
I INCLASS]FDED *

rW' eWI D'r ["?vprcd
1

AD-A209 651 N 600 & ON PAGE l h. 3 aLCI SA.OGbjat

. . 1 YPL Of *I r A E i &I Pj;: COvE RID

Ada Compiler Validation Summary Report:Meridian 05 Apr 1989 to 05 Apr 1990
Software Systems, Inc., AdaVantage, Version 3.0. SCI 302
with Floating Point Co-Processor) (Host and Target), e. ,LRFOR lk:NkkR iPj; i lJWkj
90405WI . 0053

7. £L11KORIS) a. COAACT O GRAN' hJ4m R(s)

Wri-gl-Patterson AFB
Dayton, OH, USA

I. PERFOR141h' ORriNIZAION AND ADDRLSS 10. PROiRAN fLIPlCh . PR_21l. lAS.
ARtIA & WORKi Uh7l hJ'RS

Wright-Patterson AFB

Dayton, OH, USA

12. CO%'RO .L1NG OfrFIC kAW. AND ADDR SS 12. RLPORI DAL
Ada Joint Program Office
United States Department of Defense 1 ,,v,-tu wA,.
Washington, DC 20301-3081

14. 0NIT0fTO hG AGUVY NAMi & ADDRLSS(olfieretfromControlln g Or to t~he) 15. SE{uRITI CiASS (ofthisreprtj

UNCLASSIFIED
Wright-Patterson AFB ir. "_ r1CA71ON,'DofSRD]
Dayton, OH, USA " tN/A

16. ISTRD..JTIO S A IM N7 (o fhajR port) I
Approved for public release; distribution unlimited.

U1 LA55SFIED
J3

1s. SUPF.Eli:NTA~ N07ES

15. K[YW. -R.DS (Conhine On,rverS JIf if ,ecess,) trod identify by block number)

Ada Procra-.-.ing language, Ada Compiler Validation Sur.-ary Rep:rt, Ada
Co-piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANS1/VIL-STD-
1815A, Ada Joint Program Office, A3PO

20. AI S& ,f 1 (Continue on reverse s'de if n~c sr .OrsdeiIf) by block number)

Meridian Software Systems, Inc., Wright-Patterson AFB, AdaVantage, Version 3.0, SCI 302
(with Floating Point Co-Processor) under MS-DOS, 3.30 (Host and Target), ACVC 1.10.

DD 1473 towiok or I NO 6s IS 0850,tAt
I JAN 73 S/N 0102-LF-,14-601 UNCLASSIFIED

•~~~~~I III I

Ada Compiler Validation Summary Report:

Compiler Name: AdaVantage, Version 3.0

Certificate Number: 890405W1.10053

Host: SCI 302 (with Floating Point Co-Processor) under
MS-DOS, 3.30

.Target: SCI 302 (with Floating Point Co-Processor) under
MS-DOS, 3.30

Testing Completed 5 April 1989 Using ACVC 1.10

This report has been reviewed and is approved. OTIC

4"PY
INS PECTUS

640
Ada Validation Facility A 18o o
Steve P. Wilson Ao'I 'or
Technical Director BTXS GRA&I
ASD/SCEL DIC TA]Bc

Wright-Patterson AFB OH 45433-6503 nunif cdJustiflcatlon____

BDi t 7un~

-" " Avaii Is

Ada Validation Organization
Dr. John F. Kramer Dist
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
W11 tam 53. Ril ~~e U34-~ So cLcj.-.J
+ebrnt-j Director
Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-249.0589
89-01-26-MSS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890405W1.10053
Meridian Software Systems, Inc.

AdaVantage, Version 3.0
SCI 302 (with Floating Point Co-Processor)

Completion of On-Site Testing:
5 April 1989

Prepared By:
Ada Validation Facility

ASD /SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: AdaVantage, Version 3.0

Certificate Number: 890405W1.10053

Host: SCI 302 (with Floating Point Co-Processor) under
MS-DOS, 3.30

Target: SCI 302 (with Floating Point Co-Processor) under
MS-DOS, 3.30

Testing Completed 5 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization

Dr. John F. Kramer
Institute for Defense Anal es
Alexandria VA 22311

Ada Joint Program Office
William S. Ritchie
Acting, Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS. 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. • 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation3-6
3.7.2 Test Method3-6
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability- (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

I-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).

