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I. ArI--lzis of a Shutdam Queueing S'rste'.

1. Introducticn. "The purose of this study is to analyze a special type

of job shop queueing system which has the following features

(i) A finite number of customers is present initially and no new

customers arrive;

(ii) there are two service stations, each with its on-m input and

each serving the output of the other; and

(iii) as soon as a customer is served by both stations. he leaves

the system.

A queueing system with these features is called a shutdown queueing system

and it may also be called a clearance problem.

Queueing problems of this type arise in connection with fuel and supply

facilities for aircraft. A fixed number of aircraft are scheduled for fueling

and supply loading.

Each of these operations is conducted at two separate stations called

station I and station II. Initially, station I (which may be the fuel station)

has M customers while station II (supply station) has N customers. After an

aircraft, henceforth called a customer, initially at station I completes its

service, it enters the queue for service at station II. When its service at

station II is also complete, it leaves the system. The service time at both

stations is assumed to be a random quantity. Similarly, a customer initially

in the station II queue, moves to the station I queue and leaves the system

after his service is complete.

The length of time required for the entire operation, or the clearance

of the queue, is a random quantity whose probability distribution is of major

interest. Also of interest is the idle time distribution at each of the supply

ntations. Since no new customers join the queue, only nonsteady state results

are of interest.

Under the assumption .that the service time distributipn is negative

exponential, this problem was studied by Milch and Waggoner

They obtained Laplace trans-forms of the probability distribution of fhe total

cperational4ime, the idll time distribution for each station and the waiting
0

time distribution for various customers in the system. These transforms were

quite complex and not easily inverted.

-1-



The work of ilich. and '7aggoner can be studied :.n grcater detail r.J

generality using discrete time methods rather than continuous time models.
D:scretizing the time variable makes it possible to retain all conditional

probcbility distributions for the entire time interval of the operation of both
stations. Because of the many possible interactions between the two queues, the

analysis of this general model by classical analytical methods is an intractable
problem. The analysis of MIilch and Waggoner relies heavily on the memoryless

property of the exponential distributonO

Even using discrete time, the numberical solution of this problem

--quires extensive computing. Many realizations of the process occur with
n-gligible probability, which may be conveniently discarded early in the complex

computational algorithm reported on here. On the other hand, it is possible
to obtain upper bounds on the probability neglected at each stage.

2. Statement of the Problem. Consider two stations, I and II. Initially,
station I has N customers and station II has N customers. The service time at
each station is measured in discrete time units. The probability that a

customer at station I requires i units of service time is Xi  for
i - 1, 2, ..., L1 while at station II a customer requires j units of service

with probability Y for J m 1, 2, ... , L2. The two stations operate

independently. After a customer completes service at the station of his

initial assignment, he joins the end of the queue of the other station. The
amount of transit time is assumed to be zero. (This assumption is not

restrictive, since the transit time could be counted as part of the service time.)

After being served by both stations, the customer leaves the system.

It is possible for the queue at either station to become empty. The station

cien becomes idle and remains so until a customer completes service at the

other statioi. Such idleness may repeatedly occur during the service operation

of the system.

3. Random Walk Representation. The progress of this queueing system may

be represented by a random walk process on a two dimensional lattice. The
random walk starts at time zero at the origin. Thereafter, the system is
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repreaented by the pair, (v, a) vhere v is the total number of custoner.;

served by station I and a is the total number of customers served by station

II. Each time a customer completes service at either station, a transition

takes place to state (v + 1, a) if the service completion occurred at statiou I

or to the state (v,a + 1) if the completion occurred at station II. The state

(0, 0) is the starting point of the operation of Lhe queue and the state

(L, L) where L - M + N is the termination point of the operation, since all of

the customers have been served at this time. Each realization of the queueing

process is a path from (0, 0) to (L, L) but not every possible path is a

possible sequence of service operations by our queueing system. If X(t) and

Y(t) represent the number of customers served at time t by stations I and II

i-spectively, then the rules of operation dictate that

(1) X(t) ! H! + Y(t)

Y(t) !5 N + X(t)

These conditions determine boundary conditions on the paths from (0, 0) to

(L, L) which may be bona fide realizations of our queueing system. Figure 1

shows the boundaries imposed on the lattice as well as a typical path represent-

ing a realization of the queueing system. The realizations are constrained to

lie within an irregular hexagon H determined by the boundary lines X - 0,
= 0, the left boundary Y - X + N, the upper boundary Y = M + N, the right

boundary X = M + N and the lower boundary Y - X - M.

Whenever a customer finishes service at station I, the path moves to th.

right while a completion at station II causes the path to move upward. Whenever

a path touches either the left boundary or the lower boundary, the path must

move to the right or upward respectively.

4. Comrutational Methods for the Total Operation Time Distribution. As

pointed out above, each path from the origin (0, 0) to the terminal point (L, L),

.:;hch lies wholly within the hexagon H represents an operation of the queueinc,

system. Also associated with each path is a probability distribution on the

length of time of operation of the queue given that the particular path was

traversed. With this in mind, we may describe the state of the system by means

of a quintuple

-4-



(2) (h, J, v, r, t)

there h and J are the x, y coordinates of the lattice point the system

currently occupies, and are the number of units of service time given to

the customers at stations I and II respectively and t is the total time elapsed.

