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INTRODUCTION AND BRIEF HISTORY

The original work on microwave waveguide/cavity discontinuities in the
electromagnetic field sense grew out of applications of variational principles
(formerly characteristic of quantum mechanics) to electromagnetic theory.
This work began during World War II at the Massachusetts Institute of
Technology  Radiation Laboratories;  Marcuvitz (Reference 1) and Schwinger
(Reference 2) were responsible for the majority of theoretical developments.
They exploited the relationship between electromagnetic boundary value
problems and equivalent microwave networks.  Theoretical dctermination of
lumped circuit paramecters was emphasized that employed variational methods,
integral equation methods, equivalent static techniques using conformal
mapping (Refercnce 3), and the transform or Wicner-Hopf technique.

All of the above techniques assume that the terminal plane is far enough
away from the discontinuity to consider propagating mode bchavior only—the
cvancscent modes are ignored. If we desire accurate values for the reflection
and transmission coefficicnts of the dominant mode close to the junction or
discontinuity planc (or for two or more closely spaced discontinuitics), any
analysis must include thc evanescent modes explicitly.

With the advent of large digital computers, explicit inclusion of
evanescent modes became possible, and the first attempts using mode-
matching were rcported (References 4 through 7). It was assumed that for
any junction/discontinuity in a waveguide where the geometrical shape
rcsultcd in separablec solutions of the Heclmholtz equation, the ficlds in each
rcgion could be represented by infinite eigenseries, which were orthogonal
and normalized. Using the continuity of tangential electric and magnetic
ficlds over aperturcs along with f x E=0 4B = 0 for perfectly conducting
obstacles, the boundary conditions are formed in terms of products of
cigenfunctions and associated constant cocfficients, which are the modal
rcflection and transmission cocfficients. These coefficients arc ec¢valuated by
invoking orthogonality propertics of the eigenfunctions and integrating over
appropriatc parts of the discontinuity plane.

This approach was used by many investigators, not only for metallic but
also for surfacc-wave wavcguide discontinuitics (Reference 8).  However, two
major problems cxist:

1. The original scrics that satisfies both the differential equation and the

boundary conditions is infinitc, and it must rcmain so if an cxact answer is
rcquircd. Under a very few special circumstances (Reference 7), it is possible
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to invert the resulting infinite dimensional matrix to solve the problem;
however, in general, this is impossible. Thus, to obtain numerical values of
the coefficients, the series must be truncated at some point. NoO one seemed to
know the answer to the question: "How many modes give a sufficiently
accurate result?" Finally, Lee, Jones, and Campbell (Reference 9) shed light
on this in a, very careful treatment of the eigenfunction form of mode-
matching and its relationship to an integral equation method. They found that
for certain types of waveguide bifurcation problems, the lack of convergence
in the solutions was caused by the particular form of mode-matching used and
could be removed by using the moment method. However, in the class of iris
discontinuity problems, they found difficulties with convergence even when
using the moment method. :

2.  Once a truncation value for the series has been chosen, the ratio
between the number of modes in different regions must be considered. This
led to the phenomenon of relative convergence (References 4 and 7) in which
the cocfficients converge to different values depending upon the number of
modes taken in each region and the ratio of the modes betwecn regions.

The failure to satisfy the edge condition along the discontinuity plane was
thought to cause relative convergence (References 10 and 11). It has been
claimed by many that there is a lack of uniqueness in the solutions found from
using only continuous tangential fields across a junction. Only when the edge
condition is added are we guarantced to find the one modal ratio that gives the
physically correct result.  However, as far as we know, this never has been
proved mathematically; several investigators have claimed that the modal ratio
that causes the system of lincar equations to be most "well-conditioned" leads
to the correct result (Reference 12).

The least-squares boundary residual mcthod (LSBRM) was proposed to
avoid complctcly the problem of relative convergence (Refcrences 13 through
15). Via numecrical cxperimentation, we will show that this method, when
combined with. traditional modec-matching, converges to the same answer
rcgardless of the modal ratio assumed. This method not only avoids the
convergence problem but has scveral other advantages.

1. The reflection and transmission cocfficients can be found separately,
thus cutting the size of the matrix to be inverted by half (through
partitioning).

2. The matrices to be inverted are Hermitian, thus providing further
numerical savings.

3. The tcchnique is characterized by an error function, which must be a
minimum when the correct result is obtained.

The LSBRM has onc drawback—it converges slowly. Attempts to include a

"convergence factor” to specd convergence have not been successful in  the
scnsc that no a priori way of calculating this factor is known. However, slow

4




NWC TP 6941

convergence is a small price to pay for a method in which a very stable
scattering matrix  can be formulated that satisfies the traditional boundary
conditions in a least-squares sense.

We have used this technique on two canonical problems: (1) the infinitely
thin capacitive iris in a parallel-plate waveguide and (2) the H-plane parallel-
plate waveguide step.

Excellent results have been obtained for both. In the following section,
the general theory of the LSBRM will be discussed and a scattering matrix
formulation (in the least-squares sense) will be developed. The above
problems will be discussed in the Canonical Problems section, and results will
be shown. (The mathematical details of these two problems are in Appendixes
A and B, respectively.) Prior to our conclusions, we will indicate how the
relative convergence phenomenon is avoided by the LSBRM.

