERE: X_xwidth and x_ywidth should be the widths of the difference of gaussians or
similar kernel convolved with the original image to produce ar_input.

RETURNS: A list (lar_output lar_edges) of two arrays as produced by zero-edge-strength
and zero-edges. Prepare-array is applied to ar_input.

WARNING: The two arrays returned will not be protected against garbage collection
unless they are immediately stored in variables by desetq or the equivalent.

Printed April 28, 1989

EDGES 13-4

(rero-edge-strength-of 'lar_output 'lar_input [LISP Function]
'lar_work 'ar_edges)

WHERE: The X and Y dimension sizes of lar_output, lar_work, and lar_input are the
same, and there are integers x_xwidth > 1 and x_ywidth > 1 such that these
sizes are larger than the X and Y sizes of ar_edges by 2*x_xwidth-l and
2*x_ywidth-l. Ar_edges has been computed from ar_input by using the ztro-
edges function. Bfa_work is a temporary work area.

X_xwidth and x^ywidth should be the widths of the difference of gaussians or
similar kernel convolved with the original image to produce ar_input.

RETURNS: A slice of lar_output which has the same X and Y dimension sizes as
ar_edges.

SIDE EFFECT: For each element with subscripts (X Y) in lar_output, the maximum and
minimum are found of the 2*x_xwidth X 2*x_ywidth box in ar_input with
upper left corner subscripts (X Y). The difference, the maximum minus
the minimum, is output to the lar_output element if the corresponding
element of ar_edge has an edge. This is a measure of the strength of that
edge. If there is no edge, 0 is stored in the lar_output element. The
corresponding ar_edge elements have subscripts (X Y ...).

The theory is that the strength is roughly the size of the gradient across
the edge, and this can be measured roughly by the maximum minus the
minimum on a box.

Printed April 28, 1989

CHAPTER 14

LINEAR FIT

1. GLOSSARY.

I box-linear-fit 'lar_output 'lar_input [LISP Function]
^JKsize x_ysize) '(x_xstep x_ystep))

WHERE:
lar_output X dimension size =

(lar_input X dimension size - x_xsize + x_xstep) / x_xstep

and similarly for the Y dimension The Z dimension size of lar_output must be
4.

The exponents of lar_output and lar_input must be identical.

RETURNS: Lar_output after setting its elements.

SIDE EFFECT : For each (X Y) coordinates in lar_output, a linear fit is done of all the
points in the (x_xsize x_ysize) box with upper lefthand corner (X*x_xstep
Y*x_ystep) in lar_input. The following linear fit parameters are recorded
in the elements (X Y Z) of lar_output:

Z = 0 Constant.

Z = 1 X Derivative.

Z = 2 Y Derivative.

Z = 3 Standard Deviation.

The equation of fit is

value at (Xl Yl) = Constant +
(X Derivative) * (Xl - X * x_xstep - (x_xsize - 1) / 2)
(Y Derivative) * (Yl - Y * x_ystep - (x_ysize - 1) / 2)

where
(X*x_xstep+(x_xsize-l)/2 Y*x_ystep+(x_ysize-l)/2)

is the center of the box.

The constant, derivatives, and standard deviation are recorded as missing

LINEAR FIT 14-1

LINEAR FIT 14-2

if there are fewer than 3 non-missing values in the box, or if the non-
missing points lie in a straight line. If there are 4 non-missing values not
on a straight line, just the standard deviation is recorded as missing.

(box-linear-fit-of 'ar_input '(x_xsize x_ysize) [LISP Function]
'(x_xstep x_ystep))

RETURNS: An array lar_output whose elements are set by calling box-linear-fil with
lar_output, ar_input, (x_xsize x_ysize), and (x_xstep x_ystep) as arguments.
Prepare-array is run on ar_input to change its numeric type and expand it by
(x_xsize-l x_ysize-l) if appropriate.

i^-

Printed April 28, 1989

CHAPTER 15

TEXTURE

1. GLOSSARY.

(box-horizontal-total-variation Mar_output 'lar_input [LISP Function]
~Mk± '(x_xsize x_ysize) '(x_xstep x_ystep))

WHERE:
lar_output X dimension size =

(lar_input X dimension size - x_xsize + x_xstep) / x_xstep

and similarly for the Y dimension.

The exponents of lar_output and lar_input must be identical.

x_xsize and x_ysize must be greater than 1.

RETURNS: Lar_output after setting its elements.

SIDE EFFECT: For each (X Y) coordinates in lar_output, the normalized horizontal total
variation is computed for all the points in the (x_xsize x_ysize) box with
upper lefthand corner (X*x_xstep Y*x_ystep) in lar_input. The com-
puted quantity is the sum of absolute values of differences between pairs
of horizontal neighbors in the box, divided by the total number of
differences involved.

BUG: Cannot handle missing values.

(box-horizontal-total-variation-of 'ar_input '(x_xsize x_ysize) [LISP Function]
'(x_xstep x_ystep))

WHERE: x_xsize and x_ysize must be greater than 1.

RETURNS: An array <lar_output whose elements are set by calling box-horizontal-total-
variation with lar_output, arjnput, (x_xsize x_ysize), and (x_xstep x_ystep)
as arguments. Preparc-array is run on ar_input to change its numeric type
and expand it by (x_xsize-l x_ysize-l) if appropriate.

TEXTURE 15-1

TEXTURE 15-2

(box-minimum-total-variation 'lar_output 'lar_input [LISP Function]
'(x_xsize x_ysize) '(x_xstep x_ystep))

WHERE:
lar_output X dimension size =

(lar_input X dimension size - x_xsize 4- x_xstep) / x_xstep

and similarly for the Y dimension.

The exponents of lar_output and lar_input must be identical.

x_xsize and x_vsize must be greater than 1.

RETURNS: Lar_ouL|put after setting its elements.

SIDE EFFECT : For each (X Y) coordinates in lar_output, the normalized minimum total
variation is computed for all the points in the (x_xsize x_ysize) box with
upper lefthand corner (X*x_xstep Y*x_ystep) in lar_input The com-
puted quantity is the minimum of the normalized horizontal total varia-
tion and vertical total variation in the box, where the normalized hor-
izontal total variation is the sum of absolute values of differences between
pairs of horizontal neighbors in the box. divided by the total number of
differences involved, and the other variation is similarly defined for verti-
cal neighbors.

BUG: Cannot handle missing values

(box-minimum-total-variation-of 'ar_input '(x_xsize x_ysize) [LISP Function]
'(x_xstep x_ystep))

WHERE: x_xsize and x_ysize must be greater than 1.

RETURNS: An array lar_output whose elements are set by calling box-minimum-total-
variation with lar_output, ar_input, (x_xsize x_ysize), and (x_xstep x^ystep)
as arguments. Prepare-array is run on ar_input to change its numeric type
and expand it by (x_xsize-l x_ysize-l) if appropriate.

(box-standard-deviation 'lar_output 'lar_input [LISP Function]
'(x_xsize x_ysize) '(x_xstep x_ystep))

WHERE:
lar_output X dimension size =

(lar_input X dimension size - x_xsize + x_xstep) / x_xstep

and similarly for the Y dimension. The Z dimension size of lar_output must be
2.

The exponents of lar_output and larjnput must be identical.

RETURNS: Lar_output after setting its elements.

SIDE EFFECT : For each (X Y) coordinates in lar_output, the mean and standard devia-
tion are computed for all the points in the (x_xsize x_ysize) box with

Printed April 28, 1989

TEXTURE 15-3

upper lefthand corner (X*x_xstep Y*x_ystep) in lar_input. These param-
eters are recorded in the elements (X Y Z) of lar_output:

Z=0 Mean.

Z = 1 Standard Deviation.

The mean and standard deviation are recorded as missing if there are no
non-missing values in the box. If there is only 1 non-missing value, just
the standard deviation is recorded as missing.

(box-standard-deviation-of 'ar_input '(x_xsize x_ysize) [LISP Function]
'• '(x_xstep x_ystep))

RETURNS: An array lar_output whose elements are set by calling box-standard-deviation
with lar_output, ar_input, (x_xsize x_ysize), and (x_xstep x_ystep) as argu-
ments. Prepare-array is run on ar_input to change its numeric type and
expand it by (x_xsize-l x_ysize-l) if appropriate.

(box-vertical-total-variation 'lar_output 'lar_input [LISP Function]
'(x_xsize x_ysize) '(x_xstep x_ystep))

WHERE:
lar_output X dimension size =

(lar_input X dimension size - x_xsize + x_xstep) / x_xstep

and similarly for the Y dimension.

The exponents of lar_output and lar Jnput must be identical.

x_xsize and x_ysize must be greater than 1.

RETURNS: Lar_output after setting its elements.

SIDE EFFECT.: For each (X Y) coordinates in lar_output, the normalized vertical total
variation is computed for all the points in the (x_xsize x_ysize) box with
upper lefthand corner (X*x_xstep Y*x_ystep) in larjnput. The com-
puted quantity is the sum of absolute values of differences between pairs
of vertical neighbors in the box, divided by the total number of differences
involved.

BUG: Cannot handle missing values.

Printed April 28, 1989

TEXTURE 1S-4

(box-vertical-total-variation-of 'ar_input. '(x_xsize x_ysize) [LISP Function]
'(x_xstep x_ystep))

WHERE: x_xsize and x_ysize must be greater than 1.

RETURNS: An array lar_output whose elements are set by calling box-vertical-total-
variation with lar.output, ar_input, (x_xsize x_ysixe), and (x_xstep x_ystep)
as arguments. Prepare-array is run on ar_input to change its numeric type
and expand it by (x_xsize-l x_jrsize-l) if appropriate.

Printed April 28, 1989

*
»•

0

APPENDIX A

SKETCH INDEX

+ [LISP Global Variable] 3-28
++ [LISP Global Variable] 3-28
+++ [LISP Global Variable] 3-28
 [LISP Global Variable] 3-28
 [LISP Global Variable] 3-28

•*• [LISP Global Variable] 3-28
Od-vector [LISP Global Variable] 10-
•ld-to-2d-zero-transform* [LISP Global Variable; 10-1
ld-to-3d-zero-transform [LISP Global Variable] 10-1
ld-unit^transform [LISP Global Variable] 10-1
ld-x-unit-vector [LISP Global Variable! 10-2
ld-zero-transform (LISP Global Variable] 10-1
ld-zero-vector [LISP Global Variable] 10-2
•2d-to-ld-zero-transform* [LISP Global Variable] 10-1
2d-to-3d-zero-transform [LISP Global Variable 10-1
•2d-unit-transform* [LISP Global Variable 10-1
2d-x-unit-vector (LISP Global Variable 10-2
•2d-y-unit^vector* [LISP Global Variable] 10-2
•2d-zero-transform* [LISP Global Variable] 10-1
2d-zero-vector [LISP Global Variable! 10-2
•3d-to-ld-zero-transform* [LISP Global Variable] 10-1
3d-to-2d-zero-transform [LISP Global Variable] 10-1
3d-unit-transform (LISP Global Variable] 10-1
3d-x-unit-vector (LISP Global Variable] 10-2
•3d-y-unit-vector* [LISP Global Variable] 10-2
3d-eero-transform [LISP Global Variable] 10-1
•3d-«ero-vector* [LISP Global Variable] 10-2
•3d-e-unit-vector* [LISP Global Variable] 10-2
a-bignum [SKETCH Type] 5-29
a-binary-function [SKETCH Type] 5-29
a-bitgraph-character [SKETCH Type Object] 9-14
(a-bitgraph-parameter-set hat-linc-width 'x_line-width [LISP Macro] 9-1

has-1-width 'x_l-width has-1-hcight 'x_l-height
has-5-widlh 'x_5-width has-5-kcight 'x_5-height
has-10-width 'x_10-width ha»-W-htight 'x_10-height)

"abnormal object" [SKETCH Term] 5-30
(abnormal-object-for-macro '(list s_type s_attribute g_value ...)) [LISP Function] 5-31
(absolute-value-array-elements 'lar_output ['lar_input]) [LISP Function] 8-1
(a-catalog [has-filc 's_file-name] [SKETCH Object] 6-4

[has-fUter '(u_function ,ca_input-catalog)]
[is-index'of ca_indexed-file]
\has-index-file 's_index-file]
[has-indcx-function 'u_index-function])

SKETCH INDEX A-l

SKETCH INDEX A-2

(accumulate-filter 'lar_array _dimension) [LISP Function] 8-1
a-char (SKETCH Typej 5-29
(a-character-set hat-file s_file [SKETCH Type Macro] 9-2

hat-font s_font
hat-ti:et '(x_xsize 'x_ysize))

a-character-set [SKETCH Type Object] 9-2
(a-cluster \hat-point-array 'ar_point-array] [LISP Macro] 10-2

[hat-point-litt :(pt_point-l ...)]
[ts-chain 'g_chain-s\vitchj
[it-malimal-polygon g_maximal-polygon-switch])

a-cluster [SKETCH Type Object] 10-2
(add-arrays 'iar_output 'lar_input-l ['lar_input-2]) [LISP Function] 8-1
(add-to-array-elements 'lar_array 'n_addend) [LISP Function] 8-2
adim_ [Argument Prefix] 7-29
(a-display \hat-ti:es '(x_xsize x_ysize)j [SKETCH Type Macro] 11-4

\hat-map ;s_map-name]
hat-device '(s_device-type ...)]
hat-film 's_film|
hat-parent :dwin_windowj

[hat-bitgraph-planet '(s_plane-type-name-l ...)]
\ha*-intensity-array 'ucar/usar/s_intensity-array]
[hat-bitgraph-array ubar s_bitgraph-array]
[hut-bitgraph-programt 'h/s_bitgraph-programs])

a-display [SKETCH Type Object] 11-4
(a-display-map hat-idt [SKETCH Type Macro] 11-10

'((s_map-name [s_monitor [s_film] [s_processor]]) ...)
[hat-primary-colors '(s_primary-color-l ...)]
[hat-range 'x_range]
[hat-map-array 'ucar_map-array]
[has-camera-parameters 'g_camera-parametersj
[hat-colors '((s_color-l (x_color-ll ...) ...)]
[has-scales '((s_scale-l ucar/usar_scale-l) ...))]
[has-planc-typcs '((s_plane-type-l plt_plane-type-l) ...))])

a-display-map [SKETCH Type Object] 11-10
(a-display-window has-parent 'dis/dwin_parent [SKETCH Type Macro] 11-16

[has-sizes '(n_xsize n_ysize)]
[has-upper-left 'dwpt_upper-left]
[has-lower-right 'dwpt_lower-right]
[has-origins 'dwpt_originsj
[has-zooms '(n_xzoom n_yzoom)]
[has-orientation 's_orientation]
[has-transform 'trans_transformj
[hat-cursor 'dwpt_cursor]
[has-plane 'bpn_line-plane]
[has-linc-plane 'bpn_line-plane]
[has-area-plane 'bpn_area-plane]
[has-tczt-planc 'bpn_text-plane])

a-display-window [SKETCH Type Object] 11-17
a-double [SKETCH Type] 5-29

Printed May 1, 1989

SKETCH INDEX A-3

"affine transform" [SKETCH Term] 10-7
a-fixnum (SKETCH Type] 5-29
a-float [SKETCH Type] 5-29
a-flonum [SKETCH Type] 5-29
aft_ [Argument Prefix] 5-35
a-hunk [SKETCH Type] 5-29
(a-line has-start 'pt_start [LISP Macro] 10-4

[has-length 'n_length]
[has-direction Vec_direction!)

(a-line has-start 'pt_start [LISP Macro] 10-4
hat-end 'pt_end [is-infinite "g_innnite-s\vit.chj)

(a-line has-start 'pt_start [LISP Macro] 10-4
has-segtnent 'vec_segment [it-infinite g_iiifinite-switch])

a-line [SKETCH Type] 10-4
a-lisp-array [SKETCH Type] 5-29
a-lisp-vector [SKETCH Type] 5-29
a-list [SKETCH Type] 5-29
all [MAKE Target] C-25
$(ALL_FILES) [MAKE Macro] C-25
all.lhfiles [MAKE Target] C-26
(allocate-array ar_array) [LISP Macro] 7-3
a-long [SKETCH Type] 5-29
(altered-duplicate-of-array ar_anay :ty_element-type [LISP Function] 7-1

|'x_exponenl i'x_ofTset ['x_size]]])
an-allocate-bitgraph-character [SKETCH Type Object] 9-14
(an-array lias-sizes '(x_xsize [x_ysize ...]) [SKETCH Type Macro] 7-2

[has-element-type 'ty_element-type!
[has-exponent "x_exponent.j
[by-expression 'g_expression]
[by-valve 'g_valuej
[has-array-file 'g_array-filej
[has-offsets '(n_xofTset [n_yofTset ...])]
[has-scales '(n_xscales [n_yscales •..])])

(an-array has-parent-sizes '(x_xparent-size [x_yparent-size ...]).[SKETCH Type Macro] 7-2
[has-parent-increments '(x_xparent-increment [x_yparent-increment ...])
[has-parent-offsets '(n_xparent-offsets (n_yparent-offsets ...])
[has-parent-scales '(n_xparent-scales [n_yparentrscales ...])
[has-dcsircd-aizes '(x_xdesired-sizes [x_ydesired-sizes ...])
[hat-desirtd-origins '(x_xdesired-origins [x_ydesired-origins ...])
[has-steps '(x_xsteps [x_ysteps ...])
[/»o«-e/emen<-tjfpe 'ty_element-typej
[hat-exponent 'x_exponent]
[by-expression 'g_expression]
[by-valve 'g_value]
[hat-array-file 'g_array-file]
[it-readonly 'g_readonly-switchj
[it-immovable 'g_immovable-switch])

(an-»rray 'ar_prototype [SKETCH Type Macro] 7-2
[do-thare-elemenlt g_share-elements]

Printed May 1, 1989

SKETCH INDEX A-4

an-array [SKETCH Type Object.] 7-3
(an-array-summary hat-count "x_coun1 [SKETCH Object] 7-H

hdn-inifisiiKj-couiil x_ini$*ing-count
hns-mtan °f_mean
hut-standard-deviation 'Lstandard-deviation
has-maiimum "f_maximum
lias-minimum T_minimum
has-SUVl T_sum
httx-iuvi-squarct "f.sum-^eiuare!?)

an-array-summary [SKETCH Type] 7-14
(an-attribute has-vamt 's_name) [SKETCH Type Macro] 5-31
an-attribute [SKETCH Type] 5-31
(an-attribute-descriptor \has-dt*criptor-typt ty_type] [SKETCH Type Macro] 5-31

[has-descriptor-at tribute "at_attribute]
\ha*-junction* "aft_at tribute-function-table]
[has-parameters 'g_parameters]
[ha*-iitfo "g_info]
\has-defatill-value 'g_defauIt-value]
[has-ts-a-stub-stvitch s_is-a-stub-switch]
[ha*-compare-switch s_compare-switch]
lui'-formal-switcli *s_format-switch]
luis-iinttal-switch 's_uneval-switchj)

an-attribute-descriptor [SKETCH Type] 5-31
(an-attribute-function-table [SKETCH Type Macro] 5-35
\has-get-functiov "s_get-function
[has-get-macro "s_get-macro!

[has-set-function 's_set-function
[has-scl-macro s_set-macro]

[has-init-function 's_init-function
[has-inil-viacro 's_init-macro]:)

an-attribute-function-table [SKETCH Type] 5-35
(an-ellipsoid hat-transform 'trans_ortho [LISP Macro] 10-5

has-xradii '(n_xradius [n_yradius [n_zradius]])
[has-center 'vec_center])

(an-ellipsoid has-radius 'n_radius 10-5
has-center 'vec_center)

an-ellipsoid [SKETCH Type] 10-5
(angle-between-lines lin_line-l lin_line-2) [LISP Macro] 10-7
(angle-between-vectors 'vec_vector-l 'vec_vector-2) [LISP Macro] 10-7
an-immediate-vector [SKETCH Type] 5-29
an-int [SKETCH Type] 5-29
an-lbit [SKETCH Type] 5-29
a-non-lisp-value [SKETCH Type] 5-29
(an-operation has-name 's_name [SKETCH Type Macro] 5-37

has-index-svbscript 'x_index-subscript)
an-operation [SKETCH Type] 5-37
(an-operation-descriptor [has-descriptor-typc 'ty_type] [SKETCH Type Macro] 5-38

has-descriptor-operation 'op_operation
has-function 's_operation-function
[has-macro 's_operation-niacroj
[has-parameters 'g_parameters]
\has-info 'g_info])

Printed May 1, 1989

SKETCH INDEX A-5

an-operation-descriptor SKETCH Type; 5-38
an-unsigned SKETCH Type! 5-29
(a-plane-type [lias-color :s_color] [SKETCH Type Macro; 11-22

[has-fill-paltern 'ubar_fill-pattern]
[has-line-type 's_line-tvpej
[has-line-width 'n_line-widlh]
[has-character-font 's_character-font]
[has-characler-sizes '(n_xcharacter-size n_ycharacter-size)])

a-plane-type [SKETCH Type Object! 11-22
a-port [SKETCH Type] 5-29
(append-catalog 'gjnput 'g_output ['(g_key ...)]) [LISP Function] 6-9
ar_ [Argument Prefix] 7-3
.ar [UNIX File Extension] 7-15
ar_ [Argument Prefix] 7-26
(arccos-array-elements 'lar_output ['lar_input]) [LISP Function] 8-2
(arcsin-array-elements 'lar_OUtput ['lar_input]) [LISP Function] 8-2
(argv-shift ['x_numberj) !LISP Function! 3-12
* array-block-region-sizes* [LISP Global Variable] 7-15
array-blocks-history [LISP Global Variable] 7-15
* array-blocks-history-length* (LISP Global Variable] 7-15
(array-copy-exponent "ar_array !ty_eleinent-type) LISP Function] 7-16
* array-ex pander* [LISP Global Variable] 7-22
$(AS) [MAKE Macro] C-26
$(AS_FLAGS) [MAKEMacroj C-26
a-short [SKETCH Type] 5-29
(assert g_condition j'g_message]) [LISP Macro] 3-12
a-string [SKETCH Type] 5-29
asum_ [Argument Prefix] 7-14
a-symbol [SKETCH Type] 5-29
at_ [SKETCH Argument Prefix] 5-31
at_ [Argument Prefix] 5-78
(a-tape-volume [SKETCH Object] 6-7

has-tape-format '(x_record_length ...)
[has-namc 's_name]
[hot-drive 'x_drive]
[has-file-number 'x_file-number]
[hat-record-number 'x_record-number]
[it-modified 's_modified-switch])

atd_ [SKETCH Argument Prefix] 5-31
(atom ...) [LISP Function] E-l
(a-transform [hat-xx 'n_xx] [hat-xy 'n_xy] [SKETCH Type Macro] 10-7

[hat-xz 'n_xz] [hat-xt 'n_xt]
[has-yx 'n_yx] [hat-yy 'n_yy]
[hat-yz 'n_yz] [hat-yt 'n_yt]
[hat-zx 'n_rx] [hat-zy 'n_zy]
[hat-zz 'n_zz] [hat-zt 'n_zt]
[hat-tx 'n_txj [hat-ty 'n_ty]
[hat-tz 'n_tz] [has-tt 'n_tt]
[it-orthogonal 'g_orthogonal]
[hat-input-dimensions 'x_input-dimensions]
[has-output-dimensions 'x_output-dimensions])

Printed May 1, 1989

SKETCH INDEX A-ft

(a-transform [has-displacemenl 'vec_displacementj |SKETCH Type Macro]
has-aris \ec_axis has-attgte n_angle)

a-transform [SKETCH Type Object]
(s_attribute ob_object ...) [SKETCH Attribute Macro]
(s_attribute (s_type ob_object ...) ...) [SKETCH Attribute Macro]
(a-type has-name 's_name [SKETCH Type Macro]

[has-size 'x_size]
[has-parameters 'g_parameters]
[has-info 'g_info]
{has-parent 'ty_parent])

a-type [SKETCH Type]
a-ubit [SKETCH Type]
a-uchar [SKETCH Type]
a-ulong [SKETCH Type]
a-ushort [SKETCH Type]
(auto-clip 'lar_array 'x_area 'n_range [LISP Function]

['(n_minimum n_maximum) ['n_extension;j)
a-value [SKETCH Type]
(a-vector [has-x 'n_xj [has-y 'n_y j/ias-r 'n_zj] [SKETCH Type Macro]

\has-length 'n_length])
a-vector [SKETCH Type Object]
(a-vector-element-C-type has-parent-type :ty_parent-type] [LISP Function]

[has-C-type-format (g_C-type-forniat-part-l ...)]
[has-C-type-repeal-format (g_C-type-repeat-format-part-l .
has-size x_size
has-alignment x_alignment
[has-initial-vahic g_initial-value]
has-gct-f-unction s_get-function
hat-get-macro s_get-macro
has-sct-fvnetion s_set-function
has-sct-maero s_set-macro
\has-parameters g_parameters]
[has-info g_info])

a-vector-element-C-type [SKETCH type
S(BACKUP) [MAKE Macro
$(BACKUP_FLAGS) [MAKE Macnj
backup.install [MAKE Target
(bar-graph 'bgar_output 'lar_input 'ruLruler [LISP Function

['s_mode])
(bar-graph-of 'arjnput x_height [x_width]) [LISP Function
bgchar_ [Argument Prefix
"Bitgraph Plane Name" [SKETCH Term
"bitgraph programs" [SKETCH Term
(bitgraph-box 'bgar_output 'n_xminimum 'n_xmaximum [LISP Function

'n_yminimum 'n_ymaximum ('s_modej)
(bitgraph-line 'bgar_output 'n_xl 'n_yl 'n_x2 'n_y2 [LISP Function

['n.width j's_mode]])
(bitgraph-lines 'bgar_output [n_dot-size] [s_mode] [LISP Function

[has-origins '(n_xorigin n_yorigin)]
[has-zooms '(n_xzoom n_yzoom)]
['(n_x n_y) ...] [nil] ['ar_array ...])

10-7

10-7
5-41
5-41
5-41

5-41
5-29
5-29
5-29
5-29
12-1

5-29
10-12

10-12
5-43

5-43
C-26
C-26
C-26
9-5

9-5
9-14
11-4
11-23
9-6

9-6

Printed May 1, 1989

SKETCH INDEX A-7

(bitgraph-parallelogram bgar_output n_.\ 'n_y 'n_xl 'n_yl [LISP Function' 9-8
'n_x2 "n_y2 ;'s_mode])

(bitgraph-ruler bgai_output 'rul_ruler (LISP Function. 9-9
"x_xmininium x_xmaximum 'x_ybase
i:s_modc]
\do-reverte g_reverse-svitchj
[has-bitgraph-paramctcr-sct 'bgps_parameter-set])

(bitgraph-text 'ubar_output '(x_xorigin x_yorigin) [LISP Function] 9-10
[!s_mode]]'s_orientationj ['s_adjust ...] 'cset_character-set
's/t_string ...)

(bounds-of-array 'ar_array [n_factor]) [LISP Function! 7-16
(box-horirontal-total-variation 'lar_output 'lar_input [LISP Function] 15-1

'(x_xsize x_ysize) '(x_xstep x_ystep))
(box-horirontal-total-variation-of "ar_input '(x_xsize x_ysize) [LISP Function) 15-1

'(x-xstep x_ystep))
(box-linear-fit 'lai_output 'lar_input [LISP Function] 14-1

'(*-Xsize x_ysize) '(x_xstep x_ystep))
(box-linear-fit-of 'ar_input '(x_xsize x_ysize) [LISP Function] 14-2

'(x_xstep x_ystep))
(box-minimum-total-variation 'lar_output 'lar_input [LISP Function] 15-2

'(x_xsizc x_ysize) '(x_xstep x_ystep))
(box-minimum-total-variation-of ar_input "(x_xsize x_ysize) [LISP Function] 15-2

'(x_xstep x_ystep))
(box-standard-deviation 'lat_output Mar_input [LISP Function] 15-2

'(x_xsize _ysize) '(x_xstep x_ystep))
(box-standard-deviation-of ar_input (x_xsize x_ysize) [LISP Function 15-3

'(x_xstep x_ystep))
(box-vertical-total-variation 'lar_output 'lar_input [LISP Function] 15-3

'(x_xsize x_ysize) '(x_xstep x_ystep))
(box-vertical-total-variation-of 'ar_input '(x_xsize x_ysize) [LISP Function] 15-4

'(x_xstep x_ystep))
bpn_ [Argument Prefix] 11-4
(by-expression 'ar_array) [SKETCH Attribute Macro] 7-3
(by-value 'ar.array) [SKETCH Attribute Macro] 7-3
.c [UNDC File Extension] C-26
$(C2) [MAKE Macro] C-26
.ca [UNIX File Extension] C-26
.ca (UNIX File Extension] 6-8
cache.ar [UNIX File Name] 7-38
(cached-dither 'x_size) 8-5
car_ [Argument Prefix] 7-3
(carray 'a_array) [LISP Macro] 3-12
"catalog file" [SKETCH Term] 6-8
catalog-key [LISP Symbol] 6-4
catalog-key (LISP Symbol] 6-8
(catalog-number ob_x x_number) [LISP Function] 6-4
(catalog-pack 'g_next-expression 'gjast-expression) [LISP Function] 6-8
(status catalog-search-path) [LISP Function] 6-8
(sstatvs catalog-search-path (s_directory ...)) [LISP Function] 6-8

Printed May 1, 1989

SKETCH INDEX A-8

(catalog-unpack 'g_nexi-expression gjast-expression) [LISP Function]
$(CC) [MAKE Macro]
$(CC_FLAGS) [MAKE Macro]
(ccheck 'g_value) [LISP Function]
$(CCOM) [MAKE Macro]
•C-definition-code-port* [LISP Global Variable]
C-definition-code-port [LISP Global Variable]
(ceiling n_number) (LISP Function]
(center-of-gravity-of-cluster 'cLduster) [LISP Function]
$(CFILES) (MAKE Macro]
"chain" [SKETCH Term]
chap [MAKE Target]
S(CHAPTER) [MAKE Macro]
chap.vs [MAKE Target]
character-set-fonts [LISP Global Variable]
(check-bitgraph-program-syntax 'Lprogram) (LISP Function]
(check-list 'g_list ['u_predicatej) [LISP Function]
.ci [UNIX File Extension]
.ci [UNIX File Extension]
.cl [UNIX File Extension]
cl_ [Argument Prefix]
clean [MAKE Target!
clean_install [MAKE Target
(clear-bitgraph !"-bpn_plane] ['dwin_window]) [LISP Function
(clear-character-sets [s_font]) [LISP Function
(clear-display ['s_backgroundj [*dwin_window]) [LISP Function
(clear-intensity ['s_background] ['dwin_window]) [LISP Function
S(CLFILES) [MAKE Macro
(cload '([s_discipline] s_function ...) [LISP Function

•s_file)
(cload '([s_discipline] s_function ...) [LISP Function

'(s.file [sjibrary]))
(close-catalog 'ca_catalog) [LISP Function
"closed chain" [SKETCH Term
(close-display [dwin_display]) [LISP Function
S(COL) [MAKE Macro
(collect-array-blocks) [LISP Function
$(COLUMNS) [MAKE Macro
$(COMMON_LFILES) [MAKE Macro;
(compactsarray-blocks) [LISP Function
* compact-array-blocks-bytes* [LISP Global Variable
compact-array-blocks-count [LISP Global Variable
'compact-array-blocks-time* [LISP Global Variable
(compare-object 'ob_objecM 'ob_object-2) [SKETCH Operation Macro
compare-object [SKETCH Operation
(compare-object-function 'ob_object-l 'ob_object-2) [LISP Function
compile [MAKE Target
$(COMPELE_LFILES) [MAKE Macro
"compiler" [SKETCH Term

6-9
C-27
C-27
3-12
C-27
5-47
5-51
3-13
10-14
C-27
10-2
C-27
C-27
C-27
9-12
11-24
3-13
C-27
6-9
C-28
10-2
C-28
C-28
11-24
9-12
11-24
11-24
C-29
3-13

3-13

6-9
10-2
11-24
C-29
7-16
C-29
C-29
7-17
7-17
7-17
7-17
5-45
5-45
5-45
C-29
C-29
3-14

Printed May 1, 1989

SKETCH INDEX A-fl

compose-display-orientations 's_first 's_second) [LISP Function
(compose-transforms 'trans_transform-l "irans_traiisform-2) [LISP Macro
"computer-format* [LISP Global Constant
*(COMPUTER_TYPE) [MAKE Macro
$(COMPUTER_TYPE) [UNIX Environment Variable
(contrast-of 'ar_input '(x_width ...) [LISP Function

['n_background ['n_center]])
(convolution-of 'ar_input 'ar_kernel) [LISP Function
(convolve 'lar_output 'lar_input 'ar_kernel) [LISP Function
(copy-array 'ar_output 'ar_input) (LISP Function
(copy-catalog 'g_input 'g_output ['(g_key ...)]) [LISP Function
(copy-list 'Llist ['xjength 'g_fill]) [LISP Function
(copy-of-array 'ar_input) [LISP Function
(copy-setf-function 's_symbol 's_source) [LISP Function
(copy-string 't_string) [LISP Function
(cos-array-elements 'lar_output ['lar_input') [LISP Function
S(COUNT) [MAKE Macro
count [MAKE Target
COUNT [MAKE Target
COUNT [UNIX File Name
*(COUNT_FLAGS) [MAKE Macro
*(CPP) [MAKE Macro
$(CPP_FLAGS) JMAKE Macro
$(CPP_PATH) [MAKE Macro
$(CPP_PATH) [UNIX Environment Variable
"create" .' [SKETCH Term
(create-object '(ty_type at_attribute g_value ...) [SKETCH Operation Macro

['ob_prototypej)
create-object [SKETCH Operation
(create-parent-object 'opcLdescriptor [LISP Macro

'(ty_type at_attribute g_value ...) ['ob_prototype])
.cs [UNIX File Extension
cset_ [Argument Prefix
S(CSFILES) [MAKE Macro
csh.rc [UNTXFile
•current-display-window* [LISP Global Variable
dar_ [Argument Prefix
[status data-search-path) [LISP Function
(sttatus data-seareh-path (s_directory ...)) [LISP Function
(declare-hunk-type (s_type [s_C-type s_C-prefix]) [LISP Macro

[s_attribute-visibilityj
\has-is-a-stub-switch s_is-a-stub-switch]
[has-com varc-switch s_compare-switch]
[kas-format-switck s_format-switch]
\has-uncval-swttch s_uneval-switch]
[s_attribute-protection] \has-pastword s_password)
[hat-allocation-count g_allocation-count]
s_attribute-l
(s_attribute-2 g_default-value-2 [s_C-attribute-name-2])

11-25
10-14
3-14
C-30
C-30
8-2

8-3
8-3
7-17
6-9
3-14
7-17
3-14
3-15
8-3
C-30
C-30
C-30
C-30
C-30
C-30
C-30
C-30
C-30
5-69
5-46

5-46
5-46

C-31
9-2
C-31
C-31
11-17
7-3
6-10
6-10
5-47

Printed May 1, 1989

SKETCH INDEX A-10

(declare-vector-type (s_type s_C-type s_C-prefixj) [LISP Macro, 5-51
has-allocalton-coviit g_allocation-count]
h as-C-type-vector-element-name s_C-type-vector-element-nanie]
has-C-plisl-vector-element-name s_C-plist-vector-element-namej
,has-C-vsizc-vcctor-element-name s_C-vsize-vector-element-name]
has-poinler-C-type s_pointer-C-type]
has-alloc at e-C-type s_allocat e-C-type]
s_attribute-type] [s_attribute-Iocation] [s_attribute-visibilityj
h as- is- a -st u l-s wi t c h s_is-a-stub-svitch]

ihas-compare-switch s_compare-switch]
has-format-switch s_format-switch]
has-uneval-suitch s_uneval-switch]
s_attribute-protection] \has-password s_password]
jx_repeat-count] s_at tribute-1
x_repeat-count] (s_at tribute-2 g_defau!t-value-2 [s_C-attribute-name-2])

default-array-element-type [LISP Global Variable] 7-3
default-array-file (LISP Global Variable] 7-38
default-array-long-exponent [LISP Global Variable] 7-3
* default-array-short-exponent* [LISP Global Variable] 7-3
default-bitgraph-parameter-set [LISP Global Variable] 9-1
defau It-dither-size 8-5
(defcache sU'unciion (g_size s_equal s_cache) Larguments [LISP Macro] 3-15

. Lbody)
(defconst ...) [LISP Macro] E-l
(define-attribute '5_name) [LISP Function] 5-58
(define-hunk-type (list 'ty_type ['s_C-type 's_C-prefix]) [LISP Function] 5-47

['at _at tribute-visibility]
\has-is-a-stub-switch 's_is-a-stub-switch]
[has-compare-switch 's_compare-switch]
[has-format-sivitch 's_format-switch]
[has-vneval-switch 's_uneval-switch]
[at_attribute-protection] [has-password 's_password]
[has-allocation-count 'g_allocation-count]
'at_attribute-l
(list 'at_attribute-2 'g_default-value-2 ['s_C-attribute-name-2])

(define-object-name-prefix 's_prefix 's_function) [LISP Function] 5-59
(define-type 's_name) [LISP Function] 5-59
(define-vector-type (list 's_type ['s_C-type 's_C-prefix]) [LISP Function] 5-51

[has-C-type-vector-element-name 's_C-type-vector-element-name]
[has-C-plist-vector-element-name 's_C-plist-vector-element^name]
[has-C-vsize-veetor-element-name 's_C-vsize-vector-element-name]
[has-pointer-C-type 'ty_pointer-C-type]
[has-allocatc-C-typc 'ty_allocate-C-type]

['ty_attribute-type] ['at_attribute-location] ['at_attribute-visibility]
[has-is-a-stub-switch 's_is-a-stub-switch]
[has-compare-switch 's_compare-switch]
[has-format-switch 's_format-switch]
[has-uneval-switch 's_uneval-switch]
pat_attribute-protection] [has-password 's.password]

Printed May 1, 1989

SKETCH INDEX All

\has-allocation-count 'g_allocation-count]

;'x_rtpeat-countj "at_attribute-l
[\x_repeat-count] (list 'at_attribute-2 'g_default-value-2

['s_C-attribute-name-2j)

(defprop ...) [LISP Macro] E-l
(defsetf s_function (s_expression s_value) [LISP Macro] 3-15

g_statement ...)
(del2g-kernel (n.xwidth n_ywidth) [LISP Function] 8-3

['(n_xoffset n_yoffset)])
demo [MAKE Target] C-31
(demo j's_input-file [<] ['s_output-file [<]]]) (LISP Function] 3-16
$(DEMO_CLFILES). [MAKE Macro] C-31
S(DEMO_LFILES) [MAKE Macro] C-31
$(DEMO_LISP) [M^KE Macro] C-32
*(DEMO_LISZT) [MAKE Macro] C-32
*(DEMO_OUFILES) (MAKE Macro] C-32
$(DEMO_TARGET_FILES) [MAKE Macro] C-32
(derivative-filter 'lar_array x_dimension 'x_width) [LISP Function] 8-4
(difference-of-transforms 'trans_tl 'trans_t2) [LISP Macro] 10-18
(difference-of-vectors "ver_vl \ec_v2) [LISP Macro] 10-18
dis_ [Argument Prefix] 11-4
(dismount-tape j'x_drive) [LISP Function] 6-10
(dismount-tape |*s_volume-name]) [LISP Function] 6-10
"display daemon' [SKETCH Term] F-l
"display protocol"" [SKETCH Term] F-l
"'display window point" [SKETCH Term] 11-17
(display-bitgraph ubar_array 's/l_name ['dwin_window] [LISP Function] 11-25

['dwpt_upper-left] [has-zooms '(n_xzoom n_yzoom)]
[has-sizes '(n_xsize n_ysize)]
[has-orientation 's_orientation])

(display-bitgraph 'ubar_array '(s/l_name-l ...) ['dwin_window] [LISP Function] 11-25
j'dwpt_upper-left] [has-zooms '(n_xzoom n_yzoom)]
[has-aizes '(n—xsize n_ysize)j
[has-orientation 's_orientation])

display-color-map [LISP Global Variable] 11-33
(display-image 'ar_array ['dwin_window] [LISP Function] 11-26

|'dwpt_upper-left] [haa-zoomt '(n_jczoom n_yzoom)]
[haa-aizea '(n_xsize n_ysize)]
[haa-orientation 's_orientation]
[haa-bovnda '(n_black n_white)]
[haa-bovnda '(n_bound-l [] sjcale-1 ... n_bound-N)]
[haa-miaaing 's_missing-color]
[haa-low 's_low-color]
[kaa-high 's_high-color]
[haa-contraata '(x_xcontrast x_ycontrast)]
[do-pseudocolor 'g_pseudocolor-switch])

(display-lines [dwin_window] [n_width] [LISP Function] 11-28
[bpn_plane] [trans_transform]
[dwpt_point] ... [niY] [[] ar_array] ...)

Printed May 1, 1989

SKETCH INDEX A-12

display-map-map (LISP Global Variable] 11-33
(display-patom g_value [*(n_xorigin n_yorigin)' (LISP Function] 11-28

['bpn_plane] j's_adjust ...'• i'n_size_ ['s_orientation) |'dwin_window])
display-plane-map [LISP Global Variable] 11-33
(display-pretty-print 'xjine-length g_value [LISP Function] 11-28

['(n_xorigin n_yorigin); ;'bpn_planej ps_adjust ...] j'n_size]
['s_orientation! ['dwin_ window])

(display-print 'g_value ['(n_xorigin n_yorigin) [LISP Function] 11-28
['bpn_plane] ['s_adjust ...] ['n_sizej ['s_orientation] ['dwin_window])

(display-text ('xjine-length ['(n_xorigin n_yorigin)j [LISP Macro] 11-28
['bpn_planej |'s_adjust ...] pn_size] ['s_orientation] ['dwin_window])

g_statement ...)
(distance-between-lines 'lin_line-l 'lin_line-2) (LISP Macro] 10-14
(distance-between-point-and-line 'pt_point lin_line) [LISP Macro] 10-14
(distance-between-points 'pt_pl 'pt_p2) [LISP Macro] 10-14
(dither 'x.size) [LISP Function] 8-5
S(DITROFF) [MAKE Macro] C-32
$(DITROFF_FLAGS) [MAKE Macro] C-32
dmap_ (Argument Prefix] 11-10
.do [UNIX File Extension] C-32
*(DOFILES) [MAKE Macro] C-33
(dpb 'x_value #oPPSS 'x_number) [LISP Function] 3-17
(dumplisp s_file) (LISP macro] 3-17
(duplicate-of-array 'ar_array) [LISP Function] 7-17
dwin_ [Argument Prefix] 11-17
dwpt_ [Argument Prefix] 11-17
(dxg-kernel '(n_xwidth n_ywidth) (LISP Function] 8-5

['(n_xoffset n_yofTset)j)
"edge of chain'" [SKETCH Term] 10-2
ell_ [Argument Prefix] 10-5
(environment ...) [LISP Macro] 3-17
(environment-lmlisp ...) [LISP Macro] 3-17
(environment-maclisp ...) [LISP Macro] 3-17
S(EQN) [MAKE Macro] C-33
$(EQN_FLAGS) [MAKE Macro] C-33
(equal-filled-lists 'Llist-1 'Llist-2 'g.fill) [LISP Function] 3-17
(equal-property-lists 'l_list-l 'l_list-2) [LISP Function] 5-59
(equal-property-lists-with-switches 'LlisH 'l_listr2 [LISP Function] 5-60

'Linfo)
(error 'Lmessage) [LISP Function] 3-17
(error 's/t_message ['g_data_l ['g_data_2]]) [LISP Function] 3-17
(error-trace 's_switch) [LISP Function] 3-18
"evaluator" (SKETCH Term] 3-18
.ex [UNIX File Extension] C-33
ex.clean [MAKE Target] C-28
(execute-found-operation 'opd_descriptor 'op_operation ...) [LISP Macro] 5-60
(execute-operation 'op_operation 'ob_object ...) [LISP Macro] 5-60
(execute-parent-operation 'opd_descriptor 'op_operation [LISP Macro] 5-60

'ob_object ...)

Printed May 1, 1989

SKETCH INDEX A-13

exit-on-error [LISP Global Variable, 3-18
(expand-missing 'lar_output nr_inpul 'ar_original [LISP Function] 8-G

[:(x_xsize x_ysize) 'x_countjJ)
(expand-missing-of 'ar_inpiu ai_onginal [LISP Functionj 8-7

}'(x_xsize x_ysize) [x_count j'x_repeat ...]]])
(exponentiate-array-elements 'lar_output. [:lar_input]) [LISP Functionj 8-7
(expose-display !'x_count] [*dis d\vin_displayj) [LISP Function; 11-31
.f [UNIX File Extension] C-33
f_ [Argument Prefix] 4-9
(f (n_xorigin n_yorigin)) [Bitgraph Program Statement] 11-23
far_ [Argument Prefix] 7-3
(fdelay 'Ltime) [LISP Function] 3-18
$(FFILES) |MAKE Macro] C-33
$(FILES) [MAKE Macro] C-33
(filestat-atime ...) [LISP Function] 3-18
(filestat-ctime ...) [LISP Function] 3-18
(filestat-dev ...) [LISP Function] 3-18
(filestat-gid ...) [LISP Function! 3-18
(filestat-ino ...) [LISP Function] 3-18
(filestat-mode ...) [LISP Function] 3-18
(filestat-mtime ...) [LISP Function; 3-18
(filestat-nlink ...) [LISP Function] 3-18
(filestat-rdev ...) [LISP Function] 3-18
(filestat-s'ue ...) [LISP Function' 3-18
(filestat-type ...) [LISP Function] 3-18
(filestat-uid ...) [LISP Function] 3-18
(find-character-set 's_font '(n_xsize n_ysize)) [LISP Function] 9-12
find-character-set [LISP Global Variable] 9-12
(find-display-map '(s_map-name [s_monitor ...])) [LISP Function] 11-31
(find-display-map 's_map-name) [LISP Function] 11-31
(find-display-maps '(s_map-name [s_monitor ...])) [LISP Function] 11-31
(find-display-maps 's_map-name) [LISP Function] 11-31
(find-get-attribute-descriptor 'atd_descriptor 'at_attribute [LISP Function] 5-61

'ty.type)
(find-get-attribute-descriptor-for-macro 'g_descriptor 'g_attribute.[LISP Function] 5-61

'g-type)
(find-operation-descriptor 'opd_descriptor 'op_operation 'ty_type) [LISP Macro] 5-62
(find-operation-descriptor-for-macro 'opd.descriptor [LISP Function] 5-62

'op_operation 'ty_type)
(find-set-attribute-descriptor 'atd_descriptor 'at_attribute [LISP Function] 5-61

'ty.type)
(find-set-attribute-descriptor-for-macro 'g_descriptor 'g_attribute.[LISP Function] 5-61

'g-type)
float-format [LISP Global Variable] 3-19
(floor n_number) (LISP Function] 3-19
(flush-display ['f.delay] ['dis/dwin_display] \t\) [LISP Function] 11-32
forever [C Macro] 4-9
(format-object 'ob.object 'xjevel) [LISP Macro] 5-63
(format-object 'ar_array ...) (LISP Function] 7-18

Printed May 1, 1989

SKETCH INDEX A-14

franz-version [LISP Global Constant; 3-27
FR_CAMERA [C Macro; F-4
FR_CAMERA camera_string_size camera_string. [SKETCH Display Daemon Requesii F-4
FR_CLEAR ". [C Macro] F-5
FR_CLEAR xorigin yorigin [SKETCH Display Daemon Request] F-5

xsize ysize pixeLvalue
FR_CLOSE ". [C Macro! F-7
FR_CLOSE [SKETCH Display Daemon Requestj F-7
FR_CLOSE [SKETCH Display Daemon Response] F-7
FR_ERROR [C Macro] F-5
FR_ERROR message_size message_string [SKETCH Display Daemon Requestj F-5
FR_FLUSH [C Macro] F-5
FR_FLUSH delay_time exposure_count [SKETCH Display Daemon Request] F-5
FR_FLUSH [SKETCH Display Daemon Response] F-5
FR_MAP [C Macro] F-6
FR_MAP xsize ysize map_type map_string [SKETCH Display Daemon Request] F-6
FR_NOP [C Macro] F-6
FR_NOP (SKETCH Display Daemon Request' F-6
FR_NOP [SKETCH Display Daemon Response! F-6
FR_OPEN [C Macro] F-7
FR_OPEN user_id_size device_size [SKETCH Display Daemon Request] F-7

processoi_size monitor_size camera_size
user_id_string device_string
processor_string monitor_string camera_string

FR_OPEN [SIvETCH Display Daemon Response] F-7
FRJWRITE [C Macro] F-8
FR_WRITE xorigin yorigin [SKETCH Display Daemon Requestj F-8

xsize ysize psize pixeLstring
(ftime) [LISP Function] 3-19
g_ [Argument Prefix] 4-13
(gaussian-kernel '(n_xwidth n_ywidth) [LISP Function] 8-7

['(n_xoffset n_yoffset)])
gc-count [LISP Global Variable] 3-19
gc-dumpfile [LISP Global Variable] 3-19
gc-errors [LISP Global Variable] 3-19
•gc-history* [LISP Global Variable] 3-19
•gc-history-length* [LISP Global Variable] 3-19
(gentemp) [LISP Function] 3-20
(get-abnormal-attributes \do-retvrn-rcaily-nil] [LISP Function] 5-78

'(ty_type at_attribute-l g_value-l ...)
'at_attribute-ll 'at_attribute-12 ...)

(get-attribute 'at_attribute 'ob.object ...) [LISP Macro] 5-63
(get-attribute-descriptor 'atd_descriptor) [LISP Function] 5-65
(get-catalog-keys *ca_index-catalog) [LISP Function] 6-10
(get-catalog-location 'ca_catalog) [LISP Function] 6-10
(get-character-bitgraph 'cset_character-set 's/x_character [LISP Function] 9-12

['•.orientation])
(get-character-display 'cset_character-set ,s/x-cnaracter) [LISP Function] 9-12
(get-compare-switch 'at_attributc 'ty_type ['atd_descriptor]) [LISP Function] 5-65

Printed May 1, 1989

SKETCH INDEX A-15

(get-current-display-window) [bJSP Macro
(get-default-value 'at_attribute 'ty_type ('atd.descriptorj) [LISP Function
(get-format-switch 'at_attiibute :ty_type j'aid_descriptorj) [LISP Function
(get-found-attribute 'atcLdescriptor 'at_attribute [LISP Macro

:ob_object ...)
(get-is-a-stub-switch 'at_attribute 'ty_type [atd_descriptor]) [LISP Function
(get-operation-descriptor 'opd_descriptor) [LISP Function
(get-parent-attribute 'atd_descriptor 'at_attribute [LISP Macro

'ob_object ...)
(get-playback-display-window) [LISP Macro
i get-random-port 'p_port ['gjocation :s_direction [LISP Function

['(s_directory-name ••-)]])
(get-random-port-location 'p_port) (LISP Function
(get-switch-from-info 'at_attribute 'Linfo s_switch) [LISP Macro
(get-switch-info 'ty_type '(atd_descriptor ...) [LISP Function

'u_get-switch-function)
(get-uneval-switch at_attribute 'ty_type j'atd_descriptor]) [LISP Function
'global directory" [SKETCH Term

globaLcount [MAKE Target
GLOBAL_COUNT [MAKE Target
global.demo.packages [MAKE Target Extension'
global_index.tr [MAKE Target]
global_index.vo [MAKE Target]
global_index.vs (MAKE Target]
$(GLOSSARY_FILES) [MAKE Macro]
.h [UNIX File Extension
(has-alignment veCty_type) [SKETCH Attribute Macro
(has-allocation-count 'ty_type) [SKETCH Attribute Macro
(has-angle 'trans_transform) [SKETCH Attribute Macro
(has-area-plane 'dwin_display) [SKETCH Attribute Macro
(has-array-descriptor 'ar_array) [LISP Macro
(has-array-file 'ar_array) [SKETCH Attribute Macro
(has-array-format 'ar_array) [SKETCH Attribute Macro
(has-attribute-descriptors 'ty_type) [SKETCH Attribute Macro
(has-axis 'trans_transform) [SKETCH Attribute Macro
(has-been-changed 'ar_array) [SKETCH Attribute Macro
(has-been-read 'cset_character-set) [SKETCH Attribute Macro
(has-bitgraph-array 'cset_character-set) (SKETCH Attribute Macro
(has-bitgraph-array 'dis_display) [SKETCH Attribute Macro
(has-bitgraph-planes 'dis_display) [SKETCH Attribute Macro
(has-bitgraph-programs 'dis_display) [SKETCH Attribute Macro
(has-center 'elLellipsoid) [SKETCH Attribute Macro
ihas-character-font 'plt.display) [SKETCH Attribute Macro
jhas-character-sires 'plt_display) [SKETCH Attribute Macro
(has-children 'ty.type) (SKETCH Attribute Macro
(has-color 'plt.display) (SKETCH Attribute Macro
(has-colors 'dis_display) [SKETCH Attribute Macro
(has-colors 'dmap_map) [SKETCH Attribute Macro
(has-compare-switch 'atd_descriptor) [SKETCH Attribute Macro

11-17
5-65
5-65
5-63

5-65
5-65
5-63

11-17
6-10

6-12
5-66
5-66

5-65
C-46
C-34
C-34
C-46
C-34
C-34
C-34
C-34
C-34
5-43
5-41
10-7
11-17
7-18
7-3
7-3
5-41
10-7
7-3
9-2
9-2
11-4
11-4
11-4
10-5
11-22
11-22
5-41
11-22
11-4
11-10
5-32

Printed May 1, 1989

SKETCH INDEX A-16

(has-count 'nsum_summary) [SIvETCH Attribute Macro] 7-14
(has-count xLclusicr) [SKETCH Attribute Macroj 10-2
(has-C-type-format veCty_type) (SKETCH Attribute Macro] 5-43
(has-C-type-repeat-format veCty_type) [SKETCH Attribute Macro] 5-43
(has-cursor d\vin_display) [SKETCH Attribute Macro] 11-17
(has-default-value "aid_descriptor) [SKETCH Attribute Macro] 5-31
(has-descriptor-attribute atd_descriptor) [SKETCH Attribute Macro] 5-31
(has-descriptor-operation opd_descnptor) [SKETCH Attribute Macro] 5-38
(has-descriptor-type "alcLdescriptor) [SKETCH Attribute Macro] 5-31
(has-descriptor-type opd_descriptor) [SKETCH Attribute Macro] 5-38
(has-desired-origins ar_array ['at/xjength]) [SKETCH Attribute Macro] 7-3
(has-desired-sizes "nr_array ''at/xjength]) [SKETCH Attribute Macro] 7-3
(has-determinant :trans_transform) [SKETCH Attribute Macro] 10-7
(has-device dis_display) [SKETCH Attribute Macro] 11-4
(has-dimension 'cLcluster) [SKETCH Attribute Macro] 10-2
(has-dimension 'elLellipsoid) [SKETCH Attribute Macro] 10-6
(has-dimension vec_vectoi) [SIvETCH Attribute Macro] 10-12
(has-direction 'linjine) [SKETCH Attribute Macro] 10-4
(has-dispatch-array cset_chara.cter-set) [SIvETCH Attribute Macro] 9-2
(has-displacement tians_transloim) [SKETCH Attribute Macro] 10-7
(has-element "ar_anay "x_subscript ...) [SIvETCH Attribute] 7-18
(has-element "ai_anay '(x_subscripi ...)) [SKETCH Attribute] 7-18
(has-element-type "ar_array) (SIvETCH Attribute Macro] 7-3
(has-end 'linjine) [SKETCH Attribute Macro] 10-4
(has-exponent ar_anay) [SKETCH Attribute Macro] 7-3
(has-file 'ca.catalog) [SIvETCH Attribute Macro] 6-4
(has-file 'cset_character-sei) [SKETCH Attribute Macro] 9-2
(has-fill-pattern :plt_display) (SKETCH Attribute Macro] 11-22
(has-film 'dis.display) [SKETCH Attribute Macro] 11-4
(has-filter 'ca.catalog) [SKETCH Attribute Macroj 6-4
(has-font 'cset_character-set) [SKETCH Attribute Macro] 9-2
(has-format-switch 'atd_descriptor) [SKETCH Attribute Macro] 5-32
(has-function 'opd_descriptor) [SKETCH Attribute Macro] 5-38
(has-function 'ca_catalog) [SKETCH Attribute] 6-12
(has-functions 'atd_descriptor) [SKETCH Attribute Macro] 5-31
(has-get-function 'aft.table) [SKETCH Attribute Macro] 5-35
(has-get-function 'veCty.type) [SKETCH Attribute Macro] 5-43
(has-get-macro 'aft_table) [SKETCH Attribute Macro] 5-35
(has-get-macro 'veCty.type) [SKETCH Attribute Macro] 5-43
(has-ids 'dmap_map) [SKETCH Attribute Macro] 11-10
(has-include 'ca_catalog) (SKETCH Attribute] 6-13
(has-increments 'ar.array ['at/xJength]) [SKETCH Attribute Macro] 7-3
(has-index-file 'ca_catalog) [SKETCH Attribute Macro] 6-4
(has-index-function 'ca.catalog) [SKETCH Attribute Macro] 6-4
(has-index-subscript 'op_operation) [SKETCH Attribute Macro] 5-37
(has-info 'atd.descriptor) [SKETCH Attribute Macro] 5-31
(has-info 'opd_descriptor) [SKETCH Attribute Macro] 5-38
(has-info 'ty.type) [SKETCH Attribute Macro] 5-41
(has-info 'veCty_type) [SKETCH Attribute Macro] 5-43

Printed May 1, 1989

SKETCH INDEX A-17

has-init-function 'aft_table) [SKETCH Attribute Macroj 5-35
has-initial-value VeCty_type) (SKETCH Altribute Macro] 5-43
has-init-macro 'aft_table) [SKETCH Attribute Macro] 5-35
has-input-dimension 'trans_transform) (SKETCH Attribute Macro] 10-7
has-intensity-array 'dis_display) |SKETCH Attribute Macro] 11-4
has-inverse 'trans_transform) [SKETCH Attribute Macro] 10-7
has-is-a-stub-s-witch atd_descriptor) [SlvETCH Attribute Macro) 5-32
has-length 'linjine) [SlvETCH Attribute Macro] 10-4
has-length 'vec.vector) [SlvETCH Attribute Macro] 10-12
has-line-plane 'dwin_display) [SKETCH Attribute Macro] 11-17
has-line-type 'plt_display) [SKETCH Attribute Macro] 11-22
has-line-width 'plt_display) [SlvETCH Attribute Macro] 11-22
has-lisp-type g_value) [LISP Function] 5-67
has-lower-right 'dwin_display) [SlvETCH Attribute Macro] 11-17
has-macro 'opd_descriptor) [SKETCH Attribute Macro] 5-38
has-map 'dis_display) [SlvETCH Attribute Macro] 11-4
has-map-array 'dmap_map) (SlvETCH Attribute Macro] 11-10
has-maximum 'asum_summary) (SKETCH Attribute Macro] 7-14
has-mean 'asum_summary) [SlvETCH Attribute Macro] 7-14
has-minimum 'asum_summary) [SKETCH Attribute Macro] 7-14
has-missing-count :asum_summary) (SlvETCH Attribute Macro] 7-14
has-name 'ob_object) [SlvETCH Attribute] 5-68
has-offsets 'ar_array ['at/x_length]) [SlvETCH Attribute Macro] 7-3
has-operation-descriptors 'ty_type) (SKETCH Attribute Macro] 5-41
has-orientation 'dwin_display) (SlvETCH Attribute Macro] 11-17
has-origins 'ar_array ['at/x_length]) [SKETCH Attribute Macro] 7-3
has-origins 'dwin_display) [SKETCH Attribute Macro] 11-17
has-output-dimension 'trans_transform) (SlvETCH Attribute Macro] 10-7
has-parameters 'atd_descriptor) [SKETCH Attribute Macro] 5-31
has-parameters 'opd_descriptor) [SKETCH Attribute Macro] 5-38
has-parameters 'ty_type) [SlvETCH Attribute Macro] 5-41
has-paramters 'veCty_type) [SKETCH Attribute Macro] 5-43
has-parent 'atd.descriptor) [SKETCH Attribute Macro] 5-31
has-parent 'opd_descriptor) [SKETCH Attribute Macro] 5-38
has-parent 'ty.type) [SKETCH Attribute Macro] 5-41
has-parent 'dis_display) [SKETCH Attribute Macro] 11-4
has-parent 'dwin.display) (SKETCH Attribute Macro] 11-17
has-parent-increments 'ar_array ['at/xjength]) [SKETCH Attribute Macro] 7-3
has-parent-offsets 'ar_array j'at/xjength]) [SKETCH Attribute Macroj 7-3
has-parent-ruler 'ar_array 'x_dimension) [SKETCH Attribute Macro] 7-19
has-parent-scales 'ar.array ['at/xJength]) [SKETCH Attribute Macro] 7-3
has-parent-siees 'ar_array ['at/xjength]) [SKETCH Attribute Macro] 7-3
has-parent-type 'veCty_type) (SKETCH Attribute Macro] 5-43
has-plane 'dwin_display) [SKETCH Attribute Macro] 11-17
has-plane-types 'dis_display) (SKETCH Attribute Macro] 11-4
has-plane-types 'dmap.map) [SKETCH Attribute Macro] 11-10
has-point-array 'cLcluster) (SlvETCH Attribute Macro] 10-2
has-point-list 'cLcluster) [SKETCH Attribute Macro] 10-2
has-primary-colors 'dis.display) (SKETCH Attribute Macro] 11-4

Printed May 1, 1989

SKETCH INDEX A-18

has-primary-colors 'dmap_map) [SKETCH Attribute Macro] 11-10
has-radii 'elLellipsoid) [SKETCH Attribute Macro] 10-5
has-radius 'elLellipsoid) [SKETCH Attribute Macro] 10-5
has-range 'dis_display) (SKETCH Attribute Macro] 11-4
has-range dmap_map) [SKETCH Attribute Macro] 11-10
has-ruler 'ar_array 'x_dimension) [SKETCH Attribute Macro] 7-19
has-scales 'ar_array ['at/x_length]) [SKETCH Attribute Macro] 7-3
has-scales 'dis_display) [SKETCH Attribute Macro] 11-4
has-scales 'dmap_map) [SKETCH Attribute Macro] 11-10
has-segment 'linjine) [LISP Macro] 10-4
has-setf-function 's_symbol) [LISP Function] 3-20
has-set-function 'aft_table) [SKETCH Attribute Macro] 5-35
has-set-function 'veCty_type) [SKETCH Attribute Macro] 5-43
has-set-macro 'aft_table) [SKETCH Attribute Macro] 5-35
has-set-macro VeCty_type) [SKETCH Attribute Macro] 5-43
has-size 'ty.type) [SKETCH Attribute Macro] 5-41
has-size \eCty_type) [SKETCH Attribute Macro] 5-43
has-size 'ty.tvpej [SKETCH Attribute] 5-69
has-sizes ar_array [:at/x_length]) [SKETCH Attribute Macro] 7-3
has-sizes 'cset_character-set) [SKETCH Attribute Macro] 9-2
has-sizes :dis_display) [SKETCH Attribute Macro] 11-4
has-sizes 'dwin_display) [SKETCH Attribute Macro] 11-17
has-standard-deviation 'asum_summary) [SKETCH Attribute Macro] 7-14
has-start 'linjine) [SKETCH Attribute Macro] 10-4
has-steps 'ar_array ['at/x_length]) [SKETCH Attribute Macro] 7-3
has-sum 'asum_summary) [SKETCH Attribute Macro] 7-14
has-sum-squares 'asum_summary) [SKETCH Attribute Macro] 7-14
has-text-plane 'dwin_display) [SKETCH Attribute Macro] 11-17
has-transform 'elLellipsoid) (SKETCH Attribute Macro] 10-5
has-transform 'dwin_display) [SKETCH Attribute Macro] 11-17
has-type 'ob_object) (LISP Function] 5-69
has-type 'g_object) [LISP Function] 5-69

has-type [SKETCH Attribute] 5-69
has-uneval-switch 'atd_descriptor) [SKETCH Attribute Macro] 5-32
has-upper-left 'dwin.display) [SKETCH Attribute Macro] 11-17
has-vector-type 'ty.type) [SKETCH Attribute Macro] 5-51
has-width-estimate 'cset_character-set) [SKETCH Attribute Macro] 9-2
has-width-range 'cset_character-set) (SKETCH Attribute Macro] 8-2
has-x 'vec.vector) (SKETCH Attribute Macro] 10-12
has-x-range 'cset_character-set) [SKETCH Attribute Macro] 9-2
has-y 'vec_vector) [SKETCH Attribute Macro] 10-12
has-y-range 'cset_character-set) [SKETCH Attribute Macro] 9-2
has-z 'vec.vector) [SKETCH Attribute Macro] 10-12
has-rooms 'dwin_display) [SKETCH Attribute Macro] 11-17

.he [UNIX File Extension] C-34
he.clean (MAKE Target] C-28
help (MAKE Target] C-35
$(HE_PRINT) [MAKE Macro] C-35
$(HE_PRINT_FLAGS) [MAKE Macro] C-35

Printed May 1, 1989

SKETCH INDEX A-19

$(HFILES) [MAKE Macro] C-35
(histogram 'lar.ouiput 'ar_input-l YuLruler-1 [LISP Function! 12-2

ai_input-N ruLruler-N)
(histogram-of 'ar_inpui-l rul_ruler-l [LISP Function] 12-2

'ar_input-N VuLruler-N)
.ho [UNIX File Extension] C-35
.in [UNIX File Extension] C-35
$(INDEX) [MAKE Macro] C-35
index [MAKE Target] C-35
"index" [SKETCH Term] 5-69
$(INDEX_APPENDIX) [MAKE Macro] C-34
$(INDEX_FLAGS) [MAKE Macro] C-35
$(INDEX_TITLE) [MAKE Macro] C-34
in-environment [LISP Global Variable] 3-17
(inspect-array 'ar_array [LISP Function] 7-19

['('-size ...) ['('-origin ...) ['(Lstep ...)]]])
S(INSTALL_DIRECTORY) [MAKE Macro] C-36
$(INSTALL_DIRECTORY) [UNIX Environment Variable' C-36
$(INSTALL_FILES) [MAKE Macro] C-36
$(INSTALL_RCFILES) [MAKE Macro' C-36
*(INSTALL_SOURCE_FILES) [MAKE Macro] C-36
$(INSTALL_TARGET_FILES) (MAKE Macro] C-36
(integerize-ruler luLruler) [LISP Function] 7-19
(integer-to-bytes _integer) [Lisp Function] 4-9
(interpolation-filter 'lar_array 'x_dimension 'n_factor [LISP Function] 8-8

['n_offset])
(interpolation-of aijnput '(x_size ...)) [LISP Functionj 8-9
(is-afnne 'trans_transforni) [SKETCH Attribute Macro] 10-7
(is-chain 'cLclustei) (SKETCH Attribute Macro] 10-2
(is-closed 'cLcluster) [SKETCH Attribute Macro] 10-2
is-compiler [LISP Global Variable] 3-20
(is-immovable 'ar_array) (SKETCH Attribute Macro] 7-3
(is-index-of 'ca_catalog) [SKETCH Attribute Macro] 6-4
(is-infinite 'linjine) [LISP Macro] 10-4
(is-linear 'trans_transform) [SKETCH Attribute Macro] 10-7
(is-maximal-polygon 'cLcluster) [SKETCH Attribute Macro] 10-2
(is-orthogonal 'trans_transform) [SKETCH Attribute Macro] 10-7
(ia-readonly 'ar.array) [SKETCH Attribute Macro] 7-3
(is-typed-expression 'g_expression) [LISP Macro] 5-69
* kernel-cutoff* [LISP Global Variable] 8-9
.1 [UNIX File Extension] C-37
(I [n_width] (n_xorigin n_yorigin) [Bitgraph Program Statement] 11-23

[(n_x n_y)] ... [ni/]... [sar_array] ...)
Iar_ [Argument Prefix] 7-3
•lc [UNIX File Extension] C-37
S(LCFILES) [MAKE Macro] C-37
(Idb #oPPSS 'x_number) (LISP Function] 3-20
$(LD_FLAGS) [MAKE Macro] C-37
* left-to-right* [LISP Global Variable] 4-9

Printed May 1, 1989

SKETCH INDEX A-20

(lexpr-execute-found-operation opd_descriptor 'op_operation ...) [LISP Macro
(lexpr-execute-parent-operation 'opd_descriptor 'op_operation [LISP Macro

'ob_object ...)
(lexpr-get-found-attribute 'atd_descriptor 'at_attribute [LISP Macro

'ob_object ...)
(lexpr-get-parent-attribute 'atd_descriptor 'at_attribute [LISP Macro

'ob_object ...)
$(LFILES) [MAKE Macro
.lh [UNIX File Extension
Ih.clean [MAKE Target
S(LHFILES) [MAKE Macro
$(LH_LISZT) [MAKE Macro
$(LIBRARIES) [MAKE Macro
lin_ [Argument Prefix
"linear transform" [SKETCH Term
(lineariie-transform 'trans_transform) [LISP Macro
•line-length* [LISP Global Variable
(lines-are-parallel lin_line_l. lin_line_2) [LISP Macro
link [MAKE Target
$(LINK_DIRECTORY) [MAKE Macro
$(LINK_FILES) [MM<E Macro
$(LINT) [MAKE Macro
lint [MAlvE Target
$(LINT_FLAGS) [MAKE Macro
$(LINT_LIBRARIES) [MAKE Macro
t(LISP) [MAKE Macro
$(PREFLX)_lisp [MAKE Target
#lisp [MAKE Target
list [MAKE Target
(list-depth 'g_value) [LISP Function
$(LIST_FILES) [MAKE Macro
$(LISZT) [MAKE Macro
$(PREFIX)_lisBt [MAKE Target
#liset [MAKE Target
liszt [UNIX Command
(listt-declare Ldeclaration ...) [LISP Nlambda Function
$(LISZT_FLAGS) [MAKE Macro
S(LN) [MAKE Macro
S(LNFILES) [MAKE Macro
$(LN_FLAGS) [MAKE Macro
load [MAKE Target
$(LOAD_LFILES) [MAKE Macro
(local-maxima-of 'ar_input '(x_siie ...)) [LISP Function
(local-minima-of 'ar_input '(x_siie ...)) [LISP Function
(log-array-elements 'lar_output flar_input]) [LISP Function
(log-bound-of-array 'ar_array ['x_sign]) [LISP Function
(lookat-arrays ['sjiame ...]) [LISP Function
(lookat-tape |'x_drive]) [LISP Function
(lookat-tape ['s_volume-name]) [LISP Function

5-60
5-60

5-63

5-63

C-37
C-37
C-28
C-38
C-38
C-38
10-4
10-7
10-14
3-23
10-14
C-38
C-39
C-39
C-39
C-39
C-40
C-40
C-40
C-40
C-40
C-40
3-20
C-40
C-41
C-41
C-41
E-l
E-l
C-41
C-41
C-41
C-41
C-41
C-41
8-9
8-9
8-10
7-20
7-20
6-13
6-13

Printed May 1, 1989

SKETCH INDEX A-21

lx_ [Argument Prefix] 4-9
.ma [UNIX File Extension] C-42
(macroexpand 'g_expression) [LISP Function] E-2
$(MAFILES) [MAKE Macro] C-42
$(MAKE) [MAKE Macro] C-42
make [UNIX File] C-42
"make" (SKETCH Term] 5-69
(make-catalog-index 'g_catalog ['s_index-filej) [LISP Function] 6-13
(make-display-map-array ['n_gamma] [LISP Function] 11-32

'(n_red n_green n_blue x_size [n_first [n_last]])

(make-display-text-string 'x_string-size-in-bytes) [LISP Function]
$(MAKE_FLAGS) (MAKE Macro]
make-name-function [LISP Function Name]
make-name-macro [LISP Macro Name]
(make-object '(ty_type at_attribute g_value ...) [SKETCH Operation Macro]

['ob_prototypej)
make-object [SKETCH Operation]
(make-parent-object 'opd_descriptor [LISP Macro]

(ty_type at_attribute g_value ...) J'ob_prototype])
S(MANUAL) ". (MAKE Macro]
manual [MAKE Target
$(MANUAL_FLAGS) [M>\KE Macro]
(map-by-ruler 'n_number 'rul_ruler) [LISP Function]
(mark-missing 'lar_outpul 'ar_input [LISP Function]

'(n_minimum n_maximum)
['(n_lower n_upper) j:(x_xsize x_ysize) ['x_count]]j)

(mark-missing-of 'ar_input '(n_minimum n_maximum) [LISP Function]
['(n_lower n_upper) ['(x_xsize x_ysize) ['x_count]]])

"maximal polygon" [SKETCH Term]
(maximite-array-elements-with 'lar_array 'n_number) [LISP Function]
(maximire-arrays 'lar_output 'lar_input-l ['lar_input-2]) [LISP Function]
(maximum-filter 'lar_array 'x_dimension 'x_width) [LISP Function]
(merge-display 'dis_display ['dwin_window] [LISP Function]

['dwpt_upper-left] [has-zooms '(n_xzoom n_yzoom)]
[has-sizes '(n_xshe n_ysize)]
[has-orientation 's_orientation]
[has-plane-map '((bpn_source-l bpn_target-l) ...)]
[has-color-map '((s_source-l s_target-l) ...)]
[has-map-map '((s_source-l s_target-l) ...)])

(merge-property-Hsts 'Llistrl 'LIist-2) [LISP Function
(minimiie-array-elements-with 'lar_array 'n_number) [LISP Function
(minimite-arrays 'lar_output 'lar_input-l ['lar_input-2]) [LISP Function
(minimum-filter 'lar_array 'x_dimension 'x_width) [LISP Function
(mirror-array 'ar_output 'ar_input) [LISP Function
(mirror-of-array ar_array '(Lwidth ...)) [LISP Function
.mk [UNIX File Extension
l(MKFILES) [MAKE Macro
(mount-tape 's_volume-name ['x_drive]) [LISP Function

11-28
C-43
5-68
5-68
5-70

5-70
5-70

C-43
C-43
C-43
7-20
8-10

8-10

10-2
8-11
8-11
8-11
11-33

5-71
8-11
8-11
8-12
7-20
7-21
C-43
C-43
6-14

Printed May 1, 1989

SKETCH INDEX A-22

(move-array !ar_array ^dimension x_change) [LISP Function] 7-21
(move-array 'ar_array (x_change ...)) [LISP Function! 7-21
(move-display-cursor-by 'n_xdisplacement n_ydisplacement [LISP Function] 11-35

;'d\vin_window:)
(move-display-cursor-by '(n_xdisplacemenl n_ydisplacement) [LISP Function] 11-35

['dwin_window])
(move-display-cursor-by 'vec_vector !'clwin_\vindow]) [LISP Function] 11-35
(move-display-cursor-to 'n_xposition 'n_yposition [LISP Function] 11-35

['dwin_window])
(move-display-cursor-to '(n_\position n_yposition) [LISP Function] 11-35

!'d\vin_windo\Vj)
(move-display-cursor-to 'pt_point !'dwin_windo\v]) [LISP Function] 11-35
(move-object 'ob_object-l :ob_object-2) [SKETCH Operation Macro] 5-71
move-object [SKETCH Operation] 5-71
(move-vector 'vec_vector 'n_x i"n_y ["»_zjj) (LISP Macro] 10-14
(multiply-array-elements "lai_output [LISP Function] 8-12

'lar_input-l ['lar_input-2j)
(multiply-array-elements-by lar_array 'n_nuiltiplier) [LISP Function] 8-12
(never-init-function 'g_value [LISP Function] 5-72

"atd_descriptor 'ai_attribute 'ty_type)
(never-set-function g_valuc [LISP Function] 5-72

"atd_descriptor 'at_attribute :ob_object ...)
(new-catalog ;s_file-nanie) [LISP Function] 6-14
(new-data-file s_file-name) [LISP Function] 6-14
(new-plane 'bpn_plane) [LISP Function] 11-35
(new-window [*dwin_window] ['dwpt_upper-lertj ...) [LISP Function] 11-35
.no [UNIX File Extensionj C-43
"normalized ruler"[SIvETCH Term] 7-24
(normalire-ruler 'rul_ruler) [LISP Function] 7-21
$(NROFF) (MAKE Macro] C-43
$(NROFF_FLAGS) [MAlvE Macro] C-43
.ns [UNIX File Extension] C-43
ns.clean [MAKE Target] C-28
.nt [UNIX File Extension] C-44
nt.clean (MAKE Target] C-28
(null-property-list-with-switches 'Llist 'Linfo) [LISP Function] 5-72
.o [UNIX File Extension] C-44
ob_ [SKETCH Argument Prefix] 5-78
(object-expression-is 'ty_type 'g_expression) (LISP Macro] 5-73
(object-is 'ty.type 'ob.object) [SKETCH Operation Macro] 5-73
(object-is-a-stub 'ob_object) (SKETCH Operation Macro] 5-74
object-is-a-stub [SKETCH Operation] 5-74
(object-symeval 's_symbol) [LISP Macro] 5-74
o.clean [MAKE Target] C-28
$(OFILES) (MAKE Macro] C-44
op_ [SKETCH Argument Prefix] 5-37
opd_ [SKETCH Argument Prefix] 5-38
(s.operation 'ob_object ...) [SKETCH Operation Macro] 5-74
(s_operation (s_type ob_object ...) ...) (SKETCH Operation Macro) 5-74

Printed May 1, 1989

SKETCH INDEX A-23

operation-index-size (LISP Global Variable]
"orthogonal transform"" [SKETCH Terml
*(OTHER_CLFILES) (MAKE Macroj
*(OTHER_DEMO_TARGET_FILES) (MAKE Macro]
$(OTHER_INSTALL_SOURCE_FILES) [MAKE Macro]
$(OTHER_INSTALL_TARGET_FILES) (MAKE Macro]
S(OTHER_LFILES) (MAKE Macro]
$(OTHER_PRINT_FILES) JMAKE Macro]
*(OTHER_RCFILES) [MAKE Macro]
$(OTHER_SOURCE_FILES) (MAKE Macro)
$(OTHER_TARGET_FILES) (MAKE Macro]
.ou [UNIX File Extension]
ou.clean [MAKE Target]
(overlay-missing 'lar.outpul lar_input) [LISP Function]
"package directory" [SKETCH Term]
$(PACKAGE_DIRECTORY) [MAKE Macro]
S(PACKAGE_LINK_FILES) (MAKE Macro]
$(PACKAGE_LIST_FILES) (MAKE Macro]
$(PACKAGES) JMAKE Macro]
<make_target>.packages [MAKE Target Extension]
(parent-object-is 'opd_descriptor 'ty_type 'ob_object) [LISP Macro1

J(PATH) .'.....' (MAKE Macro]
$(PATH) [UNIX Environment Variable]
(patom ...) [LISP Function
pi [LISP Global Constant
PI [C Macro
$(PIC) [MAKE Macro
$(PIC_FLAGS) [MAKE Macro
(place-array 'ar_array 'x_dimension 'x_size [LISP Function

['x_origin |'x_step]j)
(place-array ar_array '(x_size ...) [LISP Function

('(x_origin ...) ['(x_step ...)]])
(playback-display 'dis_display ['dwin_window]) [LISP Function
(playback-display ['dwin_window]) [LISP Function
(playback-display 'ca_catalog ['dwin_window]) [LISP Function
(playback-display 's_file-name ['dwin_window]) [LISP Function
•playback-display-window* [LISP Global Variable
please-ignore (LISP Symbol
(please-include ca_catalog) [LISP List
plt_ [Argument Prefix
(point-between-pointa 'pt_point-l 'pt_point-2 'n_scalar) [LISP Macro
(port-string 'p_port) [LISP Function
(power-array-elementa 'lar_output ['lar_input] 'n_exponent) [LISP Function
"pre-evaluated" (SKETCH Term
$(PREFDC) (MAKE Macro
(prepare-array 'ar_array '(x_expand ...) [LISP Function

['ty_element-type ['x_exponent]] [must-copy])
(pretty-format 'g_value ['x_level]) (LISP Macro
(actf (get 's_symbol 'pretty-format) (LISP Property

'(character s_prefix x_prefix-size))

5-37
10-7
C-44
G-44
C-44
C-44
C-45
C-45
C-45
C-45
C-45
C-45
C-28
8-12
C-46
C-45
C-46
C-46
C-46
C-46
5-73
C-47
C-47
5-75
3-20
4-9
C-47
C-47
7-21

7-21

11-36
11-36
11-36
11-36
11-17
6-14
6-14
11-22
10-15
3-21
8-12
5-75
C-48
7-22

3-21
3-21

Printed May 1, 1989

SKETCH INDEX A-24

(set/ {get 's.symbol 'pretty-format) [LISP Property] 3-21
'(fcreaks s_break x_count [*] ...))

pretty-format-hook (LISP Global Variable] 3-21
(pretty-print 'g_value ['p_port ('x_margin (LISP Function] 3-23

['s_string |'x_repeat l'x_right_margin]]]]])
(pretty-print 'ob_object ...) (LISP Function] 5-75
(pretty-print-format 'gjormat ['p_port.)'x_margin (LISP Function] 3-24

['s_string ['x_repeat (!x_right_margin]]j]J)
(pretty-tab 'x_margin ['p_port ['s_string [LISP Function] 3-24

['x_repeat]]])
prinlength [LISP Global Variable] 3-21
prinlevel [LISP Global Variable] 3-21
$(PRINT) (MAKE Macro] C-48
print (MAKE Target] C-48
(print ...) [LISP Function] 5-75
(print-array ar_array [p_port |X_length]j) [LISP Function] 7-22
$(PRINT_FILES) [MAKE Macro] C-48
$(PRINT_FLAGS) [MAKE Macro] C-48
(print-size 'g_value ['x_maximumj) [LISP Function] 3-24
print_with_count [MAKE Target] C-48
private-pass'word-attribute-functions [LISP Global Variable] 5-77
(process-attributes (ty_type at_attribute g_value ...) [LISP Function] 5-75

'ob_prototype)
(process-attributes-for-macro '(list s_type s_attribute g_value ...)....[LISP Function] 5-75

'g_prototype)
(product-of-scalar-and-transform 'n_scalar :trans_transform) [LISP Macro] 10-15
(product-of-scalar-and-vector 'n_scalar 'vec_vector) [LISP Macro] 10-15
"projective transform" [SKETCH Term] 10-7
pt_ [Argument Prefix] 10-12
ptime-counts-per-second [LISP Global Constant] 3-24
(puresegment 's_type 'x_size) [LISP Function] 3-24
S(RCFILES) [MAKE Macro] C-48
(read-array-elements 'ar_array 'g_array-file) [LISP Function] 7-23
(read-catalog 'ca_catalog ['gjocation]) [LISP Function] 6-14
(read-character-set 'cset_character-set) [SKETCH Attribute Macro] 9-2
•read-private-password-attribute-functions* [LISP Global Variable] 5-77
read-write-paasword-attribute-functions [LISP Global Variable] 5-77
$REAL_LINT [UNIX Environment Variable] C-50
S(RELEASE) [MAKE Macro] C-49
S(RELEASE_FLAGS) [MAKE Macro] C-49
release.install [MAKE Target] C-49
releaae_instaIl_8ource [MAKE Target] C-49
release_source [MAKE Target] C-49
(remake-display-maps '(s_map-name [s_monitor ...]) [LISP Function] 11-36

'at_attribute 'g_value ...)
(remake-display-maps 's_map-name [LISP Function] 11-36

'at_attribute 'g_value ...)
(remove-abnormal-attributes [do-retvrn-rcally-ni(\ [LISP Function] 5-78

'(ty_type at_attribute-l g_value-l ...)
'at_attribute-ll 'at_attribute-12 ...)

Printed May 1, 1989

SKETCH INDEX A-25

(reorganiration-of-array "ar_arra\ '(x_xorigin ..) [LISP Function
"(x_xsize) ['(x_xincrement ...)])

