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Implementation Priority Inheritance Algorithms 
in an Ada Runtime System 

Abstract: This paper presents a high-level design—in the form of necessary 
data structures, mechanisms, and algorithms—for implementing the basic pri- 
ority inheritance and priority ceiling protocols in an Ada runtime system. Both 
of these protocols solve the unbounded priority inversion problem, where a 
high-priority task can be forced to wait for a lower priority task for an arbitrary 
duration of time. The protocols and their implementation also address the is- 
sues of non-deterministic selection of open alternatives and FIFO entry call 
queues. These protocols allow the timing analysis of a given set of Ada tasks 
in order to guarantee their deadlines in real-time systems. Importantly, it is 
possible to implement the protocols within the current semantics of the Ada 
language given the interpretations of Ada rules described by Goodenough and 
Sha in the Software Engineering Institute Technical Report 33 (1988). Strat- 
egies and possible alternatives are discussed for implementing these 
protocols in an Ada runtime system targeted to a uniprocessor execution envi- 
ronment. 

1. Introduction 

This paper presents a high-level design, in the form of necessary data structures, 
mechanisms, and algorithms, for implementing the basic priority inheritance and priority 
ceiling protocols [6,10] in an Ada runtime system. These real-time scheduling protocols 
were developed by the Advanced Real-Time Technology Project at Carnegie Mellon 
University. They have been transitioned to a commercially available Ada runtime system 
by the Real-Time Scheduling in Ada Project at the Software Engineering Institute (SEI). 
This technical report summarizes implementation experiences to date, and is intended 
primarily for Ada runtime implementors. The paper also provides some valuable infor- 
mation for real-time Ada application developers, in particular those using Ada tasking in 
a real-time application. 

1.1. Background 

Despite Ada's known software engineering benefits (e.g., support of modern software 
engineering principles such as modularity, data abstraction, and information hiding; re- 
duction in software integration time), only recently has the language—in particular the 
tasking model—been seriously considered for real-time software development. This re- 
cent scrutiny of Ada by the real-time software community has identified some inade- 
quacies of the language with respect to expressing and handling real-time behavior 
[2,4,5, 8, 9]. These limitations relate to: non-deterministic selection of open alter- 

natives, FIFO entry call queues, lack of an adequate time abstraction for expressing 
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real-time behavior, and problems with the delay statement semantics. Limitations of Ada 
that may preclude the use of certain real-time scheduling algorithms are discussed in 
[1] and [4]. Fortunately, some of these problems can be solved by using an integrated 

scheduling approach, which considers task priority information in all runtime scheduling 
decisions. 

1.2. Priority Inversion 
A significant problem that might arise in the use of the Ada rendezvous, or any common 
synchronization primitive for that matter, is called priority inversion. Priority inversion 
occurs when a high-priority task is forced to wait for the execution of a lower priority task. 
The most common occurrence of priority inversion in Ada arises when two or more tasks 
make entry calls to the same task, for example, when a (server) task is used to enforce 
mutual exclusion with respect to a shared resource (logical or physical). Client tasks 
requiring the shared resource make entry calls to the server task. This not only enforces 
mutual exclusion but also modularizes the operations on the shared resource. However, 
suppose that client task T, makes an entry call to a server task S that is in rendezvous 
with a lower priority client task T2. Higher priority task 7j must therefore wait until task 
T2 completes its rendezvous with S. Priority inversion is unavoidable in such conditions. 
Nevertheless, it is essential that the duration of priority inversion be tightly bounded and 
be as small as possible. Only then can the timing behavior of a given set of tasks be 
analyzed and their deadlines guaranteed. An indiscriminate use of the Ada rendezvous 
can lead to unbounded priority inversion and unpredictable timing behavior, as shown by 
the following example. 

Example 

Suppose that a high-priority client task and a low-priority client task share a resource 
controlled by a server task. Also suppose that the server task is assigned the lowest 
priority in the system. First, the low-priority client rendezvous with the server task. The 
rendezvous is executed at the priority of the low-priority client. The high-priority client 
now becomes ready for execution, preempts the server task and makes an entry call to 
the server task. The high-priority task becomes blocked since the server task is not 
ready to accept the call. The server task, having the highest priority among the tasks 
ready to run, resumes execution. However, it is preempted by a medium-priority task 
that does not require the services of the server task. This medium-priority task can now 
run to completion before the server task can resume execution. The result is that the 
high-priority task has to wait for the complete execution of a medium-priority task. 

The blocking duration of the high-priority task in the example above can be arbitrarily 
long since the server task can be preempted by any intermediate-priority task. In real- 
world applications these intermediate priority tasks can be periodic in nature, and there- 
fore, can exacerbate the priority inversion problem by making the blocking duration of 
the high-priority task extremely long.  Furthermore, assigning the highest priority to the 
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server task can cause some unnecessary blocking as well: high-priority tasks not requir- 
ing its services will be preempted by the server task executing on behalf of lower priority 
task requesting service. Finally, FIFO queuing on entry queues can contribute to addi- 
tional priority inversion. If entry calls are serviced in the order they arrive, a high-priority 
task that arrives late will be forced to wait until all lower priority tasks before it are ser- 
viced. For instance, in the example above, if there are lower priority tasks on the server 
entry queue, then the (unbounded) priority inversion problem worsens. Hence, it be- 
comes important that a priority queuing discipline be emulated. 

The concept of priority inheritance solves the unbounded priority inversion problem. Pri- 
ority inheritance requires that if a task T blocks higher priority tasks from executing, it 
should execute at the priority of the highest priority task it blocks. Thus, the server task 
in the example above will begin execution at high priority when the high-priority client 
makes an entry call to the server task. As a result, the server task cannot be preempted 
by the intermediate priority task(s), and the unbounded priority inversion problem is 
avoided. 

1.3. Real-Time Scheduling Protocols 
The basic priority inheritance and priority ceiling protocols [10] are both based on the 
concept of priority inheritance, which prevents the unbounded priority inversion problem. 
Both of these protocols were originally defined under the assumption that binary 
semaphores are used to synchronize access to shared resources, but they can be ap- 
plied to monitors and the Ada rendezvous [6] as well. Under the basic inheritance 
protocol, a deadlock can occur if server tasks make entry calls to one another in cyclic 
order.1 Hence, deadlock prevention measures like partial ordering of server task entry 
calls must be used. However, a task can still be blocked for a long duration.2 Also, 
prioritized entry queues and priority-based selects must be emulated using other known 
techniques [3]. In contrast, under the priority ceiling protocol, deadlocks are avoided and 
a task is guaranteed to be blocked for at most a bounded duration. In addition, the 
protocol guarantees that collectively the entry queue(s) of any server task can contain at 
most one waiting task (assuming that server tasks do not suspend except on entry calls 
and accept statements). As a result, FIFO versus priority queuing, and arbitrary selec- 
tion among open alternatives become non-issues. 

Both of these real-time scheduling protocols solve the unbounded priority inversion prob- 
lem where a high-priority task can be forced to wait for a lower priority task for an ar- 
bitrary duration. The protocols and their implementation also address the issues of non- 
deterministic selection of open alternatives and FIFO entry call queues. These protocols 

1The problem of deadlock is not really a problem of the basic inheritance protocol, but of certain structures 
that can be programmed using rendezvous. 

^e basic inheritance protocol bounds the duration of blocking, but it does not minimize it. 
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allow the timing analysis of a given set of Ada tasks in order to guarantee their deadlines 
in real-time systems. Importantly, it is possible to implement the protocols within the 
current semantics of the Ada language given the interpretations of Ada rules described 
in [7]. 

1.3.1. Use of Ada Features 
In [6], the basic inheritance and the priority ceiling protocols were applied to the use of 
the Ada rendezvous as the synchronization mechanism. The assumptions underlying 
the protocols, when applied to Ada, require that a set of constraints be imposed on the 
structure of Ada tasks. Thus, the priority inheritance protocols can be applied to Ada if 
Ada tasks are written using a well-defined, restrictive style. That is, while the semantics 
of the Ada language allow tasks to be structured in multiple ways, these constraints as- 
sume only a subset of these possible structures. The essential point is that the 
protocols, in principle, can be applied to all task structures, but only under these con- 
straints do the properties of the protocol lead to results that can be analyzed in a quanti- 
tative manner. 

1.3.2. Coding Restrictions 
The following coding restrictions with respect to the use of Ada tasking features are im- 
posed if the priority inheritance protocols are to be applied in Ada [6] in an analyzable 
manner: 

1. All accept statements in a task must be contained in a single select state- 
ment that is the only statement in the body of an endless loop. There must 
be no guards on the select alternatives and no nested accept statements.3 

However, entry calls to other tasks with the same structure may be made. 
Such a task structures model the notion of critical regions guarded by a 
semaphore, thus allowing application of the previously developed theory to 
a system of Ada tasks. A task that contains such accept statements is 
called a server task. A client task is a non-server task that makes at least 
one entry call to a server.4 

2. There must be no conditional or timed entry calls. (These forms of call 
have no simple analogues in the binary semaphore version of the theory; 
while they may be implementable, they are excluded to simplify application 
of the theory to Ada.) 

3Though there is no simple analogue to guards in the semaphore version of the theory, it is still possible 
to include guards in the task structure. In this case, an entry call would be made only if the protocol allows 
the call and the corresponding guard evaluates to TRUE. If not, the calling task T will be suspended and the 
entry call will be treated as if it were not made. The callee will inherit the priority of the calling task t (if the 
caller has higher priority). When the guards are reevaluated, x is resumed and the entry call is retried as 
before. The process repeats and the entry call is successful both when the protocol allows the call and the 
corresponding guard is TRUE. For the sake of simplicity, in this paper guards are not included in the task 
structure. 

4A task that contains no accept statements or entry calls is a non-server task but not a client task. 
Therefore, the set of non-server tasks is not the same as the set of client tasks. 
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A server task is not assigned any priority using pragma PRIORITY. Since 
the Ada rules do not specify any particular priority or scheduling mecha- 
nism for tasks with undefined priorities, it becomes possible to implement 
these priority inheritance protocols within the current semantics of the lan- 
guage [7]. (Although the application code should not specify a server task 
priority, in the runtime system a server task must be assigned a priority 
lower than that of any of its client tasks.5 This restriction ensures that 
entry calls are executed with the correct priority. For example, in the 
simplest case, a rendezvous is executed with the priority of the calling 
task. This corresponds to executing a critical region with the priority of the 
process that contains it.) 

1.4. Strategies for Implementing the Protocols 
Chapters 2 and 3, respectively, discuss how one can implement the basic priority in- 
heritance and the priority ceiling protocols in an Ada runtime system. An implementor 
can choose one of two strategies to implement these protocols in the Ada runtime sys- 
tem: 

1. The protocols can be implemented within an existing runtime system. 
Surprisingly, the changes required are few and can be done rather easily. 
Additional options (not necessarily mutually exclusive) exist here as well: 

• The protocols can be implemented so as not to disrupt the behavior 
of Ada programs that do not meet the constraints imposed by the 
protocols. Hence, already written programs can still use the modified 
runtime system. 

• Extensive changes can be made to the existing runtime system so 
as to support only the priority inheritance protocols. Since the al- 
lowed task structures are well defined, the assumptions underlying 
the runtime system can be changed. As a result, some existing code 
can be eliminated while adding some code to implement the 
protocols. 

