AD-A209 563

gl tiLe CORY L

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC

ELECTEE“

snzoie i B

P st

THESIS s E

ELECTROMAGNETIC SCATTERING FROM
TWO DIMENSIONAL OBJECTS USING THE
FIELD FEEDBACK FORMULATION
by

Thaddeus B. Welch III

March 1989

Thesis Advisor: Michael A. Morgan

Approved for public release; distribution is

unlimited

Unclassified

security classification of this page

REPORT DOCUMENTATION PAGE

1a Report Security Classification Unclassified

1b Restrictive Markings

2a Security Classification Authority

3 Distribution Availabihty of Report

2b Declassification Downgrading Schedule

Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s)

5 Monitoring Organization Report Number(s)

6a Name of Performing Organization
Naval Postgraduate School

6b Office Symbol
(if applicable) 62

7a Name of Monitoring Organization
Naval Postgraduate School

6¢c Address (city, state, and ZIP code)
Monterey, CA 93943-5000

7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000

8a Name of Funding Sponsoring Organization | 8b Office Symbol

(if applicable)

9 Procurement Instrument Identification Number

8c Address (clty, state, and ZIP code) 10 Source of Funding Numbers

Program Element No [Project .\'ojTask No] Work Unit Accession No

11 Title (include security classification) ELECTROMAGNETIC SCATTERING FROM TWO DIMENSIONAL OBJECTS
USING THE FIELD FEEDBACK FORMULATION

12 Personal Author(s) Thaddeus B. Welch III

13a Type of Report 13b Time Covered 14 Date of Report {year, month, day} 15 Page Count

Engineer’s Thesis From To March 1989 150

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by biock number)
Field Group Subgroup | electromagnetics,scattering,numerical methods, FFF
y-

19°Xbstract (continue on reverse if necessary and identify by block number)

Intezgral equations (1E’s) are widely utilized to calculate induced currents on antennas and scatterers, but they are seriously
restricted in their ability to handle inhomogencous penetrable structures having multiwavelength dimensions. The utilization
of finite element (FE) techniques has not been as pervasive as the use of IE’s. The IE representation matrix is “full”, con-
taining few, if any, zero valued elements. The techniques for operating on these large-sized full matrices require undestrable
amounts of processor time. FE techniques produce sparse matrices due to the strictly local interactions between discrete
unknowns. The application of FE’s to unbounded problemngs, however, requires supplementary enforcement of the far-field
radiation conditions. The Field Feedback Formulation (#\) circumvents the full-matrix computational “bottleneck” by al-
lowing FE based numerical methods to be employed. Even though the resultant sparse matrices may be larger than the “full”
matrices discussed earlier, most elements have a value of zero. \Numerical procedures exist to optimize operations with these
sparse matrices. Calculational speeds can be orders of magnitude faster. Computer techniques to implement and validate this
new technique are the basis for this thesis. Excellent agreement] with classical results are demonstrated.

~

N
/ TR -

foi
’ P S AR

/ i o
| - O k A B ’/
WA AN

AR

20 Distribution Availability of Abstract
X unclassified unlimited 3 same as report

21 Abstract Security Classification

0 DTIC users Unclassified

22a Name of Responsible Individual
Michael A. Morgan

22b Telephone (include Area code)
(408) 646-2677

22¢ Office Symbol
62Mw

DD FORYM 1473,83 MAR

83 APR edition may be used until exhausted
All other editions are obsolete

security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

ELECTROMAGNETIC SCATTERING FROM TWO
DIMENSIONAL OBIJECTS USING THE
FIELD FEEDBACK FORMULATION

by

Thaddeus B. Welch 111
Lieutenant, United States Navy
B.E.E., The Georgia Institute of Technology, 1979

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and
ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Author: % / M =

Ahaddeus B. Welch 111

Approved by: //} w /) m]%

Michael A. Vlorgég Thesis Advisor
Ramaknshna Janaswamy, Second Reader

M—GG

John P. Powers, Chairman,

DeWcmcal and Computer Engineering

Gordon E. Schacher,
Dean of Science and Engineering

ABSTRACT

Integral equations (IE’s) are widely utilized to calculate induced currents on anten-
nas and scatterers, but they are seriously restricted in their ability to handle inhomoge-
neous penetrable structures having multiwavelength dimensions. The utilization of finite
element (FE) techniques has not been as pervasive as the use of IE’s. The IE represen-
tation matrix is “full”, containing few, if any, zero valued elements. The techniques for
operating on these large-sized full matrices require undesirable amounts of processor
time. FE techniques produce sparse matrices due to the strictly local interactions be-
tween discrete unknowns. The application of FE's to unbounded problems, however,
requires supplementary enforcement of the far-field radiation conditicns. The Ficld
Feedback Formulation (F 3) circumvents the full-matrix computational “bottleneck” by
allowing FE based numerical methods to be emploved. Even though the resultant sparse
matrices may be larger than the “full” matrices discussed earlier, most elements have a
value of zero. Numerical procedures exist to optimize operations with these sparse ma-
trices. Calculational speeds can be orders of magnitude faster. Computer techniques to
implement and validate this new technique are the basis for this thesis. Excellent
agreement with classical results are demonstrated.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justification

By
Distp}putton/iﬁ_

Availability Codgs
Avall and/or
Dist Special

Al

TABLE OF CONTENTS

L INTRODUCTION . e e e e i l
A. HISTORY . 1

B. FIELD FEEDBACK FORMULATION [

C. POTENTIAL BENEFITS e 2
I FORMULATION i i i i i e e e e e 3
A. INITIAL NOMENCLATURE i i i i 3

B. MAXWELL S EQUATIONS ... e 6

C. VARIATIONAL EQUIVALENCE TO THE DIFFERENTIAL EQUATION 8
D. FINITE ELEMENT BOUNDARY VALUE SOLUTION 10

E. EVALUATION OF THE F - MATRIX CONTRIBUTIONS 16

F. GREEN'S FUNCTION CONTOUR INTEGRAL 19
G. FAR-FIELD EVALUATION e 21
IHI. MESH GENERATION ... i i e i 24
A, INTRODUCTION . et ettt e 24

B, INPUT DATA o 24

C. MESH GENERATION PROGRAM i 26

I TO (Input,Output) ..ot i i e e e 26

R X) 1 27

3. Bound (Boundary) ... e 27

4. Normal ... e e e 28

5. Nodset (Node Set) ... e e e e 29

6. SOTter . it e e e 32

7. FINder i e e e e 33

D. OPTIMIZATIONOF THEMESH 33
IV. FINITE ELEMENT BOUNDARY VALUE PROGRAM 42
A, INTRODUCTION . it et e e 42

B. FINITE ELEMENT BOUNDARY VALUE PROGRAM 43

L oo . e 43

iv

2. Varint (Variational Integration) i, .. 43

3 Rl L e 44

4. BNDC (Boundary Condition}c.cueieeuneurnnennn.. 44

S, Loader ... e e e e 44

6. March e e e e 45

7. CSMINV (Complex Square Matrix Inversion) 45

8. WD .. 45

0. AVE i e e e e e e e e 45

C. VARINT VALIDATION .. ittt ettt i i e 45
D. FINITE ELEMENT BOUNDARY VALUE PROGRAM VALIDATION 48

E. INHOMOGENEITY .. i et i e aaeaes 53

F. FINITE ELEMENT CONCLUSIONS it iiin 55

V. FIELD FEEDBACK PROGRAM i 56
A. INTRODUCTION . i e e e e e e e 56
B. FIELD FEEDBACK PROGRAM i, 57

O 0 91 o1 57

2. TMAT (T Matrix) ..o e 57

3. CNSOLV o e e e 88

4. FFLD (Far Fields) it iie e 38

C. FIELD FEEDBACK VALIDATION i 38

1. Small Object Phenomenonii ittt iinnneenn. 58

2. Offset Distance Phenomenonc.iiiiiiniinnneenn. 59

VI VALIDATION e 60
A. INTRODUCTION .. ettt et e e e i e 60

B. HOMOGENEOUS CIRCULAR CYLINDRICAL SCATTERING 60

C. HOMOGEXNEOUS IRREGULAR OBJECTS, 61
D. AN INHOMOGENEOUSOBJECT 66
VI, CONCLUSIONS i e e et e e et 71
A. RESULTS ... et ettt e e 71

B. RECOMMENDATIONS AND EXTENSIONS 71
APPENDIX A. INPUT DATA FILE EXAMPLE 72

v

APPENDIX B. READPROGRAMt 74
APPENDIX C. MESH GENERATION/FINITE ELEMENT PROGRAM 77
APPENDIX D. VARINT CONVERGENCE PROGRAM 121
APPENDIX E. FIELD FEEDBACK PROGRAM 123

APPENDIX F. DIELECTRIC CYLINDER SCATTERING PROGRAM 135

APPENDIX G. SOFTWARESOURCES 137

LISTOF REFERENCES e e 138

INITIAL DISTRIBUTION LIST ... i e e 140
vi

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

LIST OF FIGURES

I ATypical Object ...ttt 3
2. Field Feedback Formulation 4
3. Rectangular Object i i i i 11
4. Rectangular Mesh 12
5. Pyramidal Basis Function, (a) top view, (b) perspective view 13
6. Mesh Element i, 16
7. Basis Functions Interpretation ot .. 18
8. Green's Function Integration i, 20
9. Typical ObJects . ..ottt e e e e 27
10. Bisection Segment and Row Arrangement 28
11. Unit Normal Caleulation i, 29
12. Element Row Numbering Scheme 30
13. Mesh Orientation Attributesottt 31
14. Three Row Cylinder it ii i 32
15. Element Numbering Scheme i i, 32
16. Two Possible Element Intersections, (a) extreme, (b) normal 33
17. Typical Row Structurettt it 34
18. Global Mesh Structure [34
19. Unknowns and Number of Rows Versus Mesh Resolution 36
20. Method 1 Mesh Structure Example 37
21. Method 2 Mesh Structure Example L 37
22. Method 3 Mesh Structure Example o iiiiiL L 38
23. Method 4 Mesh Structure Example 39
24. Method 5 Mesh Structure Exampleo L, 40
25. Method 6 Mesh Structure Example 40
26. Test Mesh Structuret 46
27. Solution Error for a Test Mesh Structure 47
28. Solution Error for a Test Mesh Structure (Expanded) 48
29. Perimeter Error ottt e e 49
30. Bisection Segment Error o i i 50
31. 0.5 Zcvlinder,e, = 1 + J0 .o 5]
vii

Figure 32.
Figure 33.
Figure 34.
Figure 33.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

Figure 43
Figure 44
Figure 45
Figure 46

054cvlinder,e, = 4+ JO0 .. i 52
O0.5/cvlinder, e, = d—Jd ... e 53
Cylindrical Mode Geometryttt e, 54
Typical Cylindrical Mode Boundary Value Problem Result 55
Contour AITaNZeMENT . v\ vttt vt vt vt ettt et e e st er e 56

Cylinder, TE and TM Case, kyja = 0.5,¢, = 256 62
Cvlinder, TE and TM Case, kya = 1.0,¢6, = 256 63
Cylinder, TE and TM Case, kja = 20,6, = 2.56 64
Cyvlinder, TE and TM Case, kyja = 0.5,¢, = 256 635
Dielectric Shell Mesh 66
Dielectric Shell, TE and TM Case,e, =4 +j0 67
. Dielectric RIng ... o e 68
. Partial Mesh with Inner Radius Curve 69
. Effective Geometry for the Dielectric Mesh 69
. Dielectric Ring, TE and TM Case,e, =4 +j0 70
viii

I. INTRODUCTION

A. HISTORY

The application of finite element techniques to evaluate the solution of differential
equations is well documented. The utilization of these techniques by the
electromagnetics community has not been as pervasive as the use of integral equations
(IE’s). IE’s are widely utilized to calculate induced currents on antennas and scatterers,
but they are seriously restricted in their ability to handle inhomogeneous penetrable
structures having multiwavelength dimensions. As the complexity and number of nodal
degrees of freedom grow, the size and dimension of the representative matrix must also
grow. This matrix is "full”, containing few, if any, zero-valued elements. The available
numerical techniques for operating on these large-sized full matrices require undesirable
amounts of processor time.

Differential equation (DE) based techniques, such as the finite element method.
produce sparse matrices due to the strictly local interactions between discrete unknowns
which result. The application of DE’s to unbounded problems, such as those of scat-
tering and radiation, require some form of supplementary enforcement of the proper
far-field conditions. These radiation boundary conditions are innately incorporated into
integral equations.

B. FIELD FEEDBACK FORMULATION

The Field Feedback Formulation (F 3) circumvents the full-matrix “bottleneck” in the
computational process by allowing DE based numerical methods to be emploved. Even
though the resultant sparse matrices may be larger than the “full” matrices discussed
earlier, most elements have a value of zero. Numerical procedures exist to optimize
operations with these sparse matrices. Calculational speeds can be orders of magnitude
faster than with full matrices [Ref. 1]. Although the F 3e:mploys sparse matrices to rep-
resent the fields in the materials being considered, it does require augmentation to en-
force the radiation condition at infinity on the scattered fields. This comes in the form
of a feedback matrix composed of surface integration generated elements. A concept
evaluation, for a special axisymmetric case, was already accomplished, as detailed in
[Ref. 2] and [Ref. 3]. Computer techniques to implement and validate this new technique

are the basis for this thesis.

C. POTENTIAL BENEFITS

This thesis will lead to an increased understanding of the advantages and disadvan-
tages of this novel computational procedure for handling geometrically complex material
scatterers. This method may ultimately allow computer-aided design of important
electroma- .etic structures such as low-observable aircraft, high efficiency dielectric lens
antennas, and other electromagnetic scattering occurrences due to atmospheric anoma-
lies. Structural details and material inhomogeneities, as well as physical dimensions (in
multiple wavelengths), can be accommodated using the Field Feedback Formulation.
These capabilities far surpass those which are possible with contemporary integral
equation techniques for the case of inhomogeneous penetrable scatterers and antennas.

II. FORMULATION

A. INITIAL NOMENCLATURE

Assume there is a three dimensional object that is infinite in one direction. Such an
object, in cross section could look like Figure 1. This object only varies in two dimen-
sions, and therefore, is actually a two dimensional (2-D) object.

Y

7

ux, 3)

cf(x' .y)

oS
Figure 1. A Typical Object

The wavenumber £, is defined as

_2n _ 2%
kO"" }.0" c !

where /, is the free space wavelength associated with an electromagnetic wave of fre-

quency f, and c is the speed of light. The X and Y Cartesian coordinates are

wavenumber normalized, such that X = k,x and Y = k. This coordinate normalization
will be used throughout this development. A similar technique could also be developed
in the polar coordinate system. The magnetic field will also be normalized such that
I = —jy,, where y,= *il—:- = 120n = 377Q, is the impedance of free space and
S is the usual magnetic field in units of A/m. Thus the normalized I{ has the same V/m

units as E. Potentials may be defined as,

Efxy) =¥ (X)) 2.1
for the transverse magnetic (TM) case, with E,, E, and H,=0, and

Hy(xy) = (X, Y) (2.2)

for the transverse electric (TE) case, with /1,, H, and E,=0.

Our objective is to calculate the scattered fields for an arbitrary (2-D) penetrable
object using the Field Feedback Formulation (F 3). As shown in Figure 2, a familiar
closed loop system illustrates the relationship between the incident, scattered, total and
far fields.

! 2 v 3 « | Far-Field Green's 5
/) :
y Finite Llement Function Intcgral
4 T
ya
Green's K
Function Integral

Figure 2. Field Feedback Formulation

At point 1, the incident field drives the total system. The incident field at 1, combined
with the scattered field at 4, forms the total field at 2. This total field forms the
boundary conditions that drive the finite element program at 2. At point 2, initially, the
incident field drives the U operator. U represents the feed forward operator in the F ’
This operator uses a finite element technique to solve the boundary value problem. At
=0int 3, the boundary conditions are solved for the object perimeter potentials and the

normal derivative of these potentials. T represents the field feedback operator that takes
the perimeter potentials and associated derivatives and provides the scattered fields at
point 4, the offset boundary. The fields at point 1 and 4 are added (unlike the familiar
feedback or control system where negative feedback is employed). At point 2, a com-
bined incident and scattered field exists. These fields are the combined boundary con-
ditions for the finite element boundary value program. These combined fields (total
fields) are then applied to the U operator to calculate the perimeter fields and the asso-
ciated derivatives on the objects perimeter. This looping may be repeated until a steady
state condition, at point 3, is reached. The existence of a steady state condition assumes
stability. Stability for physical systems should not be a problem. However, when
mathematically modeled, instabilities may result. The error magnification or condition
number of the system must also be seriously considered if this iterative looping process

is to be used. The alternative approach is to form an equivalent system, where:
equivalent operator = U« [I— T+ U]},
with
I = ldentity Matrix
and
T+ U= Combined Effects of the T and U operators .
Either approach is viable since,
Viorat = Vinctdent + T+ U * Yinctgent + (T o UF s Vinctgene + - -+ =1 = T o U Viniens
This becomes more obvious when ... is factored from the equality leaving,
[+ T U+ (TP +. ..

Placing this in closed form,

o0

Z(T- 0 =g == T 0,

n=0

Finding the equivalent operator will require a matrix inversion and for very large prob-
lems this may lead to excessive computation times. The matrix inversion technique will
be investigated. The fields may then be extended to any point in space using a far field
Green's function surface contour integral. This far field pattern is available at point 5.

The incident field is usually produced by a plane wave generator. This provides the
boundary conditions on the offset contour. This contour is called "offset” since it is
approximately the same “shape” as the objects perimeter but is slightly larger. The dis-
tance between the perimeter and this contour is called the offset distance and will be
discussed in Chapter I11. The boundary conditions may be any desired field or wave that
satisfies Maxwell's equations. These waves may arrive from any direction and be of any
magnitude. The boundary conditions may also be a composite of any number of waves
since superposition does apply to these systems. A user provided subroutine is necessary
if conditions other than a single plane wave, cylindrical mode (of arbitrary mode num-
ber) or individual input boundary condition is desired.

B. MAXWELL’S EQUATIONS
Maxwell's equations can be written using our previous normalizations as,

VXE=y,

|

(2.3)
and
Vx H =¢,E. (2.4)

[Ref. 4] Let D, =-§’—x, with similar definitions for D, and D,. Equations 2.3 and 2.4
can be further expanded into the D,, D, and D, components such that,

u,H, = DyE, (2.5)

uHy = —DyE, (2.6)

uH, = DyE, — DyE; (2.7)

&,E, = DyH, (2.8)

¢,E, = ~DyH, (2.9)

¢,E, = DyH, —DyH, (2.10)
6

For the TM case, with propagation in the z direction,

DE
Hy= =
and
"D,X'Ez
Hy= TR

Note that the H, field = 0. These two equations can be combined to form,
H=-Lvy x?
M, TP)
Similarly for the TE case, with propagation in the z direction,
E=1 Vi, x 2
= ¢, b) Z.

Substituting equations 2.5 and 2.6 into equation 2.10 vields,

~DyFE,
8,EZ=DX< X2 >~

Ky
Substituting equation 2.1 into equation 2.13 yields,

om0 220} 0, 224 <o
Equation 2.14 can be further simplified to,

ve[2] +aw =o0.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Similarly, equations 2.2, 2.8, 2.9 may be substituted into equation 2.7. This vields,

v.[—}r—vwz]m,wﬁo.

(2.16)

Equations 2.15 and 2.16 are TM and TE duals. These two differential equations describe

the potentials inside the object of interest. Defining —‘1—- =o and ¢, = § for the TM case

and —al-=oz and u,=f for the TE case and substituting these new definitions into

equations 2.15 and 2.16 vields one differential equation,
VelaVy]+ By =0. (2.17)

C. VARIATIONAL EQUIVALENCE TO THE DIFFERENTIAL EQUATION
The Euler-Lagrange variational formulation is based on the stationarity of a func-

tional, of the function ¥ and its first derivatives. [Ref. 4]

I= J I FX, Y, ¢, Vy)dX dY (2.18)

inside S

It can be shown that the first variation of the functional is zero, 6/=0 , if the

Lagrangian, F, satisfies the Euler - Lagrange equation:

8 eF 8 oF 8F .
2X (D0)* 37 (3Dy¥))’ sy =0 (2.19)

The problem thus becomes to find the F, which when substituted into equation 2.19.

vields the original differential equation. The Lagrangian,
F=al(Dyh)' + (D)} - BV
can be simplified to,
F=oVy «Vy§ — By, (2.20)
When equation 2.20 is substituted into equation 2.19,

¢F

Dy - 2Pt
ooy = 10w
—fdf/- =26y
8

Therefore,
£ 9 =
e aDyy) + 37 (ReDy¥) + 28y =0
or,

Dx[an‘lJ] + Dy[ﬂDy‘l/] + ﬁ\{l =0
which simplifies to,
VelaVy]+ By =0. (2.21)

Therefore, the general functional has been found since equation 2.21 and equation 2.17
are identical. Substituting the « and f definitions into equation 2.20 vields,

Fy =2 Vi« Vi, — e b (2.22)
and
Fy ==V« Vi — 3 (2.23)

Equations 2.22 and 2.23 are integrated over the interior to S with known boundary
conditions for either ¥, or ¥, on S. To physically interpret the variational formulation,
it is noted that,

Vi, = #r{fo'— HYX,}

and
Vi, = e {ExY — EyX}.
Therefore,
I =jju,i_1-17—e,fodedY
3
and

Substituting Maxwell's equations into /; gives,

11=.[J(v x EYe H—(V x H)+EdXdY

S

1,=J.Jv.(1? x H)dxdy

Note that E x H is the complex oscillatory Poynting vector. [t is different from the
usual Poynting vector of E x H'. Thus, both functionals, I, and I, are proportional to
the complex phasors for oscillatory power. The oscillatory power is the phasor repres-
enting the excess of instantaneous radiated power minus the average radiated power.

D. FINITE ELEMENT BOUNDARY VALUE SOLUTION

With the discussion of the variational mathematics completed, a simple rectangular
boundary value problem will be discussed in detail. The rectangular geometry allows for
an easier formulation but in no way limits the solution from being extended to more
complicated object geometries. Figure 3 on page 11 shows the region of concern.

10

“r(xv J‘)} in$S
elx,)

Boundary
- 20

X

0 qQ

Figure 3. Rectangular Object

Consider spanning the rectangular region by a triangular mesh, as shown in
Figure 4 on page 12. Both a and § may be functions of position but may not vary
within an individual triangular element. Given a fine enough mesh structure, a smooth
transition in material properties may be approximated. For notational simplicity this
positional dependance will not be carried forward. The variational approach will yield
the solution to the boundary value problem by finding the ¥(x, y) which gives the sta-
tionary value of,

a rb
1=J ‘f (aVy « V¥ — By?) dx dy
0 %o

which is constrained on the boundary by the previously specified boundary conditions.
[Ref. 5]

11

N+1

J=0
i=0 1 M M+l
Figure 4. Rectangular Mesh

The values of ¢ at the interior nodes become the discretized unknowns:
Yy=¥(X,Y) i=1..Mandj=1...N
where
Xj=ieAX
and
Y)=j.AY

and AY = —2

_ . a —92
for the uniform mesh structure with AX = T+ 1) (N+1)

. Approximating,
M+1 N1
Ylx,p) = Z Z'/’U uy(x, y)
=0 j=0
which includes the known boundary nodal values ¥, , and ¥, , forj = 0 and N + 1,

and ¥, and ¥, 4., fori = 0and M + |, linear pyramidal basis functions, u,(x, y), which

12

have unit value at the (i,j) node and zero value at all surrounding nodes. Figure 5(a) is
a top view of the pyramidal basis function, while Figure 5(b) is a perspective view.
1.0

N7

a. b.
Figure 5. Pyramidal Basis Function, (a) top view, (b) perspective view

The functional 1 will thus be a discrete function of each of the nodal values of ¥,
I= I(‘/’o,w 'ﬁo,)RR '1’1,1’ ooy '/’M+1. ~+1)-
The approximate discrete solution will be found by the system,

oI
OV¥m, n

=0, for m=1...Mandn=1...N.