GENERAL THEORY

In general, we will consider a junction between two waveguides (cavities)
in the following way (sece Figure 1). The ali)'s (i = 1,2) are known inputs, and
the b(i)'s (i = 1,2) are unknown outputs for thc junction at z = 0. Using the
scattering matrix represcntation,

b=Sa n

where b and a arc complex column vectors, and S is a complex matrix, and

(2)

in partitioned form.

The object of the analysis is as follows. We wish to form a scattering
matrix [based on modc-matching and lcast-squares satisfaction of the
boundary conditions at thc discontinuity (z = 0)] that does not cxhibit the
relative convergence phcenomenon, This is done to solve for the unknown
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outputs. We begin with the usual infinite sums of eigenfunctions as tangential
electric fields, i.e.,

- m M
- Z [a) eMm2 4 b)) eMm?] el s 2<0

m=1 (3a)
@ _ Z @ 2z, @ 1Pz @ .
Ean=2 by e +a" e le;” ; 2 >0
s (3b)
and magnetic ficlds
= W )
D=y e - b et b 5 z<0
m=1 (4a)
- @ @
Hff,),= Z [bE,Z) e - aE,Z) e’ 7] h;,Z) :z>0
p=i (4b)

where e(i) and h() (i = 1,2) are the electric and magnetic eigenfunctions,
respectively, and y(i) (i = 1,2) is the modal propagation constant along the z-

axis (in each region of thc guiding structurc); m and p rcpresent the number
of modes to be uscd in recgions 1 and 2, respectively.

The tangential boundary conditions at z = 0 are

1 E(Z)

an=Ean ; O<x<b (5a)
(1 (2) .
Han=Han 5 0<x<b (5b)
a _ .
an = ; b<x<a (5¢)
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We must recall also that

(D
am=Jsonz=0 ,b<x<a

but it is not necessary to include this condition explicitly in order to obtain a
unique solution to Equation 1. This and the associated normal boundary
conditions will be discussed in the Canonical Problems section and Appendix C.

Using Equations 3 and 4 in 5, the boundary conditions become

Z 2 + bfé’] ed) = 2 [b§,2) + ai,z)] eg‘)') : D<x<b
m=1 p=1 (63)

> a® - b= P - @182 5 0<x<b
m=1 p=1 (6b)

2[a2)+bg)l e=0 ; b<x<a
m=1 (6¢)

Arranging the b’s on one side and the a's on the other, Equations 6 may be
written in matrix form as

o @ (0 (2)
€m ep b1 €m p iy
hY _p@ m- _hD _p@ m
m p b(z) m p (2)
(1 0 P (1) 0 p
°m ~Cm (7

This lcads to a matrix equation of the abstract form

Lb=Ma
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Many investigators (References 5 through 7) simply assumed that by applying
the orthogonality properties of the eigenfunctions and integrating all
boundary conditions over the appropriate cross section at z = 0 the unknown
outputs are given by

b= J'( L Mdc) a
c )

and thus

S=jL’lMdc
c (10)

is the scattering matrix of the problem in Figure 1. While this is quite true in
a formal sense, this course lcads to numerical difficulties.  The scattering
matrix in Equation 10 exhibits the relative convergence phenomenon (see the
Introduction and Brief History section) and is unsuitable for direct numerical
solution of the unknown outputs.

By satisfying the boundary conditions in a lcast-squares scnse, one avoids
the relative convergence problem. In terms of the scattering matrix, we use
the fact that the adjoint (complex conjugate transpose) of the L matrix can be
multiplied through from the left on each sidc of Equation 8. Thus, from
Equation 8,

L'Lb=L'Ma (11)

Integrating L!L and L'M over the appropriatc parts of the boundary at z = 0
results in

S=HIf (12)

where H = .[c LL dc is square and Hcrmitian, and f = fc LM dc is the known
integrated input (sometimes cailed the forcing function). Of course, the
scattering matrix of Equation 12 rcduces formally to that of Equation 10, but
Equation 12 is numecrically stable. The scattcring matrix of Equation 12 s
guaranteed to converge to a given rcsult as the number of modes in cither
rcgion is increased. The scattering matrix in Equation 10 will converge to
different answers dcpending upon the number of modes used and the modal
ratio r = m/p as m and p arc incrcased (Reference 4).
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The error associated with this least-squares scattering matrix is found
from Equation 1. The "distance" between two complex quantities in a physical
sense (References 16 and 17) is determined by

dif.g) = If - gl (13)

Thus,
€=1b - Sal (14)

gives a physically meaningful indication of how far away (i.e., when m and p
approach infinity) any truncated result is from the exact answer. Thus,

€ = (bt - alSt) (b - Sa)

=blb - blSa - a!S'b + alS'Sa (15)

If the boundary conditions are perfcctly matched, the error € is zero. It may
not be possible to have € = 0 cxactly except when the number of modes taken on
cither side of the junction is allowed to approach infinity. Since truncation is
a numerical nccessity, the sct of unknown outputs [i.c., bm(!) and by(2)] that

causes the error to be a minimum is the physically correct set (References 18
and 19).

CANONICAL PROBLEMS

We depart from the theory of the General Theory section to discuss two
particular waveguide discontinuitics: (1) the infinitcly thin capacitive iris in
a parallel-plate waveguide and (2) the asymmectrical H-plane parallel-plate
waveguide step. The above wcre chosen as test cases for a number of reasons:
(a) Both arc two-dimensional—this means therc will be fewer nonzero field
components to match across the discontinuitics; (b) both have been done
before by other mcthods so that comparison valucs exist; and (¢) (1) and (2)
are in different problem classes and thus provide a fair test of the LSBRM.