• The protocols can be implemented in an incremental fashion to facil- 
itate easy testing and debugging. The basic priority inheritance 
protocol is relatively straightforward to implement, and therefore, 
should be implemented first. The priority ceiling protocol can then 
be implemented as the second step. 

2. The tasking module of the Ada runtime system can be rewritten from 
scratch to support only the priority inheritance protocols and the restricted 
task structures. As explained in Section 3.1, the priority ceiling protocol, 
entry queues can grow no longer than 1 in length. In addition, a task that is 
blocked on the entry call of a server task need not be removed from the 

5A non-server task that makes no entry calls can have a priority lower than the priority of a server task. A 
client task can have a priority lower than a server task if it never calls that server directly or indirectly through 
other server tasks. 
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ready queue (holding tasks that are ready to run). These properties of the 
protocol can be exploited to produce an efficient, streamlined implemen- 
tation. 
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2. Basic Priority Inheritance Protocol 
This chapter presents the definition of the basic priority inheritance protocol in Ada terms 
and discusses the implementation of the protocol in an Ada runtime system. See Ap- 
pendix B for detailed examples. 

2.1. Definition of the Basic Priority Inheritance Protocol for 
Ada 

A server task S is said to be executing on behalf of client task T if S is in rendezvous 
either with Tor with a server task that is in rendezvous with T. A server task S is said to 
be blocking a task Tif T(or a server executing on behalf of 7) has made an entry call to 
S, but is not in rendezvous with S. The basic priority inheritance protocol [10] consists of 
the following set of rules: 

1. A server task S executes at its runtime assigned priority6 when it does not 
block any tasks or when it is not executing on behalf of a client. 

2. If a server task S is executing on behalf of a client task Tor is blocking one 
or more tasks, the server executes at either the priority of Tor the priority 
of the highest priority task (if any) that S blocks, whichever is higher. 

3. Tasks requesting the services of a server task are serviced in priority or- 
der. 

By Rule 1, a server executes at its base priority when no tasks exist that have called the 
server. Rule 2 means that a server task can execute at higher than its assigned priority 
under two conditions. The first condition occurs when the server is in rendezvous with a 
task T. Then, the server executes at the priority of T. If T itself is executing on behalf of 
a client, S executes at the priority of the client. The second condition arises when a 
server is blocking one or more tasks. In other words, other tasks have made entry calls 
to the server but have yet to rendezvous with it. In this case, the server executes at the 
priority of the highest priority task that it blocks. If both these conditions are satisfied, the 
server task executes at the higher of the two applicable priorities. Rule 3 requires that 
tasks be serviced in priority order. This implies that entry queues are priority-ordered and 
a select statement picks the highest priority task that is suspended on an accept state- 
ment. 

Under the basic priority inheritance protocol, a client task can be blocked in two ways: 
(1) directly, when the called task either has a queued task or is executing a rendezvous; 
or (2) indirectly, when a server task inherits a higher priority. These cases of blocking 
are referred to as direct and push-through blocking, respectively. 

6A server task's base or assigned priority means the static priority that the runtime system has given to it. 
Remember that coding guidelines state that pragma PRIORITY should not be used to assign a priority to 
server tasks. 
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2.2. Implementing the Basic Priority Inheritance Protocol in 
an Ada Runtime 

The basic priority inheritance protocol can be implemented within the semantics of Ada 
as follows. No server task is assigned a priority using the pragma PRIORITY. Since Ada 
rules do not specify any particular priority or scheduling discipline for tasks with un- 
defined priorities, a system-dependent pragma (or the runtime system implicitly) can as- 
sign the priority of server tasks to be lower than that of their clients. The execution 
priority of server tasks gets modified when client tasks make entry calls to or complete 
their rendezvous with the server tasks. Thus, Rules 1 and 2 (see Section 2.1) of the 
basic priority inheritance protocol can be implemented within the current Ada semantics. 
Rule 3 requires that tasks be serviced in priority order. This implies that a select state- 
ment must pick the highest priority task that is suspended on an accept statement and 
that entry queues are effectively priority-ordered. Since Ada allows the choice of the 
open alternative in a select statement to be arbitrary, an implementation that supports 
the basic priority inheritance protocol can specify the choice to be the alternative with the 
highest priority task. To affect the semantics of priority entry queues,7 a runtime system 
can block server calls (i.e., not queue the call) when a server task is already executing 
on behalf of a client, because this rule specifies when ft is "sensible" to allow the execu- 
tion of the high-priority task to continue [7].8 Thus, the basic priority inheritance protocol 
can be implemented within the current Ada semantics for tasking. 

The basic priority inheritance protocol potentially requires priorities to be modified when 
tasks make entry calls. A server task may inherit the priority of a higher priority client 
task even though the server is not in rendezvous with the client. Thus, each (server) task 
has an assigned priority and an executing priority. In addition, since priority inheritance is 
transitive, the runtime system needs to maintain in each task control block the state in- 
formation regarding any caller and callee tasks. An implementation of the basic priority 
inheritance protocol thus requires minor modifications to the data structures used by the 
runtime system and support for these data structures. The runtime data structures re- 
quired and the modifications to be made to an Ada runtime system to implement the 
protocol are presented below. The discussion focuses on only those modules in the run- 
time system that are affected by the basic priority inheritance protocol. The proposed list 
of modifications should be treated as guidelines, as alternative implementations are also 
possible. 

7An efficient implementation supporting the basic inheritance protocol would, ideally, implement entry 
queues as priority queues. 

8A stricter, more conservative interpretation of Ada rules would require the prioritized servicing of entry 
calls to be coded using entry families [3]. Guards used by the solutions proposed in [3] do not violate the 
assumptions of the basic inheritance protocol and are permitted. However, such an implementation would 
be expensive both in terms of code size and runtime overhead. 
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2.2.1. Runtime Data Structures 
The implementation of the basic priority inheritance protocol requires the additions to the 
runtime data structures listed below. Note. It is assumed that these runtime data struc- 
tures already exist. 

1. Task Control Block (TCB) - the runtime task control block associated with 
every Ada task must contain the following information to support the imple- 
mentation of the basic priority inheritance protocol. 

a. Base_Priority - the task's default execution priority assigned by the 
runtime system or by using pragma PRIORITY. 

b. Current_Priority - the priority at which the task can currently run. 

c. Called_Task - the server task that was called by this client task, if 
any. 

d. TCB_F_Link - a pointer to the TCB of the next task after this one 
on the Job Queue. 

We assume that a task's TCB is initialized when the task is first created by 
the runtime system and remains available throughout the lifetime of the 
task. 

2. Prioritized Job Queue - a prioritized, linked Job Queue of the tasks ready 
to execute. The task at the head of the Job Queue (i.e., the one with the 
highest (inherited) priority) will always be the currently executing task. 
Tasks of equal priority will be managed under a FIFO policy, although ser- 
ver tasks that inherit the priority of a task they block must be inserted and 
removed from the Job Queue in LIFO order to guarantee that the task at 
the head of the queue is always the highest priority ready-to-execute task.9 

This means that when tasks are coded using only the restricted features, a 
task that is blocked need not be taken off the Job Queue as would be nor- 
mally done. The protocol guarantees that when a task "reaches" the head 
of the Job Queue, it is ready to execute. 

2.2.2. Implementation Mechanisms 
The implementation of the basic priority inheritance protocol in an Ada runtime system 
will require support for the following mechanisms: 

1. Job Queue Management - the simple queue operations of adding in prior- 
ity order and removing Task Control Blocks (TCB's) to/from the Job Queue 
are necessary to support the basic priority inheritance protocol. 

2. Entry Queue Management - entry queues must be priority ordered to sup- 

9That is, suppose that a task Tat the head of the Job Queue blocks on a server S further down in the Job 
Queue. The server S inherits Ts priority and must be requeued. The requeuing operation CH" he consid- 
ered as the removal of S from the Job Queue and insertion of S into the Job Queue in LIFO orn»> since S 
and 7" have equal priorities, S is inserted at the head of the queue and becomes the next fas* <o execute. 
The LIFO queuing discipline would be used if S was itself suspended, on an accept statement, when 7" 
makes the entry call. 
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port the basic priority inheritance protocol.10 Also, when a task is added to 
an entry queue, its priority has to be transmitted transitively down the chain 
of called tasks. Furthermore, each task in this entry call chain whose prior- 
ity has been elevated and that is on the Job Queue (i.e., ready to run) 
must be re-inserted into the Job Queue since its priority has changed. 

3. Priority Management - the priority of the server tasks changes depending 
on which client tasks they are blocking. The priority of a server S is the 
maximum of the priority of a task (if any) that S is in rendezvous with and 
the priorities of the tasks (if any) in its entry queues. The server S executes 
at its assigned priority only when S is not in rendezvous and there are no 
tasks in its entry queues. Upon completion of a rendezvous, the server 
reverts back to the maximum of its assigned base priority and the priorities 
of any blocked client tasks. 

2.2.3. Runtime Modifications 
This section contains the details of how to implement the basic priority inheritance 
protocol given the above data structures and mechanisms in the runtime system. The 
pseudo-code provides only the additional support that is required to implement the basic 
priority inheritance protocol and assumes that the other steps required for each opera- 
tion as defined by the language are already in place. We have made the following as- 
sumptions with respect to implementing the basic priority inheritance protocol in an Ada 
runtime system. 

1. Rendezvous execute within the context (i.e., address space) of the (called) 
server task. 

2. The Job Queue contains tasks which are ready to run. The task at the 
head of the Job Queue will always be the currently executing task denoted 
as the CurrentJTask. 

3. A task switch occurs when the Current_Task changes, i.e., a new task has 
been inserted at the head of the Job Queue. 

10A priority queuing discipline on the entry queue is a violation of Ada rules, which require entry queues to 
be FIFO ordered. If strict adherence to these rules is necessary, the user must be required to use p'mntized 
entry families to ensure a priority-ordered servicing of requests [3]. Guards are required to implement this 
solution. The guards used for this solution do not violate the conditions of the protocol and are permitted. 
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2.2.3.1. Global Data 
The following object must be defined and globally accessible from the Ada runtime 
source code. 

1. Current_Task or Head_Of__Job_Queue - a pointer to the currently execut- 
ing Ada task. This also represents a pointer to the head of the Job 
Queue.11 

2.2.3.2. Entry Calls 
The modifications to Ada's task-calling semantics necessary to implement the basic pri- 
ority inheritance protocol algorithm are captured in the pseudo-code of Figure 2-1.12 

S«rv«r inherit* call«r'a currant priority. 

Tran*mlt_Caller*_Pr1orlty(To => Called Task, From => Current_Taak); 

if Called Server Task cannot rendezvous with Current Calling Task then 
Add Current Task to Server's Entry Queue; 

end if; 

Continue normal processing including a call to Check_Job_Queue; 

Figure 2-1:   Basic Priority Inheritance: Entry Calls 

When a task T makes an entry call to a server task S, the execution priority of S 
changes. Since S would have already been executing at the highest priority of its cur- 
rently calling clients, Tmust have higher priority than those clients; otherwise, T would 
not have been able to run and make the call to S. Hence, Ts priority must be inherited 
by S and its callees, if any. Server S and any of its callees are then requeued in the Job 
Queue. If any of these tasks are already in the Job Queue, they must be removed from 
the queue before reinsertion. 

