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1 Introduction

For many years people have been interested in the control of flexible structures.
Problems caused by flexibility show up frequently, ranging from automated machin-
ery that has to pause momentarily to allow vibration to damp out to instability
in non-colocated control loops. Space-based structures and robots are particularly
susceptible to severe flexibility problems because they tend to be long, slender and
extremely lightweight.

As the accurate control of a flexible robot is a complicated task, researchers have
begun by building simplified flexible robots. The simplest form is a single mass-beam
system, explored by many researchers including [1,2]. Two degree of freedom, planar
models have been built both as systems with stiff links/flexible joints [3], as a single
flexible link/fast end effector [4] system, and as two flexible links with stiff joints [5].

Planar, low degree of freedom robots are good for experimenting with control
techniques at low frequencies of vibratin. However, they cannot reproduce the
complications of a true space-based robot: vibrations with coupled bending and
torsional modes end joints exciting modes orthogonal to their plane of action. The
practical problems of controlling such an arm has lead researchers to building three
dimensional, flexible robots, as by [6].

Unfortunately, a flexible earth-based robot suffers from an inseparable problem:
gravity. Unless you build in some form of compensation to eliminate the effects of
gravity, your robot will sag. The standard way to get around sagging is to make the
links of the robot directionally stiff with a higher stiffness vertically than horizontally.
But directional stiffness can eliminate some of the very effects that you are studying.
Consider a standard two link robot model with three degrees of freedom: two revolute
joints at the base and a revolute joint at the shoulder which is the same plane as one
of the base joints. Rotation of the base or movement of the two co-planar joints will
excite vibration in the radial sense, but only rotation of the base will excite vibration
perpendicular to this. The directional stiffness has artificially raised the natural
frequency in a direction that may cause the most problems in a true space-based
arm.

The motivation for this research was the intent to design and build an anthropo-
morphic, two link, three degree of freedom test fixture that would exhibit both link
and joint flexibility. The design needed to behave like a teleoperated space robot,
complete with low frequencies of vibration and coupled modes. This paper deals with
the underlying issues that came up while designing links for the robot that could give
the desired flexibility and not break. The first issue is how the endpoint deflection
of the robot under gravity relates to the lowest natural frequency of vibration of the
robot. The second issue deals with the best shapes and materials to be used for the
flexible links of the robot.
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Figure 1: Single cantilever beam with a mass

2 Vibration Considerations

When building a robot that will have primary modes of vibration in a1 d*iectoUns,
a natural design issue is what will be the lowest natural frequency of the robot. A
low fundamental frequency has several advantages and one clear disadvantage. The
low fundamental frequency is easy to observe and record. It allows the higher modes
of vibration to occur at frequencies that may also be visible. But the disadvantage
is that a flexible arm will sag under gravity.

It turns out that the deflection of the arm ur. -r gravity is a very good way to
estimate its natural frequency of vibration, and vice-versa. To demonstrate this, we
will begin by deriving the relationship between the endpoint deflection of a single
beam and its natural frequency. Then we demonstrate that for real two link flexible
systems, the formula relating endpoint deflection to natural frequency forms a useful
estimate of the system's natural frequency.

2.1 Single Beam Under Gravity Loading

There is a useful relation between the natural frequency of vibration and the
deflection of a single beam urder gravitational loading, mentioned by [7]. If we
consider a single cantilever beam with a mass (as shown in Figure 1) and assume
that it behaves as a Bernoulli-Euler beam we have

6L- mgL3

3EI

where L is the deflection of the end of the beam and the mass of the beam is
considered to be negligible. The spring constant of the beam that relates the endpoint
deflection to the force acting at the end can be written as

K mg (2)
6L

To a good approximation, the lowest natural frequency of the beam is given by

m (3)
27r m "
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Figure 2: Deflection of a Single Beam under Gravity

where fg is in Hertz. By combining equations (2) and (3) we express the frequency
of vibration of the cantilevered beam as

1 g(4)

Hence the natural frequency of vibration of the beam can be approximated as a
function of its deflection under gravitational loading. We can also write the equation
this way:

g (5)
4r 2f 2

22or using g =9.8 m/sec , we have

6L = 25 centimeters (6)

f9 = 5 Hz (7)

where 6 L is in centimeters and f9 is in Hertz. This is displayed graphically in fig-
ure 2. Note particularly that frequencies under a few hertz result in extremely large
deflections under gravity.