The details of deriving the H matrices that must be inverted to compute the
rcflection and transmission cocfficients for (1) and (2) are given in
Appendixes A and B, respectively.
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In the capacitive iris problem (see Figure A-1), we have a number of
conditions that ensure the validity of the solution. First of all, each of the
tangential boundary conditions must be satisfied by the computed coefficients,
i.e., Equations A-7 must be satisfied simultaneously. Thus, the tangential
electric fields on either side of the iris from b < y < a must go to 0 and be
continuous from 0 <y < b.

Consider Figure 2, where the waveguide height, a, is 1.2 centimeters and
the iris has a length b = a/2 = 0.6 centimeter at a frequency of 10 gigahertz
(Ao = 3 centimeters). This is a plot of the normalized tangential electric field

magnitudes in regions 1 and 2 [i.e. [Ey(Dland IEy(2)]] as functions of the guide
height along the discontinuity plane at z = 0. It is clear that using 26 modes in
each region, i.e., M = N = 26, gives virtually identical fields across the aperture
and causes the ficlds to drop sharply to 0 at y = b = 0.6 on the perfectly
conducting iris. The real and imaginary parts of the dominant transverse
electromagnetic (TEM) mode rcflection and transmission coefficients are
given as well as the normalized susceptance B/Y, of the associated equivalent
circuit. The two problems with Figurc 2 are that the fields are not 0 at exactly
y = 0.6, and B/Y, = 1.725, which is in error by 8.5%. By taking a larger number
of modes, we can correct these problems. For 76 modes on cach side with all
other parameters the same as in Figure 2, the fields fall to exactly 0 at y = 0.6
and the normalized susceptance is in error by only 3.8%, as shown in Figure 3.

Similarly, the tangential magnetic ficlds must be continuous in the
aperture and differ from each other by the current density on the iris.
Looking at Figures 4 and S, we sce that this is true. Figure 4 compares the
tangential magnetic-ficld magnitudes for 26 modecs on each side of the iris. Ip
Figure 5 with 76 modes in each region, the fields match better, particularly at
the edge of the iris (y = 0.6), and the ficlds in the aperture arc tending toward 0
as the number of modes incrcases. By symmetry, we know that [H(1)|
= [Hx(®|= 0 for 0 <y < b if the boundary conditions arc matched exactly. Thus,
for increasing mode numbcr, we note that it is more difficult to match the -
tangential magnetic fields over the discontinuity plane than the tangential
electric fields, and further ecxperimentation shows that this is always true.
This may be a conscquence of the fact that the tangential boundary conditions
on the magnetic ficlds over the perfectly conducting portion of the
discontinuity [i.e., n x (H(1) -H(2)) =T;] arc not explicitly used in the original
formulation of the scattering matrix.

Now that the tangential boundary conditions have becen satisfied, we must
check that normal conditions are also satisfied, although this is usually taken
for granted. In this problem, sincc the iris generates only higher order
transversc magnetic (TM) modes, the only nonzero normal field component to
the boundary at z = 0 is E;. We know that continuous normal B and D are the
normal conditions to be satisfied across the apcrture; therefore, on 0 < y < b,
E.(1) = E,(2). Looking at Figurcs 6 and 7, we sce that this is indced true for 26
and 76 modes in cach rcgion. respectively. In fact, using V «D = 0 and the

10
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continuity equation, E,(1) = E,(2) for 0 < y < a and, thus, continuous normal D is
true along the entire discontinuity plane.

The third condition to be met is that for a = 0.4 A and b = a/2, the nommalized
susceptance across the junction is B/Y, = 1.59. From Figure 8, we see that as
the number of modes is increased, the susceptance is tending toward this value
for a modal ratio, M/N = 1. At 75 modes on each side, the susceptance value is
1.65, which is ~ 3.8% error as compared with the exact value.

As we mentioned in the General Theory section, the error function can be
computed from Equation 15 when the coefficients are known. This error must
be a minimum for a given set of modes, and we want it to tend to 0 as the
number of modes increasecs. From Figure 9 for a modal ratio of 1, we see that
thc crror function for the reflection and transmission coefficients (i.e., the
b's) is less than 5% after only 8 or 10 modes on each side, and it decreases
toward 0 in a smooth, wecll-behaved manner.

In order to compare the theoretical model with experiment, the quantities
of intcrest are the magnitude and phase of the dominant mode reflection and
transmission coefficients.  Figure 10 shows the magnitude of the reflection
and transmission cocfficients as functions of increasing mode number for a
modal ratio of 1. Figure 11 shows the phases as functions of increasing mode
number.  After 20 or 25 modes, both quantities are changing only slightly with
incrcasing mode number. These two plots confirm the results of the error
function in Figure 9. For practical purposes, it is necessary to take only 10 or
15 modes on each side of the discontinuity to obtain less than 5% accuracy in
the dominant mode recflection and transmission coefficient values. It is also of
intcrest  to compute the reflection and transmission cocfficients over a
frcquency band. Figures 12 and 13 show the reflection and transmission
cocfficicnt magnitudes and phases, respectively, at X-band. Over the
frcquency range shown, the rcflection coefficient magnitude increcases with
incrcasc in frequency, whereas the transmission magnitude decreases. The
phases of both cocfficicnts remain rclatively constant over this range.