2.2.3.3. Selective Wait 
The modifications to Ada's selective wait semantics necessary to implement the basic 
priority inheritance protocol algorithm can be summarized as follows. When a server S 
encounters a select statement, it picks the highest priority task that is waiting on any of 
its entry queues. This ensures that the highest priority waiting client is serviced first. Any 
required priority inheritance for S would have occurred when the client tasks on the entry 
queues made their entry calls. Hence, priority inheritance does not need to be per- 
formed here. 

11The assumption is that Current_Task and Head_Of_Job_Oueue point to the same task. This may not 
be the case for a real runtime implementation. To make our intent as clear as possible in the pseudo code, 
the Head_Of_Job_Quaue variable is used as a reference point to any tasks other than the Current_Task 
currently in the Job Queue. 

12Note. All bold italic subprograms in the program listings are elaborated upon further in Appendix A. 
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2.2.3.4. Entry Queue Insertion 
The modifications to Ada's task entry queue semantics necessary to implement the ba- 
sic priority inheritance protocol algorithm are captured in the pseudo-code of Figure 2-2. 

- Prioritized insert of the Calling Task into appropriate 
entry queue of the Called Task. 

Priority_JLdd_To_Rntry_Qu«u« (Of •> Current_Task, 
Onto -> Called_Task, 
For -> Entry_Number) ; 

for all tasks in the Called Task's call chain 
loop 

Transmit Callers Prlor!ty(From » Current Task, 
To m> N»xt_Called_Ta»k_ln_Chaln); 

--  If Next Called Server Task in oall chain is on the Job Queue, 
remove it and  re-insert it into the Job Queue with it* 
new priority. 

if On_The_Job_Queue(Next_Called_Task_In_Chain) than 
Remove_From_Job_Queue (Next_Called_Task_In_Chain) ; 
LIFO_Add_To_Job_Quaua (Nedtt~CaJ.l«d~Taak_In_Chai.n) ; 

•nd if; 
•nd loop; 

Continue normal processing including a call to Check_Job_Queue; 

Figure 2-2:   Basic Inheritance: Entry Queue Insertion 

Entry queues are priority ordered. Hence, when a task T makes an entry call to a server 
S and needs to be inserted into S"s entry queue, Ts position in S"s entry queue will 
depend upon its priority. Also, S and any of its callees inherit the caller's priority. We 
assume that the Prlority_Add_To_Entry_Queue routine can obtain the called entry of 
the server from the current task's TCB. 

2.2.3.5. Rendezvous Completion 
The modifications to Ada's task rendezvous completion semantics necessary to imple- 
ment the basic priority inheritance protocol algorithm can be summarized as follows. 
When a rendezvous is completed, the server task's priority is set to its base priority if the 
server's entry queues are empty or to the priority of the highest priority task in its entry 
queues. One need only look at the first task in each of the servers' entry queues to 
determine the highest priority caller because the entry calls are maintained in priority 
order. 
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2.3. Optimization Issues 
This section discusses viable optimizations that can be performed for improving the per- 
formance of a runtime system that implements the basic priority inheritance protocol. 
Optimizations identified to date are summarized below. 

1. To avoid unnecessary queuing and dequeuing of server tasks which have 
been called by multiple clients, a check can be made upon the completion 
of every rendezvous with a server to see if the next highest priority task 
eligible to run is blocked by the server. 

2. If entry queues are managed in priority order, finding the highest priority 
client across all open alternatives for a server involves merely checking the 
first task in each queue. 
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3. Priority Ceiling Protocol 

This chapter presents the definition of the priority ceiling protocol in Ada terms and dis- 
cusses the implementation of the protocol in an Ada runtime system. See Appendix C 
for detailed examples. 

3.1. Definition of the Priority Ceiling Protocol for Ada 
A server task is one whose accept statements are all contained in a single select state- 
ment that is the only statement in the body of an endless loop. Server tasks are the only 
form of task allowed to contain an accept statement under the current implementation of 
the priority ceiling protocol. A client task is a non-server task that contains at least one 
entry call. A server task S is said to be executing on behalf of client task T if S is in 
rendezvous either with Tor with a server task that is in rendezvous with T. The priority 
ceiling of a server task is defined as the highest priority of its client tasks, i.e., the highest 
priority of tasks that can call the server directly or indirectly. 

The priority ceiling protocol uses the following definitions: 

1. Let T be a client task attempting to call a server. The attempted call is 
blocked unless T's priority is greater than the priority ceiling of each server 
task that is executing on behalf of some task other than T.1* 

2. A server task S is said to block the execution of non-server task T if S is 
executing on behalf of some other client task U, T's priority is greater than 
U's, and either 

a. T is attempting to call a server (not necessarily S), and S has a 
priority ceiling greater than or equal to T's priority, or 

b. S is called by a server that blocks the execution of T, or 

c. S is blocking the execution of some task whose priority is higher 
than T's priority. 

The priority ceiling protocol consists of the following rules [6J: 

1. When an attempted entry call is blocked as defined above, the call is not 
made and the calling task's execution is suspended.14 

2. A server executes at its assigned priority except when it is executing on 

13lf a server task attempts to call another server, the priority ceiling protocol guarantees that this call will 
never be blocked. 

"Note that a call is blocked if the server task is executing a rendezvous or if another task is queued on an 
entry, since the server's priority ceiling will necessarily be greater than or equal to the caller's priority [10]. 
Thus the above rule includes the usual condition under which a calling task is blocked. However, the 
difference here is that the calling task is blocked before the call is actually made and placed in an entry 
queue. 
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behalf of a client task.  In this case, it executes at the priority of its client 
unless Rule 3, below, requires execution at a higher priority. 

3. If a server blocks the execution of one or more tasks, the server executes 
with the highest priority of the tasks it blocks15 until the server has com- 
pleted execution of an accept statement, at which point its execution prior- 
ity becomes the higher of either its assigned priority or its priority as deter- 
mined by these rules. Since it will usually be the case that a higher priority 
task is ready to run when the rendezvous is completed, the server task is 
usually preempted after completing a rendezvous. 

Rule 1 guarantees that a server task will have at most one client on any of its entry 
queues by not queuing (i.e., suspending the task prior to making the entry call) any at- 
tempted entry call that is blocked. Rule 2 means a server task can execute at higher 
than its assigned priority even if it is not in a rendezvous.16 Although the priority of a 
server task is increased by this rule, the server is not said to inherit its client's priority; 
instead, it is considered to be executing as part of its client and therefore executes at its 
client's priority. Under Rule 3, the server is said to inherit the priority of the highest 
priority blocked task. This rule allows the execution of a lower priority client task to delay 
the execution of a medium-priority task when the lower priority task has called a server 
and the server is blocking the execution of a high-priority task. The medium-priority task 
pays this price to avoid blocking the high-priority task. 

Example 

Suppose that a client task T requests the services of server S. Let S* be defined as the 
server with the highest priority ceiling executing on behalf of some task other than T. If 
T's priority is not higher than S*'s priority ceiling, the runtime system suspends T's ex- 
ecution without queuing the call and elevates S*'s priority to that of T. In this example, 
when server S* completes its current rendezvous, it resumes executing at its original 
priority, allowing the highest priority task blocked by the protocol to resume. 

Under the priority ceiling protocol, a client task can be blocked in one of three ways: (1) 
directly, when the called server task either has a queued task or is executing a rendez- 
vous; (2) indirectly, when a server task inherits a higher priority; or (3) indirectly, when, 
although the called task would normally be able to accept the call, some executing ser- 
ver task exists with a priority ceiling higher than or equal to that of the calling task. 
These cases of blocking are referred to as direct, push-through, and ceiling blocking, 
respectively. 

15The priority of the blocked tasks will always be higher than the priority of the server's client task since 
they would not have otherwise been able to execute and become blocked. 

16lt the server task has no assigned priority, its effective priority can be increased according to priority 
inheritance rules [7]. 
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3.2. Implementing the Priority Ceiling Protocol in an Ada 
Runtime 

The priority ceiling protocol can be implemented within the semantics of Ada as follows. 
No server task is assigned a priority using the pragma PRIORITY. In addition, each ser- 
ver must register its priority ceiling with the runtime system, either through a pragma or a 
runtime service call. Since Ada rules do not specify any particular priority or scheduling 
discipline for tasks with undefined priorities, a system-dependent pragma (or the runtime 
system implicitly) can assign the priority of server tasks to be lower than that of their 
clients. The execution priority of server tasks gets modified when client tasks make 
entry calls to or complete their rendezvous with the server tasks. Furthermore, when a 
high-priority client wants to call a server, the call may be blocked by the runtime system 
in accordance with the rules listed in Section 3.1 because these rules specify when it is 
"sensible" to allow the execution of the high-priority task to continue [7]. Thus, the prior- 
ity ceiling protocol can be implemented within the current Ada semantics for tasking. 

As with the basic inheritance protocol, the priority ceiling protocol requires priorities to be 
potentially modified when tasks make entry calls. Since priority inheritance is transitive, 
the runtime system needs to maintain in each task control block (TCB) the state infor- 
mation regarding any caller and callee tasks. Additionally, to support the ceiling blocking 
rule, each task's TCB must contain information regarding any server tasks called by the 
task, the task's blocking status, and its priority ceiling, if applicable. This information is 
necessary for properly controlling the runtime behavior of client tasks whose server calls 
may have to be retried because of priority ceiling blocking rules. 

An implementation of the priority ceiling protocol thus requires minor modifications to the 
data structures used by the runtime system and support for manipulating these data 
structures. The runtime data structures required and the modifications to be made to an 
Ada runtime system to implement the ceiling protocol are presented below. This discus- 
sion focuses on only those modules in the runtime system that are affected by the prior- 
ity ceiling protocol. As presented, these modifications should be applied incrementally 
after the basic inheritance protocol has been successfully implemented. The proposed 
list of modifications should be treated as guidelines since alternative implementations 
are also possible. 

3.2.1. Runtime Data Structures 
The implementation of the priority ceiling protocol requires the following additions to the 
runtime data structures. Note. It is assumed that these runtime data structures already 
exist. 

1. Task Control Block - the runtime task control block associated with every 
Ada task must contain the following information to support the implemen- 
tation of the priority ceiling protocol. 

a. Base_Prior'rty - the task's default execution priority assigned by the 
runtime system or by using pragma PRIORITY. 

CMU/SEI-89-TR-23 17 



b. CurrentJPriority - the priority at which the task can currently run. 

c. ls_A_Server - Boolean flag indicating whether or not the task is a 
server. This Boolean is used to distinguish server tasks that meet 
the conditions specified in Section 1.3.1. This field has to be set 
either by the runtime system or by the application code. 

d. PriorityjCeiling - the highest priority of its client tasks, i.e., the 
highest priority of the tasks that call this server directly or indirectly. 

e. Called_Task - the server task that was called by this client task, if 
any. 

f. Blocking_Task - the server task that is presently blocking the task. 

g. TCB_F_Link - a pointer to the TCB of the next task after this one 
on the Job Queue. 

h. Wakeup_Status - information regarding the called task and specific 
entry that caused a ceiling blocking of this task. 

It is assumed that a task's TCB is initialized when the task is first created 
by the runtime system and remains available throughout the lifetime of the 
task. It is further assumed that the values of the ls_A_Server and 
PriorityjCeiling fields of the TCB are provided to the runtime by the appli- 
cation code either via a compiler directive or a runtime service call. 