2.2 Two Beams Under Gravity Loading

Equations (6) and (7) are useful formulas to keep in mind when you are considering
the behavior of a single link flexible robot. Now consider a two link robot modeled as
a two beam system with a joint mass m between the links and an additional payload
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Figure 3: Two Cantilevered Beams with Masses

mass m 2 suspended at the ends, as shown in Figure 3. To make this a realistic model
of a robot arm, we include the length of the first mass as Lj. We simplify the analysis
with two assumptions. We assume that the masses of the beams are negligible as
compared to the masses of the joint and the payload. We assume that the beams
behave as Bernoulli-Euler beams in bending. The flexibility matrix of the system
(see [8]) is

[ 6  all a12 ] F] (8)62 a a21 a22 F2()

where 61, b2 are the deflections at m, and m 2 from the forces F1 and F2. aij refers to
the deflection at mass i due to a unit force at mass j. The values of aij can be found
as

± 3L3
2

1all = +-[1 2 2L1  4L 2  (9)
1 1 + 3 j 3

a12 = a21 = + 3 2- + 32(L + L3 )(L 2 + Lj)] (10)
1(1 4L1  L

1 3(L2 + Lj)
a22 = ± + - L +-2 (L2 + Lj) ]  (11)

where we have substituted K1 = 3E 2 11/L 1
3 and K2 = 3E 212/L 2

3 . Using the standard
assumption of harmonic motion and replacing the forces F and F2 by inertia forces
F, = -m-i = w2mi6i we then find the vibrational frequencies by calculating the
determinant and solving for w from

(al, - .) a12m2
det a2 m (a22 2 - I) - 0 (12)

which can be solved explicitly for f,, = w/27r as

S (a=im, + a22m 2 + ((al1 m, + a22M2)2

- 4(a11 a22 m 1 m 2 - a1 2
2 mlM2 ))1/2) 1/2 (13)
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The endpoint deflection of this system due to gravitational loading is

=tip a21rn1 9 + a 22m29 (14)

If we substitute this into (4), we get the approximation

1 [ 1

f9 = 2'2 a21r 1 - + a22m2 1

This value can be compared to the expected vibrational frequency from equation (13).
In fact, it is easy prove that fg f,. So, assuming that the vibrational analysis

is reasonably good, then the quick fg calculation will be a lower bound for the actual
lowest frequency of vibration of the system. As long as f, is not too much greater
than fg, fg forms a useful estimate of the natural frequency. In uhe next section of
the paper, we will empirically demonstrate that f9 is a good estimate for real two
beam, two mass systems.

Equations (13) and (15) depend fundamentally on the assumption that the system
can be considered to be a long beam with a mass on the end. In fact, when M 2 -+ OC

or K, -+ oo, fg _ f,,. So as the system more closely resembles either a single
mass/beam system (where m, is completely negligible) or a system with just an end
mass (where K, is so stiff that yon can treat K 2 as built into a wall), the closer it
matches the ideal case. If you keep reasonably "balanced" values for your parameters,
in the sense that each beam participates in the vibration and neither mass strongly
exceeds the other, f,, ___ f9 is a good approximation.

2.3 Comparison of Vibrational Formulas

We would like to compare the values of fg and f,, to determine the usefulness
of the "tip deflection under gravity" approximation. The vibrational frequency f,
is a function f, = fn(Ll, L 2,Ljl M, m 2, ki, k2) which is too complex to graph easily.
Instead, we pick two sets of parameters and see how varying them affects the ratio
of estimated vibrational frequency to actual vibrational frequency.

Two typical cases of beam configurations are displayed in Table 1, one aluminum
and one steel. These values were chosen as representative of the types and sizes
of systems that we have considered in the course of our research. Each of these
robot configurations has a natural frequency of vibration of approximately 3.5 Hertz.
Additionally, the K values were choosen so that each beam participates equally in the
vibration; that is, if you assume a round cross section of beam, the maximum stress

level experienced in beam L1 under gravity loading is the same as that experienced

in L2 .
As shown in Figures 4 and 5, varying the length of the first and second links does

not change the ratio by more than a few percent. If we then hold the lengths constant
and change the weight of the first mass and the stiffness of the first link, as shown in
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L 1  L 2  Lj n 1  K 1  M 2  K2