Now,

a b
ol vy ay _
6¢'m,n =2f J(a awm,n .vw—ﬂ ad’m.n w)dxdy—o
0 %

where,
M+1 N+
VV”(-"',}’) = Z Z'//.yvug(x.y)-
i=0 j=0
The gradient of the basis function is,
vy
Vu, (x,y)=—=
m, n(.}’) me’n

and the basis function is,

oy

Uy, (x,y)=—= .
m, ey O'I’m,n

Therefore, the system of equations to solve becomes,

a b
J J. (oVity, o Vi = Buty, W) dxdy =0, form=1...Mandn=1...N.
0 Yo
Substituting for Vyandy in terms of the nodal values of ¢ for
m=1...Mandn=1...\N gives,
M+1 N41 < rb
Z leuf f (U.Vum‘n [VU[J -_— ﬁum’ ,,u,-‘j) dx dy = 0
0 Yo

i=] j=0

where,

a (b
[[@it Pt~ Bttt i iy = Fttm, ..
0 %0

Regrouping this to put the known nodal values on the right hand side gives for
m=1...Mandn=1... N (interior nodes),

M N
DD WFLm iD= = D) wyF [lm, m) (i)

i=1 j=1 Boundary
Nodes Only
Jor (i)

14

By renumbering the nodes using a single index for the unknown nodal values,
k=XNi~1)+jand /= N(m— 1)+ n and,

MoV
DU ke == D T K e
k=) ¥

The functional F(/, k) =0 if nodes !/ and & are not both associated with at least one
common triangular element. Therefore, Vu,« Vi, and wu, will be zero except in triangles
where / and & both appear as nodes. For the example mesh structure of Figure 3 on
page 11, this produces a banded matrix, F. This sparse matrix can be easily displayed
by first defining column vectors of the unknown nodal values in the mesh

'\?1 = [*//1, 1 '1’1.21 sery 'ﬁz, A']T-

The F - matrix elements F [(m, n),(i, /)hre zero unless the (m,n) node shares at least one
element with the (i,)) node. Thus, the node values in E, will be coupled only to
]17,--,, J,_l and any associated boundary nodes. This is written as,

[41¥ ., + (BIY, + (¥, = - [P i]WB,

where 4, B and C,are N’ x N complex arrays and P,is a N x N, array where .\ is the
number of boundary nodes associated with the i-th column. This appears as,

r ar 9 r o .
B G ¥ Pyl ¥
4, B G ¥, Py || Y
4, B, G 0 ¥, P || s,
0 Aot Byt Cumr || Y- Py || ¥y,
Av By || ¥um J Py || Yoy

L JL L JL J

If we denote ¥, as the initial boundary values and ¥ ., as the final boundarv values
then n_/;,i becomes only the boundary conditions on the top and bottom at j# 0 and

15

N + 1. Note that the above system is tri-block in nature and has a large number of zero
valued elements. The zero valued elements were omitted for clarity. Each element is
actually a matrix and therefore it is evident how sparse this system is. Each of the
A, B, C, and P, matrices are equally sparse, however, a global symmetry does not ap-
pear.

E. EVALUATION OF THE F - MATRIX CONTRIBUTIONS
Given an arbitrary element as shown in Figure 6, the potential, ¥, can be linearly
approximated by [Ref. §],

¥
Vi, ») =00, 1) [T]e| ¥,
V3
3
= Z lllk“k(x, y)r
k=1
1
I‘,
3 £,
2

Figure 6. Mesh Element

where ¥, = Y(x,, y.) is the nodal value at the k-th node, [T] =3 x 3 Transform Array

and

16

u,(x,y) = Linear basis functions for the k-th node

T g
=y)| T,
T3

=T+ Dwt e

Note that,

1 ,fork=m}

X) = {0 fork = m

It can be shown that,

02 —ys) (3 —31) 01 —J2)
(Tl==5]| (x—x) (x; = x3) (x; —xy)

(xyy3 — x3¥) (xgyy —x ¥ (g — -"7)'1)

where | 4| = triangle area, and

x 1
2A=det xz sz l
x3 ¥y 1

24 = (xpp; + x3v) + x137) — (X3, + X33 + x)

Furthermore, the linear basis functions, u,(x, y), can be interpreted as relative areas of

the triangle shown in Figure 7 on page 18.

17

.

Figure 7. Basis Functions Interpretation

A=A+ A+ 4;
is constant as (x, y) varies and,

Alx, 3
uk(x.y)=—k(;l

Within a given triangular element, the evaluation fork = 1, 2,3 and! = 1, 2, 3 in the

element is of interest and,

J J (Vi o Vuy, — fouuy) dx dy.
inside
triangle
Qq

The assumption is made that « and § will be approximated as constants within the tri-
angle. These material constants can, however, vary from element to element. Taking

the gradient terms first,
V=T, %+ T,)

VU[OVUk = (Tl,k] T]’[+ TZ,k' TZ,I)'

18

Therefore,

J. J ogVuy o Vuydxdy

triangle

i = a(T) k11,1 + T3,k T2,)1 4,1,

where 4, is the area of the ¢* element. Next it can be derived that,

La, forkx
wu,dxdy = 12
A U §
6]

triangle

More generally, with each y raised to an integer power, n,

nylnylng!
‘[J‘u?‘u;’u;’dxdy =214l (n, + ny + ny + 2)!

triangle

The final result is,

F (I, k) = J J (Vo Vuy — Buguy)dxdy
triangle
q

AT T4 ToaTo) 5) K

= |A|{°‘(T12,k+ Tg,k) —'é"ﬁ}, k=1

F. GREEN’S FUNCTION CONTOUR INTEGRAL
The scattered fields, ¥, from an arbitrary object in a vacuum satisfying Helmholtz's
equation (see Figure 8 on page 20),

Vi + K2y =0,

are [Ref. 6],

19

Vi(F) = f{o‘(r 17) S5~ y(#) L4 }dca

contour

Figure 8. Green’s Function Integration

where the Green's function is,

and
a A prevanrat
—g. =n1+Vy on the contour
and
ca A I\jko (2) = =
.;1=norTI{l (kolr-r |)

20

The Hankel functions of the second kind of order zero and one, Ay and H® , will
present a problem for the numeric integration discussed in Chapter V. The imaginary
portion of these functions rapidly approaches negative infinity as the argument ap-
proaches zero. The o is obtained by a finite difference method using the field
boundary conditions on surface B (boundary conditions) and the calculated field condi-
tions on surface P (object perimeter). This results in,

0 \/l '/’boundary - ll/perimerer
— -
én offset distance

It will be shown that to maximize the accuracy of the Green's function the offset
distance should be made as large as possible. This, however, causes the -%1- to be in-
accurate. Thus, an optimal condition must be found that maximizes the accuracy of the
entire numeric integration. Such a condition does not maximize the accuracy of any one
of the contributing parts to the Green's function integrand.

G. FAR-FIELD EVALUATION
When the Green'’s function integral discussed above is used for far field calculations
several simplifying relationships develop. These simplifications require a less demanding
numerical integration. To be in the far field region three conditions must exist,
2D?

|\rl >D, Ifl>/i, and |7|>/. ,
-0

where /, is the free space wavelength and D is the maximum dimension of the object.
[Ref. 7] As x approaches infinity,

ETH
H(x) - \/ e

and

This requires,

and

21

én
In the far field \/—115- - \/'; and fe R~ #ie 5. Thus,

eTHR g, o
Therefore,
tony L Y gy Jkgr cosé
G(rlr)-- 2 __nkor ALY
and

LG (1o _k_o. Y —fkgre A Ay _Jkg' cos 0
- (Fl7) = 3\ ko e (0 o 1) .

>}

With these new definitions substituted into the original Green's function integral

equation,

N A - ,
VscateredT) = Srkyr e Jk"'J'[J—g’;-.;. kort o PY(7)jle/kor' cos 4.1
C

Note that this equation is partitioned into a distance dependent term and a theta depend

term. The theta dependent term may be defined as

I= J [j%‘f:—+ koht .NJ(F')]e”‘v’ 64
C

The two dimensional bistatic radar cross section (RCS) per unit length of the cylindrical

structure may now be defined as,

5 512

rso0 Pinc r—+co I l[li l 2

L £
o_rl-lglo 2nr Szhr 4ky '’

- where the wavenumber, k0=-27"- and the incident field is assumed to be of unit
-0

magnitude, [¢/[= 1.0.

23

1. MESH GENERATION

A. INTRODUCTION

A display or plot of the computer generated mesh structure is not required for the
problem solution, however, it provides an immediate visual confirmation that the in-
tended problem geometry has been entered correctly into the computer. A large amount
of initialization data is required for even the most rudimentary problem. For this reason,
the input data is provided to the mesh generation program via a data file. Modifications
are possible at a later time with minimum effort.

B. INPUT DATA

The input data file is called INPUT.DAT and contains 25 input fields. Of these
fields, 14 relate directly to the generation or display of the mesh structure. Only the
object surface coordinates require adherence to a specific format. All other data need
only be of the correct type (i.e., character, integer or real). A brief description of each
field is provided below.

o Field I is a label of no more than 12 characters. This label is for the plot and input
data file.

¢ Field 2 is a character flag that specifies the input coordinate system. If set to “R”
or “r", the rectangular svstem is used. If set to "P” or “p”, the polar svstem is used.
If a "P*,"p” ,”"R” or "r” is not detected, an error is returned to the display.

¢ Field 3 is a character flag that if set to “I” or “i” will cause several intermediate
values to be stored to disk during the Finite Element Boundary Value (FEBV)
program execution. This option was used during the debug process.

¢ Field 4 is a character flag that if set to "D” or “d” will create a DISSPLA
FORTRAN program capable of replicating the input object, in wavenumber nor-
malized coordinates, on mainframe computers having a DISSPLA graphics pack-
age. DISSPLA is a subroutine-based language. The generated program. called
DISSPLA.FOR, is a compilation of four subroutines calis per element. This file
can get very large for dense mesh structures.

e Field 5 is a character flag that if set to "U” or “u” will cause a uniform material to
be assumed. In the uniform case, no material interface exists. This option was
only used to verify the Finite Element solution accuracy.

¢ Field 6 is a character flag that if set to “M” or "m” will cause only the mesh to be
generated. This is very useful when first starting a problem and the optimal mesh
structure has not been determined.

¢ Field 7 is a real number specifving the desired mesh resolution in wavelengths. The
mesh resolution determines the dimension of the mesh elements.

24

Field 8 is a real number specifving the distance, in wavelengths, between the object
perimeter and the offset boundary contour.

Field 9 is a real number that specifies a multiplicative scaling factor for the nu-
merical integration stepping function discussed in Chapter V.

Field 10 is a bias term that can be used to shift the numerical integration stepping
function. This term is used for distances less than 1.0.

Field 11 is a bias term that can be used to shift the numerical integration stepping
function. This term is used for distances greater than 1.0.

Field 12 is a real number specifying the maximum distance bevond which no further
contribution to the Green’'s Function Integral is made. If this feature is not de-
sired, this term should be made larger than the objects maximum dimension plus
twice the offset distance.

Field 13 is an integer specifying the number of input data points.

Field 14 is an integer specifving the angular resolution, in degrees, desired for the
final radar cross section calculation.

Field 15 is an integer specifying the mesh generation technique.

Field 16 is an integer specifving the perimeter node from which the bisection seg-
ment originates. This node is called the “start node”.

Field 17 is an integer specifving the perimeter node on which the bisection segment
terminates. This node is called the “"stop node”.

Field 18 is a pair of real numbers (on two lines) specifving the x and y coordinates
by which the object will be displaced.

Field 19 is a real number specifying, in wavelengths, the desired distance between
the origin and the first input data point. Fields 18 and 19 when used together, al-
low an object to be placed at any position and scaled to any size.

Field 20 is a pair of real numbers (on two lines) specifving the real and imaginary
parts of—i— for the TM case or aL for the TE case.

Field 21 is a pair of real numbers (on two lines) specifying the real and imaginary
parts of ¢, for the TM case or y, for the TE case.

Field 22 is a character flag that if set to “P” or "p” enables a plane wave generator.
The plane wave is propagating down the y axis, and generates an Ee* condition
on the offset boundary contour. If the flag is set to "C” or "¢”, a cylindrical mode
generator is enabled. This generates an E; cos n¢ condition on the offset boundary
contour. Ifa “P”, "p”, "C” or "¢” is not detected, then manually input boundary
conditions must follow, and fields 23 and 24 are not used.

Field 23 is a real number specifving the wave amplitude.
Field 24a is a real number specifving the wave frequency (in Hz).
Field 24b (only for cylindrical case) is an integer specifving the mode number, n.

Field 235 is the object perimeter data, in either polar or rectangular form.

25

An example of an input data file for a homogeneous circular cylinder is provided in
Appendix A. The majority of the input data is echoed to the computer display and a
system “pause” is initiated to allow for user inspection. The program may be aborted
or continued at this time. The initial object dimensionalization has already occurred,
and the number of unknowns and the maximum unknown width is displayed. These
factors give an excellent indication of the expected run time for the FEBV routines. For
example, a problem with 512 unknowns and a maximum unknown width of 31 took 806
seconds to execute while a run with 8 unknowns and a maximum unknown width of 3
took only 10 seconds to execute. These times are for a Intel 80386 based personal
computer with an Intel 80287 co-processor chip calculating the fields for a circular cyl-
inder. The FEBV routines are the next code block to execute after the pause is cleared.

C. MESH GENERATION PROGRAM

The mesh generation program consists of seven subroutines. These subroutines are
an integral part of the finite element program and, therefore, were not separated. These
routines are discussed below.

I. 10 (Input/Output)

This subroutine reads the information contained in the INPUT.DAT file dis-
cussed earlier. A two dimensional object can be described in any number of ways,
however, for simplicity, the polar and rectangular coordinate systems are used. In either
case, the initial assumption is that all data points are referenced to a local origin. This
local origin can be offset by anv desired amount using field 18. This offset is independ-
ent of the entered data points or any size scaling provided by field 19. A plot label file,
named TEXT.LBL, is created and the initial objcct perimeter (coded for a display in
blue) is written to the output file, PLT.DAT. These data points describe the perimeter
of the object. This will later prove helpful in determining the conformity of the gener-
ated mesh to the input perimeter. All subsequent screen writes are coded for a display
in green. Two example objects are shown in Figure 9 on page 27. These objects will
be used throughout this chapter. The circular cylinder was generated by a separate
computer program. The “horseshoe” shaped object was manually input. Graph paper
was used to determine the X and v coordinates of the 28 unequally spaced perimeter
points.

26

OBJECT PERIMETERS

Figure 9. Typical Objects

2. Rotate

This subroutine reorders the input data points to allow for any desired bisection
segment start and;or stop node. This subroutine is only used if manual selection of the
bisection segment start and/or stop nodes is requested.

3. Bound (Boundary)

This subroutine sub-divides the object perimeter based on the mesh resolution
specified in Field 7. The mesh resolution is the approximate length, specified in wave-
lengths, that the user desires the perimeter to be divided into. The division of the per-
imeter is based on linear interpolation between input data points. A new perimeter node
is placed at each of the sub-division points. Additional input data points are necessary
in areas of rapid change to allow for a correct object perimeter representation. The ob-
ject bisection extends from the “start node” to the "stop node”. These nodes are user
specilied in Fields 16 and 17 and, in general, divide the object in half. The bisection
should be arranged such that the object width, perpendicular to the bisection segment,
is minimized. Thus, a long slender object should be oriented for a major axis bisection.
Whether the major axis is oriented vertically or horizontally is of no importance. This
is demonstrated in Figure 10 on page 28 (right side).

27

3’-_‘ ROW —>

OBJECT PERIMETER

Figure 10. Bisection Segment and Row Arrangement

For more complex objects, the bisection is not a straight line, but rather a series
of line segments that approximate a curve. The number of perimncter nodes on the left
side of the bisection segment must equal the number of perimeter nodes on the right side
of the bisection segment. The bisection segment also contains this same number of
nodes. Thus, the program must adjust the requested mesh resolution to ensure proper
nodal spacing. This allows for a piecewise continuous segment to cross the object.

4. Normal

This subroutine calculates the unit normals to the object perimeter at each
newly established perimeter node. The normal is a perpendicular constructed to the
chord connecting the two nodes adjacent to the node for which the calculation is oc-
curring. This perpendicular originates at the current node and is of unit length. Sce
Figure 1] on page 29.

28

«—UNIT NORMAL
«— CURRENT NODE

-

— ADJACENT NODES

Figure 11. Unit Normal Calculation

5. Nodset (Node Set)

This subroutine uses a two sweep technique to compute the number of nodes
on each nodal row. The rows are labeled 1 = 1, 2, 3, ..., I maximum (IMX) consec-
utively from the top of the object to the bottom. Segments normal to the perimeter
surface, calculated in NORMAL, connect the perimeter nodes to the offset boundary
contour. Two such completed normal segments, one on each end, complete a nodal row.
When all rows are complete, a second contour has been established that approximates
the object’s perimeter. This contour is displaced from the perimeter by the distance
specified in Field 8. This contour provides the boundary conditions for the FEBV rou-
tines. The optimal selection of this offset distance will be a topic of Chapter IV.

With the object divided into rows, each row can be further divided into equally
spaced nodes. Based on the requested resolution and whether the objects dimensions
are expanding or contracting, the nodal spacing is adjusted to keep the elements
approximately the same size. Two adjacent nodal rows form an elemental row. These
rows are given the same label, I = 1, 2, 3, ..., IMX as the upper nodal row. The nodes
on an elemental row are numbered consecutively, starting with the left-most node. This

node is always an offset boundary contour node. When the upper nodal row is

29

numbered, the process is continued for the lower nodal row. An example of this element
row numbering scheme is shown in Figure 12 on page 30.

Figure 12. Element Row Numbering Scheme

A mesh orientation attribute is set for the left and right portion of each element row.
This attribute determines if the object has a clockwise or counter-clockwise orientation.
See Figure 13 on page 31. Switching between the four available mesh orientations al-
lows for a mesh that more accurately conforms to the input object perimeter without
resulting in a disproportionate mesh structure.

30

LEFT SIDE - | RIGHT SIDE

1 MOR = 0O l MOR = 0 MOR =1

——

MOR

Figure 13. Mesh Orientation Attributes

There is an additional requirement that the number of nodes on a given left or right half
row must be only one more, equal to, or one less than the number of nodes on the ad-
jacent left or right half row. Thus, a two sweep process is utilized. This process ensures
that this requirement is met and that the first and last row have only two nodes. The
second and second from last row (if present) must have three nodes. It is possible, as
shown in Figure 14 on page 32, to generate a mesh that has only three rows. This object
was input as a circular cylinder. It is evident that, due to a small number of elements,
the generated mesh more accurately resembles a square. This will be a problem for cal-
culating the scattered fields, however, the internal fields can be accurately approximatcd.
In this special case, the second and second from last rows are the same. It will be shown,
in Chapter V, that since this mesh does not closely approximate the input objects per-
imeter the resulting Green’s function contour integrals and subsequent far field calcu-
lations have reduced accuracy.

The nodes of the nodal rows form the vertices of triangular elements. An ele-
ment, as defined in Chapter 11, has three vertices, each assigned a unique number (1, 2
or 3). The ordering of these vertices depends on the mesh orientation attribute. Each
element also has an associated relative dielectric constant (g,) and relative permeability

(1)

k)|

s
N\

ROW 3

ROW 2

Figure 14, Three Row Cylinder

6. Sorter

This subroutine generates a complete mesh row and all the element/node inter-
connection relationships. With the nodal structure in place, individual nodes can be
assigned to individual elements within the global mesh structure. Each element in a
given row is assigned a unique local element number starting with the left most element
(relative to the bisection segment). See Figure 15.

Figure 15. Element Numbering Scheme

It is vital that a method of determining which nodes form the vertices of a given element
and which elements have a vertex attached to a given local node. The nodes that are
not part of the offset contour have unknown field values. A single node can be con-
nected to as many as six elements, only four of which can be in the current row. This
relationship is shown in Figure 16(a). This hexagonal arrangement of six elements is
very common within the mesh. Along the bisection segment or where the mesh orien-
tation attribute changes from one row to another, this pattern is disrupted. ‘An example
of an extreme case (the center of a circular cylinder) is shown in Figure 16(b). After all
elements and nodes in an elemental row are assigned, an ordered sweep is conducted of
that elemental row to determine which nodes are connected to which elements, which
elements are connected to which nodes, and how many elements a single node is con-
nected too. A complete row has now been generated. See Figure [7 on page 34.

4 ELEMENTS 3 ELEMENTS
ATTACHED TO ATTACHED TO
THIS NODE THIS NODE

a. b.

Figure 16. Two Possible Element Intersections, (a) extreme, (b) normal

The information necessary to generate the rows and elements will be used again, in
Chapter 1V, to solve the (FEBV) problem.
7. Finder

This subroutine determines the x, y coordinates of each node. This data is also
necessary to solve the FEBV program of Chapter 1V and provides the plotting
coordinates for the PLT.DAT file. This process is repeated for all rows. Thus, the entire
object is generated as the compilation of elemental rows made of triangles. See
Figure 18 on page 34.

3

BISECTION SEGMENT

Daagd

OBJECT PERIMETER
OFFSET CONTOUR

Figure 17. Typical Row Structure

\'\I'V/\/
LY
P

Figure 18. Global Mesh Structure

A file is now available for display using a commercially available program called
"CURVE-DIGITIZER". Any program that can accept X, y coordinate data will
accomplish the same display process. Minor changes to the MESH program provided
in Appendix B may be necessary since several "CURVE-DIGITIZER" plotting codes

are embedded in the file generation code.

4

D. OPTIMIZATION OF THE MESH

For most objects, it is recommended that the MESH program be executed in the
mesh generation only mode (Field 6 set to “M” or “m”) prior to the execution of the total
finite element program. This will ensure that the desired mesh structure is obtained prior
to solving for the unknown field values. The MESH (generation only) program requires
only a few seconds for even the most dense mesh structures. It is readily seen that as
the mesh resolution increases, the number of rows increases linearly while the number
of unknowns increases geometrically. Therefore, the mesh calculation times may not
change appreciably when the mesh is made more dense, however, the calculation time
for the finite element program will rise geometrically. For this and other reasons, the
mesh density should be kept low. This will lead to a smaller number of unknowns and
result in faster program execution times. Figure 19 on page 36 plots this relationship
for a circular cylinder. The solution for these unknown field values will be a topic of
Chapter 1V.

Six different mesh generation methods are available to create mesh structures. Some
of these methods were evolutionary in nature and provide limited practical benefit.
Methods 1 and 6 are by far the most useful. Each method is discussed below.

Method I constructs the bisection segment by connecting the first input data point
to the midpoint of the perimeter. This segment is divided into equal length segments
each separated by a node. This method is useful for very simple objects such as the
circular cylinder shown in Figure 20 on page 37. This circular cylinder will be used in
the explanations of all mesh generation methods. These illustrations are not intended
to optimize the mesh structure but rather allow for easy comparison of the 6 basic
methods.