2. Prioritized Job Queue - a prioritized, linked Job Queue of the tasks ready 
to execute. The task at the head of the Job Queue (i.e., the one with the 
highest (inherited) priority) will always be the currently executing task. 
Tasks of equal priority will be managed under a FIFO policy, although ser- 
ver tasks that inherit the priority of a task they block must be inserted and 
removed from the Job Queue in LIFO order to guarantee that the task at 
the head of the queue is always the highest priority ready-to-execute task. 

The implementation of the priority ceiling protocol also requires the following runtime 
data structure, which is assumed not to already exist. 

1. Called Server Stack - a prioritized LIFO stack of called server tasks or- 
dered according to their priority ceiling. A new server can be pushed onto 
this stack only if its priority ceiling is higher than that of the server already 
at the top of the stack. Along with the server's priority ceiling, additional 
information must be maintained in this stack. In particular, the calling 
client task and the server's priority ceiling need to be saved. This infor- 
mation is used to enforce the priority ceiling blocking rule (see Section 
3.1). 

3.2.2. Implementation Mechanisms 
The implementation of the priority ceiling protocol in an Ada runtime system requires 
support for the following mechanisms: 

1. Setting Priority Ceilings - some mechanism for the runtime system to know 
the priority ceiling of each server task is needed. This could be done auto- 
matically by the compiler front end, via implementation-dependent prag- 
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mas, or through a runtime interface to be called by each server to register 
its own priority ceiling. 

2. Called Server Stack Management - the traditional stack operations of 
push, pop, and top of stack will suffice for managing this data structure in 
the implementation of the priority ceiling protocol. Also, an operation to 
check a client task's priority against the priority ceiling of S* (see Section 
3.1) is needed to support the priority ceiling protocol. This operation 
defaults to checking the priority ceiling of the server at the top of the Called 
Server Stack in the absence of nested server calls. For the case of nested 
server calls, the ceiling blocking check need not be done since once a 
chain of nested server calls is initiated, the ceiling protocol guarantees that 
none of the server calls will be blocked. However, the server push opera- 
tion may still be required in this situation. 

3. Job Queue Management - the simple queue operations of adding (in prior- 
ity order) to and removing TCBs from the Job Queue are necessary to 
support the priority ceiling protocol. Also, a priority insertion operation in 
which tasks of equal priority are treated in a LIFO manner is necessary for 
properly handling nested server calls under the priority ceiling protocol. 

4. Entry Queue Management - queuing must be done on an entry only if the 
priority ceiling protocol allows an entry call to be made; otherwise the call- 
ing task must be suspended and not queued. If the attempted entry call is 
blocked in this manner, a runtime mechanism for retrying that call when 
the client becomes unblocked is necessary. The consequence of this rule 
is that at most one caller will be queued to a server at any given time, but 
the blocked caller must re-attempt the entry call when it becomes the cur- 
rent executing task. This action will require the saving (for the blocked 
caller) of state information indicating which server and specific entry 
should be subsequently called. 

5. Priority Management - the priority of the server tasks changes depending 
on which client tasks are blocked. From Rule 3 above (Section 3.1), a 
server's priority can be inherited either directly or indirectly. Upon comple- 
tion of a rendezvous, the server reverts to the maximum of its base priority 
and the priorities of any blocked client tasks. 

3.2.3. Runtime Modifications 
This section contains the details of how to implement the priority ceiling protocol given 
the above runtime data structures and mechanisms. The pseudo-code provides only the 
additional support that is required to implement the priority ceiling protocol and assumes 
that the other steps required for each operation as defined by the language are already 
in place. The following are assumptions about implementing the priority ceiling protocol 
in an Ada runtime system. 

1. Rendezvous execute within the context of the called task. 

2. The Job Queue contains tasks that are either ready to run or have been 
blocked by priority ceiling rules. In either case, when a task reaches the 
head of the Job Queue, it will be ready to execute. The task at the head of 
the Job Queue will always be the currently executing task denoted as the 
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CurrentJTask. Furthermore, a task switch occurs when the Current_Task 
changes, i.e., a new task has been inserted at the head of the Job Queue. 
This task switch normally is performed by a routine such as the 
Check_Job_Queue in Appendix A.c. 

3. When a client Ts entry call to a server S is blocked by the priority ceiling 
protocol (PCP) rules, 7 is requeued on the Job Queue in LIFO order based 
on tasks of equal priority. This assumption guarantees that when a called 
server task S has inherited the priority of a client task T at the head of the 
Job Queue, S will be inserted ahead of T in the Job Queue. 

4. The application code will indicate, either through a pragma or a call to the 
runtime system, the priority ceiling of each server task. 

5. If a server task attempts to call another server, the priority ceiling protocol 
guarantees that this call will never be blocked. In this case, a conditional 
push (i.e., a new server is pushed onto this stack if its priority ceiling is 
higher than that of the server already at the top of the stack) onto Server 
Stack can be used so that the priority order of the Server Stack is pre- 
served. 

6. Server tasks do not execute any statements on behalf of their clients that 
would cause them to suspend (e.g., synchronous I/O operations). If server 
tasks were able to become suspended during a service call, client re- 
quests could be queued in their order of arrival (FIFO). For the sake of 
simplicity, this is assumed; however, it is unnecessary and can be handled 
as follows. When a server task S suspends, i.e., relinquishes the CPU 
while it is the highest priority task eligible to run, it along with all of the 
clients it has blocked must be taken off the Job Queue as a family of tasks. 
The list of client tasks blocked by any given server can be maintained by 
adding another field to each task's TCB. Should another client T2 call S 
while it is suspended, S would still inherit T2's priority and T2 would be 
blocked and therefore inserted immediately after S in the family list. Upon 
resumption of S*s execution, each task in the family of blocked clients 
would be re-inserted onto the Job Queue. 

3.2.3.1. Global Data 
The following objects must be defined and globally accessible from the Ada runtime 
source code. 

1. CurrentJTask or Head_Of_Job_Queue - a pointer to the currently execut- 
ing Ada task. This also represents a pointer to the head of the Job Queue. 

2. Top_Of_Server_Stack- a pointer to the top of the Called Server Stack. 

3.2.3.2. Entry Calls 
The modifications to Ada's task-calling semantics necessary to implement the ceiling 
protocol algorithm are captured in the pseudo-code of Figure 3-1. When a task Tmakes 
an entry call to a server task S, the execution priority of S changes. Since S would have 
already been executing at the highest priority of its currently calling clients, Tmust have 
higher priority than those clients; otherwise, T would not have be able to run and make 
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Currant_Taek.Callad_Taak   :- Callad_Taak; 
if Called Task.la A  s.rv.r than 

Sarvar  inherit*  caller'a  currant priority and ia  inserted at  the 
head of tha Job Queue. 

Tnn9mlt_CaUera_Priortty(To => Called Task, From => CumntJTask); 

—     Check  for Ceiling Blocking aituation 

i f Called_ Task not in nested entry call than 
if Top_Of_Sarvar_Stack - null or alaa 

(Currant_Taak.Current_Priority  > 
Top_Of_Sarvar_Stack.Priorlty_Cailing) 

than 
Puah_Onto_Sarvar_Stack(Sarvar -> Callad_Taak, 

Client «> Currant_Taak); 
alaa 

— Client  Call  ia blocked by PO>  rule.. 
Save  naoaaaary wakaup atata   for   retrying entry  call  latar. 

— Mark tha Currant Taak aa  "blocked by PCP". 
Inaart tha Currant  Taak in tha  Job Queue 

Sava_Wakaup_Statua(Currant_Taak,   Callad_Taak,   Callad_Entry); 
Mark_Ae_Bloekad_By_Protocol(Currant_Taak,   Callad_Taak); 
LIFO_Add_To_Job_Queue(Currant_Taak); 
Determine Blocking^ Taak(Blocklng^Task); 
Trmn*mlt_Cmll»r*_Prior1ty(To *> Blocking  Task, From s> Current Task); 

and if; 

alaif Callad_Ta»k.Priority_Cailing > 
Top_Of_Sarver_Stack.Prlority_Caillng 

than 
Pu»h_Onto_Server_Stack(Server «> Callad_Taak, 

Cliant -> Currant_Taak); 
and if; 
Check_Job_Queue; 

alaa 
Continue normal processing; 

and if; 

Figure 3-1:   Priority Ceiling: Entry Calls 

the call to S. Hence, Ts priority must be inherited by S and its callees, if any, via the 
TransmltjCallersJPrlority subprogram. If this entry call is nested (e.g., a server calling 
another server), then the priority ceiling protocol guarantees that the call can proceed. 
In this case, a push onto the Server Stack is necessary only if 7s priority ceiling is 
greater than that of the server at the head of the Server Stack. If this entry call is not 
nested, then the priority ceiling blocking check must be made. The priority of the current 
(i.e., calling) task 7 is compared with the priority ceiling of S\ where S* is always the 
server task at the head of the Server Stack (see Section 3.1 for the definition of S*). If 
7s priority is higher than S*'s ceiling, the call can go through and the called server task 
S must be pushed onto the Server Stack. Otherwise the call is blocked17 and the nec- 

17ln this case, the Current Task is marked as "blocked by the protocol" before the actual entry call is 
made. It then relinquishes the CPU to the task that caused it to block. 
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essary state information must be saved for a subsequent retry of the entry call to S. If T 
is blocked, it must be requeued on the Job Queue using an insertion operation for which 
tasks of equal priority are treated in a LIFO manner. Furthermore, the server task that is 
blocking Ts call must be identified so that it along with all of its callees can inherit Ts 
priority via the Transmlt_Callers_Prlorlty subprogram. Finally, for all cases, after the 
task priorities have been adjusted accordingly and the Job Queue manipulations are 
completed, the Check Job Queue subprogram makes a scheduling decision to deter- 
mine the current executing task.18 

3.2.3.3. Rendezvous Completion 
The modifications to Ada's task rendezvous completion semantics necessary to imple- 
ment the ceiling protocol algorithm are captured in the pseudo-code of Figure 3-2. 

if  Current_Task.Is_A_Sarver  than 

--    Axe  we  in a neated rendezvous  chain of calls  from aarvara? 

if Current_Task not in nested rendezvous than 
P op_Off_Of_Sarvar_Stack; 

•lae 
if Currant_TaaJc • Top_Of_Server_Stack than 

Pop_Off_Of_Sarvar_Stack; 
and if; 

and if; 

—  Chock whether naxt higbaat task on tha Job Queue ia blocked 
on a call to Currant Task. 

if Currant_Taak - Haad_Of_Job_Quaua.TCB_P_Link.Blocking_Taak than 
Push_Onto_Server_Stack(Server »> Current_Task, 

Cliant -> Haad_Of_Job_Quaua.TCB_F_Link); 
Currant_Taak.Currant_Priority :- 

Head_Of Job Quaue.TCB_F_Liiik.Currant_Priority; 
alaa 

Sat tha Currant Task' a priority to the Mxl— of ita baaa 
— priority and tha currant priority of ita highest priority 

(calling) client taak (in any of ita entry queues). 