On-site testing was completed 5 April 1989 at Laguana Hills CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main

program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: AdaVantage, Version 3.0

ACVC Version: 1.10

Certificate Number: 890405WI.10053

Host Computer:

Machine: SCI 302
(with Floating Point Co-Processor)

Operating System: MS-DOS, 3.30

Memory Size: 640 kilobytes

Target Computer:

Machine: SCI 302
(with Floating Point Co-Processor)

Operating System: MS-DOS, 3.30

Memory Size: 640 kilobytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 10
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
BYTE INTEGER and LONG INTEGER in package STANDARD. (See tests
B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) NUMERICERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

(5) No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more

than SYSTEM.MAXINT comDonents raises no exception. (See test
C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to a null

array type with INTEGER'LAST + 2 components. (See test

C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST

raises NUMERIC ERROR when the array objects are declared.

(See test C52103X.)

2-3

1 1 1 1 I I I I I I

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
objects are declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test 952103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(I) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A..B, EA3004C..D, and
CA3004E..F.)

2-4

CONFIGURATION INFORMATION

i. Generics

(1) Generic unit declarations, bodies, and subunits can be
compiled in separate compilations. (See tests CA1O12A and
CA3011A.)

(2) If a generic unit body or one of its subunits is compiled or
recompiled after the generic unit is instantiated, the unit
instantiating the generic is made obsolete. The obsolescence
is recognized at binding time, and the binding is stopped.
(See tests CA2009C, CA2009F, BC3204C, and BC3205D.)

J. Input and output

(1) The package SEQUENTIAL 10 cannot be instantiated with

unconstrained array types or record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes INFILE and OUT FILE are supported for SEQUENTIAL_10.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes INFILE, OUTFILE, and INOUTFILE are supported for
DIRECT 10. (See tests CE2102F, CE21021..J, CE2102R, CE2102T,
and CE2102V.)

(5) RESET and DELETE operations are supported for SEQUENTIAL_10.
(See tests CE2102G and CE2102X.)

(6) RESET and DELETE operations are supported for DIRECT_10. (See

tests CE2102K and CE2102Y.)

(7) More than one internal file can be associated with each
external file for sequential files when reading only. (See
tests 2107A..E, CE2102L, CE2110B, and CE2111D.)

(8) More than one internal file can be associated with each
external file for direct files when reading only. (See tests
CE2107F..H (3 tests), CE2110D, and CE2111H.)

(9) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(10) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(11) Overwriting to a sequential file does not truncate the file.

2-5

CONFIGURATION INFORMATION

(See test CE2208B.)

(12) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE31021..K.)

(13) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(14) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

(15) More than one internal file can be associated with each
external file for text files when reading only. (See tests
CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 286 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for seven tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1129 2050 16 22 44 3388

Inapplicable 2 9 266 1 6 2 286

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 576 545 245 171 99 160 333 129 36 250 368 278 3388

Inappl 14 73 135 3 1 0 6 0 8 0 2 1 43 286

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15C CD2D11B CD5007B CD50110 ED7004B
ED7005C ED7005D ED7006C ED7006D CD7105A CD7203B
CDT204B CD7205C CD7205D CE21071 CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 286 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are Qot applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..Z C45241L..Y C45321L..Y
C45421L..Y C45521L..Z C45524L..Z C45621L..Z

3-2

TEST INFORMATION

C45641L..Y C46012L..Z

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

c. C35702B and B86001U are not applicable because this implementation
supports no predefined type LONGFLOAT.

d. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT INTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55BO9D B86001V
CD7101E

e. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 47.

f. D64005G is not applicable because this implementation does not
support nesting 17 levels of recursive procedure calls.

g. C86001F is not applicable because, for this implementation, the
package TEXT 10 is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXTIO, and hence
package REPORT, obsolete.

h. B86001Y is not applicable because this implementation supports no

predefined fixed-point type other than DURATION.

i. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORTFLOAT.

