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INTiODUCTION AND BRIEF HISTORY

The original work on microwave waveguide/cavity discontinuities in the
electromagnetic field sense grew out of applications of variational principles
(formerly characteristic of quantum mechanics) to electromagnetic theory.
This work began during World War II at the Massachusetts Institute of
Technology Radiation Laboratories; Marcuvitz (Reference 1) and Schwinger
(Reference 2) were responsible for the majority of theoretical developments.
They exploited the relationship between electromagnetic boundary value
problems and equivalent microwave networks. Theoretical determination of
lumped circuit parameters was emphasized that employed variational methods,
integral equation methods, equivalent static techniques using conformal
mapping (Reference 3), and the transform or Wiener-Hopf technique.

All of the above techniques assume that the terminal plane is far enough
away from the discontinuity to consider propagating mode behavior only-the
evanescent modes are ignored. If we desire accurate values for the reflection
and transmission coefficients of the dominant mode close to the junction or
discontinuity plane (or for two or more closely spaced discontinuities), any
analysis must include the evanescent modes explicitly.

With the advent of large digital computers, explicit inclusion of
evanescent modes became possible, and the first attempts using mode-
matching were reported (References 4 through 7). It was assumed that for
any junction/discontinuity in a waveguide where the geometrical shape
resulted in separable solutions of the Helmholtz equation, the fields in each
region could be represented by infinite eigenseries, which were orthogonal
and normalized. Using the continuity of tangential electric and magnetic
fields over apertures along with h x E = 0, f .B = 0 for perfectly conducting
obstacles, the boundary conditions are formed in terms of products of
eigenfunctions and associated constant coefficients, which are the modal
reflection and transmission coefficients. These coefficients are evaluated by
invoking orthogonality properties of the eigenfunctions and integrating over
appropriate parts of the discontinuity plane.

This approach was used by many investigators, not only for metallic but
also for surface-wave waveguide discontinuities (Reference 8). However, two
major problems exist:

1. The original series that satisfies both the differential equation and the
boundary conditions is infinite, and it must remain so if an exact answer is
required. Under a very few special circumstances (Reference 7), it is possible
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to invert the resulting infinite dimensional matrix to solve the problem;
however, in general, this is impossible. Thus, to obtain numerical values of
the coefficients, the series must be truncated at some point. No one seemed to
know the answer to the question: "How many modes give a sufficiently
accurate result?" Finally, Lee, Jones, and Campbell (Reference 9) shed light
on this in a very careful treatment of the eigenfunction form of mode-
matching and its relationship to an integral equation method. They found that
for certain types of waveguide bifurcation problems, the lack of convergence
in the solutions was caused by the particular form of mode-matching used and
could be removed by using the moment method. However, in the class of iris
discontinuity problems, they found difficulties with convergence even when
using the moment method.

2. Once a truncation value for the series has been chosen, the ratio
between the number of modes in different regions must be considered. This
led to the phenomenon of relative convergence (References 4 and 7) in which
the coefficients converge to different values depending upon the number of
modes taken in each region and the ratio of the modes between regions.

The failure to satisfy the edge condition along the discontinuity plane was
thought to cause relative convergence (References 10 and 11). It has been
claimed by many that there is a lack of uniqueness in the solutions found from
using only continuous tangential fields across a junction. Only when the edge
condition is added are we guaranteed to find the one modal ratio that gives the
physically correct result. However, as far as we know, this never has been
proved mathematically; several investigators have claimed that the modal ratio
that causes the system of linear equations to be most "well-conditioned" leads
to the correct result (Reference 12).

The least-squares boundary residual method (LSBRM) was proposed to
avoid completely the problem of relative convergence (References 13 through
15). Via numerical experimentation, we will show that this method, when
combined with- traditional mode-matching, converges to the same answer
regardless of the modal ratio assumed. This method not only avoids the
convergence problem but has several other advantages.

1. The reflection and transmission coefficients can be found separately,
thus cutting the size of the matrix to be inverted by half (through
partitioning).

2. The matrices to be inverted are Hermitian, thus providing further
numerical savings.

3. The technique is characterized by an error function, which must be a
minimum when the correct result is obtained.

The LSBRM has one drawback-it converges slowly. Attempts to include a
"convergence factor" to speed convergence have not been successful in the
sense that no a priori way of calculating this factor is known. However, slow
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convergence is a small price to pay for a method in which a very stable
scattering matrix can be formulated that satisfies the traditional boundary
conditions in a least-squares sense.

We have used this technique on two canonical problems: (1) the infinitely
thin capacitive iris in a parallel-plate waveguide and (2) the H-plane parallel-
plate waveguide step.

Excellent results have been obtained for both. In the following section,
the general theory of the LSBRM will be discussed and a scattering matrix
formulation (in the least-squares sense) will be developed. The above
problems will be discussed in the Canonical Problems section, and results will
be shown. (The mathematical details of these two problems are in Appendixes
A and B, respectively.) Prior to our conclusions, we will indicate how the
relative convergence phenomenon is avoided by the LSBRM.

GENERAL THEORY

In general, we will consider a junction between two waveguides (cavities)
in the following way (see Figure 1). The a(i)'s (i = 1,2) are known inputs, and
the b(i)'s (i = 1,2) are unknown outputs for the junction at z = 0. Using the
scattering matrix representation,

b=Sa ()

where b and a are complex column vectors, and S is a complex matrix, and

/b(1)_ S11 S12 an1)_m

Sb(2)  S2 1 S2 2  (a(2) 2)

in partitioned form.

