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Programming in Qlisp-A Case Study

Arkady Rabinov* Igor Rivin*

Abstract

We describe the results of some experiments with Qlisp-an extension of Common
Lisp for shared memory multiprocessors. The experiments involved scveral parallel im-
plementations of the modular univariate polynomial greatest common divisor algorithm
in Qlisp on an Alliant FX/8 multiprocessor. These implementations are described and
the requisite Qlisp constructs are described and explained (largely by example). The
performance of the parallel implementations is analyzed and some areas of future im-
provement in the current Qlisp implementation and the algorithi are found.
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1 Introduction

Qlisp is an extension of Common Lisp by some parallel programming constructs. (See [2]
for a detailed description.) The work described in this paper was done with an experimental
implementation of Qlisp on an Alliant FX/8 computer.

Since Qlisp is designed to facilitate symbolic programming on parallel computers, and

computer algebra is one of the oldest and best understood areas of "symbol processing",
we decided to implement a polynomial greatest common divisor (GCD) algorithm based on

modular arithmetic to test the expressive power of the language as well as the efficiency of

its current implementation.

The plan of this paper is as follows: In Section 2 we briefly describe the Qisp features we
use. In Section 3 we describe the algorithm for calculating GCD. In Section 4 we describe
four different ways of making the algorithm parallel. In Section 5 we give the results of
timing measurements and explain them.

2 A Qlisp Overview

Qlisp provides syntactic constructs to facilitate run-time parallelism. The primajy paral-
lelism construct in Qlisp is qlet. This construct is similar to let in Common Lisp. Its

form is

(qlet prop ((xi arg1 )

(X. arg,))

body)

where prop is a proposition evaluated at runtime to control parallelism. If its value is

NIL, then no parallelism is created and qlet turns into a simple let: the arguments
arg1,..., argo are evaluated, their values are bound to xi,..., x,, and body is evaluated.

If the value of prop is the symbol 'eager, then processes to evaluate argz,.. ., argn are
spawned, xl,... , x,, are bound to placeholders for the expected values of argl,..., argo and
a process to evahate body is spawned. If in the process of evaluating body the value of some
xi is required, the process evaluating body blocks and waits for the process evaluating arg,
to return a value.

If the value of prop is anything but NIL or 'eager then argl,..., arg,, are evaluated in
parallel. After argl,..., arg,,. are evaluated, their values are bound to xj,..., x,, and the
body is evaluated.

prop can be used by the programmer to dynamically control (during evaluation time)
whether the forms argl,..., ar, will be evaluated in parallel or serially. Since parallelism
incurs a certain amount of overhead, it could be very important to dynamically restrict the

growth of the number of parallel processes.

The next construct that Qisp adds to Common Lisp is qlambda. Its syntax is similar
to that of the lambda in Common Lisp and, like qlet, it has the additional form prop
controlling parallelism associated with qlambda. The form of qlambda is:

....... ... . ,-m ,- ,-am-, imumlib I I1



(qlambda prop (lambda-list) body)

This construction has three separate properties:

" It creates a lexical closure (like the lambda construct of Common Lisp);

" It is a monitor, or a critical region-when parallel parts of a program try to evaluate
more then one copy of a particular qlambda simultaneously, the language guarantees
that only one will be evaluated, and the evaluation of the next copy will not start
until the evaluation of the current copy is finished;

" It is a unit of parallel evaluation; the form nowait should be used to force the parallel
evaluation of a particular call to qlambda.

If prop is non-NIL a process is spawned to evaluate the qlambda form.

A convenient primitive is spawn. (spawn form) creates a process to evaluate form. The
value computed is ignored, so spawn is only used for effect.

Qlisp also provides low level synchronization primitives by way of events and locks and
functionality to create, acquire, release and test locks and to create, signal and wait for
events. Events can also be used as counting semaphores: a process can wait for a particular
event being signaled a certain number of times.