J. CA2009C, CA2009F, BC3204C, and BC3205D are not applicable because
this implementation does not support separate compilation of
generic specifications, bodies, and subunits, if an instantiation

is given before compilation of its bodies or subunits. The
created dependency is detected at bind time.

k. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

1. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

m. AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

3-3

TEST INFORMATION

n. CE2102D is inapplicable because this implementation supports
CREATE with INFILE mode for SEQUENTIALIO.

o. CE2102E is inapplicable because this implementation supports
CREATE with OUT FILE mode for SEQUENTIAL IO.

p. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECT IO.

q. CE21021 is inapplicable because this implementation supports
CREATE with INFILE mode for DIRECT_10.

r. CE2102J is inapplicable because this implementation supports
CREATE with OUTFILE mode for DIRECT 10.

s. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIAL IO.

t. CE21020 is inapplicable because this implementation supports RESET
with IN-FILE mode for SEQUENTIAL 10.

u. CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIAL IO.

v. CE2102Q is inapplicable because this implementation supports RESET

with OUT-FILE mode for SEQUENTIALIO.

w. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECT I0.

x. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECTI0.

y. CE2102T is inapplicable because this implementation supports OPEN
with INFILE mode for DIRECTIO.

z. CE2102U is inapplicable because this implementation supports RESET
with INFILE mode for DIRECT_10.

aa. CE2102V is inapplicable because this implementation supports open
with OUTFILE mode for DIRECT_10.

ab. CE2102W is inapplicable because this implementation supports RESET
with OUTFILE mode for DIRECTIO.

ac. CE2107B..E (4 tests), CE2107L, CE2110B, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
sequential files. The proper exception is raised when multiple
access is attempted.

3-4

TEST INFORMATION

ad. CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

ae. CE3102E is inapplicable because this implementation supports
CREATE with IN FILE mode for text files.

af. CE3102F is inapplicable because this implementation supports RESET
for text files.

ag. CE3102 is inapplicable because this implementation supports
deletion of an external file for text files.

ah. CE31021 is inapplicable because this implementation supports
CREATE with OUT FILE mode for text files.

ai. CE3102J is inapplicable because this implementation supports OPEN
with INFILE mode for text files.

aj. CE3102K is inapplicable because this implementation supports OPEN
with OUTFILE mode for text files.

ak. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access
is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for seven tests.

The following four tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

322003A B49003A B49005A B85013D

3-5

TEST INFORMATION

BC3205E, AE2101A, and AE2101F were split because the compiler's memory was
exhausted while processing the multiple instantiations.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the AdaVantage compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the AdaVantage compiler using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration in which the
testing was performed is described by the following designations of
hardware and software components:

Host computer: SCI 302
(with Floating Point Co-Processor)

Host operating system: MS-DOS, 3.30
Target computer: SCI 302

(with Floating Point Co-Processor)
Target operating system: MS-DOS, 3.30
Compiler: AdaVantage, Version 3.0

A set of diskettes containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to
diskettes. Tests requiring modifications during the prevalidation testing
were included in their modified form on the diskettes.

The contents of the diskettes were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the SCI 302 (with
Floating Point Co-Processor). Results were transmitted from the host to a
Sun 3/260 using a program called KERMIT and then printed from there.

The compiler was tested using command scripts provided by Meridian Software
Systems, Inc. and reviewed by the validation team. The compiler was
tested using all default option settings except for the following:

OPTION EFFECT

-E Generate error file for the Ada listing utility.

3-6

TEST INFORMATION

-I Ignore compilation errors and continue generating code
for legal units within the same compilation file.

-Q Suppress "added to library" and "Generating code for"
informational messages.

-S Use 80286-specific instructions where posible.
-V Enable overflow checking.
-w Suppress informative warning messages.
-c Produce continuous form Ada listings (no page headers).
-p Obey PRAGMA PAGE directives within program even though

-c flag says not to generate page breaks.
-s Output Ada listing to the standard output file instead

of to a disk file.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
disketes and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Laguana Hills CA and was completed on 5 April
1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

Meridian Software Systems, Inc. has submitted the
following Declaration of Conformance concerning the
AdaVantage compiler.