We next define the various first passage probabilities to a lattice

point. Suppose that the process is initially in state (hO, Jo) with service to

the customer in station I Just beginning and the customer at station II ha-ving

units of service time remaining to completion of his service. Assume that the

system arrives for the first time in state (h, J) and that all paths from

(hO , J0 ) to (h, J) are permissible; i.e., be within the hexagon H. T 'e define the

quantity

(3) *1(ho, Jos h, J, v, r, t), t - 0, 1,

to be the probability that t units of time are required for a passage from

(hO, JO) to (h, J) where the passage is from the right with v remaining units

of service required for the customer at station I initially and T units of time

remaining for the customer at station II when the passage to state (h, J)

first occurs. Five additional probabilities similar to *, are needed the

quantity

(4) 2 (hot Jot h, J, v, T, t)

is similar to ! except that v represents the number of remaining units of

service time requited for the customer at station II rather than station I

when the state of the system is (hO, JO). The quantities *l and *2 are

probabilities of transition into a state where the transition is to the right

into the final state (h, J) rather than from below. That is, a customer at

station I has just completed his service while the customer at station II has T

units of service time remaining.
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Analogous to "he *i and '2' we define

(5) Ol k. , 09 -11 J, 9 , I.I, t)

to be the probability that the system makes a transition from state (h0, J 0 )
to the state (h, J) from below in t units of time with Tunits of service time
remaining for the customer at station I and initially v units of time remained for

for the customer at station II in the initial state (h0, JO). Also the quantity

(6) 2 (h0 ' Jo, hp J9 V9 T,t)

i! the probability of transition from (hO, Jo) to (h, J) in t units of time with
T service units remaining for the customer at station I and initially v units of
service time remained for the customer at station I rather than station II.

In addition to the transitions from the right (h - 1, j)+(h,j) and
the transition from below (h, J - i)+(h, J), it is possible to have a diagonal

transition of the form (h - 1, J - l) (h,j). This corresponds to two customers

one at each station both finishing service simultaneously. For this situation,

x;e need two additional probabilities:

(7) 8 1(hot Jog h, J9 v, t),

and

(8) 82 (h0 J0, h, J, v, t).

These are the probabilities that a diagonal transition from state (h0, JO) to

Ftate (h, J) takes place in t units of time. Additionally, v units of service
time remained fro the customer at station I (8) respectively station II (82)

in the initial state (ho, Jo).

Formulas for these transition probabilities are given below.

The computation of the total service time distribution proceeds in

four separate stages. The first three stages consist of finding the probability
distribution on the time of first passage to various boundaries in the hexagon
11. The last stage consists of finding the passage probability to the terminal
state (L, L). -6-



The phase I boundary consists of the two line segment joining the

points (0, N), (1, N) and (?, 0). It should be obvious that the passage from the

origin (0, 0) to thi- boundary occurs with probability one. The probability

distributions at lattice points along this boundary are given by the quantities

(9) *0(0, 0, M, is 0, T, t)

where j - 0, ... , N; T = 1, ..., L2 ; and t - 0, 1, ... , T where T is the maximum

possible total service time required to reach this boundary. These correspond

to the boundary on the line segment from (M, 0) to (M, N). Along the segment

from (0, N) to T, N) the probabilities are given by

(10) 1 (0, 0, h, N, 0, r, t)

-.7here h - 0, ... , M, r = 1, ... , LI and t - 0, 1, ... T. The corner probability

is given by

(11) e1(0, 0, M, N, 0, t).

Note that since v - 0 in each case the subscript I could be replaced by a 2.

The phase II boundary is determined by the line segments connecting

the points (M, L), (M, N) and (N, L). The computation of the first passage

distribution to these boundaries is considerably more complex than the

probabilities for the phase I boundary.

The lattice points along the phase I boundary, constitute a partition

of the probability space. Therefore, by the law of total probability, the

distribution along the phase II boundary may be obtained by computing the

distribution given that the process started at a point along the phase I

boundary and suming over the phase I boundary. That is

(12) P[(h, J, T, t, s)] -

ZP[(h, J, T, t, s)(h 0 , Jo. To, top 80)] P[(h0' J0' Tot top SO)]

-7-
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where (h, J, T, t, s) is a state along the phase II boundary. (h, j) are the

lattice points. T is the service time remaining for either customer,

s = 1 or 2 denoting the customer for which there is residual service time and t

is the total operational time up to this point. The state (h0 , J0, To, to, SO)

is a state along the phase I boundary with the quantities h0 , J0 ' To, to, SO

having the same meaning as described for the phase II boundary. The summation

is taken over all possible values of (h O , Jo, To, top SO). That is, for

h 0 = M, j0 M 0, 1, ... , N - 1, T0 M 1, 2, ... , L2' s W 2 and for Jo - T,

ho W 0, ... , m - 1, T0 a 1, 2, ... , 11, s o - 1. Further details of this

computation are given in the section on computation.

The phase III computation is similar in strategy to the phase II

strategy. The phase III boundary consists of the two line segments connecting

the points (M, L), (L, L) and (L, N). The strategy is to regard the phase II

boundary as a partition of the probability space and to compute the conditional

boundary distribution along the phase III boundary given that the process passes

through the particular point along the phase II boundary.

The phase IV computation consists of finding the probability distribu-

tion on the time to enter the state (L, L) given that the process passes through

one of the lattice points on the phase III boundary.

Each lattice point (h, J) along the phase I boundary generates a

distribution along the phase II boundary. The total of such distributions is

M + N + 1. Each lattice point of this distribution generates a distribution

along the phase III boundary. Thus, each lattice point along the phase I

boundary generates (M + N + 1)(M + N - 1) distributions along the phase III

boundary. These distributions are joint distributions in T and t. Many of

these distributions have a total probability which is quite small. Thus,

if at the first phase of processing, some distributions are eliminated because

the passage probability at that point is small, the elimination will have a

negligible effect on the accuracy of the total operational time distribution,

but will eliminate the computation of many probability distributions which will

save a considerable amount of computer time.

-9-



The large number of distributions involved throughout the computation

also creates a need for a substantial amount of storage for these distributions.

T,) solve this problem, auxiliary disk storage is used to store the distributions

along the particular boundaries for each phase of the processing. An indexing

algorithm was developed to keep tract of the bookkeeping involved in this process.