Method 2 constructs the bisection segment as described in method 1. The bisection
segment nodes are, however, ordered differently. This segment is divided by connecting
line segments from corresponding nodes on the left and right side perimeter. Where
these line segments intersect the bisection segment, a node is placed. This leads to un-
equally spaced bisection segments. This can be seen in Figure 21 on page 37.

35

0 - Maximum Unknown Width
<+ - Number of Unknowns

400 -

300

200 -

100 -

Max Unknown Width/Number of Unknewns

0- LINEL BN Al B AN B B BN B NN MM Bunh SNDE BNND BEND NN MNSN BEDN ENER mugN
2 3 485 67 8 9 1011121314151617 1819 2021222324 2% 2827 2829 30

Bissclion Noede Number

Figure 19. Unknowns and Number of Rows Versus Mesh Resolution

Method 3 modifies method 1 by allowing the user to specify, using Field 17, the stop
node for the bisection segment. This method can be useful to rapidly adjust around
slightly irregular objects. This can be seen in Figure 22 on page 38.

Method 4 combines methods 2 and 3 by using the connected line segment technique
of method 2 to determine the node positions on the bisection segment, the stop node of
which is specified as in method 3. This can be seen in Figure 23 on page 39.

Method 5 improves upon method 4 by repositioning the unequally spaced bisection
nodes. Linearly interpolated positions for the nodes leads to equal spacing. This
method reduces the node "bunching” that frequently occurs with methods 3 and 4. This
can be seen in Figure 24 on page 40.

35

Figure 20. Method 1 Mesh Structure Example

Figure 21. Method 2 Mesh Structure Example

37

Figure 22, Method 3 Mesh Structure Example

Method 6 is the final improvement in which method 5 was modified to allow for a
user-specified start node. This provides the user with the ability to start and stop the
bisection segment at any input node without having to rearrange the input data. Since
method 6 contains all of the capabilities of the other five methods, it is almost exclu-
sively used for mesh generation. This can be seen in Figure 25 on page 40. There are
situations that could be best served by one of the other methods. For example, a cir-
cular cylinder and other simple symmetric objects can be represented using method 1.
Method 2 would work well with a square or diamond shape. These objects would be
bisected by a diagonal. Method 3 would be most suited for a symmetric object with a
planar material interface. The more dense mesh would be used for the higher
permittivity material. Method 4 would work well with a rhombus or other slightly
asymmetric object. Method 5 is almost as versatile as method 6, and would work well
in any situation where the start node is fixed. A great deal of planning is not needed in
designing most mesh structures since they are calculated and displayed in a matter of
seconds.

38

-

4
\/
A

/]
4
AY,
A\
v,
AV,
v,

/’\/
3
(AN
\/\7/
AVA

A

C\/\
C\/\/
/\7

/\/\/
\’\/

V\’\/
\/\/\/
A\ \/\

\/

5
N
X
N
W
Q
R

’r;;

q

¢
X
A
M
Q
, \7

X

X

A

M7V

0
N
Y

7

Ay,
A,
X

7’

A
Y.

4
;Z
PN
N

DKXNK
NG

&

‘g

Q%

$ ()

)
q
)
4
)
Q
Q
QUK
O
X\
3

Figure 23. Method 4 Mesh Structure Example

Iterative selection of different mesh generation parameters has proven to be the best
technique. A summary of all mesh generation capabilities is provided in Table 1.

Appendix C contains a program called READ.FOR. This program takes the output
data file from the "Curve-Digitizer” CAD program, called FINALDWG.DAT, and after
receiving the answers to several prompted questions, creates a new INPUT.DAT file.
Typically, the CAD program is used to generate the perimeter of the object. This may
be as a series of points, line segments or a combination of the two. The answers to the
prompted questions provide the additional information needed to fill the remaining data
fields. This is intended to be a first step towards allowing a user to specify or design an
object and then be able to calculate the scattered fields from this object. Although it is
far from efficient, it does serve a definite purpose. Further refinement of this program
will allow for an easier user interface. This should enable technically trained personnel,
without a detailed understanding of these programs, to benefit from the Field Feedback
Formulation.

39

3
W\
A

VAW

X
A

N
SANN
N\
DANNS
Aﬂ#
\/

AV
AVAVAY,

X
Y

.

N

AVAW,
SOIAYAYL =~ \L QYA
AVAYAVAY GV Ay AN

e
KON
SN

/)

AVaN
A
v
N

\/

A
N/

A
N7

N/
VAV

3N

\N/

A
A

AV AV

AV

1) g VAVAVAYAYAVAY,y &
ARSI
> \/) AY,
ﬂSa&Eﬁ?&Eﬂ«48§35€§3v$§$ﬂ%€
Aﬁqﬂiffﬁfwzﬂgﬂahﬁﬂaﬂgﬂ‘
Aihﬂidlflﬁﬁﬂfﬂaﬁﬁﬂaﬂﬁﬁﬂ_
f!‘%ﬂ:ﬁ"ﬁfsaﬁgﬁisﬁﬂ v
7Nl A(“b‘b‘b‘ AR >< 5““ /3 v ‘\‘\
4)"(»1‘(’4’4 Y 4 v, ‘L‘\ \‘ \\
fﬁ’ﬂ»%ﬂggﬂsﬂﬂﬂ\\
SO AN
QN AANAGESS
QNNERED

NZ N7 N/
7
AV

AVL

\/
AWV,
\/

A
Vaw,
v

A

Method 5 Mesh Structure Example

Figure 24,

Method 6 Mesh Structure Example

Figure 25,

40

Table 1. SUMMARY OF MESH GENERATION CAPABILITIES
. Straight y Equally . i
Method Straight Line From User Se. Spaced User Se
- Line lected Stop AN lected Start
Number Bisection Left to Node Bisection Node
Right Side : Nodes :

1 X X

2 X

3 X X

3 X X

N X X

6 X X X

41

IV. FINITE ELEMENT BOUNDARY VALUE PROGRAM

A. INTRODUCTION

The Finite Element Boundary Value (FEBV) program is the feed forward (U) oper-
ator in the Field Feedback Formulation (F 3) as shown in Figure 2 on page 4. This
program solves the Helmholtz equation, as discussed in Chapter 11, for the Dirichlet
boundarv condition specified in the input data file, as discussed in Chapter I11. These
boundary conditions are imposed on the offset boundary contour. The purpose of this
program is to find the unknown field values inside the offset boundary contour within
the input object. Since the ultimate goal is to obtain the scattered far fields from the
object, the unknown field values on the perimeter are of primary interest. It will also
be necessarv to approximate the normal derivative of the field at the object perimeter.
As derived in Chapter 11, the goal of this program is to solve,

[Ai]\yz._y + [B,-]‘Y‘- + [Ci]\yu.\ == [P,-]\Pl.

The A matrix represents the effect that the I — 1 row has on the I row values. Similarly,
the B matrix represents the effect that the I-th row has on itself, while the C matrix re-
presents the effect that the I + 1 row has on the I-th row. All other rows do not effect
the I-th row. This is due to the pyramidal basis functions, discussed in Chapter 11, that
all have zero value when a node is not directly connected to another node. The P matrix
represents the combined effects of the boundary nodes on the I-th row. These values
are transposed to the right side of the equality to form the system forcing function. It
is worth remembering that for the I = 1 row, the A matrix = 0 and that for the [=

IMX row, the C matrix = 0. Thus, using the row by row stepping process, first dis-
cussed in Chapter Il of the mesh generation process, the A, B, C and P matrices can
be filled. There is an A, B, C and P matrix for each row, and it is necessary to calculate
the functionals for two elemental rows to fill one set of matrices. It is, therefore, obvious
that the data is used twice, once for the current row and again for the next row. Spe-
cifically, the functionals necessary to complete the B matrix and totally fill the C matrix
is used again to totally fill the next row’s A matrix and partially fill the B matrix. Thus,
forarow - 1, (such that I - 1 # 1), all of the A matrix and part of the B and P matrices
are filled. When the row is stepped to I, the B and P matrices are completed and all of
the C matrix is filled. The A, B, C and P matrices represent tri-block matrices within a

42

much larger global matrix. This row of tri-block matrices in the global matrix can be
partially solved using the forward portion of the Ricatti transform. The Ricatti trans-
form is a numerical technique that optimizes the solution for banded (tri-block) systems
of linear equations. The equations are,

Ry =—(B+A4R)'C
and
S =(8B=(8+ Ath)-l «(P—A4S)

where R, is the i + I R matrix and the S,_, is the i# 4+ 1 S vector. Note that the next
rows R matrix and S vector depends on the previous rows R matrix and S vector.
During the forward step (MARCH subroutine) an R matrix and S vector is generated
for each row. When all rows have been calculated, a back sweep computes the unknown
field values, y,. The equation is

!1/1_1 = Rl’/’z‘ + Sx"

This back sweep must read the RS data from the disk backwards. This is a storage in-
tensive process for all but the most trivial problem. The field values ¥, is first found
by remembering that the last row (I = IMX), C,uy=0. With Cpyy =0, Ryyp., =0
and Y,y = S;yx, , Which is the last calculated S vector. The recursion continues until
all of the ¥, ‘s have been calculated.

B. FINITE ELEMENT BOUNDARY VALUE PROGRAM
The eight subroutines comprising the FEBV program are discussed below.
1. Zero
This subroutine fills all the array positions of the A, B, C and P matrices with
0 + jO0. This zeroing is necessary after all calculations concerning a given row are
completed.
2. Varint (Variational Integration)
This subroutine calculates the complex functionals for a given input element.
The functionals reflect the effect that each node has on the three nodes associated with
an element. The subroutine must be provided with the X, Y ccordinates of the element
nodes, and the material parameters ¢, and g, These functionals are returned ina 3 x 3

complex matrix. The area of the input element is also provided as a by-product of this

43

numerical integration. The areas of each element are sorted and used to find the largest
and smallest elements. Once found, the largest and smallest areas are combined to form
the area ratio, which is defined as,

maximum area
minimum area

area ratio =

This ratio should be kept as small as possible. For a circular cylinder, values slightly less
than 2.0 are possible. For more complicated objects, the ratio can get considerably
larger. A ratio > 2.5 causes a screen message of "YOU SHOULD CONSIDER
ABORTING THIS RUN AND LOOKING AT THE MESH IN CURVE DIGITIZER.
A BETTER METHOD MAY BE AVAILABLE”. It may or may not be possible to
obtain an area ratio < 2.5. The intention of the area ratio is to insure that a uniform
mesh is constructed prior to attempting a problem solution. Smaller area ratios are in-
dicative of mesh structures that do not have grossly different element sizes. This will
lead to more accurate finite element solution.
3. Fil

This subroutine calculates and stores all of the functionals for an entire ele-
mental row. This is accomplished by repeated VARINT calls for each element that
comprises an elemental row.

4. BNDC (Boundary Condition)

This subroutine calculates and stores the boundary conditions desired for the
offset boundary contour. These conditions can be plane wave, cvlindrical modes or in-
put manually. For plane wave conditions, the percent error of the FEBY program will
also be returned. This calculation only has meaning for the uniform case (Field 3 set to
“U” or “u”). Memory limitations do not allow this feature for the cylindrical mode
boundary conditions for modes other than zero and one. A separate routine could be
made available for offline percent error calculations. No such feature is provided if the
boundary conditions are manually input. Any desired boundary condition may be gen-
erated by modifving or appending the proper code to this subroutine.

5. Loader

This subroutine loads the A, B, C and P matrices for a given row. For all but
the | = | and IMX rows, two calls of FILL/VARINT for two elemental rows of data
are required to fill the A, B, C and P matrices. This is an additive process that starts
after the ZERO subroutine initializes the matrices. Successive functionals are added to
the existing data in the proper array positions.

6. March

This subroutine performs the forward portion of the Riccati transform. The

output. data, called RS.DAT (R matrix and S vector), are stored on disk.
7. CSMINYV (Complex Square Matrix Inversion)

This subroutine accomplishes the complex matrix inversion required by the
forward Riccati transform. A maximum dimension of 50 x 50 was established to limit
memory utilization. This allows for a maximum unknown width of 50.

8. Sweep

All of the above subroutines are called at least once for each row. The sweep
routine is called only after all of the row calculations are completed, and then only once.
This subroutine conducts the Riccati back sweep by reading the RS data generated by
the MARCH subroutine. This data is read off the disk backwards, using the
FORTRAN “backspace” command. The returned field values are actually individual
contributions due to a unit valued basis function being individually applied to each of
the boundary nodes. In so doing, the problem need only be solved once. After the data
is stored. in matrix form as the U.DAT file, the boundary value problem may be solved
for any incident field by multiplving the U matrix by the new incident fields. Thus,

wperimeler = [U] * Yincidenr-

A summary of the input, output and error data is provided in the OUTPUT.DAT file.
9. Save

This subroutine was necessary to allow for reasonably sized problems. Since
all of the Field Feedback Formulation code could not fit into 640 kilobytes of memory,
the program was divided into two parts. All of the data necessary to perform the pro-
grams is saved in the F3.DAT file. This data is then read by the field feedback program.
This technique, though very inefficient, circumvents the 640 kilobyte memory limitation
imposed by the IBM Disk Operating System (DOS). Efforts to convert this code to run
under a compiler that does not have a 640 kilobyte memory limitation, such as Micro-
way NDP FORTRAN compiler, will be pursued at a later date.

C. VARINT VALIDATION

The first step in the program validation required an understanding of the error
convergence of the variational elements as a function of element size, d and material
properties, ¢, and u, . The test program provided in Appendix D varies the element size,
in wavelengths, for a test mesh structure. This test structure shown in Figure 26 on

page 46 has only one unknown at the center. The mesh is made of four adjacent cle-
ments. These elements are inside a uniform material having properties, ¢, and p,. The
other four nodes are established as boundary nodes.

PLANEWAVE

Only
Unknown

Figure 26. Test Mesh Structure

A plane wave, of user specified frequency and amplitude, is used to determine the
boundary conditions on the four boundary nodes. This plane wave is propagating down
the vertically oriented axis. The unknown nodal value is calculated and compared to the
actual plane wave value (1 + j0). A percent error is calculated as the dimension of the
elements, d are reduced. As expected, the solution became more accurate as the ele-
ments become smaller. A plot of the results of this test program is provided in
I'igure 27 on page 47. This data was generated with ¢, =1 + 0, and u, = 1 + /0.

46

10
9 ~
8 —
7—
8 ~
5 -
4 -4

Erver

2
1 -

-1

- T

- -
4 Frerrreeere SN —— s S ——————_

0.08283 D0.81881 1.5708 2.32478 3.07876 3.83274 4.58873 8.34071 6.0%4¢9

Max Dimension (Wavenumber Normalized)

Figure 27. Solution Error for a Test Mesh Structure

The region of interest is where the error approaches zero. An expanded plot of this re-
gion is provided in Figure 28 on page 438. The accuracy of the solutions were desired
within 1 percent of the exact value. This requires an element that is <]—'27- , in the ma-
terial. To ensure the desired error was achieved, elements were usually scaled to be
< —2% , in the material. The phase of the plane wave was also varied to determine the
effect on convergence. No significant effect was noted.

47

o
-0.01
-0.02 -
-0.03 -
-0.04 -
-0.08 -

-0.08 -
~0.07 -
-0.08 -
~0.09 -]
-0, -
-0.11 -
-0.12
-0.13
-0.14 -

Error

T 2 U U S— T

0.01237 0.18338 0.31418 0.48488 0.81575 0.76833 0.91733 1.086814 1.21894

Mox Dimension (Wavenumber Normalized)

Figure 28. Solution Error for a Test Mesh Structure (Expanded)

D. FINITE ELEMENT BOUNDARY VALUE PROGRAM VALIDATION

The next validation step required an actual object to calculate the fields in and on.
The simplest object was actually not an object at all, but rather an imaginary circular
cylinder in free space. A plane wave was propagated through this free space. Since no
material interface existed, the exact solution would be known for all positions. The
plane wave established the boundary conditions on the offset contour. Trial runs were
conducted varying the mesh resolution and boundary offset contour distance. With the
error defined as,

’

\[}:(calculatcd value — actual value)2
error = 5
Z(actual value)

two errors were defined. The perimeter error only considers the perimeter nodes in the
crror calculation. The bisection segment error only considers the bisection segment
nodes, with the exception of the two end nodes, in the error calculation. The end nodes

48

of the bisection segment are part of the perimeter and are, therefore, not considered.
As expected, the perimeter error could be rapidly reduced by decreasing the ofIset dis-
tance. This is due to the fact that the node or nodes closest to an unknown node dom-
inate the field contributions at this node. Again, a goal of < 1% error was desired. The
reduced offset distance had a very small effect on the bisection segment error. The only
way to significantly reduce this error was to increase the mesh resolution. An increased
mesh resolution reduced both errors. Figure 29 shows the perimeter error as a function
of the number of bisection segment nodes.

4.3
4

O —.050/, offset
3.8 -

+ - .025/, ollset
3

O~ 0102, offset
as

Number of Bisesfion Nedes

Figure 29. Perimeter Error

The three curves are for offset distances of 0.05, 0.025 and 0.01 2. Figure 30 on page
50 shows the bisection segment error as a function of the number of bisection segment
nodes. The two curves are for oflset distances of 0.05 and 0.025 },. For offset distances
less than 0.025 /, , the curves are almost identical to the 0.025 4, curve. These curves
are omitted for clarity.

49

1 J - .050}; offset

O - 0257 offset

0 r{isJrJ7rrrYrYkyve/yYY/mM7TYyY T VT mryYT€TT“7T7%1 vYvv%VT’'VTTVTCTTTYTYITTDY

18 17 19 21 23 28 27 29 31 33 38 37 3 41 43 48 47
Number of Bisection Nodes
Figure 30. Bisection Segment Error

The calculated and exact field values for a 0.5 4, diameter circular cylinder, with a
0.05, mesh resolution and oflset distance and &, = 1 + jO is shown in Figure 31 on pagc
51. The exact ficlds values for the real and imaginary portion of the plane wave are
shown as squares and diamonds, respectively. The solid curves are the calculated field
values. The perimer=r and bisection errors were 0.74 and 1.69 percent, respectively.
Figure 32 on page 52 shows the effects of not properly adjusting the mesh resolution
and offset distance when the material is changed. In this case, the permittivity was
changed to ¢, =4 + 0. This caused the perimeter and bisection segment errors to in-
crease to 18.2 and 41.1 percent, respectively. The mesh resolution and offset distance
were reduced to 0.021/y and the permittivity was changed to ¢, =4 — j4. The results are
shown in Figure 33 on page 53 . This proper selection of mesh resolution and offset
distance reduced the perimeter error and bisection segment error to 0.44 and 0.56 per-

cent, respectively. Note that in the lossy material case the two errors are very close in

50

magnitude. This is due to the way that the error is defined. This definition, in a lossy
material, overemphasizes the objects leading edge.

-0.1 -
~0.2 -
~0.3 -
-0.4 -
-0.5 -
~0.86 4 [J - Exact (real)
_-::] & - Exact (imaginary)
-0.0 4 — - Calculated

Fleld Velue (VeitarMeter)
[

"' Py - Yy T L g

1 [11 LL a1 a8
Porimeter Node Number

Figure 31. 0.5) cylinder,s, = 1 + j0

This portion of the object (as well as the trailing edge) is the most accurate for the
bisection segment calculations. This is because of the relative closeness of these nodes
to the perimeter. For the lossless material, the bisection segment error is typically two
to three times the perimeter error, for the same number of bisection nodes. The con-
clusion that the offset distance should be made as small as possible in order to minimize
the perimeter error is correct, but will prove to be counterproductive in the long run.
There is a competing effect that will require this contour offset distance to be as large
as possible. This effect, associated with the accuracy of the Green’s function contour
integral, will be discussed in Chapter V.

51

-
I

[J - Exact (real)
0.6 - o > - Exact (imaginary) _

0.8] ~— - Calculated
0.4

0.3 - -

0.2 -
0.1 — o
° - . .

L 4

—0.1-/ . . °ﬁ°
-0.2 ~

-0.3 . ° A4
—0.4
0.8 - ' X)
-0.8 - ° °

-0.7 -

Flald Value (Veltas/Meter)

-00. -~ "y (.3 [[.3

-0.9 - N 4
L
-1
1 s

1) 1" 21
Perimeter Node Number

Figure 32. 0.5) cylinder, e, = 4 + {0

52

Fleid Vaiue (Velte/Meter)

[0 - Exact (real)
-3 y > - Exact (imaginary)
— - Calculated

-‘ 2 ""T""Tt""""'ﬂ‘l'U‘v"""I"'"'l"Y'I""'Iﬁf"liV"I"'I

1 13 as 14 49 61 73
Poerimeter Nede Number
Figure 33. 0.5 A cylinder, ¢, = 4 — j4

E. INHOMOGENEITY

Until this point, all testing was done in circular homogeneous dielectric materials.
It was, at a minimum, desirable to place the object in a vacuum to calculate the scattered
fields. This requires the first two and last two elements of each row to have
e,= 14,0 and p, =1+ j0. These elements represent the space between the objects per-
imeter and the offset boundary contour. Since the plane wave solution is no longer valid
for this geometry, a new problem with a known solution was needed.

Given a homogeneous dielectric circular cylinder of radius a and permittivity ¢, , as
shown in Figure 34 on page 54, it can be shown that [Ref. 8],

Vl,.(R, ¢) = Aan(krR) cos n¢v

53

/
i\
A/
\

e

Figure 34. Cylindrical Mode Geometry

where,
Va(R, @) is the field value inside the dielectric material.
"jZDn
" naV,
IR InkRIHT (R — kT ok RYH(R,)] —
"R KR W(Re) = ke ke R (R)]
J, = Bessel Function of the 1" kind of order n
and

k= e, .

An additional formulation is required for the fields outside of the cylinder. A cylindrical
wave (mode, n = 1) was applied to a homogeneous dielectric cylinder. The exact and
finite element field values were calculated and compared. Figure 35 on page 55, shows
a typical result. Mesh resolution, offset distance and material permittivity were varicd
to determine convergence. The results were similar to the dielectric homogeneous plane

wave case discussed earlier.
.8

O - Exact
— - Calculated

~0.4 -
-0.8 |
~0.8 ~

Plaid Value (Vaitas/Meter)
Q

- -
"'-2 .
-1.4 -

-'o. A SR AR AR RS REAS RS AL S R AL SRS A NRA R ANASAAR AL RAS RARARAARL AN RAARSARE LSRN |

1 13 28 87 49 1] 73
Perimeler Node Number
Figure 35. Typical Cylindrical Mode Boundary Value Problem Result

F. FINITE ELEMENT CONCLUSIONS
High accuracy solutions can be obtained by maintaining a mesh resolution of
<—‘J'— in the material. The offset distance should be kept at approximately the same

20

magnitude as the mesh resolution, but may be as large as -2—(")- Increased accuracy re-
quires an increased mesh resolution. This increase in accuracy is at the expense of in-

creased processor time.

55

V. FIELD FEEDBACK PROGRAM

A. INTRODUCTION

The Field Feedback Program is the feedback (T) operator in the F > This program
utilizes the output of the finite element program and the input incident fields to evaluate
a "near field” Green’s function integral. This integral is called “near field” in that the
integral will be performed within %— of the object perimeter. As seen in Figure 36,
three surface contours are defined. The boundary contour is where the incident field
boundary condition is applied.

— T~ Geometric Contour, GC

Perimeter, P

~ —
Figure 36. Contour Arrangement

The perimeter contour is where the finite element program solves for the field values on
the object perimeter. The geometric contour is midway between the boundary and the
perimeter and is the contour over which the Green's function contour integral is per-

formed. This is necessary to allow the -Z—‘f:— to be approximated by a finite diflerence

56

technique. The Y, is the average of the field values on the boundary and perimeter.
Thus,

alﬁ _ (¢b0undaw - wperimerer)
on on

and

('ijerimeter + ‘I’boundary)
Yoc= 3 :

The Field Feedback program is provided as Appendix E.