The object of the analysis is as follows. We wish to form a scattering
matrix [based on mode-matching and least-squares satisfaction of the
boundary conditions at the discontinuity (z = 0)] that does not exhibit the
relative convergence phenomenon. This is done to solve for the unknown

5



NWC TP 6941

outputs. We begin with the usual infinite sums of eigenfunctions as tangential
electric fields, i.e.,

Fa [am e-7 ( +b eZm z]  " z< 0

m=1 (3a)

(2 [ (2)z (2) _f(2) (2) z >0

F : ~ b2) e-,tp + , a] e P >0

p=I (3b)

and magnetic fields

al) [a ) - b )  U m h(l)  z <
K "an ni

m=1 (4a)

14(2) Z [ (P2) (2 (2) (hp2)(2)tk2 e--fp Z ; a(2 ey > 0

p=1 (4b)

where e(i) and h(i) (i = 1,2) are the electric and magnetic eigenfunctions,
respectively, and y(i) (i = 1,2) is the modal propagation constant along the z-
axis (in each region of the guiding structure); m and p represent the number
of modes to be used in regions 1 and 2, respectively.

The tangential boundary conditions at z = 0 are

F(1) - (2).0<x<b
xn tan 0 (5a)

Hitl )  H(2).0<x b

tan tan , (5b)

n 0 ; b< x<a (5c)
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We must recall also that

an= Js on z=0 ,b< x< a

but it is not necessary to include this condition explicitly in order to obtain a
unique solution to Equation 1. This and the associated normal boundary
conditions will be discussed in the Canonical Problems section and Appendix C.

Using Equations 3 and 4 in 5, the boundary conditions become

[a()+bI Ie()() (2) (~2 ) z~
mI Inb +a I (6a

m=l p=l (6a)

[am* - () -)(2 2 2

~ [In In ~ [bp -) ap,~ p 0 < x < b
m=I P=1 (6b)

m=I (6c)

Arranging the b's on one side and the a's on the other, Equations 6 may be
written in matrix form as

em)  -e(2) (b) -e) e(2)

() (2 bm h(I) -( 2 ) am
In ' b ( 2 ))( In P ((2)

em 0( 0 p
(7)

This leads to a matrix equation of the abstract form

L b = M a (8)
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Many investigators (References 5 through 7) simply assumed that by applying
the orthogonality properties of the eigenfunctions and integrating all
boundary conditions over the appropriate cross section at z = 0 the unknown
outputs are given by

b= (L - Mdc)a

and thus

S L- Mdc

is the scattering matrix of the problem in Figure 1. While this is quite true in
a formal sense, this course leads to numerical difficulties. The scattering
matrix in Equation 10 exhibits the relative convergence phenomenon (see the
Introduction and Brief History section) and is unsuitable for direct numerical
solution of the unknown outputs.

By satisfying the boundary conditions in a least-squares sense, one avoids
the relative convergence problem. In terms of the scattering matrix, we use
the fact that the adjoint (complex conjugate transpose) of the L matrix can be
multiplied through from the left on each side of Equation 8. Thus, from
Equation 8,

Lt L b = Lt Ma (1)

Integrating LtL and LtM over the appropriate parts of the boundary at z = 0
results in

S = Hl-f (12)

where H = 'c LtL dc is square and Hermitian, and f = fc LtM dc is the known
integrated input (sometimes called the forcing function). Of course, the
scattering matrix of Equation 12 reduces formally to that of Equation 10, but
Equation 12 is numerically stable. The scattering matrix of Equation 12 is
guaranteed to converge to a given result as the number of modes in either
region is increased. The scattering matrix in Equation 10 will converge to
different answers depending upon the number of modes used and the modal
ratio r = m/p as m and p are increased (Reference 4).
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The error associated with this least-squares scattering matrix is found
from Equation 1. The "distance" between two complex quantities in a physical
sense (References 16 and 17) is determined by

d(f,g) = If - gl (13)

Thus,

e = lb - Sal (14)

gives a physically meaningful indication of how far away (i.e., when m and p
approach infinity) any truncated result is from the exact answer. Thus,

S =(b t - atS t ) (b - Sa)

= btb - btSa - atStb + atStSa (15)

If the boundary conditions are perfectly matched, the error E is zero. It may
not be possible to have e = 0 exactly except when the number of modes taken on
either side of the junction is allowed to approach infinity. Since truncation is
a numerical necessity, the set of unknown outputs [i.e., bm( 1) and bp( 2 )1 that
causes the error to be a minimum is the physically correct set (References 18
and 19).

CANONICAL PROBLEMS

We depart from the theory of the General Theory section to discuss two
particular waveguide discontinuities: (1) the infinitely thin capacitive iris in
a parallel-plate waveguide and (2) the asymmetrical H-plane parallel-plate
waveguide step. The above were chosen as test cases for a number of reasons:
(a) Both are two-dimensional-this means there will be fewer nonzero field
components to match across the discontinuitics; (b) both have been done
before by other methods so that comparison values exist; and (c) (1) and (2)
are in different problem classes and thus provide a fair test of the LSBRM.