(reset-array 'ar_array) [LISP Function
(restrict-array 'ar_array 'x_dimension [LISP Function

['x_size ['x_origin |'x_step]]])
(reverse-array 'ar_array 'x_dimension) [LISP Function
(round n_number) [LISP Function
(round-ruler ruLruler 'n_factor ['Lpatternj) [LISP Function
rul_ [Argument Prefix
"ruler" [SKETCH Term
•s [UNIX File Extension
sag_Od_vector [C Global Variable
sag_ld_to_2d_iero_transform [C Global Variable
sag_ld_to_3d_rero_transform [C Global Variable
sag_ld_unit_transform [C Global Variable
sag_ld_x_unit_vector [C Global Variable
sag_ld_rero_transform [C Global Variable
sag_ld_rero_vector [C Global Variable
sag_2d_to_ld_iero_transform [C Global Variable
sag_2d_to_3d_eero_transform [C Global Variable
sag_2d_unit_transform [C Global Variable
sag_2d_x_unit_vector [C Global Variable
sag_2d_y_unit_vector [C Global Variable
sag_2d_rero_transform [C Global Variable
sag_2d_sero_vector [C Global Variable
sag_3d_to_ld_eero_transform [C Global Variable
sag_3d_to_2d_rero_transform [C Global Variable
sag_3d_unit_transform [C Global Variable
sag_3d_x_unit_vector [C Global Variable
sag_3d_x_unit_vector [C Global Variable
sag_3d_y_unit_vector [C Global Variable
sag_3d_eero_transform (C Global Variable
sag_3d_rero_vector [C Global Variable
cl_cluster>sag_cchain [C Structure Element
cl_cluster>sag_cclosed [C Structure Element
cl_cluster>aag_ccount [C Structure Element
cl_cluster>sag_cdimension [C Structure Element
sag_cluster [C Type
SAG.CLUSTER [C Global Variable
cl_cluster>aag_cmpoIygon [C Structure Element
cLcluster>aag_cparray [C Structure Element
cl_cluster>aag_cplist [C Structure Element
cl_cluster>sag_ctype [C Structure Element
sag_langle (lin_line_l lin_line_2) [C Function
lin_line>sag_ldirection [C Structure Element
sag_Jdistance (lin_line_l lin_line_2) (C Function
lin_line>sag_lend [C Structure Element
sag_line [C Type
SAG.LINE [C Global Variable

7-23

7-23
7-24

7-24
3-24
7-24
7-24
7-24
C-49
10-2
10-1
10-1
10-1
10-2
10-1
10-2
10-1
10-1
10-1
10-2
10-2
10-1
10-2
10-1
10-1
10-1
10-2
10-2
10-2
10-1
10-2
10-3
10-3
10-3
10-3
10-2
10-2
10-3
10-2
10-3
10-2
10-15
10-4
10-15
10-4
10-4
10-4

Printed May 1, 1989

SKETCH INDEX A-26

)in_line>sag_linfinite [C Structure Element] 10-4
)in_line>sag_llength (C Structure Element] 10-4
sag_lparallel (lin_line_l, lin_line_2) [C Function] 10-15
sag Ipdistance (vec_point lin_line) [C Function] 10-15
lin_line>sag_lstart [C Structure Element] 10-4
lin_line>sag_!type [C Structure Element] 10-4
trans_transform>sag_taffine [C Structure Element] 10-8
sag_tcovector (vec_result, trans_transform, vec_covector) [C Function] 10-15
sag_tdiagonal (trans_transform_l, x_dimension, f_scalar) [C Function] 10-16
sag_tdifference (trans_transform_l, trans_transform_2, trans_transform_3)[C Function] 10-16
uans_transform>sag_tidimension [C Structure Element] 10-8
trans_transform>sag_t!inear [C Structure Element] 10-8
trans_transform>sag_todimension [C Structure Element] 10-8
trans_transform > sag_torthogonal [C Structure Element] 10-8
sag_tpoint (pt_result, pt_point, trans_transform) [C Function] 10-15
sag_tpscalar (trans_transform_l, f_scalar, trans_transform_2) [C Function] 10-16
sag_transform [C Type] 10-8
SAG.TRANSFORM [C Global Variable] 10-8
sag_tsproduct (trans_transform_l trans_transform_2) [C Function] 10-16
sag_tsum (trans_transform_l, trans_transform_2, trans_transform_3) |C Function] 10-16
tians_transform>sag_ttt [C Structure Element] 10-8
tian$_transform>sag_ttx [C Structure Element] 10-8
trans_transform>sag_tty [C Structure Element] 10-8
trans_transform>sag_ttype [C Structure Element] 10-8
trans_transform>sag_ttB [C Structure Element] 10-8
sag_tvector (vec_result, vec_vector, trans_transform) [C Function] 10-15
trans_transform>sag_txt [C Structure Element] 10-8
trans_transform>sag_txx [C Structure Element] 10-8
trans_transform > sag_txy [C Structure Element] 10-8
trans_transform>sag_tx« (C Structure Element] 10-8
trans_transform>sag_tyt [C Structure Element] 10-8
trans_transform>sag_tyx [C Structure Element] 10-8
trans_transform>sag_tyy [C Structure Element] 10-8
trans_transform>sag_ty£ [C Structure Element] 10-8
trans_transform>Bag_t«t [C Structure Element] 10-8
trans_transibrm>sag_tex [C Structure Element] 10-8
trans_transform>sag_t«y [C Structure Element] 10-8
trans_transform>sag_trr [C Structure Element] 10-8
sag_vadjust (vec_vector, fjength) [C Function] 10-12
sag_vangle (vec_vector_l vec_vector_2) [C Function] 10-17
sag_vdifference (vec_vector_l, vec_vector_2, vec_vector_3) [C Function] 10-17
sag_vdimension (vec_vector) [C Function] 10-16
sag_vdistance (pt_point_l pt_point_2) [C Function] 10-17
sag vector [C Type) 10-12
SAG.VECTOR [C Global Variable) 10-12
sag_vlength (vec_vector) [C Macro] 10-12
sag_vparallel (vec_vectorl, vec_vector2) [C Function] 10-16
sag_vpbetween (pt_point_l, pt_point_2, pt_point_3, f_scalar) [C Function] 10-17
sag_vpscalar (vec_vector_l, f_scalar, vec_vector_2) [C Function] 10-17

Printed May 1, 1989

SKETCH INDEX A-27

sag_vsproduct (vec_vector_l vec_vector_2) [C Function] 10-17
sag_vsum (vec_vector_l. vec_vector_'2, vec_vector_3) [C Function] 10-17
vec_vector>sag_vtype [C Structure Element] 10-1*2
sag_vunit (vec_vector, x_unit_dimension. x_total_dimension) [C Function] 10-17
sag_vvproduct (vec_vector_l. vec_vector_2, vec_vector_3) [C Function] 10-17
vec_vector>sag_vx (C Structure Element] 10-12
vec_vector>sag_vy [C Structure Element] 10-12
vec_vector > sag_vt [C Structure Element] 10-12
sar_ [Argument Prefix] 7-3
sar_array [C Type] 7-26
SAR_ARRAY (C Global Constant] 7-26
ar_array >sar_cbase [C Macro] 7-26
ar_array >sar_cdimensions [C Macro] 7-26
ar_array>sar_dbase [C Macro] 7-26
sar_dimension [C Type] 7-29
ar_array >sar_dimensions + n (C Macro] 7-26
ar_anay >sar_edimensions [C Macro] 7-26
ar_array>sar_esize [C Macro] 7-26
ar_array > sar_etype (C Macro] 7-26
ar_array >sar_exponent [C Macro] 7-26
ar_array>sar_fbase [C Macro] 7-26
{sar_for_2_elements (ar_arravl. ar_arrav2. type) { [C Macro] 7-31

... }}
{sar_for_2_matrices (ar_arravl, ar_arrav2, type) { [C Macro] 7-33

...»
{sar_for_2_matrix_elements (ar_arrayl, ar_array2, type) { [C Macro] 7-35

...»
{sar_for_3_elements (ar_arrayl, ar_array2, ar_array3, [C Macro] 7-31

type) {

{sar_for_3_matrices (ar_arrayl, ar_array2, ar_array3, [C Macro] 7-33
type) {

...»
{sar_for_3_matrix_elements (ar_arrayl, ar_array2, ar_array3 [C Macro] 7-35

type) {

...»
{sar_for_4_elements (ar_arrayl, ar_array2, ar_array3, [C Macro] 7-31

ar_array4, type) {

{sar_for_4_matrices (ar_arrayl, ar_array2, ar_array3 [C Macro] 7-33
ar_array4, type) {

...»
{sar_for_4_.matrix_elements (ar_arrayl, ar_array2, ar_array3, [C Macro] 7-35

ar_array4, type) {

{sar_for_elements (ar_array, type) { [C Macro] 7-31
...»

{sar_for_matrices (ar_array, type) { [C Macro] 7-33

...»

Printed May 1, 1989

SKETCH INDEX A-28

{sar_for_matrix_elements (;H_annv. type) { [C Macro] 7-35

ar_array >sar_ibase (C Macro] 7-26
adim_dimension>sar_increment [C Macro) 7-29
ar_array>sar_lbase [C Macro] 7-26
SAR.MDIMENSIONS [C Macro Constant] 7-29
SAR_MSIZE [C Macro Constant] 7-29
sar_place (ar_array. x_dimen>ion [C Function] 7-30

x_size. x_origin. x_step)
ar_array>sar_sbase [C Macro] 7-26
sar_simiiar (ar_arrnyl. ar_array2) [C Macro] 7-30
adim_dimension>sar_size [C Macro] 7-29
SAR_T [C Macro Constant] 7-30
ar_array>sar_tincrement [C Macro] 7-26
ar_array>sar_tsite [C Macro] 7-26
ar_array >sar_type [C Macro] 7-26
SAR_U [C Macro Constant] 7-30
ar_array >sar_ubase [C Macro] 7-26
ar_array >sar_ubbase [C Macro] 7-26
ar_array >sar_ucbase [C Macro] 7-26
ar_array >sar_uincrement [C Macro] 7-26
ar_anay >sar_ulbase [C Macro] 7-26
ar_anay >sar_usbase |C Macro] 7-26
ar_array >sar_usize [C Macro] 7-26
SAR_V (C Macro Constant] 7-30
ar_array >sar_vincrement [C Macro] 7-26
ar_array >sar_vsize [C Macro] 7-26
sar_write (ar_array) [C Macro] 7-30
SAR_X [C Macro Constant] 7-30
{sar_xfor_2_elements (ar_arrayl, typel, basel, [C Macro] 7-31

ar_arrav2, tvpe2, base2) {
...»

{sar_xfor_2_matrices (ar_arrayl, typel, basel [C Macro] 7-33
ar_array2, type2, base2) {

{sar_xfor_2_matrix_elements (ar_arrayl, typel, basel, [C Macro] 7-35
ar_array2, type2, base2) {

...»
{sar_xfor_3_elements (ar_arrayl, typel, basel, [C Macro] 7-31

ar_array2, type2, base2,
ar_array3, type3, base3) {

...»
{sar_xfor_3_matrices (ar_arrayl, typel, basel [C Macro] 7-33

ar_array2, type2, base2,
ar_array3, type3, base3) {

... }}
{sar_xfor_3_matrix_elements (ar_arrayl, typel, basel, [C Macro] 7-35

ar_array2, type2, base2,
ar_array3, type3, base3) {

... }}

Printed May 1, 1989

SKETCH INDEX A-29

{sar_xfor_4_elements (ar_arrayl, typel, basel, [C Macro] 7-31
ar_array2, type2, base2,
ar_array3, type3, base3,
ar_array4, tvpe4, base4) {

... }}
{sar_xfor_4_matrices (ar_arrayl, typel, basel, [C Macro] 7-33

ar_array2, type2, base2,
ar_array3, type3, base3,
ar_array4, type4, base4) {

...»
{sar_xfor_4_matrix_elements (ar_arrayl, typel, basel, [C Macro] 7-35

ar_array2, type2, base2,
ar_array3, type3, base3,
ar_array4, tvpe4, base4) {

... }}
{sar_xfor_elements (ar_array, tvpe, base) { [C Macro] 7-31

...»
{sar_xfor_matrices (ar_arrav. tvpe, base) { [C Macro] 7-33

...»
{sar_xfor_matrix_elements (ar_anay, tvpe, base) { [C Macro] 7-35

...»
ar_array >sar_xincrement [C Macro] 7-26
sar_xsimilar (ar_arrayl, ar_arra\"2, x_exclude) [C Function] 7-30
ar_array > sar_xsize [C Macro] 7-26
SAR_Y [C Macro Constant] 7-30
ar_array >sar_yincrement [C Macro] 7-26
ar_array>sar_ysiie [C Macro] 7-26
SAR_Z [C Macro Constant] 7-30
ar_array>sar_sincrement [C Macro] 7-26
ar_array > sar_isite [C Macro] 7-26
g_larray >sat_aaux [C Macro] 4-9
gjarray>sat_adata [C Macro] 4-9
g_l array >sat_adelta [C Macro] 4-9
g_larray>sat_afunction [C Macro] 4-9
g_larray>sat_alength (C Macro] 4-9
sat_ceiling (f_number, x_exponent) [C Function] 4-10
SAT_CMAXIMUM [C Constant] 4-10
SAT_CMINIMUM [C Constant] 4-10
SAT_CMISSING [C Constant] 4-10
sat_cmissing (x_number) [C Macro] 4-10
sat_cnil [C Constant] 4-12
SAT_DMAXIMUM [C Global Variable] 4-10
SAT_DMINIMUM (C Global Variable] 4-10
SAT_DMISSING [C Global Variable] 4-10
sat_dmissing (f_number) [C Macro] 4-10
_SAT_DMISSING [LISP Global Constant] 4-12
sat_empty [C Constant] 4-12
SAT_EXCEPTION (<comment>) [C Macro] 4-18
sat_floor (f_number, x_exponent) [C Function] 4-12

Printed May 1, 1989

SKETCH INDEX A-30

SAT_FMAXIMUM [G Global Variable
SAT_FMINIMUM [C Global Variable
SAT.FMISSING [C Global Variable
sat_fmissing (f_number) (C Macro
g_hunk>sat_hvalue[x_index] [C Macro
SAT_IMAXIMUM [C Constant
SAT_IMINIMUM [C Constant
SAT_IMISSING [C Constant
sat_imissing (x_number) [C Macro
_SAT_IMISSING [LISP Global Constant
& g_string>sat_lchar [C Macro
g_number>sat_ldouble (C Macro
SAT_LEFT_TO_RIGHT [C Macro
g_hunk>sat_Ifirst [C Macro
g_list>sat_lfirst [C Macro
g_number>sat_lint [C Macro
SAT.LMAXTMUM [C Constant
SAT_LMINIMUM [C Constant
SAT_LMISSING (C Constant
sat_lmissing (x_number) [C Macro
sat_log (f_number) [C Function
g_port>sat_lport [C Macro
g_hunk>sat_lrest [C Macro
g_list>sat_lrest [C Macro
sat_lvalue [C Type
g_value>sat_lvalue (C Structure Element
sat_mad (lx_multiplicand, lx_multiplier, [C macro

lx_addend, lx_divisor)
sat_mas (lx_multiplicand, lx_multiplier [C macro

ux_addendO, x_addendl, x_shift)
sat_nfixnum (x_number) [C Function
sat_nflonum (f_number) [C Function
sat_nhunk (x_size) [C Function
sat_nil [C Constant
sat_nivector (x_size) (C Function
sat_nlist (g_first g_rest) [C Function
sat_nlvector (x_size) [C Function
SAT_NO (<comment>) [C Macro
sat_nsfixnum (x_number) [C Macro
sat_nsymbol (t_string) [C Macro
8at_rdeclareN; (C Macro
sat_rmasN (lx_multiplier, lx.multiplicand) [C Macro
sat_round (f_number, x_exponent) [C Function
sat_r*etN (x_shift) [C Macro
sat_sformat (t_string) [C Function
g_symbol>8at_sfunction [C Macro
g_symbol>sat_slink [C Macro
SAT_SMAXIMUM [C Constant
SAT.SMINIMUM [C Constant

4-10
4-10
4-10
4-10
4-12
4-10
4-10
4-10
4-10
4-12
4-12
4-13
4-13
4-12
4-13
4-13
4-10
4-10
4-10
4-10
4-13
4-13
4-12
4-13
4-13
4-13
4-14

4-14

4-14
4-14
4-14
4-15
4-15
4-15
4-15
4-18
4-14
4-15
4-15
4-15
4-16
4-15
4-16
4-17
4-17
4-10
4-10

Printed May 1, 1989

SKETCH INDEX A-31

SAT_SMISSING [C Constant
sat_smissing (x_number) [C Macro
sat_snformat (t_string. x_count) [C Function
g_symbol>sat_splist [C Macro
g_symbol>sat_spname [C Macro
g_symbol>sat_svalue (C Macro
sat_t [C Constant
sat_tformat (t_string) [C Function
sat_tnformat (t_string, x_count) [C Function
SAT_UCMAXIMUM [C Constant
SAT_ULMAXIMUM [C Constant
sat_ultod (uLx) [C Macro
SAT.UMAXIMUM [C Constant
SAT.USMAXIMUM [C Constant
g_ivector>sat_vchar[x_index] [C Macro
g_ivector>sat_vdoublejx_index] [C Macro
g_ivector>sat_vfloat!x_index] (C Macro
g_ivector>sat_vlong|x_index] [C Macro
g_ivector>sat_vprop [C Macro
g_lvector > sat_vprop [C Macro
g_ivector>sat_vshort[x_index] [C Macro
g_ivector > sat_vsire [C Macro
g_lvector >sat_vsize jC Macro
g_ivector>sat_vuchar[x_indexj [C Macro
g_ivector>sat_vulong[x_index] [C Macro
g_ivector>sat_vushort[x_index] [C Macro
g_lvector>sat_walue[x_index] [C Macro
SAT_YES (<comment>) [C Macro
SBG_ACHARACTER [C Global Variable
sbg_bit [x_x] [C Macro
sbg_box (bgar_output, x_xmin, x_xmax, x_ymin, x_ymax, g_mode) [C Function
sbg_character [C Type
bgchar_character>sbg_coffset [C Structure Element
bgchar_character > sbg_corigin [x_dimension] [C Structure Element
bgchar_character > sbg_caiee [x_dimension] [C Structure Element
bgchar_character>sbg_cwidth [C Structure Element
sbg_dot (ux_ubbase, x_xincrement, x_yincrement, [C Function

x_xoffset, x_yoffset, x_xdelta, x_ydelta, x_si«e, s_mode)
sbg_endbit [C Macro
sbg_endfrombit [C Macro
sbg_endshift [C Macro
sbg_endtobit [C Macro
sbg_frombit [x_x] [C Macro
sbg_line (bgar_output, x_xl, x_yl, x_x2, x_y2, x_width, g_mode) [C Function
sbg_or (ux_outp, x_oinc, *ulx_inp, x_xsize, x_ysize) [C Function
sbg_pgram (bgar_output, x_x, x_y, x_xl, x_yl, x_x2, x_y2, g_mode) [C Function
sbg_ruler (bgar_output, f_xfirst, f_xstep [C Function

x_xminimum, x_xmaximum, x_ybase, x_lwidth, x_lheight,
x_5width, x_5height, x_10width, x_10height, g_mode)

4-10
4-10
4-16
4-17
4-17
4-17
4-17
4-16
4-16
4-10
4-10
4-17
4-10
4-10
4-17
4-17
4-17
4-17
4-17
4-18
4-17
4-17
4-18
4-17
4-17
4-17
4-18
4-18
9-14
9-13
9-13
9-14
9-14
9-14
9-14
9-14
9-14

9-13
9-13
9-13
9-13
9-13
9-15
9-16
9-16
9-16

Printed May 1, 1989

SKETCH INDEX A-32

sbg_shift [x_x] (C Macro
sbg_s_or (ux_outp, x_oinc, *usx_inp. x_xsize, x_ysize) [C Function
sbg_tobit jx_x] [C Macro
(scalar-product 'ar_input-l 'ar_input-2) (LISP Function
(scalar-product-of-transforms 'trans_transform-l 'trans_transform-2) [LISP Macro
(scalar-product-of-vectors 'vec_vector-l 'vec_vector-2) [LISP Macro
s.clean [MAKE Target
(search-path '(s_directory ...) 's_file ['s_mode]) [LISP Function
(set-array-by-expression 'ar_array 'g_expression) [LISP Function
(set-array-by-value 'ar_array ' g_value) [LISP Function
(set-array-elements 'lar_array 'n_value) [LISP Function
(set-array-elements 'lar_array nil) [LISP Function
(setf ...) [LISP Macro
(set-missing-to 'lar_array 'n_value) [LISP Function
SFE_ft8XXX [C Macro
sfe_assert (g_test, t_message) [C Macro
sfe_assertl (g_test, t_message, g_argument_l) [C Macro
sfe_assert2 (g_test, t_message, g_argument_l, g_argument_2) [C Macro
sfe_assert3 (g_test, t_message, g_argument_l, ..., g_argument_3) [C Macro
sfe_assert4 (g_test, t_message, g_argument_l, ..., g_argument_4) [C Macro
sfe_assert5 (g_test, t_message, g_argument_l, ..., g_argumen(_5) [C Macro
SFE.BSD [C Macro
sfe_check () [C Macro
sfe_error (t_format, g_argument, ...) [C Function
SFE_FRANZ [C Macro
sfe_iserror () [C Macro
SFE_LINT [C Macro
sfe_return [C Macro
SFE.SKETCH [C Macro
SFE.SUN [C Macro
SFE_VAX [C Macro
.sh [UNIX File Extension
$(SHFILES) [MAKE Macro
(shrink-missing 'lar_output 'ar_input ['x_count]) [LISP Function
(shrink-missing-of 'ar_input [LISP Function

['x_count...])
(sin-array-elements 'lar_output ['lar_input]) [LISP Function
$(SKETCH) [MAKE Macro
"SKETCH object" (SKETCH Term
S(SKETCHCOM) [MAKE Macro;
sketch.re [UNKFiW
sketch-version [LISP Global Constant
(slice-of-array ar_array) [LISP Function
(slice-of-array ar_array '(x_size ...) ['(x_origin ...) ['(x_step ...)]]) [LISP Function
(slice-of-array ar_array x_dimension x_siie [x_origin [x_step]]) [LISP Function
sma_count.sh [-c] file [UNIX Command
sma_index.sh appendix-letter 'appendix-title' [index-file ...] [UNIX Command
sma_manual.sh [-i] chapter-number 'chapter-title' chapter-file [UNIX Command

[glossary-file ...]

9-13
9-17
9-13
8-13
10-18
10-18
C-28
3-25
7-36
7-36
8-13
8-13
E-2
8-13
3-26
3-25
3-25
3-25
3-25
3-25
3-25
3-26
3-25
3-26
3-26
3-26
3-26
3-26
3-26
3-26
3-26
C-49
C-49
8-13
8-14

8-14
C-49
5-78
C-50
C-50
3-27
7-37
7-37
7-37
D-4
D-5
D-5

Printed May 1, 1989

SKETCH INDEX A-33

smkjint.sh [UNIX Command
sob_attribute (C Type
SOB_ATTRIBUTE [C Global Variable
SOB_BIGNUM (C Global Variable
SOB_BINARY [C Global Variable
sob_case (ty_type) [C Function
SOB_CHAR [C Global Variable
SOBJDOUBLE [C Global Variable
SOBJFTXNUM [C Global Variable
SOB_FLOAT [C Global Variable
SOB_FLONUM [C Global Variable
SOB.HUNK [C Global Variable
SOB.INT [C Global Variable
SOB_IVECTOR [C Global Variable
SOB_LARRAY (C Global Variable
SOB_LBIT [C Global Variable
SOB.LIST [C Global Variable
SOBJLONG [C Global Variable
sob_ltype (g_value) [C Macro
SOB_LVECTOR [C Global Variable
sob_missing (x_type_case) [C Function
sob_nobject (t.narae) [C Function
SOB.NONLISP [C Global Variable
SOB_PORT [C Global Variable
SOB.SHORT (C Global Variabl
SOB.STRING [C Global Variable
SOB_SYMBOL [C Global Variable
sob_tsize (ty_type) [C Function
SOB_TYPE [C Global Variable
sob_type [C Type
SOB.UBIT [C Global Variable
SOB.UCHAR [C Global Variable
SOB_ULONG [C Global Variable
SOB_UNSIGNED [C Global Variable
SOB.USHORT [C Global Variable
SOB.VALUE [C Global Variable
sob_vcreate (ty_type) [C Function
sob_vinit (ob_object ty_type) [C Function
$(SOURCE_FILES) (MAKE Macro]
.sp [UNIX File Extension
sp.clean [MAKE Target
$(SPELL) [MAKE Macro
spell [MAKE Target
$(SPELL_FLAGS) [MAKE Macro
(split-filename 's_file) [LISP Function
sqrt-pi [LISP Global Constant
(square-root-array-elements 'lar_output ['lar_input]) [LISP Function
(stringopen 't_string 'x_size 's/t_mode ['t_name]) [LISP Function
"stub" [SKETCH Term

C-50
5-78
5-79
5-79
5-79
5-80
5-79
5-79
5-79
5-79
5-79
5-79
5-79
5-79
5-79
5-79
5-79
5-79
5-80
5-79
5-80
5-81
5-79
5-79
5-79
5-79
5-79
5-81
5-79
5-81
5-79
5-79
5-79
5-79
5-79
5-79
5-81
5-81
C-50
C-51
C-28
C-51
C-51
C-51
3-27
3-20
8-14
3-27
5-82

Printed May 1, 1989

SKETCH INDEX A-34

(subtract-arrays lar_output ['lar_input-l! 'lar_input-2) [LISP Function]
(sum-filter 'lar_array _dimension 'x_width) [LISP Function]
(summary-of-array 'ar_array) [LISP Function]
(sum-of-transforms 'trans_tl 'trans_t2) [LISP Macro]
(sum-of-vectors vec_vl \ec_v2) [LISP Macro]
(sweep-array-blocks) [LISP Function]
* sweep- array-blocks-bytes* [LISP Global Variable]
sweep-array-blocks-count [LISP Global Variable]
'sweep-array-blocks-time* [LISP Global Variable]
(symbol-init-function 'g_value [LISP Function]

'atd_descriptor 'at_attribute 'ty_type)
(symbol-init-macro 'g_value [LISP Macro]

atd_descriptor at_attribute ty_type)
(symeval 's_symbol) [LISP Special Function]
T [C Local Variable]
(t (n_character-size! [Bitgraph Program Statement]

[s_horizontal-acljust] [s_vertical-adjust]
[s_orientatioir (n_xorigin n_yorigin) s ,'t_st.ring ...)

$(TBL) [MAKE Macro]
$(TBL_FLAGS) [MAKE Macro]
T-dimension [LISP Global Constant1

$(TITLE) [MAKE Macro]
•top-level-eval* [LISP Global Variable]
top-level-exit [LISP Global Variable]
top-level-init [LISP Global Variable]
•top-level-init-started* [LISP Global Variable
top-Ievel-init-times [LISP Global Variable
•top-level-print* [LISP Global Variabl
•top-level-print* [LISP Global Variabl
top-level-print-times [LISP Global Variabl
•top-level-prompt* [LISP Global Variable
(sstatus top-level-rc-files (s_rc-file ...)) [LISP Function
(status top-level-rc-files) [LISP Function
•top-level-read* [LISP Global Variable
•top-level-saved-print-times* [LISP Global Variable
•top-level-saved-times* [LISP Global Variable
(sstatus top-level-switches (s_switch ...)) [LISP Function
(status top-level-switches) [LISP Function
•top-level-threshold-time* [LISP Global Variable
top-level-times [LISP Global Variable
.tr [UNIX File Extension
trans. [Argument Prefix
(transform-covector 'trans_transform Vec_vector) [LISP Macro
(transform-line 'lin_line 'trans_transform) [LISP Function
(transform-point 'pt_point 'trans_transform) [LISP Macro
(transform-vector 'vec_vector 'trans_transform) [LISP Macro
(transpose-array 'ar_array 'x_dimension-l 'x_dimension-2) [LISP Function
(transpose-transform 'trans_transform) (LISP Macro
tr.clean [MAKE Target

8-14
8-14
7-37
10-18
10-18
7-37
7-37
7-37
7-37
5-82

5-82

5-83
7-31
11-23

C-51
C-51
7-39
C-51
3-28
3-28
3-28
3-28
3-28
3-28
5-83
3-28
3-28
3-30
3-30
3-28
3-28
3-28
3-31
3-31
3-28
3-28
C-51
10-7
10-18
10-18
10-18
10-18
7-38
10-19
C-28

Printed May 1, 1989

SKETCH INDEX A-35

•tv [UNIX File Extension
ty_ (SlvETCH Argument Prefix
ty_ (Argument Prefix
(s_type 'at_attribute 'g_value ...) [LISP Macro
(s_type 'ob_object) [LISP Macro
(s_type 'ob_object 'at_attribute 'g_value ...) [LISP Macro
U [C Local Variable
ubar_ {Argument Prefix
ucar_ [Argument Prefix
uchar [C Type
U-dimension [LISP Global Constant
ular_ [Argument Prefix
ulong [C Type
ulx_ [Argument Prefix
(uneval-object 'g_object [SlvETCH Operation Macro

['g_index-switch ['g_backquote-switch]])
uneval-object [SlvETCH Operation
(uneval-object 'ar_array [<]) [LISP Function
(unit-transform 'x_dimension) [LISP Macro
(unit-vector x_unit-dimension 'x.total-dimension) [LISP Macro
(unpre-evaluate-object 'ob_object) [LISP Function
usar_ [Argument Prefix
(use-ptport p_port) [LISP Function
ushort [C Type
ux_ [Argument Prefix
V (C Local Variable
V-dimension [LISP Global Constant
vec_ [Argument Prefix
(vector-product-of-vectors 'vec_vector-l Vec_vector-2) [LISP Macro
(vectors-are-parallel 'vec_vector-l 'vec_vector-2) [LISP Macro
veCty_ [Argument Prefix
,vo [UNIX File Extension
(vrefi-double 'V_vector 'x_index) [LISP Special Function
.vs [UNIX File Extension
vs.clean [MAKE Target
fvsize-double V_vector) [LISP Function
(vsite-long V_vector) [LISP Function
$(VS_PRINT) [MAKE Macro
$(VS_PRINT_FLAGS) [MAKE Macro]
(w (n_xsize n_ysize) (n_xorigin n_yorigin) [Bitgraph Program Window

(n_xzoom n_y«x>m) s_orientation <statement> ...)
wc [MAKE Target
WC [MAKE Target
WC [UNIX File Name
(write-array-elements 'ar_array 'g_array-file) [LISP Function
(write-catalog 'ca_catalog 'g_value) [LISP Function
I write-catalog 'ca_catalog 'ar_array) [LISP Function
(write-display 'ca_catalog] ['dis/dwin_display]) [LISP Function
x_ (Argument Prefix

6-15
5-41
5-81
5-83
5-83
5-83
7-31
7-3
7-3
4-18
7-39
7-3
4-18
4-9
5-84

5-84
7-38
10-19
10-20
5-85
7-3
3-31
4-18
4-18
7-31
7-39
10-12
10-19
10-19
5-43
C-51
3-31
C-51
C-28
3-32
3-32
C-52
C-52
11-23

C-52
C-52
C-52
7-38
6-15
7-39
11-37
4-18

Printed May 1, 1989

SKETCH INDEX A-36

X [C Local Variable] 7-31
X-dimension [LISP Global Constant] 7-39
xp [C Local Variable] 7-31
(xtime 'g_expression) [LISP Function] 3-32
Y [C Local Variable] 7-31
Y-dimension [LISP Global Constant] 7-39
Z [C Local Variable] 7-31
Z-dimension [LISP Global Constant] 7-39
(cero-edges 'ar_edges 'lar_input ['x_resolution]) [LISP Function] 13-2
fiero-edges-of 'ar_input '(x_xwidth x_ywidth) [LISP Function] 13-3

['x_resolution])
(eero-edge-strength-of lar_output 'lar_input [LISP Function] 13-4

'lar_work 'ar_edges)
(lero-transform 'x_dimension) [LISP Macro] 10-19
(tero-vector 'x_total-dimension) [LISP Macro] 10-20

Printed May 1, 1989

APPENDIX B

CONFIGURATION

1. DESCRIPTION The files in this package are those likely to be changed when mov-
ing from one hardware/software operating system to another. For example, all names of
directories outside SKETCH are in the files of this package.

When porting SKETCH to a new system, the source files of this package should
always be read and modified as necessary. Some of these files are-

sco_load.l Loaded into SKETCH evaluators, but not compilers.

sco_compile.l Loaded into SKETCH compilers, but not evaluators.

sco_common.l Loaded into both SKETCH evaluators and compilers.

sco_global.h Same as FRANZ h/global.h, with additions to keep lint happy.
sco_defsl.mk Included in every SKETCH makefile.

See NUKING FILES Appendix.

The names defined in these files are parts of other packages, and are therefore docu-
mented elsewhere.

Some of the contents of these files may be overridden by top-level-rc-riles, which are
usually files with the name sketch.re or sketchcom.rc in the current directory, parent
directories of the current directory, or users home directory. See top-level-rc-files

CONFIGURATION B-l

APPENDIX C

MAKING FILES

1. MAKING TARGET FILES FROM SOURCE FILES. The SKETCH maite
package facilitates the making of files from other files, for example the making of foo.o
from foo.c. All that is necessary to enable SKETCH make is to—

(1) Create a directory for the package (set of related functions) you are writing. This is
called the package directory. Usually several related package directories are sub-
directories of a common directory called a global directory. The global directory
has to be built properly, but this will usually have already been done: see GLOBAL
DIRECTORIES below."

(2) Put an executable (x permission set) file named make in this directory which has the
form —

#! bin/csh -f
if (—r csh.rc) then

source csh.rc
else if (—r ../csh.rc) then

source ../csh.rc
else

source ../../csh.rc
enclif

exec psearch smk/smk_make.sh $argv:q

A typical value for ../csh.rc in the global directory is—

set path={. /ul/walton/sketch4/users /sketch/sketch4b/ll/sun3.5 \
/sketch/sketch4b/ll/sun3.5/tps /usr/local/bin /usr/ucb /usr/bin /bin)

rehash
setenv CPP_PATH "-I/ul/walton/sketch4/users -I/sketch/sketch4b/ll/sun3.5M

setenv COMPUTER.TYPE sun3

This combination of make and csh.rc establishes a path of global directories that
may be searched for names of the form —

<package_name>/<filename>.

Psearch (which is part of the TPS system: see TEAM PROGRAMMER SYSTEM
below) performs such a search for the smk/smk_make.sh program, which executes
the make command for a SKETCH package directory.

(3) Put into the package directory a file named makefile.mk which might, for example,
be the following—

CFILES=foo.c
LFILES=bar.l
OFILES=foo.o bar.o

MAKING FILES C-l

MAKING FILES C-2

This file defines make macros named C'FILES and OFILES. Macro definitions for
make consist ol the macro name, followed by an equal sign, followed by the charac-
ter string to which the macro is being defined, followed by the end of line (continua-
tion across linos is allowed by using the backslash \ before the line-ends that are to
be ignored).

CFILES is a list of all the .c source tiles in the package; LFILES a list of all ./source
files; and OFILES a list of all the o target files. It is the job of make to make target
files, which do not initially exist, from source files, which are typically text files
edited by the programmer.

(4) You may now make the target files from the source files by UNIX commands such
as—

moke foo.o
make bar.o
make foo.o bar.o
make all
make

The first two command- make only one of the files, the one designated The third
command makes both files. The last two commands make all the target files listed
in makefile, mk. This is because making the target all is defined to be the same as
making all the files listed in the .4LL_F\LESmacro, which by default is defined by—

ALL_F1LES=%{LHF1LES) ^OFILES) %{F1LES) \
$(0 THER_ TARGET-FILES)

Also, make by itself, with no target mentioned, is defined to be equivalent to making
the target, all.

Note that make macros are invoked by the form —

$(< macro- name>)

The macros LHFILES, FILES, and OTHER_TARGET_FILES, not having been defined in
our makefile.mk, are defined to be null strings.

The make command makes target files by executing UNIX commands. It prints
these commands out just before executing them. Thus the following is typical—

% make foo.o
rm —f foo.o
cc —O —I/ul/walton/sketch4/users —I/sketch/sketch4b/ll/sun3.5 —c foo.c
chmod a—w foo.o
% make bar.o
rm -f \#bar.\#
sketchcom —q bar.l —o \#bar.\#
chmod a—\v \#bar.\#
mv —f \#bar.\# bar.o

If you give make the —n option, as in "make —n alt', it will print the UNIX com-
mands it would execute to make the target files, but will not execute these commands.

Printed May 1, 1989

MAKING FILES C-3

The make command also pays attention to some subtleties—

(1) It will not make foo.o if that file exists and has a creation date later than foo.c.
Instead it will either print—

'foo.o' is up to date.

if you explicitly asked for foo.o as a target, or do nothing if foo.o was an implicit
target (as when all is the explicitly asked for target).

Similarly if bar.o exists and has a creation date later than bar.I.

(2) SKETCH make will usually change the files it makes to be read-only. This indicates
to the backup(ltps) program whose use is described under INSTALLING PUBLIC
VERSIONS below that the files are not changeable (but may be deleted and
replaced), and therefore it is safe to link to these files rather than waste disk space
by copying them.

SKETCH make will use "rm —/" and "row —/" to remove previous copies of target
files in order to avoid protection problems when these previous copies are read-only.

(3) SKETCH make will take pains to avoid leaving erroneous target files around when
there is an error in making a target file. This is why the target file is often made
under a pseudonym such as #bar.# above, and ?rcr:ed to its final name only after it
has been correctly made. (The backslashes \ in front of the #'s in the printed make
output disappear when the command is read by the UNIX shell: they are necessary
because # without \ is a comment character to the UNIX make(l) program.)

(4) Simple UNIX commands such as cc may not work for SKETCH, and may have to be
replaced. For example, in one system a compiler table was too small to handle the
large C language for loops used in SKETCH, so an alternative version of the com-
piler was constructed and cc was replaced by —

cc —B/sketch/sketch4b/berkeley/vax4.3/pcc/ —tO

2. PACKAGE DEFINING MACROS. To define a package you define macros in
makefile.mk. Table 1 describes the macros most commonly used for this purpose.

Printed May 1, 1989

MAKING FILES C-4

TABLE 1: PART 1

PACKAGE DEFINING MACROS

Macro Name
"Default Value"

Definition

CHAPTER The chapter number, or appendix letter, of
the package documentation chapter or ap-
pendix.

PREFDC
MM

A several letter prefix that appears a the be-
ginning of most file names and C language
global names in the package. Some exam-
ples: 'sink', "sob', and 'sar . The prefix is
separated from the rest of a name by an
underline. Some example file names:
'sar_lisp'. 'sob_type.l:. and 'smk_defsl.mk'.

PACKAGE_DIRECTORY
"tfPREFIX)"

This is the name of the package directory
within its containing global directory. Nor-
mally this equals the package prefix, but it
does not have to

TITLE
nil

The title of the package's documenting
chapter or appendix.

Printed May 1, 1989

MAKING FILES C-5

TABLE 1: PART 2

PACKAGE DEFINING MACROS

Macro Name
"Default Value"

Definition

LISP
"^(SKETCH)"

The LISP evaluator environment, into which
.0 files of this package are to be loaded to
produce an evaluator environment for users
of this package. Defaults to %{SKETCH),
which in turn defaults to the SKETCH
evaluator program.

DEMO_LISP
"$(LISP) -I %{PREFIX)Joad"

The LISP evaluator environment which is
used to make an ou file from a ./ file by run-
ning the demo function. Defaults to $(LISP)
with the evaluator files of this package load-
ed in by a —/switch.

LISZT
"%(SKETCHCOMf

The LISP compiler environment into which
.o files of this package are to be loaded to
produce a compiler environment for users of
this package. Defaults to %SKETCHCOM).
which in turn defaults to the SKETCH com-
piler program.

DEMO_LISZT
"t(LJSZT) -I %(PREFIX)_compile"

The LISZT compiler environment which is
used to make a .ou file from a .cl file by run-
ning the demo function. Defaults to
%[LISZT) with the complier files of this
package loaded in by a —/switch.

CFILES
MM

All .c source files in the package. These are
the C language files.

Printed May 1, 1989

MAKING FILES C-6

TABLE 1: PART 3

PACKAGE DEFINING MACROS

Macro Name
"Default Value"

Definition

COMMON_LFE.ES
•l«t

All ./ source files in the package that are to be loaded into
both the LISP evaluator environment and the LISP com-
piler environment. See COMPJLE_LFILES,
LOAD_LFILES, and OTHER_LFILES.

COMPD_E_LFILES
•in

All ./ source files in the package that are to be loaded into
the LISP compiler environment, but not the LISP evaluator
environment. See COMMON_LFILES, LOAD_LFILES,
and OTHER_LFJLES.

CSFILES All .cs source files in the package. These files are written in
a combination of assembly language and C macro language.

DEMO_CLFILES
tin

All cl source files in the package that are demonstration
programs to be run by the compiler %(DEMO_LISZT) (and
not the evaluator).

DEMO_LFILES
nn

All ./ source files in the package that are demonstration
programs to be run by the evaluator %(DEMO_LISP).

DEMO_OUFILES
•if*

All ou target files in the package that are the output of
demonstration programs. These files are made by running
./ files through the evaluator %(DEMO_LISP) or .cl files
through the the compiler %(DEMO_LISZT) and saving the
standard output.

DOFILES
•ttt

All do source files in the package. These are documenta-
tion files that are processed by eqn(l), p«c(l), tbl(l), and
troffil) to produce miscellaneous documentation.

Printed May 1, 1989

MAKING FILES C-7

TABLE 1: PART 4

PACKAGE DEFINING MACROS

Macro Name
"Default Value"

Definition

FFD.ES
• •*(

All ./source files in the package. These are the FOR-
TRAN language files.

FILES
tiff

All target files with no extension in the package.
%(PREFlX)Jisp and %(PREFIX)_liszt should be listed
here if they are required by users of the package If
any other files are listed, explicit instructions for mak-
ing them must be included in makefile.mk.

HFILES
nit

All ./i source files in the package. These are C language
files that are #iric/u(le'd in other c files, and do not
themselves have any corresponding . o file.

INSTALL. RCFILES
tiff

All .re source files that are to be installed in the
%(INSTALL_DIRECTORY) (defined as a UNIX en-
vironment variable in csli.rc) by the install command.

LCFELES
tin

All lc source files in the package. These are C
language files written with special conventions that
make them directly callable by LISP code. These files
are also compiled in a special manner.

LHFn.ES
nit

All Ah target files in the package. These are C
language files that are created from ./ files that use the
declare-hunk-type or declare-vcctor-type functions from
the SKETCH Objects Package. These files are then
^include'd into .c files.

LIBRARIES
mi

A list of the libraries to be searched by ld(l) after other
files in this package are loaded. Used when making .ex
files, but not when loading .0 files into LISP environ-
ments.

LNFR.ES
MM

All symbolic link files defined in this package.

Printed May 1, 1989

MAKING FILES C-8

TABLE 1: PART 5

PACKAGE DEFINING MACROS

Macro Name
"Default Value"

Definition

LOAD_LFILES
mi

All ./source files in the package that are to be loaded into
the LISP evaluator environment, but not the LISP compiler
environment. See COMPILE_LFILES,
C0MM0N_LF1LES, and OTHER_LFILES.

MAFILES All ma source files in the package. These are documenta-
tion files that are processed by eqn{\), pic(l), tbl, and
Irojill) to produce the package chapter or appendix.

MKFILES
"makefile.ink"

All .mk source files in the package. These are input to make
commands. In most packages there is only one such file:
makefile.mk.

OFILES
mi

All .0 target files in the package. These may be loaded into
LISP environments, or combined by Id to produce execut-
able programs

Printed May 1, 1989

MAKING FILES C-9

TABLE 1: PART 6

PACKAGE DEFINING MACROS

Macro Name
"Default Value"

Definition

OTHER_CLFILES All .cl source files in the package
that are not listed in
%(DEMO_CLFILES).

OTHER_DEMO_TARGET_FILES All target files not made by all that
are to be made before making
%(DEMO_OVFILES). For exam-
ple, foo.o might be listed if it is to
be made from fool before a
demonstration program is run

O THER.IN S TALL.S OURCE_FILES

4*.-

All source files that are to be in-
stalled in the
%(INSTALL_DIRECTORY) by the
install command, and which are not
already listed in t(HFILES),
%(SHFILES), %(DEMO__LFILES),
%(DEMO_CLFILES), or
$(INSTALL_RCFILES), and which
are not one of the two files make or
makefile.mk.

OTHER_INSTALL_TARGET_FR.ES
•in

All target files that are to be in-
stalled in the
%(INSTALL_DIRECT0RY) by the
install command, and which are not
already listed in %(LHFILES), and
which are not one of the two files
%(PREFIX)_chap.in or COUNT.

Printed May 1, 1989

MAKING FILES C-10

TABLE 1: PART 7

PACKAGE DEFINING MACROS

Macro Name
"Default Value"

Definition

OTHERJLFELES
1111

All ./source files in the package that are not to be
loaded into either the LISP evaluator environment
or the LISP compiler environment. See
COMPILE_LFJLES, COMMON_LFILES, and
LOAD.LFILES.

OTHER_RCFELES All .re source files not listed in
$/INSTALLERCFILES).

OTHER_SOURCE_FILES
"make"

Source files not listed elsewhere. Usually this con-
sists of shell files with no extension, including the
make file which is in every SKETCH package direc-
tor v.

OTHER_TARGET_FILES Target files not. listed elsewhere.

SHFILES All .ah source files in the package. These are writ-
ten in either the sh(\) or cs/i(l) language.

3. PROGRAM CODE FILE EXTENSIONS. The extension of a file must tell the
language or format of the file and its role in the scheme of making files from other files.
For this reason SKETCH make uses a large number of distinctive file name extensions.

Figure 1 indicates the file extensions and make paths involved in making .o files that
are loaded into lisp and its derivatives [liszt, sketch, and sketchcom).

Cc{\), liszt[\), /77(1), and as{\) are standard UNIX programs, and .c, ./, ./, .5, and .o
are standard UNIX file extensions, /lib/epp is the C language macro pre-processor, which
simply substitutes macros in the input text, but does no other part of C language compi-
lation. Thus .cs files may use C macros in assembly language code. The strange combi-
nation of programs used to process Ac files have almost the same effect as cc, but make
certain substitutions in the assembly language code (using fixmask and sed(l)) before it is
passed through the C language optimizer /lib/cS. These substitutions are required to
write FRANZ LISP lambda functions directly in C on the VAX (currently these substitu-
tions are not done on the SUN).

Figure 2 indicates the file extensions and make paths involved in making .ex files
that are directly executable. This figure is almost the same as Figure 1. One difference is
that cc(l) is used to make the .ex files from the .o files. In this use, cc merely calls the
UNIX loader, ld(l), adding a program startup file to be beginning of the list of files loaded
or libraries searched, and adding the standard C library to the end of this list. The other
difference is the ./ and Ac are made into .ex files not by compilation, but rather by loading
them into sketch or sketchcom and doing a dumplisp. The ./ and .cl files are supposed to

Printed May 1, 1989

MAKING FILES C-ll

FIGURE 1: MAKING .o FILES

load other pre-compiled files and set global variables before the dumplisp.

Note that the autorun facility of lisp{\) (the —r option to liszt) is not supported, but
similar effects can be obtained by writing shell files and using the -/and -E flags provided
by the FRANZ EXTENSIONS package: see top-level-switches in that package.

Lint output is produced in the form of nt files just like compilation produces .s files.
See Figure 3. Linl.sh is a shell file that runs the standard UNIX lint program but
removes certain meaningless warning messages from the output, so that the goal of lint-
ing with no messages is reasonable.

C compilations depend upon .h files as well as .c files. A .lh file is similar to a .A file,
but is made from a ./ file by the process of Figure 4. See declare-hunk-type and declare-
vector-type in the SKETCH OBJECTS Package for an explanation of what is output into
C- definition- code-port.

If a .c file is changed after its corresponding o file is made, then the .o file will be
remade the next time it or all is made. However the same is not true if a h or .lh file on
which the o file also depends is changed. When ./> or .lh files are changed, any o, .s, or
.nt files that depend upon them must be removed by hand. One could avoid this if one
wanted to by adding a line such as—

<filel>.o <filel>.s <filel>.nt: <file2>.h <file3>.lh

to makefile.ink, thus explicitly giving the dependency involved. However, if a change is
made to <file2>.h which will not effect <filel>.o, this line would force the unnecessary

Printed May 1, 1989

MAKING FILES C-12

echo
"(progn

flood r<file>./y (gc)
(dumplisp < fi le > . ex)J"

sketch

echo
"(progn

(load'<fi\e>.cl)(gc)
(dumplisp < fi le >. ex))"

sketchcom

FIGURE 2: MAKING .ex FILES

FIGURE 3: MAKING .nt FILES

Priuted May 1, 1989

MAKING FILES C-13

echo
"(setq *C-deftnitton-code-porl*

foutfile '<file name>.lh))"
"(load '<file name>.//'
"(close *C-definition-code-port *)"

I sketchcom

FIGURE 4: MAKING .lh FILES

recompilation of <filel>.o. Since one change to a ./i file often affects only a few of the o
files that depend on the ./i file, it is usually more efficient to remove o files by hand when
a .It file affects them.

Lastly, Figure 5 indicates how a .ou file is made from an ./or .cl file. The ou file is
the printed output that would result if the ./or cl file were typed into sketch.

4. SPECIAL TARGETS USED FOR MAINTAINING CODE. Table 2 lists

echo
"(d emo'< file >./

'< file >.ou)"
| sketch —I < prefix >_load

echo
"(demo '<file> cl

'< file >.ou)"
| sketchcom —I < prefix >_compile

FIGURE 5: MAKING .ou FILES

Printed May 1, 1989

MAKING FILES C-14

TABLE 2: PART 1

SPECIAL TARGETS

USED FOR MAINTAINING CODE

all Makes all code target files, or more explicitly, makes
${ALL_FILES) which defaults to "%(LHFILES) t(OFILES)
%(FlLESj%(OTHER_TARGET_FILESf\

all.lhfiles Makes all ./// files, or more explicitly, %{LHFILES\.

clean Removes all code target files, and also all documentation tar-
gets and other miscellaneous non-source files. More explicitly,
removes %(ALL_FILES) WC COUNT *.ex *.lh *.o *.s *.tr *.nl
*.ns *.vs *.»'»> *.sp *.he *.ou and #*.

ex.clean
lh.clean
o.clean
s.clean
nt.clean
ou.clean

Removes only e.r files, or only .//) files, etc.

compile Makes %(PREFIX)_compile.o, which contains all of this pack-
age that is to be added to the %(LISZT) compiler environment.

count
COUNT

Makes the COUNT file, which gives a line count breakdown of
all %(SOURCE_FILES), for both code and documentation.

demo Makes all $(DEMO_OUFILES) .ou files. First makes the same
files made by all, and also all the
$(0 THER_DEMO_ TARGET_FILES).

lint Makes a .nt file for each .c and Ac file (more explicitly, for each
file in %{CFILES) and ^LCFILES)). Makes all %{LHFILES)
files first.

$(PREFK)_lisp Makes the %(PREFIX)_lxsp file, which is the %{LISP) evaluator
environment with this package added. First makes
%{OFILES), then loads %(PREFIX)Joad.o into %{LISP), and
lastly dumplisp's the result into %(PREFIX)Jisp.

Printed May 1, 1989

MAKING FILES C-15

TABLE 2: PART 2

SPECIAL TARGETS

USED FOR MAINTAINING CODE

#li»P Makes the #lisp file by exactly the same procedure as the
%(PREFlX)J%sp file is made.

list Outputs all the names of the files in ${LIST_FILES), which
by default equals %{SOURCE_FJLES). Each name is on a
separate line.

$(PREFDC)_liszt Makes the %(PREFIX)_liszt file, which is the %(LISZT) com-
piler environment with this package added. First makes
%{OFILES), then loads %(PREFIX)Joad.o into %{LISZT),
and lastly dumplisp's the result into %(PREFlX)_liszt

#liszt Makes the #liszt file by exactly the same procedure as the
%(PREFlX)Jiszt file is made.

load Makes %(PREFIX)_load.o, which contains all of this pack-
age that is to be added to the §{LISP) evaluator environ-
ment.

print Prints all the code source files. Specifically prints
%(LFILES) %(CLFILES) %(HFILES) %(CFILES)
%(LCFILES) %(CSFILES) %(FFILES) t(MKFILES)
i(SHFILES) %(RCFILES) and %(OTHER_PRINT_FILES),
the last of which defaults to ^{OTHER^SOURCE-FILES).
Also makes and prints the WC file, which lists all the files
printed and their line, word, and character counts. Files
are printed in alphabetical order of their name, except that
the WC file is printed first.

print_with_count Just like print, but makes and prints the COUNT file in-
stead of the WC file. The COUNT file is more meaningful,
but takes longer to make than WC.

release_sou rce Releases all source files using release(ltps).

wc
WC

Makes the WC file, which gives the line count, word count,
and byte count of the files printed by print.

some special targets used for maintaining code.

5. DOCUMENTATION FR.E EXTENSIONS. Figure 6 indicates the file exten-
sions and make paths involved in making documentation targets. Each package typically
has one ma manual file which is successively made into .tr, .vs, and .vo files to print the
package manual. In the first step the glossary, extracted from all the package
%(GLOSSARY^FILES) (which includes all source files except ma and .do files), is
appended to the end of the .ma file to make the tr file: see sma_manual.sh in the

Printed May 1, 1989

MAKING FILES C-16

MANUALS Appendix. Also, the chapter title, as defined by the make ^(CHAPTER) and
%(TITLE) macros, is prepended to the .ma file in this first step.

The .vo files actually do not exist: making them merely causes the .vs files to be
printed. Such non-existent target files are called pseudofiles.

Instead of making .vs and .vo files, one can make .ns and .no files. The difference is
that the former use ditrojJ{l) for phototypesetter like printers, and the later use nroff[\)
for typewriter like printers.

Also one can make he and .ho files instead using nrojJ[l). The .he files are like .ns
nrojJ{l) output files, but contain only the glossary, and have specially formatted section
headers that can be extracted by computer programs. They are designed for use by the
on-line help facility (which is not yet implemented). The .ho pseudofile is used to print
the .he file, but the only reason for doing this is to check that the file formating is OK (in
particular, are some lines too long).

Lastly, one can also make .sp files made by running the AT file derived from the .ma
file through the spell(l) program to produce a list of potentially misspelled words.

Besides .ma files packages may have miscellaneous documents represented by do
files. These can be printed by the same mechanisms as via files, with the difference that
no chapter title or glossary is added, and no .he files may be made. Figure 7 depicts this.

ditroff —me —t

_manual.sh -i "%(CHAPTER)" "%(TITLE)"
< file >. ma %(GLOSSAR Y.FILES)
pic | eqn \ tbl

spell | pr -5 —11 —w80 -t

sed — e ... | nroff —me ... | col

FIGURE 6: FILES MADE FROM .ma FR.ES

Printed May 1, 1989

MAKING FILES C-17

imprint —n —166

FIGURE 7: FILES MADE FROM .do FILES

6. SPECIAL TARGETS FOR MAINTAINING DOCUMENTATION. Table 3

Printed May 1, 1989

MAKING FILES C-18

TABLE 3

SPECIAL TARGETS

USED FOR MAINTAINING DOCUMENTAION

chap Makes ${PREFIX)_cha.p.vo which prints the package documenta-
tion chapter or appendix.

chap.vs Makes the $(f7?£7r/A')_chap.vs file which is the trojj[l) output file
format of the package documentation chapter or appendix. Mak-
ing this file takes a lot of computer time, but printing is takes lit-
tle, so often this file is made in background and then printed later.

help Makes the $(/5/?£'/7.Y)_chap.he file which is the package documen-
tation chapter or appendix glossary in a format suitable for use by
the on-line help command.

lists some special targets used for maintaining documention.

7. THE TEAM PROGRAMMER SYSTEM. The Team Programmer System
(TPS) is a set. of program development utility programs that are distributed with
SKETCH and used by SKETCH. Here we briefly describe the TPS programs used by
SKETCH in an essentual way.

TPS has commands to search the directories in the PATH environment variable for
a file. The /search program is used to find the complete name of a file (or each of a list of
files) by searching the list of directories given by PATH for the file. E.g., if

PATH=.:/sketch/sketch4b/ll/sun3.5

then

/search -rx smk/smk_make.sh sma/sma_index.sh

might return the line

/sketch/sketch4b/ll/sun3.5/smk/smk_make.sh \
/sketch/sketch4b/ll/sun3.5/sma/sma_index.sh

The options —rwx may be used to require files to have read, write, or execute privileges to
be included in the search.

The psearch command does an /search like action on its first argument, and then
calls that first argument as a UNIX program, passing the rest of the psearch arguments
to that program. Thus one might execute

psearch smk/smk_make.sh chap

Now if there were no slash (/) in the name of the command, the UNDC shell would do the
same thing. Unfortunately, the shell does not search the PATH directories if there is a
slash anywhere in the command name (not just at the beginning). So psearch is necessary
when there is a slash in the middle of the command name.

Printed May 1, 1989

MAKING FILES C-19

TPS also has commands to install files in public locations. The key program is the
backup program, used as in

backup —D/sketch/sketch4b/ll/sun3.5/sar sar_defs.h sarjoad.o

This program takes files (sar_defs.h and sarjoad.o) in the current directory and makes
copies in another directory (/sketch/sketch4b/ll/sun3.5/sar) which holds the publically
accessible versions of these files. The program also makes backups in the public directory
of any previous public versions of these files (see the TPS documentation for details).
Lastly, the backup program is intelligent in two ways. First, if a public version of a file
already exists and equals the current directory version of the file, then the program does
nothing, neither making a copy of the files or making backups. Second, if a copy is to be
made of a read-only file, and the current and public directory are on the same file system,
no copy is actually made, but instead the public version of the file is linked to the current
directory version. This saves disk space, and is the reason that the SKETCH make facil-
ity makes all target files read-only.

A companion to the backup program is the release program, used as in

release —D/sketch/sketch4b/ll/sun3.5/sar sar_defs.h sarjoad.o

This program merely destroys all backups of the indicated files that are in the public
directory (not backups in the current directory). It also makes the public directory ver-
sions of the files read-only (if they are not already such).

The backup and release programs can be used without the —D option to backup and
release files in the current directory. The backups are made in the current directory.
However, linking of read-only files is never clone, and instead backup always make a new
copy of the file being backed up that is owned and writable by the person running the
backup program, so that that person can edit the file.

More details about TPS programs are contained in the TPS documentation.

8. INSTALLING PUBLIC VERSIONS.

9. GLOBAL DIRECTORIES. A global directory is a directory that contains pack-
age subdirectories. For example, a global directory might contain subdirectories named
smk and sma for the MAKING FILES and WRITING MANUALS packages, respectively.

A global directory should contain three files: csh.rc, skctch.rc, and sketchcom.rc.
These files establish environment for the make, sketch, and sketchcom programs, respec-
tively.

These .re files establish a sequence of global directories recorded in various directory
search paths. If a file is not found in the current global directory, then the next global
directory in the path is searched, and so forth. For example, csh.rc might be

set path=(. /ul/walton/sketch4/users /sketch/sketch4b/ll/sun3.5 \
/sketch/sketch4b/ll/sun3.5/tps /usr/local/bin /usr/ucb /usr/bin /bin)

rehash
setenv CPP_PATH *'-I/ul/walton/sketch4/users -I/sketch/sketch4b/ll/sun3.5"

if the global directory were /ul/walton/sketch4/users. If a file is not in this directory,
then /sketch/sketch4b/ll/sun3.5 is searched.

Suppose the /sketch/sketch4b/ll/sun3.5 directory contains an sed package subdirec-
tory. If a copy of this subdirectory were made in /ul/walton/sketch4/users and

Printed May 1, 1989

MAKING FILES C-20

modified, then all jobs run within the /ul walton/sketch4/users directory and its sub-
directories would use the modified sed package, while all jobs within
/sketch/sketch4b II sun3.5 and its subdirectories would use the original sed package.

Thus it is possible to build a tree of different versions of SKETCH.

The PATH UNIX environment variable (which is set from the path csh variable) not
only lists the global directory sequence, but also lists other places to obtain program files,
such as '.' for the current directory and /sketch/sketch4b/ll/sun3.5/tps for the TPS pro-
grams (see THE TEAM PROGRAMMER SYSTEM above).

A typical sketch.re file is

(setq lisp-library-directory
(tilde-expand '/sketch/sketch4b/ll/sun3.5/lisp/lisplib))

(sstatus data-search-path (|.| /msmil/data4 /sketch/sketch4b/ll/sun3.5))
(sstatus catalog-search-path (|. |/msmil/exper4 /sketch/sketch4b/ll/sun3.5))
(sstatus cache-search-path (|. | /msmil/data4 /sketch/sketch4b/ll/sun3.5))
(sstatus font-search-path (| | /sketch/sketch4b/ll/sun3.5/vfonts

/sketch/sketch4b/ll/sun3.5/fonts))
(sstatus load-search-path (|.|/msmil ;exper4 /ul/walton/sketch4/users

•sketch/sketch4b/ll/sun3.5
'sketch sketch4b/ll/sun3.5/lisp/lisplib))

(load 'display.re)

Here /msmil/expcM is a global directory in which experiment jobs, in the form of inter-
preted LISP programs, are placed, and /msmil/data4 is a global directory holding binary
data files: e.g. arrays. Files in all these global directories must be referenced by giving a
package subdirectory name, which serves to identify the directory that contains the file
and makes the order in which global directories are listed in sketch.re unimportant (unless
a package in one global directory has the same subdirectory name as a package in
another). Thus a data file might be referred to as exl/jul81/t..l.ar which would be inside
the jul81 dataset in the exl package subdirectory of one of the various global directories
(/msmil/data4 probably).

The display.re file mentioned at the end of sketch.re initializes the display system:
see the DISPLAY chapter.

Sketchcom.rc is usually symbolically linked (by In -s) to sketch.re, so that the com-
piler sees the same initializing file as the evaluator.

A global directory has a makefile.mk file which can contain most of the same macros
as a package directory makefile.mk: see Table 1. Macros that are not used in a global
directory are CHAPTER, PREFIX, PACKAGEJ)IRECTORY, and TITLE. Instead or
these, the macros of Table 5 may be defined in a global directory.

10. TARGETS IN GLOBAL DIRECTORIES. Making a target in a global direc-
tory is like making a target in a package directory, except that targets that make files
whose name includes %{PREFIX) or %[PACKAGE_DIRECTOR^ cannot generally be
made in the global directory. However, the following targets work in the global direc-
tory-

Printed May 1, 1989

MAKING FILES C-21

TABLE 5

GLOBAL DIRECTORY DEFINING MACROS

Macro Name
"Default Value"

Definition

INDEX^APPENDDC The appendix letter of the index of all the packages in
^(PACKAGES) which is built by the
globaLindex. <xx> targets.

INDEX_TITLE The title of the index of all packages in ^(PACKAGES)
which is built by the global_mdex. <xx> targets.

LINK_DIRECTORY
" < tllegal_value >"

The global directory into which %(LINI_F1LES) are
linked by the link make target. This can be defined for
package directories too, but generally is not.

PACKAGES The list of package subdirectories that, are to be pro-
cessed by the <xxx> package* targets of this global
directory. These subdirectories need not be in the glo-
bal directory itself as long as they are in the path of
global directories.

clean_install
backup_install
release^install

With
%{INSTALL_DIRECTOR ^/%{PA CKA GEJ)IRECTOR))
replaced by ${INSTALL_DIRECTOR)/).

Making a target named <target>.packages in the global directory makes <tar-
get> in each package subdirectory listed in ^{PACKAGES), for each package <target>
whose name does not include a package %{PREFIX).

The following <target> .packages targets pass the indicated make macro values to
the package make commands when they execute—

backup_install. packages
release_install.packages
clean_install. packages
list.packages
link.packages

lNSTALLJ)lRECTORY=$(INSTALL_DIRECTOR Y)
\NSTALLJ)lRECTORY=$(INSTALL_DIRECTORY)
\NSTALL_D\RECTORY=$(INSTALL_DIRECTORY)
LIST_FILES=$(P/1 CKA GE_LIST_FILES)
LINK_FILES=$(P,4 CKA GE_LINK_FILES)
LINK_DIRECTORY=

%{LINK_DIRECTOR Y)j < package-directory >

Actually, the directory names are converted to non-relative form before they are passed.
The <package-directory > refers to the element of the ^{PACKAGES) macro value.

Sometimes it is desirable for demo.packages to pass the ${DEMOJLISP) and
%{DEMOJLISZT) values to the package make, so there is a variant named
global.demo packages that does this by passing-

Printed May 1, 1989

MAKING FILES C-22

DEMO_LISP=$(DEMO_LISP)
DEMO_L\SZT=$(DEMO_LISZT)

When defining $(PACKAGE_LIST_FILES) and $(PACKAGEJLINK_FILES) one
must double the dollar signs. For example—

make 'PACKAGE_LIST_FILES=%${HFILES)'- list.packages

TABLES

SPECIAL TARGETS

USED IN GLOBAL DIRECTORIES

global_count
GLOBAL.COUNT

Makes the file GLOBAL..COUNT by combining the
COUNT file and all the < pack age >/COUNT files for
every <package> in ^(PACKAGES).

You must make count.packages first: it is not done au-
tomatically.

global.demo.pack ages Like global.packages, but passes the global directory
definition of %(DEMO_LISP) and %(DEMO_LISZT) to
the packages to produce the demo .ou files. This is
used in public global directories where the binary files
required to use the package defintions of
%(DEMO_LISP) and %(DEMO_LISZT) are not avail-
able.

global_index.tr
global_index.vs
globaLindex.vo

Makes the file globaLindex.tr by combining all the in-
dex files <package>/<prefix>_chap.in for every
<package> in %(PACKAGES). Other documentation
target files are made from globaUindex.tr in the usual
ways.

You must make index.packages first: it is not done au-
tomatically.

manual Prints the entire manual by making the following in
order: title.vo, index.packages, global._index.vo,
chap.packages.

Printed May 1, 1989

MAKING FILES C-23

Table 6 gives some other special targets that can be used in global directories only.

11. DEFINING UNIX PROGRAMS. The UNIX programs invoked by make and
the flags passed to these programs are mostly defined by macros. Thus they can be
replaced and modified by redefining their macros in the makefile.ink

For example, every time a LISP evaluator environment is needed, SKETCH make
uses $(LISP), which is usually defined by the default definitions—

LISP=$(SKETCH)
SKETCH=sketch

If we put —

LISP=lisp

into makefile.mk. we would get the H$p(\) program instead, whenever a LISP evaluator
environment was needed by make.

The LISP evaluator environment, $(LISP), and the LISP compiler environment,
§{LISZT), are the programs most commonly redefined in makefile.mk. The default
definitions of various programs are in the sco_defsl.mk file of the sco (configuration)
package, and may need to be changed when SKETCH is ported to a new computer.

Program flags are defined by macros separate from the program. Usually a program
like %(L1SZT) will have a related set of flags named by appending ".FLAGS' to the pro-
gram macro name. Thus ${LISZT_FLAGS), which defaults to "-a" to suppress verbose
output from the LISP compiler.

Macro definitions may be overridden by providing new definitions as arguments to
the make UNIX command. For example,

make 'LISZTJFLAGS^ ...

will make target files with liszt flags defined to be the null string, thus causing verbose
liszt compiler output.

Not all program flags are controlled by this mechanism. For example the -5 flag to
cc that makes a .s file from a c file is not: it is controlled by the kind of file being made.

Table 7 lists the program and flag macros most commonly used while making target
program code files. —D flags for the C macro preprocessor are put into %{CPPJ'LAGS),
while libraries to be searched by the loader are put into ^{LIBRARIES).

There are a very large number of UNIX program macros not in Table 7: see the
glossary for the program you want to modify.

12. HITLIST.

(1) Finish tutorial documenation.

(2) Check to be sure make index makes global index before local indexes: there may be a
bug here? it may also ignore existing index.vs?

(3) Be sure all global directory targets are documented.

(4) Be sure count and index can be made from global install directory.

(5) Make global #lisp and #liszt (via environments, whatever that means?).

Printed May 1, 1989

MAKING FILES C-24

TABLE 7: PART 1

PROGRAM AND FLAG MACROS

Program
Macro

"default"

Flags
Macro

"default"
Use

${AS)
"as"

$(AS_FLAGS) Assemble .s files to make o files.

*(CC)
I* M

CC

$(CC_FLAGS)
"-0"

$(CPP_FLAGS)

$(LD_FLAGS)

$(LIBRARIES)

C Compiler. The flags are
separated into 3 groups: com-
piler proper (cc), macro prepro-
cessor (cpp), and loader (Id).
^LIBRARIES) is like
%{LD_FLAGS), but placed after
the list of file names passed to
the loader, instead of before that
list.

${LINT)
"psearch

sink/$mk__lint sh"

$(LINT_FLAGS)

$(CPP_FLAGS)
ttt*

$(LINT_LIBRARIES)
"%(LIBRARIES)"

Lint. The flags are separated
into 2 groups: lint proper (lint)
and the macro preprocessor
(cpp). %{LINT_FLAGS) and
%{LINT_LIBRARIES) are both
passed to lint proper, but the
first goes at the beginning of the
argument list and the second
goes at the end. Smk/lint.sh is a
special version of lint that gets
rid of certain meaningless warn-
ing messages.

Printed May 1, 1989

MAKING FILES C-25

TABLE 7: PART 2

PROGRAM AND FLAG MACROS

Program
Macro

"default"

Flags
Macro

"default"
Use

$(LISP)
"%(SKETCH)"

${LISP_FLAGS) Lisp evaluator environment.

$(DEMO_LISP)
"%(L1SP)

-I %(PREFIX)Joad"

Lisp evaluator environment
used to make .ov files from
./ files via the demo func-
tion.

$(LISZT)
"%(SKETCHCOMr

$(LISZT_FLAGS)
>< ff

-<7

Lisp compiler environment.

$(DEMO_XISZT)
"ifLISZT)

-I %(PREFIX)_compile"

Liszt compiler environment
used to make .on files from
.cl files via the demo func-
tion.

$(SKETCH)
"sketch"

SKETCH evaluator environ-
ment.

${SKETCHCOM)
"sketchcom"

SKETCH compiler environ-
ment.

(6) Explain environment use. Make them use o files. Explain declare (macros t).
Explain need to def macros before use.

13. GLOSSARY.

all [MAKE Target]

WHEN MADE: Makes ${ALL_FILES).

$(ALL_FILES) (MAKE Macro]

VALUE: A list of all the package files that must be made from other files (does not
include intermediate files that may not have to be made). Default value:
"$(LHFILES) %{OFILES) $(FILES) $[OTHER_TARGET_FILES).

WARNING: These files are all removed by cleaning.

Printed May 1, 1989

MAKING FILES C-26

all.lhfiles |MAKE Target)

WHEN MADE: Makes ^LHFILES).

$(AS) [MAKE Macro]

VALUE: The name of the UNIX as{\) program. Usual default: "as".

$(AS_FLAGS) [MAKE Macro)

VALUE: The flags for the UNIX a$(]) program. Usual default: "".

$(BACKUP) [MAKE Macro]

VALUE: The name of the TPS backup(tps) program. Usual default: "backup".

$(BACKUP_FLAGSj [MAKE Macro)

VALUE: The flags for the TPS backup(lps) program. Usual default: "".

backup_install [MAKE Target]

VALUE: Installs M^I.\'STALL_FILES) in

$(INSTALL_DIRECTOR Y)j%{PA CKA GEJ)lRECTOR))

by using backup(lps) with the — D and —remove options.

In the global directory, \1NSTALL_I>IRECT0RY) is used in place of

$(INSTALL_DIRECTOR))/$(PA CKA GEJ)IRECTORY).

.c [UNIX File Extension]

FILE FORMAT: A C source file. Can be made into an .ex, .o, .s, or .nt file (all
%{LHFILES) are all made first).

${C2) [MAKE Macro]

VALUE: The name of the UNIX C compiler optimizer program. Usual default: "/lib/c?'.

.ca [UNIX File Extension]

FILE FORMAT: SKETCH catalog files. See CATALOGS chapter.

Printed May 1, 1989

MAKING FILES C-27

$(CC) |MAKE Macro]

VALUE: The name of the UNIX cc(l) program. Usual default: "cc".

$(CC_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX cc(l) program. These should not include flags for the
macro preprocessor cpp, the loader ld(l), and livt(l), which are separate.
Default value: "-0".

IfCCOM) [MAKE Macro]

VALUE: The name of the UNIX C compiler program. Usual default: "/Ixb/ccom".

$(CFILES) [MAKE Macro]

VALUE: A list of all the c files in the package. These are assumed to be source files.
Default value: "".

chap [MAKE Target]

WHEN MADE. Makes %(PREFI\~)_chap.vo.

$(CHAPTER) [MAKE Macro]

VALUE: The number (1, 2, 3. etc.) of the package chapter or the letter (A, B, C, etc.) of
the package appendix.

chap.vs [MAKE Target]

WHEN MADE: Makes %(PREFlX)_chap.vs and %{PREFIX)_chap.in.

.ci [UNIX File Extension]

FILE FORMAT: SKETCH catalog file index. See has-index-file under a-catalog in the
CATALOGS chapter.

Can be made from a ca file. The procedure to do this invokes make-
catalog-index in ^{SKETCH). In order for this to work,
%{PAKCAGE_DIRECTOR\r) must be the name of the current directory
relative to one of the

(status calalog-scarch-patli)

directories.

Printed May 1, 1989

MAKING FILES C-28

•cl [UNIX File Extension]

FILE FORMAT: A LISZT source file. Can be loaded directly into LISZT by the load func-
tion, or made into a e^or ou file.

The only proper way to make a cl file into a ex file is directly, without
intervening .s or o files, in which case the .cl file is loa<fed into %{LJSZT)
and the result dumplisp'ed to the .ex file.

clean
ex .clean
he.clean
lh. clean
nt. clean
ns. clean
o.clean
ou .clean
s. clean
sp.clean
tr. clean
vs.clean

WHEN MADE: Clean removes all non-source
${ALL_FILES) WC COUNT *
.he.ou and #*.

files.

[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target
[MAKE Target

More explicitly, it removes
ex *.//» *.o *.s * tr *.nt *.7is *.vs * .in *.sp

<xx> .clean removes all files with extension ".<xx>".

Clean and <xx> clean are defined with a double colon :: and can there-
fore be added to by defining new entries such as—

clean::
rm -f ...

WARNING: If you execute—

make clean ... &>make.ou &

you will remove the make.ou file before you can look at it.

clean_install [MAKE Target]

VALUE: Removes the directory

%{INSTALL_DIRECTOR Y)/$(PA CKA GEJDIRECTOR Y)

with rm —rf and remakes it with mkdir. Gives the directory group write per-
mission.

In the global directory, %{INSTALL_DIRECTORY) is used in place of

%{INSTALL_DIRECTOR Y)/t(PA CKA GE_DIRECTOR Y),

and rm —J is used in place of rm —rf, so that only ordinary files, and not sub-
directories, are removed.

Printed May 1, 1989

MAKING FILES C-29

Clean-install is defined with a double colon :: and can therefore be added to by
defining new entries such as—

cleav_install.:
rm -rf ...
mkdir ...
chmod g+w ...

$(CLFILES) [MAKE Macro]

VALUE: A list of all the cl files in the package. These are assumed to be source files.
Default value:

"%{DEMO_CLFILES) %{OTHER_CLFILES)".

$(COL) [MAKE Macro)

VALUE: The name of the UNIX col{\) command used to remove reverse line feeds. Usual
default: "coF.

$(COLUMNS) [MAKE Macro]

VALUE: The name of the UNIX command to print a list of words in 5 columns on a ter-
minal. Usual default: "pr -5 -ll -w80 -t". Used, for example, to output spelling
errors.

$(COMMON_LFILES) [MAKE Macro]

VALUE: A list of all the ./ files in the package that are included in both
%{PREFIX)_load.l and %(PREFIX)_compile.l. These are assumed to be source
files. Default value: "".

compile [MAKE Target]

WHEN MADE: Makes $(PREFIX)_compile.o.

$(COMPILE_LFILES) [MAKE Macro]

VALUE: A list of all the ./ files in the package that are included in %{PREFIX)_compile.l
but not %(PREFIX)_load.l. These are assumed to be source files. Default value:

Printed May 1, 1989

MAKING FILES C-30

$(COMPUTER_TYPE) [MAKE Macro]
*(COMPUTER_TYPE) [UNIX Environment Variable]

VALUE: The type of tlie computer, either sunS or vax, on which SKETCH is running.
Each compute type has its own set of SKETCH directories, but these may share
sources in a common directory: see the link make target.

Must be set in csh.rc files. %{COMPUTER_TYPE) is a UNIX Environment
variable turned by make into a make macro.

$(COUNT) [MAKE Macro]

VALUE: The name of the line counting program. Usual default:

psearch sma/sma_covnt.sh.

count [MAKE Target]
COUNT [MAKE Target]
COUNT [UNIX File Name]

WHEN MADE: $(CO t "ATI's MSOL'RCE_FILES) and puts the result, into the file named
COUST.

$(COUNT_FLAGSj [MAKE Macro]

VALUE: The Hags for the line counting program. Usual default: "".

$(CPP) [MAKE Macro]

VALUE: The name of the UNIX cpp C macro processor program. Usual default:
"/lib/cpp".

$(CPP_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX C macro preprocessor cpp. Default value:
"$(CPP_PATH)".

${CPP_PATH) [MAKE Macro]
$(CPP_PATH) [UNIX Environment Variable]

VALUE: An argument for cc of the form "—/directory ...". Gives the directories to be
searched for .h files.

Must be set in csh.rc files. %{CPP_PATH) is a UNIX Environment variable
turned by make into a make macro.

Printed May 1, 1989

MAKING FILES C-31

.cs [UNIX File Extension]

FILE FORMAT: A macro assembly language source file. Can be made into a .s, .0 or .ex
file. Is made into a .s file by running through the C macro preprocessor,
but not the rest of the C compiler.

$(CSFILES) [MAKE Macro]

VALUE: A list of all the .cs files in the package. These are assumed to be source files.
Default value: "".

csh.rc [UNIX File]

VALUE: A file in the global directory that defines the directories used by make. It should
have roughly the form —

set path={<this-directory> <next-directory> ...
<tps-directorv> /usr/local/bin /usr/ucb /usr/bin /bin)

rehash
setenv CPP_PATH "-]<this-directory > -I<next-directory> ..."
setenv INSTALL_DIRECTORY <this-directory>/pub
setenv COMPUTER_TYPE <computer_type>

where the chain of directories to be searched for SKETCH program and data
files is <this-directory> <next-directory > ..., and the directory in which the
public versions of these files are to be installed is usually named pub relative to
this directory (but a relative name cannot be used in csli.rc). The
<computer_type> is typically either sun3 or vax.

demo

VALUE: Makes ${DEMO_OUFILES).

[MAKE Target]

$(DEMO_CLFILES) [MAKE Macro]

VALUE: A list of all the .cl files in the package that are demonstrations which can be
loaded into $(PREFIX)_liszt by the demo function. These are assumed to be
source files. Default value: "".

$(DEMO_XFILES) [MAKE Macro]

VALUE: A list of all the ./ files in the package that are demonstrations which can be
loaded into $(PREFIX)_lisp by the demo function. These are assumed to be
source files. Default value: "".

Printed May 1, 1989

MAKING FILES C-32

$(DEMOJ,ISP) [MAKE Macro)

VALUE: The name of the LISP evaluator program used to make .ou files from ./ files.
Usual default:

"${LISP) -I *{PACKAGEJ)IRECTORY)/${PREFIX)Joo<r

in package directories, and just "%(LISP)" in global directories.

$(DEMOJLISZT) [MAKE Macro]

VALUE: The name of the LISZT evaluator program used to make .ou files from .cl files.
Usual default:

"%{LISZT) -I $(PACKAGE_DIRECTORYy$(PREFIX)_compile"

in package directories, and just "%[LISZT)" in global directories.

${DEMO_OUFILES) [MAKE Macro]

VALUE: A list of all the .ou files that can be made from demo ./ files. These files are
made by the "make demo". Default value: "".

$(DEMO_TARGET_FILES) [MAKE Macro]

VALUE: A list of all the files that should be made before making any file listed in
$(DEMO_OUFILES). Default value:

"%ALL_F1LES) %{OTHER_DEMO_TARGET_FILES)"

However, demo.packages (but not local.demo.packages) explicitly sets this to
equal—

"$(0 THER_DEMO_ TARGET_FILES)"

${DITROFF) [MAKE Macro]

VALUE: The name of the UNIX trojftl) program. Usual default: "ditroff -me". Use the
value "iroff -me -rvl" with an IMAGEN printer.

$(DITROFF_FLAGS) •' [MAKE Macro]

VALUE: The flags for the UNIX trof{l) program. Usual default: "".

•do [UNLX File Extension]

FILE FORMAT: A document source file. Can be made into a .tr, .sp, .vs, .vo, .ns, or .no
file. Is made into a .tr file by passing through ptc(l), eqn(l), and £61(1).

Printed May 1, 1989

MAKING FILES C-33

$(DOFELES) [MAKE Macroj

VALUE: A list of all the .do files in the package. These are assumed to be source files.
Default value: "".

${EQN)

VALUE: The name of the UNIX eqn(l) program. Usual default: "eqn".

WARNING: Do not use eqn constructs in files to be nroffed.

*(EQN_FLAGS)

VALUE: The flags for the UNIX eqn(l) program. Usual default: "".

[MAKE Macroj

[MAKE Macro]

.ex [UNIX File Extension]

FILE FORMAT: An executable program file. Usually such files named xxx.ex are linked
into file names xxx before they are used, but since make does not handle
files with no extension automatically, it is not possible to drop the ex
extension completely. Rather, the xxx.car file is made as an intermediate
step, and the xxx file is made from it by including in makefile.ink the
lines-

xxx: XXX. ej
rm -f xxx
In xxx.ex xxx

Can be made from ./, .cl, .c, .cs, ./ .s, or .0 files.

.f [UNIX File Extension]

FILE FORMAT: A FORTRAN source file. Can be made into a .ex, .0, or s file.

WARNING: FORTRAN source files are not yet implemented.

${FFILES) [MAKE Macro]

VALUE: A list of all the ./ files in the package. These are assumed to be source files.
Default value: "".

$(FILES) [MAKE Macro]

VALUE: A list of all the package files that have no extension and that must be made
from other files. These files are made by "make alt'. Default value: "".

WARNING: These files are all removed by cleaning.

Printed May 1, 1989

MAKING FILES C-34

global_count [MAKE Target)
GLOBAL.COUNT [MAKE Target]

WHEN MADE: Makes the file GLOBAL_COUNT by combining the COUNT file and all
the <package>/COl/A/r files for every <package> in ^PACKAGES).
This combination is done by the $(COUNT) program.

These make targets can only be made in a global directory.

global_index.tr [MAKE Target]
global_index.vs [MAKE Target]
global_index.vo [MAKE Target]
S(INDEXLAPPENDIX) [MAKE Macro]
$(INDEX_TITLE) [MAKE Macro]

WHEN MADE: These make global_index.tr, global_index.vs, and global_index.vo where
globaLindex.tr is made by running the $(INDEX) program against the
<package_clirectory>/<prefix>_chap.in files for each package prefix
listed in $(PACKAGES).

${INDEX_APPENDIX) becomes the index appendix letter, while
$[Il\'DEX_TITLE) becomes the index appendix title. These default to "A"
and "INDEX" respectively.

These make targets can only be made in a global directory.

$(GLOSSARY_FILES) [MAKE Macro]

VALUE: A list of all the source files in the package that may contain glossary entries.
Default value: "${PRINT_PILES)".

.h [UNIX File Extension]

FILE FORMAT: A C source file containing definitions included in various other C files by
means of the C preprocessor #include statement.

.he [UNIX File Extension]

FILE FORMAT: Help file. Can be displayed on the screen. Can be made from a .ma or AT

file.

Printed May 1, 1989

MAKING FILES C-35

help [MAKE Target]

WHEN MADE: Makes 1i{PREFIX)_clmp.he.

${HE_PRINT) [MAKE Macro]

VALUE: The name of the UNIX program that prints .he files. Should handle underlining.
Usual default: "print". Use the value "imprint" with an IMAGEN printer.

$(HE_PRINT_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX %{HE_PRINT) program. Usual default: "".

$(HFILES) [MAKE Macro]

VALUE: A list of all the ./i files in the package. These are assumed to be source files.
Default value: "".

.ho [UNIX File Extension]

FILE FORMAT: A fictitious file which when made causes the corresponding he file to be
printed. Can be made from a .ma, .tr, or .he file.

.in [UNIX File Extension]

FILE FORMAT: A ^(MANUAL) index file. Made as a side effect of making a .ma, .do, or
.tr file into a .vs, or .vo file.

Because of the way this file is made it currently contains not only index
entries, but also all error messages from the troff job that made it. These
are extracted so the user can see them by the make job that runs troff.

$(INDEX) [MAKE Macro]

VALUE: The name of the SKETCH index program. Usual default:

psearch $ma/sma_index.sh.

index [MAKE Target]

WHEN MADE: Makes $(PREFIX)_chap.in (and maybe also %(PREFIX)chap.vs).

$(INDEX_FLAGS) [MAKE Macro]

VALUE: The flags for the SKETCH index program. Usual default: M".

Printed May I, 1989

MAKING FILES C-36

$(INSTALL_DIRECTORY) [MAKE Macro]
$(INSTALL_DIRECTORY) [UNIX Environment. Variable]

VALUE: The directory in which files are installed by the backup_install and
release_inslall make targets.

Must be set in csh.rc files. %{IS'STALL_DWECTOR}r) is a UNIX Environment,
variable turned by make into a 7/iaA-e macro.