B. FIELD FEEDBACK PROGRAM
1. Input

This subroutine reads the finite element data stored in the F3.DAT file by the

SAVE subroutine. All necessary nodal X, Y coordinates are calculated.
2. TMAT (T Matrix)

This subroutine loads a complex matrix called TMAT. Each element of the T
matrix is the result of a Green's function contour integral. This integral is conducted
on the GC contour. The m-th column of the T matrix is evaluated with a single unit
valued basis function on the m-th boundary node. The equation,

awl\ 2
Tom =J' [G =y, ‘;f]a’GC,
GC

may now be numerically evaluated at each of the n boundary nodes. This process is

repeated for each row until the entire matrix is filled.

The numeric integration uses a rectangular mid-point approximation technique.
For this linearized problem, this is equivalent to a trapezoidal integral technique. The
integral path between any given two nodes is subdivided based on the distance to the
first point. This subdivision maybe controlled by three input variable fields. A multi-
plicative scale factor and offset terms are available. To date, the utilization of the scale
factor (set > 1.0) and the offset terms (set > 0) have not proved necessary. This may

be necessary for more romplicated geometric structures.

57

3. CNSOLV
This subroutine solves the equation,

G = (/- Tmazri.x]_l * wboundary’

where C, is the total scattered fields on the boundary, I is the identity matrix and
Vsoundery 18 the initially specified incident fields.
4. FFLD (Far Fields)
This subroutine calculates the scattered far field or bistatic radar cross section
per unit length of the object. Any desired integer angular resolution for the calculation
may be specified. The final results are stored in the FFPAT.DAT file.

C. FIELD FEEDBACK VALIDATION
Given a plane wave boundary conditions imposed on an imaginary cylinder in free
space, a Green'’s function contour integral may be performed around the cylinder. This
cvlinder is imaginary in the sense that it does not actually exist. The cylinder is actually
an artificial boundary that does not form a material interface. For points inside this
cylinder, the resulting integral should equal the negative of the actual plane wave value
at that point in freespace. For points outside the cylinder, the resulting integral should
equal zero. Several test conditions were investigated to ensure that the numerical inte-
gration of the Green’s function did arrive at the expected values. Maximum absolute
errors for these tests were less than 7 x 10" . These test cases started with exact values
of the field, ¢ and the normal derivative, %- . After initial validation, finite element
calculated ¥ and %l”— values were used. Errors increased by approximately a factor of
10. Numerous competing effects were observed with two dominant effects becoming
evident.
1. Small Object Phenomenon)
For very small objects, where only a few elements are needed to meet the —2%
mesh resolution requirement, the normal derivative accuracy is crucial. Since the normal
derivative is the calculated normal to the piecewise linear approximation of the objects
perimeter, this fit is usually not adequate. To prevent this problem, additional
perimeter/boundary nodes are needed. This is easily accomplished by increasing the
mesh density, which is controlled by the mesh resolution (input field 7). For these very
small objects, the RCS is almost uniform for the TM case and co-sinusoidal for the TE

case. The utility of this calculation must, therefore, be questioned.

58

2. Offset Distance Phenomenon

The offset distance must not be made too small or the accuracy of the Green's

function integral will suffer. For a circular cylinder, the optimal offset was between 0.03
. p)

4 and 0.035 i. Note that these distances are always < 7(")- :

59

VI. VALIDATION

A. INTRODUCTION

The difficulty in the total Field Feedback Formulation (F 3) program validation is in
finding problems that have well established or accepted solutions. The total F 3program
is the combination of the mesh generation/finite element program and the field feedback

program. If possible, a problem that has a closed form analytical solution is desired.

B. HOMOGENEOUS CIRCULAR CYLINDRICAL SCATTERING

This is the first test case for the F Jprogram. A penetrable circular cylinder has a
closed form analytic solution, so the final results could be verified against exact values.
It can be shown that for the TM case (E - wave) the reflection coefficient is,

[Jn(krRa)J'n(Ra) \/_ J (krRa)Jn(Ra)]
rif=

[Jn(krRa)Hg)l(Ra) - \// /,(_ J (krRa)Hr(zZ)(Ra)]

and that for the TE case (H - wave) the refection coefficient is,

|7 ROTAR = J 5 7 b RIIRS)]

T -
[(kRIHZ (R) ~ J 2= 7k RYHOR,)}
where £, = \/;,_s,- , Y= \/‘—} and z = %- [Ref. 9] The scattered field for the

TM case is,

EYR, ¢)=— E‘""‘de“‘[royé”(za) + 2Zj‘"r,,H§3’(R) cos nqb].
n=1

Simularly, the scattered field for the TE case is,

HY(R, ¢) =~ "[r HP(R) + sz”ran,”(R) cos nm}

n==}

60

In the far field region, as R approaches infinity, the scattering width may be defined as,

. Kk
o0) = 2nlim P e 2

and

o(¢) = kio IFo+2) [, cos nl.
n=l]

The source code, without the Bessel function routines, for these calculations is provided
as Appendix F.

Three different radius dielectric cylinders were tested. Wavenumber normalized radii
of 0.5, 1.0 and 2.0 with ¢, = 2.56 + jO were selected. The TE and TM results of the 0.5,
1.0 and 2.0 radii problems are provided as Figure 37 on page 62, Figure 38 on page
63, and Figure 39 on page 64 . To validate the Chapter VI conclusion that the unit
normal was the cause of the errors for very small circular cylinders, the ¢, was increased
from 2.56 to 25.6. This value still meets the requirement for mesh resolution not to ex-
ceed % . The TE and TM results are provided as Figure 40 on page 65. Actual cross
section values are indicated by the squares and the Field Feedback Formulation sol-

utions are plotted as a single solid curve.

C. HOMOGENEOUS IRREGULAR OBJECTS

The results detailed in [Ref. 10] were next validated with the F 3program. This ob-
ject, as seen in Figure 41 on page 66 , is a dielectric shell with inner radius = .25 /,,
outer radius = .30 4, and ¢, = 4 + j0. The comparison of the [Ref. 10] data and the
Fresults are provided as Figure 42 on page 67.

61

0.04
0.03
0.02

0.01

62

0.48

0.4 ~

0.38 -~

. 0.3

0.25 -

(3 - TE Exact
— - TE Calculated

] 30 [[} 20 120 180 180
Phi (In degrees)

0.4 O - T™M Exact
— - TM Calcujated
0 Y [T
0 30 [] 0 120 150 180
Phi (in degrees)

Figure 38. Cylinder, TE and TM Case, ka = 1.0,¢, = 2.56

63

¥ [J - TE Exact
— - TE Calculated

S L e
) = — Yt T

0 350 0 20 120 180 180

4 (] - TM Exact
T = .TM Calculated

] 30 80 ' 0 120 180 180
Phi (In degrees)

Figure 39. Cylinder, TE and TM Case, kya = 2.0,¢, = 2.56

O - TE Exact
— - TE Calculated

Tr—y—rr T T T Y | SN S SN JNSR (M SEEe ANNL SENL San S

120 180 180

Phi (In degress)

0.88

O - T™ Lxact
— - TM Calculated

- 0.8 -
0.48
0.4 ~

0.387

0.3 —

0.28 -

0.2 ~

0.18

0.y +—r—r—+r—vrr+r—r—rrrrTrrrrrrrrr——r—r

[} 30 .0 0 120 180 180
Phi (in degrees)

. Figure 40. Cylinder, TE and TM Case, ka = 0.5,¢, = 25.6

65

PLANEWAVE

mSmN‘\
VYRS

Figure 41. Dielectric Shell Mesh

The TE case shows excellent agreement. The TM case tends to diverge at the smaller

values of ¢.

D. AN INHOMOGENEOUS OBJECT

The results detailed in {Ref. 11] were next validated with the F 3program. This ob-
ject, as seen in Figure 43 on page 68, is a dielectric ring with inner radius = .25 4, , outer
radius = .30 J, and ¢,= 4 + jO. The exact solution to this problem is available. [Ref.
11)

0.4

0.38

Sigma
[-]
o

J.H. Mohmond
—— F3 Technique

0 ++——r—+r——rpr—r—r—r— T ———

AN S A S

v

v

[30 [1) 0 120 150 180
Phi (In degrees)
! of
o
0.9
0.8 -
0.7 -
0.8
E
13 0.5 -
#
0.4 -
0.3 ~
uuﬂu
oooo
0.2 ~ ad 0 JH Mehmend
0.t ~ —— F3 Technique
0 4+—+———+rr—rr+rrr—rryr——rrr T —r—r—r—r—r—
] 30 0 0 120 150 180

Phl (In degrees)

Figure 42. Dielectric Shell, TE and TM Case, ¢, = 4 + j0

67

Figure 43. Dielectric Ring

The mesh generation program was not modified to conform to both the outer and inner
material boundaries. The original mesh generation program design concept was to
closely fit the mesh to the objects outer perimeter and then allow for material inhomo-
geneities to be accounted for by different material parameters being assigned to individ-
ual elements. A section of the generated mesh is siiowa in Figure 44 on page 69. Note
the additional curved line showing the .25 /, inner radius. This curve does not follow
the established element boundaries. The effective ring is shown in Figure 45 on page
69. This resulted in the inner radius having an irregular pattern as elements near the
material interface varied in material composition. This is similar to the granular noise
problem characteristic of delta modulation communication channels. The TE and TM
results are provided as Figure 46 on page 70.

68

Figure 44. Partial Mesh with Inner Radius Curve

Figure 45. Effective Geometry for.the Dielectric Mesh

69

1.2
o f
L0 O - TE Exact o
'~ — - TE Calculated e

Slgme

0.4 T —————

] 30 [] 0 120 1850 180
Phi (n degrees)
4.5
%
] O - T™ Calculated e
— - TM Exact
v
3
3
180

Phi (In degress)

Figure 46. Dielectric Ring, TE and TM Case, e =4+ 0

70

A.

VII. CONCLUSIONS

RESULTS
The Field Feedback Formulation proved to be an excellent tool for calculating the

internal and scattered fields from the tested inhomogeneous asymmetric objects. The

keys to satisfactory results are,

Keep the maximum element dimension < 7"0- ,

Maintain a mesh with a uniform distribution, and
Maintain the offset distance near the mesh resolution in magnitude, but no greater

th _{.2_
an 30

The techniques used proved to be capable of adapting to a wide variety of situations.

These adaptations did not require program modifications or reprogramming. The nu-

merous built-in features, as discussed in the input field description of Chapter III, al-

lowed for this robustness.

B.

RECOMMENDATIONS AND EXTENSIONS

With the basic program validated, future testing and development should,
Emphasize large object validation against accepted results.
Stress inhomogeneity and irregularity in all testing.

Optimize the T matrix element calculation by improving the Green's function
contour integral.

Evaluate the usefulness of the maximum distance feature (Field 12). Bevond this
maximum distance no contribution is made to the Green's function integral. It is
not expected that this will be possible for objects less than a few wavelengths in
maximum dimension.

Modify the mesh generation program to allow for conformity to multiple interfaces
(muiti-layered objects without the granular noise problem).

Modifv all programs for Intel 80386 based Fortran compiler use, such as NDP
FORTRAN by Microway. This will remove the 640 KB memory limitation im-
posed by the IBM DOS and allows for the solution to larger scattering problems.

71

APPENDIX A. INPUT DATA FILE EXAMPLE

CIRCLE - PLOT TITLE
R - RECTANGULAR INPUT DATA
NI ~ NO INTERMEDIATE DATA RECORDING
ND - NO DISSPLA PROGRAM GENERATION
NU - NON UNIFORM MATERIAL (MATERIAL INTERFACE PRESENT)
NM - NO MESH GENERATION ONLY
0.019 - REQUESTED MESH RESOLUTION (IN WAVELENGTHS)
0.03 - CONTOUR DISTANCE (IN WAVELENGTHS)
1.0 - MULTIPLICATIVE GFI SCALE FACTOR
o - DISTANCE < 1.0 BIAS TERM
0 - DISTANCE > 1.0 BIAS TERM
999.9 - MAX DIST BEYOND WHICH THERE IS NO CONTRIBUTION TO GFI
36 - NUMBER OF INPUT DATA POINTS
72 - NUMBER OF POINTS FOR SIGMA CALCULATION (IN THE CIRCLE)
1 - ELEMENT GENERATION METHOD
5 - START NODE
35 - STOP NODE
4.5 - X AXIS OFFSET
4.0 - Y AXIS OFFSET
0.3 - DESIRED DIMENSION (ORIGIN TO FIRST POINT ,WAVELENGTHS)
1.0 - REAL PART OF ALPHA
0.0 - IMAGINARY PART OF ALPHA
1.0 - REAL PART OF BETA
0.0 - IMAGINARY PART OF BETA
P - PLANEWAVE GENERATOR ENABLED
1.0 - FPLANEWAVE AMPLITUDE
3. 00E+08 - INPUT FREQUENCY OF THE PLANEWAVE, FO
0 . 00000000 . 50000000 - ANGLE, X, Y COORD.
10 . 08682409 . 49240390
20 . 17101010 . 46984630
30 . 25000000 . 43301270
40 . 32139380 . 38302220
50 . 38302220 . 32139380
60 . 43301270 . 25000000
70 . 46984630 . 17101010
80 . 49240390 . 08682407
90 . 50000000 -. 00000002
100 . 49240390 -. 08682411
110 . 46984630 -. 17101010
120 . 43301270 -. 25000000
130 . 38302220 -. 32139380
140 . 32139380 -. 38302220
150 . 25000000 -. 43301270
160 . 17101000 -. 46984630
170 . 08682404 -.49240390
180 -. 00000004 -. 50000000
190 -. 08682413 -.49240390
200 -. 17101010 -. 46984630
210 -. 25000000 -.43301270
220 -. 32139380 -. 38302220
230 -. 38302220 -. 32139380
72

240
250
260
270
280
290
300
310
320
330
340
350

. 43301270
. 46984630
. 49240390
. 50000000
. 49240390
. 46984630
.43301270
. 38302220
.32139380
. 24999990
. 17101000
. 08682401

-. 25000000
-. 17101000
-. 08682403
. 00000007
. 08682416
. 17101010
. 25000010
.32139390
. 38302230
. 43301280
. 46984630
. 49240390

73

APPENDIX B. READ PROGRAM

REAL A(0:2000), B(0:2000), MRES, DIST, XORIGIN, YORIGIN

REAL C, D, E, F, DPER, DD, FREQ, EO, MAXD

INTEGER I, J, METHOD, STARTND, STOPND, NRES, MODE, LBIAS, GBIAS
CHARACTER*1 CHAR,CHAR1,CHAR2,CHAR3,CHAR4 ,CHARS

CHARACTER*13 NAME

OPEN(UNIT = 1, FILE = 'D: FINALDWG.DAT')
OPEN(UNIT = 2, FILE = 'C: MSFORT INPUT.DAT')
J=0

WRITE(*,*) 'ENTER THE PLOT NAME OR LABEL (MAX OF 13 CHARACTERS)'
READ(*,1005) NAME

WRITE(*,*) 'ENTER THE COORDINATE SYSTEM IN USE. (R OR P)'
READ(*,1000) CHAR

WRITE(*,*) 'DO YOU WANT INTERMEDIATE VALUES ? (I)'
READ(*,1000) CHAR1

WRITE(*,*) 'DO YOU WANT A DISSPLA PROGRAM GENERATED ? (D)’
READ(*,1000) CHAR2

WRITE(®*,*) 'UNIFORM SLAB (NO MATERIAL TO VACUUM INTERFACE ? (U)'
READ(*,1000) CHAR3

WRITE(*,*) 'MCSH GENERATION ONLY ? (M)’

READ(*,1000) CHAR&

WRITE(*,*) 'ENTER THE MESH RESOLUTION. (0.4, ETC...)'
READ(*,*) MRES

WRITE(*,*) 'ENTER THE CONTOUR DISTANCE. (0.3, ETC...)'
READ(*,*) DIST

WRITE(*,*) 'ENTER THE GFI SCALE FACTOR. (1.0, ETC...)'
READ(*,*) DPER

WRITE(*,*) 'ENTER THE GFi (< 1 BIAS TERM (0,1, ETC...)'
READ(*,*) LBIAS

WRITE(*,*) "ENTER THE GFI (> 1 BIAS TERM (0,1, ETC...)'
READ(*,*) GBIAS

WRITE(*,%*) 'ENTER THE GFI MAX DISTANCE (999.0, ETC...)'
READ(*,*) MAXD

WRITE(*,*) "ENTER THE NUMBER OF POINTS FOR SIGMA CALC.(36,ETC...)"'
READ(*,*) NRES

WRITE(*,%*) 'ENTER THE DRAWING METHOD. (1 - 6)'

READ(*,*) METHOD

WRITE(*,*) 'ENTER THE STARTING NODE NUMBER. (MUST BE > 0)'
READ(*,*) STARTND

WRITE(*,*) "ENTER THE BISECTION STOPPING NODE NUMBER. '
READ(*,*) STOPND

WRITE(*,*) 'DESIRED DISTANCE FROM ORIGIN TO POINT 1 (IN WLs) '
READ(*,*) DD

WRITE(*,*) 'ENTER THE X AXIS ORIGIN.'

READ(*,*) XORIGIN

WRITE(*,*) "ENTER THE Y AXIS ORIGIN.'

READ(*,*) YORIGIN

WRITE(*,*) "ENTER THE REAL COMPONENT OF ALPHA.'

READ(*’-.':) C

74

WRITE(*,*) 'ENTER THE IMAGINARY COMPONENT OF ALPHA.'
READ(¥*,%*) D
WRITE(*,%*) 'ENTER THE REAL COMPONENT OF BETA.'
READ(*,*) E
WRITE(%*,*) 'ENTER THE IMAGINARY COMPONENT OF BETA.'
READ(%,%) F
WRITE(*,*) 'PLANE WAVE (P) OR CYLINDRICAL MODE (C) '
READ(*,1000) CHARS
WRITE(*,*) 'ENTER THE WAVE FREQUENCY (IN HERTZ)'
READ(*,*) FREQ
WRITE(*,%*) 'ENTER THE WAVE AMPLITUDE '
READ(*,*) EO
IF((CHARS.EQ.'C'?.OR.(CHARS.EQ.'c')) THEN
WRITE(%*,*) 'ENTER THE MODE NUMBER '
READ(*,%*) MODE
ENDIF
DO 10, I = 0, 1999
READ(1,*,ERR = 20) A(J), B(J)
IF(A(J).GT. 1000) THEN
GOTO 5
ELSEIF(B(J).GT. 1000) THEN
GOTO 5
ELSE
J=J+1
ENDIF
5 CONTINUE
10 CONTINUE
20 J=J-1
WRITE(2,1005) NAME
WRITE(2,1000) CHAR
WRITE(2,1000) CHAR1
WRITE(2,1000) CHAR2
WRITE(2,1000) CHAR3
WRITE(2,1000) CHAR4
WRITE(2,1010) MRES
WRITE(2,1010) DIST
WRITE(2,1010) DPER
WRITE(2,1020) LBIAS
WRITE(2,1020) GBIAS
WRITE(2,1040) MAXD
WRITE(2,1020) J
WRITE(2,1020) NRES
WRITE(2,1020) METHOD
WRITE(2,1020) STARTND
WRITE(2,1020) STOPND
WRITE(2,1010) XORIGIN
WRITE(2,1010) YORIGIN
WRITE(2,1010) DD
WRITE(2,1010) C
WRITE(2,1010) D
WRITE(2,1010) E
WRITE(2,1010) F
WRITE(2,1000) CHARS
WRITE(2,1010) EO
IF((CHAR5.EQ. 'C'). OR. (CHARS.EQ. 'c')) THEN
WRITE(2,1020) MODE

75

ENDIF
WRITE(2,*) FREQ
DO 30, I =1, J
WRITE(2,1030) I, A(I), B(I)
30 CONTINUE
WRITE(2,*) 'END OF FILE'

1000 FORMAT(A1)

1005 FORMAT(A13)

1010 FORMAT(F8.6€)

1020 FORMAT(I3)

1030 FORMAT(1X,13,7X,F12.8,5X,F12.8)
1040 FORMAT(FS. 3)

C
CLOSE(1)
CLOSE(2)
STOP
END

c

76

APPENDIX C. MESH GENERATION/FINITE ELEMENT PROGRAM

FINITE ELEMENT MESH GENERATION PROGRAM
WRITTEN BY LT. T.B. WELCH

w/ PROGRAMMING IDEAS FROM PROF. M.A. MORGAN
COMPLETELY FILE (INPUT.DAT) DRIVEN
INPUT PARAMETERS:

CHARACTER (POLAR OR RECTANGULAR INPUT DATA - FLAG)
CHARACTER (INTERMEDIATE MATRICES WRITE - FLAG)
CHARACTER (DISSPLA PROGRAM GENERATION - FLAG)
CHARACTER (UNIFORM MATERIAL - FLAG)
CHARACTER (MESH GENERATION ONLY - FLAG)
MESH RESOLUTION
CONTOUR OFFSET
DESIRED SCALE FACTOR FOR GREEN'S FUNCTION INTEGRAL
BIAS (SHIFT) FOR GFI STEP WHEN < 1.0
BIAS (SHIFT) FOR GFI STEP WHEN > 1.0
MAXIMUM DISTANCE BEYOND WHICH THERE WILL BE NO
CONTRIBUTION TO THE GREEN'S FUNCTION INTEGRAL
NUMBER OF POINTS
NUMBER OF POINTS FOR CROSS SECTION, (IN THE CIRCLE)
MESH GENERATION TECHNIQUE
START NODE
STOP NODE
X ORIGIN
Y ORIGIN
DESIRED DISTANCE (FROM ORIGIN TO FIRST POINT, WAVELENGTH)
ALPHA (INPUT AS A AND B THEN CONVERTED TO COMPLEX ALPHA)
BETA (INPUT AS A AND B THEN CONVERTED TO COMPLEX BETA)
CHARACTER (PLANEWAVE GENERATOR - FLAG)
AMPLITUDE
FREQUENCY (IN HERTZ)
-- OR --
AMPLITUDE
CYLINDRICAL MODE NUMBER (GENERATOR ALWAYS DOES N=1)
FREQUENCY (IN HERTZ)
-- OR -~
BOUNDARY CONDITIONS
DATA POINT PAIRS (X, Y OR RADIUS, THETA)
END OF FILE MARKER

Qoo aaOoOoaQaOoOoOaOaOOOOQOOOOOQAOOAOAOO0OO00000000

COMPLEX ALPHA,BETA,BCOND(100),LINE(50),ANS(100)

COMPLEX A(50,50),B(50,50),C(50,50),P(50,100),SURBC(100)

COMPLEX U(100,100),PSI(50,100),8VEC(50,100)

REAL MRES,MESH(O0:200,5),NDP(200,2),0FFSET,DPER,MRESW

REAL MINAREA,MAXAREA,AREA,E0,XORIGIN,YORIGIN,KO,MAXD

INTECLR NPNTS,PERND,NODES(200),MOR(200),BIND,NBMX,UNK,LBIAS,GBIAS

77

INTEGER LND(0:200,3),NDL(200,4),NCT(200),MAXEL, IMX,MODE,NRES
INTEGER METHOD,STARTND,STOPND,MINROW,MINEL,MAXROW,NABC(100,3)
CHARACTER*1 CHAR, CHAR1, CHAR2, CHAR3, CHAR4, CHARS
EQUIVALENCE (PSI, P)

COMMON/BLK1/MESH -
COMMON/BLK2/PERND,BIND

COMMON/BLK3/NODES

COMMON/BLI4/LND ,NDL,NCT

COMMON/BLKS5/NDP

COMMON/BLK6 /MOR

COMMON/BLK7 /MINAREA ,MINROW ,MINEL,MAXAREA ,MAXROW ,MAXEL,AREA

COMMON/BLK8/A,B,C,P

COMMON/BLK9/CHAR2, CHAR3, CHAR4

OPEN (UNIT = 1, FILE = 'MATRIX DAT' ,STATUS = 'UNKNOWN')
OPEN (UNIT = 2, FILE = PLT DAT', STATUS = 'UNKNOWN)
OPEN (UNIT = 3, FILE = 'INPUT. DAT' ,STATUS = 'OLD")
OPEN (UNIT = 4, FILE = 'TEXT.LBL',STATUS = "UNKNOWN')
OPEN (UNIT = 7, FIIE = RS DAT' ,STATUS = ' UNKNOWN' ,

CACCESS=' SEQUENTIAL FORM— UNFORMATTED)
OPEN (UNIT = 8, FILE = PSI DAT' STATUS "UNKNOWN',
CACCESS=' SEQUENTIAL ,FORM="' FORMATTED)

OPEN (UNIT = 9, FILE = 'ABCP DAT' ,STATUS = " UNKNOWN ')

OPEN (UNIT = 10, FILE = 'BCOND.DAT', STATUS = 'UNKNOWN')

OPEN (UNIT = 11, FILE = 'FMATRIX.DAT',STATUS='UNKNOWN')

OPEN (UNIT = 12, FILE = 'NABC.DAT',STATUS='UNKNOWN')

OPEN (UNIT = 13, FILE = 'OUTPUT.DAT',STATUS='UNKNOWN')

OPEN (UNIT = 19, FILE = 'ABRMAT.DAT',STATUS='UNKNOWN')

OPEN (UNIT = 20, FILE = 'DISPLA.DAT',STATUS='UNKNOWN') .
OPEN (UNIT = 30, FILE = 'U.DAT',STATUS='UNKNOWN')

OPEN (UNIT = 40, FILE = 'F3.DAT',STATUS='UNKNOWN')

MINAREA = 999999.9 -
MAXAREA = -999999.9

CALL IO(NPNTS,MRES,METHOD,STARTND,STOPND,OFFSET,ALPHA,BETA,BCOND,
CEO,CHAR1 ,MODE,XORIGIN, YORIGIN,CHARS ,DPER,KO,NRES ,MRESW, LBIAS,GBIAS
C,MAXD)

CALL ROTATE(NPNTS,METHOD,STARTND,STOPND)

CALL BOUND(MRES ,NPNTS,METHOD,STOPND)

CALL NORMAL

CALL NODSET(METHOD,NABC,NBMX,UNK)

PAUSE 'PLEASE PRESS ENTER TO CONTINUE, OR CTRL BREAK TO ABORT!'

