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ABSTRACT 

As the number and bandwidth of sensors increases, an acute demand for preprocessing 
sensor data obtained for machine-based decision making arises. Especially in a data fusion 
context, the data from numerous sensors must first be preprocessed to prevent saturation of 
the decision making mechanism — albeit man or machine. 

Presented is a general preprocessing approach which provides a compact representation 
(feature vector) of sensor data. The approach, supported by a signal decomposition theo- 
rem, adaptively models in recursive fashion, the detrended sensor data as an autoregressive 
(AR) process of sufficiently high order. Provisions are included to accommodate nonsta- 
tionary data by incorporating an information-theoretic transition detector to identify the 
segments of near-stationary data. Together, feature vectors (AR coefficients) are produced 
over near-stationary data segments which are scale invariant, translation invariant, normal- 
ized, and represent sufficient statistics. Furthermore, the merit of the preprocessor is quan- 
titatively determined in a continuous manner from the resulting innovations (modeling error 
process). 

Specific application results utilizing nonstationary radar data demonstrate the ability to 
simultaneously reduce data and maintain information content, without requiring a priori 
statistics and/or expert rules. 

in 
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ADAPTIVE PREPROCESSING OF 
NONSTATIONARY  SIGNALS 

1.    INTRODUCTION 

1.1 MOTIVATION 

As the number and bandwidth of sensors increases, an acute demand for preprocessing sensor data 
obtained for machine-based decision making arises. Especially in a data fusion context, where the informa- 
tion from numerous sensors is combined to yield high-level decisions, the data from individual sensors 
must be preprocessed before fusion to prevent saturation of the decision making mechanism, albeit man or 
machine. 

Preprocessing can be viewed as constructing an alternative representation of the data, one which pro- 
vides desired invariances and reduces redundancy. In short, the primary objective of preprocessing is to 
produce a compact representation (feature vector) of the sensor data which simultaneously 

• Reduces data and 

• Maintains information content. 

1.2 GENERAL APPROACH 

A general approach which satisfies the above preprocessing objectives is driven by Wold's decompo- 
sition theorem [1]. The fundamental theorem basically states that any stationary discrete-time process can be 
decomposed into a summation of a deterministic signal and an autoregressive (AR) process of sufficiently 
high order [2]. Consequently, a dynamic preprocessor following Wold's theorem first entails detrending 
the data for deterministic quantities and subsequently fitting an AR model to the remaining process as illus- 
trated in Figure 1-1. 

Unfortunately for most real situations, the sensor data are nonstationary. However, many of the non- 
stationary real signals are piecewise stationary. That is, although the signal statistics may vary significantly 
over the complete data record, localized regions can be identified where the statistics remain constant. 
Consequently, Wold's theorem can also be applied to nonstationary signals provided the near-stationary 
segments can be identified. Hence, by employing a statistical transition detector for identifying the near- 
stationary segments, a general preprocessor architecture for nonstationary signals can be constructed (see 
Figure 1-2). 
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Figure 1-1. Preprocessing architecture for stationary signals. 
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Figure 1 -2. Preprocessing architecture for nonstationary signals. A feature vector V (/ k ) is produced over each 
near-stationary segment / k 

1.3    ORGANIZATION 

The organization of this report follows the nonstationary preprocessor architecture (Figure 1 -2) 
comprising a dynamic AR modeling module and transition detector. 

In Section 2, an adaptive AR modeling algorithm is developed to satisfy objectives derived from 
demands posed by a real sensor environment, including unknown a priori statistical information and fast 
throughput. Hence, a recursive algorithm is sought for dynamically building an AR model for each of the 
near-stationary segments of data. To identify these segments, in Section 3 a transition detector is developed 
which couples well with the previously developed recursive AR modeling algorithm. Both detection and 



estimation of transition times are achieved. The complete set of algorithms for preprocessing are displayed 
in Section 4. 

The results obtained by applying the developed preprocessing algorithms on real data are presented in 
Section 5, and issues concerning detrending and model order selection are addressed. A summary of the 
results is followed by the conclusion section, providing direction for further research. 



2.   ADAPTIVE AR MODELING 

2.1    INTRODUCTION 

Motivated by Wold's theorem, consider modeling a stochastic process with an autoregressive (AR) 
model of order M 

Let 
M 

y(n)= XM',* v (" - 0   + *(") 
; =1 

where 

// 
= w    y(n - 1) + e(n) 

y (n - 1) • 

( y{n-\)\ 
y (« - 2) 

VJ y (n - M ) 

(2.1) 

(2.2) 

ID 
ID 
lO 
i— 
01 
o 

W   = 

last M samples 
( w  \ 

AR coefficients 

(2.3) 

and e(n) represents the modeling error, often referred to as the "innovation process." The schematic rep- 
resenting the AR modeling of the random process y (n) is shown in Figure 2.1. The diagram can be 

viewed as a digital transversal whitening filter, since the output e (n ) should be white noise of variance a} 

if the colored process y («) is truly an AR (w, M ) process. 

y(n) y(n-1) y(n-2) 

W-i* 

y(n - M) 

W2( W M 

Figure 2-1. Digital transversal whitening filter representing the AR modeling process. The tap weights w 
are specified a priori. 



The optimal set of coefficients w °, resulting in an uncorrelated innovation process, are obtained by 
solving a matrix equation [3,4] derived from the autocorrelation function of the process y (n ). Assuming 
v (n ) represents a stationary segment of data, then the autocorrelation function becomes (see Appendix A) 

r(m)= £{v(/J+ m)y*(n)} 

r M 

2w!*r(m-i) + M0)tt?     m = 0 
i =1 

<! M 

Z.w °*r (m - ;') 
/ =1 

Lr(-m) 

m > 0 

m < 0 

(2.4) 

or equivalently for lags w = 1,2,...A/ 

/?w°= r (2.5) 

where 

R a E{y(n- \)yH (n - 1)} 

r(0) 
r(- 1) 

r(l) 
r(0) 

r(- Af + 1) r(- M +2) 

/(M  - 1) 

r(Af -2) 

r(0) 

(2.6) 

r'-(-1) ^ 
r(-2) 

r(- M). 