The details of deriving the H matrices that must be inverted to compute the
reflection and transmission coefficients for (1) and (2) are given in
Appendixes A and B, respectively.
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In the capacitive iris problem (see Figure A-1), we have a number of
conditions that ensure the validity of the solution. First of all, each of the
tangential boundary conditions must be satisfied by the computed coefficients,
i.e., Equations A-7 must be satisfied simultaneously. Thus, the tangential
electric fields on either side of the iris from b < y < a must go to 0 and be
continuous from 0 < y < b.

Consider Figure 2, where the waveguide height, a, is 1.2 centimeters and
the iris has a length b = a/2 = 0.6 centimeter at a frequency of 10 gigahertz
(Xo = 3 centimeters). This is a plot of the normalized tangential electric field
magnitudes in regions I and 2 [i.e , Ey(l) I and IEy( 2 ) 1] as functions of the guide
height along the discontinuity plane at z = 0. It is clear that using 26 modes in
each region, i.e., M = N = 26, gives virtually identical fields across the aperture
and causes the fields to drop sharply to 0 at y = b = 0.6 on the perfectly
conducting iris. The real and imaginary parts of the dominant transverse
electromagnetic (TEM) mode reflection and transmission coefficients are
given as well as the normalized susceptance B/Yo of the associated equivalent
circuit. The two problems with Figure 2 are that the fields are not 0 at exactly
y = 0.6, and B/Yo = 1.725, which is in error by 8.5%. By taking a larger number
of modes, we can correct these problems. For 76 modes on each side with all
other parameters the same as in Figure 2, the fields fall to exactly 0 at y = 0.6
and the normalized susceptance is in error by only 3.8%, as shown in Figure 3.

Similarly, the tangential magnetic fields must be continuous in the
aperture and differ from each other by the current density on the iris.
Looking at Figures 4 and 5, we see that this is true. Figure 4 compares the
tangential magnetic-field magnitudes for 26 modes on each side of the iris. In
Figure 5 with 76 modes in each region, the fields match better, particularly at
the edge of the iris (y = 0.6), and the fields in the aperture are tending toward 0
as the number of modes increases. By symmetry, we know that IHx 1)
= lHx( 2) I= 0 for 0 < y < b if the boundary conditions are matched exactly. Thus,
for increasing mode number, we note that it is more difficult to match the
tangential magnetic fields over the discontinuity plane than the tangential
electric fields, and further experimentation shows that this is always true.
This may be a consequence of the fact that the tangential boundary conditions
on the magnetic fields o-,er the perfectly conducting portion of the
discontinuity [i.e., fi x (I(]).-ff(2))= Tsi are not explicitly used in the original
formulation of the scattering matrix.

Now that the tangential boundary conditions have been satisfied, we must
check that normal conditions are also satisfied, although this is usually taken
for granted. In this problem, since the iris generates only higher order
transverse magnetic (TM) modes, the only nonzero normal field component to
the boundary at z = 0 is Ez. We know that continuous normal B and D are the
normal conditions to be satisfied across the aperture; therefore, on 0 < y < b,
EZ(') = EZ( 2 ). Looking at Figures 6 and 7, we see that this is indeed true for 26
and 76 modes in each region, respectively. In fact, using V -D = 0 and the
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continuity equation, Ez( l ) = E,( 2) for 0 < y < a and, thus, continuous normal D is
true along the entire discontinuity plane.

The third condition to be met is that for a = 0.4 X and b = a/2, the normalized
susceptance across the junction is B/Yo = 1.59. From Figure 8, we see that as
the number of modes is increased, the susceptance is tending toward this value
for a modal ratio, M/N = 1. At 75 modes on each side, the susceptance value is
1.65, which is - 3.8% error as compared with the exact value.

As we mentioned in the General Theory section, the error function can be
computed from Equation 15 when the coefficients are known. This error must
be a minimum for a given set of modes, and we want it to tend to 0 as the
number of modes increases. From Figure 9 for a modal ratio of 1, we see that
the error function for the reflection and transmission coefficients (i.e., the
b's) is less than 5% after only 8 or 10 modes on each side, and it decreases
toward 0 in a smooth, wcll-behaved manner.

In order to compare the theoretical model with experiment, the quantities
of interest are the magnitude and phase of the dominant mode reflection and
transmission coefficients. Figure 10 shows the magnitude of the reflection
and transmission coefficients as functions of increasing mode number for a
modal ratio of 1. Figure 11 shows the phases as functions of increasing mode
number. After 20 or 25 modes, both quantities are changing only slightly with
increasing mode number. These two plots confirm the results of the error
function in Figure 9. For practical purposes, it is necessary to take only 10 or
15 modes on each side of the discontinuity to obtain less than 5% accuracy in
the dominant mode reflection and transmission coefficient values. It is also of
interest to compute the reflection and transmission coefficients over a
frequency band. Figures 12 and 13 show the reflection and transmission
coefficient magnitudes and phases, respectively, at X-band. Over the
frequency range shown, the reflection coefficient magnitude increases with
increase in frequency, whereas the transmission magnitude decreases. The
phases of both coefficients remain relatively constant over this range.