$(INSTALL_FILES) [MAKE Macro]

VALUE: A list of all files that are to be installed by the backup^install and release_install
make targets. Default value:

"^INSTALL.SOURCE.FILES^INSTALLjrARGET.FILES)".

$(INSTALL_RCFILES) [MAKE Macro]

VALUE: A list of all .re source files that are to be installed by the backup_install and
release^install make targets. Default value: ""in a package directory and

"instalLcsh.rc instalLsketch.rc"

in a global directory.

$(INSTALL_SOURCE_FILES) . [MAKE Macro]

VALUE: A list of all source files that are to be installed by the backup_install and
release^mslall make targets. Default value:

"make makefile.mk $(HFILES) $(SHFILES) $(DEMO_LFILES)
$(DEMO_CLFILES)$(INSTALL_RCFILES)
$(OTHERJNSTALL_SOURCE_FILES)".

${INSTALL_TARGET_FILES) [MAKE Macro]

VALUE: A list of all target files that are to be installed by the backup_install and
release^install make targets. Default value:

"${LHF1LES) $(PREFIX)_chap.in COUNT
$(OTHERJNSTALL_TARGET_FILES)".

in a package directory, and

"${LHFILES) COUNT $(OTHERJNSTALL_TARGET_FILES)".

in a global directory.

Printed May 1, 1989

MAKING FILES C-37

.1 [UNIX File Extension]

FILE FORMAT: A LISP source file. Can be loaded directly into LISP by the LISP load
function, or made into a ex, .o, .s, Ah, or .ou file.

A ./ file is made into a .ex file directly, without intervening .s or .0 files,
by /oarf'ing the ./ file into $(L/5F) and dumplisp'mg the result to the .ex
file.

.lc [UNIX File Extension]

FILE FORMAT: A C language source file containing lambda, nlambda, or macro functions.
Compilation of this file into assembly language is done specially by run-
ning the compiler output through special filters so that the object file will
fit into the LISP interpreter environment. Can be made into a .0, .s, or
.nt file (all %{LHFILES) are all made first).

$(LCFILES) (MAKE Macro]

VALUE: A list of all the .lc files in the package. These are assumed to be source files.
Default value: "".

$(LD_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX cc(l) program when it is used to call /rf(l) to produce an
executable program. Usual default: "".

$(LFILES) (MAKE Macro]

VALUE: A list of all the ./ files in the package. These are assumed to be source files.
Default value:

"$(COMMON_LFILES) %(COMPILE_LFlLES)
$(LOAD_LFILES) $(DEMO_LFILES)
%{OTHER_LFILES)".

.lh [UNLX File Extension]

FILE FORMAT: A C definitions file, like a .h file, which is made from a ./ file via the *C-
definition-codc-port* facility (see the SKETCH objects package). Can be
made from a ./ file.

Printed May 1, 1989

MAKING FILES C-38

$(LHFILES) [MAKE Macro]

VALUE: A list of all the package .lh files that must be made from other files. All of these
files must be made before any invocation of %{CC) or $(L/AT). Unfortunately,
this is not easily expressed, so removal of a .lh file and any files dependent upon
it, and remaking the lh file, must be done by hand whenever something is done
that might change the .lh file.

However, making all or lint will make all the ${LHFILES) first.

Default value: "".

WARNING: If you change anything that would change a .lh file, you should remove by
hand any file that would be affected and do a "make alt'. Or you may simply
do a "make clean alF.

WARNING: These files are all removed by cleaning.

$(LHJLISZT) [MAKE Macro]

VALUE: The name of the LISP compiler environment used to make .lh files from ./ files
Usual default: "%{LISZT)".

$(LIBRARIES) [MAKE Macro!

VALUE. The library flags and file names for the UNIX cc(l) program when it is used to
call ld{\) to produce an executable program. These flags and names are placed
after the files being loaded, as opposed fyLD^FLAGS) which appear before the
files being loaded in the Id argument list. Default value: "".

link

VALUE: Executes—

[MAKE Target]

$(L/V) %{LN_FLAGS) ${LINK_DIRECTORY)/Me

(notice the . at the end denoting the current directory) for every file in
%{LINK_FILES) that is not readable in the current directory. This links the file
in ${LINKJDIRECTORY) to the file in the current directory. Note that
HLINKJ)IRECTORY) defaults to-

../. ./arc/$(/M CKA GEJ)IRECTOR Y)

in a package directory, and to—

../src

in a global directory, while tyLN^FLAGS) defaults to '— s', so that the links are
normally symbolic.

Normally you must first do some linking by hand to get SKETCH make to
work; namely you must do—

In -s <link_directory>/{make,makefile.mk} .

You must also be sure ../csh.rc or csh.rc is defined.

Link.packages passes to each package make the definition-

Printed May 1, 1989

MAKING FILES C-39

LINK_DIRECTORY=../$(LlNlv_DlRECTORY)/<package_director.v>

Link is defined with a double colon :: and can therefore be added to by defining
new entries such as—

lint..
ir test ! -r file: \

then ${LN) %{LN_FLAGS) %{LINK_DIRECTOR}y file .; fi

$(LINK_DIRECTORY) [MAKE Macro]

VALUE: The directory into which $(LINK_F1LES) are linked by the link make target.
Default value: "../../src/$(PACKAGE_DIRECTORY)" in a package directory,
and "../src" in a global directory.

Link.packages supplies the definition —

LINK_DIRECTORY=
../${LINK_DIRECTOR Y)/U{PA CKA GE_DIRECTOR ^

to each package make.

$(LINK_FILES) [MAKE Macro]

VALUE: A list of all the files in the package that are linked by the link make target.
Default value: "%{SOURCE_FILES) %{LNFILES)".

$(LINT) [MAKE Macro]

VALUE: The name of the UNIX lint(l) program. Usual default:

psearch smk/smk^lint.sh.

This default lint program gets rid of warning messages of the following kinds:

... defined (...), but never used
returns value which is always ignored
returns value which is sometimes ignored

lint [MAKE Target]

WHEN MADE: Makes nt files corresponding to all t(CFILES) and %{LCFILES). First
makes all %{LHFILES).

Printed May 1, 1989

MAKING FILES C-40

$(LINT_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX lint(l) program. These should not include flags for the
macro preprocessor cpp, the loader ld(l), and cc(l), which are separate. Usual
default: "".

$(LINTJLIBRARIES) [MAKE Macro]

VALUE: The library flags and file names for the UNIX lint(l) program. These flags and
names are placed after the files being linted, as opposed %{LINT_FLAGS) which
appear before the files being linted in the lint argument list. Default value:
"^LIBRARIES)".

$(LISP) [MAKE Macro]

VALUE: The name of the LISP evaluator program. Usual default: "^(SKETCH)".

$(PREFIX)_lisp [MAKE Target]

VALUE: A version of lisp made by executing

{load %{PREFIX)Joad)

in ${LISP) after making ${OFILES).

#lisp [MAKE Target]

VALUE: Makes #lisp the same way as %{PREFIX)_lisp is made.

list [MAKE Target]

VALUE: Outputs the names of the files in '^{LISTJr'ILES) to the standard output, one
name per line.

List.packages prefixes each name in a package directory by
%PA CKAGEJ)lRECTOR Y)/\

$(LIST_FILES) [MAKE Macro]

VALUE: A list of all the files in the package that are listed by the list make target.
Default value: "${SOURCE_FILESf.

Printed May 1, 1989

MAKING FILES C-41

• $(LISZT) [MAKE Macro)

VALUE: The name of the LISP compiler program. Usual default: "${SKETCHCOM)"

$(PREFIX)_liszt [MAKE Target)

VALUE: A version of liszt made by executing

{load ${PREFIX)_compile)

in %{LISZT) after making %{OFILES).

#Hszt [MAKE Target]

VALUE: Makes #l\szt the same way as ${PREFIX)_liszt is made.

$(LISZT_FLAGS) [MAKE Macro)

VALUE: The flags for the UNIX Hszt(l) program. Usual default: "-q". Use the value
to get verbose output.

$(LN) [MAKE Macro]

VALUE: The name of the UNIX ln(l) program. Usual default: "In".

•

$(LNFILESj [MAKE Macro)

VALUE: A list of all the symbolic links in the package. Default value: "make" (make is
usually linked to ../package_make.sh).

$(LN_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX ln[\) program. Usual default: "s".

load [MAKE Target]

WHEN MADE: Makes %(PREFIX)Joad.o.

$(LOAD_LFILES) [MAKE Macro]

VALUE: A list of all the ./ files in the package that are included in $(PREFIX)Jload.l but
not t(PREFIX)_compile.l. These are assumed to be source files. Default value:
Mft

•

Printed May 1, 1989

MAKING FILES C-42

.ma [UNIX File Extension]

FILE FORMAT: A manual source file. Can be made into a .tr, .sp, .vs, .vo, .ns, .no, or .he
file. Is made into a .tr file by applying the ^(MANUAL) program to add
glossary entries from the $(SOURCE_FILES) and by passing the result
through pi'f(l), eqn(l), and tbl(l).

$(MAPILES) [MAKE Macro]

VALUE: A list of all the .ma files in the package. These are assumed to be source files.
Default value: "".

$(MAKE) [MAKE Macro]

VALUE: The name of the UNIX make(l) program, relative to the directory in which it
will operate Usual default: "make".

make [UNIX File]

VALUE: Make is a UNIX command file that replaces (modifies) the standard UNIX make
(1) command. Make is usually symbolically linked to ../package_make.sh in a
package subdirectory, or to global_make.sli in a global directory.

.. package-.t)i<ike.sh generally begins with

#!/bin/csh -f
if (-r csh.rc) then

source csh.rc
else if (-r ../csh.rc) then

source ../csh.rc
else

source ../../csh.rc
endif

and ends with

exec psearch smk/smk_make.sh $argv:q

It does not have to contain anything else.

globaLmake.sh is similar but begins with

#!/bin/csh -f
if (-r csh.rc) then

source csh.rc
else

source ../csh.rc
endif

and ends with

exec psearch smk/smk_makeglobal.sh $argv:q

Printed May 1, 1989

MAKING FILES C-43

$(MAKE_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX make{l) program. Usual default: "".

${MANUAL) [MAKE Macro]

VALUE: The name of the SKETCH manual program. Usual default:

psearch sma/sma_manxial.sh.

manual [MAKE Target]

WHEN MADE: Prints a complete manual by making the following in order: title.vo,
index.packages, global_index.vo, and chap.packages.

This make target can only be made in a global directory.

${MANUAL_FLAGS) [MAKE Macro]

VALUE: The flags for the SKETCH manual program. Usual default: "".

.mk [UNIX File Extension]

FILE FORMAT: A make source file.

$(MKFILES) [MAKE Macro]

VALUE: A list of all the .mk files in the package. These are assumed to be source files.
Default value: "makefile.mk".

.no [UNIX File Extension]

FILE FORMAT: A fictitious file which when made causes the corresponding .ns file to be
printed. Can be made from a .ma, .do, .tr, or .ns file.

${NROFF) [MAKE Macro]

VALUE: The name of the UNIX nrofj{\) program. Usual default: "nroff-me".

${NROFF_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX nrojj{l) program. Usual default: "".

.ns [UNLX File Extension)

FILE FORMAT: A Ipr source file (typically output by nrofi{l)). Can be made from a .ma,
do, or .tr file. Can be made into a .no file.

Printed May 1, 1989

MAKING FILES C-44

.nt [UNIX File Extension]

FILE FORMAT: The output from ///if'ing a c file. Can be made from a .c or Ac file.

.o [UNIX File Extension]

FILE FORMAT: A binary object file containing a program, as produced by a compiler,
such as those for LISP, C, and FORTRAN. LISP object files can be
loaded into LISP by the load function, and others by the chad function.
Can be made into a .ex file, or made from a ./, .c, Ac, .cs, ./, or .s file.

$(OFILES) [MAKE Macro]

VALUE: A list of all the package o files that must be made from other files. These files
are made by "make air. Default value: "".

WARNING: These files are all removed by cleaning.

$(OTHER_CLFILES) [MAKE Macro]

VALUE: A list of all the cl files in the package that are not in tyDEMO^CLFILES).
These are assumed to be source files. Default value: "".

$(OTHER_DEMO_TARGET_FLLES) [MAKE Macro]

VALUE: A list of all the files other than those in %{ALL_FILES) that should be made
before making any file listed in $(DEMO_OUFILES). E.g., the .0 file for any .c
file used exclusively by the demo. Default value: "".

$(OTHER_INSTALL_SOURCE_FLLES) [MAKE Macro]

VALUE: A list of all source files that are to be installed by the backup_install and
release_install make targets, but which are not listed in %{HFILES),
$(SHFILES), ${INSTALL_RCFILES), $[DEMO_LFILES), or
%{DEMO_CLFILES). The files make and makefile.mk should also be excluded
from this list. Default value: "".

$(OTHER_INSTALL_TARGET_FILES) [MAKE Macro]

VALUE: A list of all target files that are to be installed by the backup_in»tall and
release^install make targets, but which are not listed in %{LHFILES). The index
file ${PREFIX)_chap.in and the COUNT file should also be excluded from this
list. Default value: "".

Printed May 1, 1989

MAKING FILES C-45

${OTHER_LFILES) [MAKE Macro]

VALUE: A list of all the ./ files in the package that are included in neither
%(PREFIX)_load.l nor ${PREFIX)_compile.l, and are not in %{DEMO_LFILES).
These are assumed to be source files. Default value: "".

$(OTHER_PRINT_FELES) [MAKE Macro]

VALUE: A list of all the printable source files in the package that are not listed else-
where, as in ${LFILES) or %(CFILES). Default value:
"$(O THER_SO UR CE_FILES)".

${OTHER_RCFILES) [MAKE Macro]

VALUE: A list of all the .re files in the package that are not listed in
%(INSTALL_RCFILES). These are assumed to be source files Default value:
Mil

$(OTHER_SOURCE_FILES) (MAKE Macro]

VALUE: A list of all the source files in the package that are not listed elsewhere, as in
%{LFILES) or ${CFILES). Default value: "".

$(OTHER_TARGET_FILES) [MAKE Macro]

VALUE: A list of all the non-source files in the package that are not listed elsewhere,
namely in $(LHILES), %{OFILES), or %{FILES). These files are made by
"make o//". Default value: "".

WARNING: These files are all removed by cleaning.

.ou [UNIX File Extension]

FILE FORMAT: A copy of the standard output of some program. Can be made from a ./
file by executing—

(demo '<x>./ '<\>.ou)

in the %{DEMOJLISP) program. Can be made similarly from a .cl pro-
gram using Vj)EMO_LISZT) in place of %{LISP).

$(PACKAGE ^DIRECTORY) [MAKE Macro]

VALUE: The package directory name; e.g. "sar" for the SKETCH array package.
Default: ${PREFIX).

Must be the same as %{PREFIX) in order for packages make targets in a global
directory to work, since ^{PACKAGES) lists only one name per package, and
presumes that this name is both the %(PREFIX) and
$(PACKAGE_DIRECTORY) for the package.

Printed May 1, 1989

MAKING FILES C-46

$(PACKAGE_LINK_FILES) [MAKE Macro]

VALUE: Link.packages supplies the definition —

LINK_FILES=$(PA CKA GE_LINK_FILES)

to each package make. Default value: "U{SOURCE_FILES) $${LNFILES)". Be
sure to double the dollar signs in any definition you supply.

$(PACKAGEJLIST_FILES) [MAKE Macro]

VALUE: List.packages supplies the definition—

LIST_FILES=%PA CKA GE_LIST_FILES)

to each package make. Default value: "$$(SOURCE_FILESf)". Be sure to double
the dollar signs in any definition you supply.

$(PACKAGES) (MAKE Macro]
"global directory" [SKETCH Term]
"package directory" [SKETCH Term]
<make_target>.packages [MAKE Target Extension]
global.demo.packages [MAKE Target Extension]

VALUE: ^(PACKAGES) is a list of package subdirectories that are to be processed by the
<xxx>.packages targets of this global directory. These subdirectories need not
be in the global directory itself as long as they are in the path of global direc-
tories (and can be found by /search (tps)).

Making a target named <target>.packages in the global directory makes the
target <target> in each package subdirectory listed in ^{PACKAGES), for
each package target <target> whose name does not include a package prefix.

The following < target > .packages targets pass the indicated make macro values
to the package make commands when they execute—

backup_install. packages INSTALLJDIRECTORY=
%{INSTALLJ)IRECTOR Y)

cleanjnstall. packages INSTALL_DIRECTORY=
%{1NSTALL_DIRECT0R Y)

list.packages LIST_FILES=
t(PA CKA GE_LIST_FILES)

link.packages LINK_FILES=
${PA CKA GE_LINK_FILES)

LINK_DIRECTORY=
../${LINK_DIRECTORY)/

%$(PA CKA GE_DIRECTOR Y)

Actually, $(INSTALL_J)IRECTORY) is converted to non-relative form before it
is passed, but %{LINKJDIRECTORY) is not.

Sometimes it is desirable for demo.packages to pass the $(DEMO_LISP) and
%{DEMO_LISZT) values to the package make, so there is a variant named
global.demo.packages that does this by passing-

Printed May 1, 1989

MAKING FILES C-47

DEMO_LISP=$(DEMOMSP)
DEMO_USZT=${DEMO_LISZT)

When defining ${PACKAGE_LIST_FILES) and %(PACKAGE_LINK_FILES)
one must double the dollar signs. For example—

make 'PACKAGE_USTJrILES=%%{HFILES), list.packages

Making a target not of the form <xxx> .packages in a global directory is like
making the target in a package directory, except that targets that make files
whose name includes %{PREFIX) or ${PACKAGE_DIRECTORY) cannot gen-
erally be made in the global directory. However, the following targets work in
the global directory —

clean_instaU With
backupjnstall %{INSTALL_D!RECTOR))/${PA CKA GE_DIRECTOR V)
releasejnstall replaced by %{INSTALL_DIRECTORY).

WARNING: There is a strange bug in some versions of the UNIX make(l) that causes its
-n option not to work for xx.packages targets. Use MAKE_FLAGS=-n
instead.

$(PATH) [MAKE Macro;
$(PATH) [UNIX Environment Variable]

VALUE: A list of colon (:) separated directory names. These directories are searched in
order for programs to run by csh, sh, and psearch. The same directories are
searched in order by fsearch for data files.

Must be set in csh.re files. %{PATH) is a UNIX Environment variable turned by
make into a make macro.

$(PIC) [MAKE Macro]

VALUE: The name of the UNIX pic(l) program. Usual default: "pic".

WARNING: Do not use pt'c constructs in files to be nroffed.

$(PIC_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX p:c(l) program. Usual default: "".

Printed May 1, 1989

MAKING FILES C-48

${PREFLX) [MAKE Macro]

VALUE: The package name prefix. E.g. "sar" for the SKETCH array package, which
prefixes file names such as "sar_array.l" and C code global names such as
"sar_array".

$(PRINT) [MAKE Macro]

VALUE: The name of the UNIX prtnt(l) program. Usual default: "print". Use the value
"imprint" with an IMAGEN printer.

print [MAKE Target]

WHEN MADE: Makes the WC file and $(PRINT)'s WC and ${PRINT_FILES), the latter
in alphabetical order.

$(PRINT_FILES) [MAKE Macro]

VALUE: A list of all the source files in the package which are to be printed by the make
print target. Default value:

'%{LFILES) %{CLFILES) %{HFILES) %{CFILES)
${LCFILES) ${CSFILES) %{FFILES)
%{MKFILES) %(SHFILES) $(RCFILE§;
%(OTHER_PRINT_FILES)".

Because OTHER_PRIS'T_FILES is defined by default to be
${OTHER_SOURCE_FILES), PRINTJ'lLES is by default just the same as
SOURCE_FILES with .ma and .do files omitted.

$(PRINT_FLAGS) [MAKE Macro]

VALUE: The flags for the UNIX print{\) program. Usual default: "". Use the value "-S -
0" with an IMAGEN printer.

print_with_count [MAKE Target]

WHEN MADE: Makes the COUNT file and $(PRINT)'s COUNT and ${PRINT_FILES),
the latter in alphabetical order.

$(RCFILES) [MAKE Macro]

VALUE: A list of all the .re files in the package. These are assumed to be source files.
Default value: "${INSTALL_RCFILES) $(OTHERJiCFILES)".

Printed May 1, 1989

MIXING FILES C-49

$(RELEASE) [MAKE Macro]

VALUE: The name of the TPS re/ease(t.ps) program. Usual default: "release".

$(RELEASE_FLAGS) |MAKE Macro]

VALUE: The flags for the TPS release(tps) program. Usual default: "".

release_install [MAKE Target]

VALUE: Releases $(INSTALL_FILES) in the directory

$(INSTALL_DIRECTOR Y)/t(PA CKA GEJDIRECTOR Y)

by using release(tps) with the — D and —b options.

In the global directory, $(INSTALL_DIRECTOR)') is used in place of

$(INSTALL_DIRECTORY)/$(PACKAGE_DIRECTORY).

rel^ase_instalL_source [MAKE Target]

VALUE: Releases $(INSTALL_SOURCE_FILES) using release{tps).

release_source [MAKE Target]

VALUE: Releases $(SOURCE_FILES) using release(tps).

.s [UNIX File Extension]

FILE FORMAT: A non-macro, assembly language source file. Can be made into a o or ex
file, or made from a ./, .c, Ac, ./, or .cs file. These files should not be used
as source files, as they are cleaned out by s.clean. Use .cs files instead.

.sh [UNIX File Extension]

FILE FORMAT: A sh(l) or csh(l) source file.

$(SHFILES) [MAKE Macro]

VALUE: A list of all the .sh files in the package. These are assumed to be source files.
Default value: "".

$(SKETCH) [MAKE Macro)

VALUE: The name of the SKETCH program. Usual default: sketch.

Printed May 1, 1989

MAKING FILES C-50

$(SKETCHCOM) [MAKE Macro)

VALUE: The name of the SKETCH compiler program. Usual default: sketchcom.

sketch.rc [UNIX File]

VALUE: A file in the global directory that defines the directories used by sketch. It
should have roughly the form —

(sstatus cache-search-path (<this-directory> <next-directory > ...))
(sstatus catalog-search-path (<this-directory> <next-directory > ...))
(sstatus data-search-path (<this-directory> < next-directory > ...))
(sstatus font-search-path (<this-directory> <next-directory> ...))
(sstatus load-search-path (<this-directory> <next-directory> ...

<some-directory>/lisp/Iisplib))
(setq *display-file-name* '/dev/<display-device>)
(setq *camera-file* '/dev/<camera-device>)

where the chain of directories to be searched for SKETCH program and data
files is <this-directory> <next-directory> ..., and the FRANZ LISP library is
int. <some-directory>/lisp/lisplib. Relative directory names must not be used
in sketch.rc.

smk_lint.sh .. [UNIX Command]
$REAL_LINT [UNIX Environment Variable]

EQUIVALENT TO: Lint{l), but runs the output through jgrep{\) to remove all warning
messages of the form—

...), but never used...

...returns value which is always ignored...

...returns value which is sometimes ignored...

...nonportable character comparison...

...File with unknown suffix...

NOTE: The UNIX lint command may be changed for this shell file by defining the
environment variable REAL_LINT to equal a substitute.

$(SOURCE_FILES) [MAKE Macro]

VALUE: A list of all the source files in the package. Symbolic links listed in ${LNFILES)
are not included. Default value:

"${LFILES) $(CLFILES) %{HFILES) %{CFILES)
${LCFILES) %{CSFILES) %{FFILES)
${MAFILES) %{DOFILES) $(MKFILES)
${SHFILES) $(CFILES) %{OTHER_SOURCE_FILES)".

Printed May 1, 1989

MAKING FILES C-51

.sp [UNIX File Extension]

FILE FORMAT: The output of the ${SPELL) program run against a .tr file and filtered
through the fyCOLUMNS) program. Can be made from a ma, .do, or .tr
file.

$(SPELL) [MAKE Macro]

VALUE: The name of the UNIX spe//(l) program. Usual default: "spelt'.

spell

WHEN MADE: Makes ${PREFIX)_cliap.sp.

$(SPELL_FLAGS)

VALUE: The flags for the UNIX spe//(l) program. Usual default: "".

$(TBL)

VALUE: The name of the UNIX tb!{l) program. Usual default: "tbt\

*(TBL_FLAGS)

VALUE: The flags for the UNIX /6/(l) program. Usual default: "".

$(TITLE)

VALUE: The title of the package chapter or appendix.

[MAKE Target]

|MAKE Macro]

[MAKE Macro]

[MAKE Macro]

[MAKE Macro]

.tr [UNIX File Extension]

FILE FORMAT: A troff source file. Can be made into a .vo, .vs, .sp, .ns, .no, or .he file, or
made from a .ma or do file. Picfl), eqn(l), and tbl{l) must be run to
make a .tr file; only troff will be run on the .tr file itself.

.vo [UNIX File Extension]

FILE FORMAT: A fictitious file which when made causes the corresponding .vs file to be
printed. Can be made from a .ma, .do, .tr, or .vs file.

.vs [UNIX File Extension]

FILE FORMAT: A Ipr -n source file. Can be made into a vo file, or made from a .tr, .ma,
or .do file.

Printed May 1, 1989

MAKING FILES C-52

$(VS_PRINT) [MAKE Macro]

VALUE: The name of the UNIX program that prints .vs files. Usual default: "Ipr -n".
Use the value "Ipr -n -Pip" with an IMAGEN printer.

${VS_PRINT_FLAGS) [MAKE Macro]

VALUE: The flags for the %{VS_PRINT) program. Usual default: "".

wc [MAKE Target]
WC [MAKE Target]
WC [UNIX File Name]

WHEN MADE: Applies u/c(l) to $(SOURCE_FILES) and puts the result into the file
named WC. If there are any symbolic links in %{LNFILES), an Is -/ listing
of these is appended to WC.

Printed May 1, 1989

APPENDIX D

WRITING MANUALS

1. CHAPTERS. The SKETCH manual is written using the ME macro package for the
trof{\) text processing system. The manual is organized into chapters, one per package.
Each chapter consists of ordinary manual sections, followed by a glossary. The glossary
is embedded in the source code.

A SKETCH chapter is printed by the command

vi(ike chap

which invokes

sm(L_mamial.sh -t'%(CHAPTER)" "%(TITLE)" %(PREFIX)_chap.ma
*(GLOSSARY_FJLES)

followed by \flpic(l). fleqn(1), //>/(l). and troff -me{\). The ordinary package manual sec-
tions are in the file %PREFIXj_chapma, where %{PREFIX) is the package prefix The
glossary entries are in the files listed in ${GLOS$ARY_FILES), which by default is just
the list of all code source files (e.g. %[LFILES) and $(CFILES): see the appendix titled
MAKING FILES). ^(CHAPTER) is the chapter number, and %{TITLE) the chapter title.

The file $(P/?£/;7.Y)_chap.ma is written as a sequence of sections each beginning
with a ME section header—

.ah 1 SECTION TITLE.

The SECTION TITLE should be capitalized and terminated by a period. Spaces included
in the SECTION TITLE must be preceded by a backslash \.

If $(CHAPTER) is a single capital letter, instead of a number, everything is the
same except the result is called an appendix instead of a chapter.

2. GLOSSARY ENTRIES. Glossary entries are included in source files. The method
of inclusion depends upon the language in which the source file is written. For example, a
./ file prefixes each glossary entry line by ';<tab>', except for blank entry lines for which
the <tab> may be omitted A simple example is-

; .En (some-function " 'g_some-argument)" "[LISP Function]"
; Pa RETURNS
; Some value computed from g_some-argument.

Another simple example in a c file is

/*
.En "" some-function " (g_some-argument)" "(C Function]"
.Pa RETURNS
Some value computed from g_some-argument.

7

WRITING MANUALS D-l

WRITING MANUALS D-2

The .En TROFF command line is required at the beginning of each glossary entry.
Its 4 arguments are simply concatenated to form an output line: except that the second
argument is surrounded by \fB and \fP to make it boldface, and the fourth argument is
right adjusted in the output line instead of being put next to the other arguments.

The fourth argument is intended to describe the role of the name that is the second
argument. The following is a list of standard fourth arguments—

[Argument Prefix] [MAKE Macro]
[C Function] [MAKE Target]
[C Macro] [SKETCH Attribute Object]
[C Global Variable] [SKETCH Attribute Macro]
[C Global Constant] [SKETCH Object]
[C Structure Element] [SKETCH Term]
[LISP Function: [SKETCH Type Object]
[LISP Special Function! [SKETCH Type Macro]
[LISP Macro] TROFF Command]
[LISP Global Variable] [UNIX Command]
(LISP Global Constant] [UNIX File Extension]
[LISP Property]

The .Cn TROFF command will have the same effects as a .En command, except it
does not start a new glossary entry, but continues the current one. It provides a way of
specifying several different titles for one entry.

There are problems in the glossary sorting system (see below) which cause it to fail
if either of the first two arguments to .En or Cn contain spaces or tabs. In these two
arguments use \0 instead of \(space). Troff treates \0 as a space the width of one digit.

The .X?i TROFF command can be used to add extra lines to a .En or .Cn command.
The extra line is indented to the spot at which \kl last appeared in a previous line, as in

; .En (some-function " \kl'g_argument-l 'g_argument-2" "[LISP Function]"
; .Xn "'g_argument-3 'g_argument-4)"

Other letters can be used in place of I: see .Xn in the glossary.

Glossary entries are included in various kinds of files according to the rules in Table
1. In order for glossary entries to be correctly extracted, each file must have an extension
that specifies the language in which it is written.

The glossary is alphabetized by sorting each entry according to the second argument
of the .En TROFF command that begins the entry. An index essentually consists of a
glossary with everything outside .En, .Cn, and Xn commands discarded. For index pur-
poses, .Cn and '.En are treated identically, and both start an new index entry. These
index entries are sorted on the second argument to the .En or .Cn commands.

3. THE HELP FACILITY. The on-line manual, or help facility, is not yet completely
implemented.

The first step in the making of an on-line manual is to make the

$(PREFJX)_chaphe

help file from the

Printed April 27, 1989

WRITING MANUALS D 3

TABLE 1

RULES FOR INCLUDING GLOSSARY
ENTRIES IN FILES

./file: Preface all entry lines with a ';<tab>\
Omit the <tab> for blank entry lines
End entries with a line not beginning with ';<tab>\

sh file: Preface all entries with a ': < <\DOCUMENTATION' line
End entries with a 'DOCUMENTATION' line for sh files,
and a '\DOCUMENTATION' line for csh files.

.c, .h, .cs,
or Ac file:

Preface all entries with a '/*' line.
End entries with a '*/' line.

ma or .do
file:

Preface all entry lines with '.\"<tab>\
Omit the <tab> for blank entry lines.
End entries with a line not beginning with '.\"<tab>'.

.ink file: Preface all entry lines with a '#<tab>\
Omit the <tab> for blank entry lines.
End entries with a line not beginning with '#<tab>\

TABLE 1

%(PREFIX)_chap.ma

file by running the ma file through *6/(l) to make a tr file, and then through nroff[\) and
co/(l) to make a .he file. Col filters the output of nroff to remove all special motion con-
trol characters, except for backspace in sequences such as—

_(backspace)X

which are used to underline the characters such as X.

The .he file actually has only glossary entries, and not the rest of the manual
chapter. There are also extra lines of the form—

//////////////////////////////•En <name>

beginning the glossary entry with the given <name> (second argument to En), and

//////////////////////////////•Cn <extra-name>

for each <extra-name> defined by a glossary entry (second argument to Cn).

Making—

%(PREFIX)_chap.ho

will have the effect of printing

%(PREFIX)_chap.he

in such a way that it can be proofread. This proofreading is necessary to check that
problems are not caused by the fact that nroff cannot fit as many characters on a line as

Printed April 27, 1989

WRITING MANUALS D-4

Iroff. Pay special attention to glossary entry headers.

In the future programs will be provided, hopefully based on the UNIX rejer package,
to index the .he files and rapidly retrieve glossary entries' therefrom.

4. THE INDEX. If the -« option is used with sma_manual.sh, then when troff is run on
the output of smajmanual.sh, an index file will be written into the standard error file.
Several such index files many be combined into an appendix by the sma_index.sh UNIX
command.

If the apparatus described int eh appendix titles MAKING FILES is used, index files
are made automatically as a side effect of printing the manual chapter. The manual
chapter (or appendix) has a principal source file named <xxx>.ma, and the associated
index file is named <xxx>.i». A global index that includes all the package in files can
be printed by making the target fast_index or slow_index in the global directory which is
a parent of the package directory. See the appendix titled MAKING FILES for more
details.

5. HITLIST

(1) Finish the help facility.

6. GLOSSARY.

sma_count.sh [-c] file ... [UNIX Command]

EFFECT: Counts non-blank manual lines and code lines, and reports the results. The
totals are reported for each file name directory, prefix, and extension, along
with a grand total. A file name is of the form-

directory >/< prefix >_< body >.< extension >

where only the last /, last _, and last . are recognized considered. The output
is lines of the form —

<directory>/ <number code lines> <number manual lines>
<prefix>_ <number code lines> <number manual lines>
.<extension> <number code lines> <number manual lines>

followed by a separator line—

ii ii mm ii mm mum ii ii mi ii mm mm if mum
followed by one line of the form —

<dir>/ <prefix>_ <body> .<ext> <# manual Iines> <#codelines>

for each file. In either case a missing directory <dir> is denoted by '.', and a
missing <prefix>, or extension <ext> by 'NONE'.

Glossary manual lines may be included in ./, .sh, .c, .h, Ac, .cs, .ma, .do, or .mk
files with .En entries: see sma_manual.sh for the scheme used to include such
lines. Non-glossary lines in these files are counted as code lines, except for .ma
files where non-glossary lines are counted as manual lines, .do files are treated
like .ma files, though they usually contain no glossary lines. Files with no
extension are treated like .sh files.

Printed April 27, 1989

WRITING MANUALS D-5

Blank manual and code lines are not counted. Certain essentually blank lines,
such as lines containing only '.' in troff input, only semi-colons in LISP input,
or only '/*' or '*/' in C input, are also not counted. Blank glossary lines are
those that are blank in this sense after any comment header (e.g. the ';<tab>'
for ./ files) has been stripped off.

If the -c option is present, the input files are outputs from previous
sma_count.sli runs, and are combined to produce a composite input file. Any
directory part to each input file name is added to the beginning of the direc-
tories listed in that file.

sma_index.sh appendix-letter 'appendix-title' [index-file ...] [UNIX Command]

EFFECT: A troff/nroff script is output for a index with given appendix-letter and title.
The index files are .in files made by the -»' option to sma_manual.sh.

The appendix letter and title obey the same rules as the chapter number and
title do for sma_manual.sh. In particular, single capital letters should be used
for the appendix letter: if numbers are used, a chapter will be created instead
of an appendix.

NOTE: The nrofl troff script output presumes that the me macro package will be input
to nroffor troff separately.

sma_manual.sh j-ij chapter-number 'chapter-title' chapter-file [UNIX Command]
(glossary-file ...]

EFFECT: A troff/nroff script is output for a chapter with given number and title. The
initial part of the chapter is defined by the chapter-file. The final section, enti-
tled "GLOSSARY", is constructed from the glossary-files, if present. These can
be ./, .sh, .c, .h, Ac, .cs, .ma, do, or .mk files with .En entries. These .En
entries must be included as comments according to the following scheme-

./ file: Preface all entry lines with a ';<tab>'.
Omit the <tab> for blank entry lines.
End entries with a line not beginning with ';<tab>'.

.sh file: Preface all entries with a ': < <\DOCUMENTATION' line.
Files with no End entries with a 'DOCUMENTATION' line for sh files
extension: and a '\DOCUMENTATION' line for csh files.

.c, .h, .cs, . Preface all entries with a '/*' line,
or Ac file: End entries with a '*/' line.

moor .do Preface all entry lines with '.\"<tab>'.
file: Omit the <tab> for blank entry lines.

End entries with a line not beginning with '.\"<tab>'.

Printed April 27, 1989

WRITING MANUALS D-6

.mk file: Preface all entry lines with a '#<tab>'.
Omit the <tab> for blank entry lines.
End entries with a line not beginning with '#<tab>'.

APPENDICES: If the chapter number is a single capita) letter, an appendix will be created
instead of a chapter.

-i OPTION: The -i option causes an index to be output to the error output stream during
troff processing. The sma_index.$h UNIX command can process this index to
produce final output.

NOTE: The nroff/troff script output presumes that the me macro package will be input
to nroff or troff separately.

Printed April 27, 1989

APPENDIX E

FRANZ FIXES

1. FRANZ FIXES. These are miscellaneous bug fixes to FRANZ LISP. They are indi-
vidually documented in the glossary.

2. GLOSSARY.

(atom ...) (LISP Function]

EFFECTS VERSIONS: Opus 38.92 only.

FIXED BUG: Compiled atom incorrectly returned ml for vector and vecJort values. Inter-
preted atom, however, correctly returned t.

(defconst ...) [LISP Macro]

FIXED BUG: FRANZ defconst does not declare constants to be special symbols if it is just
loaded in.

(defprop ...) [LISP Macro]

FIXED BUG: FRANZ defprop does not compile function values for a property. The fixed
version compiles lambda's, lexpr's, and macro's.

liszt ... (UNIX Command]
(liszt-declare Ldeclaration ...) [LISP Nlambda Function]

EQUIVALENT TO: Standard FRANZ liszt, but modified so that it may be called with no
arguments, will read and execute LISP expressions in its standard
input, will remember any special declarations made when defvar or
defconst are executed, and can be saved by dumplisp to make a new
version of the compiler.

(status feature complr) is set in this compiler and may be used to con-
ditionalize code for loading or execution inside the compiler.

New versions of the compiler made by dumplisp will not read in .lisztrc
files.

LISZT-DECLARE: In general any call to liszt-declare will remember things in the liszt
environment that would normally be entered by a declare statement.
The arguments to liszt-declare have the same syntax as the arguments
to declare. However, localf declarations are not remembered.

Note that the arguments of liszt-declare are not evaluated.

FRANZ FIXES E-l

FRANZ FIXES E-2

(macroexpand -g_expression) [LISP Function]

FIXED BUG: FRANZ mocroexpand did not handle vlambda's. All nlambda's in lisp and
liszt arc now handled.

(setf ...)

FIXED BUG:

FIXED BUG:

(LISP Macro]

Setf cannot handle a single symbol returned by expansion of a macro first
argument to setf. Such expansions should be handled the same as original
input arguments, so setf should become setq in this case.

If setf cannot find a macro definition for an expression first argument, it
gives up. It should try apply anyway if no function definition exists for the
function symbol of the first argument, so that the function may become
defined by the undefined function error handlers.

Printed April 27, 1989

APPENDIX F

DISPLAY DEAMON

1. GLOSSARY.

"display daemon" [SKETCH Term]
display protocol'' [SKETCH Term]

I'SE: A SKETCH display daemon is a program that runs on a computer with display
hardware, and makes that hardware available over networks.

The SKETCH display protocol is the language used to communicate with a display
daemon on another computer (or even on your own computer).

STARTING DAEMON'S: A daemon may be started by executing the following command in
a directory containing the sdd package binaries—

framed [—debug] <port-number>
<device> <device-program > <device-argument > ...

The -debug option causes a trace of the commands received and
the number of bytes sent and received. The trace is written to the
UNIX standard error file.

The <port-number> is the port on which the daemon will listen.
Port 1201 is typical. See a-display in the SKETCH Display Pack-
age for ways to set the <port-number> to which user of the dae-
mon tries to connect.

The <device> is the name of the device being supported, also
specified by a-display in the SKETCH Display Package. Typical
values are cgoncO and Jb for a SUN3 computer.

The <device-program > designates which program will actually
do the work of the deamon. This is a binary program in the sdd
package directory. The most useful current value is pixrectd-
nocamerad, which uses the SUN3 pixrect facility to access a SUN3
display device, and which does not support any camera. This pro-
gram takes one <device-argument>, the file name of the
hardware display device, typically either /dev/cgoneO or /dev/fb.

The framed program can support multiple devices with different
<device> identifiers. To do so multiple

DISPLAY DEAMON F-l

DISPLAY DEAMON F-2

<device> <device-program > <device-argument> ...

sequences are included in the framed argument list and separated
by slash (/) arguments. E.g.

framed 1201 cgoneO pixrectd-nocamerad /dev/cgoneO
/ fb pixrectd-nocamerad /dev/fb

However, the -debug option is not likely to work well if two
deamons are serving two different devices at once.

CONNECTIONS: To talk to a display daemon you must open a connection to the daemon.
First you need to know the host and port number of the daemon. The
port number is given as an argument to the daemon when it is started.
The following code is typical for making a connection—

#define ushort USHORT
^include <sys/types.h>
#undef ushort

^include <sys/socket.h>
^include <netinet/in.h>
^include <netdb.h>

char * host;
int. port

int s, i;
struct sockaddr_in sin;
register struct hostent *h;

s = socket(AFJNET, SOCK_STREAM, 0);
if (s < 0) ... notate error given by errno ...
h = gethostbyname(host);
if (h == NULL) ... notate error ...
sin.sin_family = h—>h_addrtype;
bcopy(h—>h_addr, (caddr_t)&sin.sin_addr, h—>h_length);
sin.sin_port = htons(port);

i = connects, &sin, sizeof(sin));
if (i < 0) ... notate error given by errno ...

At this point s is a socket descriptor of a connection into which data
may be sent by—

i = send (s, (caddr_t)data, sizeof data, 0) < 0);
if (i < 0) ... notate error given by errno ...

and received by a subroutine such as-

Printed April 28, 1989

DISPLAY DEAMON F-3

static int
receive (s. buffer, length)

int s;
register char * buffer;
register int length;

{
register int c;

errno = 0;
while (length > 0 && (c = recv (s, buffer, length, 0)) != 0) {

if (c < 0) return (c);
buffer += c;
length -= c; }

return (length == 0 ? 0 : -1); }

PROTOCOL: The protocol consists of messages. Each is a sequence of 32 bit integers (in
network standard format: see the UNIX subroutines ntol and lion in
byteorder (3N)). followed by zero or more byte strings. The integers tell the
length of the byte strings (directly or indirectly).

There are two kinds of messages: requests and responses. The first integer
of a request indicates the request type; currently one of—

open close clear map camera write flush nop.

The following requests have a response message whose first integer is the
same as that of the corresponding request-

open close flush.

The nop, or no-operation message consists of a single 4-byte integer (the
request type) that is ignored when sent either as a request or a response.
One nop must be sent after every request for which a response is expected,
before the response is read, to flush the request across to the daemon. Simi-
larly the daemon sends a nop after every response before reading the next
request.

Any request can also return an error response message. This will be read
after the next request for which a response is expected.

REQUEST/RESPONSE CODES: The following are the current values of the request and
response codes (the requests and responses are documented
elsewhere)—

Printed April 28, 1989

DISPLAY DEAMON F-4

Name Value Meaning.

FR_OPEN OxAAAAAAAl Open display device.

FR_CLOSE 0xAAAAAAA2 Close display device.

FR_ERROR 0xAAAAAAA3 Error message response.

FR_CLEAR 0xAAAAAAA4 Clear all pixels to a single value.

FR_MAP 0xAAAAAAA5 Set color map.

FR_CAMERA 0xAAAAAAA6 Set camera parameters.

FR_WRITE 0xAAAAAAA7 Write block of pixels.

FR_FLUSH 0xAAAAAAA8 Flush memory to display proper.

FR_NOP 0xAAAAAAA9 No operation.

ERROR RECOVERY: If there is any error on a connection, the user should close the con-
nection (via the UNIX close (2) routine, not FR_CLOSE) and reopen
a new connection to the display device. The user should keep a copy
of the device memory (map, camera parameters, and display pixels),
so it can reinitialize these when the display device is reopened after
an error.

FR_CAMERA (C Macro]
FR_CAMERA camera_string_size camera_string [SKETCH Display Daemon Request]

USE: Stores camera parameters in the camera.

For a Matrix camera, these parameters are represented by an ASCII character
string, camera^_string, of camera_string_size bytes, with a format to be determined
later when this feature is implemented.

The camera parameters should be sent after FR-OPENiag the display device and
before using the camera.

This request has no response if it is successful. If it is not successful an error mes-
sage is returned (which is normally read later when the user is trying to read the
response from an FR_FLUSH).

Printed April 28, 1989

DISPLAY DEAMON F-5

FR_CLEAR [C Macro]
FR_CLEAR xorigin yorigin [SKETCH Display Daemon Request]

xsize ysize pixel_value

USE: Similar to FR_WRITE except that all pixels in the subimage are set to the same
value. This value is passed as an integer in network standard format. If pixels are
one byte long, then this integer is in the range from 0 through 255.

This request has no response if it is successful. If it is not successful an error mes-
sage is returned (which is normally read later when the user is trying to read the
response from an FR_FLUSH).

FR_ERROR [C Macro]
FR_ERROR message_size message_string [SKETCH Display Daemon Request]

USE: This is a response to any request during the execution of which the display daemon
detects an error. The message_string is a character string of message_size bytes
(without a NUL byte on the end). The message string should be formated in such
a way that it can be read by the LISP read function and converted into a valid
LISP object, which becomes an error message printable via pretty-print.

FR.FLUSH [C Macro]
FR_FLUSH delay_time exposure_count [SKETCH Display Daemon Request]
FR_FLUSH [SKETCH Display Daemon Response]

USE: The image and color maps stored in the display daemon are written to the display
device (this may or may not have been previously done). After this is done, the
state of the display device is not changed until first exposure_count pictures have
been taken by the camera, and then delay_time milliseconds have elapsed. During
this period new FR_WRITE, FR_CLEAR, and FR_MAP requests may be pro-
cessed if they do not effect the display device state, but only change the memory of
the display daemon.

The FR_FLUSH requests sends a response after the display device image and color
map are written, but before the camera exposures have been taken or the delay has
occurred. To get a response after the exposures and delay, send a second
FRJ'LUSH with zero exposure_count and zero delay_time, or send an
FR_CLOSE. Neither of these two requests will respond until exposures and delays
of previous requests have finished.

Printed April 28, 1989

DISPLAY DEAMON F-6

FR_MAP [C Macro]
FR_MAP xsize ysize map_type map_string [SKETCH Display Daemon Request]

USE: Stores a color map in the display device daemon (the color map may not be written
to the display hardware until the next FR_FLUSH request, but on the other hand
it may be written to the hardware sooner).

The meaning of xsize and ysize, and the format of map_string, can be display dev-
ice specific. However, the following standard is recommended where applicable:
xsize = 3, ysize = 256, with map_string consisting of 3*256 bytes, each an unsigned
integer representing an intensity for one color. The first three bytes are the red,
green, and blue intensities, in that order, for image pixels of value 0; the next three
bytes are for pixels of value 1; etc.

The display device stores two color maps. If type == 0, the normal color map is
set, whereas if type == 1. the camera map is set. The later is used temporarily
only while the camera is taking a picture (see FR_FLUSH)

The normal map should be sent after F/?_0P£Wing the display device and before
writing any image via FR_WRITEox FR_CLEAR.

The camera map should be sent after FR_OPEN'mg the display device and before
using the camera. •o

This request has no response if it is successful. If it is not successful an error mes-
sage is returned (which is normally read later when the user is trying to read the
response from an FR_FLUSH).

FR_NOP (C Macro]
FR_NOP [SKETCH Display Daemon Request]
FR_NOP [SKETCH Display Daemon Response]

USE: If this is received as either a request or a response, it is ignored.

Some network implementations seem to be unable to deliver all the bytes of a mes-
sage to the receiver until another message has been sent. For the sake of these, an
FR_NOP should be sent after each request for which a response is expected. Simi-
larly the daemon may send an FR_NOP after each response.

Printed April 28, 1989

DISPLAY DEAMON F-7

FR_OPEN [C Macro]
FR_OPEN user_id_size device^size [SKETCH Display Daemon Request]

processor_size monitor_size camera_jsize
user_id^string device_string
processor_string monitor_string camera_string

FR_OPEN [SKETCH Display Daemon Response]

FR_CLOSE [C Macro]
FR_CLOSE [SKETCH Display Daemon Request)
FR_CLOSE [SKETCH Display Daemon Response]

USE: The open display daemon request opens a specific hardware display, making it
usable until it is closed. The request consists of a number of character strings, the
size in bytes of each being given with the request integers. The user_id_string
identifies the user so that other users can find him when they find that the display
is busy. The device_string specifies which display device is to be used (one daemon
may handle many displays for many different users on one computer).
Device_string must match a device argument given to the display daemon when it
is started (see display daemon).

The processor_string refers to the display processor type, the monitor_stnng to the
display monitor type, and the camera_jstring to the display camera type. See a-
display in the SKETCH Display Package. Currently the daemon does not use
these.

The close request terminates use of a particular piece of display hardware, and
releases all resources. It should be followed by closing the connection (and not by
trying to open another display device).

If the daemon successfully processes the open or close request, it returns an open or
close response, consisting of one 4-byte integer with the same type code as the
request (FR_OPEN or FR_CLOSE). Otherwise the daemon returns an error mes-
sage (FR_ERROR).

If there is any error on a connection, the user should close the connection (via the
UNIX close (2) routine, not FR_CLOSE) and reopen a new connection to the
display device. The user should keep a copy of the device memory (map, camera
parameters, and display pixels), so it can reinitialize these when the display device
is reopened after an error.

Printed April 28, 1989

DISPLAY DEAMON F-8

FR.WRITE (C Macro]
FR_WRITE xorigin yorigin [SKETCH Display Daemon Request]

xsize ysize psize pixeLstring

USE: Stores a rectangular subimage within the display device image. The coordinates of
the upper left pixel of the subimage are xorigin and yorigin. The 0,0 pixel of the
display device is its upper left corner, the x coordinate is horizontal, and the y
coordinate is vertical (increasing from top to bottom). The size of the subimage in
pixels is given by xsize and ysize. The number of bytes per pixel is given by psize
(which is normally equal to l). The pixels are stored in pixeLstring. Each pixel is
a contiguous string of bytes; and each horizontal row is a contiguous string of pix-
els. Therefore pixeLstring is

xsize * ysize * psize

bytes long.

For one byte pixels, the pixels are interpreted as a number from 0 through 255 that
indexes the color map (see FR_MAP). It is suggested that the formats assumed by
the SUN pixrect package be used to guide pixel format standards in other cases.

This request, has no response if it is successful. If it is not successful an error mes-
sage is returned (which is normally read later when the user is trying to read the
response from an FR_FLUSH).

Printed April 28, 1989

SKETCH DEMONSTRATION PROGRAMS

VERSION 4B

April 1989

1 FRANZ EXTENSIONS. sfe_demo

2 ATOMS. sat_demo

3 OBJECTS. sob_cdemo, sob_hdemo, sob_vdemo

4 CATALOGS. sca_demo

5 ARRAYS sar_demo, sar_gcdemo

6 BASIC ARITHMETIC. sba_demo

7. BIT GRAPHICS sbg_demo

8 ANALYTIC GEOMETRY. sag_demo

g DISPLAY. sdi_demo, sdLcdemo

10 HISTOGRAMS. shi_demo

n. EDGES. sed_demo

12 LINEAR FIT. slf_demo

13 TEXTURE. stx_demo

COPYRIGHT C 1988 BY MIT; ALL RIGHTS RESERVED.
DEVELOPED AT LINCOLN LABORATORY.

e 5-

> ^ s
\ >
t fr r
C. c > > ~ > ^
^7 £• a
~ - 0 « >
> ZL > »•«

i\ but
i v c >

H *J > -H

c >-)<&E
cr - c
IQ
0. ^2

0 5 > C
Q M
£ £ ?-, c

Tl ?-«
In 0) k-

i li —i p *t > e,
E > * > K

IS >.-»
N - 0 '.. » w a; c > c

> 5 > IT' -
If. c « >-r

- p» a — >. 0) L, c
n^ e t» m C C > W.

ZL — > B

I'-

LL

s 1

. s ?

~ a

-J ^J in
tt a •

rg«
|S8 8 8
ft P — tM «M <M

~0

li
—• JJ o i

st i SO < — — —
a; /s c o
Z.Z — i ^ ! is Pi i ~i m w in m'

o c — +J *- — — ~
u — -*J to w w w w
<.-, a. •* - — — .-.

>: E T; I . i i '
© C I M M M M M

C -u 0 t' U L' U
<SJ i « C C £ C f

IS •»» £ £ £ £ JE
•O— •-< c c. ti o U

«? e i I^?II?7?^?.-?T

c —. ^ *-*

c
V

Q. r " •o ~ = e C
C -f IP --»

£ £ c
^- w r- « — —i —
~ r»

•" I -1 I 'g I Pi I -

— 0

CN to OJ Oi to >
SB 4J *J *J *J Jj a:
w Ul w w H to N

H _, ^H _, H
4J iJ
m H H ~H •H --* H

-r* c^ SJ ffv c?> <?N

<*»*-» A ^

41

• o Eo 1o f ©
iM >*(N S09 SfN -H «~ • —I

O ft O m O m O M
O M OX OX OX -1 *1 -i c

3
-< c

3
** 1* ^ iM
CO
0 irt

c o
0 u"»

CO
0 m

CO
0 m

f-H <—1 ^H H
** c« i-t c« «•-• r* <•-< r«

X M £ x
o c

3 °i °§ °i
+ £ + X + c + £

8S

§o
in

o c
3

s ig

T3

O

c
K V —
o
I £
• c —

•0

.c »
— — Km~n 0 - u

1 ca g
_ <•* w »* b

> H. ^ t 1 I ~ I * ' a ' ° '

— I _ =

~---4 10

- 3
—• <~- .—i —

o

o

K 1}
oi u

o o> •

4J 10 to -"4
V. 03 U tz 01
t) •N --4 4J /X .
" I »4 I -

IO-4
I 10
: • —

H A 4J
I I <0

J— oi

I—
4-' <0 •
K. *- v a.'

n S ••
to *H (

_, _» _c «.* .10—0
< o • c —

- = /

Urn 4-

Z H c

- A' | "•'
_ *J J_ .
1. — rz fZ

03 CD
O CD O
r> © m
+ m +
o 4> o
o o o
o o o
o o o

in in in
3 CD^H m -H
i co ri m .-t i

- <N i I CN

t —

— w — o
£S^ -- in

— CN

cc r-* in
o r** vD «•*>
r- o :>• m
rs: r- CN in
<~1 O* f) \£

• vO CN
: <~> r^
1 cc- o co n

^r X ^ 0*» * CO ^,

r» •«• r-* <r r* ^ "
^ >• <• c* *r P»
—i r- —i m —> *•
f\ -r\ <• f\ w

^- m ^

n CN CN
co r-^ co

. o CN
f-* o> o
^ v ^
^H C* •
CN CN en

i •*• i

.IOC1U)
0) vO CO VO CO

vo r*i *r co <•
nionr n
VD CN *H m .-<
CN ft fi «-H n
m CN 0> M 0>
PJ CD VC C*i vO
CD CN r* vo r**
NOC^Nff>
o *• r* c* r*
* • • r- •

|1HI z ^

z < — r

< <
ifi ""•

ml
— T. £ — '
7. - M x J
'/, K Z < I

III!
E- E- 6- E- i

• I I I I I

SEE I'iZEEZZs
z <
= 15

I I

< <
Lifl ifl

8.
a - ,

: 4J ifl-u v)
CT W 05
C 4-> *J

•H 4-» U 4J O
k, W QJ L* w

(0 II
•H I I

t
5
El

y ui

a) N

•2p^

err
^_ -^ >255 -rrr-rr-rr
XXZXWXZV. XZ — < — <«< — — <>-(
SSSg£EEE55
'e.'s.'e.'t.'i-'er'fe'fe'fc'e1

t ~4J ~.

utCCO
IB 0 *• 0 —
W) H-. C •*- C

I (0 I-".
-ill

*^ 4- — ~
A B B C «

' W 111 Ifl W O

51111
IT. — c — e

1 to to ^ w
— I I I I

4J 4J *J 4->
/N to c t: its

M « « I"

4J
K

s
5

. I

O to
n S

4J
4J «
10 01
O v

0 V

— o

in --«tn %»
« --to ~ m*

IU1 |V1
htof-m

;n
•»< UI-H in
to — 01 —
to n

till

»-(^ IM -** "8

> 4J
-4 k,

«! I

^ a
4J
l-i •

I —• -^

Ito in
Mi tfl 4J 01

to e o e

4J *J *J AJ
U • Lc jB
0) W tt w

10 — ti) —

II II
a: ai

§ § r r
Z -X
M ~<

Ei.E
i" i

< 5 <
u-. r in
" —
(?« a.
= r c
-i C —»
to | to
oi f- 01
•1 < -"4
e we

4J (^4-1
io c a
oi—n

a 4J B
o: io ifl
to 01 01
K, K

I I I
w V

-H 4J h,
01
o

to 0) 0) 0} to to to
01

 S§ESE5«§
~ ^ « i-rr«rr

• > •. •> r -. •* •» r * X- ' ' • •- 'S' ^ — to — —

z"§§S2S§£SE§5g§§§,???2gr • •" >• •-r r x « r r x >-. r r x « r r c E CE n D •
5 = = »1HH<«|MM<»|MN<»1<«H itxzcnxzciDtzitiKZxhHl-hhh

1 | t.^'t.'fet.'HlHlSe4'E4l
t4lfee.le.,e4le4l=%N-=%'=:

•-Z •* X •* VI VI Ul VI VI VI V) V) t/1 VI VI VI VI / S / / / S
^i-^<~ , » « V V <J ((III
I r * £ * * * *• * * •>! «.**; 44.«»000000
— D— D-^ = = =c= = =e= = =c= = = = H H •-< o< it «
S. l£ l-~ ccc/ccc/ccc/cccc
r 6- r E- x. / //T} //ST) yyys ////in vi vMntnvi
5<5<5 t'0TJ*'T3^'O#T)'O'D*,D^^3HrtHf1Ct(1
Svi r tn r •••••• •*«« ••<«•• +»»**»» + »»

— I- *4 I I I
X Z X III III III I I I I I I I I I I

no ito i >-<rr — HIZR i-.rr«>-'£rr>-irri-irr
t-Olt-IOE-i I0MMXI0>-MXWMMK«HMMO1HHI0HH
< -1 < —i < V. XZ<V!XZ<V1XZ«V1XZXV1XZV1XZ
ID EIA Eto M<i-ir'-'<»-ii:>-'<'-4X,-'<,-*^*-,^»-,^,4y ~*r*r B&SS.fiSfiS555.1 afslleilfl s =>-
?««? f.

l
t-

l
f.

lHle-lt4lHl
t4lt.lHVf4l

f4le-lE4le-lE4l
E4l(-le4l

&
lE4l S ,47

S IS w wuiwwwt/iyjwwwtrtwiowwwwwwwww ** ^i ^ i

wjj'ojj'a c^a,fiCLc£Q.c^a.Q.fic£c«LCLcLciQifia.Q^ oto-" ^iv

C(0lC10(C <WIWIMU>M<MIM>H>U<MIMIHIMM<M1WIU»'IWW>H<M U li 3 4) "
tototototo i--4Ji.v4,iJi-4j^^*j4J4J4JiJ^iJ*J4J*.'4j: 0-4JQ -u

a <o cccczcccccccccccccceccb fitoo av

ft) ft) ktMbkhUhbh^b^khbhl;^^^ iiw piJ ^^j

V) V) tO V) (0 lHIH^^iMW<HM>HM^»HW'MMWUlHW<UiM<H Q -H il M -H —'6 J ft) ft) ft) «

i

So

I k. M
V 41

O 4J 4J •
-*4 • Ifl •

else
TH N N «*4

"I "I I I

e i ~

•~-

E E
r £
*• 5
y T « *H —* ^H

1 i. ^ £
— ^ —1

z c* IT e — IT in 00
T r- K ^r w V

(.'. c 1
C 1 - n s c

» C £ f—
rt r 15 5 1 « u 3 = ~ c K LI 3 "3 y; ••* a

r- <t 1 BJ 10 ^H K £ >- '.-. j^ r -« ^ ^^ JZ 1 N
—i c c n N

o o ! '- o r> o 5S 2 B r» r» n — ^ r^ p»
r^ c c

c
**

n
r^ >.

£
- u
r i-

5P "5 vi >- - IT.
p2 -. 0) -H

15 c N i P4 —N — 2 ^ 2 IT J
c< «C in O — i i >• o T ^o 1 >- —' n K 0 IC O K Jr « £ « « ^ 9S c BO 15 c *-^ B1

<C N «>-
1! >^ £ >- -C •-« x J: N C £ K £ -H
c- ^ ^. -~ K N | |J ~^ N £ N E
K ^ v£J OD K p^ K ? m — aa ir^ -^ — in •»- n »—
c —"_ ~ C

a; <— C C ^ 00 ** 2 « in £ e CT. Q o O in
rt c —

c •^ *—. c cr ^ -^ tz E -— >." >. V
0 | Jj c c J_I JJ K O £ 4J LtH *J >- JJ M -H *J s *J fc- _ •0 n JS i i n £ M --^ X T3 H £ K £ M -1 r N £ "D

i C" M M IT • - c>— r M [Ji-.-. 0<-H Oi-l C K (T, c C -— Q er- n •-> -< J O -M J -H -^

•c J —' 1 £ £ •"" 1 >.e
ic —

$0*3 ^ r $xc $>• St
0 >^ >- K H] - c i N a> 1 H T l ! c OB K N n K C <n w K t". v « N U Vi N VI V)

f e £j 15 N S " 2 p ^^ 2 j — u. ^ 32
3: ^ t EC £ e >- C s c M > K C - o j: c — £ ~-t o ~ s

E
0 E tC 1 -^ r- ii -. c u — c -H P^

\ a. i C c •-- « K * K — p I Zi, g ^ r c x — C n *J C a: u w -o •"
rj •5 c V •D c •c c

t: — — ~ 1 — c c r — Z^ | — '.* i ~ if H e >- |3£ > 1= V c>
e> £ >"a i 1 V 0 S s = « X GS IQ 0] £ 1 c j — K N c j; r< C J= §Jj 0" C r; ti 15 c B c ?- -c H c u *> c C — — ~ "S _^ i _ £ E 1 L I N I c 1 1 ^ | i r. 1 IOC i i 1 1 — V. V) K jj >: t'. « u; r ^ - Vi V. Ul -~
p ft c > >~ c K t X c (C <c u L >- <c c —> > K K *c <c •"* - - 1 K ~. - 8 8 •~ "3. ~

N
r - L — — J * - r £ t s ti S - £

£ X

1
\

| c y L. '- c c = u c fZ c Z c
— -^ -t 2. - ?; x * i

jj
- 1 - -8 — c

•^

>
s 5 L I — K - . - s •§

J : -8
, p. s . (L >- >• — i- i- s

'c
>.-

S& 1
>• •H U

i ft x c fei_ (J is. sz. c >. c >- I/; S JI S 2 g. c C >s i 5_ •"• i' 1^ N • s co *, r-J Ji,
E N — N s s H K C K

u <— K s S ~ IT •*^ 1
c_ A >*• fC •N - /-» ""• fZ rc s\ — /\ ic •. ^ c b. ~ «: ^ Gh ^ c *N *
i

1
£ ; C — I •—. 1 ^ »— — . - 1 B i = i w 1 — > +-r 1 -

1 -& 1 —• ! -: _-^_ - — - —- 1 —

I

« ^ OS

o

s
",

I

< ec <
U) (J\ w

ff» 0D fv ^
*N^^r9^P4>NiO

1 ' • •—• • —— • —•

<

IT;

O-p^

o
X

a
B

a.

I* I « P-

ir, i«
f- 00
< -i c
in» ><

|p- *
— — •»• —PI

^N (N ^ O
l PS l i

^ O « -
I -1 I tf

<•*
1 § ff*

T •

10
|

= 4> ic (—,
n - £ ^ s
£ So? —1 ~

•H 1
o Ht IM 0 C

C *-i l". 5 £ A •-J 1 5
~ 3

1 10
TJ ic
IC £ «? • 8

• -J

>. e~ E Ifl
0 £ o 4) i '-^ 4
" c •*i «
J 1

IT, QJ
•l-l 1—1

._ —
1 1 « i. H w

>-

1 ~s -— HI —i IQ J-» I .—, 1 ^* £ c »fcj C -< o ^-«
*J £ -^ o t K 1 0 « M IC X

IM c « IIS ? -= >. il -H 1 8 a 4J •
-H V c 8 £ ~ ^: o ••* JJ 4J M

X <•_• « * c •-< •^ -H t

¥ IM

e 0 '•-<
0 10 1
o to

i
io y f

8
x: 8 « •S « C C

H « J- c 1 c c 1 <z 1 | u - 1 c — —t iz IB 8 c U SI "C T3 I V.
£ •-< £ t £ * c « "C C X

8 ic c 1 u to ag (U o C

21 £ 4J y—. c jg V ^ c 1! c IN U. * -c £' « 0 D-H --H -H 3 4J * 1 1 «J 1 c

1
—1 0) -H C — —1 — ~ •~- a t' « t. ^ 10 w u jJ 10

&
c x"° ! rr j IC *

u y
0

a 1 i. 1
c. c II s, 8. 1

*J V
1 W H* fl C 1 1 « D « (T.

7 01 £ 1 c •H c K K to ffl u I u o •-•C ff X *C
7J ; j 1 V) u

C K : w^ *^~
O B K 5 1

t C
T *.~, g 1 jc y

^ i^g < < r:
ss 0 <C £ rt 1 '-' CJ * z c. S IC <- >.•- a. c a.
N, P 1 io J io ic c •e h £ — x £ • J* •if £ £. X

(3 £ x c (C « a c JJ £ ^: I 1 I >~
8 ^ 0 5 «{ £ £

o 0 — CrS
ft 0 QJ y * c 4* 10 s, -J

c si- 8 .c'SSSS X
4J X! >. 82 c « = i c _ Hi >. 4J •D 1 0 ifl « V, BB

5 •J — C "S i- (^ ~ XiiJ Gj t" 5,
c- C c US t- c 1 C U

&IK II c
c

$ 3 (_ •
-1*

B f % X
H-L

•e
"C

—•

!
11
0

— -
c

^ « >u «"S K z^
c C Q c «~ BJ o c c u B " U 10 *J 4J > >- *- — - ^J c

c <C 1 Ifl g — IS - b 0 IS
|T ^ t: x aw & fC T i i t 1
f- tj g c y. X X X ! E* x i * U iz Z jJ JJ

• _ c x £ v NOC
C. u « u^4 <Z 0 ^ <c c <c

IT c i ~z ft = 0 — tz « c Ifl ifl w o: w to -

"" C -' X li- Is L: c io

II l\ |fl Ifl -J £ t: X O '* Si "

rx c St n 1 « 5 "i ^C
" K 0

- U 8 X 0) iJ

B -

s

X i ~ > *—
L. c I 1 c -t o c i X a & r P 0 ^ /•v «v yN * •-. c *s C A It ^ -H /N O A H A >-^ f ~ u ^ c C 'N /s •#• t /v >-JJ <; o . - w i (C 1 1 ~ = 1 -1 . - . £ 1 - , - 1 ^ ' 4J ! C 1 4J VI - o

41
j;

i
10

5

I

N M

3«e
o

S N C
-H -H O

C C -H
I I IC
n in i
« « to

10 0 o
H U 10 03

S. 2. e •8.8.

12
ni i /
£ 10 to
0 IC IC

> 0
tl 10

I X

— — 10 c

Ti S a
Xi c
0 I 41
i IO a.

« £ *>
> I
4) 41 10

8.
IC

I

— 0
a c

c -~

-I ~ £

C
£

8
G
8.

io iS. p. to

cut
I £ 4J C

ITJ'

0)

C

is.
i c p

• I » I ~ I U

0!

10 4> ic

c
0 £

4) R 41 0 -^ CP M >
IC

8 1 s £8
—i M a
—i ^5 I I S*

1 -H £ 10
to El c c » 3
IC
£

1
to

1
10

0

28
IC

s £

c
£

C o a.

C C Li —I IC 10
CK IC > «
*H U 0) 4) £

I E£ LIETC
I k. 6 ~ 0 0
0] 4) o o ^ 4> W
io B *H C O Li

I;»(A
t~ a.o

IINIH
I C rH

2 0 J->
41 C -i 10 *»
S 4J-H -i
1 «0-l T<

5 5 5

e ti o
C71 CT t T-\
Li L, IC £

Siii
l3 O 4i 41

833 —< <
I u u

41 >
a
a.
o

g -I
c I

/N /\ S /N ce r; =
• i *< i o i MS g

*
s X »H —

— « ~ > > ". o> 1 to

-I K 9 4- « > — .* ^. 8^ JJ — ^-v

1 • c 2 t: 1 « z
> ~* £

- > 1 ^* n'c
C. «: <c «C £ s « -^ — - Li ns M >*- L *N. L,

s~* — (5 1 w 0 1 — -1 0 4-- r c
C JZ a 1 X JJ « > £ k- £

JZ ^2 V -* r L a. <c c r*r 5 3
£ ; t •H J: is

u 1 « V) c c *c

i E ^ £ •M a — —i
W 0

tz «M fC V > >- B *-* i- E * i t* >
1 0 «C 1 QJ *- c >w C 1^ «

T3 4-' t — ' •'- c | « ~ "D >

a* w -

m c i > •-1 lg o *- • « I *) *J : I - -S J3 ^ 0 4-> •»- ~H - « « c T 0

!
= > 5 = 8 ^. _, —*—l

1 i
N

«
•H C J - > £

1 **• z 3 | > *-> > -~ C IG ^- o « c a: — «o
• s G 1 J2 O -i

O —
o «- "* X — * * 1 -M

10 *J 0 tl
— 03 > > > >

1 — • 1
«

0 *SW> —* 1 >-
• ^. ^ 3 i-1 •t --> r*- T5 o z fl

_;

1 ZH 3 u ^i^1 8" 1 ^ > X > • • 3
0 'H <«-i
O • 1

a o
0 -w t I i

*J I J •-!». C (fl X E S so --
c p > > i C I K IC c C c M^b > Jl -t I c +J (I) '--. i 8 « > »* 0 > « 4J - C = c

6 n - C « -^ t K 4J > u 1 1 - £ i C

2 c •a = —.£•-< JZ c c IM u u i 0 « n a. Si < C 4V> ~* r-i 1 4J
m H ~ TJ ~ = £ o > ~t c <c 4J • «—i 8 — k< -J — a 1

c pri I -o •o s a U£ h 0. >. i o — i —I y
i 0

4J 3 a.
i sacs 1 c I

X sr .^ u
0 « o
a o a)

0 3-r 3 £ > tr
•c IM u c • o • >.— •M a; u > <- o « 0) 1 i i \ > C > E 0 I n -I »- -c 1 > 1 U W 10 M V) tfl

I — V 1 •.-. i C t* C c o V, >- bl | w. > i 4: I o !fl 1 (C X IS K «
€ 1 I « c (!£ 1 X c K ? IZ (C IG u i a; *J <Z K. .- K -c J: •B £ > JZ * to <C *J c
gg j '- 0) « 3 5 c
V 0 —^ 4) i L: n> >fc- — — •OliB — 1 c

c tfl T X o w. 4J IW c « C — a I
1 1 c >: <v -Z o w r" ^ - ^ h e >^ K

•mi -^ 01 — It d « & u 0<4J 10
1 > o « > ti C 1 a--^ *J > 1 (N 1 x c •c t- t

<r c £ is c — " — - *-* - - -^ M C 0 1 c <z c C
c to X *J 3 w AJ fru c- »s —. tj u IM "SJ ~ x -c > -U 'J 0 a> D 1

c z c % ii"c c ~ •0 — c
•o r; > r. a rs c <C S - c c > > f r i > IS 1 X a c a — c<*- v r.

ri =
« JC

- « t.
x £ X C ti —

X
St > c -6

X i ^
C

C 4J x| 1 i L

IT c 0 5 *" « c c ^
c ffi C" — u. i U X — t

J* J- C U E ** t 1 -*L j^ 0 *»

Pi I it §1 c 3-3 £5ii -
?.

* r
-1 c

n; 5 ic c 5 in —
a. SIS-1 - 4 B-l -s «_ —• > X > ~ U, s^ — ^ — > - f5 — "- £ la > > i — o X 0 > 1 > 5

Q. 1 s\ 1 ^N <C -. ~ o /\ <c ^ >,/^ O *N c ^ i c
«s ! O 1 * ' L "5 1 JI i m e i - 1 ^ 1 E : "-• ! — »^ 1 ? 1 = 1 «: -

.
t—\ ^C

C
O
o

Jj
e

M
C

•-H
o O •

V. ~ o 4J
m

IE IP
1,

„ ^ •H £ £
LT 3
CM >

• - JU 1
ff] *J n ^

iM o t 2 c c
xc — B 8 x: X '- c >c f-1

w p 5
IT 2 *J IT

o

>-*
o

—1 5 x re <^% i*» 4-J -C 4-1 ** 5 7 L !N 3- ra o:

| —1 x: H) r\ 'S > u; X c •M 3 fC t- i
+ i (M ic t; c > ^^g" 1 ^ C 1 w: —
^J n OJ c i B B) c: u

O —- t_ 4 1 X c *0 O XI X 4J M fid M X
o c '- ^: M JC

— ? V 5) O J» ee *r re ^-» i n 0 OJ
IH 8- * (- = c B TT ^= «-* « *JX JJ •H It- >

— e > i
V

b •*• "C CD •^ « cr c | IM o » -J ^ .-. JJ JJ X *-»H £ co(Mi i — CD CT- £ Q IC
e- in oo Q

5
tr > > -» X u to b CL X CD 3 W 4J CO U •-
<c Cl ' «•» c e E C o: C r^ r- 1 10 r^ r^ •^ a
c <C o <z, f Sf | g M 0 *>• kfl U3 JS ^ r- \C (0 8 (A 0

*H > in (0 Ci u-i <z j~ . f-i — > >-J

5
w JT 0 w « > sD * j= a. -i-i \C * £ c

•-> u in K —
1 >

X *—. £ > 10 '- JJ z. —i <C <— > — 1 vO m 0 H vo m « > £ 1 >. — U a M > i ic c c X 1 C (N O »« J2 M +J « i — lat- 0 £
L * 0 X 1 «s £ 3 jE MO (C ON « ^-. > -V - k *J 4 -i e >• -> t. »

[0 ! |SH<

« c
§ — o Ltf

*- 0 c-aT IN
r a t ^H 1 O t t tT*J a Li B

CO 0 ««0(4J e ^ X S + «) 0 c •H «— f-i IC 0 C I 0 « —
C c OJ— I «- _ o -* ^ 0 ^„.t;-= -C c 1 u 1 * eo • a PB c *n CL

>- Q C in -3 >
m c •?, in -i —

s ^ 1
JJ - u to > = C •*. > w a IQ -. H to f 0 C JJ —

X 0 IB —i X n i X 1 i 0 c —' ^* i 1 i —x: ~ 1 1 1 | <^*+J •u u > •c o <*• to Ifl w x - x K u W JZ V > - C — £ — 01 z ^
a i 0 — C > — ex • re Q 1 E c i 0 1- e O N > Q >

c ic a TL— no - I
U u \ >- r- >H 1 \ x £ siS| £ c 1 • »4 -^_j 0

x a O " JJ *- *J « 5 c

C > I |5 & * ic — S

>.U) i

s 6 ic 5 -J c
u 0 I rs 5 „ ds — fZ

— ?
c £>•=> c 0 4J

0 x > —
c > X W — c IB (N si V) 0 IM ^ 1 •—• ' »4- -—. -~< 4J •8 i *J -u J2 i i J: > — IJJ >
<c 0 — - c _J c — C wi-4 C > > ic <c > > c -^ > £ ^ c m c — .2 a> u it 8«S«'

=•

?c — i c C K 2-C - AJ S 1 i —.— — | i '-I c 10 u •H « y, c 0 - -C -
in
CN JT

r- to > tf — —
T: c >

H « TC X Jj * a £ -ilk 0

— 0 C — C 1 c ^ i 1 £ 1 T) OJ \r. 4J +; OJ o > c > IC 4-t V)

l- X — JJ « 0 15 > c c — <c X N K 3 '.: X N 1 •c U L: C C C ^-1 C^-w ^» > u «— jj

IT X U IN u a z 1 c 1 (Z 1 c u 1 ^ 3 > 0 — — 1— fc- 1 1 3 > -
r- fc C <N CX >. X —' W £ K .£ 0'. tf • U K U

e oi c c = i 5
•S i- Q c * S c

i'£x it « w C *-« rs B «
iri 2.C 1 ^ — C o; 0 C C = >c -c •-•- 3 a a • - w t.-, c to — - o fc. — — - 4J £!,-_ E

n
C

r
C —

K

r-
08 61 ^

X gi& - <t c C o s x u 1* C = || ^ C w > ^- > w X >
M rt 1
c A to /N > ^ n ^N IC <^ rs C /v /^ >. •3 >"*J < — ~-- •^^ 1 - i -r 1 " 1 *J 1 C i +• ;' i* «* « _ W

ft ^ m tn
m to

a O) a J- M
0 O

J-i > EL
E

IU X « M >
cr JJ

JJ
c

JJ
c

u > IOC
N 1 X <M C

•^
H1

« £
0

ti
0

^ ic 10 HJI 0 > 0
IT, JJ 10 1 -J (ft in co 1 £ OS 10 ic 3 c « 1

10-^ *»

CD l=>
1 « > > r^ >* •H 1 X X (A a» r^

1
>^i

OJ
IC

"E H § OJ
3

J3HCHI
Ort 3 JJ
n « >• > «

in CO t^

U ^. IP ^«.-H —i <—1 uo to
c > CM PS ^ 10 IC ii i> w IP o
*J « > > | S 5-8-C

S x a a

«J«« * *-•
u ~ u IP 1 1 r> - i " >> 00 X •H V 10 10 tT CO >
1

--^ IC
^ M o — x QJ n +J ~

tl tl ON
"5 J? FI*"-| § i-H JJ

10
w > M o m

• > -H H 1
o i i i a

rJ (J-J
«o 0 o ~ -^ > M O t^ <-© o 1 O-H
£ *>J: t-00 •*•* ,c - .-^ • — 1

CO & r-i - to >-^ fn r-i § J?
OJ

CO r\ —« 1 c« Cij 4J ft JJ
o: f^ " O ~~ 10 -H •H C O tO-H 3
—i HMD > £3 ^ X oj —i a 8- » X

-* x -~ •~i f-H 1 -7 > xm x 8 1 -.x <-• Ptt -H
Oi SJ C *J c»o A3

t. -^x> a a
(0 1 1

o JJ 3 S
*j O tj

a. c i£ o 1 10 10 > O JJ
OJ •H ^o o 4J wO * — ^ ON-O HO

--*• '-»£ «w X^ «w
io a • i JJ-J >, Q. >, i gs Si m

— 2 > — 10
C - Ei a X jfl

> i 5 > 9

•
IC i a L-i ^»^to^«> o > X J-I 1
Q. in -~>- 1 X > -< 4J B ff X I X-i 1 w | o o > JJ a x w a - an

o a. a c — —»—
JJ JJ

s M in «~m > -H •<-• C -H ^4 X n
ail v •*-* 0 ifl O ff 10 JJ *J 8 (1 CHi)H ^j

-r 1 <V aoroiH 3 •S > IM n *- *-» 4J JJ i-l -H •H •H -H -H a -H —i

Q 0 — 1— 2 -^ -H + 1 > >CO bn^ 5€ i ni c o a —
> TJ O TJ

JJ p«-l > e IH > I— C ic <—i « 1 M 1 \0 0 0 — i • OJ 1
i > i h« > •-< 3 « X «f>£(M£^ - 1 i 1 « X <-• 3 C

T Hv «n i

X •rt O OJ JJ
•D 1 e < > >• 4J X! sO *- U -w(N 1 — « CD to to JJ 1 —1 O 10 OJ > OJ wtn i « m 0-H «— m 1 - | \a V a r; CD > to 1 e > n
a1 4J

e
in u «

3 JJ 8- X WJJ t 4J4JCC4
O0W0>£W£M

3 J=
en

£
r-

0J
re

1
a

• 1 K 1 CO
« n £ C £ « 1 OJ

JJ
++•*+*

S 8 o —i a.
•M JJ 14-1 IC ^- ^ £ "H w 1 w£ 3 m
1 <* > — £-H £ W-H « | > IP M in I X

N ^^ -i m - 0 tl 1 1 (OH U)iB -H 1 X —i 1 -*J

i « i a IM •—
n —*J c >

3 M
-H 0

IC O 1 1 1 1 W 1 (M|J\
v)4>u]~'-uc\)4Jcrt io a X

01
X X ! > s 5

i «J — 0) 0 1 a JJ •r
X£3J= W3S(H

j;^ 0 i*n J-l JJ 1 4J
a c £ oi -H ic «• > o JJ jj JJ > 1 a — n -^
0 « W^J —^^J VC0 1 OJ X — O ^£ —'D «£ « 0 a- > h b L 1 U PS j

o IM - C - O - -1 •M > 0 CO w <H - C - -H - w 0 JJ 1 0 *J O 0 «J 0 - CN h

9>
OJ 1

o c o JJ i
•TJ OT3 3*00 OJJJ

10 ~H
t-i'U+i'O 0 V <n*OCI

•M M 10 > o — X a t. £
X X

X
10 X

" § •t) O
0

v

^H C — C *• CO 28 ao 0 CJJ C«C*JC 1 .c XL I 1 •o 0) c a i JJ
XI C c « i nh IHOJJIOCIO IC IC IC X 10 10 JJ 10 to to XJ t to t c > it tn

IP a i D.^ Q. OJ a- — H u a i a^ai a — 1 u 1 1 <t> U 10 3

K
> -^

m 8S Pllll £>xi-tx>xL-iX'0 to c
X «J X

X V) £ 2 2 X J J8 S a
1

JJ-J

^H

iri ^H £
NUO&IGQULO

X 10 £ 10 10 10 c 10 1 —< ^-4 E a C > kj tr I »*-l IM | 1 JJ 1 3 ^J a o -o o i o E aomu-notDUi JO.lt- JJ Q-jJ 10 10 JJ 10 JJ: o 9 5 lilili Biriiifis Si •Si"1 I 0
IM 5!- «

— X Si J? !S« III
a *> ~JS ** • — — > —•» X > — CD 03 — JJ ^^ H*j •-* »—

h i l —• OJ w 1 1 CD CO > >
a /N IC *\ ^^/N > yN i^ Cfi^. — /^ w)<^ > ^ 43 /v M /^ J«. 10 A r- /^ >• ^ ys CD ^ CD ^ 1 /* i J* -; 1 ** I w | — | .. J — • — * — • -—• 1 - 1 - 1 ff> 1 S£ 1 a i - 1 « !_= 1 - ̂ t HJ 1 C 1 —

c ~ £.

-H

o c
m

+J ^. io

G-
w 01

••-< > —I

_ 01- c
u) c I
c —
o
o 10 n
— c u

--2JS
O *J 4J

(D

U (L-4 K
w —
« *J ^: cc

. -H (ft .-*

I >H I/) -IP

r> o -H o .-< C.

- o,' : it c : ; ; : :
• f r trir ?ex t? r r
Qic^iticitic^ci:*
E « t; ic « « w i: w! n n
B w « Bi «; « o t" LI w i:

' - - - 0 "

p
o
r
t

' r
e
a
d

f
i
l
e
)

H«^*iTi>or»a3(J<H

1 '
• a.

C' re

CTC-trrcrtTCxxrc
rererecrererererere
w u) to H y, « u: w w w

EEEEEEEESE
iccrerererereicret

-^ fN 4-t I \"Sl "i

s c

t

c —
*5 I—I

£

&-*

i

n
-i«)

jj n
10 c

•H 0

Q — fc O

6 Ml Z."") — o •*-* "c _ 4_ U — L. .,_ _ ^ h •D •M
I c: u |-l E fr«& •uqjOOti&lGOOlOOi u Jj — c c CL» C t 0 C C i> C U 1> t; CT • b I-. u

E a.R- 4 -fc.--^_-^~.-_ ft. 4J L.UUL.UUk.MutMUO;

~tH 4
1 /-k k 0 c C(t (ItlClCCt g IH coaccciwadc- t /N

II.-1 —
c r

L~ _ c
c

L c c! CL
I

t:

•*• '.". x X
K ti *S

»- XOCOOCCCCCC •". ccoooooooc*- U is o
ti« r\ id 0 I — -a TT ^w-.-.^-.-.^^.^^ o

•*&- ct — — 10 -~ n- _ (ICCOCCCtl U w w• C C H C 4; C C TJ —
i 1 9

/"« \/ •«.
— 1 E

~CSL£.£.Z.C~Z.J=. ~
1 w c 1 — 1 •• 1

> <M
§ -

8 1

9 I a

I' i o - :

'So"
c io :
c* -
-< tr
«£'
C C >
3-H I

>-

X a: u M u
HO.JH

OfflOO

p. .. to u; v)
l.i

ID • St <
• Q OS O X.