Finally, although we have shown that the numerical results all converge
as the number of modes incrcases, we must also show convergence with
rcspect to the modal ratio.  So far the modal ratios in all cases have becen 1. But
consider how the normalized susceptance is affected by the modal ratio. In
Figure 8, where the ratio is 1 at 25 modes on each side, the susceptance is about
1.725. In Figure 14, where the ratio is 2 for 50 modes in region 1 and 25 modes
in rcgion 2, B/Y, = 1.735. In Figure 15, where the ratio is 3 for 75 modes in
rcgion 1 and 25 modes i- region 2, B/Y, = 1.74. Obviously, while the
susccptance is tending to the correct answer regardicss of modal ratio, a
poorly choscn ratio will causc a much larger number of total modes to be used
in order to achicve a particular accuracy. In this problem, since the
wavcguide is thc same height on cither sidc on the iris, intuition indicates that
an cqual number of modcs in cach region is the "best" ratio. More will be said

1
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concerning this aspect of the analysis for the H-plane parallel plate step
problem.

Thus, after considering all of the above checks on the capacitive iris
solution, we can conclude that the LSBRM is numerically stable, accurate to
less than 5% (depending on the number of modes one wishes to take), and is
slowly convergent, although the convergence appears to be guaranteed.

In the asymmetrical H-plane parallel-plate waveguide problem (details in
Appendix B), the situation is a little more complex (see Figure B-1). Again, we
(at z = 0) have our aperture between 0 < x < b and a perfectly conducting
surface between b < x < a. For TEp; mode incidence, the step generates only
higher order TE modes and, thus, H;, Hx, and Ey are the only nonzero field
components. The tangential boundary conditions on z = 0 that are used in
formulating the H-matrix are

(0 _ .
E‘.y =0 : b<x<a (16a)
(1) _ (2) .
H,'=H,” ; 0<x<b (16b)
) _ 2
Ey -Ey : O0<x<b (16¢)

An auxiliary condition not explicitly included is the tangential magnetic field
condition on the step. (For further discussion of boundary conditions, see
Appendix C.)

Hf‘l)=Hg,),=Js ; b<x<a (17)

[We assume that H(® and E(® no longer exist in region 2 when x > b, since
that region is bounded by perfect conductors.]

The normal conditions on z = 0 are
(
HY=H? ; 0<x<b (18a)

(1)
H,"=0 ; b<x<a (18b)

Not only must all of the above be satisficd, but thc error function must be a
minimum as bcfore.

12
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To show that the previous conditions are all satisfied, we use Figure B-1
and let (1) the larger guide height, a, be 2.7 centimeters, (2) the smaller guide
height, b, be 2 centimeters, and (3) the frequency be 10 gigahertz. M and N
refer to the maximum number of modes used in the large and small guides,
respectively. Figures 16 and 17 are plots of the electric field magnitudes as
functions of waveguide height along the step at z = 0. Figure 16 shows how
well the fields match for 20 modes in each region, while Figure 17 shows the
match for 50 modes in each region. For 50 modes, the tangential electric field
boundary condition is satisficd almost exactly.

The tangential magnetic field magnitudes as functions of the guide height
along z = 0 are shown in Figures 18 and 19. As for the capacitive iris problem,
the tangential magnetic fields are more difficult to match than the tangential

electric fields. In Figure 18, [Hx(1)| and Hx(2)| are fairly well matched for 20
modes until close to the discontinuity, where IH(2)| goes to 0 (it no longer
exists), but H,(D) = Js. In Figure 19, the ficlds match better for 50 modes in

each region; however, there is still some discrepancy close to the
discontinuity.

The only normal condition is continuous normal _B.(or H, in this case) on
0< x < b, and H,(1) = 0, as shown above, on b < x < a. Figures 20 and 21 are plots
of the normal magnetic ficld magnitudes as functions of the guide hecight at z =
0. For 20 modes in each rcgion (Figure 20), the field match is poor in both the
aperture region and the stcp region. Not until we increase the number of
modes in each region to 75 (Figurc 21), do the normal fields match well.

Figurec 22 is a plot of the crror function versus mode number for a modal
ratio of 1. Since the step in this example is not very large, it is necessary to
take only 7 or 8 modes to obtain an accuracy of less than 4% in the computed
reflection and transmission cocfficients. The dominant mode reflection
coefficient magnitude as a function of mode number is shown in Figure 23.
This plot supports the results of the error function, i.c., only 7 or 8 modes nced
to be included to give accurate values of reflection.

Now consider the example where a = 2.7 but b~ a/2 = 1.4 at 10 gigahenz,
This is a much larger step than in the previous cxample, and it will serve to
illustrate an interesting cffect concerning the modal ratio.  Consider Figures
24 through 26. If the total number of modes, P = M + N, is 100, then Figures 24,
25, and 26 show the error as a function of increasing mode number for modal
ratios 1, 2, and 3, respectively (i.e., M = 50, N=50; M =66, N=33, and M =75 N =
25). The geometric ratio for the wavcguide heights is a/b ~ 2. We would like to
find the smallest possible crror for a given valuc of P. By comparing Figures
24 through 26, it is clear that a modal ratio of 2 gives the smallest error when
P= 100. Also, we would like to find thc smallest possible error for the smallest
number of total modes P. For cxample, M = 50, N = 50 gives an error of 3.83%,
whereas M = 50, N = 25 gives an crror of 3.96%. An incrcase in accuracy of
0.13% is not worth the extra computation nceded to include 25 extra modes. We
sece that the modal ratio is controllcd in somc scnse by the gecometric ratio, a/b,
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and in general we can confirm the known result that if a/b ~ 2, then m/n ~ 2 is
the "best" modal ratio both in terms of the error and the total number of modes
P. .