Finally, although we have shown that the numerical results all converge
as the number of modes increases, we must also show convergence with
respect to the modal ratio. So far the modal ratios in all cases have been 1. But
consider how the normalized susceptance is affected by the modal ratio. In
Figure 8, where the ratio is I at 25 modes on each side, the susceptance is about
1.725. In Figure 14, where the ratio is 2 for 50 modes in region I and 25 modes
in region 2, B/Y 0 = 1.735. In Figure 15, where the ratio is 3 for 75 modes in
region I and 25 modes ;- region 2, B/Y 0 = 1.74. Obviously, while the
susceptance is tending to the correct answer regardless of modal ratio, a
poorly chosen ratio will cause a much larger number of total modes to be used
in order to achieve a particular accuracy. In this problem, since the
waveguide is the same height on either side on the iris, intuition indicates that
an equal number of modes in each region is the "best" ratio. More will be said

11



NWC TP 6941

concerning this aspect of the analysis for the H-plane parallel plate step
problem.

Thus, after considering all of the above checks on the capacitive iris
solution, we can conclude that the LSBRM is numerically stable, accurate to
less than 5% (depending on the number of modes one wishes to take), and is
slowly convergent, although the convergence appears to be guaranteed.

In the asymmetrical H-plane parallel-plate waveguide problem (details in
Appendix B), the situation is a little more complex (see Figure B-i). Again, we
(at z = 0) have our aperture between 0 < x < b and a perfectly conducting
surface between b < x < a. For TEO mode incidence, the step generates only
higher order TE modes and, thus, Hz, Hx, and Ey are the only nonzero field
components. The tangential boundary conditions on z = 0 that are used in
formulating the H-matrix are

(-1) 0  ;( 1 a
b<x<a 016a)

(1) l(2) 0
x HX ; 0<x<b (16b)

(1) (2)F )E 2  ; 0 < x < b  
(16c)

An auxiliary condition not explicitly included is the tangential magnetic field
condition on the step. (For further discussion of boundary conditions, see
Appendix C.)

X =xtan ; (17)

[We assume that H(2) and J( 2) no longer exist in region 2 when x > b, since
that region is bounded by perfect conductors.]

The normal conditions on z = 0 are

HM =H 2) ; O<x<bz , (I18a)

H(1)
Hz =0 ; b<x<a (18b)

Not only must all of the above be satisfied, but the error function must be a
minimum as before.
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To show that the previous conditions are all satisfied, we use Figure B-1
and let (1) the larger guide height, a, be 2.7 centimeters, (2) the smaller guide
height, b, be 2 centimeters, and (3) the frequency be 10 gigahertz. M and N
refer to the maximum number of modes used in the large and small guides,
respectively. Figures 16 and 17 are plots of the electric field magnitudes as
functions of waveguide height along the step at z = 0. Figure 16 shows how
well the fields match for 20 modes in each region, while Figure 17 shows the
match for 50 modes in each region. For 50 modes, the tangential electric field
boundary condition is satisfied almost exactly.

The tangential magnetic field magnitudes as functions of the guide height
along z = 0 are shown in Figures 18 and 19. As for the capacitive iris problem,
the tangential magnetic fields are more difficult to match than the tangential
electric fields. In Figure 18, IHx( 1 )I and IHx( 2 )1 are fairly well matched for 20
modes until close to the discontinuity, where Hx(2)1 goes to 0 (it no longer

exists), but H x( ) = Js. In Figure 19, the fields match better for 50 modes in
each region; however, there is still some discrepancy close to the
discontinuity.

The only normal condition is continuous normal B (or H, in this case) on
0 < x < b, and H(1) = 0, as shown above, on b < x < a. Figures 20 and 21 are plots
of the normal magnetic field magnitudes as functions of the guide height at z =
0. For 20 modes in each region (Figure 20), the field match is poor in both the
aperture region and the step region. Not until we increase the number of
modes in each region to 75 (Figure 21), do the normal fields match well.

Figure 22 is a plot of the error function versus mode number for a modal
ratio of 1. Since the step in this example is not very large, it is necessary to
take only 7 or 8 modes to obtain an accuracy of less than 4% in the computed
reflection and transmission coefficients. The dominant mode reflection
coefficient magnitude as a function of mode number is shown in Figure 23.
This plot supports the results of the error function, i.e., only 7 or 8 modes need
to be included to give accurate values of reflection.

Now consider the example where a = 2.7 but b - a/2 = 1.4 at 10 gigahertz.
This is a much larger step than in the previous example, and it will serve to
illustrate an interesting effect concerning the modal ratio. Consider Figures
24 through 26. If the total number of modes, P = M + N, is 100, then Figures 24,
25, and 26 show the error as a function of increasing mode number for modal
ratios 1, 2, and 3, respectively (i.e., M = 50, N = 50; M = 66, N = 33; and M = 75, N =
25). The geometric ratio for the waveguide heights is a/b - 2. We would like to
find the smallest possible error for a given value of P. By comparing Figures
24 through 26, it is clear that a modal ratio of 2 gives the smallest error when
P = 100. Also, we would like to find the smallest possible error for the smallest
number of total modes P. For example, M = 50, N = 50 gives an error of 3.83%,
whereas M = 50, N = 25 gives an error of 3.96%. An increase in accuracy of
0.13% is not worth the extra computation needed to include 25 extra modes. We
see that the modal ratio is controlled in some sense by the geometric ratio, a/b,
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and in general we can confirm the known result that if a/b - 2, then m/n - 2 is
the "best" modal ratio both in terms of the error and the total number of modes
P.