*J 4J i-i Q 05 0) d
no »«« XJ >

>,4-j coiea>.-H>->o o5n W
- n o > >.*J am io « >

K 3-HIHU33 3- Ikl
— > l>>> Ssi«

H03
1-4 10 U

y l*j XJ JJ J2
O.Q U c c "

I I o s o o J:
Q J3\D J5 0 > o -
« O O O-i !-•

*J —

> O 3 C
13 > O

-» no

C 0 *J
-rH "S o
»-. B 3

01 c. u
•D 3-iJ

a. >.
03 „"
IM > Of

U > 10 t?
N 1 Jl^C
•-• 4) 0 > 0
io 4J in i H
a is « i
> 0 -H e

£ -1 C N 01
O-i 3 4J
10 « >s > (C
II 1 >

.C«J"
EOOb
S J= » Q.
Cli- >- 10 -H T3
+J 4J ^--H «

,^ -1 40 C
3 I > -1 M I 5 0 i i i n X

!H C • » i
•U £0l-i « u 0 1 -~J= ^

E *fej8-|
4->

9 O H J 0 1
— 01 % £ — -c

11 4J 8 i 8
n oi — V

H

>(B B 0 N C -< 4J —i
10 10 —1 —1 —1 • —1

4J

v
f
u
m

-
C
-
v
s

r
e
a
d
-

a
-
x

n

a
l
l
o
c

s
-
w

n

-
p
a
d
)

u
3
k4
w m i n i « i « n

•0 «J to X c x: «
—X:-H — « —j:

X

it O « o «
OJOiOl—W — — c c c c > > > tr

•« -1 -H l» I H
1MIM4-I.Q C<0>010
HI ii o o o gc ••

10

!
•H

•

B re

•o I

.1

K

10
O S
O K

1
-

E

— n

o
CM

» «•» -rt

0)

 | • 4J

1

0/ I
ST

5^e

c-— -
t —• - So

~0 ~

•Vi 5 A - A O A
eu_~_i_a -1

— « u
CJ (C ^

• (.", c

jll
"l 10

to to

O 10 —I
O 0

I H »
: O •

C 0
a;— c
~ 01 £

-H /-* r-i /\ -n /\ w ic

01

IS
— .-I o —

S3?
c •—

4J 0 ic (b«
u 2 ?

•c ~ r

£ -i t —
— —i —O

a
^ £ A o

1 l ~ l —

I
g
u

— to u •«

% 5
— p ic i-i
It O *i I

i- o T>

E

o

JV-S

'- I
C-
0 -

1 '

a i

5 ^ i^g1 g1

~ ' <" ' g I o I

I —I
10 ^\ --H /\

— I C I

V
o Ci —
io c- - o>
^ to O IC
/ 10 *U 10
 C 3 10

E H U

- JJ CbJJ

C IC
IC —i —-^ .

u o- o
cr i

ri io 4J
c to [

si-
10 —I

4-1 13 JJ «
to

e

01
u
t

C
—<
o

— 0) —o •

I — i — I

c E I

&
, 8

is
o

—I 10
-H C
01 0
-c o

c.

s~ t h- £

P« O 0)
a D>

tf) 41 to
« u io
^£ I
r« i
re £ JJ

0 a
oot) «
CD C —c

^-H 10
— ki ^\ B

^~4J IO I ••£
4-1 «lT UM-
kOH(•

8.*\r2gB -
*-f —< 4-j T: — ^<
a u, |w n
Ei m O « - u.

•U W JJ c
— r« &** c -H

10 4J -*H C

O r\ v /\ -
g I — I I

/H{Nntrin\or^0Da*H

Eiotoaa«v)«]uiv]io

^il ill IIII11
toicieioiiciciiie

8..ha

i. -O

V 2.

 I I I I I I I I I 1

xoooooooooo"

as-

<-« « n * in

+ + + •
«*> r^ co <

9 4 9
n w «
W W (0 ill

« a « a «
vi n in in n
io in in in to
fi fl ft • B

ll

8.* a «
a n
to to ~

1

5 5 to

01

t
I

4J kl
I I I I I I I I 4J -i

a o) OJ oi oi oi
u u E C B ki
01 Oi 01 0> O 01

a 4- x £ x — £
— —>4V B 4-1 4J 4J

0 0 0 0 0

u
Ul

1

4J
«J u

5^8

1

c --
0

Ifl '-
B

>-
£

10
•c
c

6
a
1 s> u

T~ m •-• CN
Q

« I K
n

m K n *• — i F •• 01 F •* £
-~i i r- ic •*H

<J •0
1

I — J2 u * | L ;
fN IC < •H e — w « <T: m C C
r u V O — 0 un ; CJ L I L u
i i. If] i s H] M
C X r^ n —< —1 a*

•0
I ^o <0 t0 B u 1 i i

M
v^

wi vC
1

T. c m f-1 r^ • K •O l"l c m

J- If. i/i in *| 1 5 1 U
IT. 5 ir It IT 1

—i • m •FH <^, >* a s U T3 u *J y I / y
rr s r^ p* « 1 n 1 <c / V) p» / r^ 0)

c c rs (N »* TO SB u u • fN fN «•
- —

*£ w h i-
/ s 7 J= *-. i hi

—
~ f\ rs 0. a «• \ 0 c CL l^ z V.

11
<
in 3 <

8
vi £

• < <
in

<0

•x M ^ "«- 0t — OJ 0 <D V tl 1' (^ — 0 u *• — pq r^ t- o u u M O
r- — 1—< K K Q a & £ a; w K

rz
r- m L -X (0 M r^ -^ w e n

Ifi 1 ! V C !M « i
•• z rs — w c _ _ c "0 •c ~ \ r«- - f ° L « OJ E C . |

•V c 1 c (C 10 G £ 3 o
ecu c |j tT c T 1 0 \o >: •o c •c IT '- := c 'j 0 J n 2^ l-H (T "" B 1 ^~ e t i—• n a) •t K c n V. E n c •*H <^\ C r. z w t ••

I '- i-—- ' —, H L '_• t 1 1—• 0 0! "I C «« — OJ z o a> ON c i. •«— : >.•" — c K it /" *-• / n W ^ tf. 1 v; C n -
| 5 •.". <t 1 l/l | / s 4^ O 1 - IC •H —' a M iT u. V

? I :
i
is f ^ "

f V *J

1 3 5 0 9 , w £8 5"§> 5 s |
s

r»*-t o

c o -> X is. II c *~* rt ^^ w hi * i ti i 0 IB 15 01 0 i H 4-' | —i 1 IC
tz * (-; IC >- * FC c +J c I- J •c K ID'S <J

<Z L VI c I • •f-> f^ c u £ii t % o UC «
t 0 y. c t 1 e *J O - IT. — c o <-. c a o

C t: 0 C '- M t 1 0 1 1 i S IA l c en L u
•/. •3 u "X L tfl c U 0 V >. c c «C k. u X ~ «• >.

c 1 c { i c +} Ji i — 0 £ * o fN U^ i^s CN I '_ gj *• *~ £, _I V

0 * ** *•* *-* c L o B it £ 8 E-l X
K 0 — s a ^, £ ~" """ C L

I ~ >N P-| •w

B- ~JZ 0/ E £ t fN r- *r - —i £ CJ n c t i - c • 4J B 4J E s ys /-» -•-« JJ «— tN ^ •J- G ^ /s o ^ s\ ^~ ~ (C >\ a fN * £ •\ ^H /N

< I ^ 1 c i — — • •— I o: l — -www ' c = 1 lOlOlOl-^w,,.!- - ^ - 1 O 1 u i a 1 - 1

K <--

10 (>!

^ c

58-
U l u

*i Off1

4> —i C

— JJ IC
a 4J

2?S

/\ -H /V -H
i — i 'a

0 —

|o
*J -X)

1;
i—I «o
<0 U <G
4J o *•* c 4J ^ _ (M .« «;
O I o o

Lg1-*

gj

rg 6
u -i

(N
o

0 V

4-» ^H

•»-» 0 CT> CT-tJ
0)^4 o ^ CJ
o>* -« w a*

n o « S •*•
Hip H

cri'D « IT 13 V u
«-> T) «; ft ^ « i *-

^. o ~- u _ — I —CD
C JC <N 'O O

A*. A WN OD^ C^'H
• — • — • — • " I ~

n

rt CM
*H C —

OJ OJ
O tl o

98 8"

&5
•H O!

u
to

5 8"
J) IC
E -

IC 10
U 4J O
i n i

^ IC -^ «

£ i
4J T3

E-g^E

= 9
>. —i

OJ -H OJ

V

« W IC o

c
x>

BMM ^-(l*-l ^^
O 0 « I <->
-I I -U X
< x e«n
4J 01 U TJ O
K T3 I C

C «J-H »
I
IC I

• I _

a c
£ 4J

SE ic ic ri B

_ ai —

A4JA
01 E
.c " ••* — ' ">

, 4J r •
•0 0*0 0 O'-H
•0 IC IC I JJ C

— oi — i — o
C "O I

^ +J /N c ^ «
i ~- ' ii i —

o

3l
M C *J

-I M
n rj
O V 0

0*"H

0 n 5T
-H w o

4J E <c
K a
0 *J re
1 111 u
~ U I
(0 -H *J I"*! ri-

I /^ 4J /N
I I «•» I -<

01 —
rjir^
« u
a i s u 0

l"£9 I 9
a —.
JJ « c
SIM 4J

4i a
I £ 0

•O •*-» I e -u

01 ""
/^ £ /\

I ~ I fi

e i
I n

— C
OJ 0
O -H

«J
— c a
r> -^ o
0 5

II -i

-H w o
C 10 "
4J oi a

1 u u
•o » I
O « 4J

-4-
-« A 4J A

0 M

9 I
•3?5 9 4J-H «n

I «J o o
•o o i u
a i *> i
S<H IIIM

— f ~ ?
•*•• C ^ C

1 B I tl

— 10

9 & - f B « o ^
4-1 — «
fl flu
i a o

•O O I
« I *J

I H I

9
r- II)

- « II)
-H 4J OJ

3Se
O I ±>
0 "O U)
i a <o

•SE~
r — 0

01 I —

& | " c — n ~* v J*> \^ r>~ z: c
i c O •-^•r^r^r^r^r^r^r**
1 ~ £ >• -•

«-*, »i *1
-» 1 1 (.. VI M
--S Jj 4-' 1 5 C
x c z. tc IM

V E —« ^ ° 1 ? « M c — {Nr-i^-in^r^o — n
- Jj c ! ! CCk0SOOC\O>£vO 4.

V. n -I c
4_l Qj V TO •-<
'J 1 £ *- = « 0) 1

P TO « o •^i

*H 0
I I 0_fs;r-i<-invar^C3 1 n

c,~ , in-.^mifiiAu^i/iinui i »n
*J r%

X K — £ — D <o
>• | 0 T: ^«

o -~ O ~ c u
to —1 — r £ M ^H

f-t = c ON a TO
~ Jj 4J X y. 0-!Nnrin«r.(D 1

G C O <js 0 c E X S CJ ^-.
cr — 3 w i 1 T3 j: TO LO

^ 0 w
C t, t

0 W
v. 10

3 — „ J TO
0 TO
o

u
„ in in

JJ
C C N Q. N U) in

c •
W O (9

c-
O — osf^^-uitasr^OD

— m "3 •o 0
— ^, o

§ a U >- 1 >• i 5 0 ri^nn^nnnn 5 y X
a G in W —i -H u \ B s *--.:- v. TO i 1 « « TO X M

~ trl F* = — JJ <r, TO
X r ~ u II $ "8 0}

c 0!
T3

L.

i "•"

;.' fiuu) Ci
1 >- c— rv f*> r in \c r** cc 1

TO
0 1 i ~

rz

0

u
8
u \ j; c Jj *— y. — ^v tNrNfNCNfNCNfNCNOJ TO ^ J: >. H s W *~- 10 0 «l ~ — 5 -u C -' 1 X i X m tJ V TO X n x

1 ~ >. •H C « i 4-1 t* L: h TO u -£ 6
X

••' c « c x — c '.-. 0 1 y. x I fC (J t. 1 TO
I

in 'o
IM r>: c tr. c i 8 0 s | 0 a* TO •*-> — a- <H b o
u &£ g| > N > y. 11 / 0 TO c • & z K S ts X 1 / V 1 0 •H c to I* e o £

c y. x-2 U! o — CNf*i«-in\nr-G3 TO t ^H ? r >— TO 1 C TO
? c x t c T 1 1 X cc * > — — — ^—*,—(.^_^, ^ *J = ? £ •0 — « c t CJ 1 'z i _ 4V c c ^ TO iC <M TO (L t V. 0 t t p

i '.: a i* ~ c C ', O T; 1 IM c iZ 1 to w ^ - >. TO >. J 0 rj 5 0 c C c: 0 e <c e
r- _; a s L. •_ | ^_ t y v: E •c >-. 1 x: ,~ c ?1 i -i

X K 5 s X 3 « TO U 5 f
]T >• ^ >* >- *J5 t c *1 4J 0

c o — r^^^-iPor-^c TO <Z 0 c c B" *J 0 ! C L: i: t; -J 0 *- — *J Q t: — *J u
(•«, k M M — ft. M fZ — r- — e ^H — cc TZ x —

x c ft. •B C! ^g Si U 9i 4J »c a- S-. i = TO
0! TO s •C c IC Q. « — c] TO ^ Bi^S

1 X i • x c* rT- C^ a« U 0 ^-iTI ^-in *- c c z _: i—, o •• 1 H C ~ TO ~ TO iZ <* c •-\ D -^ o s^ ^ /\ — •\ H O /\ < _i_ C 1 — 1 - 1 c 1 — i — i 4J 1 w | w i C - 1

1

O » P4 —I »-• p

I c
•mn(

M

<

C 1 g I

r- ff» ^
c* ON o<

*~ c r-
. s

C w

1 N ?l
<z — C -H « -rt « n Ul

II a m
£3 li *J JC ^ *

«-< fl ""• JJ « <-H *J «
c . C ^ 1 c -*

5C- 82« 0 0 I i§
Hu-

rg ? £ „ ll 0

i.: ~ z <0 c a
•C 4- — « *j -*

!? •= S ~ £ SOi
P"! F '** ^c r*i TT iTtflh
Hi *r o \D se o ie o c ; O 0 0 O 0 ft «*- 1 IM

I ~L7 >• '<i
C <C £

 1 01

5 0 U ~ if s£ (N r-\ <- IP M) ri T in vo r** — .c i ~>
P») CD CC CD CD CC in m in m in -~ y i *-» O 1 U 1

V rz V. *-» -«. c w m c o —
t J — rH U « — o « -»

*l .. ~" 10
•• £ »

- - -O C.' OJ w-vo 0 --V w \o r"
K — X 1 -H tO X n O ft r*\ «e U"! UB T~ o ~ 1 . - TT in o -4) 1 •« 0 i - O <"
V o; r^ P- N P* P* * •c- «r rr T *•» I— '-N 1—. - ~ « K X \D %£ u y •^ 4J 1 c

! - >• = -
K

x
 n

il

ra
y

-f

po
ne

n 5 T5*
>. C 01

— C 0 C
x k. a. D c X - i. K •— X y j A {^ >: X

a: \B EN *r IT o j
TT tfi r-

>~S S-5
tfl T in v^

>. K 5 "0
1 t. X 4J

>• r. 1 :.
o «•

c 0 sC v£ O \D Nfi —1 (n r*> v> X if. >.nc f\ o; i •-• is X > >.r-> <n
fC 1 > —. c fl • III c K a i i i <Q

o (fl Li U 10 (/] (/) L L. — <S! U ^ 01 OJ LI U
r- o c c i- "Z X t £ — 51 — CO u U C D C — o ~ O •iH w QJ ^^ U Ui IC t «D kn '- >-c K - t *c -i: jr j= tt (0 K K * r £ .c IC

-• c c o c L- O i & a c ^ -. •H 1
ir _ o b >• rt C. c ^j ft; >. "C c •D IQ 4J «J >- 4J

\C o r< «- U1 o ^p |_~ o c i ; o C -^r u^ vc c <c c o 1 c o -• c re — c o *-
in IT J1 u- in c c r*s cs fS rs r< w « to -H (C - t" Ui w o: k- *J

r- o c o t <o o u — u c (C —. c u Sfe J. - k.
CN x^; £L fl ii Oi a ic £ £ 0. a

(X tv — m r-. T- 1—• v o >-m n w 1 ^-T
u M C — c (N ^ c
a. O in ¥ & ex — ^ ^ r—| C* /v —(^-v o •* f-> rN ^ •HA (C *-N fl * —* — — ~— £ — 1 ~— I — 1 z — I *•" 1 - 1 •— 1 C 1 w i ~ 1

O^rMnriPyflf^tD
CD 00 CO DD CO CD 00 0^ 00

^ ^ ^ *»^ ~
cr C- <r C-. 01

a- o> o en a>
o> — o> —

li
Oi — OHDnfin^l^OD Oi —

c £ c r-r^r^r^r^r^p-r^r^ c

Is 5i8
1 N Is 0 01

fl -H « •-< «•« «•* 10-I
0) n 01 n w

S:8 Q. 01 Ss a. oi OHNn«»i«\Dr*fla a. oi
>- K >. m •sD ^ VD \Q \D ^C \D vO \0 Ss«l

JJ J: JJ £. - £ JJ £ U£

iii- JJ a -- 4J a —
F"

•u a
C "H ^» c —< — C -H — c«

Com Bom

join

JJ 0 in 88 12 E o O^Hrfn^inicr^oD 6 o
H4J- H4)w H iJ w -* 4J intninminintninm •H JJ

f go. I) 0
1 £ 01 1 E V) fl fl

to c 0) c 05 = 01 a
fl*J^ a *J-H « 4J'H «J 4J a 4J

(N
J= S IT ?!f '•Cl, li OHfinTiT»OM»

x s
OrHMm^ rt n»OI

1 O 0 o O 0 0
»-. 1 °£? O 0

•M
O 0

•w

a.
 1 10 — 1 01

t. is ie
« «£

§
. t. • Li • U • u • Li

«1 u — a> »-• —~ V k< — 0) Li 41 L.

i «f" If* 4^ •gr^ in v£) r~ cc
33 00 00 03

£ «
O 1

o*Hoarn-riniop».eo €? OHrtn* n m v in

c oi »n ic 0] in « to in « 01 a oi
o <c — O «! — ^^ O fl- o « o a

*i
CJ —vc S

N at JZ
— w

— c •>£

t< V w« 0) wlO wlO «
• — H -H N I —< M •H •H in
01

0 "H •) —
« 1 •* ft 1' 1 -w iTu3 ME 01 1 OHfNn*in«>rsCD 41 1 OHfin* dm^'m

N HH 01 — c ^ (0 r*» r- r^ r*. F4 <N « p« n n oi o» rq M rH m r« r« n c% c* nctac*
U HHJJ 1 M •-< iJ 1 N 5 M -^ 4-> 1 •^ 4J •H 4J —
1
01

fl *M C "D
•" : OUT!
t >• c u 1

M 1 I I -O
>. c t- I

Z 1
•M C

1 «
>- c

IM C -
1 41
>.C X

o
0 B 0 -H D>

1 hS.<c • h a oi c 1 C
IC O-H

K
— ic 0
H L S, M XL.fi.>,

03 •gfeg^ t 13 835 feg-S in bfi r>. co
>• K 0

o»-^p)fn««"invor^CD Li X a Orttin* PI«*J1
•-trH.-Hf-11-t KHHHH

H s i r r u K 1 I 1 O 1 0 1 1 1 c « 1 1 fl 10 1 1 Li
kt 10 M W l I (0 0} to 1 m 01 01 01 u Li 01 01 kl Li o) ol a

r- — <C <C «J C c * *c c c c a o e u Li K fl h u n a i o
r-l - JZ JZ JZ 01 £ 1 J: J: £

>•
a
i

4-J
1
u >-

•
1

+1
41 is S.

o

-H cr a i 0 C 1 IM l a c in io rs. CD Cl «
01 Li

COHNn*i/H6NCD OHf(n*onn»ifl
*i u « -H kn ui 4J m u •H in in in m i h a

OS K £ «: S 2 II 2 « s. Efe Li
a

4. Li C
M a -i

o

N 1 *' 1 o
u ^ C -H c — C H C wi c
a. tH 1 4 ^ tH /N IC s\ •*• A *\ ys « /N ••H A fl /\ -^* A 4 *- o

«S C 1 — 1 c 1 ~ 1 c 1 ¥ 1 * 1 — 1 c 1 - 1 c 1 — 1
w

tr

,
-— >o **
r- —•

1 e tr r*
r* — JJ

in | s s
0 c K N
N H •-1

n «]
**WCCHOO (A

10
K

rtfltSHOO

X
1
in s 5

01
sfi

^
.c — H — —i 4J ^ W

rr^W^-OO
r 01 ^ 1 1

tn H
r- W*. 0 tt 4J -H

+1 LO —(^ C c
e C •»•* 1 — c c 5 *—

t: i u <Z T j; c c S 0,-W m 0 c tf%
in

H ~8. j. " If i a.
"2

«l

CO m «-t r-q —• o -H —i —* X WflfMHOHH 1 >. a; 41 <r iJ -^
I 1 i i 5* ? 1 1 >-«*J N a i -— — '—
E If! £ 0 i -^ 1 M ~ CN
fz C V) K •u v. 55 2 a £ —> *c .—. —4 C I M •—• —< •—

C tfl Si?
IE

i — \T\ s *J • 1 4J - •U
6 m tp I c u, & J^ ~ O

C CM f>; M O m4 K CN —i c (\O)HO^0)(N rn C) c " r-i C r^ IP u-i —<
1 t 1 •^ 0 1 1 1 W k "3*^ £•= — -r C

6 1 1 N in
i a;
10 *c

0 « «• Bi — On c^ in

*i
c K <c

K
0 * 1

1 W
<c J1 „ in m ^«

ki SL 1 r; n ;: c
«3 C. M R «• o * o ^ *-* ^ L* 16 X -Z ^-o —i

n £ •-H ^H O •—> (N -i m - X HHOHtsnrn c fi r^; £ >.'H ,-^o >^ fN M N
X U jJ 1111 N -z c •**• +- 10 j^ en n fN c
u K <C 1 S 0 r1

X 1 1 i fi 1 _ >-
>. c 0

*J j^ IT
H £ £ c c I .— c « "^ c in

S W K IC c u o IM O - • M
? ^ >^ " £ s >~ s k. 0 C —« y. k, S X X .— ^-. p —v _0 -- C ^-^ 0^ O

o C N a e s JJ tc M S >; 1- t 1-. >- > >• = C O H N n r r o -* OOH(Nf"*V 4J jj
l B '0

JJ —1 ^ in E Ifl e^c P & X 1 1 1 1 i 4J l- c >. 1 1 1 1 1 4J c c X K >- C s >s 0) >s «
1 - C n c 1 c IG | C 1 1 c s a 1 n r- i ^r 1 *~\ 1
tn -H | — tfi c <C IT. 0) c k. b. H u a; 4) «-* to
<c i- •c 1 >. J 1 ~- IC C >_ k. (C ki s s H N

n £ t c X .z - 3 - jJ — <c ~ £ it
•

« X X X >s X i i m j^
in >.*J (L >. v 0 G X _• Q] >. b BJ 4J X^J X c In I © o —> o; «-* -c- ^- c* t O C •-» CN "^ ^- *• i c c o O t fC c c r-a E -N

k. •*-*, ii.it K — u 1 I 1 1 1 i- t; t- o: — U c. L; c c
n 3 US _^_ 5 g - i Q,

•v %t Bjj t E u k4
a 2 LO E tfl o^g

1 — c o O «^o *^
k e --^ w- c — H ~ B — sC C i>H i-^ B — I | i
a C /N •^ <C •N •H /N -"V CM «*s IC **• IC /». «-4 ^N K s\ ^N A wA < — 1 C , •7 • C 1 "C 1 ! i C i 1 1 — : i £ 1 1 c : — ' *— 1 — !

ifi U2

1
—•

1

*J -J

c C — 1 41
c I c^ a* o 91 S. £ o o

O^ tjv cy* 9l = 5S ^C f* X » ci
tJ1_ tn — ty — C> — ~4l 1 o
c c: c c -X
0 « 0 p 58 0 10 — to — >< 01 C r^
M 4) •3 4) -H 4) ^H fi « 3 to •«•

1 K 1 H 1 N 1 N JZ n K£ E 4- IN « -^ a -H 10 -rt *3 -r-l «H 01 •3 kH • 0) to 10 1 C K <kt tT' C « «•

tk a. IO 2L to & BO ~s « si •H 30
E O" • r to <N >. i >i « >. n *-*•-* 1 TJ-H

1
4J r.
i

JJ £
1

JJ J=
i

<-l 1
1 « - a

01 1
age
£ 5 0 4J (0 *J a — 4J a — JJ 10 « JZ

C <-H C *H « C <-* *N C—1 " 88. to-*

|2 11" to* S2*
(0»

18"
• 0 <^

O 1 4J
a a

D o m * in ic r^ oo - JJ 1 H »-4 »H <H iH »H 01 4J JJ «i->

-• *;
i £ io

H JJ w CD 0D 03 0D CD CO 1 1 1 1

kl c
§£8J
OOTJ Pi ti Q

i £ to 1 i to
41 JJ
3 C C

CO n c tfl c to c

Si
1 *H

E li K 4-> a 4J -*i i 4J-H fi JJ -pj c
£ E « T ~ S J: S 0> tit J: s o>

E -H 1 JJ

s m o o o o co fff X >•»

I © 0 o 0 O o 0 0 o 0 0 t- r«- 41 1 1 1 J3 1 n to c *H
*M •M | •M r Hi 1 01 "~ 1 01 n i « >M

Ti^ •uL9 1 to
kt >. «3

— I 01
kl >.«

A «
Ol JZ

~ 01 — « M fi
in* I S3

r £ i

1 •
eg a a « £ O 10 £ « « JZ Ct JZ

5
• >i • ki • k, • k (N ^* in ^ 01 01

IPs
41 W ^ 4) - — 4> ki ~ Ol tjl wX fi o « PI

Q U 1
—jq « *
o 0 i ^•5r" n o o o o co

\0 UD
- »H "S 1 1 1 K

JZ • c fi" *H
£ « «* 10 M T « 10 » **•> *TJ W vO 10 -> H 01 in o k« | o « o a ~ X 0 K — u e w V 1 >- 1

N«kl
c* E •

•c ••£» •»« •> J= m •» £ H ~- o 3 °
1 r-3^8 s ^J -* JJ £ X

g wio - —1£ 4) 0 vlO 41 to 2S. 01 "D •» c fl c
M —1 N -^ H H —• H 1 ^ ^ 1 —~« 3 X « o >.

w 00 4) 1 " V 1 -H 10 41 i — ~ • 1 -H W O O O O CO 01 1 Oi to m «m X fi
S. VD t-t * -H 0) to <-* to ic ^H tn in m 10 •0 *i 1 1 1 10 c o M
u •H 4J •H 4J 1 OI-H-U i

a i 4) £

•-J JJ 1 JTHOJ 1 1 £ 0 m Ik kt
to H-t c *•

1 V t
low CO
— 1 41 5

«M JU •H ** n to to X X O 10
w 1 41 — >.~" 0 c 5k 01 Ssfi a a k l

--.^O "
>. C >H X >H C k, - >. C k. « to

k, gi

10 0) 01 « JZ JZ JZ >. >. k

cr. x h ax
« 0-rt
kt EL n

1> « 0 -i
1 k, 6. B

fi O -H ^
x ki a to x

kl 4) 4)
kt 3 K >l M

kt 4) 41
kl ki M

k •
k

fi ~*
U 00

fi
1

kl

as
n >>.« S >• S S^^lS s* MX41 rnooootc

^. fi 0 •s >.•«• *
fi -1 -w

1 O 01 >^ 1 "
t-i t-t ^H *-t W r-l

>• II
fi 0.-J
1 X 01

L fi ki o
fi o 0 ^ « 1 1 10 1 1 1 1 1 1 1 « I 1 1 fi C > 1 fi •w 1 fi C 4> 1 IH E 1 o 1 kt

H W W M to 01 to >• to t/1 10 kt 0) 01 tO kl fi 1 0] k E to h fi 1 10 9 1 t-t kiOT) a
Pw M • a a io e io fi <o to 10 kl 10 fi fi. kl — >. fi k — « k — Jkfi r 9 0 P* c
f-1 «s c x: e x c JZ k. SL H JZ fi JZ JZ J: io J3 JZ • JZ c „"° * >.to l I i H 1 1 >i 1 N 1 X U i 10 - 0] M
in JJ >. V >. « >. l- >- JJ

0 fi C
>l JJ >.JJ >. 3 >• 'OO'OCD ^ 0D ai a u K i a H viOtf)M3 D"« C t-H ^J tr c CHHHHHH tr« £ * E c o 1 er

0) U K U 4J U 6 kl *H o r^i en <*i C. n JJ U •H 1 jj ki XII 1 JJ k E *-!

K
3 O JJ

ta is 3ife iH kl kl
a fi a 4) kt

0} a S 41 kt
0 «

kl St. 3fe fig ° i
1 — 1 ^* 1 •** 1 ~ 1

M .—i c C c c M c • J c -H C B ^, *
a -H A Q >\ a ^ e /\ S /\ •H /\ 10 /\ H /\ « A X /\ fi /\ a r> 1 JN 1 /\ #*\
•« c 1 — 1 *•* 1 — 1 — 1 C 1 — 1 C t — i C 1 — i — 1 ^ 1 —' 1 " •

i s
a

— -I — IE
— -rt *J I

— SO

* K ~*-V

>,0 N «; -
k» S

$8
t kl

1= i- •

23 <: < > >
L: X

JL2-

ct Z — <
e: —i s: A
B ~ — I

SB

0 «

re «•«. *-»*-» MI

o o
10

s & t
rf 10 •
« — c e
in« ET Bl
A3 5 1

fr & >•

o

— r-

c

ts.

a. t

-< O O -H -s
& & & fr»pl

c a -** »
Bl-

•M •H -H -^ 4)
III IN

10 •
B

O O -i -. O -. -H

a x .c

0 4J

ai

4 IDIAVO tO
-H ra n |

— 01

in in in in mi
~-t n m ~~

- -W

•
k. c

n rn p-t n kt C
ft PI n • o

I *-i

m \C fi
i CI o>
5

•-£
**ia
03 -1 in
«4 1 in <*i
— Ol

a ki o) o —
-H ^H ^H © ~| _H ^H ic o> c
9 9 9
0) X 1 X 41 X EEC
I *J V *J i JJ
0! C 0) C «

!» 8 '
frl'

KHKrtXHX
41 * 41 0) 4> t> 41

—* I *H I ~l I *H
an an a vi a.

B B 1 0! U

c o oo o
•rf —I (N tn

rimGoninoonmoBi
*-i —i ^H m n n <

piB >,

V I B c • c
— a in

£ «
SN i

4J kl -^ HHHMrtrH

/•v B A B ~ B ~

Ski I- « a
-H ~ C

e i " i

o a. IN -H

*» ** n o
8 4J *4

•H C 0

» • N rf 41
8 41 >•<» S

I B —
1-. 0) u

£ a 4J
H I C

>.-j O 41
ClCOn £

•^ 'N B ~
C I - I c I

1 1

\
K '.-.

c_ « c « -—

E i 5 1? .g
S 3 *-• C w 0 c

•.: CM
\ 3 p w $ ««N C OC

c c
L ir — r-

§ —1 '*"" ..

7 V. 0 ^H o \c r-i
N fa Q Xl LP • \c r^
CP 0 fa >• O lO -H fi

~. >.£ ft) O" ^ c £ — 0 0 • O
c* 0 01 (N -» 5JJ ^. ^ o-^ —
-H

1 TJ •«• - u; 6. o* a = « o ow to

efit = c -» c *-*OJJ z n c —4 0 C t- fa 'J rH rH

1 c 3i c tr- in o K o e: '-• wvw'c 0w"ua.5 VcmO

S 25 Qjc VJCWCO—wcOoE AS 0 c to
c ~ w o -»*s o 5 6 « BpoE^ o c 1 c c

r- — —
3 \D C- > L n t! Ut-TCtJr^OCJ-Cmuft)—CWr^tOOr^

o
o >. O 01 0

—t <0 3 —-Am Ct ^3 r* c n ^ « -- C *fl *o o fa O K fa r* «•» U CB <** U WP^^^O 03^^-^ to cj««n«
r\ "-* + fa (N C rue ((ion aj tfivonu) if, ifi n n c *D ijjvDNDf^vo

o — K fa fa m -tr, inijnv -mvo -r->r^Qctfl -sOfn •
mo nn n»oon\oinonn 0 0 OHCDO
•— ca onno CDHO CD^O On oo

C o X 1 0
r O 4J 0 W 01
IB W B >- fa 8«f • 0 -QivD • n -0OO • 0U3O w i^ Q) • -fl)
c. •<H io tj r- *.C J .--m^H^ • .^^j - . iflniJOH+J

•H —4 fa N Itf 8 r ro m roo 300m 0 5 3
c_c-a)C c-oac- aa o^oaa)Q-a fa

0 -*x ic 0 1 0 ll t£*J E«JC! -ftJEOl^ftjgftjjJ • • -E+JCJE
*-- B 1 fa 0 U «
.__ 0 io en c I 0 cva 1 lOsvlGsa oajo

H 0 8 « O — to ~ £ « 0- c". JJ tO'—C-Q.y; vaa.aaa.^E to —
•S — B

i
ex o c

10 • 0

w^c^cv<ow^c c"^^o 5$ 0 ©^0*""'-'
0 ^H 1 C -1 *^to — n u ^c^ifl u 0 — tfl 0 t;> 5 j 10 — -* to
cr *<H B ~ c TJ (N 1 -n CT? T;— t.:Et0T3^""t0*D—««Wt0T3 tflTS

c 5 1 c xi fa
•—<

c — £ : £ 5 « C v "Z OCv^DOiiijOC C K « « « « 0 *c c C w
o: — >. k C;-; ft L w z 0 ~ - ua,CT:oo*CT3««toa>coo;'o
S IZ £ C '.: C K = c « C v; c c 11 « c : -3 t •: « O 4i w c fa •*•* *4 c t.: *-• c •-: -A to 0 0 B c c z c c u « p

s *•*
•H

LO fa — fa
CO 1 V <J f~o BvDCiJi"! C^n tl u r* vD Jl (DO v 0 vO Ifl "^ vO ty

KU c ^O *OnOnri»i/]^oiHCHCl* rn^DB c — 0 c — r~ \2 T** \D f\ 'j r*^ r~> OvO BBBvO'*^'*lkfl
£ •+ C <• z «» i § i

. to S fc
f*^wO\D'*^'^flJ',^r*>rr'rAO,0',rir* ix> ^ nvc f*

cr L: C — c^nc i/)(ErinnoinioinifiinHncDH\fl
CT. ^c ^•O^O'^sC icocinyaon^jo^tfOnaOyfi

— * X XJ L • -vi -C5 -in • -CDQ • -CO • • • • Q • -vO
i- I ococ^ooooocoooooooooooooo

o o ;r.c c
•p w CJ-CJJ^ o ^- 0» *• — —• O-J---«O OJQ;4JO CJ-tJ-^

B xl J- V '- —• 4J V — L — '- — C
L.T w 35 Q K 1 > rcft9L;l3efl.fi.;oQ,(L33Sisfit38Qi

*
oi

3
-
r,

u

*
E = 0£OE&E = CC£EC(I)EEEE&EEC 0)
!!3P3 Jjp! J J!05 JCCCC3PC J >,

s\ 0 .-, ** 5 <* 1 ; « 1 u

o c
-n

o
•H

^ \in oi
c a xi
C fa Cl U 10 C rS

•rf 0 $ 0 tl -n £
a»- en

$ 10
*-i ^ 01 OS

« B M ^ fa qioi
o • J T3 o o o o O U T3 o ^ -8 — ^-- rH xl r*
o 6 Ul c o o o o o o c o >.<N

^J 0 ^H H<M 0 ^H «J 0 g
OJ

fa £ •«• — *** o £ ^- ** ** v
*~ B V ** 1 § J* •3 ^ 0 -H

1M » n w H-l (A M n oi 01 B T3 B 01 XN >. N IN en
OJ 0) a> 11 41 11 Sg^ 41 —* —I i CO vo C
N N W f^ H N H N N H >, C SsC TJ in -n --< |s »H

B • <X)
1 B VJ3

-fa o a • £ 10 fa c l» >
t-1 n N tr. io VI 01 o — 1M fa

!?• 1 1 0 <o 1 1 1 1 1 i-l c *» -- fa n IC U 13 ta 10 10 0) B vO 01 41 — c 10 ft; c • IQ 0) ^H • «J « •0 a in H • t f2^ 1 1 B —< r-.
-c A B O fi J: J: £ «xo o £ **-J •fa ao

w to ? I m ft) IN
^o \D m o c (0 VO IC U3 ^^SO rH O § 10 xl On"

• fa •
(U B m v ^ <-* m 0 ~+ *-*tH i-H ^H X -H H i i « I •

1 1 en i -*H 1 »» 1 1 1 1 1 1 -H 1 -i 4)£ X 00 B T3

4-» 4J

2J
4J XI XI -fa

fa 01-5-5

xl « XI I rH
rH I IO <w o

c c u c >. c C c u c — C Q.-H

m

58°

• 11 •w 0) 10 0) 0) i -fa 41 — 10 0 —£ 1 C 1 a — 1 i 4J IM
1 1 ^

•fa *J

c fa c c

re a>~ a.

c a c xi xi ixi

•M a. a xi xi 1 o G •»• c i I „

~5S p g^ o
to

X
41

1 x • X
•- U -fa 1) — 18- 0 X 11 0

rtile
>• 1 J c P — oi a fa

1 5N» —fa
** •0 fa ** u ^*

0. -H LL C- r 0 1 ca l • 01 1 • •H 0) « —<-•« 4J fa *J u

i o a 1 10
K

1 01 0) 10 fa
>- "0 fa 10 01

01 V) xi
XI 10 01

a oi oi p

0£'N. 0
1 01 1 «J fa - -i I

A £ C -i xi 2 o
c Li'

© £ £ o A CL-C 1 £ 41 1 £ 01 (J £ — « fa. O
— >-. 1 X 01

*-- - *r - c
0 03 fa
o CTJC tr> i

0) fa

1 _ en CP
s N"

^^ 01 x tr i en <o \-H cn a<w in ^

u CN 0)

CM V-l-rl C

• 8 s S 01 c 8 ~S8S2 8S5 5 8c« c s
H«O0 JOfa
-H i c — a.—

*-H 1*1 xi 0

1 « ~l
01 1

PH 7* • ^^ ^H r-l U
fa i -Q I C £ 1 0 8r 8&- H

I
0!
01

^ to ^ 1
TJ . xi xi
BIO O 10

D> H <0 c 01 a « « 1 «-i 1 10 iH —1 « 11 11 01 « c C 3 — >.« — 5 c 0 m a u
V) 1 0) t fa a XI £ £ OI 5 1) « 0 Jfa r* *- fa H 1 ^ T) «
c

•fa 1 K fa 11 O 01 1
1 £. 41 Q-fa

^ fa -fa fa 1

^ 0> a xi

—i fa li

>, S.r~ fa 1 C« —£ « »-! ~
—1 t fa -fa xl xi

—I
H 5 ' girl

0) a >. >. m 0-* >• 01 a Ufaic rH £ — x oifa — to
o « — si-—i

01 • 0 xi \ « Jj •iJ J^ o -fa -K fa XI uo XI cr

a £ 1 1 1 8.5° 4J 0 -fa 0 -fa ^H 8 8i3 fa 1 IC c o
« XI IC -H

1
— xi

-^ CT^H - r-i *H ^H
— xi — 0 0

4J i-i —i v. 5
m xi d.

m >. c y c en x c HC< CO —i § 8 1 C —1 m>. c fal 11 10 -H-HTJ
M XI C —

•D mill
• a a p SI fa s a 5

-C O 0) E £ V 4! - 1 £ >• £ • 4J 0 fl ID

£ XI U O (0

01 8 O fa

c

a 0 m >, > > £ X l fa. > T~ £ o 8 Q co
in «i 01 0

10 ^H
1 c

fa—1 TJ
fa a; —

«3
iftl

fa fa -H TJ
01-t

O ^H fa ^H 13
£ ci fa oi •- E fa ^H 13

fa 41 -fa Sfl , i?8 fa -H TJ
fa 01 -H ^1 I B S in

-H C 1 10 1 1 h K 1 1 w 1 « 1 1 u a i i 0 1 « 1 1 •H
"~ —fa cr cr
O 41 ((o ^ (0

1 10 >-
0) 10 • 1 1 1

41
in S
10 «

-l« 1 «>,
0 10 41 10 10 I

1 10 S
4J • io

U ID B 1 10 >.
0) « 10

c s
V j: j-i J: fa 4J •fa JJ H fa O £ XI £ fa 4J ^fc £ -fa. 22B —1 fa V) 10 0) 2 X a fa • 4J • fa • • fa £ tfa xi H •fa. 41 10 C 10
in >1

0 10 1
0 1 1 >, ic

rjo 0 O 1
0 >-. «
0 10 1

>. 1
0 c i

—-H e o o I ^H c ie —* « 10 1 >-* en «j 01 cr — ^- —-
4J fa ^ fa (0 f—1 ^J fa to X» fa —4 fa 0) ri •H fa ») xi fa xi H r4 II) 4J xi
qj fa
» 10

-1 fa o
10 B £ 8 s, <c

fa 10
10 X.

0) fa—1 fa 10
(0 10 10 10 £ a w fa «

C 10 £ w 3 a « "0 £ ss •8 1 *- 1 w 1 *, E fa c c r— 0 c c c ^H C c o c •H »— 8
a /\ 10 A fl /\ vo *\ ^> (J ••» 10 A 1£ ^ m *% to A r> A -H ^S I] Ah A 10 o A 4A(D /\ tH ^ 0 < 1 — 1 — 1 -1 1 c 1 — 1 •* 1 — 1 — 1 - E C 1 w 1 - 1 — 1 --1 ^ 1 C 1 s

—• o .•—•^

1—

! 1 =
c

> (N U —•
- «H

er- w

X o
c

B3

»c -*-
I- c

—i *-t o

ft f» m
*r V C^
—t i—l O
* -«1* C*
^ -H O

i o

E

, c _ —

i
6*

U ON
t c:

C—• C«H CO
C « U1

O ^**H *•» ~

O (N Jl i."1 tx C
O o o o o o
O C O o o o
o c o o o c
O O O O O o

OiflOlOONlTO
oooooooo
oooooooo
oooooooo

08fN—tlTtin^(Nr4
O^C^VD^ON'^'O

—'00--<^^i-<00
— o o o o o o o o

~o — —

*J in
c • r
01 -H
i ««•

c

(C —<

« •
8 =
0

c -
U :

—. O —< —I

^_
^H O

£ C_l

-• o ~*

moooooooo
i-<u"ir^r»03CQr*-r*u"t

momoatNincoin
Lnor^^f^c^vDr^o

•OOV-H—t^oo
^-OOO^-HOOO

-OOOOOOOO

•—iinr-r'-cocor-r^in
Winaoinojcginccin
cor^vo'*><"^vor^o
HOO^-^-H^-OC
OOOO^H-HOOO
u.
l_COOOOOOO

— CNfN—tinin-HtNO-.
WOO^'C-'^-^OO
=00000000
tz
C-. oooooooo

^in^-r-r-^in«r
XOlTifNOfflNlfiO
«:oo<^>-r,^'""ioo
uoooooooc
l-OOCOOCOO

'oococcco

•H o txinir w o
h. O O O O c c C O O O O O c
w O O O O c c

0 0
00

00
1

00
00

4
00

00
4

00
00

1 0 o o o o — — o o o
c o
§s
o o

o O o o o o
o -w CN in in ra *•

o ^ ^H —i m o
O -H r- r~ ~H o
o o o o o c
o o o o o o

o o f-t r. ^ «• r*. -H o
O in (N OJ in o
o o ^ w o o
o o o o o o
o o o o o o

o o o o o o o o o o o o
—4 (N ^ V ^ ^ n: -H

0©r>OOr100
OOO^H-HOOO

o *• o
r-t a
o —
o o
o

• o
o 0

.1
3
8
9
3

0
.1

3
0
9
3

0
.0

1
8
8

0
.0

0
0
3
4

 0

OOOOOOOO

d
el

2
rj

-k
er

n
el

 '

(1

1
))

)
0

.0
0

0
0

1
0

.0
0

0
0

4
-0

.0
0

0
0

4

0
 0

0
1

3
2

-0
.0

0
7

1
5

-0
.0

0
7

1
5

-
-0

.0
3
3
6
4

0

.1
0

6
5

4
-0

.1
0

6
5

4

0
.1

0
6

5
4

0
.2

6
2
4

0
.2

6
2
4

0
.1

0
6
5
4

0

.2
6

2
4

0
.2

6
2
4

0

.0
3

3
6

4
-0

.1
0

6
5

4
-0

.1
0

6
5

4
-

0
.0

0
1

3
2

-0
.0

0
7

1
5

-0
.0

0
7

1
5

-
0
.0

0
0
0
1

0

.0
0

0
0

4
-0

.0
0

0
0

4
-

~

0
0
.0

0
0
8
5

0
.0

4
6
3
1

0
.3

4
2
2

0
.3

4
2
2

0
.0

4
6
3
1

0
.0

0
0
8
5

 0

—< 0
0

 0
00

85

0
.0

4
6

3
1

-0

.3
4

2
2

-0

.3
4
2
2

0
.0

4
6
3
1

0

00
08

5 0

u
li

X
•c

c

o ~<
8°

• o
O I 0

.1
3
R

9
3

0.

13
(1

93

-0
.0

1
8
8

0

 0
00

34
- 0

>, OMHHHO
c o ^H r- r- ~H o
^ o o o o o o
^ o o o o o o

o

u
K

c —• r» <• *• r- M O
O u"> c* ot in o
O O *• «r O O
O O C O OO
O O O O o o

i o o o o o o
ZOO—'•TTT^HOO

•H O O C O
k o o o o
0, o o o o
— o o o o

I o o o o o o

C I C '
oooooo ~*r.
 c I

o o oo

cooo — — ooo
— o o
u o o
a o o
~ o o
/v o O
J L_l

X —
1

t-

1-
|

Q tf >X! *"^. c- L_

•w 5 I 1
f- ^ i ffl

*J ti u in ~ w
c c 0 — B
4J 1 w H-t —* » X n
C X | I £

v. c -s ~ X HI n
^ 1> 1 *-* 0 >• •M i—1 i

K 1 >< 1 n x 0 B w
- 10 - 0) • tl ^ •C B B

s5 c£ X N SS
si

X

0 «> >. in i SO

f V 1? 1 h "£ ^ H
1

a 0
£7 §^ 4J S

rt8 £ •*4 1
B 4.1 4J

C 1 i — « C-
a.« a a tl >. X |J —* l! ^5

c a.
8.8 w N |

K „g- 4J W
1 4J ^ —. ** W

4J rl P i i ^» i m 0 c >. >. >• C S •)
2 ^«4l

» B C :i x X x l ^2 = 3
~J rgjj

0 tl

— X
§ •"* s .-i N M K ^H Ov ^ ^

w t> >- flj *^^ -? - t-i - —*
tl ci. X s, R 5. t X

n i II) 1 W rH 1 0 B <c c c • B t)-H

TD
tl w tl «

N O
tl 1 >•
N B B 8ti N

fe
H SE s.

1 •-< £ •rf X
H) B B

1 a B

m ns W T3 c *
5 (0 — 01 —

1 >• —
t >•

B
!

4J
HOHtin

i
ti

1
1 H*. II 10 1) » B » w X l r* i^- r- l*» VO <-* o o o o IH O) ^ nr in (JMHOH unnrin HO(iv« B »*

X « £ a c B 4J 0 \C £.—< —• —• ~-i IH •0 t •H a *: oS S 4J

5 JZ o n X 0 n x i *J
-H ^* 4J 1

a
i

H
HU HH 5 4J

X 1
4J

0) >, m >.«! >.CD \0 ^H s ^ C X r-l >. m w
>. c

cow c w w o 3 T3 —1 1 I B W 10

El IH C
k 1 « U I tl • £ C u E IH tl tl

o I. 1.N IH IH N o ~ IH IH N
cc c a. ~< « EL-rt

1 S< W
B rt IDiflOlO in ift \n m ^H (V) m ^» HOHM O ^H rH^H fH ^ o» n O —t n r*\ B 11 -t B ^H (^ 1 X w 1 11 >. i >< ^. X 1 1 >. >« >. 1 X W 1 tl

c v i C tl 1 C 1 B • NB •1 C <c K C V 1 C 1
c 1 W a i in B W IH lE IH k lH H IH B i n s ni

-H — >."! — >.« — B k. u M u c lH ~£x — B
T SiJZ ac X B •ri B c •9 c c C X

X >. N 1 *> 1 1 1 1 X M
in >. >• >,*l 1 iJ 4J 4J ti «J *i >. >-.
^H c « c « O" B cwininw tl c o o o o COnrgn C O w {N ft C O O OO connn c o o o o IT B CTB

- u 4J k *J AHH •U-* •H 1(1 ^H •H -H 4J IH 4J IH

iS W C
B M h
» B a

3 IH IH
a If IH g. E n SS

— 1
u c c c ^H B l-\ ^-» ^H ^H •H •H c c
a ^ « * c ^\ « ^ —* >N -»* ^ .^ ^ ^i /v -*4 /N ~H ^ C ^ o

«S 1 — 1 C -iJ C 1 C 1 i_| C 1 C 1 C 1 — 1 -w

1
..** CSf vOOMAQJr* ifiOM/IOf^

c
1

0 c
•"" i
fG (C UD ^

= *• tf c* cc cc *c o C* (I) O V \D i 8. I oooooooo >•
^ ^-, > 4J X
H **• r* «*J C

S 2 ""' „
—

-H C
c

-8. ^H

G a
•s r- 00 ca oo p^ p*. r^ co as r- r« p* o? o £ »» X SO ^ vD SO tf SC SO \0 oooooooo

V X 4i -
fN - 1

1 c ~ a> w 8 i i 82 w ~ 0) •H > > K o m u
5 v tf r- co r-

E p— ^: x: n 0" n
r-- co r- A -r *£> r-- a> r~ o <o c vO vO ^O \D VO sD vD sO oooooooo

§ u H c K5 3 1 o — a
E *—I —• •w-H a i X

1 X i= tl > > o -^ ^>f« >i 1

*r
^in*o

i
c m *r in in so

1
c Pi *** tn in so <H 1

i »H m
SO SO SO \0 so tf tf so oooooooo

k
(D •H ~H — p-s r-i 4->
9 1- U c ^ 1 00
K
a. •s i

1
—' W i

o
o

CO 4- c
CO t

« s 03

3 SH O N to X X
0 0 0 — o -- -H

r»n* 1 (N n «-i r-t «r 1 CN ro .-» cs «»r •—. W L: OCiJ3>OJHO>I!0 oooooooo n
i ? ? 3 £ Bj ~ to s G> ^

l v) c;
0

SM

p a c •^ r0 C N Z -H «: N V. 1 1*

•0 M • •rJ .—• »—»,c • w — 1 X -^ 1C c 1 0)
1 c to tt n tf. £ 0 1

5 1 > vo > r~t o 1 U)
£ n o ~* m 1 in x Jj 4J <c

It? — r*s m i *r ~H ^ pn m 1 tHMHC <c >- 3 >. l >: >• >• c X 3OtOU3Ot0\Ci£tf SOOOOOOOO £ \ •D *C — T3 -<-t -H -H £ tl ^ c p-H
a c c e c c c c c 1 *-' 1 <J C cs 0 c >l
X & s. >- >» c y. X >• >.-H > > f5
L: « — c 16 1 •O fl C IT c H

y. x £ 1M i,: [fi 0 u
91 a) b si ki 0 1 ~ 4J i- i Oj u IS /— c IC 3 u 0 u C 1M s 1

c —i m «j- ^* *H ~-l P"l ^ ,H _ ,H rn «r i p-t X 1 p I a iCtftf*£tO\OvO«C OOOOOOOO c er >,— -rf H >»fH -H -H c <C 0 c <C 1 •5 u 1 C X tc >. >1 K —' <c c c c •2 C C C a > 1 id > i <C QJ I II 1
Li M 1 « 1 w 6 Q « 1 K k- k

»H '- M >-<c >- <c £. a a. >- (C Li t4 >. * c •3 X J^JZ >. £ L i X £ IB « X
1 t T t3 M U •H 1 1 •H

in JJ •U >, >- K rz IC >s 4J Jj — — m CN c i-i —< ~i n CN CrtHnno) cr f^ " m i— — ^ cr <c COOOOOOOO c
-•H -H -tH M td K <Z ti JJ ,- ••H -w

p* L, c C N C C g h S h. Q 0 'J QJ 1H k4 u Si ex a a •G a n L- H a a
j

M —• ^ •—t C c o O O c I—t p—1
a *H *i •«* •\ -1 s\ 10 »S /s rfN /N /*, tc yN -—* ^ — -^
< c c i C ! -* — 1 ^ 1 <? 1 ^ 1 —• 1 c 1 S i

cr\ ao
H

as •*•
as

r-

09 tf
m m

tf a> in co i*- so a\ in co r*

o

tf o* in oo r* \o a> in oo r- io oi in 00 r^ V0 Ol

»H * os OS CD ^* SO O OS P-M CO ^* tf Os 03 CO V tf Os 00 00 fT tf oi oo oo -r io O100
m Ci as •H fH

n 1 C r*
<T- CT> c* -^ '—

c^
01 CD 0)

QJ
" JJ -H tN

Ul tn n <T~ • N OJ ^^ i S -H
C* 01 -^ 00 •H
OS f^ P* m co p- as r^ oo CT"> 0D r- p—i !-» CC oo P* r» r* oo > co pv p*p- oo c cop^ r- P*- oo coo r-

•r-(-^ p* i ^-t -1 n m ON 00 • 00 c ,Q -H M
Cft •*• io «5 Os -1 -H

oS —m £ 1 B C c

A £ ^vOO *^ n IO *
J3*VOP-BP- l«« 41 tf •** p-i •-I IN

c o o ^ ffs -^ d 1 •*• so as CD r- > •* tf P-I oo r* * so r^ oo p* 0 -r io P*-oo f*.

!**
as •-» c* 01 o> as E -H 5 •u d 4-1 c Cr i

8, ti £ 00 <T» tf n c SM c E
a* 0> 9 0 ^—. •rt

n
Xfl 1 •v 00

m
ON M

Ol

c
8.

1

>
01
w

iH 1 >
J

S£ X •-< *4f es — p n -«r tn in so i-i 1*1 • in in io E *n «r in in so En«mintf Cnf u-iiOsO On«r
V tl pt r« tf win n -H •H
ft i S

£ i 1

s u?
Cft is "

V)
"5

0)

1 s X i 1
m c £ CT> Cfs «*n Ol *• «

§ a> as o^ ^r^ M *-l HH
y oi o> - a* * Bl u 0 n 9 rriPi

en i w 8 8 H
n

ON
OS <H fsj

B CTi IO
Ol B (N m ^ m *•

rsi
fl CN ii ^H pn -r fn n n m -r ^*r« nno* [r»n nn%r

tl-H
H 1

H
1 8 ! * 00 -.

U1 1
— c c 1 c c

-H
•D •H a *-* * -H H n p^ • > m 5

1 *inpinn

n

5 « B.u a
tn
i «

10 — > -
1

pin*

* Ol * I ^ as as as rn

|
E
£ ^H ._! -H

0)

1 *HHP1P1 X * m mro tn
\ £ JJ JJ c a Ol 4-J as as c> J< -< -H 0) •o •O -H

2 i Si oi rn 1 BBC c c c m c n 5 c
>.-u >• 01 CT> LI cr -H f 1 H

B a c c c m Ol » C *i Li

ii lie
Li
LI

Ol
• OliHP) l > i I S i £

<T> IO 3 ww«. E
a; 1 ^H -H ^^ »-» 1 ^H CT> gf tl tl >> C 10 GJ >,as a> as >,-H fH -fH >,--H •-(-H >. >1-H -H >--H -^ ^ i i a 10 > — 1 «c e c c c « c c c a CM a c c « C C

— w >.<!) M 1 to 1M H u H H H ^ • C IC M >. K M u u 1 L. Li
•••

m
k< £ 10
kri 1 1 XI £ •3 <0

1
c
1 P r

in >. iQ >>.P >-. *J 4J 4J 4J 4J 4J
H rr <o 1 « C ^ cr 10 c sT> as *H m na CHHHMfSI C »H H -H m (N CHrtHPlM C -H-H ^H 1*1 Ct C-Hrt

jj IH JJ PH •-< *u L, •w a» o -H --H --H -rt -H •* «H -H -r* -H-H •H -H -H
a u
to *a

1 u -
H ca § Li

K a H C C P-.CC
(X 0L

tj c c
CL boa

OL

—• i *-. i — 1
h —* c c •H C ^H H p-1

a K ^s •••4 ^ fH >N •H /N •H /\ •H /N
< C 1 w 1 — 1 C 1 ** 1 C 1 £J C 1 C 1 C 1

v -» o —t r-; <•- «

z c' c
•- « 1
£ I 7

jo
c 1 in c in oa in t^r».r*r*r^r^r-'-'

1 lO \D %o v0 vO vo *"•*
•rt r- o m io vo \o o *o ^D rn
•b >-« »-i vO ^O ^ ^ ^ >£ n

> f- <D ON O <-< CN r-»

£ in co in rt m
ill!

mr-.CD0*O<-»(Nr*>
x mi i i .-H •-« i-i io

\o <r« oa M 1 I 1 \£>
rt o >*

K, v£> OJ
u • r*

cc — ^ai?o«« — in o r- co c* o
io — — —I —

O w«o ncc OH »•- ^- in ifi f~ CO O
ID c -I-I C

ic ^ -H -<-*** .

a c
0

in r- in o in m io r» co o*» o H r~
m 1 i i i —' •—4 10
r^ I 1 o

r-wo^o — -Mm^-

^r**0DC>O-HCNm

L.nk©r-C3oo.-i<N

OQ in \0 r^ CO O O rr iTOhC
in PH U.

^. e »- in \0 !"» CO o** £ r>; f""> -v in o r— AJ-IHHI-IHH

m rn in io in

c ^ *• r»

c!CN<"i*rinsor—r*>
>»ni i i i i i i vo
<Q ft \0

n •

t I i

—:r«<i«rinu3r*»co

cc o; r>; *-» *r in \o r- c: c ~ :N ^ *• J" : — ^ —i ~- ^ -H c in (N L*I m in

0 in vo in o* in nin^scDo\of^ • ifi^NODONOn 1 *•»
— o ^m i i i 1 1 —< V£> ^ ^H ^H

•r r» © -H m 1 O flj ^H
H »H r> W9 E
JJ -H • p4 -5 -i s —•» o — *J ~
H - 1 —I * i -

0
*H in in in co m >,ri *• in io r* co c* r* >,n tinier* oc\o cr >•

1 X ^ i t I I I 1 w X ~< X

8 n \o o -H m ID \^H
m O

<M IM UJ «"
•U 0 m (J* c T 0
ID I 1

1 ^ S^
| in *j* in r^ in tnmm**>invor-*cor- i: fMM^in^r^OD c^ L' W

«m I I i I 1 I SO (Z 1 t
u <N in co M m 10 u « w
B jj <-> VC 4J *3 c • c in c
c 0 na cr 0 - 0

•H 0 1 i u O ** "—* __ —* o <—

i fN r-t •«• in O

4J I
I *J
c c

-I-
C — 1

ifl
T
4->
C i
1 c
X 0

1
n«Oi£i£iD^3vCn r<«>coo««-tinr«»^

-» ^-t ^-t rt ^H tn -H <N m » in r
V) p
K m 1

JC

| 1
T g vO i^ i£ vO ^3 "^ ^3 *fi niii^c^^^vnn OOtf«o«Mnn « r* ao er» o rt r« >*vOr-(rtOOrtm

| IH in in »n in C rt rt rt

1
•rt

7

—• r« ^ * in NO

c

^
*
S !

£ •H >- ><
•u ic vO i^ vfi ^fi ifi vc iO n^o3\fliji£.^n «*«ioo*nr*»/><yi 10 ^> CD 0^ O ^H cmHBisinmie

t £ L4 —t r-i n« /^ *r in

E 1 X
•H

•
1

IM

in
1 >- a P
D *-~ tfVJOJlfllOlOifliO ^n vie tovovo ton i no»nH<7iriH M in ^o r~ CO o> o >,•*• (MOC10ff»ff> • 1 *J in ^H io «• f-i io ki -. a H(i«nf

Hi 0) y. >. •H a TC 1 •o •6 3 I
a a IM >- >. •«-i P 9 X X • i-
0 5- •<H •D 1

vO \£> ^D 'sD ^5 lA O "D i*ll0«OVOtfl0«0l*t ft rt • o*ioonr*oin a.-* in *o p»- CD o* •>n(NfiQ3innfi
X *M M • finpiTfii^n rt* H H r« n f

0 c h H b •*H

*|
n

H

I
c
0

1
c
0 1 1 | N

5 a ^ -rt •--< -rt 1 «3
CO 3 VO \D SO \0 sO ^ SO \D 3n«0iou)i0ioton 7 7 Ta3io*nrtONMP rt n vinior^ co HMiOffiTOMn

S C i-H I ^ m in ^H in in i •rt 3 rt CN d m

5 0 CO
•H v § § ' B

01 « c c o o u o « • c 0 « « <c o
i s C 0 o o U V) c

a^ N
a= $ \D^0'O'D^-',i'O>D mioicioioifiifin M H oa H IN >o * o in si f^ H c* <"> «r in *o r- HniOOiOHO
cr 10 >» >. >. >. >,n F-(^> of n r-i «• r» >-. >, Hrtrioi
-H a. 1 t K ID • • • «

i • L u M C B H b -H ^ « G U M M B M

*• JJ J: n 1 ID 1 c C a
in >. •w M 4J u iJ *J V
H (0 CnifiiOioifilOtfn com COn COCDrtOf*lHI/ln CHcin*m« cOHnifiomn

h •* •H •H •H -H *H10 in ^H lO •H •rt -l-H Ot
p^ E u u M u b N L)
CN « CL a Q. a. a a a

I
H c H M ^H ^H H ^H
a, « /\ -H >V •H /v -rt /N

< i C 1 c I C 1 iJ C 1 C 1

f\ «

u

| c

1 1 —-
•J, 1
R E
n ft! \
1 .-

?
C^ ki —<
'Si

c

C 1

« —
I- --
c~
x ~
9"
>-

a
>
&

C 4J -
C c

— C J
io C i
•-: c- — i

a*. -
X •" I
t- —

>•.

s

c
*__s_

C 000000000 — ^-"
COOOOOOCCOO—t -1
c ©oooooococo—
CCOCOOOOOOOO-"
coooooocoooo—«
COOOCOOOOOOO—<
CCOOOOOOOOCC-H
COOOOOOOOOOC-i
COOOOOOCCOO — —< *-
coooooooco--~-* c
coooooooo — *-< ^H -H
cooooooo — ~i—».-^—* o
c OOOOOO—. — ~I~-^-H
COOOOO-H — — ---H.- — o
CCOO — — ~H —• — -H- 1 —< +J
cco — -*^^—i*-~H — ~ — •* o
C C -H ~« — ^ -H — — -H — ^ -< £
C O —I —, ~ -H ^H — — ~i -H — —I ^ -H
C—-H^—-H-H — — -• — — —< 1
C~*-«.-i — .-.^H^— —.—«.— »^ (C o
0-.-H^~H-H—<-*— ~t -N ^ ^

C O -H ^1 —I -H —t —I ^ ~t — ^H —I >, O
OC^^^-^-H-'^'H^H'-«^H -P
COOf-H^^^H""-*^ —t •—• •—I I O
ooo©^-^-^~— -H—• -^ -H *J w
C C O O O ~ -H — — -H — P-I *H C
CCOOOOO—i—'-H-H — —< 0) •-»
COOOOOOO— -H ^ ^ —, £ o
OOOOOOOOO-H^*H—< 5J
cooooooooo^-^ — *-> o
coocooooooo^-< o>
O O O O O O O O O O O O ~H I o
OOOOOOOOOOOO^ 0)
COOOOOOOOOOO^H « o
oooooooooooow JZ
cooooooocooo—t o
000000000000--" *•»
OOOOOOOOOOOP-*-* t> O
COOOOOOOOO~H~H^
CCOOOCOOO-H — ~H-* c> o
OOOOOOOO — -t-^-H-H w
O O O O O O O -< wt —t ^H »H -< - O
O O O O O O —< FH —I -H — *H ^H *-*
OOOOO^H—< -« ~H —t—. w—< Wtf, o
OOOO^H^H^H-H^--^^-H-H T3i;Qjv
COO^^-^-H-H^H^^^H-H CN3
CO^-t^H^H*H^H^^--^^-4^H^H 0 "** <—<
C— — —.-H^^H — — ~«^^~H uw<c —
c — — — — -• ^ — ~ -, -* ~ w oil > -
C^—lr-.,-.-)—*—' — ~,^,-—, tt U. I
O -I ,-».-H —«^H -H — -. -H H »H IH «C 5S
C—-—<—<—<.-- — —I--«~I.-H-H.'— P*X£
C— ^^r-tW-H — — —l—.^H-H O
CO — ^—!.-»•*—>« — ~H^H-< vO>,
OOO^-—t^-H-H^-H^^H^- —I IC
COOO—'^-H — — ~<—'^-. o k«

— COOOO^-H~ — -«-•-—<•— -u
ECOOOOO^H — ^ r~* ^ ^H—, <-(C

COOOOOO-"-> — ^^-— I
>.COOOOOOCO—i — ^^ I c
CCCOOOCOOOO^H^^H n
l-COOOOOOCOOO^-H OJw
•-COOOOOOCCOO^-—i E
'COCOOOOOOCOOO—I --H
I OOOOCOOOCOOO— J-»E
— COOOOOOOCOCC—• 1
CCOOOOCOCCCCO— V C"
— CCOOOOOOOOCO—. J-» «J
l-COOOOOOOOOOO—i DO.
^.COOOOCOOCOO-^^ CL (?.
— CCOOCOOOOC-H — PH = —
000000000 — — «—«^H o

^OOOOOOOO-H-i-H^H — -H U^
OOOOQOO— — — -<-^^HC^I

o o o
o o o
O rt o

«•»«•%#* rt -H O
o o o

HHO oo o
H -H O ^ — o
O -H O

HHO
O O o

r**4r4
o o o

•HHO — — —
— -HO ******

oo o
o o o

OHO
OO O —
•— h« —* « O H O **

OO o o
HH^fft

O-HO o
OHO

O-HO O 10
OH O I

p^-H M O
OH O -*

-H -H -H O in
O O O 1

HHHO •
O.MO O ^s:

OO o
O-HO O *J

OO O -I
O O O O

OHO* •*•— *- *-
O H t-H «

O—1 H J

O H H >.

^JOOOOOOOOO
COOCO-HOOOC
— OOOH-HHOOO
UOOHH-H-HHOO
Q.O ~~**^^^.^o
—OOHHHHHOC
OOOHHHOOO

/NOOOO-HOOOO
Iooooooooo

1 —» —«.m
»—.m

C O o cc
0 —* ^H V

t VO vO .-<
f-i r* fs.
01 w —- 1

« (0 IJ 5S
-H *J

^ 10 n i
O 1 1 V
H 10 IO ty 3 a
o ^ J: v
r*
w xi 4J 10

•H "C

10 3 ^F
0) 1 - I 0
K«ff> •i
par S-r- « > >,o
t *J c Jj vC
— i »— 1 vC

+j jj vC
>sClT C --<

£ S F
flj O

>- c S o

fefa -- 1
1

<Z 10 I SI ^- C X
J: CU: —

E <C 4->
>- u >. i

era r>* c-

H c C
•H /\ rc /N IC
g I - I jg

>-
X

o
to

10

a
o o o oo o o C^ -

n O O O O O O r-i
Ch S fifi«*(1(1tt«DVNV

r-> (—1
r-i r-> n CDfftOH (Nrn^-iTi
M r-i to 10 •-H i-H *H ^H ^H i-H

d O SB
l --H a.

10 X m o o o o o c r-i 1 B
m ro 10 L VO vOvOvOVOvOvOvOvOvOVD
m i-i « sOvOvOsO\fivDVO\0\OvO\O
m r-i XJQ \0«r400vov(NOa.i£

O O ^vOMTJC^O^OHMnn*

r^ E
f-i o o o OO c M lH r-tfnf^r>r>(n*^nrifnr,im • M r^ • s m f~i 1

£ m *n S rs.r»t^-(o\rs.inri^Ha\p*-inn

O O '-' . m vo \o r- to a\ o o —< rs f.

S 1
V*-l

r^ O O O O O O p vswvrincDwfiN
F i-> r^ c • tnvoN cocnoH

r^ m t) •-H rH

*l o o 4J

8 1
-H

0) r^ O O O O O C (-\ i r-p».r«.r«-t-«.r*-r*.r*.f«».rs.p-».
S m ri vO VO vO vO VO vO vO v£> vO vO VO

8 rt r-l v& vO O vO \o vO vO vO vO vO VO
m r^ $ tttnOBdfCIOij n

c o O f«n v in i/l «) r*. CD (M7\ O
1 •-H *H

en
oo r-i o o o o o c n
tj> r-< m >.
i-t r-> n a

m r-i u n-ttftr-mnHo^f^inn
u

<r o o TO H« pan vi/i vo vof^mtn

o OC3vO*OJ*COvO VfSOD
^y r*\ c*\ r*i f*i f*^
r^ <^i n f*t m m 1- a O ^ P* w ^r in vo r* J,

ki o o o o o o o H H 5 a. 1 1 1 1 1 1 1 /N •H /* B < C | c i a 1

a

5

s il

fN ~- —>

«s

= ~ s S
O
t \C \D ViS

JZ P- r* r*

•^ W U) «}

•iS 8 S

Q) IO •"! « «

o> oi *-* o> w o;

o o
o o
o o
o o
c o
o o
o o
o o
o o
o o
o o
o o
o o
c o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

o
o ©
o o
o o

c <o u- ic a- c
C I- —< U —4 L.

—i c c c
'H A (A 4 A f
E I — I — I —

oo
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o ©
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o ©

— o o
e o o

o o
>,o o
10 o o
u. o o
><oo
K O O I oo +J o o coo

— o o too ao o — o o o o
Ax O O

I oo

O o o o o
oo o o o
oo o o o
oo o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
oo o o o
o o o o o
oo o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
oo o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
oo o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
oo o o o
o o o o o
© © ~H o o
OO -H o o
o O ~4 o o
88388
OO -1 o o
OO -H o o
O O wO o
O O H O O
OO -H O O
OHHOO
O -H O O O
O AH O O O
O w o o o
o-< o o o
O-H o o o
O -I o o o
o ~ o o o
O -H o o o
Orf o o o
O-H o o o
o o o o o
o o o o o
OO OOP

OO o
o o o
oo o
o o o
oo o
oo o
oo o
oo o
oo o
o o o
o o o
o o o
oo o
oo o
oo o
o o o
oo o
o o o
o o o
oo o
oo o
oo o
oo o
o o o
o o o
oo o
o o o
o o o
o o o
o o o
o o o
o o o
oo o
o o o
oo o
o o o
oo o
o o o
o o o
o o o
oo o
oo o
o o o
oo o
o o o
oo o
oo o
oo o
o o o
o o o
oo o
o o o
o o o
o o o
o o o

88S
o o o
o o o
o o o

8§8
o o o
o o o
o o o
o o o
o o o
o o o
oo o
o o o
o o o
o o o
o o o
o o o
oo o
gpg

o o o
o o o
o o o
o o o
ooo
o o o
o o o
o o o
o o o
o o c
o o o
o o o
o o o
o o c
o o c
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o c o
o o o
o o o
o o o
coo
o o o
o o o
OOP

o o o
o o o
o o o
o o o
c o c
o o o
o o o
o o o
o o o
o o o
o o c
o o o
oo o
o o o
o o o
o o o
o o c
o o o
o o o
o o o
o o o
o o c
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
OOO
o o o
o o o
o o o
o o o
o o o
o o o
oo o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o c
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o c
o o o
o o o
o o c
o o c
o o o
o o c
o o o
o o o
o o o
OgO-

a.

0©00.~IAHA-I©00
©OOOA*AH-IOOO
S© © Q -* AH —'OOO

OOO-H-H-IOOO
OOOO-HAH-HOOO
O © O © AH -A —* O O O A~ ^
0©00A*AH-*0©0 *•* 4J
©00©AHAAA-IOO© 4J
©0©©AHAAA*000 -w 01
©OOO-H^H—(OO© JD AS
O O O O —. AA —< O O O 3 ^
O O O O —i ~- -< o O O t Q)
o o © o i-irt -H o o © « >

SOOOxH- OOO 01
O O O — — — o o c- 01 C

o o o o ~*~H ~* o o o a i
o o o o-*«->© o o >. 6
©©©OAAAHAHOOO -U TJ

A- A~ O© © O -*AH AH © © O I — ~
A* A* O O © O A«-* AH O © O 4J ^o* A~
O O O O O O A-I —I —I © O O CO ©
-A r* O O O O -A —. -I O O O ffi —lOri

O O O O >H-<-A O © O E r»
xo <x> OOOO"—i —'OOO C *o •X)
r- r» OOOOHHHOOO -*r^-Or*
AA — ©©OOAAAAAA©©© 0) — —4

O O © © A-IH -A © o O I
I) 10 ©OOOAHAHAHOOO W tf) AA tf]
S«j OOOO-AAA-AOOO corNOj

S OOOOA-IA<-A©OO .c B • S
•H -H OOOOAHA*AA©©O -HO-H
a a oo o o -«-i **o o o — v> a
I t 00©©*H^-*000 O I —* I
«0 «) ©QOO^H^H-H©©© —< V, ~< in
a C ©©©©*H^H^H©0© -C —. 10
£ j: oooo — -<-< o o o to j; c £

O©O©~*^»H©OO r^
*J *t O O O O ~4*H-4 O © O -* -tJ O *->
-4 •** ©©Q©^H»H^H©QO - •#* «-l -H

3^-3 © © o o -H-I -H o o o ms 3
»»I-HI OOOO-H-H-^OOO fl) I —. I
«O«^H0 OOOO-H—i^OOO N (0 O C

§OOOHHHOOO -^ to
o o o rt -< -i o o o noi oi

CL. p. oooo—I-H--IOOO i ao p.
{^ Sin S oooo^-i-H—IOOO in >. ^- >,
^o *J r~ *J o o o o ~ ^ —t o o o a 4J WAJ

I I OOOO-^-HlOOO £1- I
H4J04J OOOO-^—i—'OOO 4J 4->
^HCr~C OOOOrt-H-lOOO >.cgc

0) 0) 00©0-M~H—lOOO C 0) 0)
E E E I —o ooo-c — -^ooo ^ e M e

C BSOOOO-H—i^ooo lit ill
J^V^H ©0©O^^H^O©0 lO^H^H^

01 8 1 >.© ©OO^rt-HOOO I 0130)
lAI -COOOO—<—i~-lOOO Cl U \

i ni m~oooO'-'—«—<oco «uii to
jrcjrio^oooo—ir-—IOOO v a£ «
aj= a.c «^-H -i « -i-H -i -*-i -H , rax:
L k,E >,*l^^ rt-H -Hrt -^ ^-l-H >. L, >,
CTlCD^«C^H^H^^HiH-H^I^H^H—I C7 fl C71 C
illlilll'ilrtHHHHHH-IHH AJk44JM
^LHhllHHHHFlrtHHHH Olkl-^b
XI 1 J3 « OiO ooooooooo I in J c
~ I — I —o ooooooooo — I — I

c c o o © o © © o o © © -* c c
sv c ~ ic-^oooooooooo—1~ «/v e
I — I wloooooOOQOOCI — I w

OOO
OOO
o c o
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
O © ©
OOO
OOO
OOO
OOO
© © o
OOO
§o ©
O ©

OOO
OOO
OOO
§o o
© o

OOO
OOO
OOO
OOO
OOO
o o ©
OOO
O O O
OOO
OOO
OOO
OOO
OOO
go o
o o

o o ©
OOO
OOO
ooo
ooo
© o o
o © o
ooo
ooo
ooo
ooo
ooo

-~o © o
E o o o
ooo

>-o o o
«o o o
hOOO
hOOO
« o o o
I o © o

•u o o o
CO © ©
-H o o o
u o o o
Q.O © O
—o o o
ooo

y\ O o ©
'OOP

OOO
ooo
ooo
ooo
OOO
OOO
OOO
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
o O w
ooo
OOO
o o ©
ooo
ooo
ooo
ooo
ooo
ooo
ooo
© o o
ooo
ooo
ooo
ooo
ooo
o o ©
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
o o ©
ooo
ooo
ooo
o o ©
ooo
ooo
O O -i
OOO
OOO
ooo
ooo
ooo
ooo
ooo
ooo
ooo
oog

oooo
oooo
oooo
o o © o
oooo
o o o —
oooo
o © o o
oooo
oooo
O O © -H
o o © ©
oooo
oooo
oooo
^ «-* *+ ~*
oooo
oooo
oooo
oooo
o o o -•
oooo
oooo
oooo
o © © ©
o o o -H
o © o o
oooo
oooo
oooo
o o © ->
© © o ©
oooo
oooo
oooo
O © O *4
©ooo
oooo
ooo©
oooo
O "i ^-i *->
oooo
© o o o
oooo
OOOO
O O O —I
OOOO
oooo
oooo
oooo
O O O iH
oooo
o o © o
oooo
oooo
o o o -*
©ooo
oooo
oooo
oooo
O O O -t
oooo
oooo
oooo
© © o o

©ooo
oooo
oooo
oooo
OOO"
o o o _
oooo
ooo©
oooo
oooo

o o © o o o o
©©©oooo
o o o © o o o
© o o o o o o
o o o o o o o
oooo©©©
o © o o oo o
©©©oooo
§o o o o o o
o o o o o o

o o o o o o o
o o o © o o o

-- ooooooo
--* ooooooo
.-» OOOO-HOO
e> ooo^o^o

O O O ^H O -H o
so o O O ~H o —< o
r~ OO-^OOO-H

— OO-HOOO—•
© *-* © © © © o
ooooooo

n OHOOOOO
0)«-* i-400©0©0

•U"! ~ ~ ~ 1388888
co — •*• --- ~m — *~. ~ ~ ^ ohooooo
I 9 CT\ Gt*9t C» 0S <J\ 0t QQ«-*000~H
«) ut *r ^ -* *•»> oo^ooo^
C ^D • SO O ^3 •*• \0 <-*<£ «\OVU> O © Q —< O ^H O
£ p- * p- ^^r*- OP*)r**p«- P*-IP* ooo^-to^^o

w ~o — —< — — »~© ^- — ooo^o^o
jJ LD OO*HO ooooooo

•-4 w • no ouiiirt OIHB n~Htt ooooooo

^S'-S^SVS-HS^S-'S-S 8888288
I -HiflyinH I TI <H tlOn -H O O © O --I O o
«•)•« a aoaoa e o « OOOIHIH>HO

I T i o i o i I imi i OOOHHHO

8.S' S^S^3^S^S©S^8 88333S3
S£in£ -*»£«£"£ I .cr».c oOrt»<-i-^-H
*J C« 0^^»H^^H^
I 4J o «J iiin *Jin*Jin*nn *jm *J o p^ ^ ^H ^H *H *H

^J^4 I Hin-ri - •** • -*4 «*H '^ • i4 IHIH.-<^^*H^H
C« fl •flOflA,nA,nHarti ^^^rf^^^,
0J3^,3v7\3ri3«' 3* 3m 3in 3 O^H»^i^«^^H^^
e I i I I I I _l I o-<-*-**<-I-i
B«EcE«E«E«lEB6«E« © O -I -i -i -i -i

f S. I 5,1 S. I a I S, I 8. S a 3 8. OOO^H^WO
inSti>.ki>.t4>.iiS.M>,M>,tiS OOO-H^-HO
e*jw4JtT-*JtTAJt7i-wCTi*J%7'iJai*J ooooooo
£101010101010101 OOOO-iOO

»J -I 4J ^1 4J X 4J -I -U ^ 4-> -I 4J -H iJ OOOOOOO
ACIOCICICICICIC OOO'H'H'HO
«eiHgjH(|Md]^aiHiiHiiHl] o o o -H ^ —i o
^EHEiHEilE-lSHEHEHg —.O O O -I —I —I O
lil«(«l«l«l«l«l«lEOOOHHHO

i o)«oi«oi««iaojidi)avao) >.o o o -H -I -H 5
ci o.i a i a i Oil ai Qui a i cooo—i—<—io
c m i m i ai ni »i i ill ni nfc-ooo^H^-i—io
-»r«x«r«r«f«««x«>ioo5HHHo

£ a.c ar ar ajs ar a£ ar wooo-i-i;-!©
E 10 « C 4 «3 a <0 lOOOOOO©

>ih>.g>iS>ih>ig><fi>ih >.*J o o o o -< o o
CT« t>C IT10 t7»« ITifl ITC (7110 ps« COOO^H^-I—10
4J Li *J MAI h4J b*J H4J tl *• M4J H^OOHHHHH

SSSaSfe2SSS3S2i!St!^S3S3333
».| _| —I ^-| — I ~| — I —I —0-<-<-Hrti-l-<

-icceccccc oo-j^^^-n
-H^ «^ c^ «^ «^ «^ *^ <o/v «*^©OO*H^^O
g| wl wl ^1 ~-l -^1 -^1 ~-l — lOOOOrHQO

u
a.