CALL LOADER(BCOND,OFFSET,ALPHA,BETA,NABC,IMX,NBMX,E0,SURBC,CHAR1,
CLINE ,MODE,XORIGIN,YORIGIN,SVEC,CHARS)

CALL SWEEP(IMX,NABC,SURBC,LINE,CHAR1,U,BCOND,PSI,ANS,CHARS)

CALL SAVE(BCOND,ANS,U,OFFSET,PERND,CHARS5 ,DPER,K0,X0ORIGIN,YORIGIN,
CNRES ,MRESW,LBIAS ,GBIAS ,MAXD)

CLOSE(1)
CLCSE(2) -
CLOSE(3)
CLOSE(4)
CLOSE(7)
CLOSE(8)

78

aaoaoaoaon

CLOSE(9)

CLOSE(10)
CLOSE(11)
CLOSE(12)
CLOSE(13)
CLOSE(19)
CLOSE(20)
CLOSE(30)
CLOSE(40)

STOP
END

SUBROUTINE IO(NPNTS,MRES,METHOD,STARTND,STOPND,DIST,ALPHA,BETA,
CBCOND,EO0,CHAR1 ,MODE ,XORIGIN,YORIGIN,CHARS ,DPER,KO ,NRES ,MRESW,
CLBIAS,GBIAS,MAXD)

THIS SUBROUTINE READS IN THE INPUT PARAMETERS
AND SURFACE DATA POINTS. THESE POINTS CAN BE
IN EITHER POLAR OR RECTANGULAR FORM.

COMPLEX ALPHA,BETA,BCOND(100)

REAL A,B,PI,XORIGIN,YORIGIN,EO0,KO0,F0,SFAC,DD

REAL MESH(O: 200,5) ,MRES, THETA,RADIUS,DIST,C, LAMBDA ,MRESW

REAL DISTW,DPER,MAXD

INTEGER I,II,J,K,NPNTS,RES,METHOD,STARTND,STOPND,MODE ,NRES,LBIAS
INTEGER GBIAS

CHARACTER*1 CHAR,CHAR1,CHAR2,CHAR3,CHAR4,CHARS

CHARACTER*12 NAME

COMMON/BLK1/MESH
COMMON/BLK9/CHAR2, CHAR3, CHAR4

C = 2.997925E+08
PI = 4. 0*ATAN(1.0)
READ(3,1070) NAME
READ(3,1000) CHAR
READ(3,1000) CHAR2
READ(3,1000) CHAR3
READ(3,1000) CHAR4
READ(3,1000) CHARS
READ(3,%*) MRESW
READ(3,%*) DISTW
READ(3,”) DPER
READ(3,*) LBIAS
READ(3,*) GBIAS
READ(3,%*) MAXD
READ(3,*) RES
READ(3,*) NRES
READ(3,*) METHOD
READ(3,*) STARTND
READ(3,*) STOPND
READ(3,%*) XORIGIN
READ(3,*) YORIGIN
READ(3,*) DD
READ(3,*) A

79

READ(3,*) B

ALPHA = CMPLX(A,B)
READ(3,%) A
READ(3,%) B

BETA = CMPLX(A,B)
READ(3,1000) CHAR1

IF(METHOD. EQ. 1) THEN

WRITE(6,*) 'METHOD 1 SELECTED
ELSEIF(METHOD. EQ. 2) THEN

WRITE(6,*) "METHOD 2 SELECTED
ELSEIF(METHOD. EQ. 3) THEN

WRITE(6,*) "METHOD 3 SELECTED
ELSEIF(METHOD. EQ. 4) THEN

WRITE(6,%*) 'METHOD 4 SELECTED
ELSEIF(METHOD. EQ. 5) THEN

WRITE(6,*) '"METHOD 5 SELECTED
ELSE

WRITE{6,*) '"METHOD 6 SELECTED
ENDIF

OBJECT BISECTION '

CONNECTED NODES '

SELECTED STOP NODE '
CONNECTED/SELECTED STOP NODE'
EQUALLY SPACED CONNECTD NODE'
SELECTED START AND STOP NODE'

IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. 'i')) THEN

WRITE(6,*) 'INTERMEDIATE MATRIX FILE GENERATION - ENABLED'
ELSE

WRITE(6,*) 'INTERMEDIATE MATRIX FILE GENERATION - DISABLED'
ENDIF
IF((CHAR3.EQ. 'D'). OR. (CHAR3.EQ. 'd')) THEN

WRITE(6,*) 'DISSPLA FORTRAN PROGRAM GENERATION - ENABLED'
ELSE

WRITE(6,*) 'DISSPLA FORTRAN PROGRAM GENERATION - DISABLED'

ENDIF

IF((CHAR4.EQ. 'U'). OR. (CHAR4.EQ. 'u')) THEN

WRITE(6,%) 'UNIFORM MATERIAL SPECIFIED (NO INTERFACE) '
ELSE

WRITE(6,*) '"MATERIAL SPECIFIED WITH A VACUUM AROUND OBJECT'
ENDIF

IF((CHARS.EQ. 'M'). OR. (CHAR5.EQ. 'm"')) THEN

WRITE(6,*) "MESH GENERATION <<< ONLY >>> - ENABLED'
ELSE

WRITE(6,*) '"MESH GENERATION AND FE PROGRAM - ENABLED'
ENDIF
IF((CHAR1.EQ. 'P’).OR. (CHARL.EQ. 'p')) THEN

READ(3,*) EO

READ(3,*) FO

LAMBDA = C/FO

KO = 2*PI/LAMBDA

WRITE(6,*) 'PLANEWAVE BOUNDARY VALUE GENERATION - ENABLED'

WRITE(6,*) 'AMPLITUDE(EO) = ', EO0,', WAVENUMBER(KO) = ',KO

WRITE(6,*) 'WAVELENGTH = ',LAMBDA,', FREQUENCY(F0) = ',FO

ELSEIF((CHARL.EQ. 'C').OR. (CHAR1.EQ. ‘c')) THEN
READ(3,*) EO
READ(3,*) MODE

80

aaa wn

A0

20

READ(3,*) FO
LAMBDA = C/FO
KO = 2*%PI*LAMBDA
WRITE(6,*) 'CLYINRICAL BOUNDARY VALUE GENERATION - ENABLED'
WRITE(6,*) 'AMPLITUDE(EO) = ', EO,', MODE NUMBER = ', MODE
WRITE(6,%) ' WAVELENGTH = ',LAMBDA,', FREQUENCY(F0) = ',F0
ELSE
WRITE(6,*) 'ALL BOUNDARY VALUE GENERATION METHODS - DISABLED'
DO 5, K = 1, RES
READ(3,%) BCOND(K)
CONTINUE
ENDIF

POLAR COORDINATE INPUT ROUTINE

IF((CHAR.EQ. 'P').OR. (CHAR.EQ. 'p')) THEN
READ(3,1020) THETA, RADIUS
SFAC = 2%PI*DD/RADIUS
MESH(0,4) = (RADIUS*SIN(THETA*PI/180.0))*SFAC + XORIGIN
MESH(0,5) = (RADIUS*COS(THETA*PI/180.0))*SFAC + YORIGIN
DO 10, J = 1, RES-1
READ(3,1020) THETA, RADIUS

MESH(J,4) = (RADIUS*SIN(THETA*PI/180.0))*SFAC + XORIGIN
MESH(J,5) = (RADIUS*COS(THETA*PI/180.0))*SFAC + YORIGIN
CONTINUE

WRITE(6,*) 'POLAR COCRDINATE INPUT SELECTED '
RECTANGULAR COORDINATE INPUT ROUTINE

ELSEIF((CHAR.EQ. 'R').OR. (CHAR.EQ. 'r')) THEN
READ(3,1010) MESH(0,4), MESH(0,5)
SFAC = 2*PI*DD/((MESH(0,4)**2+MESH(0,5)%*%2)%*0,5)
MESH(0,4) = MESH(0,4)*SFAC + XORIGIN
MESH(0,5) = MESH(0,5)*SFAC + YORIGIN
DO 20, J =1, RES-1
READ(3,1010) MESH(J,4), MESH(J,5)
MESH(J,4) = MESH(J,4)*SFAC + XORIGIN
MESH(J,5) = MESH(J,5)*SFAC + YORIGIN
CONTINUE
WRITE(6,%) 'RECTANGULAR COORDINATE INPUT SELECTED '
ELSE
WRITE(6,%*) 'INPUT DATA FILE COORDINATE SPECIFICATION ERROR'
ENDIF
WRITE(*,1100) DD, SFAC

MESH(RES,4) = MESH(0,4)
MESH(RES,5) = MESH(O,5)
NPNTS = J

WRITE(6,%*) 'NODE AT 0 DEGREES (X/Y COORDINATES) = ', MESH(O0,4),
CMESH(0,5)

WRITE(6,*) 'X, Y OFFSETS = ', XORIGIN, YORIGIN

WRITE(6,1090) ALPHA, BETA

MRES = MRESW#*2*PI

WRITE(6,*) 'MESH RESOLUTION

DIST = DISTW#2%PI

WRITE(6,%) 'CONTOUR DISTANCE
WRITE(6,*) 'NUMBER OF DATA POINTS

' MRESW,' WAVELENGTHS'

' ,DISTW,' WAVELENGTHS'
' ,RES

nn

81

IF((METHOD. EQ. 3). OR. (METHOD. EQ. 6)) THEN

WRITE(6,*) 'START NODE = ' STARTND
ENDIFWRITE(s,*) 'STOP NODE = ' STOPND
WRITE(4,*) '17'

WRITE(4,*) '10 1 0 130
c 55 1'
WRITE(&4,%) '2 1 0 365
c 80 1’
WRITE(4,*) '2 1 0 365
C 90 2!
WRITE(4,*) '2 1 0 365
C 100 1!
WRITE(4,*) '2 ' 1 0 365
C 110 2
WRITE(4,%*) '2 ' 1 0 365
c 120 1
WRITE(4,*) '2 1 0 365
C 130 2!
WRITE(&4,%*) '2 1 0 365
C 140 1'
WRITE(&4,*) '2 1 0 365
c 150 2'
WRITE(4,*) '2 1 0 365
C 160 1'
WRITE(4,%) '2 1 0 365
C 170 2!
WRITE(4,*) '2 1 0 365
C 180 1'
WRITE(4,%) '2 1 0 365
c 190 2'
WRITE(4,*) '2 1 0 365
C 200 1’
WRITE(4,*) '2 1 0 365
c 210 2'
WRITE(4,*) '2 1 0 365
C 220 1'
WRITE(4,%) '2 1 0 365
c 230 2!

WRITE(4,1070) NAME
WRITE(4,*) 'L’

WRITE(4,*) 'Mesh Resolution'
WRITE(4,*) 'L’

WRITE(4,1030) MRESW
WRITE(4,*) 'L'

WRITE(4,*) 'Contour Distance'
WRITE(4,*) 'L’

WRITE(4,1030) DISTW
WRITE(4,*) 'L’

WRITE(4,*) 'Number of Points'
WRITE(4,*) 'L’ -
WRITE(4,1040) RES
WRITE(4,*) 'L’
WRITE(4,*) 'Method’
WRITE(4,*) 'L’

82

WRITE(4,1040)'Method
WRITE(4,%) 'L
WRITE(4,%) :X'Origin'
WRITE(4,*) 'L
WRITE(4,1059)'XORIGIN
WRITE(4,*) 'L
WRITE(4,*) 'Y Origin'
WRITE(4,*) 'L’
WRITE(&,IOS?)'YORIGIN
WRITE(4,*) 'L
WRITE(4,*) 'Alpha'
WRITE(4,*) 'L'
WRITE(4,1060) ALPHA
WRITE(4,*) 'L’
WRITE(4,*) 'Beta'
WRITE(4,*) 'L'
WRITE(4,1060) BETA
WRITE(4,%*) 'L’
WRITE(4,%) '9'

DO 30, II = 0, NPNTS-1
WRITE(2,*) MESH(II,4), MESH(II,S5)
30 CONTINUE
WRITE(2,*) MESH(0,4), MESH(0,5)
WRITE(2,%*) '999992, 999991 '
WRITE(2,*) '999990, 999990 '
C
1000 FORMAT(A1)
1010 FORMAT{10X,F12.8,4X,F12.8)
1020 FORMAT(3X,I3,5X,F12.8)
1030 FORMAT(FS. 6)
1040 FORMAT(14)
1050 FORMAT(1X,F8. 6)
1060 FORMAT(1X,F8.6,' - J',F8.6)
1070 FORMAT(A12)
1080 FORMAT(/)
1090 FORMAT(1X,'ALPHA = ',F8.4,2X,'+ J ',F€.4,", BETA = 'F8.4,2X,'+ J

c ',F6.4)
1100 FOﬁMAT(lX,'DESIRED DISTANGE = ',F8.5,', SCALE FACTOR = ',F8.5)
RETURN
END
o
o
SUBROUTINE ROTATE(NPNTS,METHOD,STARTND,STOPND)
c
C THIS SUBROUTINE ROTATES THE SURFACE POINTS TO ALLOW FOR
o A REARRANGING OF THE START NODE (FIRST DATA POINT).
c
REAL MESH(0:200,5)
INTEGER I, NPNTS, METHOD, STARTND, STOPND
COMMON/BLK1/MESH
c
C

IF(METHOD. EQ. 6) THEN
DO 10, I = 0, NPNTS-1
MESH(I,1) = MESH(I,4)

83

MESH(I,2) = MESH(I,S)
10 CONTINUE

DO 20, I = STARTND-1, NPNTS-1
MESH(I-(STARTND-1),4) = MESH(I,1)
MESH(I-(STARTND-1),5) = MESH(I,2)

20 CONTINUE

DO 30, I = 1, STARTND

MESH(I+NPNTS-STARTND,4) = MESH(I-1,1)
MESH(I+NPNTS~-STARTND,5) = MESH(I-1,2)
30 CONTINUE
ENDIF

STOPND = STOPND - STARTND + 1

IF(STOPND. GT. NPNTS) THEN
STOPND = STOPND - NPNTS

ELSEIF(STOPND. LT. 0) THEN
STOPND = NPNTS + STOPND +1

ELSEIF(STOPND. EQ. 0) THEN
STOPND = 1

ELSE
STOPND = STOPND

ENDIF

RETURN

END

SUBROUTINE BOUND(MRES ,NPNTS,METHOD,STOPND)
THIS SUBROUTINE REORDERS THE THE SURFACE POINTS

BASED ON THE DESIRED INPUT MESH RESOLU INN. THE
OBJECT IS ALSO BISECTED.

aaaoaa an

REAL PERIM, DIST, MESH(O0:200,5), TEMP, TEMP1, MRES, MRESN, MRESLW
REAL MRESNL, MRESNR, TEMPR, TEMPL, DISTB, DZ, PI, MRESW, MRESRW
INTEGER I, PERND, BIND, NPNTS,STARTND, STOPND, METHOD, NEWND, J
INTEGER M, L

COMMON/BLK1/MESH

COMMON/BLKZ2/PERND,BIND

PI = 4.0%ATAN(1.0)
PERIM = 0.0

DO 10, I = 0, NPNTS-1
DIST = SQRT((MESH(I+1,4)-MESH(I,4))**2+(MESH(I+1,5) -
c MESH(I,5))*%2)
PERIM = PERIM + DIST
MESH(I+1,3) = PERIM
10 CONTINUE
WRITE(6,*) 'PERIMETER LENGTH = ', PERIM
PERND = NINT(PERIM/MRES - AMOD(PERIM/MRES,2.0))
BIND = (PERND - 2)/2
WRITE(6,*) 'PERIMETER NODE # = ', PERND
MRESW = MRES/(2*PI)
WRITE(6,*) 'YOUR REQUESTED MESH RESOLUTION OF ',MRESW
IF((METHOD. EQ. 3). OR. (METHOD. EQ. 4). OR. (METHOD. EQ. 5). OR.

84

(oNoNo]

20

40

50

C(METHOD. EQ. 6)) THEN

ELSE

MRESNL
MRESIW

(PERIM -MESH(STOPND-1,3))/FLOAT(PERND/2)
MRESNL/(2%PI)

MRESNR = MESH(STOPND-1,3)/FLOAT(PERND/2)

MRESRW = MRESNR/(2%*PI)

WRITE(6,*) '. . . HAS BEEN MODIFIED TO . . . '
WRITE(6,*) 'LEFT SIDE OF SEGMENT . . . ',MRESLW
WRITE(6,%) 'RIGHT SIDE OF SEGMENT . . . ',MRESRW

MRESN = PERIM/FLOAT(PERND)
MRESW = MRESN/(2*PI)
WRITE(6,*) '. . . HAS BEEN MODIFIED TO . . . ',MRESW

ENDIF

PERIMETER NODE INITIALIZATION (X,Y COORD)

IF((METHOD. EQ. 1). OR. (METHOD. EQ. 2} THEN

ELSE

DO 30, I = 0, PERND-1
TEMP = MRESN*I
J=1
IF(TEMP. GT. MESH(J,3)) THEN
J=J+1
GOTO 20
ENDIF
TEMP1 = (TEMP - MESH(J-1,3))/(SQRT((MESH(J,4)-MESH(J-1,4))
*%2 + (MESH(J,5) - MESH(J-1,5))%%2))
MESH(I+1,1) = MESH(J-1,4) + TEMP1*(MESH(J,4)-MESH(J-1,4))
MESH(I+1,2) = MESH(J-1,5) + TEMP1*(MESH(J,5)-MESH(J-1,5))
CONTINUE

po 60, I = 0, PERND-1
TEMPR = MRESNR*I
TEMPL = PERIM - MRESNL*(PERND - I)
IF(TEMPR. LE. MESH(STOPND-1,3)) THEN
J=1
IF(TEMPR. GT. MESH(J,3)) THEN
J=J+1
GOTO 40
ENDIF
TEMP1 = (TEMPR - MESH(J-1,3))/(SQRT((MESH(J,4)-MESH(J-1,4))
*%2 + (MESH(J,5) - MESH(J-1,5))%¥*2))
MESH(I+1,1) = MESH(J-1,4) + TEMP1*(MESH(J,4)-MESH(J-1,4))
MESH(I+1,2) = MESH(J-1,5) + TEMP1*(MESH(J,5)-MESH(J-1,5))
ELSE
J=1
IF(TEMPL. GT. MESH(J,3)) THEN
J=J+1
GOTO 50
ENDIF
TEMP1 = (TEMPL - MESH(J-1,3))/(SQRT((MESH(J,4)-MESH(J-1,4))
*%*2 + (MESH(J,5) - MESH(J-1,5))%*%2))
MESH(I+1,1) = ME.ii(J-1,4) + TEMP1*(MESH(J,&4)-MESH(J-1,4))
MESH(I+1,2) = MESH(J-1,5) + TEMP1*(MESH(J,5)-MESH(J-1,5))

85

ENDIF
60 CONTINUE
ENDIF

BISECTION NODE INITIALIZATION (X,Y COORD)

aQaaoaoa

WRITE(6,%*) 'BISECTION NODE i = ',BIND
IF((METHOD. EQ. 1). OR. (METHOD. EQ. 3)) THEN
DO 70, I =1, BIND
TEMP1 = I/FLOAT(BIND + 1)
MESH(I+PERND,1) = MESH(1,1) + TEMP1#(MESH(BIND+2,1) -
CMESH(1,1))
MESH(I+PERND,2) = MESH(1,2) + TEMP1%*(MESH(BIND+2,2) -
CMESH(1,2))
70 CONTINUE
C
ELSE
DO 80, I = 2, PERND+1
MESH(PERND+I-1,1) = MESH(PERND+2-I,1) + 0.5%(MESH(I,1) -
C MESH(PERND+2-1,1))
MESH(PERND+I-~1,2) = MESH(PERND+2-1,2) + J.S5%(MESH(I,2) -
C MESH(PERND+2-1,2))
80 CONTINUE

ENDIF

IF((METHOD. EQ. 5). OR. (METHOD. EQ. 6)) THEN
DO 90, M = 1, BIND
MESH(M,4) = MESH(PERND+M,1)
MESH(M,5) = MESH(PERND+M,2)
90 CONTINUE
DISTB = 0.0
MESH(0,3) = 0.0
DO 100, L = 1, BIND+1
IF(L.EQ. 1) THEN
DIST = SQRT((MESH(1,1) - MESH(1,&4))%¥*2 +
C(MESH(1,2) - MESH(1,5))%%2)
ELSEIF(L. EQ. BIND+1) THEN
DIST = SQRT((MESH(BIND,4) - MESH(BIND+2,1))
C**2 + (MESH(BIND,5) - MESH(BIND+2,2))%*%*2)
ELSE
DIST = SQRT((MESH(L-1,4) - MESH(L,4))
C¥*2 + (MESH(L-1,5) - MESH(L,5))**2)
ENDIF
DISTB = DISTB + DIST
MESH(L,3) = DiSTB
100 CONTINUE
DZ = DISTB/(BIND + 1.0)
WRITE(6,*) 'DZ SPACING ', DZ

]

DO 120, I

TEMP

J=1

110 IF(TEMP. GT. MESH(J,3)) THEN

1, BIND
DZ*I

86

J=J+1
GOTO 110
ENDIF
IF(J.IQ. 1) THEN
TEMP1 = TEMP/(SQRT((MESH(1,1) ~ MESH(1,4))**2 +

C (MESH(1,2) - MESH(1,5))%*%2))
MESH(PERND+I,1) = MESH(1,1) + TEMP1*(MESK(1,4)
C - MESH(1,1))
MESH(PERND+I,2) = MESH(1,2) + TEMP1*(MESH(1,5)
C - MESH(1,2))
ELSE

TEMP1 = (TEMP - MESH(J-1,3))/(SQRT((MESH(J,&4) -
o MESH(J-1,4))**%2 + (MESH(J,5) - MESH(J-1,5))*%2))

MESH(PERND+I,1) = MESH(J-1,4) + TEMP1*(MESH(J,4)
C - MESH(J-1,4))
MESH(PERND+I,2)
- MESH(J-1,5))

ENDIF
120 CONTINUE

ENDIF

RETURN

END

N+

MESH(J-1,5) + TEMP1*(MESH(J,S)

Q

an

SUBROUTINE NORMAL

THIS ROUTINE COMPUTES THE X AND Y COMPONENTS
OF THE OUTWARD UNIT NORMAL AT EACH SURFACE POINT.

aaoaoaQ

REAL DR, DZ, DL, MESH(O:200,5)
INTEGER I, PERND, BIND
COMMON/BLK1/MESH
COMMON/BLK2/PERND,BIND
DO 10, I = 1, PERND
IF(I.EQ.1) THEN
DR = MESH(2,1) - MESH(PERND,1)
DZ = MESH(2,2) -~ MESH(PERND,2)
DL = SQRT(DR*DR+DZ*DZ)
MESH(1,3)=-DZ/DL
MESH(1,4)=DR/DL
ELSEIF(I.EQ. PERND) THEN
DR = MESH(1,1) - MESH(PERND-1,1)
DZ = MESH(1,2) - MESH(PERND-1,2)
DL = SQRT(DR*DR+DZ*DZ)
MESH(PERND, 3)=-DZ/DL
MESH(PERND, 4)=DR/DL
ELSE
DR

nnun

MESH(I+1,1) - MESH(I-1,1)
DZ = MESH(I1+1,2)- MESH(I-1,2)
DL = SQRT(DR*DR+DZ*DZ)
MESH(I,3)=-DZ/DL
MESH(I,4)=DR/DL

ENDIF
10 CONTINUE
RETURN

87

_—

aAONONDO0O0 00

10

END

SUBROUTINE NODSET(METHOD,NABC NBMX ,UNK)

THIS ROUTINE USES A TWO-SWEEP TECKNIQUE Tu COMPUTE THE
NUMBER OF NODES ALONG EACH NODE KON, 1. A MISH
ORIENTATION ATTRIBUTE IS ALSO SIT.