A check on computational accuracy and correctness is made at each stage

of the processing by using the law of total probability on each of the boundaries

for phase I, phase II and phase III. In addition, certain internal auditing

schemes are used to check for accuracy and correctness of the algorithm.

5. Computational Formulas for ±, _ and e. We now consider the problem of

computing the passage probabilities from a given initial lattice point (h0, id

to another lattice point (h,j). It is assumed that the process remains within

the square whose vertices are (h0, J0 ) , (hO, J), (h, J0 ) and (h, J), but may

otherwise follow any path from (ho , JO) to (h, J). We consider the case of

first. THe passage into the state (h, J) is from the fight. In addition, v

units of time remained to service the customer at station I. A transition of

this type takes place in t units of time if and only if j - J. customers have been

served at station II and service has begun for an additional customer who requires

r additional units of service to complete his processing. Simultaneously, the

customer at station I must complete his v units of service time and an additional

h - h0 - I customers must be served with the last customer completing his service

exactly at time t.

The probability that v customers complete their service at station II

is given by the v-fold convolution of the station II service time distribution

=V

(13) Y* (.)

The probability that the customer currently in service requires T additional units

of service is given by

(14) Y(To +

-10-



where T0 is the number of units of service time already comrleted. Therefore,

the probability that after exactly t time units, the station II condition is

satisfied is

L2T

(15) PH1  2 I Y(T0 + T) Y*(J-Jo)(t - TO0

Similarly, we may derive the probability p, that the station I conditions are

satisfied is the probability that h - h0 - 1 customers are served in t - V units

of time. This probability is given by

(16) p1 M x*(h-h0 -1)(t - v).

Since the service times at the stations are presumed to be independent, the

probability that t units of time are required for the transition is given by

(17) *1(h0 Jot h, J, v, T,t) - P(t) - pI Pli -

x*(h-ho1)(t - v) 2 Y(TO + T)Y*(J- 0)(t - -r)

-Oo

This transition probability is computed for each value of t - 0, 1, ... , T

where T is the largest possible value of time during.which a transition can

take place. An upper bound on T is given by:

(18) T - min[1.2 (j - J0), v + Ll(h - h0 - 1)1.

In the actual computational procedure, T takes on a considerably smaller value

because the upper and lower tails of the probability distributions are trimmed

which means that beyond a certain point in the distributioni the probabilities are

treated as though they were zero. Points in the tails of the distribution which

have zero probability are not retained in the storage arrays. This greatly

reduces the computation time.

By arguments analogous to the above, we may determine the formulas for

each of the quantities described in section 5. We omit details.

-11-



(19) ip2 (h 0 j 0, j, v, r,t) =

L2-r
x*(h'h0)(t) 2Y(T 0 + T)y*(JJ0-1) - TO

0 (0 r0To=O

(20) *1 (h0 J0 h, J, v, T, t) =

Y*(J-J0)(t) 0 X(T 0 +)X*(h-h0-1) (t - V - TO)

(21) 2 (h 0 , J0 h, J, v, T, t) -

*(j..j -1)L 1-T

Y*(J-J0-1)(t - v) [ X(T 0 + T)X*(h-hO)(t - TO)
T0=0

(22) *1(h0 J0 h, J, v, T, t)

x*(J-J0 ) (t)x*(h-h 0- 1 ) (t - v)

(23) 02 (h0 J0 h, J9 V, T, t) -

Y*(J-J0 - I ) (t - v)X* (h-h0(t)

In order to make the above formulas valid for all J k J0 and h k ho, we use the
convention that for any probability distribution F, F *0(.) is the probability

distribution which assigns probability 1 to the point 0.

6. Computational Procedures for Rectangular Boundary Exits. The phase I

processing has been described in Section 4. It amounts to evaluating the formulas

for *, , and e with v - 0. The processing algorithm is organized so that the

processing begins with those lattice points which are likely to have high

probability. This point is estimated by beginning with the one closest to the

intersection of the phase I boundary with the line through the origin whose slope

is

-12-



(24) iY

ml .L1liX
i-i

i.e., the ratio of the means of the Y and X service time distributions.

In later stages of processing, it is necessary to consider an evolution

of the process similar to the phase I process. For example, during phase III

processing, one computes the conditional distribution along the phase III

boundary given that the process passed through a fixed point along the phase

II boundary. 'Then the process evolved along this path through the phase II

boundary, one of the customers had just completed his service while the other had

residual service time remaining. The probability distribution along the phase III

boundaries are given by the formulas

(25) P[(h, J, r, t)] - Z i(ho, Jo' h, J, V, Tt)P[(h0 , J0 v, t, i)]

where (h, J) is a lattice point on the phase III boundary and is the residual

service time for customers at station I. The summation is taken over all lattice

points (h0 , JO) along the phase II boundary, ranges over its range

(1, ..., L1 if i - 1 and 1, ... , L2 if i = 2) and i - 1, 2. This formula is

valid for probabilities along the upper boundary connecting the points (M, L)

and (L, L).

Along the right boundary connecting the points (L, N) and (L, L) the

probability is given by

(26) P[(h, J, T, t)J - >i(h 0 , J0 h, J, V, T, t)P[(h0 , J0, v, t, i)]

where the summation extends over the same indices as in formula (25).

The probability distribution at the corner point (L, L) is given by

(27) P[(L, L, 0, t)] - 0 i(ho, JOg L, L, v, t)P[(ho, Jot v, t, i)]

-13-



where again the summation extends over the indices defined in formula (25).

These computations are carried out by a subroutine called SQUARE.

The phase IV processing for total operational time is calculated by the

same procedure as for the phase III boundary, except that it is a degenerate case,

j = J 0 or h = h 0 depending on the particular segment of the phase IV boundary.