_ rt ^ _ _ , — — o

„ Z — — — ZZ^ZI c
m4w~-*~i~' — — C
-H PH — P^ -, ^ — C
,-, ^ ^ ~- ^H „ _ ^ ^- O
^-_ ^-^ __.-._< ^_ o
-. —. .— ~ -, , —, — c
— „ ^ ^ -, -H — — ~ C
^ _ ^ -I -I ~ — —. — O — _- .- ^- . , ,_,-. ^ o
, -i —„ ^ ^ o
^ ^-_ ^H ,-.-.__ _ „ c C
— — «--.^.-1-,__ ^ o c
—. P- — -H — . W~ — O
~| ^H -^ -*<-.-, —. ^^-HO O
P-. ^ -- — -n — . . — >• r- O
-H -H ~ — — ~ -H -< —• ~ —I O
^ PH -H -. P-I — ~ —. — - ^. w O
^ _ ^, «1 — P- — P- P- ^ O

_- ^- _ ~- ~ _ „ „ ^, -H -—. w .-NO '-" — <—» *-* *"* «-** O
^.—i^H^H^H^^^H^H (fl ^* _ ,«, ^H rt f. ^ **. J-K ^ O
w p-i ^H -H -- p-t P* p-t PH I ^ © I C © © © © --> © O

—i — — ~-> —. —. — —< — <c o *r o r- ss y£ \o \o ooo o
^H^H1-H-^^H_(«^-(^H .c r** r»- -H r* r» r- r» p- p-t r-. o
—< _ ^. —. _. __ _ ^_ _ .^cc •—«—• •— »•» ••» »— — •* o
.-H-H-HPHP* — -H(—<»-ijJ«— - O O
___-,__^-.^,^„ ._(/)_ y» (,"* « (0 ti] U) p* uj o
__,_-,_, ^- — _ _ ,_, £c; o — o & c c, ii-o o
^4^H^^^^^M^^H s t3 ^ M -H R N R N R - « O
paI -H •—I -H — «—i ~-<HM I -H CC -H C -rt •*•! -PH f" -*H -« O

o -* -H -H PH —• —I~H^ CL c • a <c <c c ic ICCNC o

OPHP-I-H—»—I~.-H^ *J « PJ *t ^ m vc — o

OO^-f-^^—' PH Z! C .£ O £i .2 £ £ £ .C'-.C o
OO-Hf-t^H-H^—1—< I 3 ** 3 *» 3 *^ - <"*fl ** - «^3 (t 3 O
OO^-«^~H~H~H-H<-H £i* r ^ i *•i i «•» i m i oe > i i o
0O0-^~H«—i ~* *-* Dc C <0 (C K iC iC <c o
OOO-H-^—'—•«-«-^ PN --» OJ o in in iT o c
OOO^H-^ — — -H—« lll'OOJ^tnrivli/l^vCyhC O
O O O ^H ^-i ^- •—i »H ••* Q. Q. •— _. -— C- ^^ C- -"*• •— •*-• •«. "— — C
OOCO^~-—<^H^- fc:>,tr>,- >.- >,- >s- >.- >.- >. o
OOOO—'i-i—>^-^H X — —' *J J-» J-« ^ •*- *J -J o
ocoo — —i f» *-(*» — i - ;miiri,<-ir-tir\ic>: o
COOC— — —. — — — —• — -_ jJ 4- -J — O
OOOOO-H-H^-H >-CECECE = ECEC£CEC o
OOOOO--^-^H^H ic E g E QJ t E g S —•
OOOOO—ipt HH UC';, Sic? ijf me io! «!«; =«H
ocooo-" — — -H uCcCtcoCaiCejCcStCE-^
ocoooo — ^^ i in -H o ^ D -H m -H c -H c -H m •»• o >>o
0O0OOO«*-l^H c — — — l-H—H, — I — : (QO
o c o o o o —i -^ »H IC LI . u; i w i t; i ti i IT, i w i to u o
ooooooc^-f— *-i^^: c J; c £ c^ <c — ic — >cx; cue
©oooooo^,- - a^: CJ: C— CLJZ i£ £.J= c - «t c
COOOOOO^-— £ C <6 tZ IC t "C C lO
0O0O00©~-~ >. U >. h >. k >. h >t bi >- '- >• U >,-J O
COOOOOOC-- T"C CC C- <C CC CTC O^ic C^ C""CO
COCOOOOO— *- IN ~ k. «J «*j p. ^J fc-*J^-- U^_ « -^ O
OOOOOOCO-H (Lp,— iM—«-^U—ik---U— U—.UliO
OOOOOOOO—i K*6iSC.fit5pQ(6p3«9«3lC£iep5<CpV)«^
OOOOOOOOO — i —l —I — i — I — I — ' — I ^O
OOOOOOOOO-^ z c c z. c c c c o
OOOOOOOOO >P* ^ c^\ <C*^ (C'N (C'*' IC A ic A x^ ic^o
OOOOOOOOOCI w i —I — I wt w i w ! w i wiQ

— ©OOOO—-H
—'OOOOO — -.
OOOOOOOO
OOOOOOCO
OOOOOOOO
OOOOOOCO
COOO^^HCO
COO^H^H-^OO
CO^H—.--ooo
O-H-H-HOOOO
— -^pHOOOCO
C-HOOOCOO
OOOOOOCO
OOOOOOCO
OOOOOOCO
OOOO-H-H — o
OOO-H-H-H— O
CO^H^PH — —<o
0-.^H^^PHOO
„^H^^^OOO
^-^—r-nOOOO
^^^HOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOPHPH-HOO
OOPHP-1PHP-«O0
OOWP^PHPHCO
OHHPIHHOO
C-^^^P-IOOO
-HHrtHOC O
O^PHPHOOOO
OO—(OOOOO
OOOOOOOO
OOOOOOOO
OOOOOOCO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOO^HPHPHOO
OO-HP**H--<~0
OOrtHHHHO
O-H-HpH-H-iWO
OHHHHHOO
— ^^^.n^OO
W^^-HrHOOO
^-.-(^H^H.-IOOO
OPHPHP-IOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OO—t-HpHOOO
OO^PHPHOOO
OO-HrH^HOOO
OO-HPHPHOOO

o o
o o
o o
c o
o o
c o
o o
o o
o o
o —
— o
o o
— o
O PH
o o
o o

o o
o o
O *H
~* o
o o
o o
o o
o o
o o
-H O
0_PH

PH O O O
PH O O O
p-t o o o
pH O O O
pH O C O
o O C C
o o o o
o o o o
»H O C C
o — o o
O O —I o
O O O —i
o o — o
O -H o o
-H o o o
o oo o C I — I

o o o o o o O00000©0000©©00©00©©©0
o o o o o o oooooooooooooooooooooo o
o o o o o o oooooo©ooooooooooooooo
o o o o o o oo©oo©oooooooooooooooo o
o o o o o o oooooooooooooooooooooo
o o o o o o ooooooocoooooooooooooo in
o o o o o o O000©000©0000000©0©©00 o
o o o o o o ©©©O0©00©0©©©000000000 o
o o o o o o oooooooooooooooooooooo
o o o o o o oo©ooooo©o©ooooooooooo o
o o o o oo oooooooooooooooooooooo M> 1 OOOPHPHPHPHPHPHPH

o o o o o o oooo©o©ooooooooooooooo PH OOOPHPHPHPHPHPHPH
o o o o o o O©©0©0©©00©00©00©00000 OOOOPHPHPHPHPHPH

o o o o o o oooooooooooooooooooooo V) OOOOdHHHHH
o o o o o o OOOOPHPHPHPHPHPH
o o o o o o (N oooooooooooooooooooooo c 0 OOOOPHPHPHPHPHPH
o o o o o o oooooooooooooooooooooo 0) en OOOOOPHPHPHPHPH
o o o o o o VC oooooooooooooooooooooo c OOOOOPHPHPHPHPH
o o o o o o r- oooooooooooooooooooooo X, IH
o o o o o o P4 p o o o o o o oooooooooooooooooooooo X o OOOOOOPHPHPHPH

o o o o o o oooooooooooooooooooooo »» 01 w OOOOOOPHPHPHPH
o o o o o o w oooooooooooooooooooooo o •3 OOOOOOPHPHPHPH
o o o o o o 0) oooooooooooooooooooooo K 10 J= OOOOOOPHPHPHPH

§§ss§§ •a —* JJ ^ oooooooooooooooooooooo
oooooooooooooooooooooo

- «>
^H

O0©PP°©P-|PHPH
OOOOOOOPHPHPH

o o o o o o a c* n rM oooooooooooooooooooooo c -^ O' OOOOOOOPH^PHPH
o o o o oo 1 c* fN CM oooooooooooooooooooooo 0 «7> c H OOOOOOOPHPHPH

OOOOOOOOPHPH o o o o o o 13 oooooooooooooooooooooo
o) 0 o o o o o o IC va V£> *£) oooooooooooooooooooooo

oooooooooooooooooooooo
in <£> OOOQOOOOPHPH

OOOOOOOOPHPH o o o o o o Xr- r* r- n-i o r-
o o o o o o *— 1—1 oooooooooooooooooooooo Si o •w OOOOOOOOPHPH
o o o o o o M oooooooooooooooooooooo OOOOOOOOOPH
o o o o o o -*-t a) in • oooooooooooooooooooooo a o w OOOOOOOOOPH
o o o o o o
o o o o o o v% a 8 oooooooooooooooooooooo

oooooooooooooooooooooo 8 8. 1 1 OOOOOOOOOPH
OOOOOOOOOPH p

o o o o o o 1 -H «4 •>-* 1 >. -*-(oooooooooo
II o o o o o o a n tn W oooooooooooooooooooooo >~^ 01 n oooooooooo
C" o o o o o o 1 1 1 oooooooooooooooooooooo A 1 ^H 1 oooooooooo

f 8g§§§8 0)
c

V)
•3

oooooooooooooooooooooo JJ — m oooooooooo
oooooooooo

o o o o o o J: £ oooooooooooooooooooooo Oi u x: oooooooooo
•z o o o o o o *i oooooooooooooooooooooo - fc oooooooooo
0 o o o o o o 1 JJ 4J 4J oooooooooooooooooooooo — o -~*J oooooooooo

o o o o o o
o o o o o o Si 1 OJ 1 oooooooooooooooooooooo

oooooooooooooooooooooo
- rH

01
0 *H '^•H #•*
-<0 •«• J2 -> ggS8888S§§

o o o o o o N oooooooooooooooooooooo n i n • 3 o oooooooooo
o o o o o o g 1 1 p 1 oooooooooooooooooooooo

T!5
c o a< i oooooooooo

o o o o o o V • r-i a « oooooooooooooooooooooo Is ^-1 « ^-1 oooooooooo

K
o o o o o o
o o o o o o *—1 JL 8.

oooooooooooooooooooooo
oooooooooooooooooooooo X8.S 8888888888

o o o o o o i s, -H oooooooooooooooooooooo 1 K —•a oo oooooooooo
m o o o o oo n K >-•«• >< OOOPHPHOOOOOOOOOOOOOOOOO a ^ 1 -< >" >. • oooooooooo
§ o o o o o o n j-> —! u JJ OOOPHPHOOOOOOOOOOOOOOOOO a c a> x • 0 4-> O oooooooooo

K o o o o o o £ 1 n 1 OOOp-tP^pOOOOOOOOOOOOOOOO .c o -1 o 1 1 ~ oooooooooo
oooooooooo o o o o o o 4J n 4J ^H Jj OOOPHPHOOOOOOOOOOOOOOOOO •H — X J: *J

CO o o o o o o >. c c r >- u m ac o oooooooooo
o o o o o o K a F F <1: OOOp-ip-tOOOOOOOOOOOOOOOOO n u o 1 V V oooooooooo
o o o o o o u 1 u f ^OOOPHPHOOOOOOOOOOOOOOOOO h u DUO u, e-i "OOOOOOOOOO

<y> o o o o o o 1H 0 01 11 I EOOOPH-HOOOOOOOOOOOOOOOOO 1-. kl M-H • CPV CXIOOOOOOOOOO
CD o o o o o o IB ~* c c -H « a-H so

L oi n
OOOOOOOOOO

>.oooooooooo (^ o o o o o o 1 01 11 0) >IO OOPHPHOOOOOOOOOOOOOOOOO 1 X HI M 1
--i o o o o o o C 1 c 0) 1 1 *- IC 1 1 ICOOOOOOOOOO

o o o o o o a <n 1 In 1 B MOOPHPHPHOOOOOOOOOOOOOOOOO « 1 II) 111 a w m MOOOOOOOOOO
OJ o o o o o o -«r m c • MOOPHPHOOOOOOOOOOOOOOOOOO — >l« « — w a a MOOOOOOOOOO ^,

o o o o o o _ c ar 0. r (OOOPHPHOOOOOOOOOOOOOOOOOO J2£ £in »«* ICOOOOOOOOOO
o o o o o o E c • 1 OOPH-HOOOOOOOOOOOOOOOOOO X £

LTl o o o o o o >. kl >• - >,4JO©PHPHOOOOOOOOOOOOOOOOOO >. CD >> 4JOOOOOOOOOO
--1 o o o o o o V K OMO C> 18 COOPHPHOOOOOOOOOOOOOOOOOO tr "o "M »-l eric COOOOOOOOOO

o o o o o o A* U X) - 4J u •HOOPHPHOOOOOOOOOOOOOOOOOO «J u i) V kl •^oooooooooo
r- o o o o o o

o o o o o o Sis H fi ki-H IHQOPHPHOOOOOOOOOOOOOOOOOO
0,0 OPHPHOOOOOOOOOOOOOOOOOO

U ki J!u: 9i& ao 800800000
o o o o o o 1 1 — OO-H-HOOOOOOOOOOOOOOOOOO — 1 — o ^-oooooooooo

1 OOOOOOPH C c c OOPHPHOOOOOOOOOOOOOOOOOOPH C 1 c oooooooooo
a ©ooooo- /% (C *r. • '•VOOOOOOOOOOOOOOOOOOOOOO-P*^ "3 •^ «—' >^ 10 ^.oooooooooo < oooooo c 1 — 1 *— 1 — ! OOOOOOOOOOOOOOOOOOOOOO Cl — 1 oooooooooo

© o
© o ©o
© c

c o <
o o <
o © .
c •

— c h
Z12

oc — — -.---< o

o S "0

o <N CN
oc-.-i--.--oo » f-1 Cft * n r^

1 o — — — — coo — CN in

O — —• -i —< O C C t •<r W C o ^ .—(
c — — — o © o o 0
o — — — oooc

"i o v
rv

o — — — c c © c a OJ r-, c w to
o.~> — — oooo 5 — *- w tr K 4J *J
o — — — oooo c c c o c c
O • • — o o o c *c \o k uj w r* ^ M u 10 i & o • —. — c c o 0 s?s M CJ s 1 £ £ OC— — -<COC L> 1 V Li t r*> li -J K b t

1 oc — -H — -< O C >.-. . z •^ 0 vo >.(M u M re Li U
o o c — — — -< o to si 1 « K tf) V & 1 B CO u o
OCO-—— — —

.1© 1 95i x s -a
E *J

u 1 U-. 10 01 1 M 1 c c
OOCO—— — -< «L V) 10 o <C 4J re to
-HW.— OOO — O re 3 rs 1 *-«. 1
^^H^^OOCO *o Jj — *J Ej £ r^ c ~ -J o « *-* 10
^^^^^, — 00 \ • V ^. ^ X 1 tf> U) .— --• \ 1 re 0) re
O^-HW — — oo u to u tfl vC — U^ £ *J \o 1 c 1^ *J n jr 4J J: *j £

OOOO—I-H—i —
Jj • 4J ^ « 4J a •HO 0 r« to *J a •-^ c „5^ CO C 10 C c c >c $°.%-2 01 8 re § OOOO—•-<—I — 1 c 0 t c c -1.0 u M (N 0 "*•

OOOOO——i— IE c 1 H-H « 1 c c^ 1 to ~* u ~*
OOOOO — —.— ! > — > — il > AJ C -JO wU > -J re z 1
oooooooo *J *J •o 1 1 -H •D i4 V *J OS
oocooooo "V c 0) -s c ai -" c & £ 0) +J ^

i_ 4 'j —
0)--. 1 i & cr>

oooocooo M I —i to cr S — 1 tr> -H w ft) v

oooooooo — co •—• — DO --" C 1 -rf >. V a C 1 •-I >.«ao >^ Lj PH
OOOO© — — —i c I — c I II «•< *J 4J rg «-i au a » u -J 4-1 CM 4J 0 01- 10
ooopo — — —
oooo—< — — —

c I 0 l- C 1 1 XI
*J i C c.

U K I re 1 "S<S f- »1 «- • i £ in 4-> J 1 £ IC AJ 3 4J GO
ooo — —.--.-o > *- HJ > 4J • x n c c a o £ X <c c re <-H- -^

CJ OO — —•—— — O £ - £ t ^x 1 to n 1 ^ - 0) (0
5 tt (^ I —H u E $\ o 10 CD — -H c £ 1 (£ 1 c ^^H^^^OOO 0 4- c HI *- * rt c t c H B 5 (C re c re s B o o vi u n
a ^•^-H-HOOOO c c i — s 1 ^(

i
• ore a

^^oooooo 0 c s PI E >. 0) c n >. 0) a V s, c c CO >«ftj in £ £ X

8 oooooooo »*- K 1 re 1 re 1 \ 01 c
w 4 -x

re re 1 re 1 •*• £ a
oooooooo 1 U 1 1 c (T U u to V) u CN M L. to CO to —i a.-J re •*-
oooooocc n M 1 to to I -. «J 1 u K t u cms f-l flj 1 L. re re IN re JrJ 10 -H M .^.

g oooooooo
oooooooo

re 5 gj £ B —1 <c 1

re £ J= PTI r,F i re
1 - £ re .c < 8i5 CT 3 4J 3

oooooooo JI >• -C ^i O-H *J ra K -= >. >- •O 4J 1 -H 1
-3 OOOOOOOO u •-1 4-> — IN -H c K c re u >* — IM c re £L re o •-« re XI re

.HOf^O—t.— — O B <u c M 1 *J 4J u re lH 0) C £ — 1 4J *J IJM re u CJ Q > £ 1

5 oooooooo M to W JB £. u L 1- CO "H © 10 JZ
0) ^ £ u t I « U U

U &,n p. oooooooo •*-> 1 ±j io QJ *3 *J m CT- re o — AJ re CT ^ >• (0 tfl
Si — — oooooo L, C H c u N -0 C Ifl 1 1 (^ W ^p 0 M T) c n re re re 0) >.4J >•
N, o-^ — ooooo t 0 0) 0 ^ •-. o c c ^> 0) o --H — c x: -c JJ 4J 0 J-»

* oooooooo *M J- t: i <*- c a Ctf JJGO 4^ to 3 >*- -c re a O I C 1
oooooooo u I u 1 s 1 1 1

-H £ t^ 35
1 1 1 til k- IQ 4J U 4J

ti oooo — — oo fl to i 10 W w w tfl tn to n a w tfl 0 u c re c
o o o o o —.oo Lj K (C <C 10 K re <T> C 1 B K re re re CCIC
OCOOO — OO -C tr £ u £ i x: • <r -* >•££

B? oooooooo -C <v O CD > QJ u re u vf8<
03 _,_H.-H._«,^__0 u *J U -J . +1

i r-t £ o
41 V 1 --« +J ^H

<r ©oooo — oo 1 QJ 1 CJ o QJ Hi +- re jj u to ai >.
©©ooo — ©o
o©ooo — oo

4 to re tC ^
u

CT

E S
a (J re c

0) i tj» i reoooooocooc
cr> (0 — to LOOOOOOCCOC

rs OCOOO—•> O O L, © u «: L. u —•re cL,ooooooooo<--
•F oooo—• —<oo o 0 — OJ

•g
CJ 01 re 1 £ Lj£ reooooooo-- — ^H

< < ICOOOO-H — ^H — ^ .. ooo — —. © O C Ej -w o •^ •u c J^
in OO — — OOOC 0 (1 1 u u u re

O — — OOOOO re C" • B c c. >g IC Cre cr re cc—'^ — -H-HC — oo
— — ©©OOOO - - h c L *J t - CT -J L<4J L. — -* — ~H~*000~-<00

n» OOOOOOOO 8 x: to
5 t K 1 s e gj Ci L.CJ L. -OO—*—'^OO^-CO

to re to re ^oooco^ — -HOO r\- OOOOOOOO h X r
OOOOOOOO u — c c 1 - u

L. OOOOOOOO C C OOOOOOOOO—) a OOOOOOOO — /*v «J 'N «: IZ O >N K re ^s. (TJ-^. (C^OOOOOOOOOO

<;.. OOOOOCOO -is—1— —' 1 1 '— 1
^-.• 1 — 1 — 1 OOOOOOOOOO

o —1 ooooooooooooo
o — —(.-•(.-•©OOOOOOOOO
o c .-t^^H^H^OOOOOOOO
c W^H^H^^HOOOQOOOO
o a 00*-*~H—<--<0000000
o M OOO^H^H^^IOOOOOO
o o *^ ^» ^^ ^ OOO^^^H-HOOOOOO
o •-• h to o) o> at OOOO-H^H-HOOOOOO
o •H 0 -* -H -t QOOO^H^H-NOpOOOO

0000-«.H.-(.-HO©000 o c •H O Ot o o o
Q >• to b Lj u OOOO^H^H-H-HOCOOO
o m ^ —. *+ •* ~> -J OOOO^-H-H^OOOOO
o -v CD o — o ooo 00O0<Hf^>H00P000
o ^ <N CO M — b OOOO-H-H^OOOOOO
o
o

o
-H CO

-H ^^ — *H O o ~ -~ ~
«-> o © o

pOOO^H^Hf-HpOpppO
000-I-«-H—.OOOOOO

© u — 10 ^H »-l <^ 00--<*H—(—tOOOOOOO
© O w V -» 8S - •
o > ~ T3 O O O

§ 0V •rH ^ ct C <-t —* -H ^,r-^^-1 —.OOOOO—.--. —iO » -
o r« •-H O i a>
o to rfl a. as to « ~
o ttl --H X « 01 to n to n
o N ^r« tJL £ M — ^.-•.-(.-(.-(ppopopop

^H — -H^OOOOOOOOO o o
o to o — o 11 2P

CO to to -H £ <^to tp^H o-^ Q^^ *H«H)HOOQOQOOOOO
t-t—i^oooppooooo
ooooooooooooo

o 1 «•* - -* -* H i no fltO «0< MM HOI
© <h L

01

i n o -4 1 | 1
o
o

co»
J; — ©

o ^, a to N
*> £ r~ i

to tn nto to to to to 8SSSS8SS88S88
o w a > c —to —-1 £ —£ —£ — ooooooooooooo
o *J "o o v I'JJ « ooooooocooooo
o •^ n o» to C 4J 1 C -H «£ to 1 ~ to *~ to ~ 0) ooooooooooooo

10 § «8' - s -rt 0
in s

•-4 O
am 8.SS- OJ o OJ «• OJ in OJ

N OJ — N 1 fi r* fl
-*H £ i4 -M •**

^^^oopoppppop
•H*H<-tPOOOOOPPPP

o 1 -r< © -- --< :? ^H)< 1 -IO
S • to-.

—.^HrH-HOOOOOOOOO • o •in • u~i m ^* -^ 4J I in -- tn fiin aim 13 O—«-H-<—(OOOOOOOO ft o 1 o • 1 to 0 1 1 <• 1 tJV 1 « 1 to 1
"3 a i 01 to -1 CD to o

CD
r-i o a. 3 i I to 4 (0 tn — « 1 — « — w — g «o- «- a- «

o £ -^ r« c K p £ >.£ •" £ en £ £ £ OOPPOO»^«H«-««-4'^»«-tiH

8 o 4J - tn 0 to 4J - M to to a POPPOOOPPPPOO
© 1 4J 4J * -H • -t <* 0 a-*

a
-l

o
n

g

em
en

t-

a
-u

b
it

ig

in
s

JJ\C*J C4JCJJ POOPPOOPPPPPO
o
©

en
ie

nt

a-
u

b
i

ig
in

s
'(

11

j a
to

to
t:

1 o
w

a —1 -^4 —4 -r4 -»4 -*H **4
n to rjia cfi£ cri) 8888888888888

o *J OJ c c 4-) OOOOOOOOOOOOO
o 1 c M u lu -H 0 1 Chi £ • U 1 OOOOOOOOOOOOO

T3 © «J € -^ a.-- w 3 appiaoapa OOOOOOOPOPPOO
1 © -I u — --H to 8

1
1
t-

— Li —i
oOOOOOOOOOPOo
OOOOOPOOOO-HOO 1 o

o ?8.PS
n >. to

I 1
10

- ^^ aft?1
>. 10 >. CO fN

O/ilOOItOOIlOl!

>. £ K£ >.£ >i to o >* • > o a. OOOPO<H<H<H*-4tH)M>-ti-H
s o q JJ ceo 4J cr £ £ c +J re JJ re ijn 4J 4J *J OOOO^-HOOOOOOO

PPP^^QQPOpOOO
OO.H-HOPOPOOOOO 1 o

o 4J «- 4-> >, 0 X
-•H

!
4J *J — *J l-^ *J JJ 4J

Ul © >.c E- c o it) to «? c >- c e - CCDECECEC O^H^OOOOOOOPOO
o •c 4 i CD H to 1

5) L. a) QJ

B ct 4 4 4

imcytJojSoioJ

Or-tOOOOOOOOOOO
o H 1 to -H u 01 —O ^HOOOOOOOOOOO » © C I ti E 1 « c EO-nOOOOOOOOOOO

00 o K -H c -H h 1 a <-< re —< c rH C -4 C —< C -4 O—iOOOOOOOO-*-H —
>,o ^Hoaooooooooo o o 1 0) 'H OJ >. OJ QJ c J •H VI CJ —• 01 1 -«- U-H«

H o C 1 -H 1 re > to 1 C 1 rH -41 — 1-41 «Or-tOOOOOOOOOOO
© « to 1 to L. ? p r to re to i to J) i to i to i to

«E£«i£e£<o
MOf-HOOOOOOOOOOO

Ol o — « £ re L. Li >. re — re .c LiO^HOOOOOOOOOOO
V 8 £ Q. £ re -w •H £ x: -c a £ -4 0.£ D.£ a£ flOO»-HOOPOOOOOOO

1OOOOOOOOOOOOO E « 1 OOOOOOOOOO a u E re 4-» « to a
in o >. u >i4J O O -I O O O O O .-H o m >. x^ >,| hSI">il<>.«0 0 0-HOOOOOOOO
-H o trctn « C O o o C O O ~4 o o rr^ C" c cr « cr ecjt)tfflrjB!j.« COOOOooOOOOOOO

© JJJ kt 4J E OOO o —i o —< o o o JJ in +J 1- 4J Li JJ L «J JJ U 4J l>44J k^OOOOOOHH -4-4-4^4«H

CM
o
©

tV lH -1
to <o a § l-OOOOO—'OOOO

CLO 000-nO--tOOO tfl f*- fl s »S2 fea^iasfesfe WPPOOOOOOOOOOO
ao cooooooooooo

o ooo —t O O O ^H o o **^H 1 I E — t —^ i -— » — O POOOOOPOOPPO
^1 © m c c O O ^H o o o o O -H o — o c c c o c c c PPPOOOOOOPPPO
a © — *s « *^ re /•v OOOOOOOOOO -.- /\ • y\ 10 y\ fl *s re EJ ^ re ^ fl/vfl rNOOOOOOOOOOOOO

* © E 1 ~-1 1 ooo o OOOOO o £ 1 o 1 1 -1 — 1 w 1 w | « 1 OOOOOOOOOOOOO

'
coocooooooooooooooooooooo
ooooooooocooooooooooooooo
coooooooooocooooooooooooo
ooocooooooocooooooooooooo
ocooooooooooooocooooooooo
ooooooooooooooooooooooooo
ooooooooocooooooooooooooo
ooooooooooooooooooooooooo

OOOOOOOOOOOOOOOOOOOOOOOOO
s— OCOOOOOCOOO — oOOOOOOOOOOoO -—

COCOOOOOOOo--©OOOOOOOOOOoO
m OOOOOOOOOOOOOOOOOOOOOOOOO Ifl w OOOOOOOOOCOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOO
T

Q ^
to OO OOOOOOOOO-- oOOOOOOOoo—.—<0 10 J: 0
p- p* j£

• OOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO

" o w
M OOOOOOOOOOOOOOOOOOOOOOOOO in o
V OOOOOOOOOCOOOOOOOOOOOOOOO a> 1
K •>-* OOOOOOOOOOOOOOOOOOOOOOOOO « ^ *J 01
O <-* OOOO0OOOO-—O0OOO0OOO0OOOOO a XI
« in « in 4J IC
1 (N OOOOOoOOOOOOOOOOOOOOOOOoO 1 *• 0 XI a OOOOO—tOOOOOOOOOOOOOOOOOoO w ~ L, c
«3 VO OOOOOOOOOOOOOOOOOOOOOOOOO

X P* JC
1 u

X r- OOOCOOOOOOOOOOOOOOOOOOOoO 4J 1

O O O

COOOooooooooooooooooooooo
OJ

a
0
XI OOOOO ooooooooooooooooooo©

SS3 OOOOOOOOOOOOOOOOOOOOOOOOO 38° C\ OOOOOOOOOOOOOOOOOOOOOOOOO
1 ox OOOOOOOOOOOOOOOOOOOOOOOOO 1 -4 X> XI XI

1 (C w - OOOOOOOOOOOOOOOOOOOOOOOOO « 10 *-i VJ IH
1 OOOOOOOOOOOOOOOOOOOOOOOOO 1 01 1 0)

•5 OJ H O
a ic o

n io -i
a K -

—1 a. OOOOOOOOOOOooOOoOOOOOOooO
SX u OOOOOOOOOOOOOOOOOOOOOOOOO >•£

8 4J OOOOOOOOOOOooOOoOOOOOOooO 4-> Ll Li Li
1 -tJ 1H OOOOOOOOOOOOOOOOOOOOOOOOO 1 Xl 0> n 01
—• •- a; OOOOOOOOOOOooOOoOOOOOOooO 4J —1 > > >

6 HJ OOOOOOOOOOOOOoOoOOo«,-<oooO |-s.° 0 0 $ s OOOOOOOOOOOOOOOOOOOOOOOOO
-. 5 15 OOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOCOOOOOOOOOOOOOOO -H CN CM 08
c- r&.° ooooooooocooooooooooooooo 01 11 fM rs fv
.0

-.-. M >iO 10 >.o o c

5 X 1 —
Jj -

ooooooooocooooooooooooooo
ooooooooocooooooooooooooo

K Xl <•
x: i •»

XI •

* *r

M c o o o o c ooooooooo >» c OOOOOOOOOOOOOOOOOOOOOOOOO >. c
c O c c —. ,— o o o o o o o o o o * 1 E OOOOOOOOOOOOOOOOOOOOOOOOO JC SJ E

u 6 -J

E E
o o o ocoooooooo ^ £ ^OOOOOOOOOOOOOOOOOOOOOOOOO

o o o o ooooooooo u c *> EOOOOoOooooooooooooooooooO X xi
GC c o ooooooooo n o x

1 C 0) ?« 8 J B W o o c ooooooooo
c c o c c o c o o o C 1 JJ (COOCOOoOOOOOOOOOOOOOOOOOoO C 1 — XI *J
o o o o o c o o a o o o <C M i .-OOOOOoOOOOOOOOOOOOOOOOOoO IC 10 1 1

tl o o o c o o a o o o — iC 4 -OOOOOOOOOCOOOOOOOOOOOOOOO — « Xt x: * c o o o o o o c coo ^ a fSOCOCOOOOOOOOOOOOOOOOOOOOO n a a. s.
Q c c o o c c o o o o E « 1OOOOOOOOOOOOOOOOOOOOOOOOO E « « c

in o c c c c c c c coo Sh WCCOCOOOOOOOOOOOOOOOOOOOOO >. L, hi 1M

—i o c o o o U" K & COOOOOOOOOOOOOOOOOOOOOOCOO cc P c c*
o c o o o 4J M JJ •^OOOOOOOOOOOOOOOOOOOOOOOOO XI Lt xl xl

p*. o o o c c o D o ~H c o o o •-OOOOOOOOOOOOOOOOOOOOOOOOO ft) M "H
V. K X.

•--<

rs o o o c c o o c o coo G.O OOOOOOOOOOOOOOOOOOOOOOOO Xi
ooooooooo o oo —OOOOOOOOOOOOOOOOOOOOOOOOO

h o o c o o o o o o o o o o c o OOOOOOOOOOOOOOOOOOOOOOOOO -1 c
C ooooooooo p-t /\ IC ^N -H ^OOOOOOOOOOOOOOOOOOOOOOOOO
< coo o o Q o c i — i c I OOOOOOOOOOOOOOOOOOOOOOOOO C 1 — 1 £ 1 C ' =

a
c\

IN CN
r-i r-i r-t

— ^H ^

to ** *^
6 (0 ID
N xi xi

1
ig i f a JH U
X O V

c c
O 1 o |

1
in tv v.

o 4J

oSn
tn m i en
c 4J
o nwo
CP r« • M
o — o •—

?
1

^> to 0)

0D £S?3
1 - -H "H

& 2 10 O 111
O 1 -> 1

e » —I 10 l> 10
u (a a O)

IT! ^ JZ JZ c

§ Oi 1*1 x: Q.
<~ CN axi a x>
< xi « -H Li ~* i - 4I£

B! XI UN £ O "M-T) XI | -H 1
"O ^ »M -H •H 18 XI «

^ ts.88, « • «J K 0) >ixi >,
s -1 ££ XI XI 0 XI 00000000000000000000
!T a O 1 <c 1 OOOOOOOOOOOOOOOOOOOo

OOOOOOOOOOOOOOOOOOOO £ (0 Li « XI Li XI
« -H 0) Li C 15 C OOOOOOOOOOOOOOOOOt-H«-HO ooooooo -^ •u XI « I x: I —o o o o o o o

5 n •c I ° 1 Hooooooo
•cooooooo 1^ III 1 (

a> SIS 1 H*Jrt ooooooo
(^ >- XI 0) 01 0) >,o o o o o o o
^H o o K u x: 01 I tJ> 1 aooooooo

O -H u « u o>«i — a •^0<~I^HOOO<-H^^OOOO<-4<0000000 uooooooo
r\ ^H <-< UOOOOOOo o o o oo o o Li l — io a uooooooo
* ^ t-l mooooooo o O O O o o o 5H <*&* HJOO"-tOoOOOOOOO<-Ht—toooooo wooooooo

1ooooooo O -H 1OOOOO o o o O O o o o o I OOOOOOOOOOOOOOOOOOOO
IT) o o JJ O O O o o o o o OOOOO u a >« >.4JOOOOOOPH^-(OOOOO^HOOOOOO JJOOOOOOo

-1 o o c o o o o o o O o o o o o o o 1 Li IT «0 XT K cooooooo
o o O O O O O o o o -^ —« o o o o XI 0> 4J IH-U UIOOOOOOOOOOOO^^O*HOOOOOO •oOOOOOOo

r^ o o L. O O O O o o o o o c o o o (1 xi 9) h I ^ » a I «
^OOOOOOOOOOOOOrH^noOOOO UtOOOOooo

M o o 0,0 O O o o o o o o «- o o o CLO O O O o o o
O -1 —ooooooooo o -iO o o — XI w 1 ** 1 •—OOOOOOOOOOOOOOOO^-trHOO — O O O O O O O

h ooooooooo o - ^ o O O >- 1 c c OOOOOOOOOOOOOOOOOOO^^^H OOOOOOO
a O r4~ •\OOoOOOOOOO o o O O f /^ « ^ « /\ 0 •^OOOOOOOOOOOOOOOOOOOO-^ *\0000000
< SIS | oo,-,oQ o o OOOOOOO C 1 — 1 — 1 - 1 oooooooo^ooooooooooo c | ^^^^^^^

r~

oocoococ cooocooc oocooocooooooooooooooocooooooooooooo©
r>ocoooooooooooooooocoocoooooooooocooo cocoococoocooooooooooooooocooocoooooooooooooo

i oococcoc occoooocooooooooooccoocoooooooooocooc
coooococ oocoooooooooooooooocoocooocoocooocooo
OOCOOCOOOOCOOOOOOOOOOOOOOCOOOOCOOOOOOCOOOOOCC
OOOOOOCCCOCOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO
coooococ cocooooooooooooooooooocoooooooooooooo
cooooooc cocooooocooooooooooooocoooocooooocooc

1 cooooooccocoocoooooooooooooooocoooooooooooooo 1 coccoocc cocooooooooooooooooooocoooooooooooooo
coooococ cocooocooooooooooooooocoooooooooocoo© —.
oooooooc coccoocoooooooooooooooooooooocooococc
ooocoocc cooooocoooooooooooocoocoooooooooocooc coooococ cocooooooooooooooooooocpooooooooocooo in

0 oooooooc oocooooooooooooooooooocoooooooooocooo <r —. ooooooocoocooooooooooooooooooocoooooooooooooo
0 ooooooccoocoooooooooooooococoocoooooooooooooc ug

ooooccoc r~

1 oooooooc
ooo©©ooo©oooooooooooooo©o©oo©oooooo©o oooooooc

COOOOOOCOOCOOOOoOOOOO©©OOoooooOOOooo©.-.ooOOOOO u la
0

oooooooc
oooooooc ~HOOOOOOOOOOOOOOOOOCOOO«— OOOOOOOO^HOOOOO Bfl

Si E oooooooo oooooooc —'Ocooooooooooooo-^ooooo — oo —-ooooo^occoc 0 C •-I

u m oooooccc OOCooOOOOOOOOOOOOoOpOO — OOOOOOOO-HOOOOO rt in u i T cooooooc OO~.OOOOOOOOOOOOOOOOO©O.-OOOOOOOO-HOOO©0 * oooooooc o o ^- O O O —«OOOOOOOOOOOO~H^OOOOOOO — OooOOOOO B) £ iA oooooooo oOOOOOOoOOOOOOOOOOOOOOCOOOOOO OooOOOpO
OooOOOOO 1 sjD

£ P» coooococ oOOOOOOoOOOOOOOOOOOOOOCOOOOOO r-
a 5 oooooooc —•OOOOOOooOOOOOOOOOOOOOOOOOOOO OooOOOOO
0 —< oooooooc OOOOOOOOOOOOOOOOOOOOOOCOOOOOO OooOOOOO J-J

4J L| U OOOOOOOOOOooOooOOOOOOOOOOOOOOOOOOOOOO oooooooo O a
0 ooooooocooooooooooooooopooooooooooooo oooooooo oooooooo « 8 N oooooocoooooooooooooooooooooooooooooc

fcl &J oooooocoooooooooooooooooooooooooooooa oooooooo 1 O]
0 K OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooOOOOO oooooooo K (0 r 01 0 l oooooooc OOOOOOOOOOOOOOOOOOOOOO^oOOOo,- oooooooo
K <H tfi OOOOOooC OOOOOOOOOOOOOOOOOOOOOOOOOOOO— oooooooo 5L to c it OOOOOo—<0000000000000000000000o000000«- oooooooo a

COOCO"—-o OOOOOOOOOOOOOOOOOOOOOoOOOOOOo oooooooo >*.c
•- U OOOOO—oO — ^MOOQOHHWHHOOOedQPQdMHOOOHHM oooooooo 4J

c 0 0 fcl OOOOOoo— O O — — O O — oOOOooOOOOCOOOO~o.-.—.^ — c oooooooo *J > > ooooo — oo OO—'OOOoOOOOoOOOOOOOOOOOOooOOO oooooooo •<-*

s c 0 £ OOOOOooOOO^oOooOOOOpooOOOOOOOOOOOOOO— oooooooo oooooooo 4
OOOOOooo oooooooo 1 — —« -•* PC ^ OOOOOooC ©OooOOooOOOooOOOOOOOOoOOOOOOoOOOOOOOO £ *

fN M r< O O O O C • ' —i Co — ooOOoooooOOOOOOOOOOOOOOOOOCOOOOOOO
-N CN *_ COOOOOOC OOOOOOOOOOOOOOOOOOOCOO — OOOOOoOOOOOOOO t 1 c tt c e *r £ OOOOOCOO M >-

X » ^r- OOOOOOOC OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO is +J £ OCCOOCOC OOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO -C
4J OOOOCCOOCOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO 4J

E OOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO >. c
c £

ifl | COOOOOOC
'-COOOOOOC

COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO 1 ~ — 4J | 5^ EOOOOOOCC OOCOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO u 8

cz £ £ c COOCOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
>-OOOOOCOCOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOCOOO

K o
O ft>

*J 4J •ZOOOOCOOCOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO c I
t* -OOOOOOOO OOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO c n

(N -cooooooc OOCOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOCOOO «0 ^~ c ^OCCOOCOC cocooocoooooopoooooooocooooooooooopoo oocoooooooooooooooooooooooooooooooooo JC
'* C •X «c oooooooo 1

i- u >. — cooocccooooooooooooooooocoooooooooooocooooooo >1
c C u =ccoccccc oocoocooooooocooooocoocoooooooooooooo <c

u -oooocooooocoooooooooooooooooooooooooooooooooo u
r- h -cooocooc cocoooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooo I H rs £ a.o o o o o o o o •a

I —oooooooo oocoooooooooooooooooooooooooooooooooo 1
tu oooooooo oooooooooooooooooooooooooooooooooooooo c

— •-. C ^cooooooc ooooooooooooooooooooooooooooooooooooo •0
< ~ ! ~ • ^ •— cooococccocooocooooooooooooooocoooooooooooooo C 1 »•*

5

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o ©
s§
o o
o o
o o

S 88

<M a

a
x.

-•§
~ e* a

xi (I
s -s-s

4J -< I i i a
a. ax
u
on

1£

o o
o o

S 88 — o o o o in o o
S 88

o o
o o
oo
88
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

-~o o
E o o

o o
>.o o moo uo o u, o o
coo
I o o

*J o o
coo
•WOO
M O o
ao o
—o o

o o
~ o o

1 gg

4J U
-H U

•2."
c

c o o o
o o o o
o o c o
o o o o
o o o o
o c oo
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o oo
o o o o
o o o «
O O O.H

O O f-4 *H
O O -I ~<
O O O —i
O o oo
o o o o
o o o o
o o oo
o o o o
o o oo
o o o o
o o o o
o o o o
o o o o
o o o o
8§§8
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o oo
o o o o
o O OO
O O O o
O o oo
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o p oo
o o oo
o o o o
P O PO
o o oo
o o o o
o o o o
o o o o
o © o o
o o oo
MM

oooooooooooooooo
oooooooooooooooo oooooooooooooooo
oooooooooooooooo oooooooooooooooo
oooooooooooooooo
oooooooooooooooo
oooooooooooooooo
§opooopooooooooo ooooooooooooooo
oooooooooooooooo
OOOOOOOOOPOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOO
.-<.— —. —.—. OO—<—< I^O—H-—<-HO
^iOOP-HwOO^H^tOOpr-l^O
0000~4~HOO<-4'HOOO~Hf-tO
OOOOp'-l^P'-»'HOPP<-l»Hp
000©0-*-MO~H'*-lO©O^^HO
~HOO©0~400*H~HOOPrH*4P
r-4OOP^*-40Oi-li-HPO»H*H*H0
-*—<—. — ^-OOOO—* —* —<OHHO
§POPOO©OOPPPp.H^HO

©00O000OOOOO,H,H©
©0©©00©OOOPOO.H^O
OOOOOOOOOOOOO-H—• O
oooooooooooooooo
g ooooooooooooooo ooooooooooooooo
oooooooooooooooo
00-H*H~4~H*H~H~H-H»<4~4<H<~lOO
O0-H-H.-.-H — — —I ^ ^H ^ _4 -HOO

OOOOOOOOOOOOOOO
OO-HOOOOOO—lOOOOOO
OOw^rt-HOrHooOOOOOO
OOo«Hr-too-H^OOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOooooooOOOOOOO
OOoooOOOooOOOOOO
OPoOOOOPPoPPOOOO
OOoPOOOOOopPOOOO
OOOOOOOOOOOOOOOO
OO—i—.OCO-H—'OOOOOOO
OOOoooooooOPPOOO
OOOOOoooOOOOOPOO
gpppoooooooooopp ooooooooooooooo
oooooooooooooooo
oooooooooooooooo
oooooooooooooooo
oooooooooooooooo
oooooopooooooooo oooooooooooooooo
oooooooooooooooo
oooooooooooooooo
oooooooooooooooo
oooooooooooooooo oooooooooooooooo
oooooooooooooooo
OOOPOOOPPPPPOOOO
OOOOOOOOOOOOOOOO oooooooooooooooo
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO
OOOOOOOOOOOPPOOO

OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
SQPQQoooooppoppoo oooooooooooooooo
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOooOOOP
OOOOOOOoooOOOoopp
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOPOOOOOOO popoooooooooooppp
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOPP
POOOOOOOoooooOOO©
OOOOOOPooooooO^oPP
g OOOOOOOOOOOOOOOO oooooooooooooooo
OOOOOOOOOOOOOOOOO
POOOOOOOOOOOOO.OOP
0000000^00^0^0000:00
oopopoooooooooopo
OOOOOOOOOOOOOPPOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OO00POPPOPOOPPPPP
©PooPOOOOOOOOOOOO
OOOOOOOOOOOOOOOOP
OOOOPOOOOOOOOOO^OO
0000<HOOOOOOOOP00^4
PPoopPOooOOopOpOo
OOooPPPoopooPOOOO
OOOOOOO00O00OPOPP
OPo^OppOO^OOOooPOOO
OOooOOOOoOOo—iOOO—i
OP ooopoooopoooo^o'o
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOPP
8§8§8§888§Sg§§88§
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOP
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOPOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOPOOO
OOOOOOOOOOOOOOOOP
POPOOOOOOOOOOOOOP
OOOOOOOOOOOOOOOOO
OPOOOOOOOOOOOOOOO
OOOOQOOQPOOOOOOOO

000
000
000
OOO
OOO
OOO
OOO
OOO

oocooccooooccoooooococooooooocooooooooooooooo
coococoooooocoooococooooooooooooooooooooooooo
coooocoooooocoocooococooooooooooooooooooooooo
coccoccoooocooooccococooooooooooooooooooooooo
cocoocooooocccooooocooooooooooooooooooooooooo
oocooooooooccooooooooooooooooooooooooocoooooo
cocooccoooooccoooooooocoooooooooooooooooooooo
oooooocooooccoccooocococooooooooooooooooooooo
ooocoocoooocccooooocooooooooooooooooooooooooo
oocooocoooooccooococoocoooooooooooooooooooooo
ooccoccoooooccooooocoococoooooooooooooooooooo

«•* ooc cocccooocc cccooocoooooooocooooooooooocoooo —• cocccoooooocccocccooococooooooooooooooooooooo -—> ^-.
ooccoccoococccccccoccccoooocccooooooooooooooo

in ooccoooooooccoccocooooocooooocooooooooooooooo IP * ooocooooooocoooooooccocoooooooooooooooooooooo
ooocoocooooccooooooooooocoooooooooooooooocooo

<•
n

O oocooocooooccoocooooooooooooooooooooooooooooo 10 u
r* COCOOOOOOOOCCCOOOOOOOCOOOOOOOOOO^HOOOOOOOOOOOO r^ 0)

OOCOOOOPOOW.-H — COOOOOOOOOOOOOO^^rtOO^HOOOOOOOOOOO 5
OOCCOOCO^-^H^ICCC——tOOOOOOOOOOO^HOO-HOOO^OOOOOOOOOO

w OOO COOCO.—lOOOO C O^HOOOOOOOCOOO^^OO^HOO»H<-tOOOOOOOOOO (0
c OOCOOOOO^OOOCOO^OOOOOOOOOOO^H—<O^O*H^H^OOOOOOOOOO 0 N OOOOOOOO^OOOCCO«-HOOOOOOOOOOOO-H^H«-4^^HfHOOOOOOOOOOO N

00000000^-t^OOO — --^HOOOOOOOOOOOOOO*H^HOOOOOOOOOOOOO
10 in OOCOOCCOO^H^^- — •— —-OOOOOOOOOOOO^H^HOOOOOOOOOOOOOOOO tfj in 0

r oocooocoooo^--oooooooooooooo^ooooooooooooooooo 1 ••

10 e OOOOOCOOOOOOOCO—'00000OOOO0OO--OOC)00<-*000O0O0000 10 r-4

s o OOCO—*«^-<-^^H<-4^^-(w^-—4—<0©00©00000©«-i>—^'HrH~*.-«-HOO©000©000 1 o £ r* i OOGO~i--.— --«'-'i«--«-t.-i<— —• -HI— OOOOOOOOOOO.-t'-iOOOOO.-HPOOO©©©©©© r^-
X ©O0©©©000000000000000©0©00©©©0000©0000000©0©0

*J 9 OOOCOOOOOOOCC C 3—'OOOCOCOOOOGOOOOO-HOOOOOOOOOOOO 4J
•H 10 OOOO—I-*^H.-1.-II-I^^H~-^H-H^HOOOOO©0©000©<-)!-(«-(0©^H©000000©©©0 1* • to

n JD a 000O^-(^-»^-^^H^<-t^H-*»--^^0O000OOOOO©--i^f-(.H©©0^HP©OO00O©©©
©©00©©©©©00000000©OCOOO©OOO^HOO^HOOO<-*00©0©00000

0 —> 3 S i 00©©©©©0©0©00^0000000©0©0©0^H©O^H©0^FHOO©000©0©0 1 -H 4J

& c io
0

0000©©©0©^H^^HC©WOOOO©0000©OO^H-HO^HO^W^H©00000©0©0
OOGOOOOO^^H^'HOOO^HOOOOOOOOOOOO^^r-I.H.H.HOOOOOOOOOOO • 10

1 01 * 8, H ©OC©0000.-HOO-*000-HOOOOOOOOOO©OOO^H;«-IO©POOOO©0©0©0 8. to c T: OOOOOOOO^OO^CO^H^OOOOOOOOOOOOOOOOOO^OOOOOOOOOO iC
>..C c >..c

s *J x JJ h
-U OOOOOOOOOOO^H^OOOOOOOOOOOOOO^OOOOOO-HOOOOOOOOOO 1 4J i

—1 •-H OOOOOOOOOOOCOOO^tOCOCOCOOOOO—(OOOOOOOOOOCOOOOOO 4J > Q J2 *<0 * c J 3 u I F 1 t I
•a IC ooooocoo-^ooocooooooooooooooocoooooooooooooooo c

o 0000000©©-^©©OCO-HOO©C©00000©.-HOOO©0©<-.00©000©000 f-> ^H

I 0 £ CN u I 1

« (ft >o n >i^
V — V OOOOOCCOOOOOOOOOOOOCOOOOCOO^HOOOOOOOOOOOOOOOOO n Jj 1
x oooooccoooooocooooooocoooooooooooooooooooocoo £
X Jj ooocoooooooocoooooooooooooooooooooooooooooooo

oooooocooooocoocoooocoooooooooooooooooooooooo
4J

m >- C >, c
C t E oooooocooooccccoooooooooooooooooooooooooooooo V i e
IH ^•ooocoooooooooooocoooooooooooooooooooooooooooo h ^ U c 4J ECOOCOCCOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO t-t s 4J

CO « £ oooooccoooocoooooooooocoooooooooooooooooooooo c B » o >.o ooooocoooooocoocoooooooooooooooooooooooooooo 0)
z: 1 (CCOOOOCOOOOOOOCOOCOOCOOOOOOOOOOOOOOOOOOOOOOOOO c 1 4J
c a) 1 ucoooooooooooocoooooocoocooooooooooooooooooooo <c 10 1

OS 5 SL JMOOCOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOO * .c
T C coocoocooooooooooccooooooooooooooooooooooooooo £ a "• E *Z 1 ooccoooooooocooocoocooocooooooooooooooooooooo E HJ
in >. u JJOOCOOCCOOOOOCOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOO >.t-
-H e ccoccoccoooooocooooccocccoooocoooooooooooooooo cr r: cr

k. £ •^coccocoooooocooooooooccooooocoooooooooooooooo 4J ^« 4-t ~- 1 *- t-cococoooooooccoooocoooooooooooooooooooooooooo Si
u •-*

fM t £ C-COCCCOOOOOOCCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO n:
1 —ooccoccoooooccooooocooooooooooooooooooooooooo 1 u B <-H OOCOOOCOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOO^H c

i. •H ^ 4 /N. -H ^ooccoooooooocoooooooooooooooooooooooooooooooo*^ /-\ 1 ^ -H
•=; = 1 — J £ 1 ?9?v???9959????9Q999?C(?g>?(?<?995gQ9P5?99??Q??9? £ 1 — 1 c

ooo
oooocoooooocoooocoooooooooooooooooooooooooooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooooooooocooooooooooooooooooooooooooooooooooo
ooo
ooo
ooo I oooooooooooooooooooooooooopoooooooooooooooooo
ooo 0

X 0 OOO
• J:

o
ooo

\J3 u
u

0)
OOOOOOOO—'OOOOO—(OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOWOOOOOOOOO^*H'HIH^OO^'H«H<HO«-(PH<-(00000

a> *J OOOOOOOO — OOOOOO—.COOOOOOO-H—<000^-i^-tOO--4<-HOOO—<^*ooooo
*J 0) «c

5 2
JJJJ

OOOOOOOO-^OOOOOOOOOOOOOO-H-HOOOOO—<^HO^—«OOO--^—IOOOOO

2 •u in OOOOOOOOOOO-H-HOOOOOOOOOO—(^—(OOOO^OOrH^OOOr^r-iOOOOO -^ 2 1 'T OOOOOOOOOi-4^^tH^HlHOOOOOOOOO<-4<HOOOpH'MOO«H<HOOH«H^OOOOO
0 t •U OOOOOOOO-H—'—<000^-<^000000000^"-Hr-*^-HOOOO-H-H^O^^HOOOOO
X iJ L X ^£> 5QS5C>000^000000-HOOOOOOOOOOOpPPPOOOOOOO^^OOQOO

OOOOOOOO^HOOOOOO-HOOOOOOOOOOOOOOOOOOOOOO^^^OOOOO IH d- r-
0) 0 -^ OOOOOOOOf-<000000<HOOOOOOOOOOOOOOOOOOOOOO<H>-(00000

>J3 *J u OOOOOOOO^H^OOO«-ti-t-HOOOOOOOOOOOOOOOOOOOOOO^H^OOOOO
u (0 OOOOOOOOO^-t-H—(-H—'---OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

oa a ppooooooooo^H^^iooooooooopooQpoooooooooopoppooo
POOOPOOOOOOOOOOOPPPPPPrHPPPPOPPPPOOOPOOOPPOOOO -H 4J 4J 4J *J

X j: -C X •^1 OPOOOPOOOOPOOOOPOOOOOPOOOOPPPPPrHrHi-tOOOPOOPPPOO
& a- IT a- CT> w

-*H -H -H 1 OOOPP»HrHOPPPPPOPPOPOPPPOOOOPPP«H>HrtPOOrH*HPOOPPPPP
« h h M 1-, <0 ooooo^-.—<OOCOOOOOOOOOOOOOOOOOOO--*OOOOOO-HOOOOOOOO

00000<H-HPOOOPOOOOOPPOOOPPPPPPO>-^POPOOOIHPPPOPPOO s •0
X OOOPO'-trHOOOOOOOOOOOOOOOOOOOPOPiHPOOOOOfHOOOOPOOP

3 h >- M u OOOpO<H'^HPt-t<-<>HOPOP)HrH<Hf-trHOOOOOOPPP'HpHPOO<-4'>H<HOOOOOOOO
0 • 5) 0J V JJ 00000<H>H*HOO*-i<-tOP^^HOOP^H^HPOOOOOOPP'Hi-4^H«-t<-<^HPOOOPOOOO > > > > 00000»-t<-tPOO^»-lOO<-HOOOO^rH*HOOOOOOPOOO»-t^HOOOOPOpOpOO

00000»-(*-»OOOiHi-*P^HrHPPPpprH^OPPOPPPPOPPOOO<-ipPPPppPO 0 0 0 0 0 •9 e •
ID r

•v CN rC OOOpP«HtHOOOr-4r-IOO<-4r-lOOO<-H<->IOOOOPPPO<-lOOOPOP'-*POOPOPPO
OS (N fN CM o; OOOOO.H.—1»-IO-H~H.-I-H©0«-H.—If-(^-<^HOOOOPPOOO<-lOppOOOOOppPpOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOPOO.-tOPOOO.-(PPPOPOPO r p> Ol C4 CN g. i o
01 o o o o T >-
\ •«• ^> *• ^r *J ooo 1 1 oooooooooooooooooopooooopoooooooooooooooooooo

OOOOOOOOOOOOPOOOOOOOOOOPOOPOOPOOOOOOOOOOOOOOO 4J
10 E ooo

E E E 6 I oooooooooooocoooooooooooooooooooooooooooooooo
« •^OOOOOOOOOOPOOOOOOOPOPPOPOOPOOOPPPOOOOOOOOOOOO

c^ AJ *J 4-J 4J 0 B £000
CO B B 5 £ z. -H ooo
0^ o XOOOOOOOOOOOOOOOOOOOOPPOOOOOOOOOOOOOOOOOOOOOOO

1 •xooo
1 1 1 1 1 CO IHOOPOOOOOOOOOOOOOOOOOOOOOOOOOPOOOOOPPPOOOOOOOO

O) -c X i X K IHOOO
a a a. Q. Q. •cooooooooooooooooooooooooooooopooooooooooooooo
IC «: K « *c 1OOOOOOOOOOOOOOOOOOPOOOOOPOOOOOPPPOOOOOOOOOOOO

un E s u u u 3S4JOOO
•—» D> CP c & c-.« cooo

4J *J 4J 4i 4J h -^ooo
r^ •H •H •H u 1-iOOOOOOOOOOPOOOOOOpOOOOOOOOOOOOPOpPOOOOOOOOPOO
OJ J; X ia XI X K aoooooooooooooooopooocoooopopooooooooooooooooo

— OOOOOOOOOOOOOOOOOOOOC OOOOOOOPOOOOOOOPOOOOOOOO
u P4 f- -H c OOOOOOOOOOOOOOOOOOOOOOOOOPOOPOOOOOPOOOPPOOOOO
a «c ^POOOPPPOPOOPOOOOOOPPCiOOPOPOPPPOOOOOOPPPOOOOOO
< i e i c 1 £ 1 £ 1 — lOOOOOOOOPOOOOOOOOOOOOOOOOOOOOOOOOOOOOPOPOOOOO

OOOOOOOOCOOOOO^-t^^COOCOCCOOOOOCOOOOOOOCOOO o o o
OCOOOOOOOOCOC~-i^~ — 'OCOOOOOOOOOOOOOOOOOCOO oo c
OOOOOOOOOOOO' > —i O O C — — COOCOOOOOCOOOOOOOOOOO oo o
ooococcocooo— OCOOOC — CCCCOOOOOCOOOOOOOOOOO o o c
ccoccoocccoo^oococo — cooccoooocoooooopoooo
oooooocccooo — oococo — cooocooooocoooooooooo

o o c
o o o

OOOOOOOOOCCO' IOOO -^-000000000000000000000 o o o
OOOOOOCOOOCOC- ' —< ^H 'OCOCCOOCOOCCCOOOOCOOOO o o c
OCOOOOCOOOCOCCO—t^CCOCCCCOOOOOCCOOOOOOOCOO o o c
OCOOOOCOOOOOCOOCOCO^COPOOOOOOCCOOOOOOOCOO o o c

o o o
o o o

CCOOOOOCOGCOCOOGOCCOCOCCCCOOOCOCOOOOOOOOO *> o o o
OOOOCOOGOOOCCOCCOCC—"COOCOOOOCCOOOOOO-HOOO© o o c

l/l oo c
o o o «e-

OOOOOOGOGOOOCOOOOOOOCOOOOOOOOOC—OO^OOO — OO oo o
OOOOOOOOOOOOCOOOO — COCOOOOOOOOCO—OO^OO-H^OO tfl oo ~
COOOOOOCOOCOO-^^^HOC — OCOOOOOOOOOO.--HO~HO^ —<^-OO r- OO ~i
OOOOOOOOOOOO^-^H-^^HOOOWCOOCOOOOOOOO'H^H^^-H-HOOO O O -1
OCOOOOOOOOOO—(OO — 00O^C00OO000000OOO^H—*0O00O oo —
©COOOOOOOOOO — OO^OC — -HCOCOOOOOOOO-^^OOOOOOOO o o o
oooooooooooo — -<o^o — —< — COOOOOOOOOG—IOOOOOOOOO 10 oo o
OOOOOOOOOOOOO-H-H'-^ — — OCOOOOOOOOOOOOOOOOOCOO 3 OO -1
0©OOp©000000©OOooCO©C©00000000©o~HOoo^~HO©0
OOOOOOOOOOOOOOOOOOO^COOOOOOOOOO^^HOOOOO^OO

K ^ O O -H
OO -H

w in OO ~
OOOOOOOOOOCO — -« ~H rH ^ • >«N COOOOOOOOOOOOOOO-HOOOO I V O o >~*
OOOOOOOOOOOO^-OOOOOO — COOCOOOOOOOOw^H^-tOO—iOOO w o o o
OOOOOOOOOOOO^OOOOGOOCOOOOOOOOOO—<OO~HOOO^-0© 3£ 882 OOOOOOOOOOOOO^OOOCO^COOOOOOOCOO-HOO-HOOO — oo

oo —
M o o —

OOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOO^H-H^w^wOOO "N W OO M
<r< OOOOOOOOOOOOOOOOOCOOCOOOOOOOOOOOOO'H'-'OOOpO

OOOOOOOCCOOOOOOOOCOOCOCOOOOOOOOOOOOOOO-^OO 33 3 5 88- 0
1 —* r o O O -H

0. •3 W O O -H
6> OOOOOOOOOOOOOOOOOCOOCOOOOOOOOCO^nOOOOOO — oo 1 ^ -O OO -c
10 oooooooooooooooooocoooooooooooo—*ooooooooo Q) to o *£ (J G OO —i a, oooooooooooocooooooocooooooooooo^ooooo—<oo a i 0 o oo ->

>,J= 4J H O O -H
OOOOOOOOOOOOOOOOOOOOCOOOOOO^H^—« — rtr-t^^^H-H^^OO Jj u *J 8 O O ~i

a OOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOO 1 +- <i •»-. & 1 O O O
OOOOOOOOOOOOOOOOOCOOCOOOOOOOOOO^OOOOOO — OO +J — > c O O O a OOOOOOOOOOOQOOOOOCOOOOOOOOOOOOO-«000000-HOO s-s c ^ 3 O O O

O O O 1 5 oo o
T3 OOOOOOCOOOOOOOOOOOOOCOOCOOOOOOO-tOOOOOOOOO 3J <c o o o

OOOOOOOCOOOOOCOOCOCOCOOOOOOOOOOOOOOOOOOOO —" •-< o o .n o o o

2 OOOOOOOOOOOOCOOOOCCOCOOOOOOOOOOOOOOOOOCOO PS, r*j N •>*• o o o
OOOOOOOOOOOOOOOOOCCCCOCCOOOOOOOOOOOOOOOOO o o —

IQ OOOOOOOOCOOOOOOOOCOOCOOOOOOOOOOOOOOOOOCOO w >~o ^3 o O O —I s OCOOOOOOOOOOCOOOOOCOOCOCOOOOOCCOOOOOOOOOO IQ ~ •c r^ TT OO —
7 OCOOOOOCOOOOOOOOOOCOOCOOOOOOOOOOOOOOOOOOO O O —•

COOOOOOOOOOOCOOOOOOCCOCOOOOOOOOOOOOOOOOOO
OOOOOOOCOOOOCOOOOCOOOOCOOOOOOOOOOOOOOOOOO

4J O O o 55 >. c o o c
OOOOOOOOCOOOOOOCOCCOCOOOOOOOOOCOOOOOOOOOO IQ ft c E E £ o o o
OOOCOCOOOOCOCOOOOCCOCOOOOOOOOOCOOOOOCOOOO - £ ~o o c

<r OOOOOOOOOOOOOOOOOOCOCOOCOOOOOOOOOOOOOOOOO k, I 4J *J E o o o
GC OOOOOOCOOOOOCCOOOCOOOOOOOOOQOOCOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOO
fO —1 I 8 £ B o o o

C 1 9/ >-o o o " OOOOOOCOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOCCOCOCOOOOOOOCOOOOOOOOCO

C 1 *J Jj *-> 4-< n o o o
I- o o o

-X ©OOOOOOCOOCOOOOOOGOOCCOOOOOOOOOOOOOOOOOOO -- <c r u o o o
T COOOOOOOCOOOCOOOOCOOCOCOOOCOOOCOOOOOOOOOO

OOOOOOOOOOCOCOOOOOOOCOOOOOOOCOCOOOOOCOOOO
Si :L a. a. K O O O

E~ (C •3 ^ <z IOOO
IT OOOOOOOCOOOCOOOOOCCGCOOCOCOOOOOOOOOOOOOOO >. u u IN u *J o o o

OOOOOOOOOOOOCCOOCCOOCOCCCOOOOOGOOOOCOOOGO V K CT' •z tr Cr c o o c
OOOOOCOOOOOOCOOOOOOOCOOOCOCOOOOOOOOOOOOOO •u U *J Jj *J -i — oo o

P* OOOOOOOCOOOOCOOOOOOOCOCOOOOOOOOOOOOOOOOOO • -I u o o o
o: OOOOOOOOOOOOCOOCOCOOCOCOOOOOOOOOOOOOOOOOO £ £ -D JQ ao o o

OOOOOCGOOOCOOCOOOCCOOOOOOOOOOOOOOOOOOOOOO « OOOOOOOOOOOOOOOOOCGOOOOOOOOOOOOOOOOOOOOOO -• c —t —1 o o o a OOOOOOOCOOQOOOOOOGCOCOOOOOOOOOGOOOOOOOOOO < COOOCCOOOOOOOCOCCCCOCOCCOOOCOOOCOOOCOCOOO C 1 — : C 1 c . C 1 c : OO o

OOO o o o o
OOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO o o o o
OOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOO o o o o
OOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOO o o o o

o o o o OOCOO
OOO o o o o
OOO o oo o
OOO o oo o
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOO
OOO

o oo o
o o o o

OOO o o o o
OOOOOOOOOOOOOOOOOO ©•© 0©O0OOO00OOOOOO0OOO0OO©O0 o o o o
OOO o o o o
OOO o o o o
OOO
OOO 5 £ 8888
OOO « i o o o o
OOO o o o o
OOO r^ *i o oo o
OOOOOOOOOOOOOOOpOQQOOOOOOOQQOOOOOOOOOOOOOOOOO
OOO §888
OOO o oo o
OOO 9 o o o o
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^HOOOOOOOOOOOOOO 1 o o o o
OOOOOOOOOOOOOOOOOOOOOOOOOO^H-H-^OO—lOOOOOOOpOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO-H^HW^HOOO-HOOOOOOOOOOOO

B^o 8888 -r* ^»»H
OOOOOOOOOOOOOOOOOOOOOOOOO—IOO-«000-HOOOOOOOOOOOO 551 o o o o

o oo o OOOOOOOOOOOOOOOOOOOOOOOOO-tOO^OO^^OOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO^H^HOfHO-^-H^HOOOOOOOOOOOO o oo o
OOOOOOOOOOOOOOOOOOOOOOOOOp^^-i^-t^^^OOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOO^H^HOOOOOOOOOOOOOOO Js- 8888
OOOOOOOOOOOOOOOOOOOOOOOOO-H-HOOOOOOOOOOOOOOOOOO wsc o o o o
OOOOOOOOOOOOOOOOOOOOOOOOO^HOOOOOOOOOOOOOOOOOOO 4-> Cl o o o o
OOOOOOOOOOOOOOOOOOOOOOOOOO^-lOOOOO-tOOOOOOOOOOOO -1 B o oo o
ooooooooooopoooooooooooop»H^^H^rH^^»^poppoopooooo
ooooooooooooooooooooooooo^^ooooo^oooooooooooo ^S£ 8888
ooo i -H tr o oo o

• oooooooooooooooooooooooooooooo^noooooooooooooo • •) -^ o oo o
t> OOOOOOOOOPOOOOOOOOOOOOOOOO^H«H-HOOFHOOOOOOOOOOOOO 1 u o oo o
2 ©©©©PSSSSSSOOoooooooopppp^t^-t^H-^opo^ipopooopooooo

OOOOOOOOOOOOOOOOOOOOOOOOO^HOO-4000^HOOOOOOOOOOOO ^3" 8888
OOOOOOOOOOOOPOOOOOOOOOOOO^HOO»HOO*H^OOOOOOOOOOOO o oo o

3 OOOOOOOO^H^HWOOOOOOOOOOPOOO<-I<-40^0<-(<H^OOOOOOOOOOOO *J • o o o o
0

OOOOOO^^H-HOPO-H^HOOOOOOOOOOPOOP-^^HOOOOOPPOOOOOOOO
OOOOOO^OOOOOO^OOOOOOOOOOOOOOOOOOrHOOOOOOOOOOOO

1 *J •Q
4J-H C

I!-
o oo o

8888
o o o o
o o o o

T! O00000—«'-(000 — —t-HOOOOOOOOOOO--<000000-HOOOOOOOOOOOO o oo o ' oooopoo--*^-^—*—<-4PpOOOOOppppP—iOOOOOOOOOOOOPPPOOOO
OOOOOOOOO^^OOOOOOOOOOOOOOO^HOOOOO^OOOOOOOOOOOO

<-t r- §888 1 f 8."
0} >s^>

o oo o </) o o o o < « JJ r^ o oo o f OOOOOOOOOOOOOOOOOOOOOOOOO^HOpOOOO^OOOpOOOPOOOO
OOOOOOOOOOOOO-HOOOOOOOOOOO^HOOOOOO-HOOOOOOOOOOOO

£ 1 ^ o o o o
o o o o 4J -

to >-c o o o o

2|e
ti SJ *.'

o o o o
^OOOOOOOOOOOOOOOOOOOOOOOOOi-tOOOOOOOOOOOOOOOOOOO ~o o o o

o EOOOOOOOOOOO^OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO E o o o o
CD OOOOOOO^^HwOO^OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO fS8 o oo o

>NO OO o c* >sO OOOOO^H-H^HWOOOWOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
H M3000000<-tOO<-tOOO<-tOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO C { ^J « o o o o

MOOOOOO<-tOO-HOO-H«HOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO a a i C o oo o
CN 1IOOOOPOPH^0^HO«-<"HFHOPOOOOOOOOOOOOOOOOOOOOOOOOOOOOO w" -5 u o o o o
•1" •oooooooo—I^^-^«-H—*^oooooooooooooppooooooooooooooooo

iooopooooo^wopoooooooooooooooooooooooooooooooo
„r a 78888 E a

in 4JO0OOOOO00O0O0-^O0O0OOOO0O0OOOOO00000000OO00000 hk JJ o oo o —< IT* IT c o o o o
4J kl JJ -I o oo o

r- ^oo<>poo<-ioopooo^HOOoooooooooooooooooooooooopoopo
CLOOOOOO-HOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO© 500000

u o o o o
a.o o o o O)

^-0000000<-<00000<-lOOOOOOOOOOOOOOOOOOOOOOOOO SOOOOO *^ 1 *— — o oo o
u o oo o
a /\ o oo o
«s 1OOOOOOOOOOOOOOOOOOOOOPOOOOOOOOOOCTOOOOOOOOOOOO = 1 >- 1 c 1 OOQO

ooooooocooocoooooooccooooooooooocoooooooooo u
oooooooc COOOCOOCOCOCOOOOOOOOOCOOCOOCOOOOOCO *r 5 oooooooc C C O C c cooocoooooooooooooococcooooooc c
ooooooco c o c c c cooococ oooooooooooocoooocoocoo M t
oooococc ooocccooocccooooccooocoococcoooooco 1 u
oooooocc ocococooocccoooooooooooccoooooooocc
ooooococooooccocooocooooooooooooooooooooooo JJ rt
ooococco c c c o c oooococooooooooooooooocoooocc c •H tt ";
oocoococcoooccocoocoooooooooocoocooooooooco t; ^-v c jC
ooooococoooocoooocoooooooooooooccoocooooocc 1 u —(
oooooooc o c c c o cocooocoooooooooooocoooooooooo 1 a
occcccoc c c c c c cocccccoooooooooooococoooooooc u IT
oooooooc ccocccooococcooocooooooccocoooooooc u H r«
oococccc c o c c c coccccccooooooocooococoooooocc c
ocoocccc c o c c c cooooooooooocoocooooooooooooco £ H b oooooooccococcooocoooooooooooooooooooooooco 'J c (C
ooooooooooooccocoooooooooooooooooooooooocoo —> c <z
oooooocc o c c o o oooooooooooooooooooooooooooocc X T3 a OJ
oooooooococoo ooccoooooooooooooooooooooooooc 1-1 X Ifl CT
oooooccc o o c c c ocoooooooooooooooooooooooooooo * *£ L g ooooooccocooc ooooooooooooooooooocoooooooooo c f\ (C
ooooooc— — ^H o o ~ —toooooooooooooooooooooocc O *J lu B c rn oooooooc -. -. o o — —'OOO^oOOOOOOOOOOOOOOOoOOOOOOCO .-^ «*l 0 « c E 1
oooooooc -H -H O O — — O C O — —i C OOOooOOOo-^oo«ooOOO©0000 m T3 JJ r»» ••H c 0
oooooooc —1 oo o o ~ O O O — 0OOOO00OO00000—'OoOOOOOOCC M 1 u to M c oooooooo o oo o — — OOO^oCOOOOOOOOOOOOOOGOOOOOOOO a> w n n 1 £ 1 ooooocoo — OO C O — O C © — -HOOOOOOOOOOOOOO©.— OOOOOOOO •*. • IM i Ifl •3
oooooooo — o O O —i CL 1 tfi c c r^ ^H
oooooooo — o o o o X n fi a JZ •a
OOOOOOOOOOOOOOOOOor^oOOOOOOOoOOOOOOoOOOOOOCO f *• c K f fi >
OOOOOOOOOOOOOOOOO— oOOOOOOOOoOOOOOOOOOOOOOOO -C 0) 1
OOOOOOOO — — o o c 0000--oOOCOOOO©©o©©000.-(00000©©© >*J= H -H *0 >.
OOOOOOOO -Q *J o 1 >, 3 ^ A

•D R XI u ? r- OOO -^< 4J c 1 t« —* OOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOO *• OJ 3 <L -C *J m
OOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 1 « \D c ^^

Si
S

r^ 01

0

E —* c
•0

c m
KJ —
r-.

o
OCOOOOoOOOOO—• OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 2 .*: y

s ooooooooooooo OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO N o 1 o
oooooooo o o o o o -OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO • o w H *i « -1

3 oOOOOOOOOOOOOOOOOOOoOoooOOOOCO w c i •C w in
0 OOOOOOOOOoooOOOoOO—oOOOooOOOOO M QJ E -C M E £ - s

oooooo—o OOCOOOOOOOOCOO—10OOO00OO0OOCO0—10OOOO 0) N •^ — N
c OOOOOOOOOOOOOOOOOOOOOOooOOOOoOooOOOOOoOOOOO N o J a W —JI •r*

g OOCOOOo^ HHHr^H o O O ^ —'OOOOOt-iOOOooOooOOOOOoOOOCO -«-l V) 1 — a 10 D OOOOOOoo —(.—t —- r-< — —iOO--o©0©©ooOO©OOOOooOO©0 —lOOOOC « I 0 « -H <c 1
•c OOOOOO0COOOCOOOOOOOOOO00OOOO0OO0-HOOOO0OOCOO 1 w d « bi ID

OOOOOOCC O O O C o 00C0CCC00ooo0ooo.--.00 —, o o —. oO O O O C O « c J= o c ^ B

I OOOCOOCO oocoooooococooooooooooocoooooooooco K E E X
OOOCCCCO c o o c c COOOOCOOOOOOOOOOOOOOOOCOOOOCCO o - IN

L: OOOOOOOO ooooococooocoooooooooooocoooooooooc ; >. (C - J >.•-! >* OOOOOOCOOOOCCOOOOOOOOOCOOOOOCOOOOOOOOOOOOCC E K 10

jf OOCCOOCO o c o c c OOOOOOOOOOOOOOOOOOCOOOOOOOOOCC >* k s Wl >^
OOOOOOOOOOCOCCOOOCOOOOOOOOOOOOOCOOOOOOOOOOC
OOOOOOOOOCOOCOOOOCOOOOOOOOOOOOOOOOOOOOOOCOO

J* <c € i- B ft b B
H V) u ^ s « M

OOCCOOCO o c c o c OOOOOOOOOOOOOOOOOOOCOOOOOOOOOO I u •j u c 1 14
OOCCOOCO c o c o o OOCOCCOOOOOOOOOOOOOOOCOOOOOOCC V jj ki 4J <0

c OOOOOOOO o o o c o COOOOOOOOOOOOOOOOOOOOOCOOOOOOO 1 D" c 1 p C 1
w OOOOOOOC o o c o c OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO jj Jj 4J i. AJ «4 4J
t* OOOOOOOC o c o o o OOOCOOCOOOOOOOOOOOOOOOOOOOOOOO 1 u M u - c

OOOOOOOC ooooooocooocoooooooooooooooooooooco o: M fl a. w .£ a i-,
OOOOOOOO o o c o o OCOOCCOOOOOOOOOOOOOOOOOOOOOOOO

PS OOOOOCOOOCOCC CCCOOOCOOOOOOOOOOOOOOCOOOOOOOC
«4p OOOOOOOCOOCCO OOCOOOCOOOOOOOOOOOOOOOOOOOOOOO .*-'

OOOOOOOO c c o o c OOOOOOOCOOOOOOOOCOOOOOOOOOOOOO c
in OOOOOOOOCCOOC COCCOOCOOCOOOOOOOOOOOCOOOOOOOO Bj
" OCCOCOOO

OOOOOOOO
o o c o c
o c o o o

CCCCCOOOOCOOOOOOCOOOOCOOOOOCOO
OOOOOOOOOOOOOOOOOOOCOOOOOOOOOO 1

[*• OCCOOOOCCOOCO OOOCOOCOOOOOOOOOOOOCOOOOOCOOOC c [S OOOOOOCO c c c o c OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOCO o c o o o OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

u OOOOOOOCCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCo
C, OOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO—I/N <. OOOOOOOOCOOOCOOOOCOOOOCOOOOOOOOOOOOOOOOCOCO: : j

oo
oo

00000000000-H-^^0000^-^-<000000000000000000000 o o
OOOOOOOOOO^-HOOOOOOOO^H^OOOOOOOOOCOOOOOOOOOO §§ OOOOOOOOOO-HOOOOOOOOOO-HOOOOOOOOOOOOOOOOOOOO
0000000000«OOOOOOOOOO^HOOOOOOOOOOOOOOOOOOOO o o
OOOOOOOOOO^OOOOOOOOOO^HOOOOOOOOOOOOOOOOOOOO o o
OOOOOOOOOO^OOOOOOOOOO^HOOOOOOOOOOOOOOOOOOOO o o
OOOOOOOOOO^^HOOOOOOOO^H-HOOOOOOOOOOOOOOOOOOOO §§ OOOOOOOOOOO^HrH^OOOOO^-t-^OOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOO^^^^H^H-HOOOOOOOOOOOOOOOOOOOOOOO
OO © o
OO o o
OO
OO

m o o
«• o o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^HOOOOOOOOOOO 1 £ o o
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO— ^HOOOOOOOOOO VD •-H o o
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^ 000<-(<-HOOOOOO f- £ o o
^H^H^^OOOOOOOOOOQOOOOOOOOOOOOOOOO OOOOO^rHOOOO >c o o
OOO—.—.—<—(OOOOOOOOOOOOOCOOOOOOOOO — Ooo^o~*OOOoO v£) u o o
OOOOOO— —s ^'OOOOOOOOOOOOOOOOOOOOO — u vO o o

o^OOOOOOOoo V) o 01 o o
OOOi-ti-Hr-tfH-HO—(OOOOOOOOOOOOOOOOOOOO — ooooooooooo 9) OJ 4J o o
O^H-H—* —*—<—(OOOOOOOOOOOOOOOOOOOOOOOC
^H—(-H—l^OOOOOOOOOOOOOOOOOOOOOOOOO —
-^^ ^^ i^^ i^^ »—« «—J m_4 i^^ *~* ^S f*l rf^ ^^ C*^ C^ f*} fS ^% ^^ ^\ rf^h rf^ /^ *^^ r^\ ^^ r^^ r^^ i^^ i^^ ^

ooooooooooo •4 ^ *J t 1 gg oo oo nm
1 •*•

4J

2
^^ ^^ V^ *J ^^ ^^ *^^ ^^ ^^ ^^ ^^ %^ %^ ^^ V^ "^^ ^^ V^ sj \~J *HJ ^—J ^-J "i—J WJ '^^ ^i' ^^ ^J \~) ^*
OOOOOOOOOMOOOOOOOOOOOOOOOOOOOOrH ooooooooooo 3
OOOOO—<—I-H—t—<—*OOCOOOOOOOOOOOOOOOO — ooooooooooo CO p 1 o o
OOO—(i-t*H»-t^^-(QOpOOpOOOOOOOOOOOOOOO*-(
.H«—l^^HO-HOOOOOOOOOOOOOOOOOOOOOOOOC

ooooooooooo
ooooooooooo

• W o 1 b 4J §g JZ r^ £. £i 1 j:
-H-H—i^OOOOOOOOOOOOOOOOOOOOOCOOOOC — _,^r-,^^-<^0000 --- • KH b. cr o o
•"(OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ooooooooooo 4-> s 0 •-H o o
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOO -^ OJ \0 o 4J u o o

IA
^-1

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^- OOOOOOOOOOO $% u " " • ss

OOOOOOOOOOO 1 •»* *J *J 4J •P oo
• OOOOOOOOOOO K a •4-1 >*-• 4J «44 oo

i
OOOOOOOOOOr-iOOOOOOOOOOOOOOOOOOO —
^^ r^"% r^% r^^ i^^ ^% ^^ rf^ r^^ rf^ #p«4 i/^S ^5 O ^i C*l f^ ^l ^% ^S ^S ^S r^-i ^\ ^*V ^^ rf^ r^^ ^% ^\ •

OOOOOOOOOOO 1
u n

HI 0) V 01 oo
88 i_^ v_^ i_i »_; \„; i^f V_J V_J •„/ v^ ^n \^ w v v_* >•_» I_J v^ *^ lW *—' VJ %J tJ tJ ^-* W *J V v ^"

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^' - - - .
OOOOOOOOOOO >.£ o o

3 ooooooooooo Il u u h N o o
0 OooOOOOOOOoOOOOOOOOOOOOOOOooOO^- OOOOOOOOOOO i a 01 0) 01 s o o

OOoooOOOOOoOOOOOOOOOOOOOOOooOO*-
OOOOoooOOOOOOOOOOOOOOOOOOOOOOOC

,-4_|,HOOOOOO^HO 4J -H > § > 88 0 OOOOOOOOOOO II 0 0 0 £ 000000«-<<-toOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOO o o I 00O0OOO-H—t*-t—(OOOOOOOOOOOOOOOOOOO — OOOOOOOOOOO E 1 o o
T3 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO— 00000000000 B e oo

OOO—to—tO^HOOOOOOOOOOOOOOOOOOOOOO^H
00«H^HO^^OOOOOOOOOOOOOOOOOOOOOOOO —

_HOOOOQOOOOO r*a o« r« CM o o
K OOOOoOooOOO F| IN (N p« (N o o

r-H—«^^0OOO0O—IOOOOOOOOOOOOOOOOOOO-HOOOO—.O^OOO--' o o
0) «i s. o o o o o o
s. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO<-H^I-H«-HOOOOO<OO a 4-1 ^p

V ^- ^* o o 1 0000000OOO>-(OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO©
O0000©©©000000©©©©©0©©00©©00©00©000000©000

£ 1 o o
4J o o

N oo >. c o o
oo a cj E £ E E o o
oo u K *-*o o

c> oo IH 0 4J Jj 4J 4-> E O O
CO oooooooooooOoooooooooooooooooooooooooooooo 10 rt £ £ 5 i o o
c> oo I 01 >iO o
H oo

oooooooooooooo^^-^oooooooooooooooooooooooooo
C 1
V 0)

4J
1

4J
1

4J
1

4J
1

no o Coo
OJ — a £ £ & 4= yog
V ooooooooooooooooopoooooooooooooooooooooooo _ r a. a a. a "22 OOOOOOOOOOOOOOOOOOOOO—(OOOOOOOOOOOOOOOOOOOO E K 10 n 1 1 o o
u-i OOOOOOOOOOoOOOOOOOOOOoOOOOOOOOOOOOOOOOOOOO >ih s g g 4JO O
^H OOOOOOOOOOoOOOOOOOOOOoOOOOOOOOOOOOOOOOOOOO o-« cr tr ly ty coo

OOOOOOOOOOoOOOOOOOOOOoOOOOOOOOOOOOOOOOOOOO »JhU 4J 4J 4J -HOO
r* OOOOOOOOOO—(©OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 8i. -*H •-4 -»H Log ao o CM 00©©OOOOOOoo©00©©©©0—4—tOOOOOOOOOOOOOOO©©©©© £ 2 £1 XI

OOOOOOOOOOOOOOOOOOOowOOOOOOOOOOOOOOOOOOOOO
u H m* rt m O O
a OOOOOOOOOOOOOOf-*ooo—tOOOOOOOOOOOOOOOOOOOOOOOt /•> o o
< OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^OOOOOO C 1 w 1 E 1 C 1 G 1 C 1 00

 1
i

•"•C
o

K
S 1
l IC ^ W t
<0 £ ^r — ^ . c ^ «—t -C — ^ c

V ^* ^-t ^ *-* — ^- *J —*
"N >• c^o c-o a^o O c

1
1

>-
>. 1
i u:

c c • c •
H -^ —l ^ H

w 1 <0 X 1 £ ! JB 1 £ x: £
c - •=^

2

1 - -- i
a; "" £ *• £ j I

GJ —• X X o ^- O -H -. —<

 1
« v> N i: S Ul N V) 10 •

« i
i r • «o • -c
W £ « £ V) -C

^« c •:
5 5

c Cj re u uo^;oj:ojrc o o
cr o 0 C
t y CN X 4i^MOO-^OOH o o
c *• r\ u

v i 'w >• — C c N >, N >- N >, N N N X >- H
as >- ^ ^^j •-H — > > 1 i i . 1 T 1 1 1 --H

c W
in
re --* ~

o o u
O • 0

X >- >. 03 tf) K W W (0 «
* < « iC * K *C rc

a
* X X N

£ " K ,_, O C O >. f\ fN >
O 1 ^. OO X >- X o J= J= x £. £ £ J: £ £ ~< •~< -rt

* C o O O O X O {N iC O uc t: W M o» « O -H O O O O O O o « in m — 0 • ~H (N o — U c C4 M ' Li M u
• ,—1 —» (N r.' <N « — >» o > 0 C 0 0 o x c x -H x d o o c c 0

rr X X >.-• 1 X 1 >s^ 4J >-*J 1 ' 4J
fC ! >• :»• >- 1 1 - X w >. " I L 0 - i o >, W >. V, >* It >. >- r-8 i n t a * « i i <n in - re K 1 c w a: Cv c vi OJ 1 10 1 iC 1 IS 1 {
V >.— - it v. tr. C (C re 0

re .= .c £.
w J: j (.-; re t > > > IC > w .c tf ^ w J: WI M «> > >

B tz •-* c; JZ >z C c n: >.£ 1 IC "C iC r « «i
IT 1M <— _£ -C i i i- o •-< ~ - -- £ »H X. - JZ i- .= £ —
\r. U 1 'J k. — wo c

0 -< S. re O 0 0 0 X O 0 0 C C X -> 0 Q 0
(C i— c c o X X O ~ o c • 5

-joe
o O JJ O ^ O *J o -HO X O i 1

X > O : C C 4J JJ 4J u —. *J • y • V • w 4J
cr y — .z Jj —1 U ^H s 1 ^H C o O -. rj u u i~ ^H y OUHCO DO 4J -1 -l 0 u 0
K & X 8

•rr

Hj nj *j rj i W 3 3 0 3 > > >
-r~> 1

— 3 3
c > X

1 1 '.: X - X > X tu
tit JB

:> x C

it!
y

— I c f 1 p| XI X i XI X
1 fC 1 iC 1 <C 1

C X ^c 1 I
* o; c W 1- K re V) 1 L: 0 B - u b 0 w u IT, •— t: — 05 •— w £ U) u to k. U

r- <u— ••• tz •~~ '-v ^ C D> c « c re -~ C Cr -Ji G i re Ci, c £> > IC £L IC *C IC IC 0 re a«> t. z~ a
if -O 1- £ V. x X I t 1 ^ i j= X x: >»-= K ^ i £ 1 £ I L « it - X —

>• >. c N "" T U M i- W u *H >- k.
<T u y. >. s t c U 'M K k. «J - rC fC 0 u o U U b U « - *- k rc t — C C '- c* z 1 > 0 - c — 0 -J " c c c II* — i-« C *J o c c tr c r c > c 4J 0 - — — — — * .-. v. K t". tn r* CJ 4. C, -J «J *i Vi \Z rC C 1

3i
*J y at — tli e it

•^ c; y x
« C i fee g 5 5 IB !S 9 c i s. t K G T5 IN 8 8£ I a £ i?.