A-i

DECLARATION OF CONFORMANCE

Compiler Implementor: Meridian Software Systems, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AdaVantage
Version: 3.0
Host Architecture ISA: SCI 302 (with Floating Point Co-Processor)
OS&VER #: MS-DOS 3.30
Target Architecture ISA: SCI 302 (with Floating Point Co-Processor)
OS&VER #: MS-DOS 3.30

Implementor's Declaration

I, the undersigned, representing Meridian Software Systems, Inc., have
implemented no deliberate extensions to the ADA Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that Meridian Software Systems, Inc. is the owner of record of
the Ada language compiler(s) listed above and, as such, is responsible
for maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A.
All certificates and registrations for Ada language compiler(s) listed
in this declaration shall be made only in the owner's corporate name.

L-Date:________
Meridian Software *stems, Inc.
Stowe Boyd, Director of Research and Development

Ovaer's Declaration

I, the undersigned, representing Meridian Software Systems, Inc., take
full responsibility for implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of the
final Validation Summary Report. I declare that all of the Ada
language compilers listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

Date:____Meridian Software/systems, Inc.
Stowe Boyd, Direc or of Research and Development

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the AdaVantage, Version 3.0, as described in this
Appendix, are provided by Meridian Software Systems, Inc. Unless
specifically noted otherwise, references in this Appendix are to compiler
documentation and not to this report. Implementation-specific portions of
the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -2147483648 .. 2147483647;
type BYTE INTEGER is range -128 .. 127;

type FLOAT is digits 15 range
-1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.000 range -86400.0 .. 86400.0;

end STANDARD;

B-I

Appendix F

Implementation-Dependent
Characteristics

This appendix lists implementation-dependent characteristics of Meridian
AdaVantage. Note that there are no preceding appendices. This appendix
is called "Appendix F" because of a very clearly stated requirement by
ANSI/MIl-STD-1815A that this appendix be so named.

Implemented Chapter 13 features include length clauses, enumeration repre-
sentation clauses, record representation clauses, address clauses, interrupts,
package SYSTE-M, machine code insertions, pragma interface, and unchecked
programming.

F.1 Pragmas

The implemented pre-defined pragrnas are:

B-2

elaborate Implemented as per ANSI/MIL-STD-1SISA section 10.5.
interface See section F.I.1.
list Implemented as per ANSI/MIL-STD-1815A Appendix B.
pack See section F.1.2.
page Implemented as per ANSI/MIL-STD-1815A Appendix B.
priority Implemented as per ANSI/MIL-STD-1815A Appendix B.
suppress See section F.1.3.

The remaining pre-defined pragmas are accepted, but presently ignored:

controlled optimize system_=&ae
inline shared
memory-size storage-unit

Named parameter notation for pragmas is not supported.

When illegal parameter forms are encountered at compile time, the com-
piler issues a warning message rather than an error, as required by the Ada
language definition.

Refer to ANSI/MIL-STD-1815A Appendix B for additional information about
the pre-defined pragmas.

F.1.1 Pragma Interface

The form of pragma interface in Meridian AdaVantage is:

pragma itterlace(language, subprogram C. "link-name"));

where:

language is the interface language, one of the names assembly,
builtin, c, internal, or microsoft-c. The names

B-3

builtin and internal are reserved for use by Meridian
compiler maintainers in run-time support packages.

subprogram is the name of a subprogram to which the pragma
interface applies. If link-name is omitted, then the
Ada subprogram name is also used as the object code
symbol name. Depending on the language specified,
some automatic modifications may be made to the
object code symbol name.

link-name is an optional string literal specifying the name of the
non-Ada subprogram corresponding to the Ada sub-
program named in the second parameter. The link-
name is used as the object code symbol. Depending
on the language specified, some automatic modifica-
tions may be made to the object code symbol name.

It is appropriate to use the optional link-name param-
eter to pragma interface when the interface subpro-
gram has a name that does not correspond at all to its
Ada identifier or when the interface subprogram name
cannot be given using rules for constructing Ada iden-
tifiers (e.g. if the name contains a '$' character).