CONCLUSIONS

We have used the least-squares boundary residual method (LSBRM) to
obtain very accurate numerical values for the modal reflection and
transmission coefficients, the electric and magnetic field components, and the
error associated with certain types of waveguide discontinuity problems. We
have considered the general theory in terms of a scattering matrix
representation and have shown that the theory works very well for two
canonical problems: (1) the thin capacitive iris in a parallel-plate waveguide
and (2) the asymmetrical H-plane parallel-plate waveguide step. The method
exhibits slow convergence for large discontinuties; however, its advantages-
explicit evanescent modes, guaranteed convergence, excellent accuracy, and
an associated error function, which must be a minimum for the physically
correct solution-are significant.

In the immediate future, we will continue to look at similar discontinuity
problems but with the following modifications:

1. Discontinuities in cavities with perfectly conducting end plates
2. Discontinuities in cylindrical and spherical geometries
3. Discontinuities that generate both transverse electric and transverse

magnetic higher order modes
4. Multiple discontinuities less than a wavelength apart

This is a very powerful and versatile technique for predicting the
scattering properties of any discontinuity or junction, provided the geometry
can be represented in terms of eigenseries. It will enhance our capability to
model complex microwave devices so that their scattering properties can be
well understood.

14
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FIGURES

a a (2) REGION 2

REGION 1 b

I 1 
x

z =O

FIGURE 1. Geometry for Junction Between Two General Waveguides.
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FIGURE 2. Normalized Tangential Electric Field Magnitudes Versus Guide
Height for Capacitive Iris Junction (26 Modes).
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FIGURE 3. Normalized Tangential Electric Field Magnitudes Versus Guide
Height for Capacitive Iris Junction (76 Modes).
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FIGURE 4. Normalized Tangential Magnetic Field Magnitudes Versus Guide
Height for Capacitive Iris Junction (26 Modes).
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FIGURE 5. Normalized Tangential Magnetic Field Magnitudes Versus Guide
Height for Capacitive Iris Junction (76 Modes).
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FIGURE 6. Normalized Normal Electric Field Magnitudes Versus Guide Height

for Capacitive Iris Junction (26 Modes).
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FIGURE 7. Normalized Normal Electric Field Magnitudes Versus Guide Height
for Capacitive Iris Junction (76 Modes).
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FIGURE 8. Normalized Susceptance Versus Mode Number for Capacitive Iris
Junction (Modal Ratio of 1).
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FIGURE 9. Error Versus Mode Number for Capacitive Iris Junction (Modal Ratio

of 1).
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FIGURE 10. TEM Mode Reflection and Transmission Magnitude Versus Mode

Number for Capacitive Iris Junction.
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FIGURE 11. TEM Mode Reflection and Transmission Phase Versus Mode Number
for Capacitive Iris Junction.
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FIGURE 12. TEM Mode Reflection and Transmission Magnitude Versus
Frequency for Capacitive Iris Junction.
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FIGURE 13. TEM Mode Reflection and Transmission Phase Versus Frequency
for Capacitive Iris Junction.
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FIGURE 14. Normalized Susceptance Versus Mode Number for Capacitive Iris
Junction (Modal Ratio of 2).

21



NWC TP 6941

2.00-

1.95-

1.90-
M/N = 3.0

1.85- A = 1.20 cm
B = 0.60 cm

1.80- FREG = 10.0 GHz

S1.75-

1.70-

1.65-

1.55-

1.50
0510 15S 20 25

MODE NUMBER, N

FIGURE 15. Normalized Susceptance Versus Mode Number for Capacitive Iris
Junction (Modal Ratio of 3).
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FIGURE 16. Normalizcd Tangential Elcctric Field Magnitudes Versus Guide
Height for Parallel-Plate Waveguide Junction (TEO I Mode Incidence From
Larger Guide, 20 Modes).
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FIGURE 17. Normalized Tangential Electric Field Magnitudes Versus Guide
Height for Parallel-Plate Waveguide Junction (TE01 Mode Incidence From
Larger Guide, 50 Modes).
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FIGURE 18. Normalized Tangential Magnetic Field Magnitudes Versus Guide
Height for Parallcl-Plate Wavcguide Junction (TE 0 1  Mode Incidence From
Larger Guide, 20 Modes).
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FIGURE 19. Normalized Tangential Magnetic Field Magnitudes Versus Guide
Height for Parallel-Plate Waveguide Junction (TE0i Mode Incidence From
Larger Guide, 50 Modes).
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FIGURE 20. Normalized Normal Magnetic Field Magnitudes Versus Guide.
Height for Parallel-Plate Waveguide Junction (TE 0 1 Mode Incidence From
Larger Guide. 20 Modes).
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1.0- C = H ()

0.9- = Hz(2

08M = 75
N = 75

S0.7 A = 2.70 cm

0.6- B = 2.00 cm
0FREQ = 10.0 GHz

S0.5-
R = -0.070

j4 0.4 R. = -0.121

0.3- T r 0.883

0.2- 
-0.001

0.21

0020.4 0.6 0:8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

GUIDE HEIGHT cm

FIGURE 21. Normalized Normal Magnetic Field Magnitudes Versus Guide Height
for Parallel-Platc Waveguide Junction (TEoj Mode Incidence From Larger