0
a c 8S 8 1 B&l% s IS U tj rj

L: S
_ y — *- > —'P-i > ~ > « > W^H ^ > — > ^- > ^ — o > ^> > ~- > « > w > ^- > ^- r> —

k, 1 o o .— CN i 1 | 1 c o l 1 1 1 1 t 1 c o
C •s— /\ s* It /s /\ ^ — /V .A, (C /\ re /s re /s O A 1^ A fZ ^ re /N /N o ~ o C A it A i: A RJ A IC ^ re ^ re ^v. • /% < i - O , - I —(i t\ c i t\ i o; — — 1 — • "N j v —- ! — 1 IT '-" 1 IP ' —* i — , —' ! ~ 1 — 1 «-• 1 ~- 1 •- -i 1

O " o o o

— —£

oo§
tH <-4 4J

O O 0

oo-

CC lite
IO

O O -H >,
0) a
|l Hrfrth
re

1 ' ^.s a-
•-» ^H -)

3 1 1 *>
0 in c

o o c rt
-< rf -H D.

S3 i i tn —
•c — —• 1

1 0) ~

K re ~*
— £ • _ >. s E c

K' X u • tn e

n P^
CC -t- -H

o

o

o

K
i «
a

O

o

>-

•

n jo a ro

M - —< £

4J *J V
0 5 u * u

W i B. 0 3
c C

-r^ 'J •-*

0 i-4 0 >
1

*J *•*
•H O

1
V)

•H ^*
'1

4-J

3 ~i
*J —«

tr> H jj

H IC >, >. •z *J « = 1 c s, 0 O T3 W ft c -^ C 0
p g CN <c

tf-
u 0

B!
• £ +> n

4-> $ _I o m XI >>4J c
;• - • u u >. c l c^ 0 i •M O *> 0 i K .^

cc t-
a. x 0)

I IT. t
cr LI (T 13 5

1 i t.: JJ
= « M *. ^, -

r»l
£ « <o c • r: a a.

<• 3 .C > Jj

C — c 0 0. =
p >*-i 0] M — r, « S C i K

fl jj w C in « 01
*• K

— > _
c q j

N
*J ~ ~ c

- c S> -a

- i fs i f< i ^ 6 I T> I S I ~
«A KA
gJ " ' *- i

3

i
1

o o o ^

>, N X X M >tM N N >, N M N X N
-*-i -^ -H >ri | <H | <H I •Hlvl I <H|

t/1 01 10 n n 0)
X >> N XiQ>iCHCX«>HfiN«

-r4 -H t-4 fUl-HX-H^-HX-HX-H^

2

IS
I

i n
• O BOflO 0)
M • E • M • Ui

jj I I I B I I
> m > oi > o) >
I (C I re I (C I

0 0 0 0
i o i o r o i
o o oo o o o
3 3 3

111 sr'Si'frf
k. k. u u in k. i- t. « in
Q.

L
a a
L L

0 k. C I-, o ^ o
xi 0 -*J 0 -kJ 0 -*J

Ififfl!
I 1 I

^ i o i o i o ' aaJ as' a •

o no no
• 5 - E «

o o O 0 ^

O 1 — 10
• 01 — o

--*L~ IC o C^
« £ - — —• —1

c — o
-j c • £ L

.^ I; 3 t*i 4J 0
~> 01 0. CMM
~l > —1 >. c

1 1 1 01 0)
4J *J oi oi rf T)
Li —I c IC 1 c
CC£X oi 0
-u r a u
Ul 1 « o
1 X M • *»
w i o o o
C "0 —
£ t*l O X o •
—« 0) 1 «H

> oi H
01 I a 1 l
Ll 4J £ 01

o o

fs*

0 w
U I

•-H 10
*C *

U3
re O

•CO

08

— o
4J O

01 O I
4J 0]
MX IS
C I £
M 11
<w it O —
C £

L
c
z
1

• o e £ • ra
H 4> -M —' H

I CN

J Li-J
•* o o

o o

I ,
0 - ,

X -I
I —I
01
i= 0!
£ 01

Li -M

I
io -U
— 5)

i « i: K £

I L Q
10 IC Li

o tr- '
_ *J 0)

g. a .E

I
8. £ 3

Pin
c m
g _

jj £ £
t I I
OJ o> c
OM) 0
c o c c

_ c. — —
w ft o in (.:

4 m -

W W 10
C (C «c
.c X -c

o o o

CM O fq

I
x
Oi
I

rri*

u u u
.- c. a t
w > > >

-H | | | —.
H « 10 ««

CN 4J
—1 C 4J C

-** w -H

~H 8.3 5
I — o

n IC 1 il <C VI

01 oi 01
•1 3 O 1

ic
01 a —

1 > -
01 1 1 — >.«>> >.

1- C £ £ 4J
ID Ll 1

~IO Li >, — 4J
X l£> « IQ ~ C

c

s

£ 0 ,- ^~. Li O
0 —I X X tT X 1
1 01 1 1 C
01 c

:1
4J
C 7 «M o; ~-

0 C

H K 1 £

c -u 0 --< 01 L.
*J I •- •u c c
« CA ID Cii J
r <c K VI *VS

a. a

I - I CH I f I O I

o — —

I <N I " I -U I

O o o o o o
o m

O
o •

--I
H

—i "H
i « c c

-H

n» i
£ £ £ £ £ " 0 0 £
JJ ~ *J 4J N *• •** ~- 4J N N
cr tr- I B tr i U VI 01 &
c c e £ oi 4J C »» c C « to

JJ E 11
^1 il 01 01 5 —1 Oj rl s 33 « i 1 1 1 i 7 Ll-H 1

Ui 01 01 01 n 01 o 5? 01 o o
0 • IC 10 OS « CO 10 • i

. i§ J= £ gg £ o £ o £ O N-i 4J H £ t*l /"I O
o r- r*> S 8. o o r* o ift O in O >i > a O >. (N

O > 01 i/> • 1 a 4J 1 4J 1 3N
i • —1 —1 —1 *H —I iH -i n

t ? S3
it

—I n i H

Li »H M M
—i

M
1

M
1 «5 M ^1 1

a

4HK13H
1 1 01 1 « 1 0) i » M A «j « 1 a
01 01 •H 01 H 01 H no ^ -~ o o o ^.»^«^.e i.5 tl e X

io i tr • «s CT 10 ffi 10 cr « • O O .000 --£ «J • o
J= £

K
£ s £ C

-0
£0 O -H O • fl. • tM

^H o »~ ^o oo r« ^°
£ ^-1 •

r-4
o

£ 1 n i o O 1 O 1 o 1 O X * N M M • C C
M~HMI 1 — I LiHflHOC

O £' m
iJiJ^n 01 01 in « c

o -< c • o o o «J o c o a O 01 ^i^*i Do^nvno i L i ^ o« 0 O

K 3s

^ • s i .* >. >. £ >- £ >. £ a
>.£

•
tr
4

0
ha

s
r*

tr

0
h
a
s

-v
ec

t
.0

ha

•
tr

4
16

ha

r*

tr

16

ha

-v
ec

t
6
ha

s
f

(t

6
ha

s
li
ne
ns

me
ns

i
•

tr
5 4J H

C 0! >.
1 1 -•»*> 1 4J 1 4J 1 II c 1

MS
a

& 01 01 01 01 n LI

5?

01 O £
10 I « L. 10 b • • •3 0 a 0

s c 51 £ 1 £ C

O 0)

Lt -0 '*JH L 1 0 1 *JH Onp-rf L
o^jJ'H-rti o«4J*i-HL*Jir,po
4J V C V»U» C lllltlii 1 *i
I) >.»>lJ>lllHiH3»{*34H)

£ H

|s
o

n • « «-i o o o B o IH o 04 —t
3 a Iriw E3 t-i • > ajj i£> 1 rl 0 £tH Q,« o o o -< o (0 o | 01 1 > 1 1 1 «dJ>0 1 H >rt D.3 «

> 10 1 01 X 01 > O 1 O 3HC0 1 DCO>
1 fiii a V 0 1 ifiiJio 1 Otio-H c I

5 cl o Li • X

e-
16

a-
ax
l

s-
an

g
a-
di
s

t
ia
- 0 i i a 4J 5 •> > 1

6 X X »-i 01 X 01 X 10 x — 75 X — T n
£ 1 1 01 -n 1 •H 1 -w i +>£-H£<t3£4J --4 >tlOJ-4lfi 1 T-1 4J 1 a 2 S 01 •*-> 01 C 01 01 01 4-1 •* c f*i ^H enn • c • « l -4

CIO 3«« Id C 1 31 « --I D —< « 01 C
• 1 4J 01 L. O t~ •S 10 C 10 K 4J 10 » JJ K 4-1 a c « e c a 0

a! n&Mi« J=

0 Li
S- £ Lt

4V W
£

H
Li 6

3HI H rl3 1 1 1 £ O 3
1 1 X 1 •* 1 T >.>,>,» Js _£ 1
X 01 i (I L |i >. i I I LiJsl >iE X
1 VISVAI^- 1 Ul'C Ml J 1 O 1 L Ll 1

= 5J £

.
o SI -S

S VC C Li i a Li ^H « h <0
EJJ!

Li r • • l-l 4J
0 O 0 s§ O

o 8 «
M £ —

0 S o o — 0 > i r m o
CO 0) s 0 e 4J •U 4J UCT "C^nn-H HTJ ni*i 4 nn n 0 *^ o a 4J 1 01 a oi

• o fr E a 4 B I J-J 01 CL4J
<103«C9LlC0'n£«£Lia« «»4 Hn
• o ooo« 0£ £«3« n 2 aij « 1 33 • T

CO « £-^ > in > a £ — > > > n IO LlO 4JIO OM04J Ll CO) e-H r > r» a
>» c *-> > i •-j i 01 JJ x 01 4J > w JJ X 1 —1 4J 4J • 0 • U - 4J • 0 'UO0OI0C4J

CH4JH (H CH4IH $ «4J • L-H C
ICM-H 1 4J O 4)

4-» • M < « V a C Li K 10 C L. « • Ll Li IC OtJ c MIM »C
4J « 1

« c c

I? <T< l U 0 1 -1 0 1 10 0 1 JJ 0 1 — 1 K -41 OI >I-HI OI > —1 OH 4J1»4

8.x>x8x8.x>xox>x«wBu

-HOi£
CD

fit (0 «
01
a

-4 1 IT
— 01 *

Li l V
4J 0) C

1 V
01 oi ic

Li

c o

01 C
*3 -rt

1 1 «
10 01 IC 8. xi t r^

I I
£ -I £

SB
-I 0

1 -H X

8.0

£15
01

EOieOieOlEOltoiEOlEO] t
CeCaCioLiatioLiDEisinEh
0£0£0£0£0£0£0£L|CO

IM IM IM IM IM IM <M il Q M

— -H £

-i) o
Is

1
01 (1
«-l 01

« 01 4J
H «1

1 1
•*• £ B*? 1 H

aa
in IN IM oi u *H ifcJ •o l»L«lL«L«L«Lf, L«L IM 01 Lt IM V) S « ££ ^ 0* 0) troi C 01 1 01 1 COCOCOCOCOCOCOCTOIC o ere c 0 1 1 tr

4* C 4J c io C 01 c 01 a4J«34JC4J«4J«4JC4JC4J4JCC4J4JC i 4J 01 « 4->

1 & $C is S£ 1 wJijJliJliii^auJi+jMLjJiJSh i«j» 3 1
u

— *>
i 1

— V
1

— 4J
Ollllllll

> —4J
1 1

** > —
T - -t 1

C- A U /v a /\ « <v <e /v ABACAfl/\flAflA^/.«]AflA K ~ « /s « « — /N H >N «
< I — i ais 1 — 1 — 1^1 —1 -1 ~l ~l ~t ~ 1 "1 ~-l g 1 w 1 ~- 1 c 1 C 1 **

0!

3

t
IN C

£ £ £ I
C I C I U

a
u

~i »» fi ^
H 11 »H ^ rH —» •H *^
0 ^ n H m ^H n

"* (N OJ ro n "I
0) 4J

<N B E

4J w
c
U oi

o I ^

4J •«•
C

4J ~
e

li
~ X o) 4J ^ X 01 f X 01

ro o> i rq 0) I ro V i
r* J. o -C 1 01 C ft 1 to >H 1 00
S8 ki 10 1 -S5 l -SJs

kl JC si. <B « a i r-t IO a

-1

1 a 4J i
O 1 10

i%1
O JC 0
« ta-u

111 O JC 0
B 01 4J

ill
OJ* 0
a a 4J

U3 l •* B « ^.g E
•H

0 1 O"
« « £ 4J

O 1 Q ->

£ C*

— u
f 1
n o ^

1

C « >• e p S. 5 c
H4J C S

• El ft
B a> • r* -H -1-u n H4J C to

•W T 0 H a ro SO -» 8. •rt 1 4J — ^-, ^ •w I 0 •H •rt T O'H — \ «-*to "-» »-t 4J c - -H •M 4-> <M <M 4-> >M 0
I c I a.
>. | >. L
" 1 " B
ki 0 ki 9

M 41 <M 0
j C 1 Q.'-

ilfi41 9 >NVO >l i 1 C tl y. B 1 C 1 4J
0

§

01 (0

s |
10

I- • >-
0> ui «

to

i Ss I C 10

Bit a K
c ESS C

4J

•H 0 4J u «H X^ U • U — i-. a k, -< k. E 1< EHhlfl n o
3 1 « rt 1 1 1 1 U

« 11 10
1 1 1 i r i x I r i x • 3 S3 " X CO W g) (0

>s • • 1 fi
1 1

(0
to VI 0)

>i a a fl
I n to to s
m >. io o a E

•H a J: X: JC r
g,

«£££l B x n i £ C -4-> K JZ.X.X. JZ B 1-1 « JC X J= >.
oi ci ** •** w u •H E u to f* M • • s m

r n a -^ u >. *?a X kl >. N kl >. -H Q M >* -n-H
cr ^^r-» .-« « c 10 10 10 B «3 0 <^ I 4-J «*> 1 1 c - i »-. 1 u IH 1 kl 4J 1 M +i U *- *~*
oi n .-«» *>n n <P 4J u M •J JJ Id (1 4J kl *J IH ft) >

C O >s -** m • e >? c « C (0 4J C 10 4J C a c c a C*J c
••-< • > ' £ •<-* 1 •H J= Ul ~4 1 01 -r< 1 -H ••HI -H oj-TJ-r *J

s « o c
j= 0 ^ ^ kl *T C* *J" a E & • 3

a.« ^ 3R c a
B £ —

•-J OC « 3 * W
u- c JC oH £ -H

c~ O 1 -H >0 X u> x >s i U >. u 1 — N 0 1 — o » 1 •«• O O U -H
-H i o 1 1 « (0 •i— 01 1 «3 1 0} i to r to 1 1 1 1

w H c .u 1 M 01 U B J2 B tn u c « *p « <0 to TJ 1 <C « «3 • 4J w c 0 B k> £ O X •H M J= OJ — SL •" s 01 £ -H —-^ C

8 L^r 1 <c • -»H
ki 1 H b > kc 0 IH SI b O

ft> v a* u^ 1 13 —< • u «u —< B OJ 4J OJ rH 01 -H
H 01 1 1 0 4-> 0 C C4 \0 (N a > •u c oa \D OJ tr*> o C4J o •H *-• CT4J 1

4J to to 1 C ** "£ 3 ID 01 •H +> 01 1 4J 10 1 4J 0} «J t) (0

OJ M 5 01 $ £ a 1 i 3 I 3 01
t-i -H S5 01 3! 5 S55

h i~ *•" i _, ~ — u
1

**
ft

O — — V
-H 1

w 1—
1 1

a O /N J*S J* .*\ « •s •rH ^ s\ ID y-v TH /N 10 ^N -*• ^ «0 ^ /\ A (J S\ c ^ < — I Ol 1 O I *i 1 ~ 1 C 1 4- 1 ~- 1 G 1 — 1 c i -i 1 * i +J 1 — 1 ~ 1

—

1 c ?
-^ > ifl UD t-M --* ^
5 « *-* m n n ^ «-h

% s c = o £ 441

•71 <0 fN r>j t\ <^ £ • •*4

1 fr " ^, o
~ B

0
—1 -4= ^

• > 3 B

38 i B B
1

*J 4J — jj m N ^H s D
E - -4 -^4 M t V tt 0 o a to n u -H --I —1

H •—1 4J
0
3

" (0
1 0

c §
B ^4 n

^. B c B
O f^ (N (N Ti | ** 8£ 4= «) •H

B 5 £ 1 4J ~
c rs

C9 C« *"» * £. E "^ VD C
-4 0

B ii JJ
B
B *J

e (1

-•* ^ CP 1 u L. 41 •-* fe LO
IT O o o >- *-^

4J B
a. "•S E •§ ^itn

*fl <T> M in w c > 4- X a. 11 fM
m m v v — e C C G «J 1 X 4J I

B "J 0) r^ *H 10 4; —* c a
O O o o -— *J c • SJ2 i | fl B

(N r* " w w ft) ^ 0
3 u a. |H £

Cl in £ S: o
£S

T3 O I 3 X X 1 m a OS
0 •gr 1 rv 4J — ^ •— fN r« w S *J 4-< -J 4J o X « r^

U.4J lO
Scif

V40 CO CD

1 1 ^ r-i i « 3 5 S S v 5
m a - B 1^ * 4J \D rv] O to

0. .H a a — « a o ^D «3 CM C i^ r-~ VD IC
4J 4-1 -J 4J 0 CN C 10 — x o .e 4J o 4J in

•I. S c
in \C *J 0j (N

6 o
4- (N m JZ

A G 0 3 B in i -4 (N CN V42 CM
2 t 0) l ft) ~ £ - -4 CO c D> (Ji o » H 1 • *J (N O QJ W*J

— <—t B a -1 c o c 0>o C >H — v-0 C r-(-^ n - -r-(

| 1 1 r i- 5
ic <2 - j o

H
B
H

B —
0
k. 4-

B 0
wp-l

i

0 o
81" I n 4i

r-i

c
0
3 8 f

B 41

O ^
St — n in n B > Q.-4 •^ K . « M - -1 0 J-> J cr —I « 4J | rr

i o Q •„-. o M X —- O « "O n ox — l c B 41 X - I c

1 10 tt 9! B -H ~ B « I -
H| ^D.82

o « B-H-5 & 3
4^

1
B n -.5 & 3 V D.

4J c C >• >.
-t

y

or
- « c « - - - 10 10 - - - to >- \ B B B C E JC c ^4 4J *4 £ X c X X c (0 *J a 0 e I 0 E E E E 0 E £ t: E SI 1

i 5L5L x : x - »* s >N •H 3 4J H4J W i >^ >- -»H JJ

3 KB JJ & IC —i <c B

£g
iClOh n 01 X X X X ic 10 X r £ X >- c

: X : X : X = X I c* u B 1 J) m 3 M B C- a a C h B a a 5, 2I t> C, c c >• U 0^ >.g • O u 91 c 10 -0 -0 14 U >4 T; iq fC

o j-8* = 4- E 4. 44
C 0 4J

>- >- 4 i, aS(N i B IC l-l 1- h h k4 4C 14 U tH h = 10 10 4^ a «t-i ^H k«-i >.
U ai i n C ^47

& a> cr 1 a tr C^ » o> <C *H
(T> _ 0) 4- O - O 4_ 5. 0 c c X -• 0) c 4J 4J 4J c X 44 •w *j 4-1 1 0)

C —< 10 —' i; _. ic — - c c E C 1 ^H •H IC ft) — — — ic J) ._ C 1
a. o. 2. c C C Q. 2. 3. B 1 K 10 i n ai o.

>. m E B
H 1 X X X X 1 X A *0 «

T 1 E I 1 — I c i >• c >. i 1 1 >• i — (0 ^ >. (0 >« ic >. >c >. =5 >- £ jr -4£ -i -i >- X >- •. >. >~ X >- >. :-s s
ic B ic •-". re '/. rz B ic £ O a 4J -o a I ic • K ic E a IC C c E ""

vT1 0 »- *! > ~4 >, 1 1 ^ >1^- >.~-i >. —! c B a v. £> B C4 B — s. V — n ~ ^ 44 10 ft) & o a cr fi c a a CL c- IC — & ^. B. c *c
.«_ W -44 B — B -4 B -44 B - t 1

.-i —
5

u H L.4I >0

IHiZ
m 44 B B B

B

1- B W iq B *J U
OJ -
« <o r^ T; «. T: B -0 B -C B I 3 X *_ •* IS •o •u TJ 10 T3 •c •0 •0 1" *- f

u £ £ X X —i D c CD O -* C --H •H f -4 —. B — -—1 -i c
£- «
< 1=1 = ; r T | r* I z %» ; e 1 Q' | . | _ C I *-» 1 C 1 C 1 e i e , —• . C 1 C 1 C 1 C 1 ~

sa
-''S

1 I • tfl ^, ^-.
u 1 X «-• o

I «H 05 \e
h> 4J V- * c u-> o
VD 1 >H J= 0 (N —.

-U 4J j-> •*H — ^-(1 b u >. (0
CC a »c c fC (0 (0 X

l a. c K- a> a)
L. U M Q:

B
1 fC a — rr^

x to ? C 0) 1

I a 1 10 -H
>* <0 i

•H jQ£ >.

I — i

4-4. n

o C o
—1 - H O — o „ •
JZ —-O .T fl •"• — S-I I—1
dJ d «J CT
"3 *-» >..-* *C ^^ «J= -H rt JC H
•-< r\ ic •- ^- >,—. ^AJ *^ a>j
3 »•* >• - -"X ~ 3 •^* >. (N IC J ^ >»*0 *"» SO 01 "O «^ 8 o

\ CM tz rs ic
O, Q; »— -^ Jt\ «c

>.
-H vc 55" T3 **» >» 4 •D > r\ re CO i-^ 41

£. —-t --H oc <c c VO w S C i ~H <-" t) 01 o c
vC T3 5 ~« •—i •- w<H-ri\fiMC C. </) O o; *J i a —1 o a, re — *— — •.: i a— — — T3 —« ~- •" C ^ « -H N C C vo n -^ 01 >- **,-*

i c c JJ o> o B i
N C £ H <-:

B 1 TJ -^ —-^ Q •H 0 -^ -^i o o o a
31 B «c .: w o (1^ HI O ~H "O 5 nun TJ ^H o CT> • i • E 4J *> — 0 -H *U <C c — N c c t*J i w cr ') I 01 r-t O 4->
£ N e c H *_ —< B £ cc z. 3 w •H &^: S C B 01 4J l- *J «bn 4 4J Tl 4) — •H \n — X I i i iijj -CO B»*-* •- 0 IC N C 3 T3 V V re N C U 3 01 r- o o 41
0 a & 1- U B M C =

C 41 * -H 0 J
—' *- — B «-• C

?TSS 1 I C V. •*-> SL -^ 0 -U
t, i- 01 . « «M

H 4J 4J £ 0 re —i s (0 Lj l-H • • +>
XJ J 1 1 "3 ? o u 01 V. TJ XI 0 0 -HO 1

•-H b L - In 0IT5 a> ai i> i- ^ c i i JM re re 41 1
ll«C

'H « IM — •)
o> c 3 '-' t> 1 1 fc* 0 w >.-^ 4j|JN0Jt|ICh^O » u u 9 - n •H o re

J -U *J h e KXt U H X
- i- ffj 0 t
C *C £ JJ *J hi

iil > cj o D>*J *J >. cj O»-H c a <o ^ 4) 41 4J 4)
4-» « B

i UI 01
' n^ y I 0 £ L t. >« I (CIO rjUU-U4JQ If* .u 01 1 1 — 8 o H « T re re c 4) ^< U re N X) in

_C VH 0 -3 JZ U U C •*. IN ^H C frirjCi-l.H^it 1 1 - re re CP £. re 8 win E
<c B 0 uuhecN re re 0 "H ££H it IC 0 l* ^ W • B B 0 >- i- a CN 2 3 4)

0 1 i i o ^ »-< c ^ ^: 'J-H y u O^£H fa «c « a QH re re re Ti u 0 162 p 0 r 01 re W W H 15 ic (.'
C *C 0 £ -C I < ui in

i I u y o p r -c —
B B 1 I 1 o D u

£££8t-gra -W 5 4?
-J 2 ^ ui ss fi L " 5 01 H u B) fiOODC c « re re (C 10 B (.: B 1 1 i O

££ ICK IS »: u; Kl
i 1 1 01 — I 0 3 1 Ifl H -H •-i « re Qu re B re 1 1 1 ic re 5 Ji X • o; 01 re - 1

Li

3-H o •w A -• i J: I
£ £ 1 B U) U) X x £ j:il- rC re re >, c re re £ re 1 XI 1 CD c K -< 01 "6

~H ^r
&

<c *c «c £ JZ JI £ *J "-=,.5 1 re
c

re
CD —i

•—i «is8
01 -^a •4-> >. K o c 8 re 1 J! 8. --H I — av 4J . C

S £ re >* 1 a 5 4_> -n re AJ c m C —O 1 • a i. ,w | | 4J >. ic >. *H Li 01 L< >, tf) Oj »~(N 4) O 01
Q. re c? 1 c >. i c 4J H

c t a.
4J o CL a r CT *J 4-) n L< -ore

>- -V Bj IC 4J Cl 1 *-H t 1 a 1 c -^ • 4) « o • x:
6 BW< E H 1 c Ifl C 01 i | —r x; [_ 1 JJ • c -1J rt 0) 0.HO

4J X) c a 01 re — Q c <a c - a, a c c 1 •H 1 wO
•H 1 —i i c — a —| re *-• re re re I N 1 y • 0 <n o

I T3 re 01

a • c a a -• r-t 01 Li L< 01 c 1 C7 JJ 3 re • JJ 4i
i
• Q, re

<c
re I B

CL &S2 1 > tf) c \ || Mil
n

re c £
m i ^ •w (C -H re -*4 iH •W re 41 CJ >, 0) -w u 0> 3 o "To. V *J re 1 w 2 oixi a Li 1 c rc 1 1 i n PL i •0 re >. 0 c

; !
5 i i 1 o L. 01 re u c-. B •u i 3 JJ —

C (.0 I •-i
i

fi c C s 01 01
a re

01 -H re K
1

re
"a rc

IC B .SSici^
4J « c;

E
c ;-. >, = —" J= £ x o >- i 1 p ^- m *cj > •-• a,--* \ tQ c 5 U £ >. CT1 0 -J XI rt 4J >.£ C >* £ 0 r^ ns 1 0) 3 -H

•-H - oi c >* re CL a. re L^ L" N N (/) >. t i i

» •u — re 01 Li rD fC u re •-t 1- re oi oi oi
c— c ~-i 01 C LI l-i u u Li i/l C 0 -H re re re
re i :
= IT. K
r ic re

a. 4) 4) re C7> XT' rc tro 0) "3 FH o. - £ c
01 N 4J 4J — AJ ^4J >i0 V. » -H B c "1 B -H O — -H-M U O ?l a >.£ £ re 7 01

1 V re XI -c
— 1 i

-e XI
1 ^3

»H -c a re 01 0) VI n M re c fi re re c re re II ki r» *
in JC£ PC JZ C 0 ~0 E 1
«T •S >> —1

•0 >N •w re
o^c c a in 1 <Q re 1 Li re

L7 ^-i 41 l 1 0 0 i
B IC O B

tr-i
C _ AJ a •U 01 4- a

IN
•H « S 01

•-I
5 9 flH fc4lt S-S

L.
wt; ** 7 C vc -4 1

a <«N IC /v re (J /% L^ •"t ^\ •H /\ (C 2 1 ~ 1 ** - 1 Oi 1 — 1 C 1 —

*J
AJ ^

t
41

•-<
XI
3
1 f > re re

b & I >- >.
•D *-* 4J £l
vo ra 4J ^ *j ^. ^ ^
--i -n

4) i-l • H -H -H
in vo B 1
in in (n CM CN Co O ^
PI r« I-H n r-i m r-i t-t »-l iH

o ^> 1 1
tf) u> « 01 ~* 01 ^ 0) mm oi oi

r->
*-» 0) in
ON(S JSS Isl^ 5S S S

• -H •rH H --H H "H ^^

& -H B CD
1 C*

~ 01 4)
rs i >

01 41 01 UD
i > 1 in

-^ « • B 0) B
VO 1 B 1 B 1 re ^Si M 0) 01 01 0) 01 c<<

re C re
•-* B l- B IM B —

1 0) « 0) « -» a
HX: - cox; - £ - £0 «£ > £ > £C4

3 c r*» en ^ B 1) C^
o 4J 41 -*i ^ 4JHVn

in -*H oi - --N in —1 --H -H *- - «H - --H - -H Pfl I d's' 0 •9 c
oi 3

3-S3.
B 3 ca3 CN 3 —

01

1 1 3 41 1 —i 1 O 1 c tt)i 1 -
N RCDCin « •o *"" 2" H re m

yp
e

a
1
 3

1
yp

e
a

'g
re

e

1
in CL4J

01 4) -*
1 Q.i^

3 • in • aj ©
r ^ S.C0 S.L, s

\ M4J re -J o 4J m 4J UUX JO J ry
>H - 1 E x: i 1 l E £ 1 1 IE ro --*

1 it 4J O 4J O 4J JOUEU 4J r% 4J
E c c >-c C C£ >- 3 C C£ rC f> »o

CT>
41 Q.

L. £ re
4) S Li

rep
Li 0 01 IIIIL i_ B u 5 4> 5J in

'J

B3 >-* -H CTi re -n c H c-trji « »H C-H C ^ CT •
cr. 3 4) *J I Ol-i 41 --1 0) *J 1 © •- t —« a; *- i H
H Li 1 — C 1 -H 1 -H | -H C 1 —' i —i 1 •-• a re

1 oi x: C 01 1 01 1 01 XI « B 1 B 1 B A i US •e- £ re i — re £ re £ re i ** ic J: « £ <0 l •*i » ax: >• _ £ CL£ Cl£ >. _, £ aj= ax >- 7 •H 0 re re E re re re E <o io « *J 1
in L, >,-H >.•* > Li >I-H >, U >,L >—(41 1 41
—I oi re a cr re CT> re a1 re CL CT« (T« CM) n j] 0) 0)

<ikll *J H * Li 4J U m 4J IH 4J M *J 1H B -^ JJ 0 01
OS XI S TJ S re 3 re xi re T;

U hn M-H H-H
B iC £i -C £ «3 T3 S a v 1
*- | w | w 1 w

Li
CL

c - c C C -H c c c — r- 0 M s
(— 1 c i — i — 1 — 1 Cl — 1 — 1 — 1 c 1 fi " 1 C g

>-
c

u ^ a t

i ~4 mm 0 • tj o o c "3 o
f ~ 7 ^ a —.

<B c r*i o .- •c f ~ - ^ c
E X

fc T CC •g fc r^

E
00 -1 >. 5. o a 08

Si o 1 o I - i ? g. C
I s, O •— •H >— ^ —< c 0) c -u -J -H c >. U >. a 5 01 a^ X n >- >- n 00

*J o ffl -> o *J — «: a. o c; *J o •r o 4J ^H n
f —< i C -*H £ *? u *J ^^ • 4J a 1 1 *-* —1 C
*J I *J E C o 0 n o c i 5 *J T B ^ r* = c o ^ *-• • w tfi C IT H
1' in l- 01 r~ 0 'H <C % 01 ul LT o
f i — ? 9 U (A o o; 4) •. IH X 0) E 0, •~- c 0 c t*l 1 O) -
S s N x g > 1 • S o M B s K y w-

v: — c S i >- 1 J-> y.--! M -H a
II oi 0 >- 0 H •-(u „ 01 X • -- £ 1^. m-4 U c 01 01 c >.C V) •-< k-4 X r OJ
1 £ a 1

01 O 2 1 n c 1- 1 <z 1 i B G Oi
M 01 g M n oi

i
a i 3 c £ o - 01 01 r -M L: o IT i 01

K ^ i- K <C 1 u 1- u: V3 > "~ m <c fC k> c; H c h j 2 cr
a <c £ s a ~ •j i E wi ~* 1 JI £ C X. JZ. £ £ a "*• 2 •—
i *J c TJ c OHl o >- r c >• x: >- .c «: -i o o OS 0 *J >. SL >. *- c

1 a a < a. a: u P9 « M (C -** K a. t: a. c n> -1
m U ^ c ~ •a c 0 -H r-t J *J 1 ~ C to H IC (^ Li • -- 1 •-<

L. c u E u 3 > w <c W O t- 01 c M i- Li h £ r- •^1

0 K cr cr «c » V- 1 X >•••-> c •*-> 10 • 1 01 1 B C CT' <C c^ — ^oooooooooo X c
O J JJ *J i £ **- K X > c ~ f 1 s *J 1 4J *J l
re C c <Z 1 1 0 p 2, IQ --H c E •a 0)
C fC ^ x c £ I M 01 01 - -I -^C C 01 r0 x: r % J: L-, 5 CD

i w c *C re E k. l- O • SL 1 1 i I I c K >,oooooooooo ^J

w w oi £ JZ c, o c . r> 01 n i--. CO N c
c m 5 fC f 1 in *^o *c ^ T: ft <c •i-i l- h X

A £ E w w v; £ £ £ c w IH 0 -H

c *c rz O *J c c rcOOO—(CN^ruDOOO 4J 1 B C
<4-

- X X • v* C
r HI c ra — IT u g c "

•o 0 r. 1 —* c JC > f '. *- c i c w a. -HOOOOOl^rvDOOO 1 O)
1 • «C .: - i £ 01 c >. IT, CN tN OS <N « OJ T3

— C 1- 3 5S&.E
t, •_;, 0 c

6 — cr
N

u 1- 1 i •ri C.-i t r u U *joooo<-*'*>iriooo -^ H •
X 4J C n :« a m C T: C P^ ^- ^r ^» ^-4

1 >. t : i 3 1-

K
T w v. •'.

10 t fC
i £ .=

yg

— 1
LCOOOCDOOi-rOOO
it in o \c ^o 8 s 'IT £ c a ~ J c H *-* fc V- 1

c ~2 0 r ooor*(T«»Hnooo 3 1 1 f c* r •c 1 >-. f- r* CD CD 0 a
—• « - t 1 h 1 -^ •0

i- to ~ s 01 --< u
ir> 3 i 1-0000000000 e o o «: 1 t?
•e- •—i >- ft £ • § £ >. +J

3 >• n —o o 10
ir. K r— ^_ M O OJ M £

"" «J a.
u. coocooooooo

IT,

1
*J 01

3
-3

•= a
—oooooooooo 1 o

o I "0 •c

U M *-i H - ^ ^ iH •"»• 1 t*\ 1 •^ A-H<\

«; . — £ 1 C 1 - 1 1 -H i C.I

ooooocoooooooooooooooooooooooooooooooooo
tr ooooccoooooooooooooooooooooooooooooooooo z IM ooooccoooooooooooooooooooooooooooooooooo £ ooooccooocooooooooooocoooooooooooooooooo

ooooocooooooooooooooocoooooocooooooooocc
ooooccooooooooocooooocooooooooooooooooco

0 K ooooocoooooooooooooooooooooooooooooooooo
J ooooccoooooooooooooooooooooooooooooooooo

JJ M c coooccooocoooocooooooooooooooooooooooooo
8 oo

£ IE —' u « oo
3 O — 0 £ ? ooooccoooooocoooooooocoooooooooooooooooo

VC C *- ccooocooooooooooooooocoooooooooooooooooo
fi CD

00 —i • r-
•0
c
oooocoooocoocooooooooooooooooooooooooooo
OOOOOCOOOOOOCOOOOOOOOOOOOOOOOOOOQOOOOOOO

15 •^ o oooococooooooooooooooooooooooooooooooooo
c vo 5 ooooccoooooooooooooooooooooooooooooooooo >. 01 0 vo i ooooocoooooooooooooooooooooooooooooooooo

±j so *- — i v£ >* ooooccoooooooooooooooooooooooooooooooooo
l r» • oooooooooooooooooopooooooopooooooooooooo

oooocooooooooooooooooooooooooooooooooooo jJ w c
c H ooooooooooooooooooooocoooooooooooooooooo
V « r- o 01 M oo
£ * - V) \X3 c ocooocooooooooocoooooooooooooooooooooooo
I M u i W 1 0 TJ oooocooooooooooooooooooooooooooooooooooo

OCOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOO —t -W c <c \D i
V oi •~ - O 1 *l +1 oo
1 i fci c C '-COOOCCOOOOOOCOOOOOOOOOOOOOOOOOOOOOCOOOOO
VI V) .—t U U ^ooooocoooooooooooooooooooooooooooooooooo
IC <C «s k. — •-< E ̂ •OOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
jc JC £ a 1 1 i-oooooocooooooooocoooooooooooooooooooooooo

1 .u oooooccoocoocooooooooooooooooooooooooooo
SS t 1 U 4-> 0 -HOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
c • 0 * «OOOOOCOOOOOOOOOOOOOOOOOOOOOO«-*OOO»HOOOOOOO

in E « •H s. 1 COOOCCCOOOOOOOOOOOOOOOOOOOOOOOrHO—toooooooo
ooooccoooooooooooooooooooooooo^ooooooooo M J-> E >^

OJ • cr 1 B iC—tOOOOCCOOOOOOOOOOOOOOOOOOOOOOO-HO^OOOOOOOO
c i 4J ^^ a u H t- ^HCOOOCCOOOOOOOOOOOOOOOOOOOOOO^HOOO-HOOOOOOO
IS c « ¥ 0 u COOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Q, • XI i b \ c —oooocooooooooooooooooooooooooooooooooooo

-ocooccoooooooocooooooooooooooooooooooooo 1 5
3 VI T) X 01 a £ ooooocoooooooooooooooooooooooooooooooooo
0 TC c o a. a ̂ OOOOGOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

y
£ >

m
4-1

S
B

*** •HOO
oooocooooooooooooooooooooooooooooooooooo £ 1 O c IS G^~-» oo

5 X V •H 4J -HOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
-3 c k 4-> coooococoocoococooooooooooooooooooooooooo
0 PH a >. x: OOOOCOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOO

Q. •w 0 -HOO
'H n 0 \ c B -^ooooocoooooocooooooooooooooooooooooooooo
fi 4-> • c coooooccoocoocooooooooooooooooooooooooooo

-c 1 o o —ooocoooooooooooooooooooooooooooooooooooo
\ M n n p» •oooocccoooooooooooooocoooooooooooooooooo
•H 4J 0 m CJ r~ oooocccoocoooooooooooooooooooooooooooooo
•8 £ E m ^J >. oooooooooooooooooooooooooopooooopooooooo

ooooccoooooooooooooooooooooooooooooooooo o m >. Bl 16 c 3 •— m g c bl ooooocoooooooooooooooooooooocooooooooooo
hi 0 L, oooocooooooooooooooooooooooooooooooooooo

S 3 i-l O > •i ooooccoooooocooooooooooooooooooooooooooo
o >. 4>l T 1 ooooooooooooooooooooooopooopoooopoopoooo

OOOOOOOOPOOOOOOPOOOPOOPPPOOOPPPOOOOPPPOO CT # a X 1 oi E >t«H — —« 0 i^ 0 OOOOOCOOOOOOOPOOOPPPPOPPPOPPPPPPOPOPPOOP
B a jJ \ •w OCOOOCOOPOOOOPOOPPPPOOOOOOPPPPPOOOOPPOOP

1.-1 fi ui 1 a; OOOOOCOOPOPPOPCOPPPPOOOOOOPPOPOOOPOPOOPP
«r N9 >- --i C c OCCCCCOOOOOPOPOCOOPOOOOOOPPOOOOOOPOPPOOP

T3 »c #J OCOPCCCPPPPPPPPPPPPPPCOPPPPPPOOOPPPOOOPP
j~. a COPPCCOOPPPPPPPPPPPPPPPPPPPPPPPPPPPPOOPP — II G, K c (C PPPPCCCPOPOOCPCPPPPPPPPPPPPOOPOOOPPPPPOP

to > — SB 4J --H — PPPPCCOOOOOOOOOPPPPPPPPPPOPOPPPPOOPPPPOP r» •g is s, u PPPPPCPPOOOPPPOOPPPPPPPPPPPPPPPPOPPPPPPO
r*i £ TJ PPCPPPPPPPPPPPPPPPPPPOPPPPPPPPPPPPOPPPPP

ocooccooococooooooooocooooooooooooooocoo
- o 0 ooooocooooooooooooooocoooooooooooooooooc
a •s /•». ^ *\ •»• 0 •s PPPPPPOPPPPPPPPPPPPPOOPPPPPPPPOPPPPPPOPP
«i l 0 i — 1 £ I POOPOCOOOPPPPPPPOOOOOOOOPPPPPPPPPOOOOOOP

00 ^

•H a
e M

K
I f -I 00

-H CN
C

o •— &

OJ XI

*»« in

o *- >.
• O 10

O • l-i
o U

on a
• I I

o •<

o —
H

o
o •
o

^4J
n at
S3 >-

•i 1°
a -< H _
t3Q.ce ao
e i B i i •
a £ «££-H 4j a, t, Q, a
a a o> • • o
- G u i< •

a-H &rlT4
Sxi —XI xi 5 r i - i i •
n a mo
a a a a Q
x; x: x x M

a
5

5 a <0
I t» « —

• «
-O I 1 _ 1
• o
> • *> «
> «w c
- 0 a

fa 01 •.
i c c

h • ti a C

Ai i
c c
I — •

I I

52

ff
n m
K a
XX

I O.U EL

Ifll a—i « i
3-i a.«

in w w

i p p p o o o
— 4J PPPPPP
r~> C "PPPPPP
-H -^ -*P P P P P P
C J-.0000000

CL O O O O O O
v« PPPPPP

p O O P O P
/\« POPPOP
IwPQOPPP

oooo oooooooooo oooooooooo «
PPPP PP^PPPPP^HP POPPPPPPPP
PPPP ••ppp^pppfHpp "PPPPPPOPPP cr
PPPP^^OPPP^HP^HPPP*-^POPPOOPPPO «
OPPOr-fPPPPP^PPPPf^POPPPPPPPP 4i oooo oooo^OrHppp PPPPSSOPPP m
O O P O I PPPiHPPP<HPP« PPPPPPPPPP •-•
PPOP PP<-(PPPPP^HP OPPOPOPPPPi-t
OOOO* PPPPPPPPPP* POPPPPPPPP-H/N
PPPQwopooopppoo ^oooopoppoo e i

I
I
«

UD hC

7 ~
Ifl u

-H oooo — cooo

G c
t c c £ c

~5. J H

--* y. h
— ci — t c CN: f— ^* OOO—'C^OOO
>- 1 >< i IM Or (^

01 LI
X c X T a* to » C* *- a\ —

£ £ ~ <D
U) £ ^ O o
= tr »- c to o n -*. Ifl • U) •

"a, 8 38 S § i M CTS- s- OO^O^O-HOO
•—• ^-* •»> o •H o
- i - i n w i-t u: • n •

c * i fi 1 •H 1 ^ 1 •-!

§ J> 8 c n
C U) —

c a-
•s c. £ CO £ rH£ 0) £8 1/1 S 0) >- ^ -* U

U) -U VI .. o ^ • O — •«•• C O -H O rf o—to—«o—-O^HO

8i Ki JJ o ilO r^S ^8
a c ac C • 1 c • c ••: c n
x a II V -i V~i O) tl 1 01 1
01 1

— 8. n §
c — •»< C ID u ^ i 6

.0 0) -*•
1

an -as
V

-a V in M> r- 00 *• <~N r« —i o — x 9 *J BS
in ^g- 01 —

—tO^HOi-«0-HO-^

o -~ w ^ l>" -H 1 « O 1 c ^ I a ! GG
• in c in c

C B Ul
Ul u H no Id O

Q. £ X • Ul ceo «J O
in in £ 1 \ £ 1 £0 £ O

3 -H «1 Ul FH O O
0 - >< - >« -^ (3> « Ul cr a •H c • 0> •

nTir<or> rt (N ^H O •-* C C £ TJ S£ *• c S T c • O—iO-tO—'O-HO

I s VI i: 1 — 0 1 0 1
PH **

i in p l in l in i in
TT •*H Z •H ** -i a o i «o ~H c o a o

1 U) -- Ul —

O_A10

•i 1 Ul

4- i.O ro si «si JL4
U) C J1 « in CN n *m ID rx — o —i N 0 >. 1 <^ >-1 ri 0 >- i >- 1 OO-JO-HO-HOO
•s £ c

E 1 *^
4J «. jj — •^ C in C m 1 E i 1

« >.— - >,--< w «4J lf)n 4J (0 C 4J W JJ (Q
(C L' 10 -*: k* C^n C 4-> Ui c JJ C JJ fN
u t: o) U t: « —* ^ ?is° a; a> ^ m V 0) '—
~ 1 C i- C 01 — CN Ban F ""• CN ^,

CB - - •• (C -- s - --* v B •*-* o ©•-« J: w --
cc i a-< i fi*-^ *-i r\ f» *• in ~* o —* ->) f»l «i -i w —* »« rN «<-•<» —(HM ©OO^-tO—'OOO ^ c\
Ov e x ui c r. ifl >• :x 1 -< Ci 0 i 0) 0 >^ •-< 01 0 01 0 >l -^ cr

(C & t « 0 i <o K 1 1 (C £ 1 l i r R r-
— 1 V. — « >- u ~ Ul Ul flj

K <Z £
CO tO IN win in to to u CfX

in >• B >, * t- k* to tG U IC c »c <c |M -« iT
«r -H £ £ nc .£ .r c

i
« £ £ •"
£ 4J

(N £ £
£

- sz K T c
in >- >* JJ jj >. 1 >- JJ >- >

— <z c t CO CN f* •r c o <N *r zr <z fli c c r-c eric <c COOOO-.COOC C fN

•" ^ - -- *H I 4J U 4J u. •* 4J - ta J? 0)

« IC tO K d
u o u ; •*, u

u] ro a.^ iz ex
— 1 E £ i —

w t
u

•N <0
£ 1

u c c -H _ C 0 c -H c c PH
a •N (0 ./N <£ ys •H >"v —1 /^ c 0 - <C >N •M ^ IC 'N 10 •s

; 1 • 1 «~ 1 C t C 1 - — 1 — 1 S 1 — ** 1 c I «I (5

— -—.
•~*

>•
X

C

o —<
y
3

~ON

— o>
>• —

X 01
0)

O tj
3 -H
rt 01
a. i
— 01

a
o .c .9

69
5

7.
07

74

7.
90

06

.0
77

4
7.
90
06

ni

l
.9
00
6

9.
08

94

9.
94

94

.0
09

4

9.

94
94

10
.9
95
6

ni
l

10
.9

95
6

12
.0
58
1

.9
95
6

12
.0

58
1

12
.9
07

.0
5f

U

12

.9
07

14
.0
98

2.
90
7

14
.0
98

14
.9
28
5

4
.
0
9
8

14

.9
28

5
16
.0
21
9

ID ^ n
«-» hi

(0
X 1

(0

I mr-r-*c* o <N —* •-<
sO •—i —* JJ y2

L. •-< 1—1

Q C 1 ©in^ve^-M-vo^r^ •M | — 3 nffir»0(MMOOO L^ f^ r-vCr-OCOTtT^lTiC^
B (MJ»0(^00\pO • X. c

~H k. V
eS m ac ^mr»r-o*ff»©oa—t

o — 0 ~H >-l 3| a.
*J SB LniinrOVrt-rt 1 X

c U vnoNr^Oc^^-^CD X 01
cr 3 W 1 M^«3P>O0D C CU*>

J5 oi tz o ? « to oo>o\oovo O
C «J — «

c^ c s.
— 0 c H H •** •w •H S

0 X "— Ot^C C c c c C D>
w c C4^HGDU^-r»»0*r-*,'-0 Tfi • in » o^ oi r- ON 00

n n u •w 0 >—* H-4ncM^ooio,|i^ 4J 0 r* o OD rn rt r- r» CM
U 01 U 'H o cr-soc-ocr-rcr* Olrt <y o r» 0^ ^ c- r- 03

3 1 «r —i so rt r* v 0\ C* C^ O tT* © IT» O 01 1 <j\ . cn o> O ON o o
«c •H a | * — IC . rt

D) X X n «T <E v kfi (N «c m o» r* c\ ?> o 0C rt o o -1 o o o
*-" i c

w i a. a *•• Tl
K <e >. — s. f">O.U")Q^^vO^V u >, in p* in ON rt c vo r* s, JR .C E JJ X X X X X X «-<<—ivr-.---r-'OC!^ V 4J (-1 03 O CTs O n: "* M-

kM 0 >• 1 CT^or^r* c r*» o o *?• TJ 1 o o O ON o c C3 0D >• *J «J •u +J *J JJ JJ OtJ»Ot? oooo C JJ o o o c o o
R

IN
10
10

X c
fik-

c c E I c c
OJ os **• -*• r- r*. o o r— ^

^ o
p-4 ~-\ o o u c. '•" t I f- x e

c- K k. = 0 J; 4) V C 8 X 01 c >-
oc 1 a « --t —• ^H KM \Df*»(Nin03U^^-vO<- ** CD O l£> S2 ss c> c X a at a U 0) 01 0) 0 >MU"I -i^H^mc^r^O^ >-0) >- P* ID in c

c E 1 1 1 njvo^or^r^^or-.ocs IC 1 < ON O ON o ON O =0 a- —- 1 to L: 0] (Q Ifl n 09 k-OOOlCO^^OCO i-. i-. ^ o c ON • Os O o o >. <G * j a <c "T « Q
T

X
£ £ JC «©(N(>:*r«ru^r^r-o *C £ ^ V ON o O rt oo

\f- >. jj — >.JJ

c C coontMntiiriro <C V rt . CN (NJ . ON C> • •*• ON
M *J •J —' 4-' u JJ •H in-^-^^rn^r-o 4J L, .. ^-.rt o -- — ^ <N <- IT ^ 01

P» 8 k. 1 g Si % K 5! j- «c,CNOr^r,»or*o 0 - k. o o o — OOMOP^ =3 03 >.
o o b fN T. C tTiO^O^COt? ^H (C a, o • o o O ON

1 _- C — ^ r- »— •— cH oosoj<-vir»r*.r«- -H C rt ^H ^H ^ o OO rt 8
c B .H /V • x^ . « « •** ** Q
*t i — ' - 1 c 1 £ i e 1 C] - 1 C 1 (J

SO

T
*J

c
cv ^. *-. 1 ONrt

GO

rt X — rt 01
~ 0J 03 0
rt 1 01 ON
rt 0)

B S CM •
X JC v4

Olrt U
•w o> i as o
5 8 0] NW

« ON rt
T3 «-< £ rt 01

^ rtl3 - ffl ID —CM C

IS 1 10 so 0
4J I)

JJ C SO 0}
U) 4-1 CO— oooooo ll C B 0) 10

Bblo
a i H BLCj M 10

X C -H ON
rt ai-H oi •
rt r i i c« rt

£-? rtOltflOl oooooo
01 niiii
tT ID JSJEX
a. .C5 CM 0)

~- ON— v. E
- cio a rt

3 r- ^ 0 £ JJ
0 ***n O rtSO U 1

c X MO a ON 1 01 p n
r V 01 • \
jo B.H a

1

1
01

B 13 rt

0) r*

e
r
o
-
e
d
g
e

e
m
e
n
t
-
t
y

si
re

d-
si

e
m
e
n
t
-
t
y

se
co

nd
s

0 0 0 0 0 0 \ « c
£ OP-

>. oi

CBCCCC cccccc

« 01 01 M rt 0> rt rt
u oi oi — occ oi • rt rt cccccc cccccc <^ l. ~ N 1 1 1 O 0) 01

a: (0 0.-H --^ in oi v> oooooo «,**«r«r«r«r oooooo <^ 1 X 0] 0) <0 "0 10 t >. >. CM CM CM CM CM CNJ
C 01 1 ccc a 0
10 t 0) 0] 0) k.

— >. >. £ k.
k

kO -~ >. 10
*r J3£ a to -IH io

U O" k, IH JJ 1 1 cccccc cccccc
iTi >. JJ M H 1 JJ JJ

cr B OJ 10 BJ01COOOOOO
*J >H tO 1 JJ rt

OS
0 u
01 10 •0 <c c Si D.

k. O CCCCCCrtCCCCCC >.

rt, c B
a rt « /N O >N rt/\« CCCCCC* CCCCCCrtrtfi
«? 1 — c i — -= c i a)

tfi
H

1

~ 1
1 ^ m ^,
i

CN 8. « — « *"> i
• =s r> r-, n f-t

•»• ~ 1 pn -^.rn ^-i pn

*s
0) X.C K :i « w -^ 0) s p s ^»)

-H M
•w — — -H •H ^ -rt « •0 - » 'H (0 a

1 0.3 — 1 ^t *-* 1 -H 1
0) — i — « - w — a
«3 - a — ie " a <c - a
J: — £ -c ~JZ £

V£I II — >e ID <-> \D
H — r-i - M r-i •-* M

1 sr " ' x' ** 1 m l 1
M «- "4J *J *l - *J !
c

ft "1 II
c

X V

IH 0

!

1 I?
- 2. 5 8- r ; ft • 1 « i

i (0 ~5 ?1 US 4> t0 2S
0 jg

I
•0

r-i *•* c "" > Ui •^
I CM CM

r*» CD
CM -H
f>» in X •II 22,

1

• ~-» CM <—1 -*• <-H • C —1 •-(i—t 1
1 O «r n CN ss ? w Sic K 1

4J «
*4 1

I (N \C IP ^H •H ^-t 0 4-1

3 1 MJ r- <o a~ f g —« r:

28: Is, 1

io p- CM en CN Ifl r-i (Nnr •c S Oi r* rn —i 4J >, in in in »rt ^ in I >, in m in 1
S El IT) n m (NJ K C kO i-i r* [*• C 4J K *- t ij ...

5 1 -c rs v in JZ 0 « B 1 tfi P»I o o 0 1 o o o U 1 o O 3 i o o o
4J • OJ <H ' -H v

S c
Ifl P* p* N 4J -rt 4J £ ^ H o • • CN >- n -H C •u C •3 c -« c ^- so *5 tfl « *c C rs —i c c i! ^1

r ^H m *-* in

r* v- 1) O
n s 1* L, K X >^ >- >.
CD r« *• S r^

rg 0.--< ^ CN **^ (N P- r- •H .-1 1-4 r-t 1 -I iTt ^ 1/^
Ci 01 >. o« ^ 1 X W >. x «; >• <—i o TT il >. >. • X 0) >• •

o r « o o 1 •c o CM so —* C 0) > « Si, n —> vD rs (C n
H n a o o

a u * r» CM IN re 1 BJ - m « rx i- R
*r> m U — >, re 1M *" 5 U U ~ IC k- — C 1-. «• £

i
in O

vO P-
K >• iC ~ PS —• rS

i >• la

U~ >«u >. >. >>J-> >. 4J >»*» a c • \£> CC . r- <-» cjr "c :CH« C »c r— :N O" re c in in m D* <c c in w in C7 n: c in in in
H -* ^.^ \£> - — (N O -J i- *^a — r» - U. 4-) Li 4J U -M . . • II s L, C a r- ••« -H »- p*>

•* • CD <-H tfi (t5 R c
u o o en w o

p-
O k- o o o a u o a.

o a. u u o o o
io «) a. 1"

1 -_-« ^- a « •^
b c CN i CM o -< c i—< C o —« o O —• c ^ c —1 C —I 5 a 1 * * I 4 io r* - /N. i ^ •^- ^\ *c ^ * « w /N to H /\ a •V -i ~ c ^ -«* *\ 6 < *•» I w >— C 1 —• i C 1 ~ 1 ^ —* e i — _i_ C 1 — 1 C 1 — 1 C ! a

coc^O'-tcN'^^rinve

p-CDCftO^HCflfn^m

»flN(Dff»OHr« ^ *

m^or«-OD(T*OfHP«'*,>

*in»fif>eDffOHfi

5§<

r%^-ini^r^0Dff»o-H
•-I r-> -SO

• no

a Q,^H Hptm^irifif^ooi
i X a >.
gill
1 j Ifa
— >. « Li

>< ^> o*io co^Hf«rn*in\Dr*c3 1 t. -i n

— <o
- to

£

o 8-

•rt 10
4J a

> «r
8

(0 X c

c — 5) >.

10 I (C
Li a* <o u
u *J «: L
« V£ «
« ft I
— — >.*J _ c

— r>
CP

— ^er\ >< — M
^o\ 0 o x — IH

o
-ion m

o « T3
c

« » 6
01

X 0) w — «
O K JZ r^

o o

o o

O O
C* C>

(H^ ^s ^ o o
CM CM

rn CM ra
•H O «
con

p. *HCh>n
H<S vfNO
O O O CM r*.

^ \o r« <*^ co \£>
> r« m in \o vc
) in o in -r CM

HlT»SOH^ rn p- •

-4 c
•H ^ IC •
C I _^- -^ C-l

)*nrj«
• OM -CD
. . 0D •
» *H \o m

\ so co r>
- r- p« 3
1 (D in CM
i*OH

"TTT
l*tf1H

I O » n
I •«•> o
. CO •

t» <•»«!-•
I I

» » m n oo
CD co in r- fN
n9*ioo

CO —i o * oo
id w i^ r* a»

innnHfi
Off^-rtn

I0*O o

I I

Httfiie
r» M coc« o

-HIO03
c o n

rinooffiffiin
l VO M

I I
•HflilO
I O CD 00

>.C1
10 o
Li>r
u •

!o

m CM CO
*• ~H CO
C«P* CO
* P- o

*J *-> 4.J -^
S5J ri U

^-(/\ *H ^\ -H .
e i e I c I c l c I

\D P- yD
\o CM in
n p« P"
ionrj\

o r*. CM
in co CM

1 l I

CO O CM c

—< in ^ r« p*»
-* CM r« P^ o
cr»oopi

p* *^ *r -r
CM CM * •#"
CM co in i

i I i
^ P- CO *£) •*•
inrtHO^
P-Mf/Ol*!
CM f > vO - %0

. . . . o •
» CM P^ Q Q
> CM co in in

l
CM c* nr* P*-
•H p^ co CM CM
CM r- -H pn n
OM« • •

in \c •*• in co -
CO «-

I I •

f
\

A
u a

It

6 I

SOURCE FILES OF

A REPRESENTATIVE SKETCH PACKAGE

BASIC ARITHMETIC PACKAGE: SBA

VERSION -IB

April 19SA

COPYRIGHT C 1988 BY MIT; ALL RIGHTS RESERVED.
DEVELOPED AT LINCOLN LABORATORY.

is

as

o -I
iiiiiiijiHeie
E 01 • 41 E Ol • —' -Jj-iu-ik,---. — ~.

• J:E*J •coi-H'n • • a> - a> u • • •
= E — * IS

0) I i i i I I I I I i I I I I I I It

E « « to w n v. w w w o) to w u n to i/j n XJ

f> r-t ^ \^ r-tr-»^Pi<-<C0c:r-<-toJOi/*>''*,O
UK-OC GB^ c^-ioc^-co; — c: os r-

—» O O PH — n —/iiPp v <•i r~

r^ M

0) u
rr
a
Q. (ll

i/i u u
u ct

u •
>•

6: K

«« <

s \
1

•

1

Jj
e

*

t
N

•H

X

c oo

y c ^ — U) to z
c

n ~*^ 3 A /^ •* W 14
O " i i c> •* *-^« c - •* ~ X X c --» ^.vo W U)
• -~ ^H ^ « 0 C^H A A

1 ' 5 4
w —(»^ /v

X
•H

kl
44 -« •—* v X X • ^r m 1 M E CO.-. » .—« : 01 J- \/ v X 4J ?«K- v v U k-

-J- Mi- ~J V V -H I *J -^ 0) HiJi.
. - -i 0 1 1H « « to u< tr. (N r-t w « e

§,£
\c n H OS fl 4J

* «H •- <c --I V «j +
4 I <* a: w £ c -• + * «

O -H •2 . ~~g
W 1 : -^ a

JN 1 1 4J

su - •- | + E £ a u, — — o e>t CM
^~ X t-i • a> to a

C 4J 4J BJ
o o —

t-(—1 --J 4J 4J JJ 0
1 _ I JJ \o 1 0) M c c c tl C»CA ax >-

' 2 1 C -I > - * JJ — 01 C C X Jj 1

i. S3
a. a x II

- (1 1 Q) •-< o o <o N xx tr.tr 1 i. --
a. ~ c N JJ ^^•rt X i < <

r« m • H hM II V; I/,
c K-1 •H^tOKK X IN CO 1 O U 0 h ki a u JJ —.
a JJ n c x c ~ c

1 e in

•M •» c c c - i | a • Cit D 1 « 1 —-^ c * -.
X •|| •» u » - a. ^— •** -w -^ ^ « .c s • I « JJ x E V a aai x x

0/ JJ X >• ti *J s\ ^ o •-• CJ t AJ —• —
hi •H >. H k. 3 k, •-< -s <c 9 1 !« • a l U! i >. ~ *i +J y) IN k,

u £ <C JJ iH a c* •« hhh V X >. X X *J U) V) >s4J -
QJ I II) • n n w JJ JJ v • to a >• O x >*x s c - JN jj X ~ ~ c -. o ^U] V) c v n n in v si vJ k« V kjj | ~ 1 JJ i 4> c 0) 0 c 4J c JJ c 1

z A
>•
c c

x t 585 its 5 x* x O (1 1 ~H
— XXX — W Q

-•H | "• IC 'JJ kj
e o

a a a a
y. x x x a: 1-

e k. C to -H -^ •-- U •^ ^H -^ h kl u *~ u o
u — JJ — /^ •U V}^ X N -^ •D U U 0) • u u u \/ 0 tl 41 X <c <c

T W) *c c C
E E _ <fl
w x w X -^ X

-J _• — 4J 4J 4J — -J *- 1

s 1
— X

X N 5 S n °iil n (.*. U V) k.
•rj 1^ ^'l —

<C ..N -M •«* *—£ s r g"8 L. IN
wl X 4J i- — U *i U oa • c <C <C

r- 5 £
L. +. t- 4J Iv^J o* 0J 0 i- Lo.au \ u b >- — w « o

L £j 911 SESiSi 0) <0 c
• •*•*

\ | — E u n « w Ji ^H -H •a 1 « n Ifi '-' U",
fZ. '

OJ
(C 1 IC 1 "3 1

1 ! 1 S^T
g s C k. 4 k. 41 k. L- U L. JJ

«-c-t~o « c (C 0 s
r- C. t: \ W tfl — >— k,
C A — ~ -J jj j-

c\ 3 •*- "w •5 "3, t,
<N

b ~ ffl I 1 1
K « IC

c * JZ j- J= jC
(C •-^ S. ;; si w w

•". > lu — ** %-» —

M

(J 0

I—I ^J
41 1
E E
4)

to to

p 4 C.
^1 ^H 10 10
<r — j. JJ
< *J 0 0)

41 I I
(J •* s w •0 NCAU

JJ 00 W £ W J
HI <l I -
i or is t/i to Cb
XB I U U J

k IC 8T3
4) XI TJ |J-

ij i «j8 to
-H t/i jq to «*J
-o u to i 4>

U • IT; T>

IM b. 10

.3SSo'
u < E- J- !•• <
0. I « K < Q

I 1
jSkijS
• in

JJ
o-^o
. -^J • n *< n

n on
-H M

in I

n - n
k,

O 41 o

821
-J -C -j
41 U 41
U I U

15 I
10 JJ B

XI W Jj
to n
i i

S 12

0

k*
tl 0
JJ •

•M 0
0,^, JJ

I I N
Mean
JJ JJ IT —I
10 « -^ -J

0 0 ""l M1

• • k. 10
k< 4) tc n
oj ^H n \
JC-I V. kl
JJ a. k< a i f « »
•B 0 «
0 0 £

I I.C 41

JSJS Ji fe
to n to ti

t> to
to a

S^ a N
in v>
t-i I-I

i

.* \ ^, O^ * • »-* « .—»
p.

: ^v ^^ tra cr a
•p c r>

§x (0 — u 0 X
X *J x- = i. ._ <-. L, ~H l-t - - -' i i ~ IC « m

• X *J 10 ^H
-. : •.„.£;..- — •—l •» ^ Ot Ci

cr* IB •2 6 ^ = JJ a\ — *J cr ^~
^ fa : ~ = C. 3 X E •« : ~ 3 C 3 C

i 3 5 I1! 81_2 0 c
a a c

i. - L-H •»

— c JJ c a c t: *J

I «»•» 0 —* Q.—i a re
c *J - c 0 c « •^ a -- in IM

CJ JJ o — o •"! 01 •^ a •H
E -H : —. 1 X re X 3 <N C c 0 C : rf 1 c Bi • E m - E J^

M -^ i re o 3 <u rr
a t* re l cr 11

JJ C — - 1- *- -

- •-* 0 S — 1 « 1 s •"H ^^ X ^H ~H M
3 •** — *J t gi a

0 1- C M
4J 1 4J I

— E 01 2 rH 13 «
a re

v
— 0 0 JJ 0 *C C « 3 c — H a _0 *» Q V

C c /—: / o / C W 3 W •H I •» T3 « /rt ^ 0 / c i % c a •. « CM-
/ C S = i : C = /s >\C
1 - U re w i 0) i >

JJ c / /M II ii
a

r» •H s a 5_B - re re :>•:«« a JJ pa a
C M * * W *-<-l .-* > fN re -^ 0* X (0 Ui * v x . -^ a 3 M X »— I-I m

» I- » B U *J U -H L' jJ (C JJ .3
*•**-* 20? 2 0) 3JZ 3

JJ CN

-H<OO) QcQJlQp.
:u3: in iKl-u ~

>N a JJ to JJ to X
3 « | iJ 1 e 3 — w * 3 ^U5

= ~ , s g. JJ
•*J a a

JJ r* 5
•"* a a —

JJ oi j;
3X3

«
3 >. 3 C tO 1 >* |**-H >*-J <C <•••« c c I 3 X « •
LC ah l&H C3 4J Q 10 bi : C c Q.^ CQ.O-H Q iJQ - -J 0

^,
0

cuc^Q Q 6 JJ i u i -, —
•^ u .H « ill jj 7, *> K c i Ml re / >.

T C c c re = c

"OS o; K

ti
t,

In

s
t

i
n
p

u
t
,

i
n

o
n
d

i
n

—

S
O

t
y
p
e

~

SO

em
en
t

~

SO

le
ni
en
t

a
r
r
a
y
)
 c JJ ^*« e- — • e- a

•J X X >- H
--* s. to a —<

n co •3
- •*-» i >. i C i £ --J JJ JJ k. a,« • J^ *J * •« c 0 cr JJ JJ o>

jj jj jj 3 | jj | El © C JJ C 3 - «
3 3 3 fl. & HH 3 0 c««

^j — 3 c c IC C C 1 «
3 >. ^-^ a AJ JJ Is a 1 9 a

B a ^H

w
CN C C- C C 0> J-» 01 — OJ 01 C G. C C -J

iicy^acloa o c 5 —< 3 JJ
3-->3 >. c >. >- >• a.-^ a a 3

0 B>
— c u

re
U

c
4j.H4Jua.ca.va 3 JJ ss JJ

a • 1
01 •H ^ u 3 — 3 in >. t >, >. >. a 3

0 0 JJ 1 JJ >*JJ c JJ a.
—-U »~TJ 11 V U « V U34J 1 c 3 ^ —t X ^•-i X

S 0 cu ^ c - >-^T:X x -o ~ a IT, in re a I a tl £ a 1) E a
<o — — ~ cc;Cct. c«OvCc3^ ^ w LT. c 4J JJ H • -H -H • -4
B. t: p M h i - m I0C3 V. C c c H lk< Ifc. 0 3 X X 3 X 1 X X 1 X s 5

8 i
8 c ki«hioM4lkiH»J<0^-0

a a a ana
01 11 0 ^J Jj -rt JJ

(I K *J fa a « o fa a • ^-(3 ai H >.-< >,«>.«) « JJ 4) oj fa IH JJ a JJ a i •*H -^ ^ rc /^ *J ^ 3 *N. ^ J- JJ
5"C £*0 i Ml 31 B.I t 1 "Q^^

—t 4J >- JJ 0 - •-- a-^a^v QA JJA 34JJJ c K a — g" Si yN

E~ « c re E- — « E t. E ki i kj l 3 1 C.-H —i a a 01
— C*N c -u u .— cr* c JJ c *J E M H
t1cnC3(CJ-iC*J---l3i03'053

1 U5 < a LL>, ^H H MHk-AJ UH O.P9 C M *J
D<I(3«JCJ'H]>

•V ^ 0 " KM 4J l»- ^-t
11 m *^ 0". c c y 1 1 •** O l"l -H 0 IH 1*1 -Fj 0 G I { a. 3 -^ 3 a a i 1 — bi o 1 l a, 3-1 3 l ^-1 JJ fa ^ 1

i u 4. M JJ JJ JJ C A.*C — — — —•' ^ u ^ I IN •c hi JJ U 4J 4J JJ O. CO IH JJ JJ 3 JJ ^ fa J= fa
I re3re333Cj--3C333 = reO C K u IC3C333CJJCCI0O 3 a 0 to c ^ g 2, w &• c CL--» K -4gofi.Ofl.iac — £ *J 1 « o. n a o a-i <o -J p n =

WJJWJJWJJ— JJ^-C—'C
O.JJ E *^ '.-. IM ±i E 3 |«- i 1

~ 3 ""* 3 ** 3 •*- ~C-~3~3~re 1- X •V C Q-re t 3 3 3 — t 10 ^j 0 n -H k >*-- fa
- CJC^O- — -J w -J 0 -»- 0-w'- Ifl L: j o JO J o jfwj D;^ u |J3 K

r^ bltffehfctljfclM n • c - U IH W b h fa I fa t." a n
cr &<UlO!ClUlCI^Oi

w
| £ Li s «y< oui out ojt a>i OJI

a a w a a a
JJ
E 0 - Si

IS J- ion t: J tt 4- -.: — ••.-. — '.". _ io — c -J it a>.a>.a>.a>.a>.a>< 9! l*J —1

re v re U re '„ re c re e re u re *J re C -J >.« H CHC^JCHCHQ-IQH R IH --J GJ
ifi Ire ire ic it lie ire ire Ire CJ IO. .a la ia la la 1 fl
in t-OMOUC-Ci-ik.c^C'-

c
fl. '? | CJ .- si.« at -* o •- a; -1 «) •- JJ

a
a

W X w .C g .C IE .2 K £ W^ IB JS « — ^ u - - R a—<a—ia-«w~j«^H«-* a
w w) tt w </: t: '.: 5 E g E E E E o crerererererere

i 1 I i i i t i
rerererererere-C

£ re io fg ic a io it
1 1 1 1 1 J

ia a io ic ic J3 fa &&£&&£&+* re JC J2 J3 J2 £ *-
IC -: •-- v. .: \A tfl K <•: « 2 a a a a a a
= \ !.',

•* •» «

^s ^ : j^ a
fa B ** a JJ \ H a «•» C> *J s N

• r:

s
i
m
i
l

)"
);

-
l
o
n
g

a
-
l
o
n

p
o
n
e
n

x
p
o
n
o

r.
JJ

«

i ^ C B •—I 01
to

•vJ

C 10 X v
JJ C JJ 01
0 0 JJ 0 -i

a
• X \ a 5

H
c c — o c -—• « a « X
c 1 C JJ io JJ 3 CT« OJ a

-1 oi a n c 3 c c-
S JJ -2 "jfll

c —

f E 5c fa %^ 5
« 10

a
a c Cu a &. 3 a.
>< a Kx x «

c

C« M

<n

1 I S
C >. a a >. JJ oi o> o > JJ M >• ^H 0

—i 10 fa -i JJ i> ia ||= 10 1 JJ fa fa JJ fa a fa j3 fa a a
0) t<

p
u
t

a

t
y
p
e

e
m
e
n
t

l
e
m
e
n

l
-
>
s
a

a
y
s

h

2
-
>
s
a

r
a
y
s
 >. C rH >i fa fa 10 10 -J | •« re a JJ 1 0

£3 JJ
fa fa JJ a

» a n b 1 8
a 3 10 -H a x a

ot • O. ~cc2JJU-4Ui>jjfajjfa
-^-i ZC2II2 3fa3a

JJ * « fa ot
JJ »» c JJ

C + r-l

•3 -^-4 ~a I JJ

a JJ jjicaE-j><>aac CJJ 1 u >. ' 9i 5 i
c

aa
3C IV la 1 fa -I JJ --. 3 JJ •H -^ JJ a a

|-| 2 c
U -«-t aOffl^HfiOfacofa 3 a 3 o, a s CJ fa —1
01 c fa coQUQfaOai ai c

•H J« C7j 10 CO ICI-I
a >» JJ ^j

0 *C3 r« a 10 JJ fa °?1 •
5 ^H

-*J HH
IkJ V

•w X X "^
51 JJ

a
0 •H

0 •U iaiJJi3JJ JJIO
JJ-BI fa i 3i acjjce

JJ CL * « V *-H JJ JJ
c i «, * ~H 4J w Jtf | S JJ >•« 1 3 «

u
t
p
u

t
a
n

y
p
e

t
a
r

y
p
e

i
n
p

y
p
e

d
i
n

p
o
n
e

f
i
r
s

p
o
n
e

s
e
c
o
 — fa

&f| §
H
JJ

*-H a a + IV, ^ a
-i

1
0
JJ

•»4 aa
JJ
3 JJ I! \ li S* Sla.

• -1. x 1 01 c
JJHH

1. 0 5 03JJSJJJJJJCX X JJ 0 W M ft JJ fa JJ a >. jiJ — a — aojaoJMaiooi'ooi'D
JJ |JJ 1 fa |S IC 1 c

fa 3 fa 3 fa --J fa S fa K fa a
aOaoa«-iaaa a

is
N* a

*J M W) 0 a JJ >.fa 0 JJ « C JJ
a. 2 JJ a

JJ
fa 3 g-gS JJ & a •iB a c 58 §

sl
0 fa 3 *w a 0 0 6W,5 fa fa 1 fa fa a c *«u

1 a s ^H —i a a a a *J a JJ V a fa a a v it I:
^^ *J

38 1
c HH t HI A | A | A 1 A3A3J | -J JJ 1 ^H a a JJ JJ

1 HH >. 5TJ
El i i i a I a--i
^t'OJi'OH'nM'njjjjjjjj fa*3 "18S s >-, s /v 1

1 U u
a |>,

8 y% « a-o at) S'OJJ'OJJT; 3 3 3 3
laaasasaaoao

> -D n *-U) a a IHTJ •.•* fa c a
J3 F-J fa i« la | fa a T3 •0 JJ -1 fa a JJ fa fa a faajjaaaaajj JJ fa a fa 1 •0 A fa a fa a, fa a fa

— a

fa
S a

IM a
3 J

a |3 |C IC 13 13 1
aaoa--ia-iao 0
Wj3 J3 *JJJ WJ3 ^IC ^-^ is' £a - s a > fa

fa a I ̂ ' 1
JJ~"|
3 fa

U •v 0 ^H IC a a a a a ^ "O ~~ a fax •* 0 0 a -H a a fa "> 0 a«
I 1 JJ a JJ -^ JJ WJJ vjJ wj) vjJ c JJ 0 JJ <— a a O a a H Jj w tir c « JJ JJ a

r- g 10 » fa: fa: fa: fa: fa: faafaa fa: a « O a D fa • a 0 Sfa a
0^

J3
H 1 JJ

3
fa
01 g 1 a; ai a; 01 101 1

to to to a acac
a a a a <n n <n a

c^ 8 fa n i a s * 8
u N ajj a a fa •H >-j- V 4J a a C —1 JJ
u 5 JJ JJ a c a a a a aaaa « JJ a a ^ 10 a «, fa JJ JJ M

\D 1 0 3 —i 1 1 1 1 1 .1—.1 — 1 3 0 fa-l J3 Sri »H 1 1 3 O O-H
un 5 a I C L 01 Ot 0) Ot 0> 0t:0):

lt-1 »M *J UJ l*-l •*-!
•

0J 3 & V V

fa I m L0 - n a a a a a a a N E fa "0 k - U a a
-H I •o 1 « O

4)
c 1 IC

f> •H —< 10 c a,
fa
IO

J-.
0)

T3

o
c « £ • J « 5

r «c 1* ^•k • "^ « N a

w V « * *
•—. I —. i --• « c •H
W J- — 0 ^

/- / c c <-* •tJ / -•J'.j E. ^ >• •o «
-^ = *J c -^ a.

*C X C" c
e u ^ £ ft) B

b 1 0 X *•* «N : -* C

9 ? =£ i.0 j; IC 5 B
0

IS 3 ? ?»
a -g ~ E 5a •« S 5 5 B -H

" 0 ^ 6.—c £. ^ rcgi?
« <c

v
= —1 1X^X3 -^ 1 4-> *J £ -i = — IX

-=i tt >- 1 « ft) *-* i «J ft) r c c-
- « r i
c AJ L. £ ~ c

*J ? 2 a. u;
3 IT; V. 8 _ X « C « 1
CIA V. u •c U Z Oil

0 AJ 0 c = T 3 c ~i *- u w ^ « c •w 0 0 *J 0 •
0 C /-I ^ 0 / C M S" -> S 0 / C « 3 o "5 s; o. C IH 10 -^ : ic

: 1 r c : A. A. 1.
<0 in i 4) >

(C ^3 / C / : 1 : C : ^
- i— X ^ -^

a. c
4 u = : ft) e «l 1

* in * .*« — > <N ic - E- t- ^5 4) ft) Li - - IT. - •-* —I

L
O
N
G

n
o
t

L
O
N
G

p
e

i
L
O
N
G

y
p
e

n
p
u
t

s
h
a

np
ut

y
s

h

-j < < - - >. u £ (M »L| ' « C Li U"^ C -D
— B — ZOZ J*?
-H MIQCQCCpiIli
IJHU >>— -3 0..3 S c

31/11/. — «
- 5 4J

„ a AJ *J
a
3 e- i*- K

« X .» g £
I in |>. IAJ — >,— re — C •C _ C ft) CT»« •c T c 3>.3« 101 l>. liJ-l

Cl -H C *j Q ic L. X r\ T3
« c 1 -I

-9.5 s
c — c a. « d u ci " a *- c

Q Q c AJ i t. i k «•»
»I«u«c 1 UI <c / >-

Q. C V < I 4
1 XI t 1 lu ^ AJ -
• .wi EI Icfc; - -

V -< ft) 3 0 0,~ ic

3 X X «
»- C
0 K

0 1 5
-^i t-l

CUCLO 0 O"!
^w^c*i«i.Jc i

a EL c u
a *J 4-1 •o II J u « <4ii >ii i i Ei)

UJU:i.iEiIc
3 3 3 C C —il

- • * f*- C C C 1 *> >.») 3
3 n 3 1 >. - 0

c a ~ c
C ft) L, >. c

10. Li Hi IC

a n 1 >. a
•e-

E. 3 3. c E. o c J — ~ AJ

«E">sJ'ICX X TJ AJ i.

isrff 0. Ei CL £ E

(
o
u
t
p

t
i
n
p

(
o
u
t
p

n
d

in

e
t
y
p
e

e
m
e
n
t

e
t
y
p
e

a
y

el

e
t
y
p
e

r
a
y

e

e
x
p
o
n

t c c X ~i »-4 « —* X L,
gi O -H — 91 ft) 4J >, C Li 0 *^ l « a «
K JJ f. '•.: * IC u Lj *J * c *J
C. l-i \u I L, its i5c: c t: tl £ - >. « w 1 ^ 1 to <c u -•H 3 n c l— l L> L. |

LtmbinthUkb-c
10 ««« C —I K I
io >, to. H4J n« in «c o

|li A 0 c IC 1 •» 4J Ul s a LtLiUOLift. LiULiiCU
« -I « fti ic «C« «

^H *- —1 V) tf) >. tf) tfl-UO)
o <C £ L 1 M ft) ft) fl

c~ ft) JJ y C N ft) N ^H g 1 A. re JS AJ A. 3 /\ A» AJ A.- ** |" n ^» IC •C L* -^ AJ -^ s 4J —1 ^ A fl A 4J A 3 A
? u i ;i a, i *u ' *p — —

AJ L, ^* art 3 AJ c AJ c H u

3ICAJCAI—3IC3IC33

0 -J - y. ft. — Li EA14| 0 ETJ ETI i Li I 3i a 1
—1 C •** C XJ Li rH Q.CN C *> <-* l« ^ O 0 IC >» ft) I ^ L.H

X >. X 1 X
^H «*J 1 CL>- % -^ (.•; t; c a)---< C ic 01ICU1IC3O-UCAJ-H3

•j C. 3 •" 3 a — 1 i - E K %- SC1J1 •-- •H L I .1 a 3-3 a
i 4-J AJ a. a.^ «w JU h J - i C3 0 1- u c U

• 33CAJCC333 = ICC C £ V. ic i- 1 ic 1 c ic «3«333C*JCC3 2 o a--> »-<pc i: Q.c : ^- ^. — *- - I - w— — £ «J vj Q. ui a. 0 ^-'- v. -i p o « X v fc. IC 1 3 Li
~ •* 5} ~ ~ <Z - X -» C S >. ic — C i." K L. • > 0 a ic 3 3 3 - ft)

AJ 3 — * 0) — S - C — - C L" r. K 4J *J tt •w 0 +J 0 *J 0 AJ " 1 W —l
r- U W M hi - I- '.i * c U IH X U X ta Q L| Li L. LI M IN

8 ' 8 ' 8 ' 8 ' S ' & •** 5S U 1-
IC I

n
t f 8 — | 0 Li 8' 8' 8 ' 8' 8 ' 8

—1 W C u) C •'• L •-: ;. .: 1 L: ^ c c AJ -Ji w c 4J w l « 0) L~ c w c L: a •-'.
(BtO^JfCrcKiCK'CNfCS L J- f. W C IC U 4J i 10 DKiCKiCKcKCKiS

^O |.-, |-_ 1— I- 1— ,— C £ u_ -C •- 1 1 3 C1 fj •^1 |-H |HH I-H 1— |-« t
in C'ECE-ECEC-ECf — z — B F ; c- C ^) —• c •-- V ^gaje^gGJE^ea

C C C E
m M X K >! tt X K X '.t X *J". X L £ 3 c " u U- h - ~tt)CfACV«CIOCV}Cffl

6 <G £ S £ 5
X -— E | E E &

re <C <C m «3
1 1 1 1 1

c
A*I

fZ K, K <Z iZ K
| | | 1 | i I E

^ ^ ^ T ^ — 1 IC C fQ fC *Q
Li- 3 J £ £ 2 4 4 's tS tfl y. "ui *« t: * • * W v, w « tq
S --.\ w N •:

—
1—'

*j" ., s
s |W • • *-» • «*4 u

£ 0 T3
CT CL ^- ~ n '-^ AJ c
S7J f « * u —1 •» V ic J3 H « s

!s
D) v 8 A4 A. .^
0 —-~ 0 — «

(N I ^H ~ Ll a,
*J I> a a.o ax C ; *—»
|l - X - X AJ « X « -

—• >. >• u k, • S 3 C VI Ll i o a « ^^ « « a •0 « ft
-H « a •c n Li — Ll *^I»-I Ll — L ^H -»H

- E •J i
Ll
« ry Li

Ll
0 tP«

Ll
K C

01 0
AJ 1 5

i-H l-H 6
i

— CO — C — C 0) -* 10
J-l 1 8 — AJ -H a V)

a. ID
Li — 10 10 u « a x 01 10 1 •o AJ

10 to -* K - AJ w ic AJ co AJ CO AJ C
c w - •*< s -H C c — *- !5r • c

-«.! >— a.
J

.S: 5 II \h || 01

1
L,

1 4J V) r-i >. — AJ -1 AJ <-«(*J 3 a ~<n
a a»
tint

sx5
X iC O 4J Li X ft) • a t> «j a. V « a ~ a ~

* b 2 •
0 *J

gift, « la x
X

.88 x1"
X g 3. -H MX)

UIJJ &

* e 2 c ft)

es £ -i

85 6

-1 1
1 f -H — •

Ll — Ll w
« «1 H d&as

— • E- cr 4J • 0 AJ «Al ^*»
AJ

C Ll C Ll
•~< a. c H •^ H gs °g3 °gs _,

|?i
X •J 0) »H 1 A. | v I I 4J >4J

IH

1 -LJ I «J o >.- U Ll Ll

35 t
p
u
t

n
p
u
t

t
p
u
t

in
pu

r-> ESQ.
«
1

y
p
e

-

a
r
r
a
y

r
a
y
)
,

c
a
n
n
o

0 —
AJ n
c ~ •- AJ

a o 0
1

AJ 0

-H 1

AJ 0

•H |

K 1 D E a «w «i »»

§?c 8 ro 1 Ll
n ic

£ L.
co e |. £ji| IC M « —i 8

•H

4J Ll L, 4J n — (0 — •) C AJ
CL 4J X >-

IC
tie. 1

AJ 85 M IM ^ -8. Ll C Ll 8
0 Li «J * £ Li u >. >, "^a • o r •H — -4J «•-<«•

AJ V) Li 10 ^H ft) —4 "1 —i 10 28 IH CM«H fl

6 -*
2,r 5

ic
0

4J

« 0.4J 0.