SET Z-AXIS SPACING AND ENDPOINT NODELS

REAL DZ, ZZ, MESH(0:200,3), D, DIST, DISTS®

INTEGER 1, J, NODES(200), MOR(200), PLRND, NOLD, NNIW, BIND
INTEGER L, METHOD, NABC(100,3), NBXMX, UNX

CHARACTER®] CHARZ, CMAR}, CHARE

COMMON/BLK) /MESH

COMMON/BLK2/PERND,BIND

COMMON/BLKI/NODES

COMMON/BLK6/MOR

COMMON/BLKI/CHARZ ,CHARDY ,CHARS

UNK = 0
NBMX = -99
IF((METHOD. EQ. 1). OR. (METHOD. £Q. 3)) THEN
BZ = (SQRT((MESH(1,2) - MESH(BINDe2 2))*®]
C (MESH(1,1) - MESH(BIND42,1))®*2))/(BIND ¢ | O)
ELSE
DISTB = 0.0
DO 10, L = 1, BIND#)
IF(L.EQ. 1) TMEN
DIST = SQRT((MESH(1,1) - MESH(PERNDe]1,1))%*2 «
C(MESH(1,2) - MESH(PERND+1,2))**2)
ELSEIF(L.EQ. BIND+1) THEN
DIST = SQRT((MESH(PERND#BIND,1) - MESH(EIND4Z,1,,
Ct*y + (MESK(PERND+BIND,2) - MESH(BIND+2,2))**2)
ELSE
DIST = SQRT((MESH(PERND#I-1,1) - MESH(PERND41.1))
C**2 + (MESH(PERND+I-1,2) - MESH(PERND+1,2))**2)
ENDIF
DISTB = DISTB + DIST
CONTINUE
DZ = DISTB/(BIND + 1.0)
ENDIF
WRITE(6,*) 'BISECTION SPACING = ' DZ
NODES(1) = 2
NODES(2) = 3
NODES(BIND+2) = 2
NODES(PERND+1) = 2
NODES(PERND) = 3
PERFORMING FORWARD-SWEEP
DO 20 I = 3, BIND+1
NOLD = NODES(I-1)
D = SQRT((MESH(I,1) - MESH(I4PERND-1,1))%**2 +
c (MESH(I1,2)-MESH(I+PERND-1,2))**2)
NNEW = INT(0.1 + D/DZ) + 2
NODES(I) = NNEW

88

aaon

40

50

60

70

IF (NNEW.GT.NOLD+1) NODES(I)

IF (NNEW. LT.NOLD-1) NODES(1I)

IF (NODES(I).LT.3) NODES(I) = 3
CONTINUE

[
[y

NOLD
NOLD

J = PERND + 2
DO 30, I = PERND-1, BIND+3, -1
NOLD = NODES(I+1)
D = SQRT((MESH(I,1) - MESH(J,1))**2 +

c (MESH(I,2)-MESH(J,2))%**2)

NNEW = INT(0.1 + D/DZ) + 2
NODES(1) = NNEW
IF (NNEW. GT.NOLD+1) NODES(I) = NOLD
IF (NNEW. LT.NOLD-1) NODES(I) = NOLD
IF (NODES(I).LT.3) NODES(I) = 3
J=J 4+

CONTINUE

¢+
]

BACK-SWEEP TO RESET LAST NODES IF NEEDED

I = BIND + 2

[=] -1

IF (1.EQ.2) GO TG S0

IF (NODES(I).LE.NODES(Ir1)+1) GO 10 60

NODES(I) = NODES(I+1) + 1

GO TO 40

CONTINUE

WRITE(6,*) ' PROGRAM ABORTED IN NODSET RIGHT SIDE BACKSWEEP '
STOP

CONTINUE

I = BIND + 2

I =14+

IF (I.EQ.PERND) GO TO 80

IF (NODES(I).LE.NODES(I-1)+1) GO TO 90

NODES(I) = NODES(I-1) + 1

GO TO 70

CONTINUE

WRITE(6,*) ' PROGRAM ABORTED IN NODSET LEFT HALF BACKSWEEP '
sTOP

CONTINUE

FORWARD SWEEP TO LOAD MESH ORIENTATION ARRAY, MOR

MOR(1) = 0
MOR(BIND+2) = 0
MOR(PERND+1) = 0

DO 100, I=2, BIND+1

IF(NODES(I+1). GT. NODES(I1)) THEN
MOR(I) = 0

ELSEIF(NODES(I+1).LT.NODES(I)) THEN
MOR(I) =1

ELSE
IF(NODES(I+2).GT.NODES(I)) THEN

MOR(I) = 0

89

100

110

120

130

ELSEIF(NODES(I+2).LT.NODES(I)) THEN
MOR(I) =1
ELSE
MOR(I) = MOR(I-1)
ENDIF
ENDIF
CONTINUE

DO 110, I = PERND, BIND+3, -1
IF(NODES(I-1).GT.NODES(I)) THEN

MOR(I) = O
ELSEIF(NODES(I~1).LT.NODES(I)) THEN
MOR(I) =1
ELSE
IF(NODES(I-2).GT.NODES(I)) THEN
MOR(I) = 0
ELSEIF(NODES(I-2).LT.NODES(I)) THEN
MOR(I) = 1
ELSE
MOR(I) = MOR(I+1)
ENDIF
ENDIF
CONTINUE

LOAD NABC ARRAY
DO 120, I = 1, BIND+2
IF(I.EQ.1) THEN

NABC(1,1) = 0
NABC(1,2) =1
NABC(1,3) = 3

ELSEIF(I.LE. BIND) THEN

NABC(I,1) = NABC(I-1,2)

NABC(I,2) = NABC(I-1,3)

NABC(1,3) = NODES(PERND-I+1) + NODES(I+1) - 3
ELSEIF(I.EQ. BIND+1) THEN

NABC(I,1) = NABC(I-1,2)
NABC(I,2) = NABC(I-1,3)
NABC(I,3) = 1

ELSE
NABC(I,1) = NABC(I-1,2)
NABC(I,2) = NABC(I-1,3)
NABC(I,3) = 0

ENDIF

CONTINUE

DO 130, I = 1, BIND+2
IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. 'i')) THEN
WRITE(12,*) I,NABC(I,1),NABC(I,2),NABC(I,3)
ENDIF
UNK = UNK 4 NABC(I,2)
IF(NABC(I,2). GE. NBMX) THEN
NBMX = NABC(I,2)

ENDIF
CONTINUE
WRITE(*,*) 'MAXIMUM UNKNOWN WIDTH = ',NBMX
WRITE(*,*) 'TOTAL # OF UNKNOWNS = ', UNK

90

OO0 OO0

10
20

(s EeXeNeNgl

WRITE(*,*) ' '
RETURN
IND

SUBROUTINE SORTER(!,LEL,LAND)

THIS SUBROUTINE GENERATES A MESH ROW FOR THE INPUT ROW I.
LOADING OF THE LOCAL NODE-ELEMENT CONNECTION MATRICES LND AND
NDL FOR ELEMENTS BETWEEN ! AND I+)} NODE ROWS. REFERENCE IS TO
THE LEFT SIDE OF THE Ith ROW OR VECTOR.

INTEGER NODES(200), MOR(200), LND(0:200,3), NDL(200,4), NCT(200)
INTEGER 1, PERND, BIND, LEL, LAND, J, K, LL, JJ, NN, KK, N, N1, N2
INTEGER NDMX, NDS1L, NDS2L, NDSIR, NDS2R, LMX
COMMON/BLK2/PERND, BIND
COMMON/BLK)/NODES
COMMON/BLK&/ LND ,NDL ,NCT
COMMON/BLK6/MOR
IF(1.EQ. BIND+2) THEN

WRITE(6,*) 'ERRORED OUT IN SUBROUTINE SORTER, YOU ATTEMPTED'

WRITE(6,*) ' TO CALL SORTER WITH 1 = BIND + 2!'
WRITE(6,*) ' THIS ROW HAS NO ELEMENTS'
RETURN

ENDIF

DO 20, J = 0, 200
DO 10, XK= 1,)
IND(J.,K) = 0
CONTINUE
CONTINUE
NDMX = 200
NDSIL = NODES(PERND+2-1)
NDS2L = NQDES(PERND+1-1)
NDSIR = NODES(I)
NDS2R = NODES(I+1)
IMX = NDS1L + NDSIR 4 NDS2L + NDS2R - 2

LEFTSIDE OF THE BISECTION SEGMENT
TOP ROW

IF(I.EQ. 1) THEN
LND(1,1) =
ILND(1,2) =
IND(1,3) =
IND(2,1)
IND(2,2)
LND(2,3)
IND(3,1)
LND(3,2)
IND(3,3)
LND(4,1)
LND(4,2)
LND(4,3)

PR WVMERNWVN S =W

91

(@] aaa

30
c

LND(5,1)
LND(5,2)
LND(5,3)
LND(6,1)
IND(6,2)
ILND(6,3)
IEL = 6
LAND = 7

NN O

BOTTOM ROW

ELSEIF(I.EQ. BIND+1) THEN
IND(1,1) =
IND(1,2)
IND(1,3)
IND(2,1)
IND(2,2)
IND(2,3)
LND(3,1)
IND(3,2)
IND(3,3)
ILND(4,1)
IND(4,2)
IND(4,3)
LND(5,1)
IND(5,2)
IND(5,3)
LND(6,1)
IND(6,2)
LND(6,3)
LEL =
LAND =

| O O I I T T I T I T T I IO 1 I |
VMOAENPOAPRPRYNLONYNWUNCSNNO=ON

EQUAL NODE NUMBERS

ELSEIF(NDS1L. EQ. NDS2L) THEN
FOR MOR = 0 (LH ORIENTATION)
IF(MOR(PERND+2- I) EQ.0) THEN
IND(1,1)
LND(1,2)
IND(1.3)
IND(2,1)
LND(2,2)
IND(2,3) NDSlL + NDSIR
DO 40, N = 1, NDS1L-2
N1 = 2#N + 1
N2 = N1+ 1
DO 30, K=1, 3
LND(N1,K) =
LND(N2,K) = LND(2,
CONTINUE
CONTINUE
FOR MOR = 1 (RH ORIENTATION)
ELSE
IND(1,1)
LND(1,2)

NDSlL + NDS1R
2
NDSlL + NDSI1R + 1

NDS1L + NDS1R
1

92

70
80

90
160

IND(1,3) = KDSIL + NDSIR + 1
IND(2,1) = 2
IND(2,2) = NDSIL ¢ NUSIR + |
IND(2,3) 1
DO 60, N =)}, NDS1L-2
Nl = 2*N +)
N2 = N] +)
DO SO, K= 1, 3
IND(N1,K) = LND(1,
LND(N2,K) = LND(2,
CONTINUE
CONTINUE
ENDIF

LEFTHAND MFSH ORIENTATION

ELSEIF(MOR(PERND+2-1). EQ. 0) THEN
IND(1,1) = NDSIL + NDSIR + 1
IND(1,2) =}

IND(1,3) = NDSIL + NDSIR
IND(0,1) = 0

LND(0,2)
IND(0,3) =

DO 80, N = |, NDSIL-1
N1 = 2#N
NZ = NL +]

DO 70, K= 1, 3
LND(N1,K) = LND(O,K) + N
LND(N2,K) = LND(1,K) 4+ N
CONTINUE
CONTINUE

NDSLIL + NDSIR
1

RIGHTHAND MESH ORIENTATION

ELSE
LND(1,1)
LND(1,2)
IND(1,3)
LND(O,1)
LND(0,2)
IND(0,3) = NDS1L + NDSIR
DO 100, N = 1, NDS1L-2
N1 = 2»N
N2 = N1 + 1
DO 90, K= 1, 3
LND(N1,K) = LND(O,K) + N
LND(N2,K) = LND(1,K) + N
CONTINUE
CONTINUE
ENDIF

”

NDS1IL + NDSI1R

1

NDS1L + NDSIR - 1
1

IF((I.EQ.1).0R.(1.EQ.BIND+1)) THEN
GOTO 230
ENDIF

9

K) « N
K) ¢+ N

(@] aQaaaaoaooaon

110
120

130
140

LEL = N2

RIGHTSIDE OF THE BISECTION SEGMENT

EQUAL NODE NUMBERS

IF(NDS1R. EQ. NDS2R) THEN
MOR = 0 (LH ORIENTATION)
IF(MOR(I).EQ.0) THEN

LND(LEL+1,1) = NDS1L + NDS1R + NDS2L - 1
IND(LEL+1,2) = NDS1L
IND(LEL+1,3) = NDS1L + NDSIR + NDS2L
IND(LEL+2,1) = NDS1L + 1
LND(LEL+2,2) = NDS1L + NDS1R + NDS2L
LND(LEL+2,3) = NDS1L
DO 120, N = 1, NDSIR-2
N1 = 2*N + 1 + LEL
N2 = N1 + 1
DO 110, K= 1, 3
LND(N1,K) = IND(LEL+1,K) + N
LND(N2,K) = IND(LEL+2,K) + N
CONTINUE
CONTINUE
LEL = N2
LAND = LMX
MOR = 1 (RH ORIENTATION)
ELSE
LND(LEL+1,1) = NDS1L
LND(LEL+1,2) = NDS1L + NDS1R + NDS2L - 1
IND(LEL+1,3) = NDSIL + 1
LND(LEL+2,1) = NDS1L + NDSI1R + NDS2L
LND(LEL+2,2) = NDS1L + 1
IND(LEL+2,3) = NDSIL + NDS1R + NDS2L - 1
DO 140, N = 1, NDS1R-2
N1 = 2*N + 1 + LEL
N2 = N1 + 1
DO 130, K= 1, 3
LND(N1,K) = LND(LEL+1,K) + N
LND(N2,K) = LND(LEL+2,K) + N
CONTINUE
CONTINUE
ENDIF
LEL = N2
" LAND = IMX

LEFT HAND MESH ORIENTATION
ELSEIF(MOR(I).EQ.0) THEN

IND(LEL+1,1) = NDS1L + NDS1R + NDS2L - 1
LND(LEL+1,2) = NDS1L

LND(LEL+1,3) = NDS1L + NDSIR + NDS2L
LND(LEL+2,1) = NDS1L + 1

LND(LEL+2,2) =

NDS1L + NDS1R + NDS2L

94

150
160

170
180

aaQa

190
200

210
220

(S AN NoNeNe] aon

(¥
(=]

IND(LEL+2,3) = NDS1L

DO 160, N = 1, NDS1R-1
N1 = 2*N + LEL + 1
DO 150, K =1, 3
LND(N1,K) =
CONTINUE
CONTINUE

LND(LEL+1,K) + N

DO 180, N = 1, NDS1R-2
N2 = 2*N + LEL + 2
DO 170, K =1, 3
LND(N2,K) = LND(LEL+2,K) + N
CONTINUE
CONTINUE

LEL = N1
LAND = LMX

RIGHT HAND MESH ORIENTATION

ELSE

NDS1L

NDS1L + NDS1R + NDS2L - 1
NDS1L + 1

NDS1L + NDSIR + NDS2L
NDSIL + 1

NDS1L + NDS1R + NDS2L - 1

IND(LEL+1,1)
IND(LEL+1,2)
LND(LEL+1,3)
IND(LEL+2,1)
LND(LEL+2,2)
LND(LEL+2,3)

DO 200, N = 1, NDS1R-2
N1 = 2*N + LEL + 1
DO 190, K = 1,
LND(N1,K)
CONTINUE
CONTINUE

I w

IND(LEL+1,K) + N

DO 220, N = 1, NDS1R-3
N2 = 2*N 4+ LEL + 2
b0 210, K =1, 3
IND(N2,K) =
CONTINUE
CONTINUE

IND(LEL+2,K) + N

LEL = N1
LAND = LMX

ENDIF

ZERCING NDL AND NCT PRIOR TO FILL

DO 250, N = 1, NDMX
NCT(N) = 0
DO 240, K =1, &

95

240
230

NDL(N,K) = 0O
CONTINCE
CONTINUE

SCANNING LND ARRAY TO LOAD NDL

DO 270 LL = 1, LEL
DO 260 JJ =), 3
NN = INDOLL,JD)
NCT(NN) = NCT(NN) ¢)
KK s NCT(N\N)
NDL(NN,KK) = LL
CONTINUE
CONTINUE

END

SUBROUTINE FINDER(I,LAND,DIST)

THIS SUBROUTINE DETERMINES THE (X,Y) COORDINATES OF EACH
NODE IN THE CALLING Ith ROW OR VECTOR MESH.

INTEGER I, J, LAND, PERND, BIND, NODES(200)

REAL MESH(0:200,.5), NDP(200,2), DIST

COMMON/BLK1/MESH

COMMON/BLK2/PERND ,BIND

COMMON/BLK3/NODES

COMMON/BLKS /NDP

+F(I.EQ. 1) THEN .
NDP(1,1) = MESH(1,1)+MESH(1,3)*DIST

NDP(1,2) = MESH(1,2)+MESH(1,4)*DIST

NDP(2,1) = MESH(1,1) .
NDP(2,2) = MESH(1,2)

NDP(3,1) = MESH(PERND,1)+MESH(PERND,3)*DIST

NDP(3,2) = MESH(PERND,2)+MESH(PERND,4)*DIST

NDP(4,1) = MESH(PERND,1)

NDP(4,2) = MESH(PERND,2) .
NDP(5,1) = MESH(PERND+1,1)

NDP(5,2) = MESH(PERND+1,2)

NDP(6,1) = MESH(2,1)

NDP(6,2) = MESH(2,2)

NDP(7,1) = MESH(2,1)+MESH(2,3)*DIST

NDP(7,2) = MESH(2,2)+MESH(2,4)*DIST

ELSEIF(I.EQ. BIND+1) THEN
NDP(1,1) = MESH(BIND+3,1)+MESH(BIND+3,3)*DIST

NDP(1,2) = MESH(BIND+3,2)+MESH(BIND+3,4)*DIST

NDP(2,1) = MESH(BIND+3,1)

NDP(2,2) = MESH(BIND+3,2)

NDP(3,1) = MESH(PERND+4BIND,1)

NDP(3,2) = MESH(PERND+BIND,2)

NDP(4,1) = MESH(BIND+1,1))
NDP(4,2) = MESH(BIND+1,2)

NDP(5,1) = MESH(BIND+1,1)+MESH(BIND+1,3)*DIST

NDP(5,2) = MESH(BIND+1,2)+MESH(BIND+1,4)*DIST .
NDP(6,1) = MESH{BIND+2,1)+MESH(BIND+2,3)*DIST

96

_

NDP(6,2) = MESH(BIND+2,2)+MESH(BIND+2,4)*DIST
NDP(7,1) = MESH(BIND+2,1)
NDP(7,2) = MESH(BIND+2,2)

ELSEIF(I.EQ. BIND+2) THEN
WRITE(6,%*) ' ERRORED OUT IN SUBROUTINE FINDER, YOU ATTEMPTED'

. WRITE(6,*) ' TO CALL FINDER WITH I = BIND + 2!'
WRITE(6,*) ' THIS ROW HAS NO ELEMENTS AND NO COORDINATES'
ELSE
. C NODE 1

NDP(1,1) = MESH(PERND-I1+2,1)+MESH(PERND-I+2,3)*DIST
NDP(1,2) = MESH(PERND-I+2,2)+MESH(PERND-I+2,4)*D1ST
c NODE 2 TO THE BISECTION SEGMENT
DO 10, J = 2, NODES(PERND-I+2)
NDP(J,1)=MESH(PERND-1+2,1)-(J-2)*(MESH(PERND-1+2,1)~-

c MESH(PERND+I-1,1))/(NODES(PERND-I+2)-2)
NDP(J,2)=MESH(PERND-142,2)-(J-2)*(MESH(PERND-1+2,2)-
c MESH(PERND+I-1,2))/(NODES(PERND-I+2)-2)
10 CONTINUE
c BISECTION SEGMENT TO THE RIGHTSIDE SURFACE

DO 20, J = 3, NODES(I)
NDP(NODES(PERND-I+2)+J-2,1)=MESH(PERND+I-1,1)+(J-2)%*

c (MESH(I,1)-MESH(PERND+I-1,1))/(NODES(I)-2)
NDP(NODES(PERND-I+2)+J-2,2)=MESH(PERND+I-1,2)+(J-2)*
c (MESH(I,2)-MESH(PERND+I-1,2))/(NODES(I)-2)
20 CONTINUE
c Ith ROWS LAST NODE

NDP(NODES(PERND-I+2)+NODES(I)-1,1)=MESH(I,1)+MESH(I,3)*DIST
NDP(NODES{PERND-I+2)+NODES(I)-1,2)=MESH(I,2)+MESH(I,4)*DIST
- C I+1th ROWS FIRST NODE
NDP(NODES(PERND-I+42)+NODES(I),1)=MESH({ PERND-1I+1,1)+MESH
c (PERND-1+1,3)*DIST
NDP(NODES(PERND-I+2)+NODES(I),2)=MESH(PERND-I+1,2)+MESH
- C (PERND-I+1,4)*DIST
C I+1TH ROW (NODE 2) TO THE BISECTION SEGMENT
DO 30, J = 2, NODES(PERND-I+1)
NDP(J+NODES(PERND-I+2)+NODES(I)-1,1)=MESH(PERND-1+1,
1)~(J=-2)*(MESH(PERND~I+1,1)-MESH(PERND+I,1))/
(NODES(PERND-I+1)-2)
NDP(J+NODES(PERND-I+2)+NODES(I)-1,2)=MESH(PERND~I+1,
2)-(J-2)*(MESH(PERND~I+1,2)-MESH(PERND+I,2))/
(NODES(PERND-I+1)-2)
30 CONTINUE
C I+1th ROW BISECTION SEGMENT TO THE RIGHTSIDE SURFACE
DG 40, J = 3, NODES(I+1)
NDP(LAND-NODES(I+1)+J-1,1)=MESH(PERND+I,1)+(J-2)%*
c (MESH(I+1,1)-MESH(PERND+I,1))/(NODES(I+1)-2)
NDP(LAND-NODES(I+1)+J-1,2)=MESH(PERND+1,2)+(J-2)%*
c (MESH(I+1,2)-MESH(PERND+I,2))/(NODES(I+1)-2)
40 CONTINUE
c LAST NODE
- NDP(LAND, 1)
NDP(LAND, 2)

aon aan

MESH(I+1,1)+MESH(I+1,3)*DIST
MESH(I+1,2)+MESH(I+1,4)*DIST

i

. ENDIF
RETURN

97

oo aa a0

END

SUBROUTINE VARINT(J,F,ALPHA,BETA,AREA,LND)

GENERATING VARIATIONAL FINITE ELEMENT AREA INTEGRATIONS OF THE
LINEAR BASIS FUNCTION LAGRANGIAN FOR THE HELMHOLTZ EQUATION.
THESE ARE RETURNED IN F(3,3). X(3) AND Y(3) ARE THE WAVENUMBER
NORMALIZED CARTESIAN COORDINATES OF THE TRIANGLE VERTICES.