7. Computational Methods for Triangular Boundaries. The computational

strategy and formulas of the preceding section will not suffice for the passage

from phase I to phase II calculations because of the triangular shaped regiops

in which the process must evolve. In the passage from the phase I segment defined

by the points (M, 0) and (M, N) to the phase II segment defined by the points

(M, N), (L, N), the condition h < j + m must be observed by the path. Whenever

h = j + M, idle time occurs at station I until a customer finishes at station

1I. This customer then goes to station I for service.

The phase II processing can be reduced to a sequence of rectangular

boundary problems in the following way. Consider the lower triangular region.

The phase I distributions are computed for the lattice points along the line

segment joining the points (M, 0) and 1, N). At the point (M, 0) the process

must make a transition to the point (M, 1); no other transition is possible

because the queue at station I is now empty and a customer at station II must be

served. From any point along the line segment joining (M, 1) and (M, N), the

process must pass through the points (1, N), (M + 1, N) or one of the points

along the segment joining the points (X + 1, 1) and (M + 1, N). The exit

distributions at these points are calculated using the same methods as for any

rectangular boundary. The rectangle consists of the segments joining the vertices

(M, 1), (M, N),(M + 1, N), (M + 1, 1). This rectangle has in common its top

side (i.e., the points (M, N) and (14 + 1, N)) with the phase II boundary.

The processing then proceeds with the rectangle whose vertices are

(M + 1, 2), (M + 1, N), (M + 2, N), (M + 2, 2). In this manner, the calculations

are made step by step with the phase I boundary moving in the x direction one

step at a time until the lower phase I boundary is mapped onto the phase II

boundary.
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The upper triangular region consisting of the segments connecting the

vertices (0, N), (M, N) and (U, L) is processed in the same manner as the lower

triangular region.

8. Tail Trimming and Convolutions. In order to calculate the quantities

, *, and q the convolutions X*],J - 0, ... , M and Y*k k - 0, ... , N are

needed. A problem arises in that if M and N are large, a large amount of storage

and computational time is needed because the distributions concentrate on a

large number of points. Some savings can be effected with negligible loss in

accuracy, by trimming the tails of the higher order convolutions. Even though

the original service time distribution may concentrate heavily in the tails, the

tails of the higher order convolutions will have increasingly smaller probability

because of the central limit theorem effect.

An adaptive trimming algorithm was developed to permit trimming both

the upper and lower tails of the higher order convolutions. Suppose that the

probability distribution is given by

(28) PtC t - 0, 1, .. ,

Then two indices tf and t are chosen corresponding to e and Cu such that

t t +l
0 0

(29) 1 Pt :5e < I pt
t 0 t=0

and

N N
(30) E "p :5 < 1u t

t-t
u t-t -1U

The distribution is then approximated by the new distribution

(31) Pt t - tfg t f+, ...- t u .

-15-



The tails are ignored. The effect of this trimming is to produce a defective

distribution; i.e., one for which the total probability is less than one. The

total probability does, however, satisfy the inequality.

t
(32) u

ttPt 
-  e - e u E

The effect on the mean and variance of this trimming process can easily be

estimated analytically.

Let u be the mean and PT be the mean of the trimmed distributions.

tl

(33) I- TI = 'ipl + I ip 1 5z t- + £ N NI
i=0 i=t u

Similarly, let a be the variance and aT be the trimmed variance. Then

tl

(33) TI2 
- 1 1 2Pi + - (0 - T)(+ T) <t=O t= t u

U

The effects of using a trimmed distribution on convolutions is to spread the

trutmcation error over all of the probabilities rather than to concentrate it at

a single point. Consider a distribution F(.) and its trimmed version FT(-).

Let ' be any other distribution. Let E(.) - F(.) - FT(.). Then, the total mass

of the defective distribution F T(.) is I 1-e. Consider the convolution

FT*G. The total mass of FT*G is 1x(l.c), the product of the total mass for the

two distributions, as nay easily be sho-n. The error term is given by

(34) F*G - F T*G - E*G
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If the error term E is splIt into two parts the part trimmed from the upper

tail and the part trimmed from the lower tail, then we may consider the support of

E*G. Suppose for simplicity that the lower tail is the only one trimmed. Then

if G concentrates on the points 0, 1, ... , TC, the distribution of E*G

concentrates on the points 0, 1, ... , T3 + tZ. The maximum probability associated

with a point is bounded by the maximum probability at any point in the G

distribution times e. That this is so may be easily seen by the convolution

formula

tt tt
(35) r n 

TM  i Pi q n-i --S(max qi)i__joi = c max a i
i=O0_

where qy is the value of the probability density of the G distribution at the

point y and rn is the probability density of E*G at the point n.

We now consider the savings in storage and the loss in accuracy due to

trimming. A specific example is given. For this examnle, the distribution X

is uniform on 10 Points and we consider the convolutions X for j = 0, 1, ... , 30

In general, the storage required for such a distribution is given by the formula

(36) S . 3 +(L - l)n(n + )

where L is the number of points in the distribution for X and n is the number

of convolutions. For our example L1  1 10, n = 30, and Sn - 4188.

The results are presented in Table I. Six different trimming values C

are given along with the total number of support points for all thirty distribu--
* 30

tions as well as the number of support points for the thirtieth convolution X

The mean of the trimmed version of X. 3 0 as well as the total probability mass

is given. The trimming procedure used was to trim tails after each convolution

£ from each tail of the distribution. Thus, for the fourth distribution, the

followin? was formed:

(YT T )T*X) T*X,

where the subscript T denotes trimming.
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TABLE I
Effects of Trimmingrrim Value Support Points Mean Total Mass

e Total X .30

0 4188 275 165.0000 1.00000000

10-9  3282 175 165.0000 .99999997

10-8  3122 163 165.0000 .99999969

10- 7  2939 153 165.0003 .99999666

10- 6  2734 139 165.0022 .99996895

10-5  2468 123 165.0218 .99964830

10-4  2132 103 165.2055 .99602595
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9. Bookkeeping algorithm for Disk Storage. Each of the four phases

of the computation results in the computation of the joint distribution of

total operational time and residual service time for the customer being

served at the time the system reaches a particular lattice point on the

boundary. These distributions are stored in a compressed form in an array.