Sat_Priority_To_Max_Of_Baaa_And_Cliant(For -> Currant_Taak), 
and if; 

CheckJobQueue; 
else 

Continue normal processing; 
and if; 

Figure 3-2:   Priority Ceiling: Rendezvous Completion 

When a simple (unnested) rendezvous is completed, the Server Stack is popped uncon- 

16For a successful entry call, the called server task will become the CumntJTask, whereas in the case of 
a blocked client entry call, the server task causing the blocking becomes the Current_Task. 
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ditionally, whereas when a rendezvous within a nested calling chain is completed, the 
Server Stack is popped only if S (i.e., CurrentJTask) is at the head of the Server Stack. 
In both cases, the adjusted executing priority for the server task S must be determined. 
If the task immediately after S in the Job Queue (call it Tb) is being blocked by S, 7"b's 
call can go through now, so S is pushed back onto the Server Stack and S retains its 
current executing priority.19 If this is not the case, S*s current priority becomes its base 
priority if its entry queues are empty or the priority of the highest priority task in its entry 
queues. Finally, after the task priorities have been adjusted accordingly, the 
Check Job Queue subprogram makes a scheduling decision to make CurrentJTask 
consistent with the task at the head of the Job Queue. 

3.3. Optimization issues 
This section discusses viable optimizations that can be performed for improving the per- 
formance of a runtime system that implements the priority ceiling protocol. Optimiza- 
tions identified to date are summarized below. 

1. A task cannot be queued on a server's entry queue when either direct or 
ceiling blocking would occur. However, such blocking can occur only for 
the sequentially first rendezvous of a task's instance. That is, if an entry 
call is blocked, it has to be the first entry call made by this task's instance. 
This means that if an entry call is made and this entry call is not the first, it 
could immediately be queued without any problems. The call has to be 
successful. 

Moreover, this optimization does not need compiler support. The runtime 
can maintain runtime information of whether this is the task's first rendez- 
vous or not. This information would be reset whenever the task blocks on 
external events like suspension for I/O and/or delays itself voluntarily. 

Note. The above optimization appears to hold for push-through blocking, 
too. However, when a rendezvous is successful, S has to be maintained 
for the benefit of other tasks, and it seems that this cannot be optimized. 

2. In general, when a server task S completes a rendezvous, it is assigned a 
new executing priority, removed from the head of the queue, and re- 
inserted in the Job Queue. If a server task S at the head of the Job Queue 
is blocking the next task in the Job Queue, an optimization can be per- 
formed to avoid unnecessary queue manipulations as follows. When a 
server S completes a rendezvous, consider the next task T in the Job 
Queue and check whether T is blocked on a call to S; if it is blocked by S, 
then S inherits Ts priority and no queue manipulations are necessary. 

19S will continue running at an inherited priority and be able to loop around to execute its selective wait 
statement. At this point, S will suspend and be requeued on the Job Queue. Consequently, 7"b will become 
the current executing task because it is now at the head of the Job Queue. Tb will retry its call to S that now 
can succeed. Tb will make the entry call and a task switch to S will be made for the rendezvous code to run 
in S*s execution context. 
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Appendix A: Runtime Support Routines 
This appendix further elaborates the details of various support routines that were used in 
the pseudo-code of Sections 2.2 and 3.2. 

A.a. Transmit_Callers Priority Subprogram 

procedure   Tran»mlt_C»ll«r»_Priority    (To_Ta»k   :   in  TCB; 
From_Ttik   :   in TCB  )   ia 

TCB_Ptr  :  TCB  :- To_Taak; 
begin 

while  TCB_Ptr /» Mull 
loop 

if  From_T«»k.Current_Prlority   >—   IC3_Ptr.Curr«nt_frlorlty   then 
TCB_Ptr.Currant_Priority   :» From_Taak.Curr«nt_Priorlty; 
Requeue TCB_Plr if currently on Job Queue; 
TCB_Ptr   :» TCB_Ptr.Call«d_Taek; 

end   if; 
end loop; 

end   Tranamlt_Callera_Prlority; 

A.b. Determine Blocking Task Subprogram 

procedure Determine_Blocking_T»«k(Blocking_T»«k : in out TCB) ia 
begin 

if Server_Stack_He»d m  null then 
Blocking Teak :- Current T»«k.Called Taak; 

•la* 
Blooking_Taak :• Sarver_Stack_Head; 

— Find the originator of the calling aerver chain of 
— the atack bead. Than, find the firat aerver in the 
— chain which block* the current taak. 

while Blocking_Taak.Calling_Taak /- null and then 
Bloaking_Taak.Calling_Taak.Ia_A_Serve r 

loop 
Blocking_Taak :« Blocking_Taak.Calling_Taak; 

•nd loop; 

while Blocking_Taak.Priority_Ceillng < Current_Taak.Curr*nt_Priority 
loop 
Blocking_Taak :« Blocking_Taak.Called_Task; 

end loop; 

end if; 

•nd Determine_Blocking_Ta«k; 
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A.c. Check Job Queue 

procedure   Check_Job_Queue   is 
begin 

if Curr«nt_T«»lc.Curr«nt_Priority < H«*d_Of_Job_Qu«u«.Curr«nt_Priority than 
Requeue Current Task; 
Remove Job Queue Head and Make it Current Task; 
Task switch to new Current Task; 

•nd if; 
end  Check   Job  Queue ; 
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Appendix B: Basic Priority Inheritance 
Implementation Examples 

Two examples demonstrating how the proposed implementation will work are presented 
in this appendix. The first example appears in [6]. The second example includes more 
than two servers to illustrate longer blocking times. Further test cases are in preparation 
and will appear in a future technical report published by the Real-Time Scheduling in 
Ada Project. 

B.a. Basic Priority Inheritance Protocol — Example #1 
An example showing the effect of the basic priority inheritance protocol is given in Figure 
B-1. The conventions used in Figure B-1 are the same as used in [6]. 

Figure B-1 shows the execution of seven tasks, including two server tasks. The non- 
server tasks are labeled with a T" followed by their priority, e.g., T5 has the highest 
priority. The server tasks have no assigned priority, however, it is assumed that effec- 
tively their priority is zero, i.e., lower than all non-servers. The calling relationships 
among the tasks are as follows: 

• T1 becomes ready to execute at time rv T1 executes for 1 unit of time 
before and after a call to server S1. The entry call to S1 executes for 4 
units of time. 

• T2 becomes ready to execute at time t3. T2 executes for 1 unit of time 
before and after a call to server S2. During T2's rendezvous with S2, S2 
calls an entry of S1. (This illustrates the effect of the protocol for nested 
entry calls.) S2 executes 2 units of time before its nested call to S1 and 1 
unit of time after the call. The nested call to S1 takes 1 unit of time, and 
thus, T2 is in rendezvous with S2 for 4 units of time. 

• T3 becomes ready to execute at time %. T3 executes for 2 units of time and 
does not make any entry calls. 

• T4 becomes ready to execute at time lg. T4 executes for 1 unit of time 
before and after a call to server S1. The entry call takes 1 unit of time. 

• T5 becomes ready to execute at time tB. T5 executes for 1 unit of time 
before and after a call to server S2. The entry call takes 1 unit of time. 
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s^s TWT   server called by task 1, executing in rendezvous at priority 4. The thin line indicates the end 
^•4 ^ of the rendezvous with task 1. 

server executing at priority 1; black part indicates code outside of rendezvous; the shaded 
part indicates code inside the rendezvous. 

VXxxx* 

C1 |   accepted call to server 1 P      preempted by higher priority task execution 
vv\vv» 

D1 |   directly blocked call to server 1 executing code outside rendezvous 

Bp I   push-through blocking 

Figure B-1:  Basic Priority Inheritance Protocol — Example #1 
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Now consider the runtime system behavior of the basic inheritance protocol under the 
circumstances illustrated by Figure B-1. 

• At time ^, the Job_Queue is empty. 

• At time tv all tasks are activated, but only tasks T1, S1, and S2 are ready to 
run and therefore on the JobjQueue. Since T1 has the highest priority, its 
execution begins. 

• At time t2, T1 attempts to call server task S1. Since S1 Is not executing on 
behalf of any task, the call succeeds; since S1 has not yet had time to ex- 
ecute its select statement, the call is queued; server S1 starts executing at 
priority 1, the priority of its queued task. Eventually its select statement is 
executed and the waiting call is accepted; the rendezvous starts. Execution 
continues at priority 1. 

• At time f3, T2 becomes ready to run and is inserted into the JobjQueue. 
Since T2 has higher priority than the current priority of tasks S1, S2, and T1, 
the execution of these tasks is preempted and T2 is at the head of the 
JobjQueue; therefore, T2 starts its execution. 

• At time f4, T2 attempts to call server task S2. Since S2 is not executing on 
behalf of any task, the call is accepted. Since S2 has not yet had time to 
execute its select statement, the call is queued; server S2 starts executing 
at priority 2, the priority of its queued task. Eventually its select statement is 
executed and the waiting call is accepted; the rendezvous starts. Execution 
continues at priority 2. 

• At time %, T3 becomes ready to run and is inserted into the JobjQueue. 
Since its priority is higher than the current priority of any task that is ready to 
run, it is at the head of the JobjQueue and therefore preempts the execu- 
tion of tasks S2, T2, S1, and T1. 

• At time t$, T4 becomes ready to run and is inserted into the JobjQueue. 
Since its priority is higher than the execution priority of any other task that is 
ready to run, it is at the head of the JobjQueue and preempts the execution 
of tasks T3, S2, T2, S1, and T1. 

• At time t7, T4 attempts to call server S1. Since S1 is executing on behalf of 
T1, T4 is directly blocked. Since S1 is blocking T4, its execution priority is 
increased to 4 and is re-inserted into the JobjQueue. S1 is now the highest 
priority task so it resumes execution on behalf of T1. Note that T2 and T3 
have been preempted by S1 due to priority inheritance. This form of 
preemption by a task with a lower base priority is known as push-through 
blocking and is denoted as Bp in Figure B-1. 

• At time f8, T5 becomes ready to run and is inserted into the JobjQueue. 
Since its priority is higher than the current priority of any executing task, 
S1 's execution is preempted, and T5 starts to execute. In this case, T4 is 
not blocked by a lower priority task, but rather is preempted by T5. 

• At time tg, T5 attempts to call S2. S2 is executing on behalf of T2, so T5 is 
directly blocked. Since S2 now blocks the execution of T5, it inherits T5's 
priority and is now the highest priority task ready to run. This effect causes 
T4 to experience push-through blocking. 
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• At time f10, S2 attempts to call S1. Since S1 is executing on behalf of T1, 
this call is (directly) blocked and S1 inherits the current priority of S2. S1 is 
now the highest priority task ready to run; it resumes execution at priority 5. 

The situation at f10 illustrates how chained blocking can arise under the ba- 
sic priority inheritance protocol. T5's call at tg cannot be accepted by S2 
until both S2 and S1 complete their execution on behalf of T2 and T1, re- 
spectively. Under the priority ceiling protocol, server calls on behalf of at 
most one task need to be completed. However, under the basic inheritance 
protocol, chained blocking can occur even when nested server calls are not 
made. 

• At time f11f execution of S1 continues at priority 5. 

• At time f12, S1 completes its rendezvous with T1. S1 has been blocking T4 
and T5. Since S2 is still blocking T5, it executes at priority 5. Its execution 
is resumed and its call to S1 is now accepted. Note that S2's call succeeds 
even though T4 called S1 first—the effect of the blocking rule is to ensure 
calls are accepted in order of priority rather than in order of time. 

• At time f13, S1 completes its rendezvous with S2. Its priority returns to 4 
(that of T4), since T4 is still on S1's entry queue. S1 gets requeued and is 
inserted ahead of T4 in the Job Queue. Since S2 is still blocking T5, it is at 
the head of the Job_Queue so its execution resumes at priority 5. 