X = Ko*x, Y = Ko*y ALPHA AND BETA ARE COMPLEX

MATERIAL PARAMETERS WITHIN THE ELEMENT.

FOR TM INCIDENCE: ALPHA
FOR TE INCIDENCE: ALPHA

1/ur; BETA
1/er; BETA

er
ur

it
[]

OUTPUTS : F(3,3) ~ FINITE ELEMENT AREA INTEGRATION
AREA - AREA OFF A TRIANGLE

COMPLEX ALPHA, BETA, B12, F(3,3)
REAL NDP(200,2), X(3), Y(3), T(3,3), AREA, DET
INTEGER L, K, J, LND(0:200,3)

COMMON/BLK5/NDP

X(1) = NDP(IND(J,1),1)
X(2) = NDP(LND(J,2),1)
X(3) = NDP(LND(J,3),1)
Y(1) = NDP(LND(J,1),2)
Y(2) = NDP(LND(J,2),2)
Y(3) = NDP(IND(J,3),2)

DET X(2)*Y(3) + X(3)*Y(1) + X(1)*Y(2) - X(3)*Y(2) -
CX(1Y*Y(3) - X(2)*Y(1)

AREA = ABS(0. 5*DET)

B12 = BETA/12.

T(1,1) = (Y(2) - Y(3))/DET

T(1,2) = (¥Y(3) - Y(1))/DET

T(1,3) = (Y(1) - Y(2))/DET

T(2,1) = (X(3) - X(2))/DET

T(2,2) =(X(1) - X(3))/DET

T(2,3) = (X(2) - X(1))/DET

T(3,1) = (X(2)*Y(3) - X(3)*Y(2))/DET
T(3,2) = (X(3)*Y(1) - X(1)*Y(3))/DET
T(3,3) = (X(1)*Y(2) - X(2)*¥(1))/DET
DO 10, K =1, 3

DO10, L =1, 3
F(K,L) = ALPHA*(T(1,K)*T(1,L) + T(2,K)*T(2,L)) - Bl2
IF(K.EQ. L) F(K,L) = F(X,L) - Bl2
F(K,L) = AREA*F(K,L)

RETURN

END

SUBROUTINE LOADER(BCOND,OFFSET,ALPHA,BETA,NABC, IMX,NBMX,L0,SURBC,
CCHAR1,LINE ,MODE,XORIGIN,YORIGIN,SVEC,CHARS)

COMPLEX A(50,50),B(50,50),C(50,50),P(50,100)

98

aan

50

COMPLEX F(3,3),FROW(100,3,3),BCOND(100) ,LINE(S50)

COMPLEX ALPHA, BETA, DETERM, SURBC(100), SVEC{(50,100)

REAL OFFSET,MINAREA,MAXAREA,AREA,RATIO EO, KV ,XCRIGIN,YOR]GIN
REAL UBCOND

INTEGER I,J,JD,K,L,NDTOP NDBOT ,NDTOT ,NOD,KND ,ND(3),LEL, LAND

INTEGER LND(0:270,3), NDL(200,4), NCT(200), PERND, BIND, JJ

INTEGER NODES(200), MINROW, MINEL, MAXROW, MAXEL, TCALL, NL

INTEGER N, M,NBMX,NABC(100,3), INORM, IMX ,40ODE

CHARACTER*1 CHAR1, CHAR2, CHAR}, CHAR&, CHARS

COMMON/BLK2/PERND,BIND

COMMON/BLKJ/NODES

COMMON/BLK&4/LND NDL ,NCT

COMMON/BLK7 /MINAREA ,MINROW ,MINEL ,MAXAREA ,MAXROW ,MAXEL AREA
COMMON/BLKS8/A,B,C,P

COMMON/BLK9/CHAR2, CHARJ3, CHAR<

UBCOND = 1.0
INORM = O

IMX - BIND + 2
I =1

TCALL = BIND +

IF((CHAR3.EQ. 'D'). OR. (CHARY. EQ. 'd’)) THEN
WRITE(20,1030)
WRITE(20,1040)
WRITE(20,1050)
WRITE(20,1060)
WRITE(20,1070)
ENDIF
WRITE(*,100C) I,TCALL

CALL SORTER(1,LEL,LAND)

CALL FINDER(I,LAND,OFFSET)

IF(.NOT. ((CHARS.EQ. "M').OR. (CHARS.EQ. ‘@'))) THEN

CALL BNDC(I,BCOND,EOQ,SURBC,CHARL,ALPHA,BETA,LINE ,MODE ,XORIGIN,
CYORIGIN,CHAR%)

ENDIF

CALL FILL(I,LEL,FROW,ALPHA ,BETA)

IF(.NOT. ((CHAR3.EQ. "M'). OR. (CHARS.EQ. 'm"'))) THEN

CALL ZERO

ENDIF

ESTABLISH THE NUMBER OF NODES IN THE I = 1 AND I = 2 ROWS
NDTOP = 2

NDBOT = 5

NDTOT = 7

B, C&PFORI =1 (TOP)

J=1
DO 70, JD = 1, NCT(2)
L = NDL(2,JD)
DO 50, K=1, 3
ND(K) = LND(L,K)
IF(ND(K).EQ.2) KND =
CONTINUE

po 60, K=1, 3
NL = ND(K)
c BOUNDARY CONDITION
IF(NL.EQ. 1) THEN
P(J,1) = -UBCOND*FROW(L,KND,K) + P(J,1)
c UPPER ROW
ELSEIF(NL.EQ. 2) THEN
B(J,1) = FROW(L,KND,K) + B(J,1)
c LOWER ROW
ELSEIF((NL. GT. 3). AND. (NL. LT. 7)) THEN
C(J,NL-3) = FROW(L,KND,K) + C(J,NL-3)

c ERROR
ELSE
WRITE(*,*) NL,'ERROR - INDEX EQUALS 3 OR 7'
ENDIF
60 CONTINUE
70 CONTINUE
c

IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. "i')) THEN
WRITE(1,*) I
DO 72, M = 1, NABC(I,2)
WRITE(1,1020) (REAL(B(M,N)), N
72 CONTINUE
WRITE(1,*) ' '
DO 73, M = 1, NABC(I,2)
WRITE(1,1020) (REAL(C(M,N)), N
73 CONTINUE
WRITE(1,*) ' '
DO 74, M = 1, NABC(I,2)

1, NABC(I,2))

1, NABC(I,3))

WRITE(1,1020) (REAL(P(M,N)), N =1, PERND)

74 CONTINUE
C

WRITE(1,*) ' '

WRITE(1,*) ' '

WRITE(1,*) ' '

ENDIF

C

IF(. NOT. ((CHARS.EQ. 'M').OR. (CHARS.EQ. '@'))) THEN
CALL MARCH(1I,IMX,NBMX,NABC(I,1),NABC(I,2),NABC(I,3),INORN,SVEC)

CALL ZERO
ENDIF
c BEGIN LOOPING
DO 900, I = 1, BIND
c
DO 400, J = 1, NDBOT-2
NOD = J + NDTOP + 1
DO 300, JD = 1, NCT(NOD)
L = NDL(NGD,JD)
DO 100, K =1, 3
ND(K) = LND(L,K)
IF(ND(K).EQ.NOD) KND = K
100 CONTINUE
DO 200, K=1, 3
NL = ND(K)
C BOUNDARY CONDITION

IF((I.EQ. 1).AND. (NL.EQ. 1)) THEN

100

200
300
400

c

P(J,NL) = -~UBCOND*FROW(L,KND,K) + P(J,NL)
ELSEIF(NL.EQ. 1) THEN

P(J,PERND-1+2)=~UBCOND*FROW(L,KND,K)+P(J,PERND-I+2)
SPECIAL CASE FOR NODE #2 AND I = 1
ELSEIF((I.EQ. 1}. AND. (NL.EQ. 2))THEN

A(J,1) = FROW(L,KND,K) + A(J,1)
ELSEIF(NL. EQ. NDTOP) THEN

P(J,1) = -UBCOND*FROW(L,KND,K) + P(J,I)
ELSEIF(NL. EQ. NDTOP+1) THEN

P(J,PERND-I+1)=~UBCOND*FROW(L,KND,K)+P(J,PERND-I+1)
ELSEIF(NL. EQ. NDTOT) THEN

P(J,I+1) = -UBCOND*FROW(L,KND,K) + P(J,I+1)
UPPER ROW
ELSEIF(NL. LT. NDTOP) THEN

A(J,NL-1) = FROW(L,KND,K) + A(J,NL-1)
LOWER ROW
ELSEIF(NL. LT. NDTOT) THEN

B(J,NL-NDTOP-1) = FROW(L,KND,K) + B(J,NL-NDTOP-1)
ERROR
ELSE

WRITE(*,*) NL,'ERROR - DUE TO INDEX GREATER THAN NODE TOTAL'
ENDIF

CONTINUE
CONTINUE
CONTINUE

INDEX FOR NEXT ROW AND COMPLETE B, C, P FILLS

JJ=1+1
WRITE(6,1010) JJ,TCALL
CALL SORTER(JJ,LEL,LAND)
CALL FINDER(JJ,LAND,OFFSET)
IF(.NOT. ((CHAR5.EQ. 'M'). OR. (CHAR5.EQ. 'm'))) THEN
CALL BNDC(JJ,BCOND,EO,SURBC,CHAR1,ALPHA,BETA,LINE,MODE,
XORIGIN,YORIGIN,CHAR4)
ENDIF
CALL FILL(JJ,LEL,FROW,ALPHA,BETA)
ESTABLISH THE NUMBER OF NODES IN THE I+1th AND I+2th ROWS
IF(JJ.NE. (BIND+1)) THEN

NDTOP = NODES(PERND+2-JJ) + NODES(JJ) - 1
NDBOT = NODES{PERND+1-JJ) + NODES(JJ+1) - 1
NDTOT = NDBOT + NDTOP

ELSE
NDTQP = 5
NDBOT = 2
NDTOT = 7

ENDIF

DO 800, J = 1, NDTOP-2
NOD =J + 1
DO 700, JD = 1, NCT(NOD)
L = NDL(NOD,JD)
po 500, K=1, 3
ND(K) = LND(L,K)

101

IF(ND(K).EQ.NOD) KND = K

500 CONTINUE
DO 600, K =1, 3
NL = ND(K)

c BOUNDARY CONDITION
IF(NL.EQ. 1) TWFN
P(J,PERND-J_+2)=-UBCOND*FROW(L,KND,K)+P(J,PERND-JJ+2)
ELSEIF(NL. *Q. NDTOP) THEN
P(J,JJ) -UBCOND*FROW(L,KND,K) + P(J,JJ)
ELSEIF(NL. LJ. NDTOP+1) THEN
P(J,PERND-JJ+1)=-UBCOND*FROW(L,KND,K)+P(J,PERND~-JJ+1)
ELSEIF((JJ. EQ. (BIND+1)). AND. (NL. EQ. NDTOT)) THEN
C(J,1) = FROW(L,KND,K) + C(J,1)
ELSEIF(NL. EQ. NDTOT) THEN
P(J,JJ+1) = -UBCOND*FROW(L,KND,K) + P(J,JJ+1)
C UPPER ROW
ELSEIF(NL. LT. NDTOP) THEN
B(J,NL-1) = FROW(L,KND,K) + B(J,NL-1)
c LOWER ROW
ELSEIF(NL. LT. NDTOT) THEN
C(J,NL-NDTOP-1) = FROW(L,KND,K) + C(J,NL-NDTOP-1)
C ERROR

ELSE
WRITE(*,*) NL,'ERROR - DUE TO INDEX GREATER THAN NODE TOTAL'
ENDIF
C
600 CONTINUE
700 CONTINUE
800 CONTINUE
c
IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. 'i')) THEN
WRITE(1,%*) JJ
DO 91, M = 1, NABC(JJ,2)
WRITE(1,1020) (REAL(A(M,N)), N = 1, NABC(JJ,1))
91 CONTINUE
WRITE(1,*) ' '
DO 92, M = 1, NABC(JJ,2)
WRITE(1,1020) (REAL(B(M,N)), N = 1, NABC(JJ,2))
92 CONTINUE
WRITE(1,%*) ' '
DO 93, M = 1, NABC(JJ,2)
WRITE(1,1020) (REAL(C(M,N)), N = 1, NABC(JJ,3))
93 CONTINUE

WRITE(1,*) ' '
DO 94, M = 1, NABC(JJ,2)
WRITE(1,1020) (REAL(P(M,N)), N = 1, PERND)
94 CONTINUE

C
WRITE(1,%) ' '
WRITE(1,%*) ' '
WRITE(1,*) ' '
ENDIF
c

IF(. NOT. ((CHARS.EQ. '"M').OR. (CHARS.EQ. 'm'))) THEN
CALL MARCH(JJ,IMX,NBMX,NABC(JJ,1),NABC(JJ,2),NABC(JJ,3),INORM,
CSVEC)

102

CALL ZERO
ENDIF
c
900 CONTINUE
C
C LOAD A, B & P FOR I = BIND + 2 (BOTTON)
c
J =1
DO 30, JD = 1, NCT(7)
L = NDL(?7,JD)
DO 10, K= 1, 3
ND(K) = LND(L,X)
IF(ND(K).EQ.7) KND = X
10 CONTINUE
DO 20, K= 1,)
NL = ND(K)

C BOUNDARY CONDITION
IF(NL.EQ. 6) THEN
P(J,JJ+1) = -UBCOND*FRON(L,KND,K) ¢ P(J,JJ¢))
c UPPER ROW
ELSEIF((NL.GT. 1). AND. (NL. LT. 5)) THEN
A(J,NL-1) = FROW(L,KND,K) + A{(J,NL-1)
c LOWER ROW
ELSEIF(NL.EQ. 7) THEN
B(J,1) = FROW(L,KND,K) + B(J,1)

C ERROR
ELSE
WRITE(*,*) NL, 'ERROR - INDEX EQUAL TO 1 OR §'

. ENDIF

c

20 CONTINUE

30 CONTINUE
- c

IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. '1')) THEN
WRITE(1,*) TCALL+1
DO 61, M = 1, NABC(TCALL+1,2)
WRITE(1,1020) (REAL(A(M,N)), N = 1, NABC(TCALL+1,1))
61 CONTINUE
WRITE(1,*) ' '
DO 62, M = 1, NABC(TCALL+1,2)
WRITE(1,1020) (REAL(B(M,N)), N = 1, NABC(TCALL+1,2))
62 CONTINUE
WRITE(1,*) ' '
DO 64, M = 1, NABC(TCALL+1,2)
WRITE(1,1020) (REAL(P(M,N)), N = 1, PERND)

64 CONTINUE
c
WRITE(1,%*) ' '
WRITE(1,*) ' '
WRITE(1,*) ' '
. ENDIF
c
WRITE(6,*) ' FINAL INVERSION'

IF(.NOT. ((CHARS.EQ. ‘M'). OR. (CHARS.EQ. ‘'m'))) THEN
) CALL MARCH(JJ+1,IMX,NBMX,NABC(JJ+1,1),NABC(JJ+1,2),NABC(JJ+1,3),
CINORM,SVEC)

103

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

ENDIF

WRITE(2,*) ' END END '

WRITE(6,%) ' '

WRITE(6,%) 'MINIMUM AREA = "MINAREA

WRITE(6,*) 'AT ROW ',MINROW AND ELEMENT NUMBER ',MINEL

WRITE(6,%) 'MAXIMUM AREA =
WRITE(6,*) 'AT ROW ',MAXROW,

‘,MAXAREA

AND ELEMENT NUMBER ' ,MAXEL

RATIO = MAXAREA/MINAREA

WRITE(6,*) 'AREA RATIO = ',RATIO

IF(RATIO. GT. 2. 5) THEN
WRITE(6,*) 'YOU SHOULD CONSIDER ABORTING THIS RUN AND '
WRITE(6,*) 'LOOKING AT THE MESH IN CURVE DIGITIZER '
WRITE(6,%*) 'A BETTER METHOD MAY BE AVAILABLE '

ENDIF

IF((CHAR3.EQ. 'D'). OR. (CHAR3.EQ. 'd')) THEN
WRITE(20,1080)
WRITE(20,1090)
WRITE(20,1100)

ENDIF

FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(

RETURN
END

16,' OUT OF',16,' CALLS ')
16,' OUT OF',I6,' CALLS ')
20(E14. 8,1X,E14. 8,1X))

6X, 'CALL COMPRS')
6X,'CALL NOBRDR')

6X, 'CALL PAGE(8.0,10.0)")
6X, 'CALL AREA2D(5.0,7.0)")
6X,'CALL FRAME')

6X,'CALL DONEPL')
6X,'STOP')

6X,"'END')

SUBROUTINE FILL(I,LEL,FROW,ALPHA,BETA)

COMPLEX F(3,3), FROW(100,3,3), ALPHA, BETA, A, B

REAL AREA, MINAREA, MAXAREA

REAL NDP(200,2)

INTEGER I, J, K, L, LEL, LND(O:200,3), NDL(200,4), NCT(200)
INTEGER MINROW, MINEL, MAXROW, MAXEL, M

CHARACTER*1 CHAR2, CHAR3, CHAR4

COMMON/BLK4 /LND ,NDL,NCT

COMMON/BLKS5 /NDP

COMMON/BLK7 /MINAREA ,MINROW ,MINEL ,MAXAREA ,MAXROW ,MAXEL ,AREA
COMMON/BLK9/CHAR2, CHAR3, CHAR4

IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. '1')) THEN
WRITE(11,%*) 'ROW NUMBER = ',I

ENDIF

DO 30, J = 1, LEL
IF((CHAR4.EQ. 'U'). OR. (CHAR4. EQ. "u')) THEN

104

10

20

30

1000
1010
1020

A = ALPHA
B = BETA
ELSE

IF((J.EQ.1).0R. (J.EQ. 2).0R. (J.EQ. LEL-1).0R. (J.EQ. LEL))

THEN

ENDIF
CALL VARINT(J,F,A,B,AREA,LND)
IF((J.GT. 2).AND. (J.LT. LEL-1)) THEN
IF(AREA. LT. MINAREA) THEN
MINAREA = AREA
MINROW = I
MINEL = J
ELSEIF(AREA. GT. MAXAREA) THEN
MAXAREA = AREA
MAXROW = I
MAXEL = J
ENDIF
ENDIF
DO 20, K=1, 3
WRITE(2,*) NDP(LND(J,K),1), NDP(LND(J,K),2)
DO 10, L =1, 3
FROW(J,K,L) = F(K,L)
CONTINUE
IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. '1')) THEN
WRITE(11,1000) J,K,(REAL(F(K,L)), L = 1,3)
ENDIF
CONTINUE
IF((CHAR2.EQ. '1').OR. (CHAR2.EQ. '{')) THEN
WRITE(11,*) ' '
ENDIF
WRITE(2,%) NDP(LND(J,1),1), NDP(LND(J,1),2)
WRITE(2,*) ' 999990 999990 '
DISSPLA PROGRAM GENERATION
IF((CHAR3.EQ. 'D'). OR. (CHAR3.EQ. 'd')) THEN
WRITE(20,1010) NDP(LND(J,1),1), NDP(LND(J,1),2)
WRITE(20,1020) NDP(LND(J,2),1), NDP(LND(J,2),2)
WRITE(20,1020) NDP(LND(J,3),1), NDP(LND(J,3),2)
WRITE(20,1020) NDP(LND(J,1),1), NDP(LND(J,1),2)
ENDIF

CONTINUE

FORMAT(1X,2(13,2X),3X,3(F8.5,2X))
FORMAT(6X, 'CALL STRTPT(',F8.5,',',F8.5,")")
FORMAT(6X, 'CALL CONNPT(',F8.5,',',F8.5,')")

RETURN
END

105

49

60
50

aQ

aaaaoaaaoaoaan

[eXeXe!