However, because of the large amount of space required for the distributions,

they are written onto random access disk files as soon as the distribution

is generated. Only one lattice point at a time is processed and core space

for the distribution at only one point is provided. As the processing

proceeds at later stages e.g. from phase I to phase II, it is necessary to

retrieve distributions from various points along the boundary. This

necessitates using random access files rather than sequential access files.

The standard FORTRAN random access procedures are utilized. However,

this access method involves accessing records by record number. The boundary

for the various phases of the processing are determined by lattice points

which are identified by pairs (h,J). A translation algorithm was devised

for translating these pairs into recurd numbers. The algorithm is further

complicated by the fact that processing along any boundary is not necessarily

in a logical order along the boundary. Instead, the order of processing

is based on probability values in order to take advantage of tail trimming.

Another complicating factor is that the coordinate pairs for each boundary

assume different values. For instance, along the phase I boundary, the

values of h and J lie in the intervals 0 5 h 5 M, 0 5 j 5 N. On the

phase II boundary, M 5 h q M + N, N : j M + N.

Four separate files are utilized for the processing. Unit I is

used for the phase I boundary; Unit 2 is used for idle time information along

the upper triangular boundary and the lower triangular boundary; Unit 3 is

used for the phase II boundary. During the computation of the phase II

boundary, Unit 4 is used for scratch storage. Unit 4 is also used for the

phase III boundary.

Corresponding to each Unit, an array is established with each position

in the array corresponding to a lattice point along the boundary. Initially,

the array is cleared to zeros and afterward, the entry in the array is the

record number of the record which contains the distribution for that

particular lattice point.

-19-



The particular records for a lattice point are addressed by a pair

(j,k) where j = 1 or 2 representing a particular segment of the boundary

and k is either the x or y coordinate of the lattice point on the

boundary. Thus, for phase I, the points along the segment (h,N) h = 0,1,...,M

are addressed by the pair (l,h) while the segment (M,j), j = 0,l,...,N is

addressed by (2,j). Similar rules are used for the other units. Table II

gives the array index for the lattice points along the phase I boundary,

the phase II boundary and the idle time boundary. The example given has

five customers initially in each quene.

Table II Indexing System

Unit 1 .i Unit 2 Unit 3

h j index li h i J IindeA h i J indexi

5 0 10 5 0 1 5 6
5 i 2 6 5 2 6 5 5
5 2 3 7 5 3 1 7 5 4
5 3 4 8 5 4 8 5 3
5 4 5 9 5 5 1 9 5 2
5 5 6 10 5 6 1 10 5 1
4 5 0 5 7I 5 6 7
3 5 8 1 6 8 5 7 8
2 5 9 2 7 9 5 8 9
1 5 10 3 8 10 5 9 10
0 5 11 4 9 11 5 10 11

5 10 12

10. General Results. A set of examples was chosen to illustrate and test

the computational ideas developed here. We describe briefly the characteristics

of each example. We use the notation (M, N, L1, L2) to denote the particular

example where M is the number of customers initially at station I and L1
is the maximum number of service time units a station I customer will need.

At station II, there are N customers with a maximum number of service units

being L2. -

The following examples were run.

A. (5,5,2,1). The service time at station II required one unit of

service with probability one. The other station had a uniform service

time distribution.

B. (5,5,2,2). The service time di3tribution at each of the stations was

uniform; i.e. with probability one unit was required and with

probability two units were needed.
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C. (5,5,2,3). The service time distribution at station I is unifonn;

while at station II, p = .5, p2 = .25, p3  .25

D. (5,5,3,2). This example is the same as example B.

E. (5,10,2,2). The service time distribution is uniform at each station.

F. (10,5,2,2). Again the service time distribution is uniform at each

station.

G. (10,10,2,2). The service time distribution is uniform at each station.

H. (15,15,4,4). The service time distribution is uniform at each station.

Example H is the largest complete computation which was made. Phase I

computations were made for an example with 30 customers at each station.

The main purpose of these examples was to serve as a check on the computations,

test the program for correct processing of asymmetric examples and estimate

processing time.

Table III lists the total operational time distribution for the

(5,5,2,1) example. The distribution is not binomial, because there is idle

time at station II during the phase II processing.

Table III

The distribution of total operational time for the (5,5,2,1) system.

Time Probability Time Probability

10 .00097656 16 .17578125

11 .00976562 17 .10742187

12 .05371094 18 .04394531

13 .14648437 19 .00976562

14 .22460937 20 .00097656

15 .22656250

The complete results for the (15,15,4,4) example are given for the

untrimmed case and the trimmed case. Table IV gives the exit probabilities

at the phase I boundary. Three separate calculations are given to show the

effects of trimming on these probabilities. In the untrimmed case, no

trimming is used, while in the second case, the probabilities are trimmed

at c - 10 and in the third case, the probabilities were trimmed at 10-6 .
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Position Untrimr.,- = 1 -  = 10 - 6