3 GCD computation algorithm

Knuth [31 noticed that the "inherent parallelism of modular arithmetic" lends itself to use
in parallel computers. We use modular arithmetic to implement polynomial GCDs (for
polynomials in one variable).

Below we use the following (standard) notation: If R is a ring then the ring of polyno-
mials in the transcendental x over R is denoted by R[x]. Z denotes the ring of integers.
Z/p denotes the quotient of Z by the ideal pZ, where p is a prime:

If P1 and P2 are elements of R[x] (where R is a ring), then their greatest common divisor
(GCD for short) is Q E R[x] such that Q divides both P1 and P2 and any S E R[tx that
divides P, and P2 divides Q also. If R = Z then polynomial GCD is determined uniquely,
while if R is a field, GCD is determined only up to multiplication by elements of RS (the
multiplicative group of R).

Let P1, P2 E Z[zx. Let -O(p) : Z -+ Z/p be the homomorphism which sends an integer to
its equivalence class modulo p, and let ' (p) : Z[x] -- Z/p[x] be the induced homomorphism
on polynomial rings, which sends r aix i to E o(p)(ai)xi . The algorithm makes use of the
fact that GCD(4(p)(P), 'I(p)(P2)) = 4D(p)(GCD(Pi, P2)) for almost all primes p, assiuning
that we normalize the leading coefficients of the various GCDs to be the GCD of the leading
coefficients of the input polynomials.

One of the problems with using modular arithmetic is that it is not trivial to divide
in Z/p. There are two basic different ways of doing this. The first uses Fermat's Little
Theorem. (For any integer a and a prime p, aP a kmod p). Thus a-1 = aP- 2 (rood p).)
The second approach uses the fact that if x a- 1  (mod p) then x is the solution of
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the Diophantine equation xa + kp = 1, which can be solved using some form of Euclid's
algorithm. The second way is known to be considerably faster for reasonably sized primes
(see [41), so that's what we use. We use the optimized version of Euclid's algorithm which
uses pseudo-remainder sequences ([3]).

Once all the modular GCDs we need are computed we use the Chinese Remainder
Theorem to interpolate the GCD of P, and P2 over the integers.

heie is the algorithm (in pseudo-Lisp):

(defun poly-gcd (Polyl Poly2)

(let ((Bound (gcd-coefficient-bound Polyl Poly2))
;;coefficients of (poly-gcd Polyl Poly2) will not exceed this

;;bound.
(Avoid (gcd (lead-coeff Polyl)(lead-coeff Poly2)))
;;want to Avoid primes dividing the leading coefficients of
;;Polyl and Poly2

)
(do ((result? (main-loop Polyl Poly2 Bound Avoid)

(main-loop Polyl Poly2 Bound Avoid)))

((and (divides? result? Polyl)(divides result? Poly2))
;;reality check

result?))',)

(defun main-loop (Polyl Poly2 Bound Avoid)

(do* ((prime (find-prime Avoid)(find-prime Avoid))
;See comment above
(mod-gcd (mod-gcd Polyl Poly2 prime)(mod-gcd Polyl Poly2

prime))

(how-big prime (* how-big prime))

;our coefficients are correct modulo how-big
(result mod-gcd (if (< (degree mod-gcd) (degree result))

(and (setq how-big (quotient how-big

prime))

result)
(CRT result how-big mod-gcd prime))

;See whether PRIME is a bad prime, if so throw it out,
;otherwise update the candidate GCD by Chinese

;remaindering.

((0 how-big Bound) result)
;Have we done enough yet?

4 How to Do It in Parallel

Here is the abbreviated first version of the program based on qlet. We will assume that
the input polynomials are fixed, so we don't pass them as arguments.
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(defun gcdl (primes)
(let ((prime (car primes)))

(qlet t
((done (gcdl (cdr primes)))

(cur-gcd (mod-gcd prime)))

(chinese cur-gcd done))))

In the above we request that the following two computations be done in parallel:

* the calculation of GCD modulo some prime p (we will call it GCDp) by mod-gcd;

* the calculation of GCD for the rest of the primes and the ongoing reconstitution of
the final answer via. the Chinese Remainder Theorem (CRT).