(2.7) 

Thus, solving the matrix equation Rw °= F yields the AR coefficients w °. However, such batch pro- 
cessing procedure requires matrix inversion as well as a priori knowledge of the autocorrelation function 
and hence is not suitable for the current problem, requiring a recursive algorithm operating in the absence 
of a priori input process statistics and capable of adapting to changing statistical environments. 

2.2     OPTIMAL LINEAR PREDICTION EQUIVALENCE 

The desired adaptive recursive algorithm for computing the model coefficients is readily obtained by 
alternatively viewing the task at hand as an optimal linear prediction problem in the sense of Wiener [5]. 

Reformulating, consider predicting  v (n) given the past M samples y{n - 1). For optimal linear 
prediction, the output f(n) is simply a linear combination of y (n — 1) expressed as 



f(n)= wH y{n - 1). (2.8) 

The objective is to choose the tap weights w (AR model coefficients) resulting in the best performance. 
Here, best performance is defined as minimum mean-squared-error (mse). 

Expressing the error between the desired and the linear filter output by rearranging Equation (2.1) 

e{n)= y(n)- f{n) (2.9) 

the performance measure (mse) becomes 

J(w)= E{e(n)e*(n)} (2A0) 

representing the average innovation power or equivalently, the variance of the prediction error (AR 
modeling error). Now upon substitution 

J(w)= £{(>•(«)- w" y(n- l))(y*(/0-7/y("- D^7)} 

= r(0) - w    r - r   w + w    R w (2.11) 

the performance measure is seen to be quadratic in the weight vector, and hence yields a parabolic surface 
with a unique minimum. 

Consequently, obtaining the optimal tap weights is achieved by minimizing J (vT ) using the zero 

derivative criteria. 

w (2.12) 

or Rw°= F 

And thus the equivalence is established between AR modeling and optimal linear prediction, for the optimal 
predictor tap weights (impulse response of the linear prediction filter) are equivalent to the AR coefficients 
[Equation (2.5)]. 

2.3   RECURSIVE STEEPEST-DESCENT AR MODEL FORMATION 

Returning to the objective of obtaining an adaptive recursive algorithm for the AR coefficients, notice 
that under the optimal prediction interpretation a performance measure (mse) was defined, guiding the selec- 
tion of the coefficients. Supplied with such measure, a recursive algorithm can now be formulated follow- 
ing the method of steepest descent. The weight vector (AR model coefficients) at time n + 1 is given by 



aiiw) 
w(n + 1) = w (n) - r\    v-     _      = w{n)+ 2t)(r - Rw{ri)) 
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Figure 2-2. Performance measure surface as a function of the tap weights. 

Furthermore, when the process y (n ) is stationary and the statistics R  are known a priori, the algorithm 
converges to the optimal weights regardless of the initial conditions, provided the rate of adaption is 
bounded by 

0< T] < 
\n 

(2.14) 
ax 

where A,^ is the largest eigenvalue of the correlation matrix R [2], 

Although the steepest-descent algorithm [Equation (2.13)] is recursive and guaranteed to converge to 
the desired AR coefficients, the requirement of the signal correlation matrix ( R ) prohibits its use under the 
previously imposed objectives. However, as an approximation to steepest descent, namely the least mean 
square (LMS) algorithm [6] can be utilized without knowing R a priori. 

2.4   RECURSIVE LMS AR MODEL FORMULATION 

The formulation of the LMS algorithm follows by replacing the statistical quantities R and f in 

Equation (2.13) by the instantaneous estimates.   That is, substitute y~(n - l)y~H (n -1) and 

y{n - \)y *{n) for R and f , respectively, in Equation (2.13) to yield 

H' (n + l)= w(n)+2ll(y(n- \)y*(n)- y(n - I) y" (n- W (n)) 



1 

= w(n) + 2rjy(n - 1)( v(/i)- wH (n)y(n - 1)) 

= w{n) + 2rjy(n - l)e*(n). (2.15) 

The LMS algorithm is often initialized with w (0) = 0 and is diagramed in Figure 2-3. In compari- 
son with Figure 2-1, this recursive algorithm results in an adaptive transversal whitening filter which is time 
varying and nonlinear. 

o 

Figure 2-3. Adaptive digital transversal whitening filter representing an adaptive AR modeling process. Here the tap 
weights w (n ) are determined adoptively. 

Further examination of the algorithm reveals the weights at time n + 1 to be explicitly dependent upon the 
last M + 1 values of the random input process [through the product of y (n - 1) and the innovations 
e (n ) ] and implicitly dependent upon all past values of the random input process [through the previous 

weight vector w (n ) ]. Hence, the memory of the filter is characterized by the choice of the adaption 
(learning) parameter r\ ; for small t] the filter memory is long, wherein the dependence is primarily implicit 
amongst all past values of y (n), and for large t] the filter memory is short, wherein the dependence is 
primarily explicit amongst the past M + I samples of y (n) (see Figure 2-4). 
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Figure 2-4. Dependence of the weight adaptions upon the input data. 

Considering the LMS convergence properties, clearly by employing the instantaneous estimates, 
the weights are expected to fluctuate during the iterative process. However, under certain independence 
assumptions [7], or under specific statistical correlation properties of the signal [8], both the ensemble 
average of the LMS weight vector and the ensemble average of the mse converge to the optimal values, 
provided the rate of adaption is bounded by 

M 

0< r\ < l/^A. 
/ =1 

(2.16) 

where M-j I are the eigenvalues of the correlation matrix. Moreover, this criterion [Equation (2.16)] is 

simplified by observing for a stationary y («) process 

Mr(0) = tr[R] = tr[QQH Rj= O-[QH R£>]= O-[A] = £ A. (2.17) 

i=l 

where Q is the matrix of eigenvectors for R and A is the diagonal matrix containing the eigenvalues. 

Thus the convergence in mean and mean square of the AR coefficients, when y (n ) is a stationary process 
conforming to the various assumptions, is guaranteed provided 

0< 77 < J  
Af/-(0) (2.18) 

10 



2.5   SUMMARY OF ADAPTIVE AR MODELING ALGORITHM 

The LMS algorithm suited for recursively determining the AR model coefficients describing a 

stochastic process >' (« ) in the absence of complete a priori statistics is summarized below. 