H K PROBABILITY P2OBABILITY * PROBAEILITY

15 0  0. 0

15 1 0.0

15 2 0.0

15 3 0.00000000

15 4 0.00000001 0.00000001

15 5 0.00000091 0.00000090 0.00000074

15 6 0.00002313 0.00002313 0.00002288

15 7 0.00026704 0.00026704 0.00026680

15 8 0.00175876 0.00175875 0.00175851

15 9 0.00753842 0.00753842 0.00753822

15 10 0.02287019 0.02287019 0.02287004

15 11 0.05202916 0.05202916 0.05202888

15 12 0.09255192 0.09255192 0.09255180

15 13 0.13285647 0.13285646 0.13285630

15 14 0.15771523 0.15771523 0.15771513

15 15 0.06477752 0.06477752 0.06477745

0 15 0.0 0.00000001 0.00000074

1 15 0.0 0.00000090 0.00002288

2 15 0.0 0.00002313 0.00026680

3 15 0.00000000 0.00026704 0.00175851

4 15 0.00000001 0.00175875 0.00753822

5 15 0.00000091 0.00753842 0.02287004

6 15 0.00002313 0.02287019 0.05202888

7 15 0.00026704 0.05202916 0.09255180

8 15 0.00175876 0.09255192 0.13285630

9 15 0.00753842 0.13285646 0.15771513

10 15 0.02287019 0.15771523

11 15 0.05202916

12 15 0.09255192

13 15 0.13285647

14 15 0.15771523 j

Table IV

Phase I exit probabilities
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Trimming is understood to mean that in distributions, tail pr(babilities

which are below 1 (= 0- 8 and 10-6 respectively) are truncated to zero and

these points are deleted from the distribution. Moreover, any conditional

distribution at any of the lattice points in the hexagon H whose total

probability is less than E are completely ignored.

Table Va gives the total operational time distribution for the

untrimmed and each of the two trimmed examples. TbM.e Vb gives a summary of

the computational time for each phase of the computation. Table Vc gives

a list of the amount of probability lost at each stage due to trimming.

Table VI gives the probability distribution at the phase III boundary. These

are closely related to the idle time distributions.

Table Va
Operational Time Distribution

E = 0  10-8 =10-6

Time Probability Probability Probability

55 0.0 0.0 0.0

56 0.000001 0.000001 0.000001

57 0.000003 0.000002 0.000002

58 0.000007 0.000006 0.000006

59 0.000019 0.000016 0.000016

60 0.000046 0.000041 0.000041

61 0.000108 0.000096 0.000097

62 0.000239 0.000213 0.000215

63 0.000500 0.000448 0.000453

64 0.000990 0.000893 0.000903

65 0.001859 0.001687 0.001705

66 0.003312 0.003024 0.003055

67 0.005608 0.005148 0.005202

68 0.009029 0.008334 0.008421

69 0.013838 0.012837 0.012971

70 0.020202 0.018832 0.019030

71 0.028120 0.026334 0.026614

72 0.037350 0.035130 0.035507

73 0.047378 0.044741 0.045228

74 0.057442 0.054445 0.055054

75 0.066623 0.063358 0.064085

76 0.073981 0.070563 0.071400
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77 0.078724 0.075275 0.076204

78 0.080348 0.076986 0.077980

79 0.078726 0.075549 0.076576

80 0.074123 0.071203 0.072228

81 0.067126 0.064509 0.065499

82 0.058526 0.056233 0.057158

83 0.049174 0.047207 0.048043

84 0.039852 0.038200 0.038931

85 0.031180 0.029820 0.030439

86 0.023569 0.022475 0.022982

87 0.017225 0.016366 0.016768

88 0.012178 0.011521 0.011829

89 0.008333 0.007843 0.008072

90 0.005520 0.005166 0.005331

91 0.003541 0.003292 0.003407

92 0.002199 0.002030 0.002107

93 0.001322 0.001211 0.001261

94 0.000769 0.000699 0.000730

95 0.000433 0.000390 0.000409

96 0.000235 0.000210 0.000221

97 0.000123 0.000109 0.000115

98 0.000063 0.000055 0.000058

99 0.000031 0.000026 0.000028

100 0.000014 0.000012 0.000013

101 0.000006 0.000005 0.000006

102 0.000003 0.000002 0.000003

103 0.000001 0.000001 0.000001
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Table Vb

computation time

Phase I = 0 C = 10 - 8  e . 10- 6

I 1.016 .958 .923

II 38.341 27.723 21.526

I1 157.054 110.413 96.315

IV 1.376 1.037 .926

Total 197.787 140.131 119.690

Table Vc

Trimming Effects

.... Probability lost

Phase E = 0 E = 10 - 8  C = 10 - 6

I 0 3 x 10 - 8 4 x 10- 6

II 0 3 x 10-2 1 x 10 - 2

III 0 2 x 10 - 2  2 x 10 - 2

IV 0 0 0

The total number of points on which the final operational time

distribution resides is 95 for e- 0, 68 for C= 10-8 and 62 for E_ 10- 6.