CONCLUSIONS

We have used the least-squares boundary residual method (LSBRM) to
obtain very accurate numerical values for the modal reflection and
transmission coefficients, the eclectric and magnetic field components, and the
crror associated with certain types of waveguide discontinuity problems. We
have considered the general theory in terms of a scattering matrix
rcpresentation and have shown that the theory works very well for two
canonical problems: (1) the thin capacitive iris in a parallel-plate waveguide
and (2) the asymmetrical H-plane parallel-plate waveguide step. The method
exhibits slow convergence for large discontinuties; however, its advantages—
cxplicit cvanescent modes, guarantecd convergence, excellent accuracy, and
an associated ecrror function, which must be a minimum for the physically
corrcct solution—are significant.

In the immediate futurc, we will continue to look at similar discontinuity
problcms but with the following modifications:

1. Discontinuities in cavitics with perfectly conducting end plates

2. Discontinuitics in cylindrical and spherical gcometrics

3. Discontinuities that generate both transverse electric and transverse
magnetic higher order modcs

4. Multiple discontinuities less than a wavelength apart

This is a very powerful and versatile technique for predicting the
scattering propertiecs of any discontinuity or junction, provided the geometry
can be rcpresented in terms of cigenseries. It will enhance our capability to
modc! complex microwave devices so that their scattering properties can be
well  understood.

14
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FIGURE 1. Geometry for Junction Between Two General Waveguides.
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FIGURE 2. Normmalized Tangential Electric Field Magnitudes Versus Guide
Height for Capacitive Iris Junction (26 Modes).

15




NWC TP 6941
1.0
eh
0.9 - E
° )
0.8-1 y
0.7 :"' = ;g
S A = 1.20cm
w061 B = 0.60 cm
a FREQ = 10.
2 s 3 0.0 GHz
<
E 0.4 4 Rr = -0.40%
w™ R, = -0.489
0.3 T T =  0.595
02 ] T, = -0.489
B/Yo =  1.650
0.1
ot—r—or 2 w

0 01 02 03 04 05 06 07 08 09 10 1.1 1.2
GUIDE HEIGHT, cm
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FIGURE 4. Normalized Tangential Magnetic Ficld Magnitudes Versus Guide
Height for Capacitive Iris Junction (26 Modcs).
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FIGURE 8. Normalized Susccptance Versus Mode Number for Capacitive Iris
Junction (Modal Ratio of 1).

18




e

NWC TP 6941

. 30
25+
20 -
154 )
MN = 10
10 1 A = 1.20cm
® s/ 8 = 0.60cm
< FREQ = 10.0GHz
& 0 - T T T
[+ 4
[+
o
0 s 1o 15 20 25 30 35 40 45 50
MODE NUMBER, N
FIGURE 9. Error Versus Mode Number for Capacitive Iris Junction (Modal Ratio
of 1).
1.0
0.9
0.81 i
0.7 - -
= A M/N 1.0
= 0647/ A = 1.20cm
o B = 0.60cm
Z 05 FREQ = 10.0GHz
€ 0.4
0.3
0.2
0.1
) o — v v v — v v —= T
) 5 10 15 20 25 30 35 40 45 50
MODE NUMBER, N
) FIGURE 10. TEM Modc Reflection and Transmission Magnitude Versus Mode
Number for Capacitive Iris Junction.

19




NWC TP 6941

180
150
120
90 -

60 M/N 1.0
1.20 cm
0.60 cm

10.0 GHz

30 1 B
FREQ

b4
nowowon

0 -~
-30- T PHASE

R AND T PHASE, DEG

~-60 1
-90
-120 4 R PHASE

-150 1 —

-180 - T - ~ * . v . v
0 5 0 15 20 25 30 3% 40 45 50

MODE NUMBER, N
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FIGURE 23. Reflection TEg; Mode Coefficient Magnitude Versus Mode Number
for Parallel-Plate Waveguide Junction.

20

16 4

\ MIN = 1.0
® 121 A = 2.70cm
< B8 = 1.40cm
2 ‘ FREQ = 10.0 GHz
& —

/
/

o] +— Y v Y r Y T Y ™

0 5 10 15 20 25 30 35 40 45 50
MODE NUMBER, N

FIGURE 24. Error Versus Mode Number for Parallcl-Plate Waveguide Junction
(Modal Ratio of 1).

26




NWC TP 6941

20
16 4
M/N = 2.0
A = 2.70cm
12 4 B = 1.40cm
*. FREQ = 10.0GH:z
«
Q
&
W o og-
4 4
o T L 1 T T T
0 5 10 15 20 25 30

MODE NUMBER, N

FIGURE 25. Error Versus Mode Number for Parallcl-Plate Waveguide Junction
(Modal Ratio of 2).

20
16 -
\\ M/N = 3.0
£ 12 4 . A = 2.70 cm
. B = 1.40cm
2 FREQ = 10.0 GHz
4
Y .
‘\
\‘ .
4 \\
[o] v v v
0 5 10 15 20 25

MODE NUMBER, N

FIGURE 26. Error Versus Modec Number for Parallcl-Plate Wavcguide Junction
(Modal Ratio of 3).

27




NWC TP 6941

Appendix A
A CAPACITIVE IRIS IN A PARALLEL-PLATE WAVEGUIDE

Consider the simple capacitive iris discontinuity in a symmetric parallel-
plate waveguide (References 13 and 20) (see Figure A-1).