The characteristics of object code symbols emitted for each interface language
are:

assembly The object code symbol is the same as the subpro-
gram name. If no link-name string is specified, then
the subprogram name is translated to lower case.

builtin The object code symbol is the same as the sub-
program name, but with two underscore characters
('.2) prepended, whether or not a link-name string
is specified. If no link-name string is specified, then
the subprogram name is translated to lower case.
This language interface is reserved for special in-
terfaces defined by Meridian Software Systems, Inc.

B-4

The builtin interface is presently used to declare
certain low-level run-time operations whose names
must not conflict with programmer-defined or lan-
guage system defined names.

c The object code symbol is the same as the sub-
program name, but with one underscore character
('-') prepended, whether or not a link-name string is
specified. If no link-name string is specified, then the
subprogram name is translated to lower case. This
is the convention used by the Meridian-C compiler.

internal No object code symbol is emitted for an internal
language interface; this language interface is reserved
for special interfaces defined by Meridian Software
Systems, Inc. The internal interface is presently
used to declare certain machine-level bit operations.

microsoft.c The object code symbol is the same as the sub-
program name, but with one underscore character
('2) prepended, whether or not a link-name string is
specified. If no link-name string is specified, then the
subprogram name is translated to lower case. This
is the convention used by the Microsoft C compiler.

The low-level calling conventions are changed only in the case of a mi-
crosoft-c interface. No automatic data conversions are performed on pa-
rameters of any interface subprograms. It is up to the programmer to ensure
that calling conventions match and that any necessary data conversions take
place when calling interface subprograms.

A pragma interface may appear within the same declarative part as the
subprogram to which the pragma interlace applies, following the subpro-
gram declaration, and prior to the first use of the subprogram. A pragma
interface that applies to a subprogram declared in a package specification
must occur within the same package specification as the subprogram decla-
ration; the pragma interface may not appear in the package body in this
case. A pragma interface declaration for either a private or non-private

B-5

subprogram declaration may appear in the private part of a package speci-
fication.

Pragma interface for library units is not supported.

Refer to ANSI/MIL-STD-1815A section 13.9 for additional information about
pragma interface.

F.1.2 Pragma Pack

Pragma pack is implemented for composite types (records and arrays).

Pragma pack is permitted following the composite type declaration to which
it applies, provided that the pragma occurs within the same declarative part
as the composite type declaration, before any objects or components of the
composite type are declared.

Note that the declarative part restriction means that the type declaration and
accompanying pragma pack cannot be split across a package specification and
body.

The effect of pragma pack is to minimize storage consumption by discrete
component types whose ranges permit packing. Use of pragma pack does not
defeat allocations of alignment storage gaps for some record types. Pragma
pack does not affect the representations of real types, pre-defined integer
types, and access types.

F.1.3 Pragrna Suppress

Pragma suppress is implemented as described in ANSI/MIL-STD-1815A
section 11.7, with these differences:

* Presently, division-check and overflow-check must be suppressed
via a compiler flag, -fN; pragma suppress is ignored for these two
numeric checks.

B-6

* The optional "ON ->" parameter name notation for pragma suppress
is ignored.

* The optional second parameter to pragma suppress is ignored; the
pragma always applies to the entire scope in which it appears.

F.2 Attributes

There are presently no implementation-dependent attributes in Meridian
AdaVantage. All attributes described in ANSI/MIL-STD-1815A Appendix
A are implemented.

F.3 Standard Types

Two additional standard types are defined in AdaVantage:

1. BYTE-INTEGER, defined with less precision than type integer;

2. LONG-INTEGER, defined with greater precision than type integer.

The standard numeric types are defined as:

type BYTEIJTEGER is range -128.. 127;

type IITEGER is range -32768 .. 32767;

type LOIGI]rEGER is range -2147483648 .. 2147483647;

type FLOAT is digits IS
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATIOT is delta 0.0001
range -86400.0000 .. 86400.0000;

B-7

F.4 Package SYSTEM

The specification of package SYSTEM for PC-DOS is:

package SYSTEM is
type ADDRESS is new LONGINTEGER;

type NAME is (i8086);
SYSTZM_NAXE : constant NAME = i8086;

STORAGEUTIT : constant : 8;
MEMORY-SIZE : constant :z 1024;

-- System-Dependent lamed Numbers

MINIIT constant :=-2147483648;
MAX_.IT constant : 2147483647;
MAX-DIGITS constant : IS;
MAX-MANTISSA constant 31;
FINE-DELTA constant 2.0 (s C-31);
TICK constant 1.0 / 18.2;

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range I .. 20;

end SYSTEM;

The value of SYSTEM. MEMORY.SIZE is presently meaningless.