• At time f14, S2 completes its rendezvous. Its priority returns to normal and it 
is requeued. Since it no longer blocks T5, T5 is now the highest priority 
ready to run, and its call to S2 succeeds. S2 inherits T5's priority and gets 
requeued. Because it is the highest priority task ready to run, S2 resumes 
execution at priority 5.20 

• At time f15, S2 completes T5's call. S2's priority returns to normal and it is 
requeued. T5 continues its execution. 

• At time f16, T5 completes its execution. S1 is now the highest priority task 
ready to execute. S1 starts executing at priority 4 on behalf of T4. 

• At time f17. S1 completes T4's call. Its priority returns to normal, and T4 
continues its execution. 

• At times fjg-21" T4, T3, T2, and T1 complete their execution. 

The runtime system's state over time with respect to the JobjQueue, the priority of the 
current task, and blocked calls to server tasks is presented in Figure 6-2. 

20A simple optimization can be performed here to avoid the unnecessary queuing and dequeuing opera- 
tions. 
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Time (Head)   Job_Queue    (Tail) Priority Directly Blocked Calls 

to 
li T1.S1.S2 1 

*2 S1.T1.S2 1 

*3 T2, S1.T1.S2 2 

U S2,T2,S1,T1 2 

«s T3,S2,T2,S1,T1 3 

te T4,T3,S2IT2,S1.T1 4 
l7 S1.T4, T3.S2.T2.T1 4 T4/S1 

*8 T5, S1,T4,T3,S2,T2,T1 5 T4/S1 

tg S2, T5, S1,T4,T3,T2,T1 5 T5/S2, T4/S1 
l10 S1,S2.T5,T4,T3,T2,T1 5 S2/S1.T5/S2.T4/S1 

**n S1,S2,T5,T4,T3.T2,T1 5 S2/S1.T5/S2.T4/S1 

*12 S1,S2,T5,T4,T3,T2,T1 5 T5/S2, T4/S1 

*13 S2, T5, S1,T4,T3.T2,T1 5 T5/S2, T4/S1 

*14 S2.T5, S1,T4,T3,T2,T1 5 T4/S1 

*15 T5, S1,T4,T3,T2,T1,S2 5 T4/S1 

^6 S1,T4,T3,T2,T1,S2 4 

*17 T4, T3,T2,T1,S2.S1 4 

tl8 T3.T2.T1,S2,S1 3 
t19 T2,T11S2,S1 2 

*20 T1.S2.S1 1 

«21 S2, S1 0 

Figure B-2:   Runtime System State Information for Example #1 

B.b. Basic Priority Inheritance Protocol — Example #2 
This example consists of nine tasks, including four server tasks. It illustrates longer 
blocking times dues to more client/server interactions. The non-server tasks are labeled 
with a T" followed by their priority. The server tasks have no assigned priority, however, 
it is assumed that effectively their priority is zero. The calling relationships among the 
tasks are as follows: 

• T1 becomes ready to execute at time t,. T1 executes for 1 unit of time 
before and after a call to server S1. S1 makes a nested entry call to S2. 
The outer entry call to S1 takes 2 units of time and the nested entry call to 
S2 costs 3 units of time. Hence, the net cost of the nested entry call is 5 
units of time. 

• T2 becomes ready to execute at time f4. T2 executes for 1 unit of time 
before and after a call to server S2. The entry call takes 1 unit of time. 

• T3 becomes ready to execute at time <g. T3 executes for 1 unit of time 
before and after a call to server S3. S3 again calls an entry of server task 
S4. The outer entry call to S3 takes 3 units of time (2 units of time before 
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and 1 unit of time after the inner entry call), and the inner entry call to S4 
consumes 3 units of time. That is, the nested entry call consumes a total of 
5 units of time. 

• T4 becomes ready to execute at time te. T4 executes for 1 unit of time 
before and after a call to server S4. The entry call takes 1 unit of time. 

• T5 becomes ready to execute at time f, 1. T5 executes for 1 unit of time 
before and after a call to server S3. S3, in turn, calls an entry of server task 
S4. (That is, during T5's rendezvous with S3, S3 calls an entry of server 
task S4). The inner entry call to S4 by S3 takes 1 unit of time while the outer 
entry call to S3 by T5 consumes 1 unit of time both before and after the 
inner entry call. In other words, the nested entry call consumes 3 units of 
time totally. 

Now consider the actions taken by the basic inheritance protocol illustrated by Figure 
B 3 under the sequence of events described below. 

• At time 1Q, the Job_Queue is empty. 

• At time f1( all tasks are activated, but only tasks T1, S1, S2, S3, and S4 are 
ready to run and therefore on the JobjQueue. Since T1 has the highest 
priority, its execution begins. 

• At time t2, T1 attempts to call server S1. Since S1 is not executing on be- 
half of any task, the call succeeds; since S1 has not yet had time to execute 
its select statement, the call is queued; server S1 starts executing at priority 
1, the priority of its queued task. Eventually its select statement is executed 
and the waiting call is accepted; the rendezvous starts. Execution con- 
tinues at priority 1. 

• At time t3, S1 attempts to call S2. Because S2 is not executing on behalf of 
any task, the call succeeds; since S2 has not yet had time to execute its 
select statement, the call is queued; server S2 starts executing at priority 1, 
the priority of its queued task. Eventually S2's select statement is executed 
and the waiting call is accepted; the rendezvous starts. Execution con- 
tinues at priority 1. 

• At time f4, T2 becomes ready to run and is inserted into the JobjQueue. 
Since T2 has higher priority than the current priority of tasks S2, S1, and T1, 
the execution of these tasks is preempted, and T2 is at the head of the 
JobjQueue; therefore, T2 starts its execution. 

• At time tg, T2 attempts to call server S2. Since S2 is executing on behalf of 
T1 through S1, T2 is directly blocked. Because S2 is blocking T2, its execu- 
tion priority is increased to 2 and is re-inserted at the head of the 
Job_Queue. S2 is now the highest priority task so it resumes execution on 
behalf of T1. 

• At time %, T3 becomes ready to run and is inserted into the JobjQueue. 
Since its priority is higher than the current priority of any task that is ready to 
run, it is at the head of the JobjQueue and therefore preempts the execu- 
tion of tasks S2, T2, S1, and T1. 
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Bp 
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Figure B-3:  Basic Priority Inheritance Protocol — Example #2 
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• At time f7, T3 attempts to call server task S3. Because S3 is not executing 
on behalf of any task, the call succeeds; since S3 has not yet had time to 
execute its select statement, the call is queued; server S3 starts executing 
at priority 3, the priority of its queued task. Eventually S3's select statement 
is executed and the waiting call is accepted; the rendezvous starts. Execu- 
tion continues at priority 3. 

• At time te, T4 becomes ready to run and is inserted into the Job_Queue. 
Since its priority is higher than the current priority of any executing task, 
S3's execution is preempted, and T4 starts to execute. 

• At time tg, T4 attempts to call server task S4. Because S4 is not executing 
on behalf of any task, the call succeeds; since S4 has not yet had time to 
execute its select statement, the call is queued; server S4 starts executing 
at priority 4, the priority of its queued task. Eventually S4's select statement 
is executed and the waiting call is accepted; the rendezvous starts. Execu- 
tion continues at priority 4. 

• At time f10, T4 completes its rendezvous with S4. S4 returns to its normal 
priority and is requeued. T4 continues executing. 

• At time f11f T4 has completed its execution and T5 becomes ready to run 
and is inserted into the Job_Queue. Since its priority is higher than the cur- 
rent priority of any executing task, T5 starts to execute. 

• At time f12, T5 attempts to call S3. S3 is executing on behalf of T3, so T5 is 
directly blocked. Since S3 now blocks the execution of T5, it inherits T5's 
priority and is now the highest priority task ready to run. 

• At time f13, server S3 makes a call to S4. Since this is a nested entry call, 
S4 now begins execution at the inherited priority of T5. 

• At time f14, server S4 continues to execute on behalf of S3. 

• At time f15, S4 completes its rendezvous with S3 and resumes its original 
priority. S3 is at the head of the Job_Queue and resumes execution on be- 
half of T3 at the inherited priority of task T5. 

• At time f16, S3 completes its rendezvous with T3. Its priority returns to nor- 
mal and it is requeued. Since it no longer blocks T5, T5 is now the highest 
priority ready to run, and its call to S3 succeeds. S3 inherits T5's priority 
and gets requeued.21 Because it the highest priority task ready to run S3 
resumes execution at priority 5. 

• At time f17, server S3 makes a call to S4. Since this is a nested entry call, 
S4 now begins execution at the inherited priority of T5. 

• At time f18, S4 completes its rendezvous with S3 and resumes its original 
priority. S3 is at the head of the JobjQueue and resumes execution on be- 
half of T5 at its inherited priority. 

21 In this case the requeuing operations of S3 can be optimized away. 
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• At time f19, S3 completes its rendezvous with T5 and regains its original 
priority. Task T5, which is at the head of the JobjQueue, resumes execu- 
tion at its original priority of 5. 

• At time t20, task T5 completes execution and is removed from JobjQueue. 
T3 is at the head of the JobjQueue and resumes its execution. 

• At time f2i> task T3 completes execution and is removed from JobjQueue. 
S2 is at the head of the JobjQueue so its continues executing on behalf of 
61. 

• At time t22, S2 completes its rendezvous with S1, but T2 is ready to call S2. 
S2 remains at the head JobjQueue and begins executing on behalf of T2. 

• At time t23, S2 completes its rendezvous with T2. S2's priority returns to 
normal and it is requeued. T2 continues its execution. 

• At time t24, T2 completes its execution. S1 is now at the head of the 
Job_Queue and resume its execution on behalf of T1. 

• At time t25, S1 completes its rendezvous with T1. S1's priority returns to 
normal and it is requeued. T1 continues its execution. 

• At time t2&, T1 completes its execution. S1 is now at the head of the 
Job_Queue. 

The runtime system's state over time with respect to the JobjQueue, the priority of the 
current task, and blocked calls to server tasks is presented in Figure B-4. 
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Time    (Head)   Job_Queue    (Tail) Priority Directly Blocked Calls 

_ 

t, T1.S1.S2.S3, S4 
t2 S1,T1,S2,S3, S4 
t3 S2, S1.T1.S3, S4 
t4 T2. S2, S1.T1.S3, S4 
tg S2, T2, S1, T1, S3, S4 
te T3. S2,T2,S1,T1,S3,S4 
t7 S3,T3.S2,T2,S1,T1,S4 
t8 T4, S3, T3, S2, T2, S1, T1, S4 
t9 S4, T4, S3, T3, S2, T2, S1, T1 
t10 T4, S3, T3, S2, T2, S1, T1, S4 
t,, T5, S3, T3, S2, T2, S1, T1, S4 
t12 S3, T5, T3, S2, T2, S1, T1, S4 
t13 S4, S3, T5, T3, S2, T2, S1, T1 
t14 S4, S3, T5, T3, S2, T2, S1, T1 
t15 S3, T5, T3, S2, T2, S1, T1, S4 
t16 S3, T5, T3, S2, T2, S1, T1, S4 
t17 S4, S3, T5, T3, S2, T2, S1, T1 
t18 S3,T5,T3,S2,T2,S1,T1,S4 
t19 T5, T3, S2, T2, S1, T1, S4, S3 
t20 T3, S2, T2, S1, T1, S4, S3 
t21 S2, T2, S1, T1, S4, S3 
t^ S2, T2, S1, T1, S4, S3 
tjQ T2, S1.T1.S4.S3, S2 
^4 S1.T1.S4.S3, S2 
t25 T1.S4, S3.S2.S1 
t^ S4. S3. S2, S1 

Figure B-4:   Runtime System State Information for Example #2 
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Appendix C: Priority Ceiling Protocol 
Implementation Examples 

Two examples demonstrating how the proposed implementation will work are presented 
in this appendix. These examples are exactly those task sets described in Appendix B. 
Note that for the priority ceiling protocol, since the second example includes more than 
two servers, it will be useful in demonstrating the behavior of the Called Server Stack 
and identifying potential optimizations when a server completes a rendezvous and its 
priority must be adjusted downwards. 