After this is done, we apply CRT to our current GCDP and to the result of the recursive call
to gcdl (this result is already lifted to Z/i fpe(cdr primes) P)- It is obvious that while
calculations of all GCDP are done in parallel, each application of CRT starts only after the
previous application is finished, and, moreover, the first application of CRT is started only
after the last GCDP is calculated.

How can we improve this? We would like to arrange things in such a manner that after
the process finishes with calculating GCDP, it will immediately start applying CRT to this
GCD and to the result of the previous application of CRT. This previous result has to be
passed from the previous invocation of the function GCD1 (see above). On the other hand,
this result is not ready yet when the previous invocation of GCD1 calls next the GCD1. To
solve this problem, GCD1 passes to its child GCD1 a lambda expression which knows how
to retrieve the result of the previous application of CRT. We still need to do something
for synchronization: we can start the calculation of GCD, any time, but the application of
CRT must wait till the previous result being prepared by the parent GCD1 is ready. The
qlambda construct helps us here. qlambda is a unit of computation, a monitor and a lexical
closure. We use all of these features in a second version of GCD (the code is abbreviated):

(defun gcd2 (retriever primes)
(let ((prime (car primes)))

(let* (cur-gcd

(cur-gcd-handler

(qlambda t (option)
(if (eq option 'retrieve)

cur-gcd

(setq cur-gcd (calc-gcd retriever prime))))))
(nowait

(funcall cur-gcd-handler 'calculate))

(new-gcdl cur-gcd-handler (cdr primes) pr-prod))))

For the purpose of synchronization, we want to use the same qlambda for calculating
cur-gcd and pass it to the child for the purpose of retrieval of cur-gcd. retriever here is
an analogous qlambda passed by our parent; we pass it to calc-gcd, so that it will use it to
retrieve the previous result after it calculates GCDP, and before the application of CRT. It
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is important that our child be unable to apply qlambda that we pass to it, before we apply

it.

Here is the function calc-gcd:

(defun calc-gcd (retriever prime)

(let ((cur-gcd (mod-gcd prime)))

(let ((prev-gcd (funcall retriever 'retrieve)))

(chinese cur-gcd prev-gcd))))

the same algorithm can be easily implemented using the future construct:

(defun gcd2 (prev-gcd primes)
(gcd2 (future (chinese prev-gcd (future (mod-gcd (car primes)))))

(cdr primes)))

And below gcd2 is implemented using qlet 'eager.

(defun gcd2 (prev-gcd primes)
(qlet 'eager ((cur-gcd (mod-gcd (car primes))))

(qlet 'eager ((cur-chinese (chinese cur-gcd prev-gcd)))
(gcd2 cur-chinese (cdr primes)))))

In GCD2, each application of CRT started as soon as the previous results become ready.
It would be better if each application of CRT started as soon as any two previous results
were ready. This would require less structured parallelism, and to implement this we need
to resort to the low level construct of EVENT. Our approach will be as follows: whenever
one GCDP is ready, it will be thrown into the pool of partially lifted GCDs. For each GCDp
generated (except the very first one) we will spawn the new process which will hunt any
two GCDs, combine them into one and put the result back into the pool. When the last
process is finished, we have the fully lifted GCD.

To preserve the integrity of *gcd-pool* we use a process closure:

(defvar *pool-handler* (qlambda t (handler) (funcall handler)))

(This is analogous to bomb-handler in [1].) By passing the appropriate lambda expression as
an argument, this process closure can be used either to push one GCDp onto the *gcd-pool*,
or it can be used to retrieve two modular GCD, to be used by application of the Chinese

Remainder theorem. Here is the new version of GCD (GCD3).