Guide. 75 Modes).
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FIGURE 22. Error Versus Mode Number for Parallel-Plate Waveguide Junction
(TE0i Modc Incidence, Modal Ratio of 1).
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FIGURE 23. Reflection TE01 Mode Coefficient Magnitude Versus Mode Number
for Parallel-Plate Waveguide Junction.
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FIGURE 24. Error Vcrsus Mode Number for Parallel-Plate Waveguide Junction
(Modal Ratio of 1).
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FIGURE 25. Error Versus Mode Number for Paralll-Plate Waveguide Junction
(Modal Ratio of 2).
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FIGURE 26. Error Versus Mode Number for Parallel-Plate Waveguide Junction
(Modal Ratio of 3).
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Appendix A

A CAPACITIVE IRIS IN A PARALLEL-PLATE WAVEGUIDE

Consider the simple capacitive iris discontinuity in a symmetric parallel-
plate waveguide (References 13 and 20) (see Figure A-I).

I I9TE REGION 2
a '

REGION 1I Y

z 0

FIGURE A-1. Geometry for the Infinitely Thin Capacitive Iris in a
Parallel-Plate Waveguide.

The following assumptions are made: (I) Only transverse electromagnetic
(TEM) mode incidence exists (from the left); (2) both regions extend to
infinity; (3) only higher order transverse magnetic (TM) modes are generated
by the discontinuity; (4) all a/Dx = 0, since the waveguide extends to infinity
along the x coordinate; and (5) e = co and g = go inside the guide.

Assumption (1) indicates that

()=

am)=0 . m>0 (A-I)

(The value of I is arbitrarily chosen.)
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Assumption (2) implies that

0)= ; Vp (A-2)

The only nonzero field comjrinents are Ez, Hx, and Ey from assumptions (3) and
(4). The normalized tangential fields in region 1 are well known to be
(Reference 13)

(1) (1) () / (. m

a oZ+ bm a " Cos a
m--O (A-3a)

(1 ) m Z

m=0 (A-3b)

while the fields in region 2 are

(2)

)4F) () b(2)o y

a
p=0 (A-4a)

Z(H:2 )  hY2) (o2Y eCOZ 0 z>

S-- bp OSa a zz

p=O (A-4b)
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where

1; j=O

W ifk=,j=mnorif k2,j~p

12 j>O (A-5)

and the normalized wave admnittances in each region are

Y !k) i ;ifk=l,j=morifk2,j=p

727) 2  (A-6)

(ZO is the free-space impedance.) The boundary conditions at z =0 arc

E =0;b<y'za (A-7a)

E =0;b<y<a (A-7b)

(1) _ (2 O<y<b (A-7c)

x11 = (A-7d)
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Substituting Equations 3 and 4 into 7, the boundary conditions become

(1) (D (1)
a6 + h Cos -

a a
m=O

(2) Icb;)^ /'cos2- =0 0 < y<b
I a

p--O (A-8a)

-) + b() ( ) co -m(Y

m--0 v/

p=0 (A-Sb)

41)+ b-m cos- =IY0 b b<y <aa a
m=O (A-Sc)

Ibh (2)  cs PY0

+p coss----.-;=0O;y~yb

p=0 (A-8d)

Let

((2)

AIN N(A -9 a )

(1) ( C O2) PRY

m O N(1 , " O

a a (A-9b)
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In matrix form, Equation 8 becomes

(0) ((2) (2)

0 Y( N (2 ) (2) b01

-'p (A-IO)

or

Lb = Ma

The adjoint matrix to L is

SN(m1) C(1) 'mN(1(lC(l 1 , Yt(l')* m N ( I ml' d

--N ' NP C V 0 NP - (A-I )

(m', p' are dummy indices).

The product LtL must be integrated over the appropriate portion of the
cross-sectional boundary where each of the original boundary conditions
holds. Let

H L tL dc
.C 

(A- 12)

where C is the entire boundary at z 0. We can write H in partitioned form as

H 0 1) H(0 2)

H(21) H(22) (A-13)
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H( 1 1) is formed by multiplying the first row of Lt by the first column of L and
integrating, noting that m = 0 to n ; ' = 0 to

(I Dfo1)( M M b  (D " (D) Q) M € (D) (0 d y

H~l )  N -N1,m N~m ) C;;. C;; dy + N'm. Nm C ' Y -m "m

aN (1) (N ) (1) (1
+ NM. Nm Cg ) C; ) dy

+ M N m o m CmdyY9 MIC .

(A- 14)

=L J0 m -mJj (A- 15)

(See the end of this Appendix for evaluation of integrals.) Thus,

H0 Qt) = Km + yM) Y ()* nun(A I6a
H -- =-+X m' mm(A-16a)

Without detail,

H( 12 ) Jmp[Y(.)* V(2 )  l
H --pP -P 1 (A- 16b)

[(2 1) Jp'm [y(2)* Y( 1) - (A-16c)

H (22) Kp + Y (2)* y( 2 )

=K+ P p pp' (A- 1 6d)

Thus H( 1 ), H(1 2 ), H( 2 1 ), and H( 2 2 ) are matrices such that if m, m' run from 0 to

M and p, p' run from 0 to P, then H( 1 1) has dimensions (M + 1) by (M + 1), H( 1 2 )

is (M + 1) by (P + 1), H( 2 1 ) is (P + 1) by (M + 1), and H( 2 2 ) is (P + 1) by (P + 1).