REGION 2

I

FIGURE A-1. Geometry for the Infinitely Thin Capacitive Iris in a
Parallel-Plate Waveguide.

———-TEM
REGION 1 J

e O ———

e — e ——

~N
o

The following assumptions are made: (1) Only transverse electromagnetic
(TEM) mode incidence cxists (from the lcft); (2) both regions extend to
infinity; (3) only higher order transverse magnetic (TM) modes arc generated
by the discontinuity; (4) all 9/dx = 0, since the waveguide extends to infinity
along the x coordinate; and (5) € = g9 and p = o inside the guide.

Assumption (1) indicates that

af,l)zl
n_ )
a, =0 ; m>0 (A-1)

(The value of 1 is arbitrarily chosen.)
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Assumption (2) implies that
@_qn .
% =0 ; Vp (A-2)

The only nonzero field components are Ez, Hx, and Ey from assumptions (3) and
(4). The normalized tangential fields in region 1 are well known to be
(Reference 13)

m (1
eu (1) Enn my v,
E§,1)= a / (1) z, E: b(l) M cos y elm?
a a

(A-3a)
(1)
(x)
o L [ &_ af,”e vz
S Efn ) y Yoz
+me Yn cos — ; z<0
m=0 (A-3b)
while the ficlds in region 2 are
- @
@ _ z @ 4 /_EL PRy 22
Eyj = b, 5 COs ¢ P
p=0 (A-4a)
(2) < (2) 5:32) ) pry
- 2 Q2 Pry -’Y .
ZH, "= pr . Yy cos ¢ ; z>0
p=0 (A-4b)
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where

1;j=0
%.<'<>= . ifk=1,j=morif k=2,j=p

2;j>0 (A-5)
and the normalized wave admittances in each region are

Y= : . ifk=1,j=morifk=2,j=p

2a (A-6)

(Zo is the free-space impedance.)  The boundary conditions at z = 0 arc

E_f,”:O :b<y<a (A-72)
E§2)=O ; b<y<a (A-7b)
E§1)=E§2);O<y<b (A-T¢)
HY=H? ; 0<y<b (A-7d)
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Substituting Equations 3 and 4 into 7, the boundary conditions become

1)
z: (1 o / mriy
\/— + b Y cos -

hed Ef,z) .
—Zb;(,” —cosE—y-=O ; O<y<b
a a
p=0 (A-8a)
1 S (1 Er(n (M) o MTY
1 1 1
Y 300 SO LTI
m=0
) . / 2 pry _ .
+Zb Y cos === ; O<y<b
p=0 (A-8b)
T o\ ) e,‘,}’ mmuy
1 -0 -
.\/;ao +2‘bm - cos—a—--O ; b<y<a
m=0 (A-8¢)
hod ()
be,” E"i—cos-Pﬂ'-=0 ; b<y<a
\/ a a
p=0 . (A-8d)

Let

M [ @
Em_ =ND | Ep N:,Z)
a (A-9a)

(1) mnry (2) pry
C.' =cos —= |, = COS —=———
m s O a (A-9b)
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In matrix form, Equation 8 becomes

() A (2) h
Np' Cn -N; Cp

(1) (D (D (2) ~2) D) |, (D
WA (o) T )
a -—

N 0 b}()z) 1
@ 0
\ 0 NS G (A-10)
or
Lb=Ma
The adjoint matrix to L is
g ND D NP y®e NP o
@ @ ~2 L2 @ ~2)
NP G NP GV 0 NG (A-11)

(m', p' are dummy indices).

The product LTL must be intcgratcd over the appropriate portion of the
cross-sectional boundary where each of the original boundary conditions
holds. Let

H=J L'L dc
(o] (A-12)

where C is the entire boundary at z = 0. We can write H in partitioned form as

(A-13)
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H(11) js formed by multiplying the first row of Lt by the first column of L and
integrating, noting that m = 0 to v ; m' = 0 t0 .

b b
0 7NN 0 D ay + NN ) ¥ Y

a
[ NN ey

(A-14)
a . b
HID = NN [0 6 gy + ¥0 ¥ [ o2 ay
0 0 (A-15)
(See the end of this Appendix for evaluation of integrals.) Thus,
(11) _ (1) (1)
Without detail,
(12) _ (1)* (2 _
H = Ty Yo Y 1 (A-16b)
(21) _ (2)* (1)
H —Jp'm [Yp' Ym - 1] (A'16C)
(22) _ (2)*
H™ =Ky + Y5 Y5~ Jpp (A-16d)

Thus H(11), H(12), H(21), and H(22) are matrices such that if m, m' run from O to
M and p, p' run from O to P, then H(11) has dimensions (M + 1) by (M + 1), H(12)
is (M + 1) by (P + 1), H2D) is (P + 1) by (M + 1), and H22) is (P + 1) by (P + 1).