(defun gcd3 (primes)

(let ((prime (car primes)))
(spawn

(let* ((gcd-pair (funcall *pool-retriever*))
(cur-gcd (chinese (car gcd-pair) (cdr gcd-pair)))

(funcall *pool-handler*

#'(lambda ()
(push cur-gcd *gcd-pool*)))
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(signal-event *non-empty*))) )
(spawn

(let ((cur-gcd (mod-gcd prime)))
(funcall *pool-handler*

V'(lambda 0
(push cur-gcd *gcd-pool*)))

(signal-event *non-empty*)))
(gcd3 (cdr primes))))

Here we immediately spawn the process which eventually will apply CRT after retrieving
two modular GCDs, using *pool-retriever*. Then we spawn another process to do the
calculation of one GCDp and to push it onto *gcd-pool*.

The first process must wait till two of GCDP are ready and it uses *non-empty* event
as a counting semaphore. Since more than one such process can wait for the count two,
and each of them could be woken up, but only one should, we channel the "wait" through
another process closure *pool-retriever*.

(defvar *pool-retriever*
(qlambda t 0

(wait-event *non-empty* :count 2) ;account for removal
(signal-event *non-empty* :count -2) ;retrieve
;;Notice the unusual use of negative count above
(funcall
*pool-handler*
#'(lambda () (cons (pop *gcd-pool*) (pop *gcd-pool*))))))

Therefore such a process first waits for its turn to apply *pool-retriever*, and then the
process waits inside *pool-retriever* for the two modular GCDs to become ready.

The use of both *pool-handler* and *pool-retriever* here is strictly as a monitor
(protector of pzrticular datq objects or synchronizer for particular operations) but not as a
unit of parallel execution. Moreover they are executed strictly sequentially with the calling
process.

The synchronization in the above program becomes quite messy. What can we do to
streamline it?

Our problem is induced by the fact that the processes responsibl- for the application
of CRT are generated too early and have to wait while appropriate GCDs will be ready.
Modular GCDs are produced by the application of mod-gcd and by application of chinese,
but we have to generate a new CRT process only for half of them (minus 1). Therefore if
we give a chance to generate new chinese process to each of them, then each of them will
be able to afford to skip the generation of a chinese process when it is too early, knowing
that somebody else will generate this process.

Actually, we move this generation into *pool-handler*. Now *pool-handler* saves
the first, third and etc. GCD., and whenever the second, fourth and etc. GCDs ar-
rive, *pool-handler* spawns a new chinese process giving it the currently arrived even-
numbered GCD and the previously arrived odd-numbered GCD.
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(defvar *pool-handler*
(qlambda t

(cur-gcd)
(if *gcd-pool*

(let ((prev-gcd (pop *gcd-pool*)))

(spawn (chinese-and-push cur-gcd prev-gcd))

(push cur-gcd *gcd-pool*)))))

Here is the definition of chinese-and-push:

(defun chinese-and-push (cur-gcd prev-gcd)

(let ((new-gcd (chinese cur-gcd prev-gcd)))

(funcall *pool-handler* new-gcd)))

This allows us to write a simpler program to compute GCD as follows:

(defun gcd4 (primes)
(let ((prime (car primes)))

(spawn

(let ((cur-gcd (mod-gcd prime)))

(funcall *pool-handler* cur-gcd)))
(gcd4 (cdr primes))))

5 Results of the Experiments

Figures 1-8 at the end of this paper present timings for the calculation of GCDs of polyno-
mials of different degrees using the four algorithms described above, in the form of speedups
obtained versus the degree of polynomials. The speedup is computed as

Speedup(n) = CPU time using Lucid Common Lisp on one processor
CPU time for Qlisp running in parallel on n processors

The data presented in the figures need to be explained, and in order to do so we performed

some additional investigations.

The fact that timings for GCD1-GCD4 are so close suggests that the application of
CRT requires only a relatively small amount of CPU time. The investigation confirmed
this.

The current implementation of Qlisp provides a history mechanism, which allows us to
record the (wall-clock) time during the evaiuation uf various points of the pro gram. Using

this mechanism we measured the overhead caused by the Qlisp parallelism constructs. This
overhead appears to be negligible (less than one percent).