A Priori Parameters 

M = AR model order (2.19) 

n = adaption (learning) parameter I" < V <  w I7Q)J (2.20) 

Initial Conditions 

w (0) = 0 (2.21) 

>'(0) =0 

Innovations 

e(n)= y(n)- w    (n)V(n- 1) 

(2.22) 

(2.23) 

M 

= y(n)- 2LH'*(n) y (n - »') 
(=i 

AR  Coefficients 

w(n + 1) = w(n)+ If] J(n - l)e*(n) (2.24) 

or      wj.(/i+ 1)= w.(n)+ 2rj yin - i)e*(n), (2.25) 

n 



3.     TRANSITION DETECTION 

3.1   OBJECTIVE 

Recall that the central objective of preprocessing a nonstationary signal is to produce feature vectors 
over near-stationary data segments. These feature vectors, subsequently used for signal classification, 
ideally provide data reduction while maintaining information content. 

Consequently, identifying the near-stationary intervals comprising the nonstationary signal is of prime 
importance in feature vector extraction. And since the boundaries of the near-stationary segments coincide 
with a change in the spectral characteristics of the signal, a spectral transition detection algorithm is 
warranted. 

In addition to detecting a change in spectral character, an algorithm is sought which also estimates the 
actual transition occurrence (TA) with short delay T. - T^ and few false alarms (see Figure 3-1). 

Figure 3-1. Piecewise stationary signal with spectral transition at T^ and subsequent detection at Td . 

Furthermore, in harmony with the previously mentioned AR modeling objectives, the adaptive algorithm is 
desired recursive and operational in environments where the signal statistics are unknown both before and 
after transition. 

A candidate algorithm for transition detection is presented which couples nicely to the previously de- 
veloped recursive AR modeling algorithm. The algorithm discussed is a dual window approach which 
counters many limitations of the classical single window technique that essentially tests how far from the 
white noise hypothesis are the innovations arising from the modeling. 

13 



3.2 DUAL WINDOW APPROACH 

To counter the limitations of the classical single window approach (including large variances before 
transition, unpredictable behavior following transitions where a decrease in signal energy occurs, and re- 
quirement of a priori reference information), a technique utilizing both global and local windows is adopted. 
The approach introduced by Basseville and Benveniste [9] offers better behavior before transitions and 
yields larger drifts in the test statistic following detection, thereby improving detection capability. 

The approach, like numerous other transition detection algorithms, employs a cumulative sum statistic 
of the form 

(3.1) 
k = l 

[T (k ) to be determined] whose drift properties signal a change in spectral characteristics. The input driv- 

ing the statistic is the modeling error or innovation process, as diagramed in Figure 3-2. 

y(n) 
DYNAMIC 

MODEL 

eln) 
CU SUM 

STATISTIC 

u(n) 
HYPOTHESIS 

TEST 

TRANSITION at 
in 

ALARM 
en 
o 

Figure 3-2. General transition detector based on cumulative sum statistic. 

Basically, the integration effect provided by a cumulative sum statistic provides more reliable detection capa- 
bility in noisy environments (i.e., where the true AR model coefficients are unknown). Thus, instead of 
detecting a change in absolute mean of the innovation process at a transition, rather a more sensitive change 
in drift of u (n ) is detected as shown in Figure 3-3. 

The distinctive feature of this approach, however, is the utilization of two windows. The global 
reference window expands during the process allowing all information in the stationary segment under the 
distribution Pa to be included in the AR model building. Utilizing all information enables better modeling 
(estimation of the AR coefficients) of y (n) before the transition. In contrast, the fixed local window uses 

only the most recent information. When utilizing a dual window transition detection approach in conjunction 
with recursive AR modeling, the global and local windows can be effectively implemented by simply 
choosing appropriate learning parameters. For example, when using two LMS filters (per Section 2.4) for 
recursively estimating the local and global AR coefficients simultaneously, the learning parameter for the 
global filter (r^) is chosen smaller than the learning parameter for the local filter (%) within the constraint 
[Equation (2.18)]. Consequently, the global filter with long memory (small t]a ) coincides with the 
expanding global window, while the local filter with short memory (large r;  ) corresponds to the fixed local 
window. 

14 
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Figure J-3. Properties of the (a) signal, fb) innovation, and fcj cumulative sum statistic at a spectral transition 

(true modeling coefficients are unknown). 

Now as the region of transition is approached [see Figure 3-4 (b) and (c)]. the information theoretic 
distance metric between the distribution laws Pa and Pn extracted from the global and local windows in- 
creases, since the global reference model with long memory is virtually unaffected by the most recent infor- 
mation. Once the distance measure exceeds a given threshold, the transition is detected and the reference 
window reinitialized [see Figure 3-4 (d)]. 

The particular distance measure used to gauge the discrepancy between the adaptive filters modeling 
the signal based upon complete (global window) and partial (local window) information is given by 

T(k)=Ip/p(y(k)/y(k -\))- E{Ip/p(y(k)/y(k-\))} (32) 

where 

/   .   (y(k)/y{k -l))=log   Pa(y(k)/y(k - D) 
pj p„ ' —  

pb(y(k)/y(k -1)) 

Ep.{IPJp^yik),yik _1))}=! Pa(y/y(k -D)log Pjjy/yik -0)  dy 

(3.3) 

Ph(y/yU -») 
(3.4) 

(conditional Kullback's information [10]) 

15 
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resulting in the cumulative sum statistic given by Equation (3.1). Notice from Equation (3.2) that the mea- 
sure is seen to be a difference in the average and instantaneous discrepancies in the distributions representing 
the data from the global and local windows. 

The desirable properties of this test statistic are revealed in part by examining the drifts in the condi- 
tional mean value before and after transition. Before transition 

Da =Eo {u(n)-u(n -1)}= £_ {7(n)} = 0, 
(3.5) 

while after the transition 

Db= Ep{u(n)- u{n- 1)} (3.6) 

16 



= \[pb(y/J(n - D) - pji ylyin - l))]log Pa(y/>'("-Q) dy 
pb(y/-(n- 1)) 

(conditional Kullback's divergence) 

<0. 