Of course, when M = P,

H( 1 1) = H( 2 2 ) (A- 17a)
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and

H(12) = H(21) (A-17b)

because of the particular symmetry of this problem. To integrate the forcing
function, we take

f= f tM dc

which is a column vector (see end of this Appendix for integrals),

f = - --
2) (A-18)

with

(1) _ r.+ Y.)*- 8 mM Pm' (A- 19a)

=)pp. [1 + y 2)* (A- 19b)

Once H and f are known, we can take the inverse of H and find the scattering
matrix. Since only a single input was assumed, we obtain only one row and
one column of the complete scattering matrix:

S = H-l f (A-20)

From previously, if

Hb-=fa (A-21)
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the set of unknown coefficients, b( 1 ) and b( 2 ), can be found independently
using the partitioned form of H (References 21 and 22). Thus,

H 01)i H(12 >)t b€ J1 t 1 )-------I~ --- aK1
(A-22)

(Let a0( 1) = 1.) Then

Ht)b) + H(2 b()=1) (A-23a)

H(21 ) b(1) + H(22 ) b(2) ( f(2) (A-23b)

and

b [HO _1 H(12) H(22)-' H(2 1)]-1 [ 1) - H(12) H(22)-' f42) (A-24a)

b(2)= [H (2 2 ) _ H(21 ) H(I ) H(12)]- 1 [ 2 ) - H(2 1) H(1 ')- I ] (A-24b)

The reflection and transmission coefficients are b() and b( 2 ), respectively, for
the TEM plus all higher order TM modes. For computing purposes, rather than
use Equations 24, it is easier to use

b = H-1 f (A-25)

and find b(l) and b( 2 ) simultaneously. H is an (M + P + 2) by (M + P + 2) matrix,
while f is an (M + P + 2) column vector as is b.
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ORTHONORMALIZED INTEGRALS USED IN THE CAPACITIVE IRIS PROBLEM

Let

____ m'Tty ratty
Jmm' =  b oCos M n cos m c dy

a j a a (A-26)

b
Jmm = - ; m=0, m'=0a

Fsin ;b m'=O,m O
mit a

" m'itb
--- sin " m'0, m=O

bb m=m'(m,m'>O)
a

1 sin m'I - b sin N + b
IT (aa (a Ma)

(a- -T) + m -m
a a a

m m ; m' O, mA0 (A-27)

K a m'7ty mty
a a

m = aos-cs-dn 0 m',

M, m', > 0

(A-28)

b C s m 'Icy cos 2 7Y y
imp a a a (A-29)
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(Same as Equation A-27 for Jmm' with m' = m, p = in'.)

Jb' =  0 Cos mir Cos P'cYdy
pm a a a (A-30)

(Same as Jmm' with p' - m, m = m'.) Jpp' = Jmm' with p = m, p' = m'.

0 m'>0

m' = Cos a'" dy=

(A-31)

b o iydy
PJ. a (A-32)

or

jb m'=O

Pmm

,;7- sin a m'>07 a M'O(A-33)

(pp' is the same with m' = p'.)
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Appendix B

THE ASYMMETRICAL H-PLANE PARALLEL-PLATE WAVEGUIDE STEP

Assume that the asymmetrical H-plane parallel-plate wavcguidc step is as
shown in Figure B-1. The following assumptions arc made: (1) Thcre is TE0 1

TE0 1

REGIONb REGION 2

zY=

FIGURE B-1. Geometry for the Asymmetrical H-Plane Parallel-Plate Waveguide
Step.

mode incidence from the left; (2) both regions extend to infinity; (3) only
higher order TE modes are generatcd by the step; (4) all a/ay - 0; and (5) : = Eo,
4 = 4o inside the guides.

We have (similar to Appendix A),

a(1) - 1

am)0 ; > (B-la)

and

a(2) 0 ;Vp (B-lb)
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Nonzero components of the fields are Hz, Hx, and Ey. The normalized
tangential fields in region I are

a. am e-7 + m z] sin a-

e e sm n a

m=1 (B-2a)

Z_ (1[-4 e-YmZ + bm)eyr sin a z<0

M-l (B-2b)

and in region 2, they are

(2) 2 WL( )z - ltXE; bp e-psin--- -  ; z> 0

P=l (B-3a)

(2)" (2) (2): z PIEx

-- 'V1 I YP bp e sin b z> 0
p--1 (B-3b)

with the axial propagation constants given by

(V) k

k° = °,.,rF' ° (B-4)

and the normalized admittances are
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=_ .___ y(2) _.

a 12 (B -5)

The tangential boundary conditions used on z = 0 are

E(1) = 0 ;(-a
b<x<a (B-6a)

(1) (2)E = E O<xb (B-6b)

(1 H(2) 0<x<b

x x (B-6c)

Substituting Equations B-2 and B-3 into B-6, we have

Imir 1
2 a )si x hII)

sin + sina I m

M--I

=/h (X sin- -  O<x<bP b '
p=1 (B-7a)

T2 (1)..(1) TX ¥ ( ) ) m x[- a 1)I sin + isin
Ii b a Iaa -m vm a

=p ( s in  • O<x<b
P=1  

(B-7b)
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0@1 g h() m 1
3--a() i + b~)sin =l~ 0

a a,
m= I (B-7c)