F.5 "Restrictions on Representation Clauses

F.5.1 Length Clauses

A size specification (T 'SIZE) is rejected if fewer bits are specified than can
accommodate the type. The minimum size of a composite type may be
subject to application of pragma pack It is permitted to specify precise sizes
for unsigned integer ranges, e.g. 8 for the range 0. .255. However, because
of requirements imposed by the Ada language definition, a full 32-bit range

B-8

of unsigned values, i.e. 0.. (2*.32)-1, cannot be defined, even using a size
specification.

The specification of collection size (T'STORAGESIZE) is evaluated at run-
time when the scope of the type to which the length clause applies is entered,
and is therefore subject to rejection (via STORAG.ER.OR) based on available
storage at the time the allocation is made. A collection may include storage
used for run-time administration of the collection, and therefore should not
be expected to accommodate a specific number of objects. Furthermore, cer-
tain classes of objects such as unconstrained discriminant array components
of records may be allocated outside a given collection, so a collection may
accommodate more objects than might be expected.

The specification of storage for a task activation (T' STORAGE_.SIZE) is evalu-
ated at run-time when a task to which the length clause applies is activated,
and is therefore subject to rejection (via STORAGE-.RROR) based on available
storage at the time the allocation is made. Storage reserved for a task ac-
tivation is separate from storage needed for any collections defined within a
task body.

The specification of small for a fixed point type (T ' SMALL) is subject only
to restrictions defined in ANSI/MIL-STD-1815A section 13.2.

F.5.2 Enumeration Representation Clauses

The internal code for the literal of an enumeration type named in an enu-
meration representation clause must be in the range of STANDARD. !NTEGE-.

The value of an internal code may be obtained by applying an appropriate
instantiation of UNCHECXED.CONVERSION to an integer type.

F.5.3 Record Representation Clauses

The storage unit offset (the at static..simple- ezpression part) is given in terms
of 8-bit storage units and must be even.

B-9

A bit position (the range part) applied to a discrete type component may
be in the range 0. . 15, with 0 being the least significant bit of a component.
A range specification may not specify a size smaller than can accommodate
the component. A range specification for a component not accommodating
bit packing may have a higher upper bound as appropriate (e.g. 0. .31 for
a discriminant string component); the lower bound for such a type must
be zero. Refer to the internal data representation of a given component in
determining the component size and assigning offsets.

Components of discrete types for which bit positions are specified may not
straddle 16-bit word boundaries.

The value of an alignment clause (the optional at mod part) must evaluate
to 1, 2, 4, or 8, and may not be smaller than the the highest alignment
required by any component of the record. On PC-DOS, this means that
some records may not have alignment clauses smaller than 2.

F.5.4 Address Clauses

An address clause may be supplied for an object (whether constant or vari-
able) or a task entry, but not for a subprogram, package, or task unit. The
meaning of an address clause supplied for a task entry is given in section
F.5.5

An address expression for an object is a 32-bit segmented memory address
of type SYST -. ADDRESS.

F.5.5 Interrupts

A task entry's address clause can be used to associate the entry with an PC-
DOS interrupt. Values in the range 0..255 are meaningful, and represent
the interrupts corresponding to those values.

An interrupt entry may not have any parameters.

B-10

F.5.6 Change of Representation

A change of representation effected by means of type conversion between
objects of two types, one type derived from a parent type for which a repre-
sentation clause has been supplied (as described in ANSI/.MIL-STD-1S15A
section 13.6), is not permitted.

F.6 Implementation-Dependent Components

No names are generated by the implementation to denote implementation-
dependent components.

F.7 Unchecked Conversions

There are no restrictions on the use of UNCHECKED_.CONVERSIDN. Conversions
between objects whose sizes do not conform may result in storage areas with
undefined values.