Thus, zero conditional drift in u (n ) occurs before the transition, while a negative drift occurs after the 
transition. Consequently, the detection of a statistical transition in the process v (n ) can be accomplished 
by detecting a nonzero drift in u (n ). 

3.3   TRANSITION DETECTION ALGORITHM 

Examining Equation (3.2), obtaining an explicit algorithm for the cumulative sum test statistic requires 
knowledge of the functional form of the distributions. Now if the input process is assumed jointly Gauss- 
ian, the resulting transition detection algorithm couples nicely with the previous recursive AR modeling al- 
gorithm. 

In particular, once the recursive AR modeling coefficients have converged to the optimal values 
(equivalently, the adaptive filter's impulse response has converged to the optimal tap weights; 
vv   —» vT °, Rw °= r and a} = r (0) - vv H f ), the cumulative sum test statistic for detecting statistical 
transitions is given by Equation (3.1) with (see Appendices B and C). 

ru) = 
-> 

(3.7) 1-—+ 
eb h ea e

h 

The associated schematic representing the algorithm Equation (3.7) is shown in Figure 3-5. Notice 
the statistic represents a normalized distance measure between the innovation processes derived from the lo- 
cal and global data windows. Specifically, the statistic is driven by both the squared difference and the dif- 
ference in squares of the respective innovation processes. 

3.4   TRANSITION TIME ESTIMATION ALGORITHM 

Following detection of a spectral transition utilizing the cumulative sum statistic, the actual time of 
transition must be estimated. The basic estimation task is illustrated in Figure 3-6, where the objective is to 
provide an estimate of the transition time 7A with minimal delay (Td - T  ) following detection. 

An optimal approach developed by HinkJey [ 11 ] for minimizing the detection delay time (Td - T. ) , 
assuming a fixed average time between false alarms, involves assigning a drift bias 8 to the test statistic. 
Thus, instead of estimating the point of departure from zero drift as depicted in Figure 3-6, the transition 
estimate /» is simply the time where the biased cumulative sum statistic attains minimal value in the 
neighborhood of the alarm per Figure 3-7. 

17 
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Figure 3-5. Transition detection algorithm architecture. 
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Figure 3-6. Cumulative sum statistic behavior at a transition. 
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Figure 3-7. Biased cumulative sum statistic behavior at a transition. 
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Consequently, the complete transition detection and estimation algorithm is given by 

Statistics 

(3.8) 

T(k)=^ 
!_<+ IV*>r. k^^JV^-^^l2 

<V o? a? (3.9) 

Detection Rule 

u(n)- m(n) > h    => detection 

< h     => no detection 

(3.10) 

where 

m(n)= min  u(k) 

0 < k < n 

(3.11) 

Estimate 

TA = «0 3 "(«0) = min u(&) 

k<Td. 

(3.12) 
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4.     SUMMARY OF PREPROCESSING ALGORITHMS 

Combining the results from the adaptive recursive AR modeling and the dual window transition 
detection results in the following set of algorithms for preprocessing nonstationary data. 

ADAPTIVE AR MODELING 

Global Model Local Model 

(long men lory) 
A Priori Parameters 

(short memory) 

K AR model order 
M„ 

Va adaption (learning) parameter 

(n r n    ~       X      \ 

h 

1°^" Mr(0)J 

(o < va < ig 

Initial Conditions 

~a(0)=0 
y(0) = 0 

wb(0) = 0 

v(0) = 0 
(4.1a.b) 
(4.2a.b) 

Innovations 

M 

eln)= y(n)- 2^w*(n)y(n - i) e,(n)= v(«)- Z*w*(n) v in - i) o i 

i=l / =i 

AR  Coefficients 
(4.3a.b) 

w. (n + 1) =w. (n) + 
i i 

2na}{n- ia)e*(n) 

w{n + 1) =w.(n) + 
i i 

(4.4a.b) 

ia=ll,...Ma ib = l,2,...Mb 
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TRANSITION DETECTION 

A   Priori Parameters 

5 drift bias 
h threshold 

Initial Conditions 

w(0) = 0 

(empirically determined) 

(4.5) 

Cumulative Sum Statistic 

T(n)=\ 
d \ ,  K<">|       \ea(n)[ 

1 n   + -> _2 

e^n)- ea(n) 

< 
(4.6) 

u(n)= u{n - 1) + T(n)- S (4.7) 

where 

Detection Rule 

u(n)- m(n)> It      =*  detect transition (Td) 

< h     =>  no transition 

m(n)= min u (k ) 

0< k < n 

(4.8) 

Transition Time Estimate 

T^= n0$ "(n0) = min u{ k) 

k < 7\. 
(4.9) 

In addition, if the variances of the respective innovation processes are unknown, the unbiased sample vari- 
ance estimates below can be substituted in Equation (4.6). 
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$>(«) = -—fXU(*)- «(»)] (4.10) 

(4.11) 

where 
n 

e(n) = -JrI/?U) 

or the recursive forms may be utilized 

&e(n)= &c(n- \)+ [e(n)~ e (n - l)]2 + ^-j"k(«)- e (n)f (4 12) 

where 
n — 1 1 

? (») = —7p-e(n - 1) + -^-e(n). (4.13) 

The schematic representing the collective preprocessing algorithms is shown in Figure 4-1. As a final 
comment, the resulting feature vectors computed over the near-stationary intervals possess several properties 
instrumental in contributing to good classification performance. Regarding invariances, scale invariance is 
easily demonstrated by scaling both sides of Equation (2.1) by a constant, and observing the new process 
z (n ) = ay (n ) yields the same AR coefficients. Also from the same equation, translation invariance is 

easily demonstrated by forming a new process r (n ) = y (n - k ) and again observing that the coefficients 
are identical. 

Furthermore, the characteristic equation   (1 —Wj2     ~ w2"     ~ *••" M
M 

r       = 0) representing 
an AR asymptotic stationary (physical) process must have roots bounded in norm by unity. Hence, the AR 
coefficients themselves are bounded, although not necessarily by unity. Yet for many applications, 
including the present, the bound for the AR coefficients is empirically observed to be unity. 