In matrix form,

sin m n_.sin_ sin

L= AI' sin mrtx F. 2) pnVa m a V b
12 lj . mrx "

si A . y2 sin -

a2 asin m n.x 0

L. a (B-8)

and

-sin m L y~*sinm2 sinm'Itx

v a a Va a Va a

Lt =
2sin p f XP , Y sin E' 0

-'\ b -b sin b 0(B-9)

where m' and p' are dummy indices. Let the matrix

b b

b(2 ) (B-10)

contain the reflection and transmission coefficients for each mode and let the
inputs be
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-J sin a

Ma= a l  yl) sin..X ; a ') = 1
va a

- sin rt.xx

a a (B-I 1)

Let

H =f LtL dc
Hf L(B-12)

As previously, we see that

(11) 2 a . m'7rx mlcx 2
H = sin- sin-dx+ - '

aI a a a

ob m'tx mirx

x sin - sin - dxa a (B-13)

H 1) 1 + -- --M Y ; M = M
H() (1)1+ ml) yml mm " m = m'

ly -YM mM' ; m m (B-14a)

(For integrals, see end of this Appendix.) In similar fashion,

H(12) = TmIp [y(ml)* ¥(2) -11m m p (B-14b)

H(21) = rp [yO) y(2)*_1
H m P' (B- 14c)
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y(2)* y(2) . p,

H (22 )  = y 2 * ( ), - p pp

p p pp P*P (B-14d)

Again, let

f=f LtMdc

where

f (1) *

(1) ()*
-+Y 1  1  J11  m'= 1 (B-15a)

f 2  T, [yOi) V(2)* + 1]
"Tip p' +(B-15b)

and

f

~2))(B -16)

Once H and f are found, we can compute the coefficients for the parallel-plate
step just as in Appendix A.
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ORTHONORMALIZED INTEGRALS IN THE PARALLEL-PLATE STEP PROBLEM

Let

2 Ca  'Jtx mltx
Km= o sin ma sin -a dx

aa a

f1 ;m=m'

0 m :m'
(B-17)

b
sin lsin mr dx

a a a

sin (m'- m) -- sin (m'+ m) -
.... ... m om,

(m- m) ](m'+ m)

2m~rbb aa 2m m=m'

(B-18)
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i n(L -L Ib _sin(MC+ Pit)b1 m p

a b a b 1

r .2 1'xsi ~

T a sin m' x p
b- 2micx a b(B-19)

(Tmp' and Jpp' arc same with proper correlation of indices.)
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Appendix C

BOUNDARY CONDITIONS FOR THE PARALLEL-PLATE WAVEGUIDE

In general, if only a TE01 mode is allowed to propagate in Figure C-1, there
are only three nonzero field components, i.e., Ey, Hx, and Hz.

TEo- a

FIGURE C-1. Geometry for the Simple Parallel-Plate Waveguide With No
Discontinuities.

If we assume that

Ey = A sin ex e_.a (C-1)

(since Ey must be zero on both walls), then from Maxwell's curl equation,

V xE = - iO4toH (C-2)

=i . az (C-3a)

and
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-- 1 aEj
Io W, (C-3b)

Similarly, from the other curl equation,

E all x  lHz 1

y icWe I z - 7x (C-4)

The divergence equations give

ay -(C-5a)

(simply the result of the two-dimensional nature of the problem) and

-a-x +--a--. =
ax 5z (C-5b)

Substituting Equation C-I into C-3,

Hx = 1 y
(C-6a)

Hz = - r cos -i e
a (C-6b)

Now consider what happens when a discontinuity is introduced at z = 0; i.e., we
use
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(a) continuous tangential E andH
for dielectric boundaries

(b) continuous normal B andD

and
A - A - A - -

(c) nx E =0, n.B =0, nxH= Js for perfectly conducting boundaries,

where Js is the surface current density. Thus, at the discontinuity (see
Figure B-I),

(1) Ey( ) = E y ( 2 )  on z =0, 0< x< b

(2) Ey (1) = 0  onz=0, b<x<a

(3) Hx( 1) = Hx( 2) onz=0,0 <x<b

(4) Hz( ) = Hz(2)  onz=0,0<x<b

(5) Hz( 1)=0 onz=0, b<x<a

(6) Hx( ) = Js on z = 0, b < x < a (C-7)

(We assume that E(), H 2) do not exist for x > b.) Conditions (1), (2), (3), and (6)
are tangential conditions; conditions (4) and (5) are normal conditions at the
discontinuity. It is important to realize that in the least-squares boundary
residual method (LSBRM), the tangential conditions are used to compute the
scattering parameters and the statement is often made that the normal
conditions are "equivalent" (Reference 14) to the tangential ones (the
implication being that the normal conditions are satisfied automatically).
While this may be true in some cases, in the present instance we see that there
is not enough information from (4) and (5) alone to solve the problem.
Attempts to mix appropriate tangential and normal conditions in the LSBRM
formulation have not been successful.

In some treatments of the parallel-plate waveguide step, the boundary
condition

-x=0 forz=0, b<x<a
az (C-8)
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is used along with the usual tangential conditions (References 23 and 24). This
condition cannot be derived directly from (a), (b), or (c); however, indirectly,
we recall from Equation C-4 that if Ey = 0 on some boundary, then

alHx . lHz
= 0

az ax (C-9)

also, implying that both terms must either be equal to each other or both must
be zero simultaneously. To use H x/az = 0 without simultaneously using
aHz/ax = 0 is misleading.
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