Link (cm) (cm) (cm) (kg) (N/cm) (kg) (N/cm)
Steel 1 45 45 20 7 220 1.4 12

Aluminum 60 45 10 4.5 210 4.5 80

Table 1: Parameter Values for Beam Comparisons

Steel Beams

140% -

135% 4
130% 4x~-X--X-XmX--X-X-x

Actual 125% .x. Li = 23 cm
to 120% J -0- Li =45cm

Estimated
Frequency 115% L1 =68 cm

110%

105%

100% t
25 35 45 55 65 75

12 (centimeters)

Figure 4: Variation in the ratio of frequency estimate to actual natural frequency as

a function of link length

Figures 6 and 7, the change is much larger but still within 10% of the original ratio.
Changing the first mass has the largest effect on the estimate but even then fg is an

estimate good to within 20% as long as ml is kept small.
After trying different values of lengths, masses, and stiffnesses, it becomes evident

that the estimate of vibrational frequency based on static gravitational deflection is
very good. To a reasonable approximation, it is safe to say that the vibrational

frequency estimate based on endpoint deflection under gravity loading is good to
about 30% of the actual value. As fg forms a lower bound to the vibrational frequency,

if you want a system with the lowest vibrational frequency for a given endpoint
deflection, you can't do any better than 5/V'FL (see equation 7). This result is useful

because it is often easier to calculate an endpoint deflection for a complex system
than a resonant frequency.

It is important to realize that the gr-vitationa] deflection versus natural frcquIwmcy
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A!uminum Beams

120%1o

118%

116%

114%

Actual 112-X. Li = 30 cm
to IO =6cm

Estimated 110% L=
Frequency 108% xXx.x x L1 = 90 cm

106%

104%

10 20/

25 35 45 55 65 75
L2 (centimeters)

Figure 5: Variation in the ratio of frequency estimate to actual natural frequency as
a function of link length

Steel Beams

140%

135% ' "" ., ,. ,.,

1300/ ""

125% X- M1 4 kgActual "° ,,.

to 1200/ --- M1 = 7 kg
Estimated 12% x
Frequency 1X,-x,, ..x* 1- M1 = 11 kg

110%x x

105%

100% I I I I I I '

50 100 150 200 250 300 350 400
K1 (N/cm)

Figure 6: Variation in the ratio of frequency estimate to actual natural frequency as
a function of first link stiffnpess and joint mazs
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Aluminum Beams

120%

118%

116%

114%

Actual 11201% " .X. MI = 2 kg
to

Estimated 110% o-0 . .oo- 0 ..o0 ..o -0- M I = 4.5 kg

Frequency 108% -0 M1 = 7kg

106%

104% X X X X X X--X X X

102%

100% .
50 100 150 200 250 300 350 400

K1 (N/cm)

Figure 7: Variation in the ratio of frequency estimate to actual natural frequency as
a function of first link stiffness and joint mass

relation does not depend on the length of the beams (see equation 6). If you want a
system that vibrates at 1 Hertz, you must live with a endpoint deflection of at least
25 centimeters under gravity, regardless of how long your beams are. Fortunately, the
required endpoint deflection falls off quickly as the vibrational frequency is increased.
(see Figure 2) The robot we are building has a target frequency of 3Hz, which should
give it a little over a one inch endpoint deflection due to gravity.

Finally, remember that this relati, ship has been derived based on the endpoint
deflection under a gravitational load. Horizontal estimates are found just as easily
if you assume that the robot has been placed on its side and calculate how far the
endpoint deflects.

2.4 Length of the Arms

If you are designing a robot that will have its fundamental frequency of vibration
at one Hertz, the robot is going to sag under its own weight at by least 25 cm. A
one meter arm will probably not work. But if you want to have the end of the robot
vibrating with an amplitude of 5 centimeters, how flexible should you make the links?
We can calculate the level of stress inside of a link for a given endpoint deflection.

In terms of a single mass system with a constant cross-section beam with a given
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0
i deflection ht,, we write the equatio.

My - (1(i)

I

where .11 is the bending moment in the bar, y is the maxiinum distance fron I lie
riiutral axis and I is the moment of inertia. The bending moment is

3E1
1[ = FL = K6tipL = 3EI 61ip (7

where F' is the force required to produce an end deflection 6t, and L is the length of
the' beam. Combining equations (16) and (17), we have

_ 3Ey6

Equation (18) shows that the stress level in the link is directly proportional to the
tip deflection. To keep the bending stresses to a minimum for a given tip deflection
and natural frequency, you should make the link as long as possible.