Consequently, in addition to the compact representation being a sufficient characterization of the 
stochastic process, the feature vectors inherently instill a degree of robustness due to the invariance 
properties. 
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5.     RESULTS 

Recall that the objective of preprocessing nonstationary signals is to produce a compact representation 
(feature vector) of the data which simultaneously reduces data and maintains information. More specifically, 
guided by the decomposition theorem the data are first detrended then segmented into near-stationary inter- 
vals. Next, feature vectors containing the AR modeling coefficients are adaptively computed over each in- 
terval. 

An illustration of this adaptive preprocessing technique is shown in Figure 5-1. As the first transition 
in spectral characteristics is encountered (at time 7"^ ), the cumulative sum statistic fo( n ))displays a nonzero 
drift. Upon reaching a threshold (r ) at time 7"J , the transition time is estimated (7^) and the AR modeling 
coefficients determined over the now-defined near-stationary segment /j. The elements comprising the 
feature vector V (/ ]) are computed by simply averaging the instantaneous AR coefficients obtained from 
the adaptive global AR modeling filter over the segment  /|. The process is then reinitialized at   (7^), and 
the subsequent feature vector V (12) over the next interval /2 (defined by the transition detector) is 
computed similarly. The net result is a collection of feature vectors, each obtained over a near-stationary 
interval which can be utilized to characterize the nonstationary signal. Results from applying this general 
preprocessing technique to real nonstationary data follow. The nonstationary signal utilized is a radar cross 
section (RCS) versus time record obtained from a radar observing maneuvers from an object of interest. 
The spectra] transitions observed in the data are physically produced by the object undergoing specific 
maneuvers. Hence, the applied objective of preprocessing is to automatically produce disparate feature 
vectors representing each of the maneuvers, which can then be used to drive an appropriate classification 
algorithm, thereby automatically detecting and classifying object maneuvers. 

First, the detrending procedures necessary for the specific signals utilized are described. Next, the 
model order for the adaptive AR modeling filters is determined. Now with a fixed model order, transition 
detection and feature vector extraction results are presented. Finally, a summary of the preprocessing per- 
formance is presented. 

5.1   DETRENDING 

The RCS data employed are shown in Figure 5-2. An experienced radar analyst categorizes the data 
into the maneuvers pitch, roll, and yaw (each separated by a stable region). Such categorization serves as 
"truth" and is used later for evaluating the performance of the transition (maneuver) detector. Detrending 
begins by subtracting out the overall mean, physically corresponding to the mean RCS of the object which is 
typically known a priori. Next, the data are high-pass filtered to remove low-frequency trends which persist 
throughout the entire data record. The filtering is achieved by forming a new detrended sequence 

y(«)= y'(rt) - yLp{n) (5.D 

where 

yLp(n)= ayLp(n- !) + (!- a) y\n) (5.2) 
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Figure 5-2. Original and detrended radar data. 
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is a unity DC-gain low-pass version of the zero mean RCS data y'(n ) • Typically with such data, the low- 
frequency components common through the record can be removed by modest filtering (a = 0.9999). 
Consequently, a zero mean, high-pass, detrended sequence results (as shown in Figure 5-2), and that drives 
the subsequent AR modeling filter and transition detector. 

5.2   MODEL ORDER 

Before the adaptive modeling filter can be driven by the detrended time series, the model order 
(equivalently, the number of tap weights for the adaptive transversal filter) must be determined. Ideally, the 
order is chosen to provide parsimonious modeling [12]. That is, a model order is sought which provides an 
acceptable compromise between model performance and complexity. 

Two conventional criteria for model order selection were investigated. The AIC criterion, both theo- 
retically intuitive and practically effective, minimizes the distance between the true and observed distribu- 
tions. For the AR formulation, AIC is given by [13] 

AIC (Q) = N In (^ + 2Q (5.3) 

where 

Q = AR model order (5.4) 

N = number of samples (5.5) 

C"~ modeling error variance. (5.6) 

Notice the first term in Equation (5.3) serves to penalize poor modeling, while the second serves increased 
complexity (through the number of tap weights Q). The AIC optimal model order is simply the order that 
minimizes Equation (5.3). Although intuitive and often effective, the AIC optimal model order is not 
consistent, and hence does not necessarily converge to the true model order. 

A consistent model order estimator investigated is the minimum description length (MDL) given by 
[14] 

MDL(Q) = ^-ln cx;+-flnN (5.7) 

This criterion minimizes the number of digits necessary to encode N observations and often results in a 
lower model order than AIC. Similarly, MDL optimal order is chosen to minimize Equation (5.7). 

Both techniques for determining model order yielded identical optimal order. The similarity can be at- 
tributed to the relatively large number of data samples (N  =8000). Observing Equations (5.3) and (5.7), 
for large N the first terms dominate, causing AIC and MDL values to vary by only a constant factor. 
Consequently, minimal values denoting optimal order were achieved at identical orders. The results are 
shown in Figure 5-3 along with the AIC and MDL optimal model orders for each maneuver. 
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Figure 5-3. AIC model order results. 

Unfortunately, the optimal model orders vary for each maneuver. Therefore, to achieve constant 
model order throughout all maneuvers (constant model order is desired for fast automatic preprocessor 
operation without a priori maneuver knowledge), an alternate technique for determining the "best" model 
order is required. Specifically, the best model order chosen represents the lowest order model which pro- 
vides good discrimination amongst the feature vectors (AR coefficients) for the various maneuvers. From 
Table 5-1, the best model order for the RCS data is seen to be 4, since little disparity amongst the feature 
vectors exists for lower orders. Note that M = 4 is also the average model order amongst the optimal orders 
selected by AIC and MDL for the maneuvers. 
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TABLE 5-1 