F.8 Input-Output Packages

A summary of the implementation-dependent input-output characteristics is:

" In calls to OPEN and CREATE, the FORM parameter must be the empty
string (the default value).

" More than one internal file can be associated with a single external file
for reading only. For writing, only one internal file may be associated
with an external file; RESET may not be used to get around this rule.

" Temporary sequential and direct files are given names. Temporary files
are deleted when they are closed.

B-I

* File I/O is buffered; text files associated with terminal devices are line-
buffered.

9 The packages SEQUENTIALIO and DIRECTIO cannot be instantiated
with unconstrained composite types or record types with discriminants
without defaults.

F.9 Source Line and Identifier Lengths

Source lines and identifiers in Ada source programs are presently limited to
200 characters in length.

B-12

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
be low.

Name and Meaning Value

$ACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG IDI (1..199 => 'A', 200 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

tBIG ID2 (l..199 => 'A', 200 => 12')

An identifier the size of the
maximum input line length which
is identical to $BIGID1 except
for the last character.

$BIGID3 (..99 => 'A', 100 => '3',
n identifier the size of the 101..200 => 'A')

maximum input line length which
is identical to $BIG_ID except
for a character near the middle.

C-i

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1..99 => 'A', 100 => '4',

An identifier the size of the 101..200 => 'A')

maximum input line length which

is identical to $BIGID3 except
for a character near the middle.

$BIG INT LIT (1..197 => '0', 198..200 => "298")

An integer literal'of value 298

with enough leading zeroes so

that it is the size of the
maximum line length.

$BIGREAL LIT (1..195 => '0', 196..-200 => "690.0")

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 => '"', 2..101 => 'A', 102 => '"')

A string literal which when
catenated with BIG STRING2

yields the image of BIGIDI.

$BIG STRING2 (1 => '"', 2..100 => 'A", 101 => '1',

A string literal which when 102 => '"')

catenated to the end of

BIGSTRING1 yields the image of
BIGIDI.

$BLANKS (1..180 => ' ')

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 32766

A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT MEM SIZE 1024

An integer literal whose value
is SYSTEM.MEMORY SIZE.

$DEFAULT STOR UNIT 8
An integer literal whose value

is SYSTEM.STORAGEUNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME 18086
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 2.0*"(-31)
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD LAST 32767
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXED NAME NO SUCH FIXEDTYPE
The name of a predefined
fixed-point type other than

DURATION.

$FLOAT NAME NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONG FLOAT.

$GREATER THAN DURATION 90000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHAN DURATION BASE LAST 10000000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 20
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 \NODIRECTORY\FILENAME1
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 \NODIRECTORY\FILENAME2
An external file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -90000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHAN DURATIONBASEFIRST -10000000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY 1
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAX IN LEN 200
Maximum input line length
permitted by the implementation.

$MAX INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.MAX INT+1.

$MAX LEN INT BASED LITERAL (1..2 => "2:", 3..197 => '0',
A universal integer based 198..200 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX IN LEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

$MAXLEN REAL BASED LITERAL (1..3 => "16:", 4..196 => '0',
A u-niveral real based literal 197..200 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRING LITERAL (1 => '"', 2..199 => 'A', 200 => "')

A string literal of size
MAX INLEN, including the quote
characters.

$MININT - -2147483648

A universal integer literal
whose value is SYSTEM.MININT.

$MIN TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME BYTEINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT-FLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NAMELIST 18086
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFE#

A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEWMEM SIZE 1024
An integer literal whose value
is a permitted argument for
pragma MEMORYSIZE, other than
$DEFAULT MEM SIZE. If there is
no other -value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEW STOR UNIT 8
In integer literal whose 7alue
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEW SYS NAME 18086
A value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value of that
type, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 1.0/18.2
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form

AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

e. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

f. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

D-1

WITHDRAWN TESTS

g. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

h. CD2B15C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

i. CD2D11B: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

J. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

k. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

1. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

m. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

n. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

o. CE21071: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATAERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 1I.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

p. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

q. CE3301A: This test contains several calls to END OF LINE and
ENDOFPAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,

D-2

WITqDRAWN TESTS

132, and 136).

r. CE3411B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