A strange pattern exists between the C values and the probability mass

lost due to trimming The case F- 10-8 seems to have lost more probability

than the case E_ 10-6. Also, the total probability lost, particularly in

the later stages of the computation, is relatively large. A smaller

value in these late stages of the computations would probably remedy the

situation.
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Table VI

Phase III boundary probabilities

H K E = 0 i _ 10-8 E - 10-6

30 15 0.00000047

30 16 0.00000353 0.00000003 0.00000093

30 17 0.00001917 0.00000217 0.00001085

30 18 0.00008556 0.00002586 0.00005624

30 19 0.00031799 0.00015313 0.00022866

30 20 0.00100092 0.00060582 0.00076979

30 21 0.00271011 0.00184516 0.00217903

30 22 0.00640707 0.00472150 0.00536664

30 23 0.01341559 0.01062907 0.01178075

30 24 0.02516235 0.02135680 0.02314250

30 25 0.04252185 0.03824821 0.04054072

30 26 0.06477119 0.06079866 0.06320016

30 27 0.08875024 0.08566056 0.08772284

30 28 0.10925278 0.10721851 0.10868896

30 29 0.12099172 0.11984512 0.12072813

30 30 0.04917891 0.02668752 0.02668738

15 30 0.00000047 0.00000087 0.00000275

16 30 0.00000353 0.00001266 0.00001852

17 30 0.00001917 0.00007661 0.00008490

18 30 0.00008556 0.00031027 0.00031719

19 30 0.00031799 0.00099642 0.00100009

20 30 0.00100092 0.00270824 0.00270923

21 30 0.00271011 0.00640649 0.00640630

22 30 0.00640707 0.01341545 0.01341467

23 30 i0.01341559 0.02516230 0.02516173

24 30 0.02516235 0.04252140 0.04252101

25 30 0.04252185 0.06476609 0.06477032

26 30 0.06477119 0.08871662 0.08874692

27 30 0.08875024 0.10910787 0.10923414

28 30 0.10925278 0.12054744 0.12091419

29 30 0.12099172
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11. Waiting time for the ith customer. The problem of finding the wditing

time distribution for the ith customer initially at station I (or station II)

is easily solved using the method and programs described in the previous

sections. Suppose that we wish to find the waiting time distribution of the

customer who is initially customer i at station I. This customer i must

be served by both stations I and II. All of the customers in line behind

customer i will necessarily be served after he is. As far as customer i is

concerned, these customers have no relevance. Thus one can consider a reduced

queueing system which has initially i customers at station I and N customers

at station II.

In the reduced queueing system, customer i is now the last customer

at station I. His total waiting time is that required for him to clear

station II. We may describe the waiting time problem in terms of the random

walk representation pictured in figure 1. In this representation, the last

customer initially at station I clears station II when the sojourn path

beginning at the origin reaches the upper boundary, i.e. the segment connecting

the lattice points (i,L) to (L,L). At this time, station I may still be

serving, but station II's service is complete.

In the notation of the preceding sections, a formula may be written

for the waiting time distribution for the ith customer as follows.

N L1

(37) Pt = I I P(i + k, L, T, t), t = 0,1.

where P is the probability distribution at the lattice point (i + k, L)

along the upper boundary, and T is the number of service time units remaining

for the customer at station I.

12. Idle time distribution. There are two types of idle time at each of

the serving stations. At station I, idle time occurs at the lower boundary

in figure 1 which corresponds to the line at station I being empty, but there

remain customers at station II who must also be served by station I. Idle

time also occurs at the right boundary in figure 1. This corresponds to the

completion of service at station I for all customers in the system, but there

yet remain customers at station I who require service. Similarly at station II

idle time of each type occurs.

-27-



The idle time distribution of the second type is relatively easy to

obtain once the probability distribution for the phase III boundary is obtained.

This distribution is given for station I by

L L2

p(t) = y*(L - (t - T) P [j, L, TJ
j-N r=1

where P [j, L, r] is the probability of passage to the lattice point (J,L)

with T units of residual service time at station II. This probability is

easily obtained from the phase III boundary probabilities by summing out the

time parameter. A similar formula is available for the station II idle time

distribution.

The other type of idle time distribution which occurs at the lower

boundary and at the left boundary. This probability calculation is not as

readily available as a by product of the total operational time distribution.

The programs and algorithms could be modified to keep tract of the idle time

of this type as well as the total operation time. This procedure would amount

to keeping tract of the joint distribution of the idle time as well as the

total operational time. This would require a considerable increase in the

amount of storage needed. Another alternative is to modify the algorithm

to keep tract only of the idle time at the triangular boundaries.
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II. Comparison Ulith Simulation Methods

A simulation study was made in order to assess the exact computational

algorithms for correctness. An additional benefit was to determine how much

accuracy in the operational time distribution could be obtained by simulation

methods. In this section, we discuss the random number generation methods

and testing, the simulation algorithm, and a collection of results.

1. Random number generation. Three methods for generating random numbers

uniformly distributed over the unit interval were considered. They were:

(a) linear congruential, (b) random numbers from an adapted form of the

Rand Corporation's million random digits, and (c) a mixture of the two.

The linear congruential generator used was the usual one in which the

recurrence formula

X n1= aX nwod(b)nn

is used to generate the random sequence. In this problem, the value of a
32used was 32771 and the value of b was 2

The random numbers from the Rand Corporation's million random digits

were converted to twenty-four bit binary integers and used as random numbers

distributed uniformly on the unit interval by a suitable positioning of the

binary point.

One of the criticisms of linear congruential generators is the

possibility of serial correlations and lack of randomness in runs. The purely

random numbers suffer from the relatively small number of them. In our case

the total number of such nurAbero wav about 138,000.

A method suggested for solving these difficulties is to mix the random

numbers with pseudo random numbers in the following way. Generate a sequence

of pseudo random numbers {Xn I as described above as well as a sequence of

random numbers {Yn I which have the property that Y + 138,000 - Y , i.e. usenn n
the first 138,000 random numbers and after that reuse the original sequence.

The mixed random number Z is obtained by Z - X n Y where the symbol Sn n n n
means that Z is obtained using the exclusive or on the digits of the binaryn
representation of X and Y to obtain the binary digits of Z . The advantagen n n
of this mixing is that the sequence (Z n I enjoys the randomness properties of
the random numbers and also the advantages of the pseudo random sequence.
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28
For each of the metho~s of random number generation described above,

the following tests were made: (a) distribution test, (b) serial correlation
test, and (c) runs test. For each test, 10,000 random numbers were generated.
The distribution test consisted of partitioning the unit interval into 1000
subintervals of equal length, obtaining the empirical frequency count and
applying a chi-square goodness of fit test. The serial correlation test
consisted of computing the one step serial correlation for the pairs (Zy+I, Zy),
Y = 1,2,..., n - 1. The runs test is described in [III p. 60. In this
particular test, we counted runs of length 1,2,3,4,5 and greater than or equal
to 6. The observed number of runs was compared with the expected and a chi-
square value was calculated. In all cases, the chi-square values were close
to the expected values as well as the overall mean and variance. The results
are given in table VII. They suggest that any of the methods of random number

generation are acceptable.