AR Cofficients for Varying Model Order 

Model 
Order STABLE PITCH ROLL YAW 

1 0 0.93 0.91 0.79 

2 0 0.61 0.57 0.47 
0 0.29 0.39 0.37 

3 0 0.61 0.41 0.37 
0 0.30 0.25 0.24 
0 0.04 0.22 0.25 

4 0 0.58 0.39 0.32 
0 0.32 0.23 0.19 
0 0.04 0.14 0.17 
0 -0.06 0.06 0.21 

5.3   PREPROCESSOR RESULTS 

With the RCS data detrended and model order now selected, transition detection and feature vector 
extraction can be performed. Expanded results are presented in the region of each transition, thereby 
enabling both evaluation of the transition detector and the production of the feature vectors. For each 
transition, a portion of the detrended signal is shown with two cumulative sum statistics. The first, uah , 
follows from Equation (3.8) and exhibits the desired drift behavior for transitions from low to high vari- 
ance. The second statistic wto is computed in parallel by simply interchanging the roles of r\a and J)h 

in Equation (4.4), offering better drift behavior for high- to low-variance transitions. A threshold of 
T = 100 was used throughout for both statistics. On subsequent graphs for each transition, the instantan- 
eous AR coefficients (tap weights of the adaptive transversal filters) for both the global and local modeling 
filters with accompanying model error (innovations) are shown. Averaging the AR coefficients over the 
detected intervals constitutes the corresponding feature vector. 

Stable-Pitch Transition: Results are shown in Figures 5-4 to 5-6. The transition occurs at n = 500 and 
is detected ( - u^ exceeds threshold) near 600. Subsequent estimation of the transition location fl 
[initial point of positive drift in - u^ , or equivalently, the local minimum of Equation (3.8)] is within 
samples of the actual location. The feature vector representing the stable region is computed by averaging 
the instantaneous AR global model coefficients over the first interval detected (0 - t\), yielding approx- 
imately yT (/j) = (0, 0,0,0) • Hence the stable region is modeled as white noise. 
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Pitch-Stable Transition: Results are shown in Figures 5-7 to 5-12. The transition occurs at n = 1276, 
and the appropriate test statistic wto (for high- to low-variance transitions) fails to surpass threshold, thereby 
being incapable of detecting the transition within acceptable delay time. However, by examining the be- 
havior of M^ , modifications can be employed to ensure detection. 

300 - 
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•a a 

3 
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tc 

Figure 5-7. Pitch-stable transition detection results. 
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The behavior observed is due to the test statistic u (n ) having an asymmetrical unconditional drift. 
That is, the drift in u (n ) experienced by a signal transition from a distribution Pa to Ph is not equivalent 
in magnitude to the drift incurred from the transition Ph to Pa . Specifically, for the signal analyzed (see 
Figure 5-7), a transition from high to low variance (signal power) yields slow linear behavior in «to fol- 
lowing the transition. 

The linear property follows from the post-transition signal (having low variance) being relatively 
small in magnitude. From Equation (4.3), small y (n ) yields small innovations e (n ), since typically 

] H, I < 1. Furthermore, by examining Equation (4.4), small innovations e {n ) coupled with small signals 
f(n - 1), cause very little adaption in filter tap weights (vv ); (as verified by Figures 5-8 and 5-9). Now 

with the filters practically fixed [ea(k ) ~ eb(k )] and the innovations ea(k ) and eh(k ) small, the 
statistic T (k ) is practically reduced to [see Equation (4.6)] 

T{k) = ^\-o2
eJo^ (5.8) 

and consequently, the cumulative sum statistic reduces to 

n 

"toW^O" aeJal) (5-9) 
£=1 

2 2 resulting in the linear behavior for aea
> aeh • 

One approach to circumventing such behavior is to normalize the signal. Now the post-transition 
signal is sufficiently large to drive the filter adaption through the innovation process. Results from the 
normalized pitch-stable transition are shown in Figures 5-10 to 5-12. Notice that the transition is detected 
near 1330, and the transition estimation ^ is within samples of the actual location. 

The feature vector representing the pitch region is computed by averaging the instantaneous AR 

coefficients over the second interval (7^- T£)yielding VT (/2) = (0.58,0.32,0.04,-0.06). Having 

only two significantly nonzero components tends to substantiate the AIC and MDL optimal second order. 
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Stable-Roll Transition: Results are shown in Figures 5-13 to 5-15. The transition occurs at n = 400. 
detected near 500, and location estimated f I within samples of the actual occurrence. Consequently, 
another feature vector representing the stable region is computed over the third interval (t\ - t^) similarly 

yielding approximately V7 (/3) = 0. 
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Figure 5-13   Stable-roll transition detection results. 
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Roll-Stable Transition: Results are shown in Figures 5-16 to 5-19. The transition occurs at n = 2319, 
and the appropriate statistic «to (for high- to low-variance transition) fails to surpass threshold. However, 
for the same reasons described in the pitch-stable transition section, the performance can be improved by 
normalizing the signal. 
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Normalized roll-stable transition results are shown in Figures 5-19 to 5-21. Notice that two 
significant regions of positive drift are exhibited by - uha , although only the last drift exceeds threshold. 
The latter coincides with the actual transition, yielding an estimated 7A near the truth. The former initiated 
at n = 1000 appears to indicate a false transition. However, conversations with an experienced analyst [15] 

revealed that typical roll maneuvers comprise three submaneuvers, representing acceleration, constant velocity, 

and deceleration. Consequently, the transition detector is attempting to detect submaneuver transitions as well. 

The feature vector representing the roll maneuver over the interval (t\ - /A) is V1 (/3) 
= (0.39,0.23,0. 14,0.06). Here again, the relative magnitudes of the feature vector components 

substantiate the optimal AIC and MDL optimal model order. 
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Stable-Yaw: Finally, these results are shown in Figures 5-22 to 5-24. The transition occurs at n = 1502, 
detected near 1600, and again the location f £ estimated within samples of the true transition. 

Feature vectors representing a stable region and final yaw maneuver are calculated over the intervals 
(fl - f£) and (fi ~ N ), respectively. Results are V7 (/4) = 0 and V7 (75) = (0.32,0.19,0.17,0.21) 
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Figure 5-22. Stable-yaw transition detection results. 
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5.4   SUMMARY 

Application of the preprocessing algorithms (Section 4), incorporating spectral transition detection and 
adaptive AR filtering (feature vector extraction), to nonstationary RCS data was reported. All filtering and 
detection parameters [including learning rates (r^, rjb), filter orders (Ma , Mb) bias (5 ), and a threshold 
(h ) ] were held constant throughout signal preprocessing. Therefore, the performance described is 

indicative of what can be achieved with a fixed set of parameters. 