3 Link Types

0 The first step in designing a flexible robot normally includes deciding how long
the links will be, how much torque will be available at the joints, and what the
approximate weights and sizes of the joints will be. Once these numbers have been
selected, you need to pick the actual shape of the links and material used in the links.
There is a tradeoff here between the three key parameters: stiffness, mass, and stress
level. Typically the stiffness will have been set by the decision of what the lowest
frequency of vibration will be. Then you must design links for this stiffness while

keeping the stress level and mass of the link to a minimum.

3.1 Springs

In the case of the robot we are currently building, it. worked out that in the initial
design that a 3 Hertz vibration mode put uncomfortably high stresses on the links.
..\t the time we were calculating based on links made out of solid, straight bars of
aluminum. One option that we looked at to eliminate this undesirable stress level was
to replace the aluminum bar with a coil spring. At first glance, the coil spring seemed
to be the perfect flexible link; not very stiff and able to undergo large deformations
without yielding.

It turns out that springs are too flexible for their weight. We can compare the
weight and flexibility of a straight link made out of a bar of metal with diameter d
to a spring made out of the same bar with wire diameter d, but coiled into a helix.

Consider the overall lengths of the two links to be the same.

9



First, we compare the bending stiffness of the spring to the bending stiffness of
lie bar. The general equation of bending for a spring is

7 Ed 4 p ( 1 (19)
K 0- 32LD +E/2G(

w\Ire, -r is the bending moment, 0 is the angle of deformation, p is the pitch of the
-prirg, L is the length, D is the pitch diameter of the spring and E and G are the
i: dulii of elasticity and rigidity. If we assume small angles of deformation, so that

d = !!/dx and we assume that the spring is fixed at one end and is loaded at the
other end by a force F perpendicular to the length of the spring, then we write the
deflection of the end of the spring as 6, where

IL 7 F (L - x) dx (20)

FL
2

2(21)

Nute 'at is not the axial deflection of the spring but a measure of how far the
;{'i bends.

Now we find the effective spring constant of the spring as

F _ Ed 4p

K 8  - 32L 3D (22)

whoie we have made the approximation E = 2G. For the round bar with the same
.litnieter d, we write

Abr =3EI 3irEd4

ar- 3 - 64L 3

Cowvbiniiiing equations (22) and (23), we find that

K - 2p (24)

IKba, 37rD

lOr a practical spring, it is safe to assume that p < D, so K, is at most 20% of K6ar.
The weight of the spring can be compared t: the weight of the straight bar. The

welght of the spring is given by

W, = prd2 L (25)

and the weight of the straight bar is

Wba = pwrd 2 L (26)

10



Then, if we assume that (7rD/p)2 >> 1, we get

-rD (27)

WbaT p

Again, it is safe to assume that p < D, so the weight of a spring made of a coil of
wire is at least 3 times the weight of a link made of a straight piece of that wire.

We conclude that the for a given cross-section d, the spring weighs at least three
times as much as the straight bar and has at best 20% of the bending stiffness. If
you want a very low bending stiffness and don't care about weight, the spring is the
way to go. But if you want a given stiffness, then the spring is going to be at least
15 times as heavy as a straight bar of metal. Even though this allows you to not
worry about breaking your link, the additional weight penalty in most systems is
prohibitive.

3.2 Material Choice

For a given bending stiffness, the material used for the link will determine its
size, weight, and how much deflection it will undergo before yielding. A material
with a high yield stress is not necessarily the best choice. If it has a high modulus
of elasticity, the link will have to be thinner to get the same bending stiffness. The
smaller moment of inertia will result in a higher stress level than that of a link made
of a material with a high yield strength and a low modulus of elasticity. A similar
situation exists with weight.

To compare materials, we first assume that the link is a solid bar of metal with a
round cross section of diameter d. We choose a round cross section for two reasons:
First, it has the same stiffness when bent in any direction, where the stiffness is
deflection of the end of the link with respect to the force applied at the end. Second,
for a given bending moment and stiffness K, a solid bar experiences a lower bending
stress than a hollow bar. (Consider two bars with the same moment of inertia; one
solid and one hollow. The hollow bar will have a larger diameter and the bending
stress is directly proportional to the diameter.) If we assume that we know the
length of the link, the stiffness, and the applied bending moment, we can calculate
the stress and weight of the link as a function of density, modulus of elasticity and
yield strength.