Next we analyzed the effect of garbage collection. The analysis showed that in our
application for every 100 seconds of CPU time spent on evaluation of the program, we
spent 14 seconds doing GC. Since GC is currently done by one processor while the rest are
idle, the performance of the whole system is considerably undermined.

To gauge more accurately the effect of garbage collection on performance we performed

some experiments with small problems that didn't garbage-collect. Actually, we evaluated
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the same GCDP on each processor. We found that, evaluating seven instances of GCDP on
seven processors would increase the time by 30 percent relative to evaluation of one GCDP
on one process, The evaluation of 4 instances of GCDP on 4 processors would increase time
by 15 per -,". This slowdown is obviously due to competing for internal resources. One of
these it "e cache, that all of the Alliant's processors share (see [51). Since the current Qlisp
conies from a single fre -list, another source of overhead is contention for the head of that
list. Another, similar, bottleneck is memory allocation-when more memory is needed, a
new page is grabbed from the set of free pages, and then this page is zeroed. Since the
zeroing is done by a single processor, this makes the execution of the program less parallel
than it ought to be.

In view of these considerations, we reimplemented our algorithm using destructive list
operations to do polynomial arithmetic. The new implementation uses only a small fraction
of the scratch space of the previous, consing implementation. The serial versions of the
algorithms have been sped up by factors ranging between two and three. In addition, the
memory usage is low enough that garbage collection is not necessary. The speedups obtained
are docunenied in figures 9-16, and are seen to be sharply better (the best speedup ha.s
increased from a factor of 4.5 to a factor of 6 on eight processors, a gain in efficiency from
56% to 75X. the speedups on small numbers of processors are very close to optimal ) Also,
the curves for the four algorithms are now much more distinct, reflecting the fact that
the part of computation where the algorithms differ (Chinese remaindering) has become
proportionately much more significant. Another point to note regarding the improved
performance shown in figures 9-16, is that it goes contrary to the sometimes expressed
(ociteItioi (hat a more eflicient sequential program is harder to speed up through the use

of parallelin1.

The peculiar shape of of the graphs is caused by a "bin packing" phenomenon. For

poI iiounials of degree 32, 64 and 96, we have only small number of processes (4, 6 and 8
l)riue.). aiid therefore the relationship between these numbers and the number of processors
is very important.

6 Summary

It appears that it was reasonably easy to introduce some parallelism into the chosen algo-
rithin with t he help of Qlisp primitives. The granularity of the spawned tasks is perhaps too
large to achieve consistently good performance gains, and for problems of practically useful
size we will need to expoit the opportunities for parallelism that exist in lower level arith-
inetic substrate (for example we might parallelize polynomial multiplication and division').

Our first, set of programs is also rather memory-intensive (like many in symbolic algebra.).
This has made it very useful in revealing the inefficiencies of Qlisp in the area of memory
management, just as the early computer algebra efforts have done for the Lisps of the
time. Efforts to remedy the problem are under way, and the inefficiencies not having to do
with garbage collection will disappear in a couple of months. While that is a significant
improvement, the numbers indicate that the Xa-plementation of a parallel garbage collector

1 Joe Weening has implemented several data structures to implement polynomials and performed studies
as to their suitability for parallel computation. It appears that a hash-table scheme holds the most promise.
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is essential in the long run.
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9 Figures
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Figure 1: The effective number of processors as a function of the degree of
polynomials: 1 processor.
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Figure 2: The effective number of processors as a function of the degree of
polynomials: 2 processors.
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Figure 3: The effective number of processors as a function of the degree of

polynomials: 3 processors.
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Figure 4: The effective number of processors as a function of the degree of

polynomials: 4 processors.
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Figure 5: The effective number of processors as a function of the degree of

polynomials: 5 processors.
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Figure 6: The effective number of processors as a function of the degree of
polynomials: 6 processors.
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Figure 7: The effective number of processors as a function of the degree of
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Figure 8: The effective number of processors as a function of the degree of

polynomials: 8 processors.
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