I AJ Lt 4J

DA) X

-5 8£ o

Ll ~
AJ

IS
8 8 s

1 1?1?
8 m^4 * ^ — IC ft) >S^H > ~« c ti C « anna

I 4J IC L. c S 1 JI ~ U • AJ • 1 — Ll 1 I
i u —' o L. Oft) ft) h L, Ll AJ Lt AJ

5 0
IM , i w "|fi H •s'ila1 AJ U «

I n 0 Li fe 0
v. -^ 1 AJ | 818 8.

w 1 M »0 -- AJ t aU I
a c

— AJ ~-AJ
u 0 >. 10 — n io Bl O AJ

Ll ft) ic C
(J L, 0

*J 0 AJ 0 — « *J ic U) t ^H « trtr i ^ AJ AJ CO
r- n o u y •0 Ll 1-1 (0 <*-! « o ?L _ ft) CD
CT 8 ~ 6 u

ic CJ B CJ 8 8 • — 8 81 8'
^H 3 4J 0) 4J *C in 10 ft) •H AJ in « « ft)
0) Li •1J U " «1 u • ". 1 AJ ft) CO tNfJN

^C U >- — -0 — 1 1 OJ u M —

JS'^'1 LO
4) §

—1

a ffl ft) ft)
It-t

i
—i

AJ
4) 3 k". 1—t M u.

±J
k< nj - - C w to n -*4 0)

1— M C - 10 X 01 X

o
—1

I (1 1

111 * 1 • A5
5 5
1) (0

Is -^ i Sk. u . — «~>

—-
* «

4->

2 _^ - s
X - 2 c — — 1 0 h

U) c c
: -U rt 2

- 1 i. ^^ rt
X y. o

1— "^ i 0 T c « AJ •* 4)
rC CO) L0 ~- 1 a 3 i =: -11 V, 4J C U i V (N Q.

c t-H c re X C r ^r n • 5 X rt 2 01 « a rt « e « >
u < ^ c* • x 3 2 —

co c CIO tr 1 c •c 5 1 i; r D>X 1 21M
C C ki c r> —i #-< *»^ *J c SIS? JJ •'.- o Hrf c < 0) -w /: ^-* i "*i 0 • - «l QJ

0 = I /Mac
/ £ • : 1 /N 3

c/-, >< /S= 9.^U fe 4J <
a. ~-g 3 1 ! fc'-fcOi

u
t)

,

"
y

a
re

JO

N
G

,
9

 n
o
t

IJ
O

N
G

,
n
o
t

a
in

p
u
t-

e

u
n
e
q

 cv <c I CO - C c^ w w. * 1^ C E < < kr
JJ LH u c - c

- *J 2 -H JJ C
0 0 4J V) > 0 VIIU1 I

3 •- 3 ~« •u X V *J
a.
c

> fC
4J chcQ 1

41 1 CO.*-'

-rx3
41

—i I 1 1 a
ai n

-J Jit 3 1 •—i <C 1 a •s a 3 a
a. t a -~ iu) > s CT> •• C a< 4) co *J i a *-i r-i i-t |
ChO SHIC ~

• >. a.4-1 oi k.

•U
3

c
-1 > rt

«;
0 I 0

T3 *> — <e
3 <fl

4 i 41

* 5 * «
4J a w c- 4J * >, | 01 ^ c, tr h -H 3 ><

iJu i J i).:>. -i. JJ —H c 3 •U It 1 'H 1 « - = — C 1 41 <M 5. 33 1 Utt-C 3 EO C- 3 L, | .^ ^ « a a 3 -rt •*J "0 •H *
sS C £

"l 1 .^ 1 -1
a u D gj JJ >,
4jica.a.a)C3ic
3 >- >. & i. tx ^

B i o in a
— 0) rt

0) •rt I >
V 01

& u *\ > J-r T3 T3 rt x i w «
0 uf >.|x -a.
~~X> CUt-kkCl'-kirrt

= 1— C 8 13 C 3
n •• re C :• -^ >• >- — t»i ^^ —< rt E I*-I i-t r-t ' *W JJ a « > i k, *J — 3 C *J *J 3 « -k) rt • E V 4)

D. 3 •- C N | a i4j QJ c 1 C 1 a
re a u i 1 e

—• >. rt >. re 01 -1 I 4i ci
y. i LL U C - c |*J • 1

Jj rt
u 4-' C -^ »C I U C 3 i • •^ 3 • a, 9 — « E <c QJ a; a

-^- >D y\ JJ tl E •*-» •*->
£C f rt ^ O •- 3 1 t! ° •rt « 1% C (0 >*>N JJ 4-) C ^H 91 0 E • i—r -— ! E kr I Ui /» < 1 "D -rt -rf 0 4) L y. --i v

c. >- ~H kr JJ kr 1 ki JJ C k k> ~z • >> -^ <C *J (U 1 ^ u o >< E .—:
1) c <c CN > • >• ^ rt 3 *J Ci 5 1 CN -^ (V C •*H JM i a 3 <u a i k, 1 O rs —* IM I >• a. >. 3 i cu I , 1 1

kr JJ rt JJ C — — - — m u j^ kr J- L. U c «J K; O.1.4J IH s » c rC3333jJ33r:C -TJ C «: k. 3 rz Ck'Tl'Ziv't"- O 0 0
jC -" . 1 rt a o o.*H s o Bttt c rt — 4J re C rt -v. c u •« i-, w - rt ~ JJ — J a -- — c Z U ~ic — ic — u^-5 1 -9 1

a *c 3 3 C 3 re $i •« C "C -^ «c c u
4- 10 w — -•_ — — 4- 4-' 0 rz •*"- t* b kr k. U - « c ~ 0 ---.z-w^-c T> •6 rt

QS C U r s' |' si1 si' "^ i% +J

0. rtjJrt-urtartc

*** a? w
in CJ w t El o> v. o» « a; c -r 01 5.

o:
rt 3 W 3 rt c « <c
CO'C0-B**4'GU

o J- -^ 13 ! 3 13 13 13 C C 1 1 1 1
Ifl - ? t— C — C — C — C — c E o; I & i Q)i 0) i

— o—o—e—o—c <u 3 C

2 C 6 - - rt co 1,1 rt rt rt rt o: rt rt *" — —
E

-« F,-, P«=,« g. —
-. c re 10 c

c E re re re re re •Q, ie. c c
t—1 * 1 i 1 1 1

C C re tl! J2
10 1 1 ! J ^ IC IC J3

u n ~ ~ .S J2 — >z £ £ £ «•-
It £ 10 61 B) W W « « rt rt rt rt
z: B NX -; *•**•**•#-*•«

rt 4J , ,
^rg
oi c *
o *J 8.
a c x

c
c

8S" 0
rt •- -•

— i. *C
«3 X 3 O^g

|S'| 0.1/; VI
C re 3 C r-r rt •*
3 rt

01 1 >
-55^
- 1 IX

> OI re rt f< k.
«U£ 4J < < «
£ 3 3 10 1/1

a « a
01 c >. c t>- o-
>..-, re ^ -H a
m S i »•»— (N
k 1 h —- - a a x
is' °r& JJ m r-i

3 X X «
4J 4J kt a

•W C 3 - ki 4J « « l>-

i^

in
p

u

po
ne

in

p

p
u

t)

u
t

a 3
o a

41 *" c c x
CP

rs
t

r_
ex

oo

nd

(o
u

t
ou

tp

•1 rt -r*
JJ rt rt «

Q. can
11 ^H rt V

(J -rt ro 41
<rt m oi o> 4) S-S-rta. i

.—i

/\ JJ 4J rt | IM

t
an

d
tp

u
t-

t

an
d

r
w

ri

t~
w

ri

6UJX
1 a re

8,
/nan*
Ji

2 S.S S.S 2 £a rt 4J w4J — C rt
3 3 re k. X
O 4J O 4J O •

r~ rt • 1 ?!' §'
0) rt 0> rt 0>
S « N fl M

\£> >* H)-^
in 55555
m C to C «Q C
H •H -H f|

O i i 1,
m i i i
(4 JS J3 rt

01 10 CO

«-r k «
JX rt

8S
rt 0)
JJ

re

rt c
0 re

8"S
a

•as el
c

21

U £
C 4J ^ rt

a) k,
O kt
8"lfi

* rt c
i- o
t-» in rt
<c OJ
*-*J oi

« I-I

i c

' 1

£ Olrt JO

s -rtffl
3 E C-n —

S J= j= =^ _a_

1

« «—

re 3 c oi •7>« -o - -
0 0) 0) tO E rt

-81 & -ff-S
-rt E •O (I

c 1 4J >. W
: >.«0 « VI 1

t_
ro

yp

e
ar

ra

ra
y)

ca

nn

ki "§ a.

re 4J k. 4J «
01 01 1 re 1 oi a

4J 01
1 k II 41 c

re M 0J M

!: •D W rt 0 -4

S?5-M5
c >. c > c Olrt

•r* K-1 |rt
e k, E k, E k,

kr re O
O-re re «0 J3 »-.
C —J3 —«-r
0 01 01

|
k,'

"tJ rtr rt
kr i t>
O rt 01

4J 01 01
rt re re

•^ 1 1
D- 01 01
• «rt >M
Cm a i—i

ro
H
U

8 rt
JJ.

« tie
O r-l

- 88
E J"
3 CJ re

rtk.ro
10 re rt
uaa
n o

k, m
» 0)

3-.4J 01
re 01 rt
krrt J3

ckk a
O B re (I o
e io a

> 3 k rt k, rn

CP C ro C rn Jj
SI—JQ —i-i

ki 1 n
H «*/ —+J —

« kr = kr =

iJ Si 9i
JJ rt rt

• ". •. -rt
en Qj D

I
.. rt

- s

« *

— w
If

I
_ i C
c u

K i
VI X
f. 0

£ £ 0 Q.JJ - 0) k.
1 fS 3 § §53 r - V x a

re c 1 ~JE 16 .-
2 in * a * •* 1- g - > 1

X " Z — JJ ^v (N
3; c- X 1 *•• < e - 5
T *J S. - 01

41 — »5?5t,§
£ ~ "-S 3 £j le-'iVSg
U". IC 0 6 < < u c JJ V. > TJ •-4 IS. 1 X |l

3 .— l/l X v JJ
1 a. a,~ 41 _ I' • '8 535 *H
£ j; a

3 x
a 3 a

1
C *«(- 0 <i Jk X « X

-c +J —< > a
a 0- kj — 5 X
JJ c • 01 ^H *J

Q, *J JJ IB -X •
r 0 10 a m 1- >

0 ~- U) —«

$$
— 01 01

c. •c •« X « 10
rr <0 E
•C JJ —. • ES •-1 01 41

V 1 C w
-

r. E
01

0)

E 1— PH
ii fs -*J OJ
Q

i
E 1

k, ^ ci C

"6

1

:Z

0 • >.
k. It
0 ~

•1 -c 0

C 8

5 0

S.5-

* <c 0

3 x
B.U g
JJ C

5 - " 0 a —

S JJ »i
0 SJ

- c Z

IT 01 S
3 C 1
a ic —

c
-1- 1

_> w 1
3 «
a 0

4-1 -u a.
3 3 >.
O Q.4J
— C 41

u u
-I C W
•-I 10 1

-H >.JJ
10 IC 3

it* a.
k. k. JJ
ic K 3
u C
— Jj —

& - -

BJ1J
It c

a. I OJ — A:
>< £,*J >-

U.-U a. tz
^J >- JJ
c *J *J 3 *J
I t c 5:
^ a 5J a; 3

^ u --
>, l HO
•X *J >* S -i-
l-i = C |-H
- a u u -
c c « 10 3

-J a— l— 3 *J
1- — '— »- z~ -

SgS?S-S8S
u: H

t u c
— 03 3 K) Ia ?K ?

1 I -1
5 5 £

£ E £ a;
.-. ic « re
XIDZIO
< ^ " /N

< .-• < ^

W. 3 W 3
c o

• a
c>x
c
o • -

t=s
•u IT.
3 ~ W a a-

J5 £ -ix2 •9 -

s £

01

3
c

- • E-
JJ —<
s "" a tr

•t: c '

3 in a
— 10 -1

•-< x
U) E

V «
41 "

OS -rt

OJ 4j 5
x c r "
. K

'-.8. ^1
41 41 x —3 c
3 ^ 0) £ I--
-1 xs I 5 f- 6
m 3 k. £ <
> 0 m --H in 1

•o m x v
01 —« a •
"2 " ' = „ 01 j; -u a.
3 &. 3 1 —
0 x a^ x

•O -H 41 « « »
k.— 3
0) >- -H *•
*J « —
10 s > -^ B — u
c- a ft
a «—
k. ;

§5 5.
H IC <J>
z — V

5^ B

s'fi
w 1

5

a
—• 1

€

o
01
c
10

jj

- 8

^N

— W

i

a

3
0)

E C

c

i"i

a
JJ k.
3 o>
Q.4-1
4J 10

if

— w

&

« O a

4> 1 01
u-i >*-

g
XI
01

a oj 3 0) c
JJ « a. w c
3 B) c 10 IC
0 IC -r-l IC U

1 41 I 41 I
IM *-

a. 10 an c
xxx
V J) 41

"' ' o'
5 j? £
0J 0) 0)

E/"—

a k. cs 0 1-

5 «8 ag 8^-
>• tn en t —

- a I — a :
4J h I I -H «^

~- a 01 JJ JJ 3
c 1 c e JJ 5

k. -J k, J c

•o 10 i K I 01 J-
HCAHIIJI :
• a I 01 Jk -; -H O

•3 JJ 1 11 H
«)>3 >.*> S, 01

I « 0. a s >. IJJ
kj k. JJ k. c_ « k. —

*jr4JDV4-*jc u a u. a. 1- rue
03A3ncv)c
v) 0 IQ 0 n-H 10 o
•0 c « «
II II II II

0) a> * •>
<M f «4 i> >H JV <M Jj

7 sr ? sc
"1 "1 ci ^1

Jo Xi Z >«-*
« « « W

0
c
H,

5 S,
3- k
•-. •
X M *=- J*.

5 4J

H g.
< JJ

~ —* —»
*J

_T — S.V 61 — w E * * C « «
.. K £ I £
g EL

X
— ^ •J i J c

•—i s 1 JJ ^J y. E Ifl *- 1 i
C

5 1. x
K

S EC X ft) .% i a ^ CO x" s i
H1 ,. ̂ .„ .. s I* f* i M 8 •V 4J * i

a.4- t
1 ^ i

< c 3 s 5: K l«S 4J — c PJ ~ § §
(B —

10 r^ c_ V, n 11 r kl 3 X a tfl 1 X c s: i: X c IC l-l <C NH • a c r E ic /v
i E > a X (0 z 10 c « 1 « H I > 1 • X ? — <; /\ •—1 s\ K z ^^ a • < 1 — 3 c E — = X L5 1 ? \s 1 ^ < £ 3 c

5 s; -0 C .3, c — 4J 1 11 5 5 •3 a.
X 1 o 0 v. y c ty 3 0 a. 01 -< C 4J >.
« 2 X 3k. E t- 1 C >- - • 0 ^ c

x"-k> -1 : 0 Sj an a -
u<uO

^ IN
X i 3 •i § t> Sk. S s n

* _ E < < c n : 0 * 1 ""^ tr. 3 VI 3 *-> <C 0 E < < c ki > c w • U". u cc a • 1 2 c « 0 0 4J w > T) IA 1 io 1 0J
X ^ Jj b 3 to X JJ a 0 — e • 1 • c

•u k 2 0 Q 4J
0) II a a,— 1—1 • _ e 1 • 5 £

f>! | M ^H •o C (N 5 a 0
X .£ a a c = c 12 20 | 3 C -w X "a a Q. 3 a « & i 1 t c_ c 2 JJ 1 3 X —1 iH V • c X •N X c X <c c >.o « 0 ~

•~ c W -H O a /:
ki M —1 : —

0 5 I « • ri H 0 a> /N X * X
XI * > a 6 T3 •D 4J § < •n Tj > a M

OJ • • 1 3 « 01 t 0
CP kl *-* D X M *J

4J 10 1 a 1 C - ic
3 >. 1 t— kl

—- «^ 4J ao> ki >_• 3 X 4J
c 11 C D «C AJ c /N 1 01 0i

o K, • a a a. « 3 -1 *> c IC -< * c a
—1 ID y) n > S . c a-u 41 *- >.— ki

4- z a. 0) JJ 3 ic
3 a >.4J L a

I s 0 8 a a II) •H > c H 0 <u I O) -H M V 0) w • -H
C, "H g E n a — >. T) •0

E
X X S1 <o <.' I--. 0 >-

Di E —4 in ic ECO.VUU '-t r-H 4J 0) w V K
K ^ o u u «J

la
r

 (

an
d

 i

s
a

r
e

el

em
e

le
m

en

e
 (

ou

ou
t

pu

•^ xi —1 « « k. -w 0/ 0) u 4J
a. 1 0 k, 3 1 I c c 0 u 3

4J k. c a 1 *J ^ 0 a u IC — e -w «J c JJ
V!

0? 5 (7- m 0,1 3

I — 0) -H /N IC «J *J c ~H I 0 i 2 c —. £ >. 1 >s/v -H • -^ ^H 0 D IT, n ^^.
•—i ««-1-* "h Jj >. •-. ic 4J C 1 >. U 4J

Kk.3ki4JlC!k--H
c *4 4J >.

V — ai <C •H pa a IC
C c 2 Q. u |ki C kl 3 ki Ik, £ E kl 1 V if. a k-

j< C u h<4JCILkk) 1) k. 14 c k

I (3 (Z tH ic IC 3 E ic <z 0 B W 0 IC IC •H IC
«U 1 « 4J C *J- b' — Bl 1

C u ~3~-3~ 4J^0 3 £ 1 c - 1
C — JJ IB o> a 3 2 3 3 S1 k, 0~H JJ • . Ul — — -J *J — 2- ^ Z C c a a - « -

r- O ~ 0 c_ k3k>3kCkiiC TJ •0 c V. 0 II 5,
IB
O ** S| Jj

3
kl
0 g 586 8-8° ** 85 *J fa s

H c
*J w

£ 10 1 UJ 1 V. 1 U) 1
«c <c c 10

^
u

0
Ifl ^: - y —4 IC 1c ic ic 3 t pp4

IT e I 0 — 0 -H 0 •-* t! — J-1 11 55 £' 0 «- t: tk. w >— i.-; «- « a.
ri u- a r. k. w - B U tt U « t K U u a. it & — l- U 1H k.

C <C <C IC
u

O ec >e. 10. c la •a
m K 1 1 1 J ---^ - — " - K — £ -C <*- ; 5 * * -2 19 n SB 01 « « * >^N> <•*,

*— — -w- — NN i

S. 8.
58,58,
r ki x. ki
•J « •-• a
x 10 2 0)
IE /S t-l /N
£ 1 z 1
3 *J 3 4J

fe'klJa
< J-J < —

I J-

a a
5 8
XI XI

1 I
0) —< I
o
XI

1
0> I
o

XI

0J o>
c c a I

58,58,
3E t- S I-
•-. *o •- iz
X « z w
•£ /\ h-(/N

3 u 3 JJ

* x < —

1 1
XI XI

1
XI

1
0)

1 o
XI

0

JJ I
4J

a

(

! |4

8 s •» :
> ^H ~

u: £E — 1 ,
z E = - o
c C o; *M -^ c

U w k. i LT 0 IC c ^H

- z C : a i ,-E ••H X +
= E *,-•. c r > 4J

•- tj 5 >. SE t. 01 c O TJ M —
IS 8r, C 3

01 c u IJ t
O 1
0

TJ

\
/ 1 < ,

i £, a <z
- . ?

= <C W >. 1 •H E X •1 X 1
X -~ « x x C 0 — a
*l '*IV^ - / S •u u - 1 - c 1 « x s •o

5 8 5" '~ - •*
e k.T3 U V C E N ; *'C 5.5 + - ^4 • -*4

3 « f i * c 01 •—> 01
S W'H ? 4) a> »-» B B 1 ^ X i X * X • H IA £ «HM : S •" — t< o - « 1 l c IM 1 1 -
X C C JC *H « u >.k> C -4

SI
** t4 ~

~ RS.g'vaiS o (0 = 1 ft a. a.
ki 01 | i. •0

h §
 s°

>,..4 _ ; ,4 v -H Ifi »1 o U /v i s <N 4J ^. *•
1 44 Tl 0 - c L. N a c . • -C 1 JJ i i.§ • * r^ 1 - * X 1 c c -^ c t* >. •- c X >. >— — >. —

| H5 44 <* 44 *~ 4J V « tn 5 S3 .°C a 1 «J (> rO 1 i (C -^
S

t
y
p
e

e
m
e
n

o
n

&

t
o
n

r
r
a
y

n
o
t

w
i
d

a
n
d
 0) y\ X + + * u •0 U * •M V)

4 ±J 1 T3 c 1 c N /N • t -o + d 14 c TJ u a a k< c
c_ T> h E >. 0 •t-t 1 a — tl M a ic <z V l 1 X c i £ s 0 (C -^H X « x "§: C - o X s 0 G a S >s 44* •.- 0) — •— c c oi «* — u tn

^ N h wi

JZ c • 1 1- 1 c 4- c •
t.

c
- u

T3 • > I 0) oi a, — - <4 o M c E
•1 C E CT4J C 44

•c - - * 10 *u « iS£ • X s a
X ~K , i 1

K-C

i c M "> £ -* * E <c - <o c CT* O^ Cr* C7 •S U -f a. o• T K 4) 1 « • 5x ~> 0 B 4J -3 >. 1 ~H -8:'5, c > >- + X --J — 1*4 w.

—4 • "3 «c >• *o 0 O 0 c E

!
c c **- 1 W 10

oi 3N -.4 i u 01 p. 1 + •- •—1 ^H «-H 5 H <—> ^ C -c -H J U £ ^ •c ?. •- 0 « ^H tj in -c 3 - u
u £ It 1 — - ic PI : i en m Jj u io a. - « ~ u X >. io

01 — ; •c v. •HP . U >. • 0) V 0 c (C ~ - V. — ir •- k. It -H t C •« -COb — *- — u
TJ 1 = C 1 C O (.". '-". c i 3 JO <c . X c", u) U ^:

10 I "Si o w 5 > w >,w C *-* >*--.r: — J= 5-H 1 >
E V *J

1 - *• + G >. o: oi .^ E t-
i; — * t ? ^ I *J -o fg1?? 0 0 -1^

r~ n "5 C x '-' wl bkb-nfabb-H in u -— !*>.—>.•».- - - t. u 41 01 o

0>
h h 11

-IE
4J --I •* g«g-=j<«'5i» c ss 0 V c —

n
it — -

— 01 TJ J 3 -S 1 0) 1 01 1 O I 10 1
rz iz tz <Z

u ic 0 ^4 t- C

°i-ii x It- 1- It- 1 - 1 , L. C
\r -."/ - C1 —

0 5 c {j - 9 (C C 0 (1 • 0 m
0 0i 01 L. U 4.

<C C v
-r i.: — i: — to — w — •Si (.*. 'H to to £

1 ~ ife *. w — ^
o >—i TJ, - TJ. "O, ~
m

u 1 1 1 1 1
T "C « C

1
a

U ,2 .2 4 <£ £
K —i .c :.: IA i<: v: IT.

Z. *« V" — w — »— —'

S 4J 6.
*" a.~"
*i 4J 44 .
U 3 t.

01 I 01
4J ^J la i oi in

85858

5 2

~ ^ 8.

S 8 s'

r M r t< =
»-i BJ <-> io a.
x oi z oi c
i ? ir ?
3 4J ^3 4J I

13 13
t- as- a
< 4J < 4J o

I § §

•3 i
I 1

X
3

jr o

E

a -

3 —
a o<-
C <N-

•rt X

— —• 4J a o>
a a, oi 3-rt

S £ . £S
T! TJ -H

a a.
X X

c —

l
o

Tl . I

%-

3 V^XA

•" s 1 "B 8
c |&

«
H
L,

>. 0
Li (A

IS hl-H
c D)
B W
1- K t

0 ;- K
~* t> oi

••* I
>. w >»
C •- >i IC
H Q." u,
B - B IC
— a • a

01 « K >. o
o « a
-* C - L, >, |
~ C O V-
*J O B » x
5 -I I !M

I • >- *
Ll >. ~> -•

>ic ° Li •-* *-
B
K

5

IA 5.

a • i >-

x c 0
« E •

?? ?
o 5 5
Ll Ll L.
sue
i". rt tf)

J * I -
V, U^l

>•* • u c
i c I
<c 5 x t
u c l~
u— -* u
-c c <c c

-- (f, •-«
. E?X

— >. 1-
S-ics

£ L, ~
-•*- B I

x c >>
— I 10

* g + B

v a. <c

3

X I

fj
• — :

a E
— x -c

r °
EEC

•H 0 O

I u u
ai ai

i - JJ
i ic ir,

ttzs
T: L, L.

0

XI.* — -H

I

i* I
SIS
E E E

r >.— ~H —
•- B — C
XL- — *~
< i-i a<N E •-<

W CN Ol a. c —
i x x -i

I-
IJI
IS

• + x -

if* 5
B • TJ

I •
01 E 01
N -H N

•--I C --C
6 "1 •3 «

-SSI
E~ E

I -H | C
I >- c
a. 2 '2

x «
0) . .

SO
B -H
1-c V,
C C
•I 2

! -H 01— O -.

- L,
>.B

CJ (CO
U C ~

1H L, JJ
<c tc 0>
W W Li

.15

l(

SIC "
C C £
Li 1H 01 -U
Li 01 E 13
• *J~H -H
— WO *

Li &4J -
a, 0) c c

4J U -i-l -»-* '

•K'S
| Li |LI I

01 ti 01 01 C

1 1 i i 1
IM

1
v.

1
s • rz «: 5 c

x: 2 XI S 5 £ £
i: n ui w e « 1 — ^^ ^^ *— •^ Ul —- —*

a
u
ki
01
4J

•u
T3

n >.
c a
01 Li

>. n m •»

Li Li 01 3
M 01 E V
K *J -^ -^
— « T3 *

oi S c c
*i Li -H -^

I -PT) O

S.ltg

I Li I L,
01 01 01 01
M4lUiJ>

o «i

XI
ia

§

c

I
13

5! I

a
Z L, — • <

.MU a.r« E -
-H 3C « x o.

8C«« OJ, X
-HE III

? *l| c?-?* "

_ MA _

9 tl

a*^4 o

" i°
HMC

331 k D 41
« B 01
• O Li

5

*sr
« L.

Si

E Li
•H IC •»

•° JS Li O
* <0 -H

>. •> «1 - a cc
H Li E i>
Li 01 E -C
e .U-.-H
— 01 TJ >

*J L(-H -H ^

5 1
Jfl

I
c
t>- -

?i x & -
0 c -~

5 i 8.
£ .8

•o
+ c I

5
o o -

1 o* t> -

I U C x.
« oi c

x; J3 0 c

CO '-' :

8" = - -.
— • CG a-

V(N 2 <N
X •" X I

XI -~ tfl I 3 ~ * v) « ; aa —- —:
C-H £ — x c* .2 in -i

e . IS ' ••*fepi x ~ c: < E
3 i". tn :
a. c—« •*-*
XI c • I

c •.- i a
WIAJH I

a

« x
oi E o a

X< .3 ^ • .H

"wrg C -3 T3 C.
CC C X St S B H

l«- -•
M -*H a*

I
!
c •

£2g~
i i->

*; *) c
c A '.:
w o* *•

> i —' fl
XT f !•". —

/ c c
'. : i s
H
5 ir.

— C- = c «-
VI

-z M A "5, : r: - O M • (-

?c
c r •H -H •-(^*
0 1 ->i ~-HX«CI

01 1 0 IC lu —i ~l DC
/ 1 <
i « 10

w. U] 10 to 4J (A *~-H
* V v ."^

^ a. Hi 1 •• i 0>-
. >. u >. ~ p. >. C II

fl ic « S « ^i -u

tp 0 - .—
Z c c »» 8 o«
•3 oi -** & c t7^« (0UU] U tf) CH

M 01 C c •~-<.*u>^iuir>tnia
a c « £ ^^ 0 '^ >i 1 « 1 fl -*H 4J

-I a « c >. >i a g— o
X 4J » • O X 1 fl—-u 88:J~ <" o

•-- 0 - h + u + |
IU10 M c >.« 4J X ^i M -^
I 3 0 « c fl a. A a. A

,----•

k. £ £ jj i i — v c ^ -

Sic0
>H4J N
A C c fl 0 0 c
L, C 1 _-l^l -I >, >,x x «-
14 C C C C —i > 01 -i -1 = A a a u u u fl iiei •^ B oi oi oi

vfljtd ~ Li u eg

Is 8|1| 0) X" .. ^ n u n» ^
c >. kl -H -H -1

c s
~ 0)-i L, s s M

•*-* &• Bl O^ W k<

|b 2 fig L. Li
n i

M (C — « IC C

•Os e c '.: V, K
w-

— >,— c >- 1
~ tZ •** IC I u

>• ••: <•". tZ

"• c. - - - « k4 u tfl 10

CUE S'S' S< IB

fl — --1 oi I f, I iq Li
— •••: TJ A fl <c —1

\U 1 w. U 1
L n^
1 S c HC(Ci U

xi X >— .X "•i —' IC

• 0

•51

—i ^
IC .u
M -H
3 >

fl 01
c —i

— *-
B

Li
•• Li

0>

la > a

—I — c
fl cj t

0 ' o £ i

8-
8.-

Li C
U Li

1 =

Oi
> 0)
« £

v, 01
01 ID
-* 3
£ a

sJ
> m «
_ a> a;
C XI ^3

•-• (0 (C
5 -H -H
C fc- L.

Ill

01 <
vi

*J fl AJ fl c
-^ Li H L U
C — C — E

I > > — 0>

at —
So-

g.2 -5°^'

-,g'
-- V- — w. "g o 3 ._

c *_ K c c i^g c c t p I u o c *M
1—1 IC 1 1 1 -^

1 K m K X CL+J U*--WO*J*JJJ4J 1
U 5 JQ i- X C IC C IC « ID I K JD Ifl w '.-, * * « * — J- « *_ ». *.i ^
3= v. »— — — \W \^;\y;K w v; K

3

o c *»

X- S

fl -H a
>.—J:
a -LI
Li XI 'O
L, L, -I

L, |Li
01 01 0)

-#- ^H « ^

3U
M'S « -^
(0 (0

t.s c -^
6 9
e oi

I •-<
V ^

XT <~
XI
•D 01

Ex
3

Si >

I *i s

5
fl •

T2k
N Li LI fl •

— a. i a

n a i *

•H tr - I* 5
Li C O LI
XI O « -
g-H I >•

V XI
I •->" + C

Li >< — X + -H
O

<xi xl Li
, IC O

C
w

6
fe-'

•X|0

• o •

fff
Li L, LI
01 1) 01

XI XI xJ

m

U

?xl
>. L
a fl
LI n
Li >N
fl I

k

+ a S
x a A

5' !|
•rt + 0.

0)
Li

a xi
X

-• oi
O M —

• •- 01—.

,5 V

xi N. I xi

fflfi'
0 W L, Q.

~> « X

Li « --1 U>

x a a a ~ ~

0) 01 fl Ul +

8 S^g *
•H ^ L »H
n |XJ w «
c x> a z
| gig <N
^ A « M
•O I HQ C

« iS o
L, C. XI -^1
a Z> B £C -~ K
01 «>«: "

rfcfi
5 B,
-I I
B U

5
XI C-l I -

C B^ O a L
-^ X-H^IQxi •DE
E -.x; * B O 3
^ I HT1 C x> CL - T
•O •H^HlC XI XI —

ccflci»»lag I ~
« to - to o c m u *~~ *~
ceo -^ -^ *J -^ 0)
4) 0J I W U -4 +J M t} M O V

iJ|-ibix,s|S » frj^btt
•O-DCBEXIBCILIX:'-! £ Bti xixi i r\ r* • m * AI m f i ri. n I m m in I o X -< « fl. I «,11, Q,
XILi^XITJ-H g I in I
c fl n xi croi 3 « «i L, oi
^ o) 2 •# + v *S & a •" « •xi

Uj+LioiLiuinio n
LI L, g e
oi oi-a
XI xl -O B
a oi — X

•H -W XI
Cji B>Li TJ
• id ri

XJ

I

Igin B
UUC-IH

Li L, L,
01 01 c
XI XI XI
B 01 01

1

c
XI

1 u -
IC ~

c;
-H

1 O

• rc —. c £
t — i N
--* 1 c

I (8 v ~—
X O — .—i

|m — —
& C ^ c a ••,

4J S3 V » JJ
/N V O fl -» —o * | a kl

5
o C «

1 >•-• — • >- — « 0 *-
1 1 (Z ~ a = •H -— V

k. « JJ V. a £ -U O V
CM • — 'S. JJ £ C m ^
xmv Jj ~ (C ~ -X

r it K JJ k< v -~ *» 1

1-1 a c IT. « K lM V -< K
y. g tt •4- I • <

j* o: f- U — 1 - w
O — 4J « c 1 < C + *J c 0 ~ o

u £ -1 Vj 1 - c
r* « + K £ 4J c U 1 C «J - c

• M £. i c " ~ iC ^ •« •• • -J G> C
& xl •— « a = K -H

c — — 1 —1 c k. c t? «J a •1 0)
1 IG 0 c R *0 X 1 c L i C 1 '-'. e - • K + — u 4> + 1J t * a. o u -— 4 *> \ (!

M X
I

c U
0 <c _^ X/U

] " M —t * •W 1H 1
V • 4J *- a v

1 Xl — t C a) * «j •J w — < >,
01 tt « w c

1 —• u ._ fc 0 QJ X - u
! o
! 1 »

K u
8
•1
01

• ^ x a; t: o - u c — & c t

-
c> l 1 3
\r U U *i

<c c C
* «r w t: •- —
o
n
u
m

2-

•a a
X .^

c V
c « K /* -—

= Z 8' a I -»H +
W •» •» 01 + h ^*
z u X «:
O N •u o o ia 01 o
IH — in ri S*' /\ -H
en in I -z r ••* & * 01 « >.— o 1

— U 1 4J 4J A n c^
• Z K -r4 -H «^ 1 ^ M -~ o ^« < --1

§ §
1

•* ><xi M xl v r-1
a>Q oi 1 1 § M 01

a c v ~^
0 1 1 4J fcl -i >- £ •-V 1 •-! 1 •»

^-l K V y oi aj c 0 xi •> C
/ 1 < M s 01 +> y •H XI E H ^H
: « W k- •^H a v o C -I o 1 \ 0 5 « 1- IC R c 3 (j c .~

3 -M « « *^J V ^ '» 4J u e 0 'M xi IM K-H 1 0.
z e c s = S
Q Si ^»-

N ! c - I X, + X. «• c
•* 0

xi
11 o g e • ' xi xi - 1

£ X OT-H 11 f B
a a M -i -i
Ed 1 XI
Ben v
XI N /- 1 10

1
2 n-H o> v 1 3E. 0) v •»*! •• h 53 1 H n c ^-i ii a a ^s

4J 01 U jJ
3,1-1 a

ffi C IB J3 S < K N 1 * o KM XI ^ x •»

I 8 al /4J b - n Jrt « IC
• |M O O
£ Aw XI IS (^ c

-1 I: . k •HI 1 M
1 « X. -M

X. « xl
.*

>,^ •*- r -w 0 -— B 0 *< 0 0«-i § 1 a 1 o 1 *J -0 0 h4i: B ij C ^H «w « • ** IM S-K xi M C e
J'cTS

—4 - > o — a B 0 »-i arsri
.-H b

•H

A
K I

t
y
p
e

e
m
e
n
t

o
n

l&

t
o
u
t

r
r
a
y
)

n
o
t

<
-

fa

r
a
n
g
e

01 «i n 1 ,, jfl i
1 c c H C • b a M g

58882
>. --M 61 • ft1? + v iu a ,,, 8 1211

xi
•«-H 1
a a >.

a a u
X xi xi a

—> «
o i 2

V -(•* B K n S,? 1 —1 *- 4J >*-. jj
M>115- •H M

• • c — M» LSS'"" t. H « u c E N 0 h u ic • -ft 1 kl<X 3 e-S .1 t u -»H

y
-
>
s
a

u
m
e
n
t

d
i
m
e

a
r
g
u

w
r
i
t
e

u
m
e
n
t

R
M
S
I

o
u
t
 « *> <M K -~ 0) " 01 a a iftjf *J •0

>
n c 0

<-1

> xl XI
C • C 1

a r a oi xi s X —
o •> —

K + -H -*-. « c •« s~s~s
•» 0 1 -H 1 -H

•H &< « >,
o

1
c
G "C

9 s? JJ o B| o a (Li* M M M M
« V 01 01 a

•

5 1 c U -w 8 « O 01 O lb • IC B B 4J O 4J O 1 ir Ik. xi xi xi xi xi
a -01 01 01 01 01

x^ ><
w Uc 0 0 « -* ~ >>— C ~- >.— 0 01 — >. IM «rt'H«-H« i •> >* JM ^ -H-r4 -H -H

r- O

c B ic 4->

Ulklkl-*4k4UlkllB
8.
01

•
u u

IM
0

-i ChCli

V = 1 1 1 1
xi

MX
0

•M XI u >- + ^ U U w H

b
0

b
0

*4
ap

0 E
a
9 i i-i,oS3|,w

3!" \s
3 0 xi xJ b b
hCvilOO E JS 0

IM
4J« (I «

u v
(0 1 10 1 Ml « 1 k< 2 i 1U 0) 01 XI XI i 10

(0 -O rH ^ *3 « "3 <0 4-1 *, O JJ *- ^ u u 4J 01
m hll U M 11- 1 M 1 « IM 1 \U Q « H-l <M 10 10 •
U1 a V V 0) \ 0 0 !XI »M U3

« n <M ^J IM ^> -\ X W-H «^H n-H W^H w tO^H ••H

--i •«H -H -^ -H
IM IM •*-! IH IM •

o ^) ^(-«H -iH
1 1 1 |

h
« <c c e

JQ -C £ £ 5
<c Ifl to w « i *

1
v.

c —
•^ IT. e 8

9i-

U r^ k.
0 O C

ft .~

W 4J

T: ^ ~
JJ 5 ti
H

£ a; N

u
-• K « — >.
=18

ft) I-

?fi
.-c t) <;
to £ •- :
to i: — ^ :

E I i-
•8 «-u >

- • ^ m

0 O! 0

1 •*- I
I •

0
I NO
N •** K

•-« 10 —
10 111
X K>,

- a -
8 s.8
i 3 r

c •"
~ 3

a

4J / — •" / — w to
« : (0 k. : to .—•-,
CO £

O — 0 £•

c
1
8.

»§
•k> £

•u

z S.x at

-i N j c u a
•1 ~< 0 3 3 JJ
s» « 0 p a 3
— >.— OuO
o> i tr i oi
c c ^
• e n c ai e
• -*H 00 —t JJ -^

1.255 65
« I <0 I 16 I
£.2 5J3 5.g

WWW

Us HI U=

91 9j 8i
(0 10 (0

a in
I I

01 01

IA A V) A ^ (C
I I I to

A- ±J (*- *J fr* ^

^ 5,^ Q.l/> *J
I c I c 2

c x kT

gj gj - &
-H-H-H • 0< 0
to • m I c -<
to — i- (0 — to — .. —

to
TJ to TJ

„ C — C

*J O 4J O *§ O

to I to \4J I

I K I K <•: n
10 10

Ito

- u ie -s. >
S3 8
to -I
tO T3

•6 o OJ

I

01

to

c
—t

c

S

•a

£
T3

T3

I
"5

x- -

||S

^ >.

S «3 3

—(<C —
I to a
u u S
C 01

.K JJ 0)
~- 10 -I

4J
c
o
B
8. _ „

Bl <u
R E

i—i V
i «
•c
JJ .%fifi
c: •o -c c tr-l —
• §xi

4J «-i 0>
C 4J C
lift lip'
g-s.%
01 X u

I iii 55 g^S
2 '. "
if,
X 4J

I- Vt
41

x c g
-i 0) I
u c c

•.|l
o

« o o
10 *D *U

0) •

-§."8
C X 3
4i 0 O
c x C

si to

a

5.

•C T3

its
3 U tj
*J 01 —1
-< x i
-1 x

I?-
QUO)

U TJ
- « 3

-" UJ
01 fc. H
C "0 -H
t. to a.
41 §

U. k, 16
— 01

xj Ql
rt 10 -*
01 —i £

Ol & TJ —

S
-3

ss
5

!i

tr
—i

C -H •^ &>
17* -H

••1 i-t
tH O

s *
c

5 I

i 5
TJ TJ

ili 3 CTJ

l« • S k, 41
ki TJ

- ". 3
•H 4J
41 ki -1
ElO 'H

to a
41

— M U

4J 01

III
41 kiTJ -

3

-
^ :

= ,-. •- — 0)
~ = ~ CTAJ JJ

/../.. fa ~. = c C c —
• r= r £ ¥ s 2 l - • fa ..-.._ c 3 i 0 s ~
0 0 0 0 c ~-* C C C: : « a M 4J JJ

KNNK— 1 —1 X ~ r^ C B
i .rf .-, -H •* a K -fa 0 - e

US « 0} 10 ic 0 — -fa
« X c

\ 5
X X 5fa >. - fa C fa 3 3 c^ 1 X 0

••*
; c -> -etc —

• «•« 3 3 0 m -fa o 3 3 s
c
0

~- M
fa
0

4j
c c — c fa j c - •« 1 s c 8
c = : fa--WOCfa-XX=-H -. -~ <. + .• * K -H ic>-m- i

OC t >- i. — 1 O IC
c ii gjc « S. c JX-C-JJ ii

vvSSt^S — > C. 01 ICCV -H

c * /s * H
0) —• tn 1 to — c R <C gj AJ u fr ! fa &) c 1 ^ 18

._ ._ ^ .^ 3 _ >• 4- III II II fa •* 0 tr ~4 c S^

B 00'.". WOW/i -fa Cfa>~fa.fa >
NNX >,:£ -fa OICCIOC
^«— |K l>- 3 C -J-E«X-H»-; jj
WWfa fa -C" 4} CtJO^. ic^-0 0
x>.ix«>.»- -= cz-i: n c -H o c

c -^ | s -H 1 Q » fa 4J •H 1-1 fa *J 4J N •- •-

Sw O £
^H ^H i *1° O fa 5 111 a i 10 2 C fa » c m, OJ c 5«g — c 3 i(i<»<s! -ECO^J >.•- io + + <Z fa 0 X <-*

.-. e - t? 1 1 AliAbI 2 —lUSS : t ff. 1 to L, 10 3 0 E Ul 0
>—i AJ - ifait.c>.ro2—i i>.cfa--o •" £g y /N Q, fa" 1

c- = ic c*. tr —i ic *J ic — -c — coc:ccfafa>c^ c 1 c 5c1 a S C S 3 C fa 1 >•- C - •-• I 0 « C >.
---C^G--.--— ic 1 >- tr. fa £ 'H ic

•^ -H -^ JJ —• a < si = >- V) U) X S rN ^* c
-« c w L: _. - fa z ^ ^ c ^ — ^ ^ i fa i v) fa

w v. - c 5 c 0 •?. fa O fa i • - i w m fa
- — c *- c fa fa ic v. fa i ^H o. >, - «

X >. a - X > Ifl H' i
-•H fa M C fa S 6 —
IC » * * i -H 3 I " >
X +J -fa ic EE 3 3-ri: ic cuuu • E

0 £ • C > C fa _. n fa I 0CC=Cfa£ -fa
III 1 3 - 3 1 fa a- t C 0 fa 1" 3

w a 0> 0 — «
3 CN CX /N * - p 3 1 3 • -1 ~ * c Q. AJ •« 1 3 C O a > n far Cc 1 IC30(fa 3>*CC : C fiu Q.

J5— 0— 0 — fa C fa-fa- OQ..fa.'*0*Co J23*J
bllON N 3 >^33-30fafa.ca-falKC-3
 -O-HOCIfaO >-- I0XICX3—»J0

1 ' 1 -u
3 ss ? n a

<o«
•--1

u 1 5-Bi ""•

| c 0*J- t a: h a 0 •H x c 1 X
D — 3 > K N <U c to to —4 E 0 •f a
c CT*4J O 0 ::I0NI0N — 30 — fa 0 0 C = 3 -^ -«H *J ---< >.4J ^ « 0 *J « + -* 4J
t fa TJ X -i >-•-• C IICIIC' l*J |JJ 01 W « c c u 1 c X C

u 0 4J C
E cc e • • IK HI- - I to u z u a '"

—i 4 c o o »- fa ic >. ic tr> fa <r~ CMC E, ic o o tri 55-8 « £ 4J
4J

5 « 8
3 3 *J •-* « irxic>-— t-^ccci ciocto OC H) to • t. 0

8 * c 0 E X 1 1 10 10 - fcA-lf|«-.HA^Afl | iJ-4 *J JJ 4J s IfaJ -H 0 1
AJ Q •-< >. *s^^>-/i>,= fai m^v«cwi i c^-fato c c c 0

fa
V, 4J

2 >• 3 10 n c 1 IC 1 IC •" "C — W 1 W C W fa" 1 JJ 10 fa to
O 0 -fa fa 4J fa W 3 — fa" --i •- --^ 3 3 fat J -fa

n c
B c - X fa « X (*l -H V

- u o i 1 fa J= NN3fa3fa 1—i_.E3ECEC.C-. C-i 3 1 £
•^—.c-ica-icfaicfaCCC—-D—Cfa-icsfaO

u, w u 1
1 •n ~ N fa - fa C ID X fa H

C « IC tntn= C IC33 !C |fa 13— 3 3 0 IC 1 4J JJ 0
* I IS

|
to 4J fa x >• - fai -fa fa» tn — c 5 — s C 5 c K c •-« v m 5 IQ tO G) «

to — 1M >. — 3 0 -H 1 rt
3 X

*J 3 --
a c. — in to 0 •" -^ « E1^^ fa

& r- OJ % fa — 0 fa X fa *H fa -H fa Cfa^far'far'fa 5 *. c fa fa="' k4 M M M
C« ~ tO 1 to SSSi , ^, g, g s 8i Ss'g, SS

W

— ^ -j to* c tO c « t: « 0: «: L: t: c u £ c w *.* E 10 X t PC ic t .; F c !j"c r • c c *c i* c c- <c t = cr— 1 c — 1 1 fs ie is 1 i 1^ ic 1 i 3
c || _ _ c — •-•; CC©--©--;C'-C 0 ^ C« © *-; & C M

fa- m c s u-i — _ - — 10 m i 0 is L: t* t; •-: :: •.* ;; i'. v, t; r. \f, v, it — -*
c
/-I M \ \ \ \
h || 1 i 1 l
C Js w t: u: ui
t U **— w -—' — ^».

o

fa
I
n •« •«
c ^ ^H

10 + +
in
-1 0 0
h N M ••

-H | to to O fa X >. T\ *

' g.
fa c
C -I
3 tO
5 to
0 -H
» E
fa I
C -fa

•fa. c
a fa

o

K

O O fa

r-o- I
000
1 •
1 I I

4-1 JJ fa
-cell
-I 3 3 fa

• 8" I B.
o

C I I 41
0 o 0->
O N N

•H H fa
n inn

to

a fa
c in
-1 >.

1 AJ rr
: c 0

8 2

I 5

3 tj>r fa tr
c 5 01 c 5 B

-J r S 1 c is.
UZHQK3

•fa fal ^H -fa. < ^H

to « > 10 W > tfl -
 VI 4J

IT
£
o

C

fa

> -
I O

fa C

SB

CEO
3 -H rt

8 .-

- •- E - • »»
• > go JO

111* ?l
c X-H a ~-
— 10 >. X AJ

Hi- spg
II S 10 0

a—1 a

ft'* •' 0 a o 1 i«
H3I) - AJ >|

^^•SxS-g

a ... AJ 0 fa 3 c c c fa
10 X CE CEOOOC

-H •* ^H Q) "» '* -^t "»^ 'H rt^H-H
E > a. fa v v c
- & sSjfa-SSSlS
c o •— • *J -H « B +J H *j
lH -H tO >. X >« (0 (0

fa ntn ^jfa-^^j^Afa^fa

<
m

s / s y / y s

i
« i s

m

B *i X -H X c » •M 1 0
c <U « 4-» • O
z. —

:: |
c c, -

n '-H

B — U IZ —
h •c

I f
: S

c

a
X

•

«r* 5

•a a « 2 6
c c.

G S1 2
r »-, -~ CM.;
5 ~~-£ c u
1 « _—' —
H « 0**3 W5 "- I
X 4J c c tt
< w •* 0 —• • l
a: i- « c E 3,£.2Sr,*-|
v) 0) I w en -~ •

« c c «
C--I 1 "-
c »*—»-. —

a. c -

sis
u *> —

V 01

i* 3

- II
- C C C
-jpo - cot

•sis8,
If 6*5

- w-

« V a. a. a
4) ~H Z 3 3

J *J 4J *J *J
w v. io w

*J Li IH M L.

FT\>*-i w u-i V-
— I I I I
(C J-t *J +J 4->
L, U c ti a,
iJ V) l* V) V)

\ HN -« -M -H

*-» *J

\H L-C Li *U ~ + —< 3-*- 3 Li

C3003QOT300'
*— CO- O O ~- 0 0
c o> o> t) o> 4- i

OWIIWIIKIIW

I
ttittitti

IMjJiJlHVfclM,

J

r

o —

&M
a

<o z
I I
II

I

E
J
PQ

S3
>*X

(0 4J
>« to

8i
It M
0) a.

<n to

3 >. a. » c u

o
i

4-1
c

8

- 8

a 2 c c<4J 4J 4i ff tr cr ^
4JHH0VCCCV III o
D1U1H U-H^-H h- MM *••

_ 0) 3
— JJ o

a u

n &-H — -*

i
-la-

's TJ-S

-
J—
«
c ,—. s _> i

1 | P I
6 -

X
c- -

1

i
-J c z 1

1
~ t I c u 1-
c ^ o; c c 15
c e G X LI —
c «- A C

B£ f> * i C « t «: « >N c = IB
X T5 *i « • <6
l D! a;

! E M ?5- laf l

- > 3 <C £
IE C o x 1 5

EL
4J
0 «

1 y.

1 K c ~ u _ *
- >. 4J *-* U >
3 C U 3 ~- • C J-*
c. h -H a. a. H ? : -U « '-*•
3 i* C -1 « ~

•_. »c >.
K

-H X n -,!
c c x

c
U ~ « ffi ^ VI c *

• s. 4J *•
3 •0 8° *

— 4J a cr c >1 >. - C"
C 3 **J *J c H <C <C >. c
4, 0 5 i1 - - i- <C •"

fN

i?
- a o io E k. — u M n
3 *J — a i u c >*c U B

e a - *j (C -H & x <z •u 0 a 6 m >« i £ i ** c
c G 3 4J >-H to _)-.
a I*J 0 i C 1 >s o c-«c D B 1

££
& B

« I _ -J
u c? ~ W U -H -wH c »c « = V c U 1M u c t: c K E B
H •s ->•* jj •* —| «—' c c « B B -J B
gj i VI V ^H

4- 1 H 10 |*M «C >N <C
1 s - = 1 — (N -H 0 tz u >.£ 3 £ c -

5, c- j'i 1 B u b* (6 C 10 1
U bl - fl - o u

1 3 —"1 * 1 0 * *c •* U 1 C ! £ B C B! U c >. 1 P <b <> B e
H w B —i 1 <Z IN <z ^ wj« W^ ""l

-*H • L. •» 1- «C — C B W u •» « I- K _ — _ —
p^ — ^ *-1 B O <Z '„ MX - : a o
c: §;> s •"• "" 5 B S S Si **

t* SI (6 CJJ Oi — t: i; c
IC 10 C c B w n K u

OS 5 •#• >H Z •*>! 1 1 3
c c « C JJ 8f 5 ^ c £ ^
IT to H L* L* — E
o
m 1
14 B
• £
£ B

!
r-
CE

K c s
—i 0 c

^H 5
i 1 * H

1
0)

•u

c
JJ 0 *J
8 E

to
8

E --I B

>
hi *M 4J M-l

JJ « D> JJ --*
X -U -H + C JZ +J

•^ a; a 5 -H v

^* *^*i *J cr>*J ^*M <^^* tt>

IH AU 0)^0^^ & JH JIM «-H
MIQ.IJ-H a-H -. D 6 V 10 •*

^ 3

2'S'S I'S'S i'S'S fag's frSlI'g'Bl'n $T
4jjji0(0ijwio4j(ocn*j
v n I la I la I la

in -p
- c

J J J ^J J J •'
8*1 mo u u

a ma a a Si

N 5,3 8 8
8* 0> IIP -c ^
3 ^ [ft k 5 a-H n

CL^H t4*4U« 5-1
\ «+ 333333 3~

WW^W^

Ms tn —< •-

— — £ - O

fg

- £ C O O It : O t n *. •.
—1 ^^ —« fc-i V> '- -^^H U — ^r •** C O

B
a co w 1*4« a. * = p

-jjjao coo 00
p O-* 0-" U £

ex c E = "O

c_ •— c •**•• — ^ 0

M so Q to c 0
c If f— — — * = 1—i-r-iO ~* A- *D vo ^ lO *•
e K CCfSUk OOOkilnCO^H •- *•- — - -. -O
u >• L. - 0 C • OOCD U CV —- b»4-> > - fN CN r- CD
m c j C - i- - - •, «o 0 x -« u *^= u*-^

fe^
-cJ'oo

et J 0 0 c c —— 0 ^*^H0003S ^^•'n-H L.X
: -(OOWE'tjyO U-fi a U- 1)
*• 1- 0 a vcii co u. —«
-—00— kt o--Cb

- -. — —< o cc r- o u i- M M
B c O K O O —

CT u CD c > •• - OJ *- •*.-H-*h.^,
"~IP* « • O O >

tl c s S\V\\\\\ *> s s •"-< *: J< Q 5*^ ^ ff^00 ^ = r* ft
^>ooEc^ui^ oxer

:<^CE •»•*•• *m W

E' ••vo > 0 0 E
a JJ o - B, •-^ <n-i ^T3 <* Q O O

: — 6 CDC •• t8 = IN £ M ui >
•*H *J X X n=w *>C«0= = r*-lM* - i rl — C KX P

c > 3 00 = —« 0« X c
U ") OJ u u --. E U t4 > kl *J ». 0 <~- « « •4 0 c r» » •• -rH

-H E a m 1 - E 0 ^H a WI<NEEO»*J Q «J •»
c C .* — £ —1 OJ

o<S;
t>3 a.

-1 - > I a t•- <c -22 w U •« •« •» • » 1 — —
c C 0 —i -« rx re c c c $ UQ.Q'HEEEC'D "DOa'-W

CE^HOU^H^HC CWC4JJJ
O- £" E £ E

4J r-. 81
4J ~1 *- -> Si £ i 0 01

o U £ - c c - = c 0 ^
g

g 1 R Q 1 I « 5 C :: t Z
I J N a >• ww«-.*^ — v-^£3 X — VO r^ Oin •• wl-^^ w

C U3 c c R k- CM -H f*> V T3 T3 "C —

0 8
z. oi ~ >- c

TT .„ .^ 0
c ., .^ c

1

u > c c c re <c a •H 4J %C (N :N (N Ol En >
u c- X >« C — s X X —. 0 -« en >

uE- c £ 5g 1 it i: J K fN \^ 1 L 1
^c o : c >- X >» X O — v ^ ^ 1 X : 1 » ?k •si ci E--E*- , ' _ v V 1 ^ •*-• 1 >< w w ^. —• *^ *-* *-

— t --- in c s C C I! C — — t v •F^ ^~ —1 — IN OC (N 111 E £
n R K n R

IEEE £
t c 4J Jj 4J X u: u*. Li .". •/.

r~ 5 x: — trl 0 0 J- 0 - tfl z z C C zz E < Q C it C C — c C fZ tz
w .2 >-o; — >• X b.*«ws«k.i»$fii*. iS w i s s * > in
C- H uocect'-H-n-P i —* CN -

X «
— E E c

o
L! III S

— ~~F~^""^"titi
0 5 *- CJ

e
u CI w s

\n < 0 7. > _ 1 - k. U i- ••* *•» •*• 15 >* X 5- >. X >- c
—1

X a,
m

V < I

-= iv^ ^

- -
— ' i

VNVWNW

fa

w

i

I 1
^

CJ

1
^H

CN
c

*

10

1
<N

1

s
*
«

i

i —. | J; —' —1 - i

I i- 1 « cr —<
a> | M

L*,
i » ,fc J? c a

3 s .„ .. I
IN •-H ^ tr, K CN

e r-, w « \r. IB JO JJ JJ
ra f-i i M J2 c: C

H CN oo ifl M tfl *
1 i > 'a —• CT i

-H T3 c
jj~ o o 3 *J z *D(N » <c •H - C 0) u M A

o o 1 > a * "0 ao u 0) « kj ^H u o •* o o 'J .—• fa *-» 8 —• w « 3 -3 c c --i CN 4J
PJ o o fa JJ —J 4J JJ C
u o g a OJ » OCH --^ ^ 0 0 X X c C OJ

a o U) CT »-i + fa fa OJ a. U T3 a c
c o 1 — B —' « 1 Ii c CO cc 51 •-(Q, •«- 3 u -*• +

HO —s —< X X « OJ 10 CN %£> L, ^ i 41 c 1
HHCiOr^^iflr •» = ^-* c c CM0-> vi ^ •«— fa fa »c a N w + H CN u CJ 4i
^hhUhlnkHh c -S •<- w- w w c: X 1 1_ 8 01 CJ c C fa •« fa ~ --i v TjrimNii •« o CO 1

§ 1/1 « -H -^ *

S W WN.W *l s S w »-- ^H ^< 0) ?^ ss E CD i—i u
fc- X iM J5 >s>.E

CJ •H •H W -* > i -^ l£ 3 > 3 TJ 'D 0 x> 1 X 1 1 10 fa 10 CO M Q-i E C CJ E c <0 10 in > + + —
X *£ ; 3^ r- fa 1 o 1 c

n in L. i, X 01 nri a
o « « fa rc •• - 1 ^H u

CO 4) 4i E- r-i re = E £ E E E %, E B m £ r\ 4J •* K ii •-(10
V i ^H CN < a. K ^. '.1 to « R to in -H 1 PQ CN O! (N 5

*4 c <c C TJ
<z JJ — v. — 0 ^ c rc <c C • K> <c •c IT; <C TJ a IT, "5 ja ja ^
a. -H -H (N« c c s •* a > c "C | c » >• v

4J 4J ~ — R 1 o>
<c 5 • 1 1 1

u - c c - c c e s ^ /\ ^ *N >s ftj

w « 8 •.: S c
J O CO r^i A A/i AH CJ i 10 Li u c 1 fa oa £ ^H 3 >- 0 o — H *-I £ E 1 —* HHC1PJ 3 -Hi JJ

u r L, ^. rz - ~ C c to X K £ 4J JJ 4J JJ C £ a. —- N c\ ri CN — co tfl E > B • « t '-' C = c c •O J
u c c c c X X --• 1 Sell : • » i 1 E y i.
K >> X >sX o ^ V r •>• 1 ; :

JJ
C JJ JJ CiJ JJ

V V i ^ v 1 CN •J. h U h h VJ

W JJ <C o cj o o •^J

0 c = o c c 1 — —1 -^ r\- M « t E E - E c c c: c •c
*J — 4J JJ X to 10 :: H =

r- cv £ C c E E c El < IB A3 tZ ic >- X >. X — 41
CO ^ H L ^ H ^ S S s 1 E >
S w e v CJ (u 4) •"-" H —* JJ 4J JJ JJ JJ JJ IT, 10 L: c fc C.U

w«wwv)«>.x X fa c c L. - ifl u. i
o •H "H «H "rt -H • — t; u g C (. V U s rt

H 5' £ 4 e c c w
c c e e

•H

o
m

h

u - u fa fa fa •-* -— • >- X >» >. X >• « 41

1
!

4J -^
•<H :
X O

O = = •* <u
-^ x > IM *J ^
r —» T^ M -H: •» H
in = X n ^. TJ

—+ CL O C> «H - >*-* e
s » g TJ n •* <H^4 -*
n yj 0 *•*» ^*««» •»*-».
TJT3^H*» {N*~» •*•••' fa B* rti
...» H «-« •* T3 - O JJ T-ti-H 5) TJ ••.

pg ^^ : *-» .fa T3 -H cr-o *rn
i3='Oj-tm= ^-t^H- X -.ja r-iT3
-OD (7>«J- ^4X-H Q) O 3 •* 'O-

rsroio-n a W4JTJ -H TD to x; +

Pi - - •* r- O ^ «C«** faCL
^•0*^*0^ •**> fa •on*) s|| R

»H FH *IH «^ n TI £ •*»-* f-»= iH
3)< »HTJ4J: - •* -* fa *H *» •% >
EtJOoTJ &»••-» 4J -» •» -^O = «»•* -n Q

T3« <o*r-ta\ FHOH-IS TJW « (if HX) E
•• to H T-iTJ 1*1 4J *-u"> c *b
& ^^ cr •* •» <J * -H m •» * »*w •*
c ••T»ja^'in*^ -hi • x C **« »<<tA«N
•HH'O 3 (OtJTt •»Ofa C 0 U. IT*D ntjn XJ
W TJ * (0 » '"•TJ U* T>iH pi -n TJ *4 *
w) *= = »^i «*r *h* k ^H *-H O O*±

SnnwwHiKN'MHt -Oh. -D*^-fa C'Q<2'
ETJ « -om-oCo >EM 8o w i-»TJ EL

• M * fcTJTtr»TJ C^> 1 1 oi
uS-Hcr-*4JFHr-»* ><*• — - --

8TJ * CTJjSO^H > XH -OP» -<& - *T - »H VC9

^» C •BWiT E««««T»««"»TJ«T)*T)Q II
= = = = <gj •- » * x.^HvgyN^
ww wwjJO -.HHflHHHHO I ft **• +*

10 TJ *•• > Q-TJ >TJTJ>TJ«*TJ »

I fi S RHH £D^£CHEHHH-H jj *J

go) c - •• n - •• o •• Q E « OJ I I jj i-»p« in «no> EIO E DHH EE

anfi«fiflfl««flflaaio >iX
9i

^-, -C i—i
to

JJ
NM 1
-^H

X n ^
to U3 M ^^ m

E • r v
x a z E

\\

1

S3

c

is si.
0 JJ JJ n

h 25' a

•-v'v

01 -

M 4J

5 u

a - a

0 c c o c

•. k< M k, k.
0) oi (u B w

4-1 *J 4-» AJ -J
« « W 0) (0

•H -H T< -"H --4
&i pi CT< o-1 n* t 4 I jj I
k. k- u k, t.

5
SQ

5 *' j i io n a a

O—•

1 *-•

•H
O —* .—> O O ^ <—(C ^~ ~ M3 O I/1 CD r^ w *-* ^ ~* —* 1 -~* •* t\

~ X •H
X cr- cTi m •e- \£> « r«^ ~, -— 1

iP S 9 CD -^ •H — 0> > C z a .-H — ~ -~* >. OD r^ o^ r*- co
CO £ K4

C t X
X >- X <c H rt —< (N

0> ^ -*H — —1
N M *«ON<Dr* I |" 1 1

C C tz • — o a^ *^ O
CO >• i X > > &
— •-< c >* JJ tn *• in in \o JS! to

<--. ifl fc* ft. —. c s X *-> c l ?! to
w to M 5 -^. X -» l - >. •. CD a) 0
o> t> <c o >- IS Ifl N *^ c Ql C in 3 3 E

Ifl — K LA a (N »i ^~ c e i-H -H a
CO. >• X 0 c «

r » in >
C Q 1 x x a, >, 1 JJ w o ? ^ ff» Ch 0^ > > > > >

O 0> ex (S £L c — X X li-1 ff* ch cy^ n W>2S SEE
^c U ^.

t 1 r
ii C j X G C c X >< >* >.
£• £• w w ifl E ll- H H ^-* 01 -SJF-5 C C C X X x x — ^ *-• *-x

0 X X X « <J\ <J\ o^ w ^
>•>•>. c s to D] m £ ON Ch 0^ n UM u £ u u

0
v«vel i £ >- N «j -i a IN M *J *J o-l x«C£i££ <^ m CO & X X X X 1 V 4J c C H en cr* H <~» « f«t« w w «

K -•^ --- Wl m >, 1 c D] W — —i ^ c (T. ON ON m r^ c
c N N N O CT IM 4-J

t^ u ID
4-' *J £ £ j< M £*-

 C C >* p — w V z. c = H -H • • V M O HI C 0 0 0 - - -
—1 a n Ifl 1 H -H « 1 — 1 1 1 1

0) >x >•>•>,>, I — « IHH F 0i O 0 - ^ a B cr* c^^ U) CO to

I
V) ii \r. i c c c <z « Ifl Ifl I ic ai c m V V — c > c c S c C 0) G
0) CJ 0- >* >- N
N N |5 (C M

u u •- H 1 c Q) t 1 >.5s C ^H s N 3
>iii:,

N N K
H S N c 1 ' >* 0 • IB n B 0) -M -H ^H 0 10 n •H —

•0 -*H -^ .^ i- rc (Q K « •3 c > K 0 <0 .- u JC c in ~* if) a (,:•-.-,;.- w to 10
1 tfl Ifl 10 ~ 1 >. ifl >. —1 O FN >, >- 1H u i C n I i > 1 1

C i 1 1 <C >• t *J 5y C >- 1 c c JC u (C K c tz c 0) c HI 0 U) 1 bE><E EE£ is te *~- ^-> —^ t"
to v) c: • — ^ 'J N" s Ifl c i <e

0) V i
U a ^ c n <c H 51x1 X (C V. >. >• JC

L", C (C <C C CUi c a C <; u K E c 0 •H i £ z. "3 *U "0 JC X "0
x ^: JZ J-J —» -c c. <z c u L C <o c Ifl C^J£ 01 c c c c c

c I 5.31
t ST cL

1 to tO <% >••" > CH C" IC (C ffl tz >« >» X x >. >•
r-» >• >* >-T: — T: _C z. X —. >N >. t: | C JP p u n rH IT • c * ubucaai •Z <C •O T3 Tl <v
C3 C ^ iC"3 J"0

*- '- ^ <-- £ X % c 5 i H 8 IC •8-S t! E 0 ? S 0) s s XXX
•U U *J

IM
u

••,

<c <c <c
p p "C

—1
IB m

i 1 1 r 'j K
I ,-" 1 1 1 >s >,><>»>•.>. >- 1 1 >.>.>.>.>,>,>,>.>, >S X >s c 11) >, B >•>->->->. >.>,>- c c z

IT (Z E i « it * t fZ C « M IS -c K C C IC IC c tz c <c <c <c 00c c
C <C C N b t. rC r; L y i- i- « L FM & v- c >. 1. l.l.LV.1. M S k- « — — •_ kt >-. i- - c L, U u u -. h n •- k. U M M ^ >. M k. cia 0, a,

"
X >• t* ; (" :

K " ; ?
X K

f '
1 1 1

^ t C ~
I

K
1

t (J
k4

<z
1

> IC (C c IC C
1 1 1 1 1

IC <c »c
1 1 1

X >•
•0 -^ u k< • X

O _' — •U 4J *J 4J u 4J 4J 4J ^ 4J *J iJ JJ 4J AJ _ — *J «: C c
r" "ore c e Z - - C C" cr C - z c = - c e c c c

-H
C cr i C

hi 0

C C = C C c c: c
Cv 01

-4
tz

cr
M 0> CJ C J- ~ I- u k. L ^ 0 C rn u IH U. U 1^ IM b u u h 0 c L. U ~ - - bhL y L 0)

« w R ft. ft. ft. ft ft ft. ft, to C C ft. c a- a a a a a a a tg 01 a n aaaan-cca. U) (0 N n n t.:

Bl
^v

a. c
C n

t-i
01

IH A
*, iC

8 1
01

c
X X = V)

•<r 1 1 1" T
CD E 2 in
—1 S s g"!*. 8 0; 1 1 \i—t «H
n £ g gu-g -
CO W « «•« V CO
0 V)

*J •
91 A c A • •i

C C •1
JJ KM 0) r
A •-H <6 -.H II

•k •* •k *ft M *«

s
t
e.

a
c

=
fcl

2
—

v
a
l
u
e

i
s

v
e
r

c
o
l
l
e
c
t
i
o
n
.

t:
r- I bi

J C ^- 0 01
X - =1

•*- l*%.
II 0 If. io —• 4C 10 £

5 J= k, x -#4 > *J £

= : e 4)
•
4-

^ •

J414J
c z c s c c — (. — - -.-< L 3 8

•H ^
~ u (fl Its - a- e

03
p c c

0 X B » -~ (0 > ; Ci 0 3 E 3 0 ^» 0> 01
K C ^ apt ^- 4J 01 4-> IC C kl

C c c a N-4 4J a
0 n^ K > w •H 3 H-l s •M "S. a «] n ID 0-0

c ^ u B m 4-> 4-1 ^H O 01 ~4 4J O
0 0 -^ to 4-1 io -H 3 4J ki 10
c > - s w X « 3 3 « -^ n i £ -j T] ^^ A

£ trt 1 ej
o> 1^

£Ji£ K «*4
IM ^

§ 3J« c "c -p
^H

1 k,

8 J_ 4-> 4J > 01 T3 •—*J I C : : 0 n z I --*•«-< C t! c 11 B C" C
tr -4 = E ^ « 1- X U] >i £»l Clfi X 4J

31. ZJ » u a « 10 i-H 1' •PH as *i IC 10
SJ io ; c C U) c 01 >.I0

Ul k-H k
HM TJ

cr , o 4- —4 0 O 4) U 0 01 4J 4J -H k. 0 « : « K 0S » *-J •H 0 C 4-J 4J -4 C « IC 10 4-' 0 X K, i c_ I — <o I <- •- •D ~ 1 1 £ C -4 JJ 4J

= X tfi " X c (j tc 4JUV * 4J 4^ 0 K 4J v) a (Oil JJ X V
-H cT" i. 1 IP 5

>•

•H C 4J t£ Si 3ii- a 1
IC I e m 4-*

JZ c frxt!! s 8 u N : Jj 4J Li «) T; £ >,8 4i*isi « a> u a. n
5 Li % Si c c 1) - V « 01 • n I) n

a,• •« 5J
ki • K «

t Ui. K a Q)TJ

— — K

i N V 2 <0 H
4J

X £ -5 _ k-SL 5 ^ If. c
5 1 •* 01 n J 4J ^ -^

o; o -J

4J £ P
8 u 0 4-1

||
•c - 4J 1 t c U 1- -H S -^ ~ •H 4J i • X N E <Q —. •rt s c u 1- -» 1 4J

1 •H — 5 c - 5: 3 n U T3 0. ti". te g h « 1 - 4J • 19 a. 1 a> > -» Cr-
S t io L: N c u 44] U LO rs)

ill
- *J

'£ 2
Oi

C ^ ^3 8 c 7 > 10 5 C a <n "5 OJ n V —
tl)-4 (|J

U a • ,^ *^
I; V. "C c 0 — o •c <c *J ^4 10 •—< 5J 01 X E U >r k-

If to S,

z (0 > e X >s C 10 Si ~ K —4 -* -0 4-1 — 0 01 T)-I £ k| c
r- *J t T: X s - 1 0 tr

o i 5 t-

r £ 1 4-1 •N -4 T3
J 14 8 1

4J -It cc -4 io • BE 1* -* B Li H 10 0 O
^4 N

4-» •H 0) — 8 3 1 •H Si ffi •o 0 Ik « c LT. 0 2 i-H •c 10 <C
0> £t

0 c T;
OJ ti

X!
^H E e / 1 0 B>-» 3 1 ts O t 4-t 1 10 s c i? < r o x =•- •0 (0 a 10 U c W k. 10 X - C£ 1 c tfl s 01 1
o t B.IT » ^P| « K IM 0) r. , 4-1 0 -~ 0) 0

c •- fi ifl
0 it;

<c c x ^ ~ 0. <- c c ,r It ^ — * .^ s .„ _ L £ .^ r.Z « i 5" " i- 3 - •** " — > 4J X
4J

kO X — • C ac —4 4J * 4J J< tfl .- « IQ JJ H C- J) C
X - u c u t p L U

a -c 1 i5. U 0 0" 0 - Z -C k, - \ 81 0 —. c V §s 4-1 X 1 4141 0 H § E ^ u". « > iz oi u a O -4 »- > v> U ^4.4.4
IM c — (- 0) 0 lit iC"

> —is 01
IW K p 4— — - V 0) -~ 4} li

"0 o "D •0 "C

r% *-**

??

s p k- k.
k. k. « «
I I

-J 441
c c

-4 -

X >-
X >.

00

•2PP
rss
10 -1—
• 4J 4-1
£ 3 3

^8

& £

7
-tJ

•

r«r« «
k. k, kl ill

-»-< -w >H

77T
Jit
£ £ £ o o o
sss

--^ PI 0

QnM 0 C

~ 0) C C BI £
— C 0 0 C --<
n fl) 44 ^4 fll T3

E 10 10 E 1

0 n5 5'^
10 >. .„ ^ x >.

£ >4>4 >4 >,
-IX X >.
7-4 ^- 4^-4 10

>•>• kl
>- >- X X >. k,

« -4 -4 « 10
4- kl k.
>. k. >, >4k. 4-
X «C Kj iC K C

1 ki ki 1 r
44 k. k, 44 >,

>. o «J a o a
t 1 1 1 1 p
t>-44 w >- 0

<pi 16
1 V >. >• O k, w — aa—oi
r ki 8 8 ki i >,« — »)^
CL 44 4-1 w
8rt ki ki-H I XXX

•44 OI 01 —I C -44 -^ -4
^44 4-1 4J 4-i J

I HHI<N
44 01 -4 -4 0) 4J
01 *J 441 «4 > 10

4J C I I ••* -I
4H 44 E E 4J o
-4 3 9 3 c a.
IM I I E^ k.
• v x C h S

"1-8415
c
c >- >-
— IS 10

kl k.
>. k, k,
X 10 «

-w I I

01 kl k)
10 a a

>4>4>.
C 10 fB C K *0
k. k, k, k. k. k,
k. k, 44 kl k. k,
C 10 <C C 10 10
I I I I I I

kkkkkk
n. n Q, n. rv o.

>

s
—I

ss
- -4 •
« n ss
-4 a
10 X
1 <!
VI 1
«! >4
£ a
Ss »~
a 4^
ki ~
k| -4

I ^H ^H C 4—

>4>4>. x x ••

&

888 5
w ^ I w ^- ~~ ^^ ^-^-^-^-*^-_ v ^.

kl kl
kl kl
B C

k. k. k.
Q, CL DI

0

k.8

23S
1/1 -^ •*

IE E

•u y c

4J (0
>H O

5i «
I I

5J £ *
.u 03 (0
3 I I

*J « * c a w
•4 3 W W .£ Q 0

to 1 1 <c ic <o
B 10 « 1 1
cr 1V 01 l< <

IC K S K C .£ c
s. a •« -fl «s 1.« K E E W II —« I-" •« 1

c
c ic ic to c ic —1

0) i i i i i i
1

13
S S S 9 S S

£ ti « « is -•> n a i i i i 1 i

«fi •c
•X 1 ^ K
—1 1 5
<a £

1

1.2
V c

§£ E

<C ^-:

II
0) oi

>. >.

5

— a.
0) IM

l"

- ^

C{ H ri

t _ .„ ^ >
3 IC 3 >. I

— — > ic 0>
IC ~ I it Ujt
> >, 6 o »• s
I * — IC
C — U ~ - I -

•3 >. 1- 0) o <
4. n c cc J= o

IC "3 ic •£ c 3>.~
i-i EC
~ c -^ 3 -^ - c
c £ o e o >- 3

*- c ~- c ic —•

— >• t: *-« to

•* to

TO ic B] til £/
U U *-> fa- E Li U x!ZC
ic ID w ic u: -i
I I Z i
jj JJ a. >•/

88|S|3
I o

C C ic U IC 4J
fai 0 c- ic t c

- • • « - V.

S 1
X-fi

^ = ^|-w

c«::

4-
c •

p" —

•S ID

~ oi 3
ti

4- C

" f- 0

IC 3 3
U ——I

 v >.

b -£ £
2 t!

ic p - S I'J
13 lH - C S

«C t If; C
I 10

z ic k* c T ic

. ~-1 ~ s. °:

*J
0 C s — '- a. 1 > -1

c. 4J B
-1 u

0 1, GJ U
£ •H 0 V •-* H iH

c a 4J ^H

c " 1 -^
-w I a

3» -^ ^-* -v '- « <fcH i •U >-<
•H H --^ i c

41

u
n

1 1 c

5 | ^ a c j? 0 5
—i *c >. w I 3
u 1 *-* • >. 1 >. *«
ic 0) ^ ^ u a ic »»

c 5 & u c
s

V ti t &
—1 *-» M >. > « Cn B .~k. — >- >• - i « ~ XI 1 1 c 1 >.u

IC <C (0 1 JZ k ~H 01 10 C

e u u 1
u u c

iff 3 n
in
3 5bc:

<C C IQ >.« c B — fl c
c- 1 I 4J IC T3 1 c M-l m
c 01 0 -u 0 ti 73 1 0 c >. U -w I-

-~i £ J= 0 c h a 0 ££ 0 01
w 4J J-» C

to i ii
.-1 •U 73 1 +J C --1
01 e « -*

>. V) -U -»5 f 0) I O 4J >, w a. 1 to <o -^ c >. C O •- -i
*J k4 0) 4J C 10 to 0) M 4J

5J « c = 1 fi c e <Q g 0 ic
i -i 0

1-
•H

—i i g
w

E i M
C c g i 1 c uB £ JJ •Self

• — -c5oj a* c •*- >.o o a. 0 «t 1 it 3 0

c pBfs IC 14J zt S >< Bv.2
« V) U +J

C 3^— IC 73 -1 U 10 10 u —(U-H C
ic i a 73 73 •u C Z 0) a IH (C

JJ IH *J >, U c a -^ 3 a. >.y oi •** • <C JJ >s '*

55 ic i u i
1/ 1 gfa. g£8 H«-i|J iU8S|

73 -« i nk{ 73 £1 EL Lo h »H O.D - ^ ^ -ri ti £
IC « 10 10 — w i cir •H D E «- Q.J3 (C z

h 4- 0 — c 1 4J M 3 £~£ V i - — >. c - it in R ^£ii¥ J= > •o ~ 16 Ci3 — c.3a •H
H 0 T3 -*-1 4J .* 1-1 • = £ • E- 0 5 -4-t 4J

0

c

OI o;

»- —
73

fs PH li — ; 0 > CN
0 c 1

* CT 4J

s c
0 S 1

4W •5 c- ~
i c c *J jl c

c h c 1

C
C s - „ X JJ1

4- 1 el 0

e
ie

— AJ

" Si-
JkJ -* 4-i 8£ •H ^a » i.

c £ I —* *- ft. ~ >. --. __ c 1M 0 4- <— >- a c I J 01 k.
c >» <c £ •H V c a >. ^ C -H 4J 0
-^ (C u -* a i £ u 4J c m h ^.-•H (i IT (.'
L H fa •*-> c •H 9

*-
* b — k. 4J 1 *Q a C

0 fa> « c z a X <v — K -- c X 1 •H «|

p i >» c e 5 fa c | !5 i K •kJ 1 *»
3 C >. 2-2 8 -H

1
0 •V JZ

3 *-
V C C »C -*—t n

E .
N c. z C C ic

0 »*- w
U

<u c fa *-* JJ i •j c •M C h C IC
•HkJ C

«J a c
<C 4-* s •r4 ic •»* J-* i i i —1 <n -•

c - C I ft. ft -w fa
c — L-, Z (N 1 - -ij 1 0 «

•c C 1
o 0) a; • •-'. fl; 01

L ft. 1 *J C J- 3 0 J= X -c - *J
JZ ft. C C C 3 -4 1 & 4-> 4- ^- » 3. C c c ^- *J *J 4J *J c . u *->

W-W (JJ « | H f 1 3. £S S a «
3

1
>- 3 C (0 #0

3 >.>->, a 5^ ^:
8 w

i —< +j *J T; vti CJ AJ c c a; Qj *J 4J a c c « *J a 5 c.
^*i : OCAJ^J: jc 3 0 Li ^ i- IfSO C ^ U 1H 1-. 0 4-> 01 k.
air,ijacoc^4. 3 c > IC l i •-". - i c a. c -H -» JH IN kn c > z J3

r— C-^05«©c><>->
1 E c - a ^ i *Hia a ia

4J *J I t I j 5s 4J C

-^'~EO-Htt::<C'C c IB c — 4-> 4J w r o CJ a> « fa - £ k-
C JJ i r i i c fa fa t, "3- kJ V, CT 1 L, Q.4J +J 4J •D C

|
s

rji ft-aic cv+Jt^i-M fa - C p v- n 3 ZOU*Q->*UQ)-tJ •H 4; 15 B fl - C ^ JZ -H Ul
c C£ h£ CX C <C C IC K a 0 p 3.3 k. C K K JZ. C

IP^H
IB V » 01

c -£ 4J• tz +- C — 1 1 I - U —1 1 u 0 ! ^ — IC 7 U JJ flJ

c c >. 3

=
C c -H 0 •

JJ D •C 3 C 4J JJ c C >. >."D £ ft(^H ^_H • a 1 JJ 4J
c c <e tr t ^ <c a K >. —I TO U)

K
=: •a I c "C 3 i i» <c cr *J JZ <C fl « >. — m a,

3 "H ! fafak-U-faUU c u c V - U 0 c »- u u 4J — ^-^ c G
fafafatc-tOCO - E 0 —1 fj Ul — k. Ul

fc rz >c i- r: --^ 4J fa E ^ -H h| BJ c ic «e ~-»~* —< fa : — *3 -H 4J IC IC <c *-• 34J4. ^ : E
I c | | >,l 4lHH IC — IS h h 0 IC 0 u « •*-» 1 >• z a z o <C — n ^ u y — <C 0

1 cjjcccrtc C 1 £ _-t <l c c — I — r c <c a c a « 1 C IM c 1 1
5 n : c i- n c.-- *• C C, 1 E £ — u c 1 1 ft. *c »-. c •H C M C 0 cu c u; fc- Oi Li

-C ft. fa C y — k. _ £ O ' >- c. we i- fS --- £ x *C ' (C <.: 111 C lli iCB-^T >c —• t 3 t C *J AJ IC t" 3 'J -^ « <c i •D 1 ^ — J- *c « 1 •^H -M •*+ **i *Z? fa •,' aw K 0 3 u k> ••* -H c -H T3 C *J 5 e CJ na v u z
I | 4l 1 T) it z JJ •ri'Tj | AJ C « « — c t- i z

JJ XJ XJ Z *J C <C u >.— =: / I' =" 0 h IC -J JJ Oicn: Q u u <a
5 C u >-*- a: ^ 4) 0 c 0

6
Jj U c *- 0 C ' <c S i o. * 0 "|*J

4J 1 t,1 «
^ £ k.

c £88£- u «*- »c E; £ £.£ S5 - |4J
—i -|~I--* 1—1 Z Tl' C -2 ft. = 1- c IC M c 5 3 (. "1-H

IC ^ C
HI 0, fa e u c fa c

jc ^ jft o -ft K --: *-» — v. St- BE C u; t. c i — u: l» ^ "^ *- i CJ e^ w — *-u; 5 t — d C w n fcife ^c 0 — c — c — , - c — c "S"' C — 1 e
PS £ if s " u (C 1 ^ t. DIJ v ^_ C iJ IC t k- <c h IC JK C _ B

IC c 3 — 1—1 L. Z c. ^ «c c «; CL LC
r- 4- *- wi M — P <z « 0 0 • P JJ C C"^: — h 0 0 01
c fa fa fa V

<t a. t * C t c
L. •y etc c

-r K i*" t,; x I K ^ « w ys x
• w n u: c

K it fC u
| "— ^ re

« 0 J3
c
4 ^

| rj.

u

0

-I c •kj

u - 0

II 4J
B
a.