Table VII

Simulation Results

pseudo random random mixed
overall mean .5030 .5008 .4978

overall variance .0838 .0831 .0837
serial correlation .008644 -.001877 -.004844
distribution chi square (999df) 1036.6 1028.4 1029.4
run length chi square (6df) 5.471 7.136 4.092

2. Simulation Algorithm. A relatively straight forward simulation algorithm
was used. For a given queue setup, a set of service times was generated for
each station, according to the service time distribution for that station,
and for each of the M + N customers to be served by that particular station.
The successive service times were independent from customer to customer as
well as from statfon to station. Once the service times were generated, an
algorithm determined the overall operational time for the system. The total
service time was not merely the larger of the sum of the two service times
for each station, because of the possibility of idle time at one station while
it awaits customers from the other. This consideration was easily accomodated
by the algorithm. We omit further details.

3. Comparison of Numerical Results with Simulation Results. We now list
for comparison some simulation results with exact numerical computations. A
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chi square goodness of fit test was made to compare the numerical results with

the simulation results for the total operational time distribution of examples

B through H of section I. 10. The chi square values are given in table VIII.

In table IX, the total operational time distribution for the (5, 5. 2, 3)

example is given as obtained by simulation. The number of simulations was

10,000 in each case.

Table VIII

Comparison of Simulation With Exact Calculations

Empirical
True Distribution Distribution.

Example Chi square df "ean Variance Mean Variance

(5, 5, 2, 2) 31.34 9 15.84 1.67 15.90 1.74

(5, 5, 2, 3) 93.10 15 17.75 4.82 17.88 5.34

(5, 5, 3, 2) 51.07 15 17.75 4.82 17.86 5.09

(10, 5, 2, 2) 14.49 11 23.62 2.66 23.69 2.57

(10,10, 2, 2) 24.92 13 31.20 3.34 31.27 3.36

(15,15, 4, 4) 45.44 33 78.27 24.79 78.47 25.62

The general results show that as far as the mean and variance are concerned,

the simulation produces close, but not accurate results. However, as far as

the overall distribution is concerned, the good ness of fit is poor, especially

when there are a small number of customers in the system. An analysis of the

results shows that the poor fit is in the tails of the distribution. An

extreme example is given in Table IX for the (5, 5, 2, 3) example which gave the

poorest fit of all the examples run.
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Table IX

Goodness of Fit Results

Operational Exact Frequency Expected Contribution

Time Probability Count Frequency to X2

10 0.00000095 0 0.0 0.01

11 0.00006199 0 0.6 0.62

12 0.00110626 10 11.1 0.10

13 0.00869751 105 87.0 3.74

14 0.03723145 378 372.3 0.09

15 0.09591246 923 959.1 1.36

16 0.16157508 1517 1615.8 6.04

17 0.19060600 1869 1906.1 0.72

18 0.17199892 1621 1720.0 5.70

19 0.13040411 1259 1304.0 1.56

20 0.08936733 957 893.7 4.49

21 0.05579908 614 558.0 5.62

22 0.03127172 378 312.7 13.63

23 0.01547158 227 154.7 33.77

24 0.00676496 97 67.6 12.73

25 0.00257871 35 25.8 3.29

26 0.00085335 7 8.5 0.28

27 0.00023588 2 2.4 0.05

28 0.00005317 1 0.5 0.41

29 0.00000861 0 0.1 0.09

30 0.00000090 0 0.0 0.01
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III. General Conclusions

The results of this study have shown that it is possible to analyze

complex queueing models of the type discussed in this report using discrete

time methods together with modern computational facilities. Heretofore,

analytic methods have been able to solve only the simplest cases of queues

having exponential service times. The analytic methods rely heavily on the

memoryless property of the exponential distribution. Using discrete time

methods, proposed by Neuts [10] and others, the queueing problem is completely

solvable with arbitrary service time distributions. The results reported here

show that queues with fifteen customers initially at each station and a service

time distribution, a very small amount of computer time is needed. With

service time distributions concentrating on a larger number of points, say

sixteen points, for each station, the computation time would increase by a

factor of sixteen or less depending on the effects of trimming. The amount

of computer time needed would still remain within reasonable bounds -- about

thirty minutes based on extrapolations from out results. Still larger

problems could be solved, but refinements of the algorithms would be needed.

In particular, the use of the Fast Fourier Transform algorithm for convolutions

of distributions concentrating on a large number of points would considerably

decrease processing time. For the small examples studied in this report, the

use of the Fast Fourier Transform would not be efficient, since convolution

via this transform method is faster than the direct methods only when the

particular distributions involved concentrate on more than 128 points.

The commonly used simulation methods for solving queueing problems of

this type are not as useful for obtaining the operational time probability

distribution as their common use would indicate. Our experience indicates

that the mean and variance can be obtained reasonably well if one is satisfied

with two digit accuracy. An additional digit or so is possible by increasing

the number of simulations. However, the frequency counts do not give accurate

estimates for the probability density. The problem is more serious for queues

with smaller numbers of customers rather than larger ones. The chi square tests

generally fail until there are ten customers in the queue. This phenomena is

probably due to a tendency for the operational time distribution to exhibit a

limiting behavior as the number of customers at a station increases.
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One of the major drawbacks to this method of analysis is the rather large

amount of complex computer programming which is required. The overall amount of t.

time involved is certainly larger than that required for a simulation, but

probably not much more than would be required via analytic methods.

A further aspect of this problem which needs to be analyzed is the

approximation procedure which would be required to model an exponential service

time distribution by a discrete time distribution, say a truncated geometric

distribution.
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