Start with the standard formulas

Md (28)
21

and

K = (29)
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where E is the modulus of elasticity of the metal, M is the applied bending moment,
I is the moment of inertia of a round cross section and L is the length of the beam.
Rewrite equation (29) as

L 3K r30I - d4  (30)
3E 64

or

d 6 3 K (31)
3irE'

To find the stress in the beam, combine equations (28) and (31)

6M .KE 3

or KL 2 V2irL (32)

Equation (32) shows that with L, K and M fixed for a beam, the material with the
lowest fraction of stress to yield stress will be the one with the largest value of V,,
where ', is defined as:

Oyield

The larger the value of V,, the larger the bending moment the link will withstand
before yielding.

Another material comparison is the weight of the bar as a function of the length
and the spring constant. Using equation (31) and taking p as the density of the link,
we get

W- -rpL - 4 r (34)w ~3E (4

where W is the w6ciht of the link. For a given L and K, the beam with the lowest
wight will be the one that minimizes 0, where 0 is given by:

P (35)

lie larger the value of €, the heavier link.
The optimal link material would have a large V) and a small 0. In practice, no

material is optimal although Titanium comes close. Table 2 shows the value of V,
and € worked out for a number of different common metals. Titanium has the best
strength to stiffness and 2014-T6 Aluminum is a practical, lightweight alternative
although its resistance to fatigue is limited.

4 Joint Flexibility

Robots have two types of flexibility; in the joints and in the links. Joint flexibility
appears to the system as springs in series with the links. To illustrate this, look at

12



£y p €
Material (MPa) (GPa) (kg/m 3 )
1100-0 Aluminum 34 72 2800 1.4 330
2014-T6 Aluminum 415 72 2800 16.8 330
6061-T6 Aluminum 275 72 2800 11.1 330
1015 Steel 324 207 7700 5.9 535
4140 Steel 655 207 7700 12.0 535
Magnesium Alloy 240 45 1800 13.8 268
Titanium Alloy 830 114 4400 23.4 412

Table 2: Link Material Comparison

the two link model shown in Figure 3. Now add in a torsional spring of value tI

where the first link meets the wall and a torsional spring of value KC2 between the
links. Equations (9), (10), and (11) relate the deflection of a point to a unit force
applied at a point, so we can modify them to take into account the torsional springs:

O , L1 + Lj/2 (36)*a 11 = a1 l + (6

a a 21 = a2 + L(37)
K 1

a' 22 =a22 + L 1 + L 2 + Lj + L2 + Lj/2 (38)
K 1  K 2

These modified flexibility values can be substituted in equations (13) and (15) to
give the estimates for the lowest natural frequency of the system. We still have fg
as a lower bound for f,,, and assuming that the springs are not extremely flexible, fg
still gives a good approximation of the lowest natural frequency.

5 Conclusion

The endpoint deflection of a robot in a gravity field due to bending in the links
and flexiblity in the joints forms a lower bound for the natural frequency of vibration
of the system. When all of the links are flexible and the weight of the payload is not
negligible in comparison to the weight of the joints, this estimate is very close to the
true frequency. As this estimate forms a lower bound, if your goal is to minimize
the fundamental natural frequency of the system, you should make links that are
as long as possible and have small masses at the joints. The "tip deflection under
gravity" calculation is not restricted to the vertical case; we can put an imaginary

13



ut avitational field pointing in any direction. calculate the deflection of the robot., and
( ,l imate the natural frequency of vibration.

For maximum flexibility with minimum stiffness, the best material choice for the
links is titanium. Some aluminum alloys may be inexpensive alternatives, but the
fatigue characteristics of aluminum are unacceptable in most applications. Coiled
springs give very little stiffness in comparison to their strength, but their weight
makes them unusable in all but planar applications.

There are physical difficulties to building a test fixture with a very low frequency
of vibration. To keep stress levels low in a flexible robot, long links are prefered. but
nayav not be possible if the robot must fit inside of a laboratory. The longer links
have a larger moment of inertia and need larger motors to drive them around. Joints
that contain motors carry a great deal of weight in the form of motors, gears, brakes.
e-ncoders, and ball bearings. Trying to optimize the robot to have low joint masses,
long links, and adequate torque at the joints is difficult. With these constraints in
mind. we are currently assembling a three degree of freedom flexible robot. It has
a lowest natural frequency of vibration of under 3 Hertz, a payload capacity of 3

pounds and a total reach of at least 51 inches. We expect that it will be operational
bv June of 1989.
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