Of course, when M = P,

H(11) = H(22) (A-17a)
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and

H(12) = g(21) (A-17b)

because of the particular symmetry of this problem. To integrate the forcing
function, we take

f=J.LTMdc
C

which is a column vector (see end of this Appendix for integrals),

t“)

f=|-—-
(2 (A-18)
with
D _ (1)*
f( ——Sm""'Ym' Pm' (A-19a)
2) _ (2)*
£2=p, 11+ Y] (A-19b)

Once H and f are known, we can take the inverse of H and find the scattering
matrix. Since only a single input was assumed, we obtain only one row and
one column of the complete scattering matrix:

S=Hlf (A-20)
From previously, if

Hb="fa (A-21)
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the set of unknown coefficients, b{1) and b(2), can be found independently
using the partitioned form of H (References 21 and 22). Thus,

g : H(12) b(1) £V
_ (1)
e — | ——— = -
21) | 4(22 2 2)
g2, g2 | 4@ f (A-22)
(Let ap{1) = 1.) Then
and
~1 -1
-1 -1
b@ = (@2 = 4@V gl g1 (2 _ yen g (doy (A-24b)

The reflection and transmission coefficicnts are b(1) and b(2), respectively, for

the TEM plus all higher order TM modes. For computing purposes, rather than
use Equations 24, it is easier to use

b=HI!Ff (A-25)

and find b{1) and b(?) simultancously. H is an (M + P + 2) by (M + P + 2) matrix,
while f is an (M + P + 2) column vector as is b.
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ORTHONORMALIZED INTEGRALS USED IN THE CAPACITIVE IRIS PROBLEM

Let
(1) (1)

J ___e,_n_e,l- bcos m'ry cos iy d

mm a o a a
(b

Jom = | 7 : m=0,m=0
V2 b
—sinmjt . m=0,m=#0
m= a
N2 't
—sin=2 . m'#0,m=0
m'n a
1b e
Py ;: m=m'(m m'>0)

sxn(—n_ﬂt.)b sln(__n.+_n£)b
_1_ a a a
a ( T mn) ' mx
—_—— —— — —
a a a a
| m#m’; m'=0, m#0
(1 (1)
v Em'Em’ 'n mn
Kp=——mm cos T cos ydy= 0 m#m'
a 0 a a
1 m=m,
m,m >0

1 m=m'=0

J

m

(1.2
VEn& ®  mny  pry
p=———— | cos cos dy
a 0 a a
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(Same as Equation A-27 for Jym' with m'=m, p = m'.)

/ 2)_(1)
_ & & J‘b mny p'my
m~T  a o a

I dy

p COS == COs a

(Same as Jym' With p'=m, m = m') Jpp' = Jmm' with p = m, p' = m".

0; m>0
¢}
_ / En' [*  m'my
Sm"‘ TJ;) COs a dy—
1 ; m=0
1 b
.= —_.- Cos.n_ln—yd
Pm a a Y
or
b
- ; m=0
a
pm’=
V2 m'nb ,
= sin ; m>0
T a
(pp' is the same with m' = p')
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Appendix B

THE ASYMMETRICAL H-PLANE PARALLEL-PLATE WAVEGUIDE STEP

Assume that the asymmetrical H-plane parallel-platc waveguide step is as
shown in Figure B-1. The following assumptions arc made: (1) There is TEg;

P ]

TEnq

REGION 1
REGION 2

X

be

A

et ——— T ]

FIGURE B-1. Gceometry for the Asymmetrical H-Planc Parallel-Plate Waveguide
Step.

mode incidence from the left:  (2) both regions extend to infinity; (3) only
higher order TE modes arc gencrated by the step: (4) all 3/dy = 0; and (5) € = ¢,
KL = no inside the guides.

We have (similar t0o Appendix A),

ai”sl

m_q .

' =0; m>1 (B-12)
and

@_q

% =0 ; Vp (B-1b)
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Nonzero components of the fields are Hz, Hx, and Ey. The normalized
tangential fields in region | are

7 o W O —
E§,1)=.\/; Z [V ¢ Tn? 4 b ™ sin __ax
m=1

(B-2a)
2 — _(1) (1) mnx
ZOH§"=\/; D Y [l et 4 pVein? sin L 2<0
m=1 (B-2b)
and in region 2, they are
N @ L9
p=1 (B-3a)
@ _ 2 @@ P . pRX
ZoH, '—\/_'-EZYP b, e ' sin 54— z>0
p=1 (B-3b)

with the axial propagation constants given by

o/ () -4

EAN

2
(2) _ pr " _
%=/ (5
ko=(,u4 80“’0 (8-4)

and the normalized admittances are
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i i
Yg)= : Yr(az)=
(Z) - (&) -
2a 2b (B-5)
The tangential boundary conditions used on z = 0 are
E:(,U:O . b<x<a (B'68)
1) _ 2@
E,"=E"; O<x<b (B-6b)
HY=H> ; 0<x<b (B-6¢)
Substituting Equations B-2 and B-3 into B-6, wc have
21 (1)
\/ja— sm Zb
=.\/ 2 mesinp—nx- ; 0<x<b
b P b ~’
p=1 (B-7a)
2 (Dy (D) ¢ W)
NE [ 0 S
7 % T
=_\/;be,2’Yf,2’sinp—b’i ; 0<x<b
p=1 (B-7b)
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AR Z ) _
'\/—-a- sm b sm =0
(B-7¢)

In matrix form,

o

mnx

— sin

L= / Y(1)
a
\/_2-5m mnx 0
a - (B-8)

B ' .
2 m'nx () . m'mx 2 ., m'mx
— sin Y, sin — sin
a a a a

2
a
1 2 - ]
-ﬁ sin p:x \/—; Y‘()?) sin Egi 0
- J (B-9)

where m' and p' are dummy indices. Let the matrix

ﬁ

jro

f"—b—
w oo

and

b(l)