•D « >

IS
01

3 •!
85

u
*J

I
—
1

iJ

5,

!
tV 5.

c *i ki Xr
1 - c

1 i J e
c
1 / U *J Q

, *J ^ re
S £ J £i c

-*- ~~ - s o JJ r~ *^ c _J

5. ~J IC 4J 4J -fc- <H _
1

c ^ *j i 3
c > •3 £ s. c

4^
C -H s.

>. 2. E 5. o c c I, -o >, IC C .« 441 n *J a. •-H ^* •-1 K -—
- (C Li 1 *i s > 1 1 4J 4-' >

8 fc Li 44 1
— K 3 M £

C
1

<—<
3 «J 0

re £ A 3 4J
h re "g

JJ E2 1 = 4) re »» i at 0 k, <c 1 w 4J ^ Q.3 —i »C K ?>. to < >. e u E •J re f— a ^ >• — >• -^ij a • w_ K — >. " ^
1 c <C re 3 •— 1 OJ • re 4J re >, 3 c I re >.~~
*~" u *J *J r i

to •o c c —1 H « O-H
L, r i

T^ -< k, • *J ^
1 1 01 EL K u 4J IV re u M 3 *J Ma; ascti H J-t jE '."; *i C re u tv 0) 3 4J £ 10 c re

»;g 4 3 4J >• 3 0 1 re- £ £ a ~ j5 4J >, 0 1 «4J c a c C C 4J 44 *J tt c. re 0 c 1 4-> *J «j a re -» c 1 3 C
re --H to dJ c • 0 U 4-J re c g c 0 0 - 4J a C O-H

« r i •H « -~ !--•>,>,>, E —(> -J a 0 a « >.>. > 4J U C-.
1 ~4 4J 4-> *c re re rC 1 I re re J= 0 *J 4J re c 1 1 5 IC 0 «V 4J ^ tv 01

a-' JOC^Ih I. U| u £ +1 ^» •* o *J *J h Lj 1*1 h 4J •* 3 0 4J iijti
10 4- C C C C L, L. U- n s a c 3 Ohh a re s.8 a c 3 0 JJ 4J

sfi
44 0 Ji * *
3 n C I i l

4 —1 « LL ~ a. c re re •-t n u *J a. c m 1 0 4^ 4J *J LO 3 to c
out

** 4J 4J 3 3 91 C >. >.
o— a 2 o n 0 1 TJ C Jj C •/H •a c 3 a o •-" •-< (0 re re

C 1 1 C-u *- •J >. E
|

0 1 B 1 1 -~i ~ ^ c 1 C 11 ••-> 1 1 -Hkh
e t tT04J D ^ n; ic c «c IS 1 £ s a> 4J g re re <t ix: 3 tv *» tV M ki re — 1-

—^ «C
n c £. re c <v
*" | *- CO 8 M

u
a

h I -C c 5^88 10
4-J Li

u 6- re 0£ C S. 4J re re

-H c t c ^H gj ^H ^H e re 0 — >»>»>« 3 >• « --H ~H —< 1 ^H 0) >. 9 >. £ ^H --*

1
•Ml £ >. 3 >. E *J «J

(C tZ re C" re u re re •0 j B c c^^- i re C? re 2 re re y. c - JJ IB C1 *c 5 ic (c
e L, k. L, L. - i. ~ — E 4J - — c >H hi u u cr> —— £ JJ -hU« L?88 C - Li M re k. re a M N re u h --H a. l4«U

<C IC re re >. K = tfl JJ t; E M re re re o 0) 1 t: 4-> Z IA C (G tHW

t >.! *« > — M Ej c c u >. £ u t. c -1 >- i
t — »- = re c 3 d. 1 C C 0 c 1 1 rc c re c >. 3 >* c t ai u o I

B E H
c c c c >. »C IC

I c S re ^- re C-* b z E 4J Q u 1 re U • re ~H (C G C C « H IC
i- z. — *J -« IQ t*. E L: c 1 M

k, ?,
k -r- re X G re £ u k

to u c to re to —* —* 3 *J a 0 « re • t-l 4J c 5. -> -i 111 U) IC (A
C 0 ^H 0 n i/ [•; c E -- re £ « O « « ci: o

1 1 4J 1 "B = C c >,4J z h C JJ IC 1 c >- 2 OJ 1 4J 1 ^ 44 3 44 = re K - a: re 2: • 0 o > 4J 3 *J — re
0 u. c
^ E

re • •X -rt (0 1 « S«l - ^
JLS C JJ C 0 re <c

c:
L: E % c

4J
J-

c i a (S, re
k. fr E D re ^

4V
<c Jj *J c cL IQ

c c — 0 a C 0 4J •n ^ •r-l C £1 a — $ E c c £ -^ •— .2 C £ H U « *-ui 5 o as c •J; JC | 3 jQ 0£ •« to '— — Vi S • -r c U! J, c -iCX •^- (.i —*
e c — 5 _ o — i w 4J | 1 —• C 0 10 | 1 ic 0 — 0 w 1 *•
Pi IB ^ ~ •c h iZ B 5 c — IC tT u t J C & £ — c_ s re c t c- 0 »- X a: — c_ I c a (E B. IS X it' I 5,
•V *- U M w s « c X) 4J M • tZ o G J£ 4J
O u k. k t

5; t £ c
re

C 0
u
c c " o S U 5 ^

o c * to to £ = | t; = to K
3 10 to 1 t - L: co « '-• c 10 10 • 0 re re re 'j re re t.' ^ c re 0 JE

c s 0 4- tv — — w 4J

t) •c

CN -^

>- a c
C C -H
k. ~---l I
ki 4j i -a

— a 3 4J c
•~ i a to o
>4 C 4J ki 0
re re 3 -4 tv

JJ 44) r i I
re 3 o tv tv tv
I a c £ £ J=
c c 9 4-1 B
re -4 tfi

44 4J 4J • - re re re
-5-88 8

>- >. 3 >CHHH
« « 9C b « « «

ttsbfe—
ere a u

I >, I 4J M
441 C « C 3 -44 lsEsii
c m re to --4 c
•4-4 4H -H

441 I "D I
44 4J 3 44 C S
to o a o o l
k, Jj 4J tv 0 re

M T-i 3 T-» tV £

o
tv

£ I

V
6>

c

5

a.
(. c

— t c >
£ —

4- >.

C 0>

C 4->

h1

C

Ji

~w: son

.c —i w

: — c ^ iz c t c-
c -H • ^

c
C c c

i c

SIS.
K c t

— >, — ~

"H C a K

O 4J 4J -*
•* 3 O J->

Hi C 3

3 3 O C
CO

u a =

I I
3 0> -U tl

X >. 3 >,

h « h
to is a
i> i >, i
C = K C

C O-
IC I I

V 0>
U JZ £1
O -t-> AJ
c

£8 8

u IQ n h c

<c O — C

—< 4-

c w
s w

a; ~

a•

•4-1 IZ

1c1

c X
— to
— I

c

£

8.

6

au DO *J
•J Q «5 JJ C
8"-> 0> 01 C 0>

V) .c I c
I «! 4J £ O

H a ki a i> IS,

•5°:3*5io'58

jj

i
1
1
i

L, t — 3 0) i
H u U) i
JJ re 0 t 1
—I / = Li

w B 'Jl
J-i 4J 5 X £ C j) 1
IC 3 <z 3 / c

1 ~H e 7J -H

• 1 C i 4 •c iy JT 0 -— •M C« E X ^^ L j; 1
n •-1 •J JJ

i 9 0 •0 b
_ . 1 *" —i

V, ll •5 C S "8 I
L, K >. '5 JJ w C: >• * JJ to c - t 0 CN 1 J3 3 r: 1 - o
Jj L. X >- C '^- 3 4J ! u x >. S i
H S M K X 6" £ T3 X U IC i*J

c cfl u f I C n M IM
1 •H - - ~^ IU •rf IN J I •H Li a

10 H h • •3 - oi 0 JJ u c l- re
1 c * 0 I _ 0 •+ — i— n --^ 1) c r; 01 1 JJ

5 E H i »l - £
4J S- L, 4->

1 5 ^ V. — O U Q
-H re c

10 J) i—(« X 0 C *J 3 U -J »-j
1 *^ •o n 11 "C —1 •c — £ 3 «H —* J n o)
JJ 1 JJ u u C J 3 0 *- Li Li

L, 10
01 «

X
L,

£ 0 IB i ~ '5I s i« c C 0) I •S M Jl <2 *
- u 0) 3 M •^- *^ X > Ci c C *-* h T3 1 0) JJ V)
-1 Jj >- JJ e c B> c 1 c «>-|-H X +J

• Li 0 0 -H C re VJ • u o G • E 1 CJ 4J 0 x isii IM
•N O
FH 0 t e *J 0 "H —t a >. 3

w
8 0>-i 8 3 •c >* <C *J O-H -H

—1 UJ W U)
1 1 « 1

c

3 c c - - « jr £ >C

,1
1 ** Li C «8 X TC

3

see
_ 22 M

w c c
0) 0 E I ^. • U 4J 3

.5 s"
t 01 >. Li C X 1 >.4J

-H 01 e 1M SS! !
01, 10, « g l~ -H --< 0 |J (A c JJ Li 1 4J ~5fcg <z | |», ^ .„ ,,H

0 1 1 10 T3 -o h 1 «H -H (f L, C 0 1 « T3 T3
9 4J

Jj £ —<
t. is v; — 4J - •O c >.« K c 10 K -H L.

i- £ K O 0
K L| M to M 01 -1 E J1Z *- K tf) C ^ Et >. 1 U 'C 0<
C to o E h E * O 0i _ c ^ c aC >. Q 0 4J « J<1C Li

~ jJ -—•—• — ^; -H C C 3 •u c 4J X *J « CO L. r 0 •H

3
no

-a

rr

di
m

e - •-< •« JC -=
—i u y. «jT)JJ ^26 •„ 5) _ ; -^H 4J a 1 K 4J 3 ID

•H -H 0> --H "*-. > X 3 tc •^ CT> • u >. t *1
U »»J 1-1 £ •O C »J •H Li IC Li C || 0£ li >, 10 C C •D C *- to •C."1 >. to 0 01 F 0 X 0 O "H c £ a •1 0 E -H «M ^J | u >- 0 0 =
JJ 1 1 re to > > -J 0 .: —

01 v— siS
4J Ll •^ 0 -i 0) V •C C > -H •

— |J V - ?g 4J — —i
r-i

• c
J3 *J
- S-

— Ll
1

JJ (0
C C &£ c to «j

s b — ^ SI 0> 6
JJ gtH'H 0

10 Hi b—> re JJ •»J u — e. ic —i *— * • C y. ^i -H 01 re T; Ll 1 IS c -> OJ 0 IC JJ

e Q o o iliu 1 1 1 > c Ire i" V m Ot:t > « 0i TJ c 01 C to ^ g •-< Li •*- c. lie
n •^ c l- £ TJ J3 c SS — — Ci L> >. C m it *J IC •H ! C ~ 3 T z. c u:

JJ
IT.

L,
41

4J --<
10 «iJ

re JJ
o"^ 81E I°- f 0 i

IM
j} 2

^ II) ETg ?•?£;; 53 IC JJ
O^jt-Sifc

JJ J~ > o U C
4J 5

L. C —i in i^i •-1 « <u --- 4) IC -~ E u v> or-jj-rt-Hi;
H Ll •H C 21 >»4 t: c H ^ 0 •-: • — - <—i L,— IC -^ 1 1 X rt £ 4J >— •H C Z «- IB 0 IT!

r* •M C t. r :x 0 0) = I.. / ^ -H > 3 O C — IT 4J IC > 01 4J >,AJ C -U J3 -1 "C X = e 0 01 C 0) /
cr.
cr

ILI Jj
•0 H «c P u £

t) Q> "0
•»4 N £ e cS bl C '— X • h M'-B in J

C PC 5 8 u a w 4J 3 t
E at? o «

5 h. F toll 0 to re JJ U
— N J: to re D

1 "> C- E 0 — ^ S i; : E C « •» r; c — 4J -r-i u x •-< X -i 0 JJ CL — — J- J3 J3 >-

5 0
~-i/". v. .:• 4- 4- U- — c C C 2 O-^ i- ic £ 10 •* -c --* * L, « — ^-W a -J *. tfi 0) jJ JJ U)

I-I tr. \ 'J v: L > 0 — V- — 1 1 JJ ^j ~* in
i—

"' *'
c — ic

y ** I £ c £ 0-",^ s. ? &-: 1; n 97. m to j;
Li ^

- *~ - v
' JJ~ = u — 2" "g to to « -c L, re

ji i: o; £ c a. i
w < = — r- "H < x ? - c- 3 c- — P = • r c 0 JJ <_ *J JJ M • < E -, E- - re- • i

C 1-* T3 Ll
0 0)

. to
C- to Ll !

rN 1 2
0 «

3 <J) L: w « -3, rs 3 W t: w to13 to
i— * t <z 0) C J3

-H 01 —
iZ t •c

C7
3

1
•H

•rt
•E -jJ

s. j-»

JJ 1 13 to £
10 Jj JJ

t 5 H g
s

0 u / 0 to
s U 4-> J= s to JJ 5 ^ c «J J3 C

*J j=E Jj J3 ^K 4J

El JJ to 13
OJ £ V- ft)

0«w g,
3 IM W c c C

^H 0 0--J -H 0
CJS

•H
JJ •o 1 JJ to Li 01 fi u -H

IC m c to n • io to J:
-J JJ ~< > £) JJ P > JJ

z^ 3 JJ
10 10

^^ -^. —s^ l_ 3 JJ
85 re 01 0 PH *^ ^* 4J ^. re 5! o M ^» <^JJ ~

WN JJ IM 01 Ll >. <0 >» *•" 3 J-> 4J JJ Li >, « >i «• 3 JJ

« 3 a « p
rere

0 *- «-u a
-H C ^ 3 c

I to
•D "I 3 a >•. a 3

0 M re JJ a.
— L. Li 3 3
JJ a LI o —i

*J JJ to JJ to
3 3 JJ C 10 JJ « b O-H 3 JJ 5 5. Q. 0 | JJ >> CL 1 (Oil 0 3 a i re i i

0 C 1 to to C I 10 0 C i Oi 0 1 a a

I . —1 ¥ 0 L,
JJ Ll *~" sis L, re c 1 JJH

H 1 re a JJ JJ JJ ~ i-i 1 a • *< *J JJ ~

oa
5 =

Ll « •-*
J=

3
JJ 3 3 0 JJ JJ 5st*>

a. a c 3 o re re
JJ JJ a c M LI
3 3 0) C Li Ll

--
ij re

—i

J=

3
JJ

ill
3 3 Q*> JJ >.>. aa c 3 0 re re
JJ JJ O. C Li Li
3 3 » C L, li re 10 •o c 3 0 0-J-J « re re in •o c 3 0 5-H-H a a a

CL

Ll
L. «

1

JJ

i
c re
u

i
^J

o 0) 1 -H 1 I
to to JJ to V 0)

JJ

i
3 re
Ll ~J

0 to

it ii to JJ oi to to
A A 3 J3 JJ JJ JJ

—t
01
JJ J-I

to PH ">,3 >-| 8 8
w re tji re 3 -H M

re 01 H ~">,i >.g 8 8 re D 1 in C 4J 01 -JJ 10 C JJ re re Oi « 3 *H H

g 8 I JJ ^S. JJ Li L, Ll BHH
c Li re Li C e ic L Z JJ

al B C m B B a a
^1 ^H re : H JJ c tore a a — —

life]
to c re c >J c

« : 10 JJ c to re a re ~»~
I I >»] IcnOiii
-i re Li re re o
to M Li 0
l io re n Li o

OJ H L, —
to u

C-H L| — Ll Ll C-rt

£ 1 re
iiHH

(0 Li C n
0 re

Li C

§
01

1 a 0
1 -H

C re iff -H re Li re re -H
to M L, m

« 0
1 -H

JJ
Jj

w C JJ a u- »H >-l I in re in L, u n JJ 10
M o 10 • V) u 01 >,-H -H IC M 82 a ' in U V
10 c >-JJ Z JJ C ' a i JJ I a >.JJ Z JJ c • a I JJ I a

>J3
L| C re

U 10 3 CE 3 /jC ^J 10 Li JJ 3 JJ JJ ic el
10

li) a 3 a. 3 /jC-rt 0)
B 0 JJ
5 « JJ c

Li JJ 3 JJ JJ a
CD BUS" BS-8 CJ JJ

10 JJ C re B JJ to & re
1 i-i 3 f-i c J3

fits ? a
P JJ re to JJ to fi. a

•-J a. .3 re 3 veto a. r re 3 j] 3 I-I to C to 1 i-i 3 -OC JJ ^^ — U) 5 0 02 0 W to c

511
w D 0)

C JJ 0 JJ "H 10 '- — U) 3 OK on to c 01 J3 0 J2 -H « —
-C •u J3 i -<O-0- 1 JJ M J3

re JJ to a
a. to-i x

• IA to to

p 0 — £ —• 1 JJ
CM I

JJ
£d a Li a 8 |

C JJ JJ M JJ
re Li L, u 3

fi5 re JJ L, £3 Ll JJ JJ M JJ
o a Li LI y 3

£
to to to 0

3 « S o to
*• re a 0 X

5S 1 1 £ 3 n io u to
•J a a cj j3

3 JJ 4> _ — _ JJ ^ w ^^ «— JJ
it
'a

T3 •D

1 e
i

13 —-
I a TJ —

in
--* > p -

01 *- t
C | y - Ss X c — •o IC +

1 •~ U -r-i c. *~. jj S V. 0 | - —i _ |IC — *«
TJ

01 ^X 1 "Jg : L: 2
/

at >• *. 4J -LJ IC -rt • +J
J <c 1 * CJ «—i K

c
r: c

1 - x >. 0i c c - ^ 1
X a • Mai ^SIT y « 0) Ll -z

1 •H S-. IC t Sflfi u V X
c h n X — TJ *- — SI c rC Is' 4-1 AJ CT li D

•» >
•*1 "• i <— a; £""

c 5 ^^ M
in J-

© C ~ c 4j —4 —1 O £ > 01 <L 1 JJ 01 4-1 «
it ^ 1 0) 0 4-» ^ *J X 1 C ^H

**> h fi ii u C g^ e^a 2 3 3 *-* X |l| -of? TJ u
• o a

E O 41 M c c g >• 41 § « 1 4) 3 ii •i x o •— c —^ U "D Zna S.
<c c- 5 L. r. 0 ..8 c CC4. » c -^ >. 1 -H -u V 4J e
- C EC —< O -HO « u « ^ X

S t5 i,
r

BBJ L, IC -i 0 d
a u X H >. I

-1 i~ 01 a E-i C 3 g c >• 1 IC
-- a c

ii s ui «
E" E c —
3 <•: i 01

K 1
c

3 C c Hi C c a x •H

!•- i—i
V) C 11
li O E 1 X 4J i-» IM

- £ O 1 •n ic ic
c X 1 >--f

i 41 ic
1

li
4> >

c 5 8 j>is "| I U H -.1
0) TJ T) «TJ a c 1 ^ 1 4 - a c

— X li c c --i 4-< W-i
- 0 o

r X >--U "O w^s M V
C 1 w

E Tlil 4- • •q X C IC C ID -1 H f 4J
it

| 0) h h
t Hi u C c u 3 <C W c 4J 1 >- 1 01 M i 3 « *J

c. E hICOt o 4> o a. £ >» •c 41 -u 0) 4J « 41 c ? a-ij c
1 ~ *- C _-l £ £ >- > n c —' c >^x o - U 4J 4'

C li ic E
n I, -

01 1 O TJ

E *J c -^ ~
S — j-H

: n 8'- 01 -
-1 O

—I £ -H
X Cv = «5

*J
IC 4J C
k4 „ 4J "

g «J* u *0 C *-• o 01 41
^•8 O U. >, 01 c c

0 U >. 0 o C •i 41 X c IC IC -4 c 4' -1 «*- -i 1 0 E L, _. rjv
— 4i = V c re 0) > X X t. -u 1.5 1 u 1 0-i4) B 41 C ~ g h i ii: L, ^ c> s jfs J *J O e X « c c 12 ci,;5 li. £ 4> TJ »«i| It V -»4

O n[
u u o -" c ia 4J 1 C, k. _ j! c <z •X c — ** E •— *•— C 1 ••: I IJ" 41 O *J c -3 -c E £ K *C c c &sl g re i x 1 C •- -= — — c 0: m ic 3 :-! -i 0

ti Y SM i !S
*c -^ •3-JiSSt — a 3

••H 01 4J E s i n H r Sffiii F3 G 0 41
E O t/-. o £ *. jj ^^u •1 C ='H »-. r 4J —1 IC a ^ Q) IC -H — o i/i <c i-i z — u 0 *-i TJ 3 C C U -H re r V) J= *4 — IC c 0 z s u —- C — e- c 3 £ o w C oi x' IC-J -H <c > •-< JJ >. •b- c - 8£ u K a. u E 0 -g£ F ult ss.2 4J u

oi > x E -. u C rj g> TiiE a.
C^ 4J 3 I
E Q.T; w c u w F- a c

r- /V I.J £ x: i- 4, _ a, < 5 C'H E i-i u
3 X ro

X — X •H 4iX a. L: - -i 41
— i/: CS i. w- w w 4-» +J in «« x: £ H J u w •" w 2 x e = E .=

w. H : n j ia E O — — 1 1 4J 0 -> _
S tr *"* e —

111 —
ic K TJ J! Ji t "B k- re

SCO.
ace ic 4> T; c. c x oi a. x : 2. - c " - _ - £•- —1 c a u — c 4> - e x *J < E < •-• 6- -i • (- £ r .pri jj 4- ±C C: < u ic

c E -
41 L 8)

r\ ss K K 4- .z i r\ n K t C
*^ (C <C « c —

IC «. "D

5 IH piTJ C
41 01 L, ! C
jj-H a 4i •*
-11 X 01
-H U >.*J C

V82al
Ei-i L, x i

|Ir§?
itj tj

41 41

— fSJS X C 41 — iJ
4J I tl
TJ I -1 Li

1 &> 01 <J
T Li —-1
41 C -J

O.TJ oi a
x -i 4i j5
-1 * Ll 01
>M •» I I

— J-
*i 4J M
U O

to

3 ra-

il
TJ

u

• C BO
- S 9 t
Bite's
tx L. «J — —

-" E Ci. I c 41
-9 r c a JI LJ> JVM VIE C ox an— n
T3 4J — L. XI Li

C

| u-.
k.

CJ

x. & — — -i — n C
c XJ s

IC -2 S £ •
O k. 4 1 a

V V, £ - 0) F ft ft
0 i — XJ o -— c » = X ^H xi c
as a

^'
i

_ 01

XJ • xl

,—

4) 1 *j C C ^ C • 3 TJ
| • a. i>

O IM
s *M i—» IM

£ 9 r -"H • > "• •*-! ^ 3 m 0/ <C IC —i -i - 1 o
c

1
JJ o * N •H 01 01 • 01 £ U -i V s 0 •-* o ic

a?
£ c XJ ic T) 3

IN *j £ +J C xJ -c c xJ e •*H

I 3 ^H w B rH 3 -< 01 •* 1 •
0 V *J £ 4J 1 3 JJ 0* i< a* c en i ^ 3 T3 0 c 0 c X XJ |xi XJ J*: 5 AJ B 5 *^ 9 ^^ •D C JJ i a u 1 01 3 X U xJ 0

c B I -85 S,
«

x: jt 5 5 0 + M 3
IX 0 n U 5 9

^ 1 ~ MTJ 1 B -H •H 01 XJ o * •D u — C 1 4J
•J -^ c -> >. 1 N X k. 3 VJZ •Ml IC n >*-i a (i XJ ft

*J 0 y—k X "««
0

^ J) IC 4J '•°. 0 'S -m Bk c 0 SL a
2 3 s «- *-i Ic5 %^ ffj 8- 1 n c

u I
H

<0 1
1

X

ac
h

em
en

ve
ra

gu
la

le
me

3
XJ XJ

— 3

1?
—i ^ E c a x: JJ — XI tj O 0 01 XJ X s§ U) PS O w >» - c X 1 >. 3 — c .c c • C « JE

LO « C((--1 (J IC at. -H k* 3 01 k- ^ 1 J: 1 -1 0) H « C 0) 3 xJ ic ft 3
c i k. i

£ u c
4J "fit! c c 0 . * I 01 • XJ IC O) V ic •o x a

C -i P 0 ^/ TI J-I 0) -u • c M ' -c 01 > 0 0) XJ XJ Bl -^1 0 xJ C
C *> "C c •- « ic c IC K 1 c > c *J o> SI X XJ XJ JS O 3

C 3 XJ 0 Q-
T3 c f c K :,: c --i 73 I >. 1 tr. k. 0 -i Ql 3 « n x: J XJ 0> C -rt xi 3ft c JZ >. « 0 1 ft XJ in - ic Hi c •c 0 *l V a y XI 1

ID 5
N -rt Qi U C c « ft a

c £ T5 ft .c o 0 U XJ 1 1 « 1 XJ 0) T!£ X CO) -^ X X c a JS
3 .c XJ c cum g'c 65 C +i *J •^ ? XJ ~< I " 1

3 IE • 11
xJ u; 4 XJ

Ul XJ -V XJ ^ «l
« I 0

^ - K 73 I Q. « VI XJ >-
b *J 1 o ja >. «) C c •3 / — C TJ i -H 01 41 k. is 3 aki-H • 10 0£ xJ >.
0 c c •H t-l r* l 1 C k. c 4J > N 0 M 0£ 0 XJ « XJ • c 3 10

+J
o> 5

IC Ll -H 0 H 1 - •o C C IC ^^ 3 -H X XJ E 3 0) ^ O. M — p H « - — W 3 *-s ^ l e 0 ^H a x « it — C xl CT- Sjjl^l £ C U
i* -H « <c c z C 11 — IM ~ C T) c — c c J^ K

i_ —« 0 <0 X r ^ If u ±J tSu 0 c c - c ii- S 11 0 0 xJ 3 -f •c T: 1
• C c C T3 1 kri f ; >. 0 l>. 0 xj IC XJ 0 £ C c 0) C

K (0 IC ••j * 5 — - - 0 *J cr k< 0 IC -rt k. i * C ~ W U xl 0 K ^ X IC

W

3 s XJ to E t S f ew in u
K V

IC u 1M 4J
k< 3

IC

01 «-. J

n
-i £ I c SU 1

E i£x-c
•-I 0 J ft

3 - xj
Ul

u c ~ w 1 ic 1 •H 01 10 -^H u 5 j: J« ui (C n •i-> U 0 T) 13
IC -H U) £ X) «^ »oz 0 > 0 N •a c k. 1 xJ xJ fl k- c

p» <z > k. X> >• — C -J £ -H a c ia TJ ic c 4J > 0) >*- % c^ 01 0 U JJ X 01 > 0 XJ
1 S8 CnJ

0 0 c
- t - c ga 4J =

•c tr ic
0 C K 0 - s Ol S.S g Si E ?i n CO

^
c 5^ 0

0> h |« xJ in
•x- ft c oa c ci IT 8 1

XJ 8
MB C -H — T-l k. X —« y. — 0 £ ! c CO XJ 0

0 xi ^
II X • x) £ 01 XJ *• XJ — ft D C U5 •f-t

—i — iti -H *M — J c — -D -~ 5 t- 6) 0* —= s x a: 3 : j^ j; -r* £ 01 u z 01 C tf) C 03 IM l« £
y) U _ o — — — i *J 0 V 0 ic « E E 131 10 k* k- 0 n $ * 5

x — Si 1 — ^, " ** - c — —1 c c *c
B x c . 4! C Li

ri 3 1 | f>; 1 — B Q Jj 0 ft V, C X io
JS rt C O 0.
E- c E —i JS

U! 0 > XJ
C

o F X o X ,u w < xi . *- a. r- R IC l * F B E O 0 ij
C z z a

u
0- J)

0

I a
c i

>— ic c t U w c
c 2 01
*c •o T3

(0 H-l xj
U u ft 3 c

3 0a

•1 ft XJ 11 h
w -H XJ j. z

.H 3 n XJ
e a. (X 3 ic a acr »o.

• <-H P~H •

= s
— 3-.tr;. s CJ C > 0

£. c
£ 4. L ' Q

1-glili IM c h — — c c t V. u

B 5^ •3 ? £ c" E K
£ E -4 it
it I. t 0

1

1 0
•M 0 " 5 J: t >- E - '_ — K g j = ~< it j. u -^ J-J 4W " in

OC 8 C 4J
U c 3 —1 Ci t >•- tfl 4-> "I c 0 = 3- It 3- — — 0 -J <-i I K 0 144 5 _ C ~
1 « - - i it x ~ E 4- r «M IA §0 £ - - 'c —i 0 o •- C £

J C 0) ~ 3 £ 1,2 ^ «! :

'i v E 3 u x £ 0 44 01 01 1| ~l?l Ecctce — 4J 1 — 0 •J u as li l — c £ £ c o: E c 01 — 4-> s it 4-1 01 9 s - - v- — — t .3 c 85 3 O H >.
C t> -3 L-, 5 c S 4~ « Ul (0 444 ^4 •21 I Sw £ 0) £ M - K £ t -^H — 0 4J >44 1 4J 0 (A

0 0 > C *» -J *J •44 4J 01 O 4. « h rf 1 X C »- 1 t c
-J 44 -H -4 c 3 C £—0 4. 4^ C ^H 1 3 01 io •>

6 « 8 "
44 B)-| JI

u ~

s « o> •-• a—
Li tl 4> t-i

(I e c 3 i;

4J J -i ui 3 T.
10 c. t 3 ES % I -85 "

4J 01
oi x« « c -1 0 V 4^4-c 44 5 tl *C

i g £ 01 0) 0 01 £• 4j 4- -n — -p
4~

•c —
1 4J X

^ i *H
— 3N 1 U
u a 01 e i. Q) C 4J 44

0) u « D »4 0
u 01

p ji -H 4; 6 -
C E u it • t g Jig" (^ c

•^ *- X c 01 K 3
U 3 41

4J a
3

c 3 o c ~ > J t e E c +-> -0 < u g « *4 "1 0 41 »- 3 a 4J 1 1 •~ : (j •i-m — - C- >» l-< ^ 3 1 >.— u £43 a 3
r^ • — 3 3 c^ C — *J X 4- c >. «: *c c c o> a IC 3 4J a 4. o> a
0

•H 8S5&& 3 S n* in V E L
K 1- 1

3 c •e • Sfcg ^ - c ^ 8 Li 4J
C 3 5P & 3 — •-. 4)3 M u *j IM <C t c a -^ J4 0> 41-1 4 1 0 c £ IH —i oi a; c C- 0.4J 10 0 c K M c I •u -u >» 1 n / > 3 01 44 a 1

a. * £ e £ x £ •« C 3 £ >- 0 *> w 0 0 « a> c a. » *j « 4. »- u 0 • > 3 4J 4- 44 — a, c 4- c t c 0 -•H c
^ ic e

w a 0 -3
4J 41C-H 0 y a •c —< a 2

J S' »"S "S
u J 5 3 c IC 3 0-4 <44 44 44

-H o c 18 ^ (A -~ •4- % 8-1 "-.w 0 >-
u 1 o 3 -•* « c £ C -44 It -* | >.« c c t- •^ JJ -^ t 0 T> c 4J 1 0 (|4J 41 £
V i*s .i ^ •H 0 0 0) >*-! -H 1 1 c 44 K C 44 — £ a i? H — • a - c i M IN JJ 4J 0) 4J 0H 0) 3 1 «H 0 in 0 — C I • '" s 3 DC

is « c c; 0 U 4J O 0 c •*-• f 1 B£ 5 s — Q— 0>
-H <N *4 -1 4. «- E JJ KJ c c <z ttj H-4 O 1 44
IM c- E- V - -i c. •-. c = ~ - c c c C —1 1 gg b >*- 1 0 E U 4J 3 » 44 it "44 it 3 —

1 — « L a E.-I -J tr-j C T3 nH C a :-H u CC >. 01 — 11 — C ti C
£ en 8 E 4 c - - i- IE B 11 c-.-* a» —4 a' J 4J C

44 -44 tr 0
— £

§ •cii * k- 0 oi
Wit 1V, •—1

•- 0 u — t —
4J O It ^- t IC - 1

C V) E1? 85 L. U) 4J a 0 t ~
0 • w 01 g c * U C ^ 3 3 la e c •-H •C C •H u IT. it 0' — 44- «) - Ifl

01 — 3 rr 1". 3"
C-' w C - c,
t >- C &4

k. 1 H a J-. a *J 4J »»-* & 1 Z 44 4- IT, 01 c > c
C 3.^4 4. r* H 0 ~ / t::ut IG -J 4-1 >^*J 3 h 0 ^ D —1 .^ 4J ti. N cr ~ t 3 c

00
5T • ttlzi z L I IC S <0

in a j •8
4J 0)
0 4 tfl 3 |

H- tfl ffl 58 10 £s.S-feS.ECP& B8 w c- 0 ; 1- ci
— it c- •- 2

1 C U C L-. 3
1 fc- X * g **- QJ £ -i X _ C

s - t; — ir. k. c = •. > 4 c - •c O 1-1 W -*• M K 3-4 /T3 s.5*j. t*\ - 0 c CL •.-. u 0 c — c ^ 1 1 4J 0
m E«E i fa 5 c *;•§* '• R .5 3 5 •= 2 3 s | 0 - — * *" - -4— - _J_ g C IC i £=4**i | = *Ee r. C ^ >
tti J O i- »- c 4J 4J 4J JJ 4J ^£ 10 H •<44»F r- / e -
C •*" « 0 0)

-
CL1

u 01

<*\- ;->; 1 1—
0

n
n n
•a

01 0 il
01 O 43

c «
IE T:

5

—<

!

01

3s

44 «

S, -S5
44 01

" 8S
• H4l
£ «-H J I*
0 411'
44
444 • 4. .:
a 41 OC

4H 144 4J

v a c o

E Hs
a 41

^*; to n *D 3
^ 41 1 a
•« -o c

I 3- 01 41

8 : S J»53T,
41: 4» IH 3 0>-i
41 14-,^^ a 41 01 «
«C4> Is a 11 1141
^58 ^525^5-
0.4J 44 -I C 44
L7044U1 O £ *4 01 0
icozxa o «i 01
etc; v o • 01 3
-4 - f- 01 t> — 5 o- 01

O. — U 0-4-H-4 U
44 0) : K-HIM n n « II

I- 4
0
5H
« 1

IM

c'S
•44

• a
1

a
41 C

ST
141

cl
I C

/X'

If
a/

.*£
• I 4^

i
1
1

• *>
Sj

; >• i- — : K C ^ E ^,
, M ! —

C C 10
e 4, w X)

j
1 t fi ! | fief 8 """ * ^ « §

| e — « "C c ^ e tm
t r j ^3

a
r^ 1) XI 0 u- •0 *J ti

.C ti _ c — L *z Cl 8 « a H a X! _ t: — cr> O 5 JE »- 10 \
in

or

a
sn

wi

of

th

k
er

n
e

m
e

si

4J 4J /

5 i P* • c >- is« 8 | 1 - 3 -" - £ ^ 1- X •M
c K

4J

£ ti t) IH

~ h 15-3 J8a
>.*t •0

K
>

" 1 I ?3
0 *• c « 5 o K *o C *-t *J II X c

^
o / -~ c

c > G •-< P x G E Bi -rf X J: — C >< K •** c
C £ '-' •8 •o — 4^ it — -
u

C <C 1
c - B £ + •»• c

-1 U)
•0 1 / <n «

91 X <o > ?
P £ •w _ •-, —. |Q E T £ c « A)

K CP *• « a
X 0 "O fZ XL X ^-1 JJ 4- n a C 3-1

c »- 0
TJ i-* 4J v M >• 3 T3 0) • • I c -rf t 1
3

u
j*S c 5 £ "o 3

o *l S H c «
c - -u c c X 1 4J 0) t) (R « *~

to
 b

e

1
p

oi

by
 \

he
 g

l IM
n Eg >* x o e G l> 'N -rt U. if. 0 0 O ^ £. •M

|
l

—i
3 5 H c -H D C 0 c — / \l 1 C

1
c

83 -u XJ
XI-I

0

CT c O *J *. Cj: V & - w iJ 1 K U ••4 O £ •H > -tj JJ -H X> *J
c a ti

c
c • «3 —I = *J x J£ t> u •0 a a 4J 3 X s S a. u o J: C O •*->

J -^ £ >
W 0 S U! V u tr V-i • - X 1 ti c «-

0 a c >> / > 6 3 IC IH B h t, o •n ti Is " £
r? * ±J •— JQ 0)

AJ t' 0 1 •w Z XI § Sj 4J
c IM

0 0
Q 9) 3
i > 4J 9)

CK IH
c c •-• 55 x

c c Is! L: c c c 0 B « X n O 0 • 3 •-< o
c " •*- B • —< IM -H c re —« ^- N ~H X I IH -1 • n

0 c c c
a o •

•—

in a.
•H 1 e c 9) 9) C ic •U

K ±- d) 0) o u -H C c X CJ 8 ac i-i J: O-H >
a 3 -H D

• OK)
M 2 K 0 ID -* X. > 0 c ti 4J n - c 0 >-

J* G ji a na c 1 c 41 C II «•" ti c
0£ S ; I 1 t>" z « i o: c = o — »*- — x: A S i 0) 4) U •" O 1H .c

c a 2 S.T C VH / / C JJ N N N O C ti 4J *J —

1 WWHCH 11)1, iZ (C *- 1 *J u K •H 3 J< ? * « 0 / o ai oj <c c •H 0 10 <• c — a • 10 W rt i" C o o> c £ •* '-' C 0) '_ 4* « X C V. 0 (N 3 0 + C 0 X >- >> ic B 10 i c n - il S *J c G x i: i " 1-. 1 z « 1 w N 3 S *. w j: - HTH fl
r- H M U c c c 0 -u -^ I r c j- j_» d m c G .» t) - a 1 1 XJ Cn 3 4J *J

c I 0
C 4J 3 ti (0

ti 4J

• 3 0 ; ^-g^^T)
*- E^: « 41 0 C

P c
pi- t SP i N s

X -H • j X >• B|o
1 = < 0 »- fc 8^^ Ifl K IC c co n 0 =

Ji 0 t>
< U£

j 5 = > "-» © c Z JZ X £ —: S 0! y. >. 91 > 3 w Ci 1 1 D •-> -H —• t
1 n *— = IQ 4-1 —' 4- c 2 sli b

•u r^
E N ^ Li -

m £ <C / O T M i C C JC x JF c « 5 % J K, fl V •-tl JH
« £ 0 3 (0 1 i: c X 0 U <- s c < F £ s o a—

^ L; x c X c c e JS *- 1 H c 0
io ^ - - * z < o a c £N (C « S (- • /« 3 C io B X AJ U 0 "H • « w

PC —
pa

c
>

c Oj
5 u

,«li3"
n ki io o —
_ In I i5 —
a • c I »
r i « m-^
n c — 8 i
a a —i
C —4J ——-I

C V 0 trn
Q.4J I

—
10

CN
4J 4J

— o
M —

•M
IM « to •-* -~ X 0) 0 * C c

in —i | 3 a .c «
On oi

4J

6 5 - in TJ 2. c
c X ~ w •^ p» —

£ W c X 10 £ 10 0> k 4- --I C 1- —I I' X a oi C *^ <C 3 IT >- a— 0) M -ri

wot 4-
jz = fr 0 ti — 3 O U —i

*
Oi

IB J* —. a-H n o r; u H —. 4 C •H
14JL .1 TJ IB rt 0 EC • * 2- 1

c i — o — o c jj c TJ
V - C-i 0 a. *J O 3 c>~ c — e > 0

"s, 0U —< — 4J 0 0) in cr*J c wO — 1 « fN / •it X ft / LJ 3 — 4J — 10 O TJ n V) > HJ w, 0 o ~ 0 — T) SM 01 o « •
1 OJ r d e c £ 0, t >—' 0 1 TJ C HJ > 01

c | * s|fw,S i ES B,
in

• «
-1 C
0 IB

10 IB

|
• •Hi n JJ -^ — a, * QJ 0 'C c — C *c o 0 s~ JH

c

0) c *4 o
1 TJ 0) « E >^H B ** N 1 It 10 0) — —1 IM .— --* •H • TJ 01 10 0) [u - *+ 0) „ 0 >. — 0 — o <M

r^ « 5 10 O •- .= 3
4J 10 > O | •? 0) J< X

X ' « --
c

I 5 32 4-1 —
3n ^ •H • TJ 3 10 C 3 p -~ ^H •g *J f-' a C —i i-l c o in IN *U * o ft 0 —— - C c 01 ^- Oi- 0 4J « K ^+J 3

p« fci tr 0*3
pi]

10

2. *\ ssvii IB 4- io 3
IM IM 1M c a

-* X

—
4J

3 • E -H -^ -^0 J 1/lfl «*-! O 10 -H —t • 01 «?-• r«
TJ TJ *J 4J —1 ~- U

2. >•
IM n •— a §. — « — a -H

1—1 N ITJ 0 IC " 0 10 <M <w a- O-i 1 II °S "• 4J

c l n
c X

0
4J -i*i 1 IB N

0-
JJ at

<0
*J nj 8 3 *" 10 IB 29 » 0

c 1 4J *j 1 — TJ *J
iB O

B C •« D V) *J O J3 »- 1 J= ••* -H oi tr
<c B S5 s B 4- .= o B O 10 CJ V) 4J 4J c c • 4J 4-1 T) an* CLT3 —

CL 0 TJ 1) C 4J 4J | C — •p4 1 X 0 4) c 3 • 14-51 n n
N »fc- > C£-< i u « o in o "^ 2 c w — to tr

•M M + e 4J t Tj
8) T) J s ti 3 3 2 0 5

Ifl 10 4J 1 4J n 01 01 4J
x 0

*
•u > *J 01 ^H -^ m •*- -^ • a oi

•u c n •" 8 3

a •o — Si 1 X — o« - — j; - g 0 0 0) 3 •^ o ^ ^r — > •H O <! I u c I 10 {0 0 4J W 3
V, 4. 10

L! ~ • w jj C
c c c I * 01 01 Z IB «J M 4J 4J JJ U 10 •-< 0 3 •" IB

1 , i • a— (i : n
T4 C > 0 «

u £
ic «J

2 — >
— 0

« 0) w 5 03 c w i 01 —
M

e
un

N

ew
t

be
c«

cu

to

d
e

0
b

ee

§
,u (fl — M IB -CO - 01 0 TJ 10

1 — to 61 •1- £ — ri.= — in
0) <6 i •-

0 *_ U C £ 0 — i •H f 2 i 5 o>
c H N 4J N 0 = 0) J-' 3 M tr^c h M >9" *J

4 g TJ 4J G 3 J« Z IB I •c oi
IB — 3 Ej

3 0, if! n •H 4J c *J —i c W — — c O C> ^y X >~ S « —• IB C >> J 01 IB : C 0J ~ n «M TJ io o c o
xio u J5 >- • -4_- X

2 — C CT4-
-^ --, IB 0 0> w u 0 IB o -*

[*• 2. i u 1 SE Z •*-> •*•! 01 -w c J= -^ 0 M 4J oi 01 -Q
tx § c c IB N CJ O C E £o C S n .^ TJ 1" 3 it O

—» O M « 4-1 V)
^

<r X >- C 4-> -H 4J C <B 4J - 0) VI ti r^ •O o» lw C IM o
N 0 0-1 = 3 = TJ « - s

« 01 i

M - 0 J »- 4J 3
U 1 4J IB —' .— 0) — - ... c <* 3 ^ 0

C 0
rn 10 01

0 01 CJ 0 -i V 7 f» y c K X 0 F c i *- 1
r^ ^ Z. * K, ? >-. _r _l &|g£2 "S Ji - 3j ,. - C C

r\ •^ - «M> -
c oi

£ > J5>H 3
3—4- —J3 TJ

0 cj 5 to

c a.
vD * a c S c c_ K P C J- .J X -J 0
C »

0 qj 0> Z
3 M C -» -44 M
o IB j3 a

N
c

to in fin iJS'SiSI
c

TJ

t (C

44 0>
0 4J

X
— 01

4J 4J
c o

—I c
3

8§
c

is

32 i
8 JS
5 'a
-^ r—<

N 5 •
-I >-
HHXl

165
gOJ —i
X c

55o
P 4J 4J

85*^J.B
— « 0 T)T>

5lO*J C-H ><«

E eio 8 R o g
0)J= I fi I4J-4

M TJ TJ 10 TJ
MtHM J>i|l
IB C — —: — -M M>4

-44 *H -H ^4
4j 4J a H « a J= TJ
ccaos—3c

a 4J 4J 4J — a
« o— >

M B • 3 K 0 * - I * On Q.4J a, c
c 01 « o -

-H H h
4J t; C - «:
S» a. c £ x > IM

r« 0— 4J — 0
— I OTJ 0 M

c ic -• 4J 0) m
4J « — 1 TJ B
c — a 5.4- H

O 01 O IB I 0 TJ —
OceJcico

UttiiHi

'« «4l4. *4
•^ -IJ3 /

f
TJ

1; •t) e

a i 3
TJOI

!L
.5

*!

~ a

5 - -^ •o —
•H ^*
> 1»

L: — w —« c T3 •* C
C U5 •-*

1 *-. ^ X OX 0>
4-1 c > — O JJ --1
•2 X

C.
-s v: 1^ ^ i "t3 1M

<• iS-rf 0 £ ic -~ x '-• (N — >
V. Hi x - C I V
c u a— a; — •c C

c
ho l! 01 -
c E 5 x ^* = -o u w

£ o a. > - J- to = cr *» c — 0 X
0 ^ c = O *» 1 E • X *J

c L", /s C! W V uv c
l w « 0
in — K o ->

in o A "C
^^ 41 / 01 «M • "H *C c V. *~*

£ O lH C W It K JJ U K *J -H ^ 1-1
t .3 0 K, U w S u; V)
c * 1 lf\ w J*~ 11 | U •u
- --1 c • (0 = s U ti in -»
C u o 0) •**• | 2. « C m Q; OI ~t
X It

2
— MX t,e=s VI N u a.^ «i

1 > fi IH •H 1 1 ID C
c- «: « c £ e -~ in 0 « IT, tv jj ^: -H
X rH « 1 <C oS c *J ^- tri 0 »» 1 £ 1. J C

SI — *J —t *D V) • c N c* (0 ^H *J C"0 •<-(

Si 8!^i . E
s. It

kl
^ *-• •*- -- 01

c
o = >. i o

/-H IH xm • •O 0 --« «-H '.-. w. CO
en •M «*-* _< <c ~- S, C -w -J c ^ «M U O *J *J

u^ 3s 0 0 n — a- 0 > 3 <J
8

•- « H • ifl in
.Q jj X M v •S o — 3 (J on u t

1 1 ~" in »• IC •u o i
S f •" c -i a n *j O X -H -~ ^ 'OH 0 4J »-• M-l
K K N 01 •u JJ c C 4J CJ X ^. 01 10 *J c ——
a. C «-•

0 o) 4-> gg c 3 c — « N 1 re 01
to 0) •« C ^- '-", it

I
•H « U -H XJ *J

"55^88 •"!
- -

N IC
•-1 TJ 1

--I was 5
41 3 -« O •H 0 a. t: ^H 3 ^ ^

0 I* —I 0 *J C EM 3 3s IC C»-i IH
E re 4J 4 4i> •U JJ C »• P it i -I « —
C — > « &E to c u i (4 Q.M
Q) V 0) -H

1?
it -i —X •t - M -H

At c o C 0 .c —t bl IC U | M JI c JJ i p 0 « « 3 i- 1 c
(e C - A. •c -^ &i< C x u; | It C M 4 it

c B •s i IC QJ
IC iJ bl 3 hi

c IC
0 ic oi

V <c 1 c o: — £ n i*- 1 —1 u s w tJ>
£ £ —i •-1 IC U •-1 C 4J 0 — = c Ifl £ *J S

r* 4- — C *> •••1 s» q *- c o —-H -C
03

to i « ±j n -i a E s 3 1
c^ V ci T3 I^c t X J- Ifl tfl IC

*u w C3 £ — '" c - ,- L", COX
•-. 0 u. 5 O 0 * > ^ c

$ *J t: ci
I — u n ^

1*1 01 --I * Ji II -— 1 tr i I -i-
4J • _ Jl _ r-
3 01 -H = 0 Bl 3

^C 0 •- X — — oS« 5
O 73 r c o c

0 v ccr ~ — c- o w
N c £ « — -" -iV*

01 *l C 01 fN 3 ti* K -•- c c U
^- tz X L: M K .-.'.-. c X

c c — •^ « w 4J
t
l"l

TJ

5 T
2 "S
s, 5

tu *
4J 3- >*. i
0 / 5 c1

^M -< X 73 «
•tj — -«-(

+ c
-I 01 x '

ij 1 M
4J n a e
s «-H *

H * * >«- c o
«M II

6 ID 5
c

cL 5
a 3

a. °5 5 5,
>*-i

c 4j
•H S5 ^H IM K
•r-l

8 n 8. i^c1
3s w£ »-

»-i 01 JJ
IM •o c N.T3 1
• C -1

8 M »
•M — X.Q.

+ tl 0 •" 9 3 C •
V •rt 11 a

•H 55 .^1
in IC - X >-i >. t) > » I'M

H / c s

\
0
X,
c
I

s

COtll
-I J= -

SKMJ
*! • 5 iJ (isl
U c I

§^ei
XO.II

x {

"ssJ
c -i a 4
O + H I

-w a <
4JHW (
O '

o §fe5
4i i«-l H|

Hi > 4-H3
•K -H ZJ
o

5 01 I

oi 0

n

3s

I

•

: s * • I III

a a

fi i

t- ^
1

G
H

c 10 >.
X 3 = 0 0 x-»

c $ •c 4J N x-* —«.
+J «J ^ 4-» s 10 UT y X X M

M

tjl — — 0 ~ « U to 1-. a _j

1 0 3
St'1 «

n e. c 44 l- | •s fl O II 1 c
M X 5 0. ic 0 •c B X 0i o

0 4) -3 B > 11 fN
£ »j L O 44 44 c K >- 0. L, c 1

1
~ 1

X e&c %
•*- «l

1
5! M u — •^

i , C_ c <c -1 1 —i
X 0

4J I u X 0
to *j tl l- X a. ~4 E 4J >

i J « N W- 8 c x a 8 3 3 -^ P 4J AJ
o •-. it t, •u •c 1 ^4 4J E N

<T> s »H (, i c ij ^ V C 85 3
C ff* X 1^ 1 -C ^H H> + •-J H

•H 1 n C •— ~ > a 0 c 2 s .0 o, G X a 1 0 0 C £ a 2 0
4J
3 s 4-1 3 *J « 1-

1 1
c

e Is "S
X to to s « *J 0 •H C 0. Bl to 01 01 Jj 11 I *J S

ecu

s *
•5 io to

X i"s
1

U 1 I„ >
1

£ £ 43
B 4J 4J § a

1 1] K -H •^ *H to u —1 k£ ta
5 & •H X 3 ~* c c tj*-^ c c tl 4J-H 10 51 *J • •O C 5^

u £ x

"(Tin;

44 X 0 « 1 -H c i-i 31 X is s C 44 >. 4^ .-* j3
10 ~ = X JJ !«_! C H E to >- 4 --* N -rt 3 « +J >- 9 c 44

I ff. c 1 a V --t •** <** a- •u o Si c 0 E a M i •J 44 3
c i X ±< a; 1 4J *0 XJ / s -*4 -W to 44 ~ k, ii pi-** h - N (—1 to 3 h 0 4J M 1 4J 3s «; E c B o

gj
c 10

•H 10 - i
- if

^_ C 10
43. >"a

c
10 « 3 U I a

»fc4 ^
10 8g I Oi a o

c
-»H t XI c

c —< 1 "
D> 01 —

4J 43 T> c
L- X 10 -^ 9 a 4J ** 4J "i c i c 1 ^* ff.*4J

K 01 s 0* e 1 •*4 c a « 0 |
21

x 01 Fi «c Oi - lH 1
C 11 0 w i 3 JJ c

5. « u
CD A

"" X E o -c =, > J \ * X to 1
c 3

4J

i
v

*J 5" rD 0)

iH . i •*- a; u c ? <Q m i an •*• a. >- > e
^44

1 s 0 E w. to a> -i OJ u v- — ^-i X OJ *J C K 4J I-. w <c c - l<C 10 tz U 1 Tl •H 3 o a + 01 -H 3 3 it IC u 10
u

10 K
?e L- 01 X 10

<ur i c 1 —i 0 C •
>. D ^-* 1C >. Si & ME a 5a —1 0 H

c
n ~ •Si a 1 1 •H g — c E- X 2 X 0 K 1 - lb > a AJ > 01 1 >- 1 X E

i b 5) • B 1-: i - C E - «J 1 to n c c 1 -C c 10 c >-.*
IM T to ui E

|
•c c rs IS c >S *J Hi s c s s o> 0 X 0 3 ~-t 4J m IH. rC K 0

C —< ?1 5 Q. to >.
e i C '•8 5 = o C

a c
C -rt -f-t IV

i
X v 8 ii X

*"
V. <c M k £ I' gg X 3 — 5^ *J *c y c U! U — to m c 3 « Bl • ^ n u

to ^E 1 •= ° c f > c * —i Z 1-. 1 10 4-1 fN UKC a c 1 -J E E
r- M £ U T E - c.

m
U •-(.8 • U « 01 a 0 4-1

4J

*J •H 3
CO
o 1 UJ 5 •= — — — c: - — £. o K - >- | " s Bic'l K E ^> 4-1 4-> u

c to
> S3 y i:1 X 1 r* -H 4*3

I r$ 3 § c t!
0 to £ £ S3 i— — 10 01 • H to <C v ie 01 * 0 10 •r— E 3 • i= ~—- : - c X z. i - K C V, * £• - J) £ •^ u U J= 3 E h Q —• — >i —r .- C

i~-> X. c E c •^ 4J C 3 tl c i-* 4J i c C v — E 3
to C C c <c ^ E >.•-

^ z 3 i.

r.l) t
a £ c

**••

-H O w£ X U a£ - — E 1 5 X X x a l i? <-, HJl.
.£«:-"

k.
o — *J > fc X i: £ x' • E- O XI • > C — Jj -J CT =
O

• \
E

a 0) IJ
44 —

V - 1 5 i L: 3 B
'A •" IC »c c •c —

« •• — .

Si
•0

1
. 01 01 01 1

E 10 -y 43 4J c
53 to p *-* ^H i-

vi°i,°ri"si
2
to
V

« •«) 'R'8 « w
40.
to

01 01 01 01 01 01 a
•rj TJ tj Tj *T3 *u
3 3 3 13 3 I

^H ^H H» 4 f-t t-t a
o o o -j O 0 44
c c c c c c I -^ -^ -^ -tH -W -^4

^_ ^

3 o ? o o #•1 a i-» •c
c rt U) 3 •H

i I *-* —i &> Z C — IC rt **. * SI tf o c E • x >. 1 S % E IC UJ 1 0 rt ^ 83 -ui £ z CJ Q s 0)T3 0 *H
>t~ J; £. C — >*-i OJ

X X >- r -u 4 • ia «
« « £

co
pi

ed

le
me
nt

or

m
o
r

X •H oa u* a 0J >-
c V- c^ a s M X 41

a — *•»! •^ « 0 »« — S fl c^ C . V 3 rt >-
C rt X • c • M H rt 1 rt 0 >< *

1
L< » i

§
c & kl £ ^ IC £ Li

a 4J 4- K C a: (C s 0 jj ic > c u (i B X B 0 0 ^-- K JS W i -^ . 1 Q. U) JJ 0) c OM m n -u
•H X = o tn _J c n «) 3 i —1 &•* c rt ft) c

c 5 <*~t S 0) (C i a U V Q..W a c cr 3 >H X 3 -"* E —* ^ rt tt at rt —' 1 • 555c e JJ rt p
^1 0

fx r^ X e N 4-» .j 4J • 01 — n -1 ^ 1
X 1 X l HI 0 r-l —(c 3 linthj; rt ^ •^ 0> C IN X

v \/ N H CN *U H-I rt i 0! o a. > 1 > a 4J 3 *J E c c -1 1 IH « rt w
•H
M « a, —<

1 rt £ i ? c
-i X -^ £ «« Ut

0
•U

a
c

ut
pu

by

eg
io

be
e

e
or

0 c 0 X >. — K-O • c id 1 <l> O 0) •M rt e in
c X - b] •-* l—l C1

L> 1
3 ae~
rt C kl 0

rt rt • - w If) a. — — 0) i ^ -H c • n w rt Li O « L, ID £
L, rt k, U)

i> H
1 a; «; 0 C C IC

fi-H OH
3 K

ki 5 >,.c 0 •»-(£ ~* • > IC «rt ft) ** ^H H
—1 ••^ U -IJ V

o a

K
3 —

rt 10 CT»-H
IC C rt U) 0)

rt
0J

I*-I

0
a-i it a a p«'53 « ~ «3 1 1 »G a — C 0 U C N

rt 6 o D ->
T3 > u y

rt C M rt
X

4J &
X

JJ OJ 0) 4J 1 3 C rt W
ti

t
to

in
g

nd

a

wh
i

in
al

si
ng

H
0 C 0 N M 5 a — c 0 3 •rt 'O M <rt >.4J

ki a T3 13
^ C B-H rt 1 +

• c a • c H c OJ i 1 0 K l •) kl s
•H
H i~i

1 h w 1 rt X
ki - n
0) i oj
J V N

c
| JJ 5

H O

5 X'
04 x a.

LI
E •D

3 n 10 -~ fio
aw a OJ •-- rt
C rt X S> M 6

Ice"
-1 a c > •^ ufl •^ X IC « ic T> 0 41 3 an -^ n 0) 4J -H rt rt 4J *» /^ —I ^J W) 1) a o C -O 1 3 a n - $ C JJ i c to 1 c C7> jk T3 «.' -> c c L, CP4^ ki C O rt kl C

K 0 *- <rt

*- in 3 5 ed

by

ot
 m
i

gi
na
l

e
bo

x X
ft o ic n Si ci l- >. C! w / ^ C X 3 C « 1 C 3 *
0, ** l« 5 n t N

3 -^ § a
0 r. m

Si ki • Ss ic JJ ax rt
**D 3 ft) N «LI

4J C 0 £ rt 0

X rt rt 0 ra
—I & kl & 0) N kt •H •D rt L, O ftlrt •© 0)

L. 1 4J lH 1 •H •rl — C >. ^J G cr w C rt IC £ cai-i O C rt J3 ^H rt it tl tfi a OJ a V) *j 5 >i 3 C |JJ ID ic J n JJ in ki »M IM K kl *J +
a ~S --H ~5 X >. — V u JJ a ki X 0! w rt yy

CM £ u o>
rt 0) 0, Si --< —< u U U) : X C JJ IC ft> I C

rt C J rt X 0
e C art 1 c

1 1 V a b V) IC K 5, 1 0) — OJ 0 B |°-Srt^
E I rt IC rt

OJ kl rt
i it: -* M 0-* X X ai a i Xi ~< C 41 10) rt < rt N kl rt IC in « u •M a •-< c c c £ EON ki C £ (N rt rt U c in X

-2
10 B-u U) K KB] ^

w
-E t 1! 5 a 1 -H -*1

T3 *J ID
ic C 3 =

au) >. 5j
- X C --I £

rt
0 %k rt £ O rt ID J^

41 0 rt c J2|rtjS x'
a o W c 0 C V X CJ 8 4) B E 3

4) a) 1 M

k, 3 i> >• *v .k. £ ^ IC C 1 4j ti o a (> «^ X Z ki IC JJ rt CMC oa
r- a N s 9J c - ~ M C~ 3 X ti) 3 rt c > -D cc > /J= tJ^C CJil c 41 c >
OD -~ 3 ki rf ._ C fl K «s S8&5 x b. ~e a Q v> o -H

•L* E C rt AJ >i E
rt c art c in rt L7 .~i B V » cr

B J= rt c
IT r- o o r* U) K C gj . Q; OJ P c^ —< *'~ Ifl -fers 3 iC D U) y

c w £ c 5 TJ
i rt jj a c

k- 0) T; £ ti <c 15 * — 01

N U. ^ u) 0 3 n ki in
LB «J X >* « •-* O •1 a c K c ic a a. — <c rt 4J rt rt

m V •^ X M IM rt JJ ti) rt rt rt 3 II) J ft) E in
f^ - — •* gg cr

•3
to c
N rt 5« S * rt 3 c 2 c «:

13 — X 0-
X IC
la I rt IC

c
a a OJ rt M
0 OJX « «« ^1 C -1 W rt

ic C4J E" *•• rt C- — -J 4J _ 4J >• "O MX X p I uke-> X-H < —rt E
c

0 <B X —
t*.

•^. tr tr cr ^£ 6
CN a n rt *J JJ *J i-
CN I n £ Dee (C i)

<c T3 rt • -* w rt rt E
ZJ

r^ ti6!
m JS-rt
y3 « i X

<c rt 5 O

IN
O) HH

A) *%
c -^. 4J O
«J — J a. to tn rz

w c sli *c i ^4
i~ 1 1 c — 4J

<fl ~ ~ <~ X
o: 11 1 ^ K •Sx-2 z. - a a k. O IC z

rH +> C X c o

1 c i r
<n tr. q *J *J •— X a o> — 1 4J

N II- 2 o o 1 EJ-i 1 8.
L~ -W M c 10 X in i fc-
M 0 CJ — >. 1.1- " r\ A ^ „ 5l o 1 1 K I ~i

oi a <o x 1 01 0' < c l
4-< « 4J s ,_ a a

i i 4
>^ B = = ' 5 a 5 5mi E "8

4J a k. t- c 14^ c c 01 4VI-4 -H CL B

1
k.

N 01 t C 0 X X M «•" N 0) >.4I i I tH -4 £. £• — •-1 •^1 i, {•• 1 01 C 01 i a SJ>* a Hi 0 — u
»*-< IM

•p 1 N H -44 41
44 k. — C i

4J £
io ^ ^ o <-. c A a k. 41 i. «-• to c i C a
a. 4J .— 4J ^ w ^H c* I O »-. 1 1 V. C

-4 oi c a 5
- x — 0 x

>.
3-4 8.1. S

a)»- a.

^) W -~ 10 If. -H -J W 4J «l c 41 *J *
H 01 k. |/> k. M —

-i k«-i c X
t 1 g 1 8 — 5 to 8 i t

Bi —«.. e »- -J — 4J ». 01 fc c «3 a

E 5 oi

B141 c
to Oi £ c
k. k. E k. it W "C
41 c. it a - c _

g M tO N M 4 —I i 1 4> C
•rt o it •-^ -*4 -^1 -H ^ A4l X I k. m C

a cr
41 -<

1*
O 4J ^ £ 4-

O — H X 01
to « :i 4J 4l

c I i fl
Olt

1 ID 4141 kki c M E
11 "Z K T! C— S

N N 41 01 3 44
0> 01 4> >. 0 u 4 •-* 4 -44 10 41 01 ^ 3 C I PP x k< 3 10 S k. E v a^ i to ^H AJ ^. ^ to ~ to x ab — a u

IP
\ U V. •U •« a k.

c k.
•-(01

k* 4J L 4J oi CJ -
C 9.

1%
— X — >4

'.%• S. oi
— 41
k. 3

3
CI - s kk

leg 4-> -rH IO io o o o .ex •• 0IX 0 1
oi o
N a.

41 41
1 3 be 01 E a c x cuu 3 — 01 4J 01 41 « ^ 44 41 i r 41 «l
er- 01 « k. • s. x 3 | W4I-0 &< IT. N C N C — 41 1 * i|- H5 ? ic Q.-. C £ <C 4J k. k. o - U I si X 5 i - a oi -< X
c cGiii 1 -a. ai tn m c. -:

js k. a k. 5—
•w 01 0 C i.—i
0 *J U.4J *- 1

IC ^
-8.5 3 4> ^*

k. 41
c o, ,, •H

8. —< fa >.o c af 01 c 41 3 1 « to to
4* 4l 4) -H x « c 44 k-i 0 a. k. to k. a E *• 2 a

- c c ="8t: * K
in 0 01 1

"ill?
4- u --3 0

0 Z 4J B Io £
a k. 3 k. o> x
« it 3 ic a. '^

N ^- X it x « 0> i x 3 £. Jl E
01 ~* S-S £ — O.X

4HC4I «S £ 01 ~- C 01 -snap — C -4

d. oi a
>. 1 E SJ U it 44 1 --H 3 -H 0 >- — — N " — M -^ ^ jJ — <c 41 1 ^

IC 41 0>
x

c c u 0 c >- e t* -H O 0) 44 41 k-

5 o a • c 1 io t -, c — a. D a i — o; >. •3 « •C 10 u *J *n *J 01 C k. HI k, <0 3 k-.

c ai "8 *" B »t —> •~l X -4
C 3 3 a. 10 1 0 1 k, K

01 k. i k. i -- .-.-« c;
c X 0>
io — A

C >4

H H C.
yflf •3

1 8
-c n - 6

-^ (C z. c SOIftJO*' m (/; K k4 k. 01 — 0) W 0) c
01 U *l« -H X X X X x - 10 01-44 0) 1 3 k. x ax •a

r~ *J X *J 01 *J — 10 +J 10 3 c 11 4J 4-1 4J -J ^ 4J X 41 MA ki k. oi u a. k. 4i —4J o
oo nil:

01 k. 41 1 ^s.s § CI 0.-I
i*--i

1
0 ii°c-°^- ~ X

C C CT CI 01 0-4.S ." 5U •c c- c 3 •<
I- - It — 1-» C "H 0 0) 3 3 X -3 *J ^ 4-' MO 4- N 10 •u ^ X £ C 41 4- : 1
O C .'
E O >- 01

•c .C -H UJ G 1- 0 4J 3 01 C 0 *• 5" - « 01 -1 to BI +J 4J - - -- ic 01 41
r-> E O ~ i I I ci 10 tl "0 t,1 k. y; it H kl IO ir, - — 01 01
r- «5il s. H S c I 5 s. >; X ~ *4 > -5S *— — ^* —
X> >-i ir^ « X ±> — — — T; c o»- — £ i c n C
o G

ft; w
** — £ H — •" t j^ 3 Z. o <c •c

r\ c 0
cv 3

»44
W C

c 0)
rC •c -: —

•t, x

Sajo-oiScSiJcT
0)4lMA4> i miJ

CT-H 01 01 -• 01 01 H 01 01
4J01C0101IOU1XID01
01 X >. *J ~ —

8 144 -4. 144
•Q -44 ^4 -44

C k.
•H O

jsi
41 41

CTCT

S" %
10

k4
o a •

|4-> >4
k. -H 41
« 3^-t

a c
•O »W -44
C 0)«-i

ill 3'iJi

«-K'8J!

i 2

1

— ^-

3.
c

1
4-1

4i
3
5.
c

g 3 B j^ c i
Q. S «% 1 4J
4J ^> U o C 4J JJ
3 K .*-• M B •^ u

1 B
1 C

1
01 £ 3

G in
z

E
*J

s 0
! fat E £ o 3 c c -<, jw

c I 1—1 o 3 1 O
C 1 c vs 1 0 a - B

i 4J
c i u g^ 0

M
« —• s | <-*: 1) H ^ >. E 4J b J 0)

•j E • m £ B a. 3
c 01 w f M e >- *3 —i u! —i

1 •
k<

n
JJ 1 1 B 3

«, s s 10 >
1 1 H 1 c c« 10 a •U -J C

£ £ <o « — Ul 1 c 3 n "3
£. *t IJ C •H a 4J > in & *J k. ic 1 c c JJ j->
•-« e K C £N 10 4J 4J i jJ | JJ 1 c > 01 a. 0) <0 B l £ 3 1

-J

ss

i I II CN N -H 4J 1) M i JJ a —1 TO 1 «•• 1
JJ i-

y
>" 111 1 £ | 10

01 6
c 5 c

£ 1 £ 3 IM | >. c 3 4J *H 1 i i ii "0 « 2 a — ^~ u •rf in !i a 0 c m 41 « JJ 0 0 c 1 *— /-»

1 0 JJ 01 n 1 •D « 0 1 •u 41 jJ 3 £ in u
JJ
w jJ ~ 0 01 OJ

- £U B | 1
«3 a

-»H •3 2 ^ 4J JJ >. JJ 1 9*1 E in ~- --* i *- ^ -H i +J 9 > -J •-J JJ >«^* >n > <a — — iu a
a V JJ >• Jjjj 1 h Ul 3 £ X 0 T3 i 3 a JJ >. «i « •I IM c e >. u 6

M w U - K £ 4J • • u 0, 41 JJ C 41 c >» 3 C kn u ki 0 •H > io « 3
r- ""* 8

*c Z. k.
c ~

C4J C
3 U E 5 Si £ I J 4J

0) T) l 6 8. - JJ h a t.
jJ 3 10 c u

Li
10 1 I 1) .tie c

£ « io « n jj - IO 0 *J « a E | JJ K IS £ « O 1 -i c 1 1 14 J
B w u - u 3 a. c u 4J 3 n 6 41 JJ 1 C 1 I 0 1) «0 -J JJ I
c^ B C- ~~ a.« c i a. i i 3 c ? •-* M 3 4) 10 41 C -J Jj —4 3) "0 4> jj JJ

<z i *J en ty c L h u 5 4J (A c tl i- C= £ c «: K > >•£ 0 0
c Or •M JJ

i •" «! I JJ
4 I I I JS

z
3.3 •3 tjiO

JJ JJ JJ JJ
3 O JJ 88 ; c* » io JJ e c E —• a c J-> 3 41 >-0 U41C N 4U 4J C C M J-l c 0 >. C >.0 —i •^ c k* >s in ^ in

C £C C m £ o 0 - W X c C i-l 0! JJ -< 4) 1 <0 K c —i 0 *J 10 10 -r< 4) "I
w gj - 1 Jj k. --. JJ B, n i: 3 tr •H 1 0 m £ 0) ^ m u ic IC JJ *J w 1 1- 3
(A g* ~ k. m P*.S = >. i 85 a 28 a W JJ i II-H i. M 1 8 w 4) IH JJ ^H JJ

Z <C <e —< « in in -»j J c <o bi J3 10 B 10 C •j 41 3 3 M 1 IZ i n ^H -H St E >. — i >, i Bi =
st E 3 I fi> II

— c S 1 S . •5 U Jj 0 c >. £ a. c — — *J U £ 2 cr in 1 in Ja C IC c >.c •i

5 c c C C 1 IC <o -J c ~ c «s « C -H •o e -J L;

ETJJ
41 3

ff.Cli c c w 4> a
01

io 3 4) 3
ts <c cr> k,

c 01 1-4 1 - s. c C
1 3
D a

>• g? sj o EL
c u
-< in « o)

•r,
w

M
-^i

JJ u.
u u. JJ W ^ jj t.

1 E •*-* —1 -< »J -*JJ 0 *1 u U JJ U in J< •—> •H W Dd > a in -i -i 10 E in io a: > 1 -1 IC K

? 01 I -1 JJ c — 5 3 C 3 S rt c u 4J TJ Z -> 0} jJ ID 1 J-» 1 i 1 z • o> i a
r- -J ~ & in JJ JJ JJ 3 E 0 0 U a o c e-i 1 Ci3 3 01 3 / 3 -4 JJ 3 JJ 4J JJ K SsX C JJ >HIJJ 1)
OD |

u 8"" ill!
1 i-> C C

a >- —
0 0 u il

i
c k| §£ cup s-ss0, r & JJ oj £. ic sp Eg w

11
-H O 10 1) 3
M 0 u £ -i
in i-i u £ io K 3 J C I ax < £ n -i 3 5 to 3 ii u u >.-n 3 i-i C Jj k- ^ 0

vt iJ c c it J: -H O 0 0 -J 2 3 — AJ JJ w OWE 0,« c 10 e JO 0 J2 •H M — a io m «5 H JJ c j >
n W IC 3 c o — i 1 1 1 1 ^H ~1 "" £~£. 1 JJ . 1 —J e o — c —

— — - c, kil s c- rr c c C 18 WJ 11 io U 10 8- = 3. C 10 U io a
w i; k. £ At — U 0. f£C c a 3 "" u a 5a 0 JJ

o 1(1 < > *J -J -D ; 0 t 11 u > — JJ J-; JJ X Ol JJ JJ

O
9- "

c: u I 63 o - u u
G

3
0

11 IM -
41 11

il? S a 2 Ji o
CO 01
3 in in tj I

» IC T3 w c 10 0 £ •-. io «
c Qj — w 41 — — Jj 4) — —

TJ •D T3

8.

1.

is
JJ 3 a.
in c
sr
i-i JJ n r

JJ 3
a
c

O I-I

-J c
_ 0

1
JJ ^

JS — JK *>
JJ B CO

S T1 B
0-3 >M 3
JJ JJ cfc
41 01 in
« u a,
—«« »IA

10

01

5

JJ 41 JJ
a IJ 3
ti io a

S^8
a I

n c M

S-V5
i-l u
cnu

go i 0 0«-
•H in
w in 0
C C — I

g. I

I E-S JJ

3 « X

c £ x 4>

•vsss
10 C P C «]

ti a JJ

•gg .5^
« fi. m a

it cnuoi
JJ 41 0 41 Z

U 3 i-i >-XI K
SC 1) 01 JJ p

JJ t c JJ F x s 8 a ii c b
S o in e 4) 3 5

i -H a> o
« k. Jj "D n O

J55S •ii

I-1

3 a -i
a-H K

3 41 o
0 3 -J

rt 10

-* s

•ail
C C !N I* _ c cr
V 41 C

13 WE

s 5 s § 1 —I kj Jj
a a a JJ JJ
> Sc<=

IM -H I 3

0) C<M >,

0 &. 41 0 3 -< -I
U W -•

k. 41 c 1) JJ
SJ /£ Cn> j= o
j U JJ C JJ

cm II CHHJ:
•IHtC

i •r*3s>.3^l^8 8iils is s o

co g

j? >111
O C C 4)

81) 0
•c -^ c « 3

O . JJ
41 C C

£ C -J-J
Oil 0

-H jc -a Bi

01 L rl 01
>i -0> C
0 • 01 jB 41-J

01 « 10 &> -H
-J k. a 5 «i e
41 4) JJ K
C5-5JJ£JS
Ol 3 01 £ JJ
c k< in 4i o
ii. ^J. I «H O

g E S 8"3
c •o a o 5. •

w n £ JJ
«-• o « 41 o M c
o • S 3 •*•*

k. Q,£ «-JO,B,
n 41 JJ >

i k, 41 41 H i
10 « U

41 kj 4) 01 O ti
«. 3 41 ol k. 41

i-SEJI-SSjj
is t» o » S.0 o

c u k,
41 3 41

01 JJ 3 JJ JJ

^ Jj S"ii 8.JJ 1

It t 1
§ 8 « IM

IM a « *M
41 ^ w -

•o

I oi u
.— o1*

£ X CL 0 CL

» c k, o c

r

IM
0

• 4J

f JJ 4J 3 4J 4J

8 *i g
8 8.S-S8. 1 & >. D S

4JH £4J
I 0 •1 IB 3 --• 3 IS 3 I 1 '. M « —* £ -I O »H-I O >•

! 5 3 £ = L? Q. XJ 0) . 1 " « J l\4 ^H k) ^
1 n tv 1 IT 0 «— IM tV C JC 16 X

2. II i §r J 0 J=
•4-1

_H *M *J —t
0- •*

If,
T3 -tJ

4J — t 3 « C ~»-i 01
<r. 1 •H C >- O c -: C-H 3 "3 N 3 0 l

|
>w C *H -M 4J cr

«) ~ c ^-i 0) -c 1 - - C •»-

PI
4. .

» H

4 -ri
C 41 «-*J *E | E E5TS

tv o — 6

k
0 ^

u <-% 4J 3 •U 3 *% £ 01
3 O) 3 i) a 3 a 0) ** S jt > ~i s

'5 U t»
4J

a 3 c

•rf — C 1

a c
C-H J

0
e c »

IC tl «

« 85£
> a 5, ic — ~ 1 ~. ~-riTl 1 T3 a • c ic c 4J -» — >«;4J i

~ >. -« >. a 3 c
-^ a >N (ri4io.Ii

—• o 0 - TJ »» >• 1 £ •4J c S •
-4J e c

•D l a - u
0 1 o ai

i tO U
41 41

c >- fi 41 0 IA 0 N C£-(->
|| J 5 n ~u \n Q u o I 3

-1 -HO • 41 >
4J

a.
c

C • ki a ill 8°i fl u in fi 41 k| 3 «C -H (0 ~«i a c u m 4J 41t)£ » -^
sir « 3 « a i in i

^
*J c O Q 4J c 0) 3 •-< J) X 1 li I a i -i ii D ii

i i a i c t i u ~H 171 u J< e i cifri
li — " c^«eii4J3
£4J4J-~ ri4J«>.>.>,

53 1 iSSVUS 3 J e
C Tl I c

4J » O *J •« a./ 4J 1 •D 4J ±> c IC

ISV U 13 3 o — JUCO >- >s >- <-* ic k. 0 4J 4l3 04J4J|Qj^«««
CL C 3 0 C C I k k, k,

"I gl
ij^ iJ U! Q Q C S4

3 u c 0 «u
fi. H v w u u

|0 • •rt U f-< «4J£ 0
_ c 4l.CZ

U3H CtS 4J
TJJJC J, M

4J
i-l • 4H » - » 0

th
e-

in
pu

t
y

th
e-

ou
t

um
en

t
is

y
th

e-
in

p
me

nt

is

n

y
th

e-
ke

r
um
en
t

is

ar
ra
y

th
e

lo
ca

te
-a

r
lo

ca
te

-a
r

lo
ca

te
-a

r

k. -H a 1 3 »> c >*-* « to —• u ^ (0 c 3 «N 14 C •4 n ^-s
o-w>4 C

c
V Q.41 V) kl ~ In" •H 1 -H i « 1 Lfi a 4J trt l ^H
C B U « q C 1 i 1 --> 1 V • 110 •w to W C J< , - .8 t—1
<c 1 c 1 4J X 4-> £ C V M 4-> 4J

I * 3" . 1

fi m 5
4Jci.tr

01
a.

£ *4J SL
01 1 (A = i to *-. c A- i M 5

t, D E c a
«M « 3 • 0^ I U

88 5 —t
It

3fsl
3 • « JJ

ft
10 ! w" v •—i ^H E- to • T- « tji to 3 « tr 1 ^ri^H^H

1 U H (IbH 1 u CP ^ 1- IH 0- r-(—i < B 6 o c iJ C 4JV4k|k]tTk]ktDCClD

8 3 1 c t£li!
U9< >

• ki C U « Q.—
£ re (0 rO —

A3 «
1

" o — a; -
C to u v
4J C U C

•H ^S|° IC
4J

3k«kik.k4Cl- —>«rii«tf
C. IC 10 C fi fi
4i t >ii i >. a u °l K • 4J 1 1 >S *• H H > -4 > C

b C 0 ^H
O -4

41 c »• fil — C >. C * *i ~ *J *-
ii 1 0 a.

0 3 U seiBSeif)
5 u c '.'. & >•£ = K K <C U 3 Qu U ai *J UO IK

E CJ

04MKNMH £ >• £ —1 4J —1
P 11 in

- M u a c 3 > « •" to b U 14-H k
Ci a-ki o

kj ki ki a p
litoatokinfi~S
£^4 »4 a -4 c

B 5 M K CJ W iM U) ^ c 'H 1 u: ~H WO 11 1) «
C U in to c n 3 ^H C -H -Hi a^ 0 J: u tn Cll 4J Q,J<

u 2 --4 — — "O 1 1 *D t *C -*-1

C v-J J C 4J C —<
E LH > H144 4J hZ *j Q) 11 ic - U' 41 1 41 1 1 —l -i C

sO t. •C CO a « y £ a 1 c K >-3 OK 3 /£ k« £-i — 4J 3 41 4J 41 1) || 0

i;l)4itvc>.tyCEfi
C
C C, 3) u s p i. HI «i

P S 6 41 >.
i: £ ac c

UU(0Up0)O3 (0
aS L4 ti 5 k4 o uix 1 8£ ic a*- o p

M4J 0 F
a

M 01 JZ u tv

<C C
H

—i -I u ra JJ -i kl 3 IB - « 41 >-n34ic-nqi Ij
rijl0£'«j0lli O ~ £

-c c *- t -:
2- 0 -i »5

« £ « 0 BiK O W V V •*-* U £ U X
r^ «C 0 — 0 — 1 1) c w 1 C x> »- _ At 4J w •*-> OO — O—O — l 1 4i
rs C

2 c. fi •S— - *j£ H BJ J e «
H a

c - s n
5

ic 0 _"0 i
•H •*-

> jj- a
T — • < x: o — L w 4J 4J 4J *J P« to 0 • t/1 H IC K -4 • c

0 U. k, U U 3 c IT, U - I
0 D C C7 IT b 4- 0> cr OJ 0

c « (4 ifl *J X
3 w w <n ai u v
•« c <o »c wo x

* C -. Vi Jj *J *J — r 3 IT. CO & C 01 <»
C w t IC W W « •—

c J| «. —
li TJ •o

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a REPORT SECURITY CLASSIFICATION

Unclassified

1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

LM-163

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-89-118

6a. NAME OF PERFORMING ORGANIZATION

Lincoln Laboratory, MIT

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Electronic Systems Division

6c ADDRESS (City, State, and Zip Code)

P.O. Box 73

Lexington. MA 02173-0073

7b ADDRESS (City. State, and Zip Code)

Hanscom AFB. MA 01731

8a NAME OF FUNDING/SPONSORING
ORGANIZATION

Defense Advanced Research Projects Agency

8b. OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-85-C-0002

8c ADDRESS (City, State, and Zip Code)

1400 Wilson Boulevard
Arlington. VA 22209

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

62702E

PROJECT NO

306

TASK NO WORK UNIT
ACCESSION NO

11. TITLE (Include Security Classification)

Sketch 4B. An Image Understanding Operating System

12 PERSONAL AUTHOR(S)
Robert L. Walton. Jacques G. Verly, and Patrick Van Hove

13a TYPE OF REPORT
Lincoln Manual

13b TIME COVERED

FROM TO.

14 DATE OF REPORT (Year, Month, Day)
1989. June 14

15 PAGE COUNT
502

16. SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

LISP and C computer
launguages

software development
environment

image processing
image understanding
computer vision
artificial intelligence |A1)

Automatic target
recognition (ATK)

signal processing

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
SKETCH i. an image understanding operating svstem that can be used for the development of image processing, image understanding, and computer

vision systems. It is activel) being used at MIT Lincoln Laboratory for the implementation and testing of automatie target recognition algorithms. SKI ft H is
an excellent tool for the rapid development of complex end-to-end systems. It emphasizes flexible and efficient interactive computing rather than "real-time"
performance. These features are achieved through the simultaneous use of Franz LISP for high-level control and symbolic computation and C for extensive
numeric processing. Array management facilities are provided to manipulate images and other multidimensional arrays both on disk and in central memor\.
A catalog system is provided to store LISP values and abstract SKETCH objects, including arrays. Typically, one starts with an input catalog containing lens
or hundreds of sets of images and ancillary data. Each set is then read from the input catalog, a sequence of algorithms is applied to it. and the correspond-
ing results are appended to an output catalog, which can be used, in turn, as the input catalog for the next round of computation; the read-compule-writc
cycle can be repeated as many times as necessary. This mechanism allows a researcher to apply a complex algorithm to a large data set overnight and to
review the results the next day using the extensive display tools provided by SKETCH. One particularly convenient aspect of the display syslem is that whole
displays are SKETCH objects that can be stored in a catalog. Browsing through pictorial results is thus rapid and straightforward.

This manual contains the complete description of the SKETCH svstem, examples its functions, and excerpts from the actual SKETCH code. SKETCH is
organized by packages (Objects. Arrays, Catalogs, etc.) and readily accepts user-constructed packages to adapt the working environment to specific applications
Dozens of such packages have been created It. the authors and their colleagues in the Machine Intelligence Technology Group at Lincoln Laboratory. These
packages are not formally part of SKETCH, but are otherwise indistinguishable from the official SKETCH packages. Examples of topics covered by these add-
on packages are the Hough Transform. Mathematical Morphologv. and Synthetic Scene Generation. One of the more appreciated features is the relati%r ease
with which new packages can be documented. The only requirement on the part of the user is to add a documentation header to each important new func-
tion. Then, through a simple command, these headers are automatically extracted, and formatted documentation is produced.

SKETCH is currently running on Sun 3 workstations and VAX computers under the l:!NTX operating system.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

D UNCLASSIFIED/UNLIMITED El SAME AS RPT. D DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

Lt. Col. Hugh L. Southall. USAF

22b. TELEPHONE (Include Area Code)
(617) 981-2330

22c. OFFICE SYMBOL
ESD'TML

DD FORM 1473, B4 MAR 63 APR edition may be used until exhausted.
AH other editions are obsolete

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