C.a. Priority Ceiling Protocol — Example #1 
An example showing the effect of the priority ceiling protocol is given in Figure C-1. 
Since S1 is called by T1, T2, and T4, S1's priority ceiling is 4. Since S2 is called by 
tasks T2 and T5, its priority ceiling is 5. 

Note. The data structure Server_Stack is a LIFO stack, and the insertion and deletion 
operations on it are push and pop operations, respectively. Though the members of 
Sen/erjStack are listed as pairs, say S2/T5, one need only store a pointer to the task 
control block of S and have one of its fields to point to the TCB of T5. 

• At time t^, initially the JobjQueue and Server Stack are empty. 

• At time t,, all tasks are activated, but only tasks T1, S1, and S2 are ready to 
run and therefore on the JobjQueue. Since T1 has the highest priority, its 
execution begins. 

• At time tg, T1 attempts to call server S1. Since no server tasks are execut- 
ing on behalf of any task (i.e., the Server Stack is empty), the call succeeds. 
Since the server has not yet had time to execute its select statement, the 
call is queued, and server S1 starts executing at priority 1, the priority of its 
queued task. The server/client task pair S1/T1 is inserted into the Server 
Stack. 

• At time t3, T2 is inserted into the JobjQueue. Since T2 has higher priority 
than the current priority of tasks S1, S2, and T1, the execution of these 
tasks is preempted and T2 is at the head of the JobjQueue-, therefore, T2 
starts its execution. Since server S1 is preempted by T2, S* is updated to 
S1, which is at the head of Sen/er_Stack. 

• At time t4, T2 attempts to call server task S2. We now examine the priority 
ceiling of S* which is 4. Since this priority ceiling exceeds T2's current prior- 
ity, T2 is blocked, i.e., its execution is suspended and the entry call is not 
made. In particular, T2 is not queued for S2. Since S1 blocks the execution 
of T2, S1 inherits task T2's priority, i.e., is taken off the JobjQueue and 
re-inserted given its new inherited priority. S1 is now the highest priority 
task so it resumes execution on behalf of T1. Hence, S* is reset to NULL 
since there is no server currently executing on behalf of a task other than 
taskTL 
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S7S server called by task 1, executing in rendezvous at priority 4. The thin line indicates the end 
§4§ of the rendezvous with task 1. 

server executing at priority 1; black part indicates code outside of rendezvous; the shaded 
part indicates code inside the rendezvous. 

C1 accepted call to server 1 P      preempted by higher priority task execution 

D1 I directly blocked call to server 1 executing code outside rendezvous 

Bp I push-through blocking 

B21 ceiling blocking (call to server 2) 

Figure C-1:   Priority Ceiling Protocol — Example #1 
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• At time t^, T3 is inserted into the JobjQueue. Since its priority is higher 
than the current priority of any task that is ready to run, it is at the head of 
the JobjQueue and therefore preempts the execution of tasks S2, S1, T1, 
and T2. Since server S1 is preempted by T3, S* is updated to S1, which is 
at the head of ServerjStack. 

• At time te, T4 is inserted into the JobjQueue. Since its priority is higher 
than the execution priority of any other task that is ready to run, it is at the 
head of the Job_Queue and preempts the execution of tasks S2, S1, T1, 
T2, and T3. Both ServerjStack and S* remain the same. 

• At time t7, T4 attempts to call server task S1. The priority ceiling of S* is 4, 
which is equal to the priority of the calling task, so T4's execution is 
blocked.22 Since S1 is blocking T4, its execution priority is increased to 4 
and is re-inserted into the JobjQueue. S1 is now the highest priority task 
so it resumes execution on behalf of T1. Hence, S* is reset to NULL since 
there is no server currently executing on behalf of a task other than task T1. 

• At time t8, T5 is inserted into the JobjQueue. Since its priority is higher 
than the current priority of any executing task, S1's execution is preempted, 
and T5 starts to execute. Since server S1 is preempted by T5, S* is up- 
dated to S1, which is at the head of ServerjStack. 

• At time tg, T5 attempts to call S2. The priority ceiling of S* is 4, which is less 
than T5's priority, so the call can be accepted. The server/client task pair 
S2/T5 is inserted into the Server Stack. Since S2 has not yet had an oppor- 
tunity to execute its select statement, T5 is queued. S2 is given the priority 
of its queued task and re-inserted into the JobjQueue. S2 is now the 
highest priority task able to execute. 

• At time t10, the rendezvous with S2 is completed. The server/client task 
pair S2/T5 is removed from the Server Stack. S2 reverts to its assigned 
priority (i.e., it is requeued on the JobjQueue), and so its execution is 
preempted by the execution of T5. 

• At time t11t T5 completes its execution and is popped off the JobjQueue. 
T4's call to S1 is still blocked since S1 has not yet finished its rendezvous. 
S1 has priority 4 currently at the head of the JobjQueue and therefore con- 
tinues its execution. 

• At time t12a, task S1 completes its rendezvous. Its priority returns to normal 
and is re-inserted in to the JobjQueue; furthermore, the task server/client 
pair S1/T1 is removed from the Server Stack. S1 has been blocking the 
execution of tasks T2, T3, and T4. Completion of the rendezvous means 
tasks T2 and T4 are no longer blocked because S1 is no longer executing 
on behalf of any task. In addition, its low priority means it no longer blocks 
T3. So all tasks are eligible to run. Since task T4 has the highest priority, 
its execution resumes. 

• At time t12b, since T4 was suspended just before making the call to S1, now 

?2Note. In this case T4's call to S1 is also directly blocked since S1 has already been called by T1. 
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that its execution has resumed, it again attempts to call S1. Since the Ser- 
ver Stack is empty, the call succeeds and the S1/T4 task pair is inserted 
into the Server Stack. Since S1 just completed its rendezvous, it is not yet 
ready to accept the call (it is not yet waiting at an accept statement), so the 
call is queued. Since the call is queued, S1 's current priority is raised to the 
current priority of the calling task and it gets inserted at the head of the 
Job_Queue. S1 now has the highest execution priority. It begins execution 
and eventually executes its select statement. The waiting call is accepted 
and the rendezvous begins. Execution continues at priority 4. S* remains 
NULL since no other other servers are executing on behalf of other clients. 

• At time t13, task S1 completes its rendezvous. Its priority returns to normal 
and is re-inserted in to the JobjQueue; furthermore, the task server/client 
pair S1/T4 is removed from the Server Stack. All tasks are now eligible to 
run. Since T4 has completed its call to S1 and has the highest priority, its 
execution resumes. 

• At time t14, T4 completes its execution and is popped off the JobjQueue. 
T3 now is at the head of the Job_Queue since it has the highest priority and 
therefore resumes its execution. 

• At time t15, T3 completes its execution and is popped off the JobjQueue. 
T2 now has the highest priority and resumes its execution by attempting to 
re-call server S2. Note. T2 has been blocked on its call to S2 since t4. 
Since the Server Stack is empty, the call succeeds and the S2/T2 task pair 
is inserted into the Server Stack; S* remains NULL. Since S2 has just com- 
pleted a rendezvous, it is not yet ready to accept the call, so the call is 
queued. Since the call is queued, S2's execution priority is raised to the 
execution priority of the calling task and it gets inserted at the head of the 
Job_Queue. S2 now has the highest execution priority. It begins execution 
and eventually executes its select statement. The waiting call is accepted 
and the rendezvous begins. Execution continues at priority 2, the current 
priority of the calling task. 

• At time t16, execution of the rendezvous continues. 

• At time t17, S2 attempts to call S1. Since this is a nested entry call, the call 
succeeds and S2 is queued on S1, which inherits S2's inherited priority of 2. 
Since the priority ceiling of S1 is lower than the priority ceiling of the head of 
Server_Stack, S2, the pair S1/T2 is not added to Server_Stack. 

• At time t18, S1 completes execution of the rendezvous. S1's priority returns 
to normal and it is re-inserted in to the JobjQueue. S2 is at the head of the 
Job_Queue and it continues executing its rendezvous at the priority of its 
calling task, T2. 

• At time t19, S2 completes execution of its rendezvous. Its priority returns to 
normal and it is re-inserted in to the JobjQueue; furthermore, the task 
server/client pair S2/T2 is removed from the Server Stack. T2 is now the 
highest priority task so its execution resumes. 

• At time t20, T2 completes its execution and is popped off the JobjQueue. 
T1 is at the head of the Job Queue and can now resume its execution. 
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• At time t21, T1 completes its execution and is popped off the Job_Queue. 
S1 is now at the head of the JobjQueue. 

Now consider the actions taken by the ceiling protocol illustrated by Figure C-1 under the 
sequence of events described below. The system actions on the runtime data structures 
Job_Queue, Server_Stack and S* are presented in Figure C-2. 

Time (Head)   Job_Queue (Tail) Priority Server_Stack S /Ceiling 

to 
ti T1.S1.S2 1 

h S1.T1.S2 1 S1/T1 

h T2, S1.T1.S2 2 S1/T1 S1/4 

U S1.T2.T1.S2 2 S1/T1 

ts T3.S1.T2.T1, S2 3 S1/T1 S1/4 

te T4.T3, S1.T2.T1, S2 4 S1/T1 S1/4 

h S1.T4.T3.T2, TI, S2 4 sim 
t8 

T5, S1.T4.T3, T2, T1, S2 5 S1AT1 S1/4 

t9 
S2.T5, S1,T4,T3,T2,T1 5 S2/T5, S1/T1 

tio T5, S1,T4,T3,T2,T1I S2 5 S1/T1 
tn S1.T4.T3.T2, T1, S2 4 S1/T1 

*12a T4, T3.T2.T1, S2. S1 4 

*12b S1.T4, T3.T2.T1, S2 4 S1/T4 

tl3 T4, T3.T2.T1, S2. S1 4 

tl4 T3, T2.T1.S2, S1 3 

«1S S2, T2.T1.S1 2 S2/T2 

*16 S2, T2.T1.S1 2 S2yT2 

tl7 S1.S2.T2.T1 2 S2AT2 

tie S2.T2.T1.S1 2 S2/T2 

tl9 T2.T1.S1.S2 2 

*20 T1.S1.S2 1 

t21 S1.S2 0 

Figure C-2:   Runtime System State Information for Example #1 

C.b. Priority Ceiling Protocol — Example #2 
Reconsider the task set defined in Section B.b. Since S1 is called only by T1 (priority 1), 
S1's priority ceiling is 1. Since S2 is called by T2 (priority 2), S2's priority ceiling is 2. 
Likewise, the priority ceiling of S3 is 5, since S3 is called by T5 (priority 5). S4 is also 
called on behalf of T5 (through S3) and hence S4's priority ceiling is also 5. 