The data were detrended by removing the mean value and then selectively high-pass filtered. Results 
from detecting spectral transitions (physically representing object maneuvers) embedded in the detrended 
signal are summarized in Figure 5-25. All transitions were detected within samples of the actual locations. 
Detection performance was improved for signal transitions from high to low variance (pitch-stable, roll- 
stable) by normalizing the signal. 

The overall performance of the adaptive preprocessor on real nonstationary data can be illustrated by 
Figure 5-26. The 8000-sample data were reduced to 7 disparate feature vectors, each of dimension 4. 
Moreover, the amount of information maintained in the feature vector representation can be gauged by the 
innovations (modeling error) sequence shown in Figure 5-26. With the exception of the roll maneuver, 
where the transition detector attempted to detect the roll submaneuvers, the sequence is near white, designat- 
ing near-complete statistical information extraction. 
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6.     CONCLUSION 

An adaptive preprocessor was introduced to provide a compact representation of nonstationary data. 
The representation, consisting of AR coefficient vectors computed over near-stationary segments, is scale 
and translation invariant, normalized, and statistically sufficient. 

Guided by a decomposition theorem, the preprocessor was constructed using adaptive AR modeling 
filters and a transition detector. The information-theoretic transition detector driven by the parallel adaptive 
AR modeling filters successfully detected all transitions within the radar signature analyzed, thereby yielding 
segments of near-stationary data. Also, the feature vectors produced by the modeling filters over the detected 
near-stationary segments were sufficiently distinct, thus supporting automatic classification. Practically 
all the sensor statistical data information (throughout 8000 samples) was retained in the 7 compact feature 
vectors (each of dimension 4) as substantiated by the resulting near-white innovation process. 

Regarding future research suggestions, both components of the preprocessor could be enhanced. For 
example, alternative recursive least-squares algorithms with faster convergence times might be employed for 
the adaptive AR modeling filter, currently utilizing the LMS adaption algorithm. Also, new transition 
detector statistics might be explored which yield symmetrical behavior, thereby avoiding the normalization 
requirement when encountering high- to low-variance transitions. Or alternatively, automatic gain control 
circuitry could possibly be employed to automatically normalize the data. 
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APPENDIX A 
AR AUTOCORRELATION 

Assuming the process v (n ) is stationary, the autocorrelation function is 

recall 

so that 

r(m)= £{>•(« + m) >*(«)}, 

M 

y(n)= 4*w*y(n- i) + e{n) 
i=l 

(A.l) 

(A.2) 

[( M 

r(m)= E 7 MI * y (n + m - i) + e(n + m) 
lA/=i 

y*(n)\ 
(A.3) 

M 

= 7 >' */• (m - i) + E{e(n + m) >*(«)} 
i=1 

To evaluate the last term, consider the linear filter interpretation [i.e..  v ( n ) is the output of infinite 

impulse response (IIR) filter] 

>'(«)= h(n) * e(n) (A.4) 

= £/i*(*)e(/i - it). 
k =0 

Hence, 

M 

(m)= £vrV(m - i) + E\e(n + m)^h(k)e*(n - k) 
i=l *=0 

(A.5) 
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M 

= ^V.V(m - /)+ £/!(*)£{<>(« + m)e\n - A:)}, 
i=l k=0 

and under the white noise residual assumption 

E{e(n + m)e*(n - k )} = a^S     ,  = 1 e   m + k 

<T;   k =-m 

0    k *- m 
(A.6) 

consequently, 

r(m)=Xw*r(OT~ 0+ SMJOO^^,   m = (U2,. 
/=i A=0 

(A.7) 

£w >(-«) + /?(0)CT;   W=0 
I = 

2^w .*/• (m-i  ) 
i =1 

r\-m) 

m > 0 

m < 0 

Finally, substituting the lags w = 1,2, ... M  into the autocorrelation expression yields the linear matrix 
equation for the AR coefficients 

r(l) = w*r (0) + <r (- 1) + ... + w*  r(l - Af ) 
1 2                                      M 

r(2)= w*r(l)+ w*r(0) + ...+ wj, r(2- Af) 

r(Af ) = w?r(M - 1)+ w*r(M -2)+ ...+ H»* r(0) 
1 Z                                               Af 

'    r(0)        r(- 1)    . 
r(l)          r(0) 

. r{\- M)\ 
..r(2- M) 

PI 
M2   

' r(l) > 
r(2) 

U(M - 1) KM -2) • ••      r(0)     > ^M, U(A/)> 

(A.8) 
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Upon defining the correlation matrix 

R E£{V(«-1).^(«-1)} 

= E 

( y(n -\) } 

y(n-2) 

iv y(n- M) 

{y(n- 1) y(n-2) ... y(n - M )) 

r(0) 

r(- 1) 
r(l) 

KO) r(M -2) 

r(- M +1) r(- M +2) •..      r(0) y 

(A.9) 

and 

r  r(- 1)  > 
r(-2) 

/•(- Af ). 

(A.10) 

the AR coefficients are seen to satisfy 

-7_ *      _ -H _      _ 
/? u    = r *   o/"   fi   H* = r (A.ll) 

/?w = r 

since the correlation matrix R  is Hermitian. 
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APPENDIX B 
CONDITIONAL DISTRIBUTION OF PARTITIONED 

GAUSSIAN RANDOM VECTOR 

Let a Gaussian random vector be partitioned as 

2 ={y (B.l) 

x = 

rx^ 

VXn, ) 

(B.2) 

v = 
y7 

v-Vy 

(B.3) 

having a joint distribution 

p(z) = 
4LT-T) 

H _-l 
I <r-D. 