=] ——

()
b (B-10)

contain the rcflection and transmission cocfficients for each mode and lct the
inputs be
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( 2 | nx )
~a [ = sin —
a a
1 2 . T )
Ma=a§’ \/—:Yil)sm-l ;o4 =1
a a
2 . mx
~a [ — sin —
\ a a (B-11)
Let
H= J' L'Ldc
c (B-12)
As previously, we scc that
2 a [ T .
H‘“’:—f sin T gip TX gy 4 2y 30
aJ, a a a
b '
. M'EX . mnx
xj sin sin dx
0 a a (B-13)
1+YPYD 0 m=m
H(n) = 1
(1= (1) ) '
Yo' Ym Jom » M #m (B-14a)
(For integrals, sece cnd of this Appendix.) In similar fashion,
(12) _ (1)* ()
H' Y =Ty (Y Y5 =11 (B-14b)
21 _ (1) )+
H =Ty Y, Yo - 1] (B-14c¢)
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(2)*,(2) ) —
1+ Y)" Yo" Jpo 5 P=P

g -
21,2 '
Yo YT ; #
p Ip pp P#P (B-14d)
Again, let
f=J'L*Mdc
[+]
where
Ygl) Y,(,}-)' Jim' ;o m#l
f(1)=
(1) (1)* '
- . =1
1+Yl Yl Jll , m (B-15a)
2) _ (1) (2)*
2 =T, Y Y +1) (B-15b)
and
f(1)
f=
5
(B-16)

Once H and f are found, we can computc thc cocfficicnts for the parallel-plate
step just as in Appendix A.
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ORTHONORMALIZED INTEGRALS IN THE PARALLEL-PLATE STEP PROBLEM

Let
2 (. m'n mmnx
Kn=— j sin sin dx
o a
1 ; m=m
0 ; m#m (B-17)
2 b m'ntx . max
Jam=— sin sin — dx
(4]

. . b ) , rb
I sm(m-m)T sm(m+m)-;- '
~ — - - © m#m
(m —m); (m +m)-5
y,
. 2mnb
b Sin— |
2 2mn » m=m
\ (B'Ig)
45




e

NWC TP 6941
2 (° . m'rx . prx
Tmp= ——r_ab J; sin —— sin ==

( s,,,(ﬁl_gz)b s,,,(_‘zt_+g£)b ,
1 a b _ a b _rn_¢_p_
Jab ('n p1t) ('n pn) a b

—— ———  S— -——-+——

a b a b
=
[ 2m'1tb}
a sin ,

b a m_p

2m'n a b
| (B-19)

(Tmp' and Jpp' arc same with proper correlation of indices.)
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Appendix C
BOUNDARY CONDITIONS FOR THE PARALLEL-PLATE WAVEGUIDE

In general, if only a TEg; mode is allowed to propagate in Figure C-1, there
are only three nonzero field components, i.c., Ey, Hx, and Hgz.

|
| 1.

FIGURE C-1. Geometry for the Simple Parallel-Plate Waveguide With No
Discontinuities.

TE 0—’1

If we assume that

. |X
Ey=Asm-;-eJ{l

(C-1)
(since Ey must be zero on both walls), then from Maxwell's curl equation,
- -
1 aEy
*7 oy, oz (C-32)

and
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H < 1 OE,
277 o, ox

Similarly, from the other curl equation,

1 [8Hx aHZ]
Y~ iwe, | 9z ox

The divergence equations give

(simply the result of the two-dimensional nature of the problem) and

oH, dH,

= vtz "0

Substituting Equation C-1 into C-3,

- Ty A ™X —y
H, = (a)impo cos ¢

Now consider what happens when a discontinuity is introduced at z = 0;
use

48
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(a) continuous tangential Eand H
for dielectric boundaries

(b) continuous normal BandD

and
A - A - ) A - -
(c)nxE=0,n*B=0,nxH=1J; for perfectly conducting boundaries,

where Jg is the surface current density. Thus, at the discontinuity (see
Figure B-1),

(1) Ey(D) = E,(2) onz=0,0<x<b

(2)Ey(1)=0 onz=0,b<x<a

3) Hx(1) = H,(2) onz=0,0<x<b
4) H, D = H,(2) onz=0,0<x<b
(5) H(D =0 onz=0,b<x<a

(6) Hyx(l) = Jg onz=0,b<x<a (C-7)

(We assume that E(z). H? do not exist for x > b.) Conditions (1), (2), (3), and (6)
are tangential conditions; conditions (4) and (5) are normal conditions at the
discontinuity. It is important to rcalize that in the least-squares boundary
residual method (LSBRM), the tangential conditions are used to compute the
scattering paramecters and the statement is often made that the normal
conditions are “"equivalent" (Refercnce 14) to the tangential ones (the
implication being that the normal conditions are satisfied automatically).
While this may be true in some cases, in the present instance we see that there
is not enough information from (4) and (5) alone to solve the problem.
Attempts to mix appropriate tangential and normal conditions in the LSBRM
formulation have not bcen successful.

In some trcatments of the parallel-platc waveguide step, the boundary
condition

oH,
—_={ forz=0,b<x<a

Jdz (C-3)
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is used along with the usual tangential conditions (References 23 and 24). This
condition cannot be derived directly from (a), (b), or (c); however, indirectly,
we recall from Equation C-4 that if Ey = 0 on some boundary, then

0z ox (C-9)

also, implying that both terms must either be equal to each other or both must
be zero simultaneously. To use OJHx/dz= 0 without simultaneously using
dH;/9x = 0 is misleading.
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