Now consider the actions taken by the ceiling protocol illustrated by Figure C-3 under the 
sequence of events described below. 
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rendezvous at priority 4. The thin line indicates the end wr^ carver called by task 1, executing in 
N4S of the rendezvous with task 1. 

^"^ server executing at priority 1; bteck part indicates code outside of rendezvous; the shaded 
sW part indicates code inside the rendezvous. 

IC1 I accepted call to server 1 P     preempted by higher priority task execution 

[oil directly blocked call to server 1 

I Bp I push-through blocking 

|B2 

executing code outside rendezvous 

ceiling blocking (call to server 2) 

Figure C-3:   Priority Ceiling Protocol — Example #2 
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• At time fo, JobjQueue and Server_Stack are empty. 

• At time tv all tasks are activated, but only tasks T1, 81, S2, S3, and S4 are 
ready to run and hence are on the JobjQueue. 

• At time t2, T1 attempts to call S1. Since ServerjStack is empty, no other 
servers are executing on behalf of any other task. Hence, the call succeeds 
and is queued. The server S1, which has not yet executed its accept state- 
ment, begins its execution at priority 1, the priority of its caller T1. The 
client/server task pair S1/T1 is inserted into ServerjStack. 

• At time t3, S1 attempts to call S2. Since nested server calls can always 
succeed, the call is queued. The server S2 now begins execution at the ex- 
ecuting priority of its caller S1, namely at the priority of T1. Insertion into 
Server_Stack for nested calls is carried out under special conditions only. 
The server/caller pair of S2/S1 is added to ServerjStack since S2's priority 
ceiling is higher than the priority ceiling of its caller S1. 

• At time f4, task T2 becomes ready to run and immediately preempts S2. 
Thus, T2 is at the head of the JobjQueue. Since server S2 is preempted by 
T2, S* is updated to S2, which is at the head of ServerjStack. 

• At time %, task T2 attempts to call Sg. Since T2's priority is not higher than 
the priority ceiling of S* (S2), the call fails and S2 inherits the priority of T2. 

• At time ^, task T3 becomes ready to execute, and having higher priority 
than the inherited priority of S2, it preempts S2 and begins to execute. S* 
needs to be updated but remains S2, which is still the head of 
Server_Stack. 

• At time t7, task T3 tries to call S3. Since T3's priority is higher than the prior- 
ity ceiling of S* (S2), the call is successful and is queued on S3. The 
server/client pair of S3/T3 is inserted into Server_Stack. S3 now begins ex- 
ecution at its inherited priority of T3's (3). 

• At time te, task T4 with priority 4 becomes eligible to run and preempts S3 
running at a priority of 3. Since a server has been preempted, S* is updated 
to S3 which is now at the head of ServerjStack. 

• At time tg, task T4 attempts to call S4. Since T4's priority of 4 is less than 
the priority ceiling 5 of S* (S3), the call is not successful and S3 inherits T4's 
priority. Since S3 is executing on behalf of T3, S* is set to the server with 
the highest priority ceiling called by a task other than T3. Thus, S* is reset to 
S2. 

• At time f10, server S3 makes a call to S4. Since this is a nested entry call, 
the call is successful and the call is queued on S4. S4 now begins execution 
at the inherited priority of 4. Since this is a nested entry call, S4 needs to be 
added to Server_Stack only if S4's priority ceiling is higher than the priority 
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ceiling of S3, which is at the head of the stack.23 Since this is not the case, 
the pair S4/S3 is not added to Server_Stack. 

• At time ^:, task T5 with priority 5 becomes eligible to run and preempts 
server S4 running at priority 4. Since the server S4 was preempted by task 
T5, S* is updated to the head of Sen/er_Stack, namely S3. 

• At time f12a, task T5 attempts to call S3. However, T5's priority of 5 is not 
higher than the priority ceiling 5 of S* (S3) and the call is unsuccessful. In- 
stead, S3 inherits T5's priority of 5. Since S3 is executing on behalf of T3, 
S* is reset to S2.24 However, S3 is itself blocked waiting for S4 to complete 
its rendezvous. Hence, at time f12b. S4 inherits S3's executing priority, 
namely that of T5. 

• At time f13, S4 completes its rendezvous with S3 and resumes execution at 
its base priority. S3 is at the head of JobjQueue and resumes execution at 
its inherited priority of task T5. Note that S* still remains S2, since S3 is 
executing on behalf of T3. 

• At time f14a, S3 completes its rendezvous and resumes execution at its 
base priority. Hence, the server/client pair of S3/T3 is removed from 
Server_Stack. T5, the task at the head of Job_Queue, needs to rendez- 
vous with S3, S3 reinherits T5's priority at time f14b and regains its position 
at the head of Job_Queue. The server/client pair S3/T5 is now inserted into 
Server_Stack. Since S3 is being called by the currently executing job T5, S* 
still remains S2. 

• At time f15, S3 makes an entry call to S4. Since this is a nested entry call, 
the call succeeds and S3 is queued on S4, which inherits S3's inherited pri- 
ority of task T5. Since the priority ceiling of S4 is lower than the priority ceil- 
ing of the head of Server_Stack, S3, the pair S4/T5 is not added to 
Server_Stack. 

• At time f16, S4 completes its rendezvous with S3 and resumes its original 
priority. S3 is now at the head of Job_Queue and resumes its execution at 
its inherited priority of task T5. Both ServerjStack and S* remain the same. 

• At time f17, S3 completes its rendezvous with T5 and regains its original 
base priority. Hence the server/client pair of S3/T5 is deleted from the 
Server_Stack. Task T5, which is at the head of Job_Queue, resumes ex- 
ecution at its original priority of 5. 

• At time f18a, task T5 completes execution and is removed from JobjQueue. 
Task T4 is at the head of JobjQueue but needs to call S4. Hence, at time 
f18b, server task S4 inherits T4's priority, reaches the head of JobjQueue 

^Nested entry calls only need guarantee that the largest priority ceiling associated with any of the server 
tasks in the calling chain up to this point is represented on the Server Stack. Since the Server Stack is 
managed as a prioritized stack, there is no need to push the S4/S3 pair in this situation. 

24The repetitive setting and resetting of S\ for instance at fg and f12. can be "optimized away" by allowing 
nested entry calls to go through freely. 
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and begins execution. The server/client pair of S4/T4 is inserted into 
Server_Stack but S* remains as S2. 

• At time f19, server task S4 completes its rendezvous with T4 and resumes 
its original priority. The pair S4/T4 is deleted from ServerjStack. Task T4 
resumes execution at its own priority. 

• At time t20, task T4 completes execution and is removed from JobjQueue. 
Task T3 is at the head of the queue and resumes execution of its code out- 
side the rendezvous. 

• At time t2V task T3 completes execution and is removed from JobjQueue. 
Server task S2, which is at the head of the queue, resumes execution on 
behalf of T1. Hence, S* is reset to NULL since there is no server currently 
executing on behalf of a task other than task T1. 

• At time t22a, S2 completes its rendezvous with T1 and resumes its original 
priority of 2. Task T2, which is at the head of JobjQueue, needs to rendez- 
vous with S2. Hence, at time t22b, S2 inherits task T2's priority and takes 
the position at tire head of JobjQueue. The pair S2/T2 is added to 
Server_Stack and S* becomes S1. 

• At time ^3, S2 completes its rendezvous with task T2 and regains its orig- 
inal priority. Hence, the pair S2/T1 is removed from ServerjStack. Task T2 
is at the head of Job_Queue and resumes execution at its own priority. 

• At time t24, task T2 completes execution and is removed from JobjQueue. 
Server task S1 resumes its rendezvous with T1 at TVs priority. Hence S* 
becomes NULL 

• At time t25, S1 completes its rendezvous with T1, thereby regaining its orig- 
inal priority of 1. Subsequently, task T1 resumes execution at its base prior- 
ity. The pair S1/T1 is removed from ServerjStack and since ServerjStack 
becomes empty, S* obviously remains NULL 

• At time t2Q, task T1 completes execution and is removed from JobjQueue. 
Server task S4 is now at the head of JobjQueue. 

The system actions on the run-time data structures JobjQueue, ServerjStack and 
SjStar are presented in Figure C-4. 
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Time (Head)   Job_Queue (Tail) Priority         Server_Stack S /Ceiling 

T1.S4, S3.S2, S1 1 

*2 S1.T1.S4, S3, S2 1 S1/T1 

*3 S2, S1.T1.S4, S3 1 S2/si,sim 
*4 T2, S2, S1.T1.S4, S3 2 S2/S1.S1/T1 S2/2 

t5 
S2.T2, S1.T1.S4.S3 2 S2/S1.S1/T1 S2/2 

k T3, S2,T2,S1,T1,S4, S3 3 S2/S1.S1/T1 S2/2 

h 83,13,82,12,81,11,84 3 S3fT3, S2/S1, S1/T1 S2/2 

k T4, S3, T3, S2.T2.S1.T1, S4 4 S3/T3, S2/S1, Sim S3/5 

»g S3,T4,T3,S2,T2.S1,T1 4 S3/T3, S2/S1, S1/T1 S2/2 

tio S4, S3, T4, T3, S2, T2, S1 ,T1 4 S3/T3, S2/S1, S1/T1 S3/5 

»11 T5, S4, S3, T4, T3, S2, T2, S1, T1 5 S3/T3, S2/S1, sim S3/5 

*12a S3, T5, S4, T4, T3, S2, T2, S1. T1 5 S3/T3, S2/S1, S1/T1 S2/2 
l12b S4, S3, T5, T4, T3, S2, T2, S1, T1 5 S3/T3, S2/S1, Sim S2/2 

*13 S3, T5, T4,T3,S2,T2, S1, T1, S4 5 S3/T3, S2/S1, S1/T1 S2/2 
l14a T5.T4, T3, S2,T2,S1,T1, S4.S3 5 S2/S1.S1/T1 S2/2 

*14b S3, T5, T4, T3, S2, T2, S1, T1, S4 5 S3/T5.S2/S1, S1/T1 S2/2 

tn5 
S4, S3.T5.T4.T3, S2, T2.S1, T1 5 S3/T5, S2/S1, S1/T1 S2/2 

tie S3.T5, T4,T3,S2,T2, S1, T1, S4 5 S3fT5, S2/S1, S1/T1 S2/2 

ti7 T5.T4, T3, S2,T2,S1,T1, S4, S3 5 S2/S1.S1/T1 S2/2 

tl8a T4, T3, S2,T2,S1,T1,S4,S3 4 S2/S1.S1/T1 S2/2 

*18b S4.T4,T3,S2,T2,S1,T1, S3 4 S4K4, S2/S1 S1/T1 S2/2 

ti9 
T4, T3. S2.T2, S1.T1.S3 S4 4 S2/S1.S1/T1 S2/2 

*20 T3, S2,T2,S1,T1,S3. S4 3 S2/S1.S1/T1 S2/2 

*21 S2, T2, S1.T1.S3, S4 2 S2/S1.S1/T1 

*22a T2, S1,T1,S3,S4,S2 2 S1/T1 S1/1 

*22b S2.T2, S1.T1.S3. S4 2 S2/T2, S1/T1 S1/1 

*23 T2, S1.T1.S3.S4, S2 2 S1/T1 S1/1 

*24 S1,T1,S3,S4, S2 1 S1/T1 

*25 T1.S3, S4.S2, S1 1 

t?6 S3, S4, S2, S1 4 

Figure C-4:   Runtime System State Information for Example #2 
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