(2*)     |T I 

(B.4) 

and a partitioned covariance matrix given by 

-c{(F-r )<r-r)"} = (f  f , 
(B.5) 

where 

= E{7} (B.6) 

The aim is to express the conditional distribution p (x / v ) in terms of the partitioned covariances 
Lx.x , Exy , Lyx , and £yy . Such a task is easily accomplished if E can be massaged into matrix diagonal 
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form. That is, a transformation on r   is sought to simplify the exponential argument in Equation (B.4) 
yielding 

(z~ - ?)" i\z - r) = (s- - if 
'cn   of1 

(s  - s*) 

= (5- - n 
H 

f--\      -  \ 
CU        ° 

5   C*j 
(s - r) 

(51 " ri)    Cn(5l " ri) + (S2 ~ J2)C22(f2 " ri) (B.7) 

where s   is the appropriately partitioned vector 

s  = 
\S2J 

(B.8) 

The following identity is used to provide the partitioned diagonalization. For I positive definite and 
Zv.v  square, let 

B = 

(- _    _-l ^ 
I      -II xy   v v 

.0 T 
(B.9) 

then 

_      H 
C =BZB     = 

I   - I    I    I 0    "1 xx xy    yy    yx 

0 vv , °    c2, (B.10) 

and is easily verified upon substitution. 
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Now, X    can be computed in partitioned form 

-l -1 

i   =18   CBJ   =B C  KB  )   = B  C 
H  _-l _       _W 

B  =B '<   «' 
_-l 

v °    cn 
B. (B.ll) 

Also, the determinant can be computed by 

Ifl- -H _ _ 1 -W 
B   CB = \B C B = \c \\c r i I r 5 11    221 (B.12) 

Consequently, using Equations (B.ll) and (B.12). the joint distribution [Equation (B.4)] becomes 

p(D- 

<2*>"%|]^ 
"7<; 

e  ~ f-r) 
(B.13) 

and is written compactly utilizing the coordinate transformation 

r = B." = (Z-ZnZyyJ '  1 ' 

VF27 
(B.14) 

so that 

p(F) = 1 -Hi"—J*) c (r-r') 

(2jr)"/yiJlcJ1 (B.15) 

4[(Vri)"C>l\vr>)+(Vr2)"r22Wr2)]- 

(27r)       Clll   C22 
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Finally, upon substituting Equation (B. 10) into (B. 16), the joint distribution in partitioned form 
becomes 

p(x,y) = 1 

»"%- {In)     £     -III \ *.n /      ^xx xy   >>•    yx *yy 

(B.16) 

-;[(v--r)"^'(f-r)] 

while the conditional distribution in partitioned form becomes 

P(7) »./2j_ _    __,_ 
(27T)      \Exx-IxyIyyIyx 

(B.17) 

4[.r-(r+r0.fw
l<f-*•>)] (rn.-rn.i;'r„) [r<r+rv;£<f-n)] 
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APPENDIX C 
DERIVATION OF TEST STATISTIC FOR AR GAUSSIAN PROCESS 

The test statistic given by 

u(n)= Jj(k) 
k=l 

(C.l) 

where 

T (k) = log  pjjy(k)/y(k - 0) -\ pj, v U)/v (* - 0) log Pa{ y (*)/ v (A-  - 1))dy 

Pb(y(k)/y{k -D) Pb(y(k)/y(k -1)) 

(C.2) 

is derived for the zero mean AR Gaussian process   v (/?) 

y(/l)= ^°" y(n - 1) + <?(/i) (C.3) 

where e(n ) is a white Gaussian noise process with variance Of • First, the conditional distribution needed 
for deriving the test statistic Equation (C.2) is obtained by defining the (M  + 1) x 1 partitioned random 
vector 

fu\    f    ?(*)    ^ 

U )    [y(k - 1) 
(C.4) 

with appropriate partitioned covariance matrices 

Iuu= E{y(k)y(k)H }= r(0) 

%u H E\y(k - l)y(k)H }= 7 

- -H       _H 
I    = Z    = 7 

(C.5) 

(C.6) 

(C.7) 
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Jk - E{ y(k - 1) y(k - \)H } = R. (Cg) 

Next, the results of Appendix B are applied (substituting if = x~, \~ = f ) yielding 

p(y(k)/y{k - D) = Ke'11^' (*)"r"if V(*-»I (r(0)-/ /?~ » [v(*)-r- /f >(*-»] 

(C.9) 

where 

/     I -i    '\~1/2 

K'= bxlrW-r" R    r\)      . (CIO) 

Employing the AR modeling assumption, (i.e., Rw °= r   and o} = r (0) - w °H r ), the 
distribution reduces to 

\e(k)\2 

p(y(k)/y(k -1)) = Ke ^ 

where 

K = (2KO;) 

and 

e(*) = y(*)- w0" y(k -1) 

(C.ll) 

(C.12) 

(C.13) 

represents the AR modeling error (innovation) process [Equation (2.9)]. Therefore, the steady state test 
statistic [Equation (C.2)] for the AR Gaussian process [Equation (C.3)] is 

Ka      MM2       KU)|2 
(A:) = log -p- 5— + 5— 

Kb        2< 2< 
'• e* (C.14) 
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W K 

T~r^ji\ea(y)\2 P( 
ea( y )¥>' + 7-r i I %(y )|2 />( ea( y ))dy 

<Kb H. 
where 

2<S 

(C.15) 

(C.16) 

(C.17) 

Evaluating the first integral. 

/ = 
1     2< 

JkaO')|2P(^(v)yv ; (C.18) 

with a change of variables 

ir±EiK\2} 2°; 

2°7 KO-T (C.19) 

Evaluating the second integral. 

!2 = -^r)\eh{y)\~p (ea(y ))d>' 
(C.20) 

TTI IV >) - e<k y )\2+ ed y)[e
b( y) - ea( y)] 

e     \ 
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+ [eb(y)- edy)]ea(>') + \ea(y)\' p(u>i)dy 

2oi 

2 
eb(k)-ea(k)\   +(eb(k)-ea{k))E{ea} 

+ (eb(k)-ea(k))E\ea}+ol 

1X5 

1    {\eb(k)-ea(k)\2+al} 

Combining the results, Equation (C.14) becomes 

T(k) = i ~^- -\ + h
ik)\2 -\^kA2 \(k)_ea(k)\ 

b b 

(C.21) 
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