SUBROUTINE ZERO

ZERO A, B, C, AND P MATRICES

COMPLEX A(50,50), B(50,50), C€(50,50), P(50,100)
INTEGER J, K, L

COMMON/BLKS8/A,B,C,P -

DO 50, J =1, 50
DO 40, K =1, 50

A(J,K) = CMPLX(0.0,0.0)

B(J,K) = CMPLX(0.0,0.0)

C(J,K) = CMPLX(0.0,0.0)
CONTINUE

DO 60, L = 1, 100
P(J,L) = CMPLX(0.0,0.0)
CONTINUE

CONTINUE
RETURN
END

SUBROUTINE BNDC(I,BCOND,EO,SURBC,CHAR1,ALPHA,BETA,LINE,MODE,
CXORIGIN,YORIGIN,CHAR4)

BOUNDARY CONDITION FILL FOR A PLANE WAVE
E0 = FIELD STRENGTH
KO = WAVE NUMBER (2*PI/WAVELENGTH)

BOUNDARY CONDITION FILL FOR A CYLINDRICAL BOUNDARY CONDITION -
EO = FIELD STRENGTH
MODE = MODE NUMBER FOR CYLINDRICAL BOUNDARY CONDITIONS

COMPLEX SURBC(100), VALUE(50), BCOND(100), ALPHA, BETA, LINE(50)
COMPLEX K, RAK

REAL NDP(200,2), EO, KR, KI, XORIGIN, YORIGIN, RA, RB

INTEGER I, J, NDTOP, NDBOT, NDTOT, NODES(200), PERND, BIND, MODE
CHARACTER*1 CHAR1, CHAR4

COMMON/BLK2/PERND,BIND
COMMON/BLK3/NODES
COMMON/BLKS5 /NDP

IF((CHAR1.EQ. 'P').OR. (CHAR1.EQ. 'p')) THEN
IF((CHAR4.EQ. 'U'). OR. (CHAR4.EQ. 'u')) THEN
KR = REAL(CSQRT(BETA))

KI = ABS(AIMAG(CSQRT(BETA)))
ELSE

KR = 1.0

KI = 0.0
ENDIF

CHECK ON WHETHER WE ARE USING ER = ALPHA OR BETA

IF(I.EQ. 1) THEN -
BCOND(1) = EO*EXP(KI*NDP(1,2))*CMPLX(COS(KR*NDP(1,2)),

106

—

10

a o o O

SIN(KR*NDP(1,2)))

BCOND(PERND) = EO*EXP(KI*NDP(3,2))*CMPLX(COS(KR*NDP(3,2)),
SIN(KR*NDP(3,2)))

BCOND(2) = EO*EXP(KI*NDP(7,2))*CMPLX(COS(KR*NDP(7,2)),
SIN(KR*NDP(7,2)))

VALUE(1) = EO*EXP(KI*NDP(2,2))*CMPLX(COS(KR*NDP(2,2)),
SIN(KR*NDP(2,2)))

WRITE(10,*) BCOND(1)

WRITE(10,1000) VALUE(1)

WRITE(10,%) ' '

SURBC(1) = VALUE(1)

ELSEIF(I. LE. BIND) THEN

NDTOP = NODES(I) + NODES(PERND-I+2) - 1
NDBOT = NODES(I+1) + NODES(PERND-I+1) - 1
NDTOT = NDTOP + NDBOT

BCOND(PERND-I+1) = EO*EXP(KI*NDP(NDTOP+1,2))*CMPLX(COS(KR*
NDP(NDTOP+1,2)),SIN(KR*NDP(NDTOP+1,2)))
BCOND(I+1) = EO*EXP(KI*NDP(NDTOT,2))*CMPLX(COS(KR*NDP(NDTOT,
2)),SIN(KR*NDP(NDTOT,2)))
WRITE(10,*) BCOND(PERND-I+2)
DO 10, J = 2, NDTOP-1
VALUE(J) = EO*EXP(KI*NDP(J,2))*CMPLX(COS(KR*NDP(J,2)),
SIN(KR*NDP(J,2)))
IF(J.EQ. 2) THEN
SURBC(PERND-I+2) = VALUE(2)
ELSEIF(J.EQ. (NDTOP-1)) THEN
SURBC(I) = VALUE(NDTOP-1)
ENDIF
CONTINUE
LINE(I) = VALUE((NDTOP+1)/2)
WRITE(10,1000) (VALUE(J), J = 2, NDTOP-1)
WRITE(10,%) BCOND(I)
WRITE(10,%*) ' '

ELSEIF(I.EQ. BIND+1) THEN

c
c
C
c

BCOND(I+1) = EO*EXP(KI*NDP(6,2))*CMPLX(COS(KR*NDP(6,2)),
SIN(KR*NDP(6,2)))

VALUE(2) = EO*EXP(KI*NDP(2,2))*CMPLX(COS(KR*NDP(2,2)),
SIN(KR*NDP(2,2)))

VALUE(3) = EO*EXP(KI*NDP(3,2))*CMPLX(COS(KR*NDP(3,2)),
SIN(KR*NDP(3,2)))

VALUE(4) = EO*EXP(KI*NDP(4,2))*CMPLX(COS(KR*NDP(4,2)),
SIN(KR*NDP(4,2)))

WRITE(10,%*) BCOND(I+2)

WRITE(10,1000) VALUE(2), VALUE(3), VALUE(4)
SURBC(BIND+3) = VALUE(2)

SURBC(BIND+1) = VALUE(4)

LINE(I) = VALUE(3)

WRITE(10,%*) BCOND(I)

WRITE(10,%*) ' '

VALUE(2) = EO*EXP(KI*NDP(7,2))*CMPLX(COS(KR*NDP(7,2)),
SIN(KR*NDP(7,2)))

WRITE(10,1000) VALUE(2)

WRITE(10,%*) BCOND(I+1)

SURBC(BIND+2) = VALUE(2)

107

ENDIF
ELSEIF((CHARL1.EQ. 'C').OR. (CHAR1.EQ. 'c')) THEN

IF(I.EQ.1) THEN
RA = SQRT((NDP(2,1)-XORIGIN)**2+(NDP(2,2)-YORIGIN)**2)
RB = SQRT((NDP(1,1)-XORIGIN)**2+(NDP(1,2)-YORIGIN)*¥*2)
WRITE(*,*) BETA
K = CSQRT(BETA)
RAK = RA*K
CALL CYLBC(RA,RB,RAK,NDP(1,1),NDP(1,2),XORIGIN,YORIGIN,EO,

c BCOND(1),SURBC(1),K)

CALL CYLBC(RA,RB,RAK,NDP(3,1),NDP(3,2),XORIGIN,YORIGIN,EO,

c BCOND(PERND) , SURBC(PERND),K)

CALL CYLBC(RA,RB,RAK,NDP(7,1),NDP(7,2),XORIGIN,YORIGIN,EO,

c BCOND(2) ,SURBC(2),K)

WRITE(10,*) BCOND(1), SURBC(1)
WRITE(10,%) ' '
ELSEIF(I.LE.BIND) THEN

NDTOP = NODES(I) + NODES(PERND-I+2) ~ 1
NDBOT = NODES(I+1) + NODES(PERND-I+1) -1
NDTOT = NDTOP + NDBOT

CALL CYLBC(RA,RB,RAK,NDP(NDTOP+1,1) ,NDP(NDTOP+1,2) ,XORIGIN,

C YORIGIN,EO,BCOND(PERND-I+1) ,SURBC(PERND-I+1),K)

CALL CYLBC(RA,RB,RAK,NDP(NDTOT,1),NDP(NDTOT,2),XORIGIN,

c YORIGIN,EO0,BCOND(I+1),SURBC(I+1),K)

WRITE(10,%*) BCOND(PERND-I+2), SURBC(PERND-I+2)
WRITE(10,%*) BCOND(I), SURBC(I)
WRITE(10,%) ' '
ELSEIF(I.EQ. BIND+1) THEN
WRITE(10,%) BCOND(I+2), SURBC(I+2)
WRITE(10,*) BCOND(I), SURBC(I)
WRITE(10,%) ' '
CALL CYLBC(RA,RB,RAK,NDP(6,1),NDP(6,2),XORIGIN,
YORIGIN,EQ,BCOND(I+1),SURBC(I+1),K)
WRITE(10,%*) BCOND(I+1), SURBC(I+1)
WRITE(10,*) ' '
ENDIF

ELSE
RETURN
ENDIF
FORMAT(1X,50(E14. 8,2X,E14. 8,2X))
RETURN
END
SUBROUTINE CYLBC(RA,RB,RAK,X,Y,XORIGIN,YORIGIN,E0,BC,PSI,K)
COMPLEX SQRTM1, JORB, J1RB, JORAK, J1RAK, HORA, H1RA, HORB, HIRB
COMPLEX DELTAN, AN, PSI, JORA, JIRA, K, RAK, BC
REAL PI, XORIGIN, YORIGIN, X, Y, RA, RB, EO, PHI

PI = 4, O*ATAN(1.0)

108

SQRTM1 = CMPLX(0.0,1.0)
PHI = ATAN2(X - XORIGIN, Y - YORIGIN)
CALL BES1(CMPLX(RA,0.0),JO0RA,J1RA)
CALL BES1(CMPLX(RB,0.0),JORB,J1RB)
CALL BES1(RAK,JORAK,J1RAK)

- CALL HAN1(CMPLX(RA,0.0),HORA,H1RA)
CALL HAN1(CMPLX(RB,O.0),HORB,H1RB)

DELTAN = J1RB*(J1RAK*(HORA-H1RA/RA)-K*(JORAK-J1RAK/RAK)*H1RA)-
’ CH1RB*(J1RAK*(JORA-J1RA/RA)-K*(JORAK-J1RAK/RAK)*J1RA)

AN = -2, 0*SQRTM1/(PI*RA*DELTAN)

BC = EO*COS(PHI)

PSI = AN*J1RAK*BC

RETURN
END

SUBROUTINE BES1(Z,J0,J1)

Computing Bessel Functions for n = 0, 1 with

Complex Argument 2. Direct Power Series Method for
CABS(Z) .LE. 6 and Hankel's Asymptotic Formula for
CABS(2) .GT. 6.

Written 11/5/87 by M.A. Morgan

QOO0 OO

INTEGER M,M2

REAL C(34),DM,F(34),G0,P(34),P1,P2

COMPLEX 2,22,23,24,J30,J1,4M,CL,PO,P1,Q0,Q1,C0,C1,50,51
- Pi=3. 1415927

P2=2.0/P1

IF(CABS(Z).LE. 6.0) THEN

Utilizing the Direct Power Series Method

A
Q00

GO= 1.781072
22=0. 5*Z
CL=CLOG(G0*Z2)

Computing F(m) = m ! and P(m) =1+ 1/2 + 1/3 +4+ 1/m

aoaQaQ

F(1)=1.0
P(1)=1.0
DO 11 M=2,34
F(M)=M*F(M-1)
P(M)=P(M-1)+1.0/M
1 CONTINUE

QO

Computing Power Series Coefficients

DM=-1.0
’ DO 22 M=1,34
C(M)=DM/(F(M)*F(M))
DM=-DM
, 22 CONTINUE

109

33

aaaoaon

[eXe Ne]

Computing JO and J1l

ELSE

Hankel'

ENDIF

Jo=(1.,0.)
Ji1=(0.,0.)

M=0

M=M+1

M2=2%N
AM=C(M)*(Z22*%*M2)
JO=J0+AM
J1=J1-M*AM
IF((CABS(AM).GT. 1. 0E-10). AND. (M. LT. 34)) GO TO 33
Ji=J1/22

return

Asymptotic Formula (Abram. & Stegun p. 364)

22=72*Z

23=2*22

24=2%23
P0=1.0-.0703125/22+.1121521/24
Q0=-.125/2+.0732422/23
P1=1.0+.1171875/22-. 1441956/24
Ql=.375/2-.10253906/23
C0=CCOS(2-. 25*PI)

SO=CSIN(Z-. 25*PI)

C1=CCOS(2Z2-. 75*%PI)
S1=CSIN(Z-.75*PI)
AM=CSQRT(P2/2)
JO=AM*(PO*C0-Q0%*S0)
J1=AM*(P1*C1-Q1%S§1)

RETURN

END

SUBROUTINE HAN1(Z,HO,H1)

Computing Hankel Functions for n = 0, 1 with

Complex Argument, Z. Direct Power Series Method for
CABS(Z) .LE. 5 and Hankel's Asymptotic Formula for
CABS(2Z) .GT. 5. Written 11/6/87 by M.A. Morgan

INTEGER M,M2

REAL C(34),DM,F(34),60,P(34),Pi,P2

COMPLEX 2,Z2,23,24,J0,J1,Y0,Y1,AM,CL,P0,P1,Q0,Q1
COMPLEX EO,E1,X0,X1,HO,H1,]

PI=3. 1415927

P2=2.0/PI

j=(o.,

1.)

IF(CABS(Z).LE.5.0) THEN

Direct Power Series Method

GO= 1.78072
22=0, 5%2

110

CL=CLOG(G0*Z2)
C
C Computing F(m) =m! and P(m) =1+ 1/2 + 1/3 ++ 1/m
c

F(1)=1.0

P(1)=1l.0

DO 11 M=2,34

F(M)=M*F(M-1)
P(M)=P(M-1)+1.0/M
1 CONTINUE

Computing Power Series Coefficients

[oRe R Nl

DM=-1.0
DO 22 M=1,34
C(M)=DM/(F(M)*F(M))
DM=-DM
2 CONTINUE

Computing JO and J1l

aaan

Jo=(1.,0.)
J1=(0.,0.)
M=0

33 M=M+1
M2=2%M
AM=C(M)*(Z2%*M2)
JO=J0+AM
J1=J1-M*AM
IF((CABS(AM).GT. 1. 0E-10). AND. (M. LT. 34)) GO TO 33
J1=J1/Z2

c

C Computing YO and Y1

C

M=0
Y0=CL*J0
Y1=22*CL*J1-0. 5%J0

44 M=M+1
M2=2*N
AM=C(M)*P(M)*(22%*M2)
YO=Y0-AM
Y1=Y1+M*AM
IF((CABS(AM).GT. 1. OE-10). AND. (M. LT. 34)) GO TO &4
YO=P2*Y0
Y1=P2*Y1/22
HO=J0~ j*YO
H1=J1-§*Y1
RETURN

ELSE

C Hankel' Asymptotic Formula (Abram. & Stegun p. 364
22=7%Z
23=2%22

24=7%23
P0=1.0-.0703125/22+. 1121521/ 24

1

aoan

AOOOO0

11

12

QO=-. 125/2+. 0732422/23

P1=1. 0+. 1171875/22-. 1641956/24

Ql=. 375/Z-. 10253906/23

X0=(2Z-. 25*P1)

X1=(Z-. 75%PI)

EO=CEXP(- j*X0)

E1=CEXP(- j*X1)

AM=CSQRT(P2/2)

HO=AM*(PO- }*Q0)*EO

H1=AM*(P1-j*Q1)*El
ENDIF
RETURN
END
SUBROUTINE MARCH(I,IMX,NBMX,NA,NB,NC,INORM,SVEC)
THIS ROUTINE PERFORMS THE RICCAT! TRANSFORM FIRST
SWEEP, GENERATING AND STORING ON DISK 1 RMAT
AND SVEC (FOR EACH MODE) AT EACH FORWARD STEP.

COMPLEX RMAT(50,50),SVEC(50,100)

COMPLEX A(590,50),B(50,50),C(50,50),P(50,100)
COMPLEX D(50),SUM,DET

REAL COND,DMAG

INTEGER I,J,K,L,NA,NB,NC,PERND,BIND, IMX, INORM
INTEGER NBMX

CHARACTER*]1 CHAR2, CHAR3, CHARL

COMMON/BLK2/PERND,BIND
COMMON/BLKS8/A,B,C,P
COMMON/BLK9/CHAR2, CHAR3, CHARGL

LOADING THEN INVERTING (B+A*RMAT)
USING MINIMUM MEMORY SINGLE MATRIX TECHNIQUE
DATE 1/29/80 FOR THIS CHANGE

SKIPPING FIRST A*R (WHEN A = 0, ZERO R MATRIX)
IF(I.EQ. 1) THEN

DO 10, J =1, NB

DO 10, K = 1, NB
RMAT(J,K) = (0.,0.)

CONTINUVE
RMAT = A*R
ELSE

IF((CHAR2.EQ. '1').OR. (CHAR2.EQ. '1')) THEN
WRITE(19,*) ' OLD R MATRIX'
Do 11, J=1,5
WRITE(19,1000) (REAL(RMAT(J,K)), K =1, 5)
CONTINUE
WRITE(19,%*) ' '
WRITE(19,*) ' A MATRIX'
DO 12, J =1, 5
WRITE(19,1000) (REAL(A(J,K)), K =1, 5)
CONTINUE
WRITE(19,*) ' '
ENDIF

112

20

14

15

(9]

[eEeEe K]

DO 30, K= 1, NB
DO 20, J =1, NB
D(J) = (0.,0.)
DO 20, L =1, NA
D(J) = D(J) + A(J,L)*RMAT(L,K)
CONTINUE

DO 30, J =1, NB
RMAT(J,K) = D(J)
CONTINUE

IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. '1')) THEN
WRITE(19,*) ' NEW R MATRIX'
DO 13, J =1, 5
WRITE(19,1000) (REAL(RMAT(J,K)), K =1, §)
CONTINUE
WRITE(19,*) ' '
ENDIF

ENDIF

IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. '1')) THEN
WRITE(19,*) ' B MATRIX'
DO 14, J =1, 5
WRITE(19,1000) (REAL(B(J,K)), K =1, 5)
CONTINUE
WRITE(19,*) ' '
ENDIF

RMAT = B + RMAT
DO 40, J =1, NB
DO 40, K =1, NB
RMAT(J,K) = RMAT(J,K) + B(J,K)
CONTINUE

IF((CHAR2.EQ. 'I').OR. (CHAR2.EQ. '{')) THEN
WRITE(19,%) ' NEWEST R MATRIX'
DO 15, J =1, NB
WRITE(9,1000) (REAL(RMAT(J,K)), K = 1, NB)
WRITE(19,1000) (REAL(RMAT(J,K)), K = 1, NB)
CONTINUE
WRITE(9,*) ' '
WRITE(19,%) ' '
ENDIF
INVERTING THE MATRIX (B + A*R)
CALL CSMINV(RMAT,NBMX,NB,DET,COND, INORM)

DMAG = CABS(DET)
WRITE(*,*) I,NBMX,NB,DMAG,COND

COMPUTING THE NEW S-VECTORS

SKIPPING FIRST A*S (A = 0)
IF (1.EQ.1) THEN
CONTINUE
ELSE
DO 70, K = 1, PERND

113

60

70

120

130

140

1000

aooaoaa aa

DO 60, J = 1, NB
D(J) = (0.0,0.0)
DO 60, L = 1, NA
D(J) = D(J) + A(J,L)*SVEC(L,K)
CONTINUE
DO 70, J = 1, NB
P(J,K) = P(J,K) - D(J)
CONTINUE
ENDIF
FINAL SVEC MULTIPLICATION
DO 100, K = 1, PERND
DO 90, J =1, NB
D(J) = (0.0,0.0)
DO 90, L =1, NB
D(J) = D(J) + RMAT(J,L)*P(L,K)

CONTINUE
DO 100, J =1, NB
SVEC(J,K) = D(J)
CONTINUE

STORING I+1 SVEC ON DISK 7
DO 110 J =1, NB

WRITE(7) (SVEC(J,K), K = 1, PERND)
CONTINUE

FINAL RMAT MULTIPLICATION
IF(I.EQ. IMX) RETURN
DO 130, J =1, NB

DO 120, K = 1, NC
D(K) = (0.0,0.0)
DO 120, L = 1, NB
D(K) = D(K) - RMAT(J,L)*C(L,K)
CONTINUE

DO 130, K =1, NC
RMAT(J,K) = D(X)
CONTINUE

STORING I+1 RMAT ON DISK 7

DO 140, J = 1, NB

WRITE(7) (RMAT(J,K), K =1, NC)
CONTINUE

FORMAT(10(ES. 3,1X))

RETURN
END

SUBROUTINE SWEEP(IMX,NABC,SURBC,LINE,CHAR1,U,BCOND,PSI,ANS,CHARS)
THIS ROUTINE PERFORMS THE RICCATI TRANSFORM BACKSWEEP

FROM I=IMX TO I=1, RECALLING RMAT AND

SVEC FROM DISK 7 AT EACH BACKSTEP TO FORM

THE NODE VECTORS PSI, THEN STORING THESE ON

DISK 8 FOR EACH APPLIED DIRICHLET B.C.

COMPLEX RMAT(50,100),PSI(50,100),SVEC(50,100),D(100),TEMP
COMPLEX SURBC(100),ANS(100),LINE(50),ANSB(50),U(100,100)

114

»

10

15
20

70

COMPLEX BCOND(100)

REAL ERRORP,ERRORD,TERRN,TERRD,ATSERR
INTEGER I1,J,K,L,NABC(100,3),IMX,PERND,BIND
CHARACTER*1 CHAR1, CHARS

COMMON/BLK2/PERND,BIND

IF((CHARS.EQ. 'M'). OR. (CHARS.EQ. 'm')) THEN
RETURN

ENDIF

INITIAL DISK READ AT IMX (R = 0, NOT WRITTEN, => § IS READ FIRST)
WRITE(*,*) ' '
DO 90, I = IMX, 1, -1
WRITE(*,1050) (IMX-I+1), IMX
IF(1.EQ. IMX) THEN
DO 10, J = NABC(I,2), 1, -1
BACKSPACE 7
READ(7) (PSI(J,K), K = 1, PERND)
BACKSPACE 7
CONTINUE
DO 20, J = 1, NABC(I,2)
DO 15, K = 1, PERND
U(IMX,K) = PSI(J,K)
CONTINUE
CONTINUE
SUBSEQUENT DISK READS
ELSE
READ R MATRIX
DO 30, J = NABC(I,2), 1, -1
BACKSPACE 7
READ(7) (RMAT(J,K), K = 1, NABC(I,3))
BACKSPACE 7
CONTINUE
READ § VECTOR
DO 40, J = NABC(I,2), 1, -1
BACKSPACE 7
READ(7) (SVEC(J,K), K = 1, PERND)
BACKSPACE 7
CONTINUE
MULTIPLY RMAT = RMAT*PSI
DO 60, J = 1, NABC(I,2)
DO 50, K = 1, PERND
D(K) = (0.0,0.0)
DO 50, L = 1, NABC(I,3)
D(K) = D(K) + RMAT(J,L)*PSI(L,K)
CONTINUE

DO 60, K = 1, PERND
RMAT(J,K) = D(K)
CONTINUE
PSI = RMAT + SVEC
DO 70, J = 1, NABC(I,2)
DO 70, K = 1, PERND
PSI(J,K) = RMAT(J,K) + SVEC(J,K)
CONTINUE
ANSB(I) = (0.0,0.0)

115

75

90

100

110

DO 80, J = 1, NABC(I,2)
DG 75, K = 1, PERND

IF((J.EQ.NABC(I,2)).0R. (I.EQ.1)) THEN
U(I,K) = PSI(J,K)

ELSEIF(J.EQ. 1) THEN
U(2*IMX-I,K) = PSI(J,K)

ELSEIF(J.EQ. (NABC(I,2)+1)/2) THEN
ANSB(I) = ANSB(I) + PSI(J,K)*BCOND(K)

ENDIF
CONTINUE
CONTINUE
ENDIF
CONTINUE
WRITE(8,*) ' '

DO 98, J = 1, PERND
ANS(J) = (0.0,0.0)
DO 94, L = 1, PERND
ANS(J) = ANS(J) + U(J,L)*BCOND(L)
CONTINUE
CONTINUE

TERRN = 0.
TERRD = 0.
DO 100, I = 1, PERND

ERRORP = (CABS(ANS(I) - SURBC(I)))¥**2

ERRORD = (CABS(SURBC(I)))*¥2

TERRN = TERRN + ERRORP

TERRD = TERRD + ERRORD

WRITE(13,1020) I, BCOND(I), SURBC(I), ANS(I), ERRORP
CONTINUE
WRITE(13,%*) ' '
ATSERR = (TERRN/TERRD)*¥*0. 5
WRITE(13,1030) ATSERR
WRITE(*,*) 'RMS ERROR (FOR THE PERIMETER) = ' ,ATSERR
WRITE(13,%) ' '

[N

IF((CHAR1.EQ. 'C').OR. (CHAR1.EQ. 'c')) THEN
RETURN
ELSE
TERRN = 0.
TERRD = 0.
DO 110, I = 2, BIND+1
ERRORP = (CABS(ANSB(I) - LINE(I)))**2
ERRORD = (CABS(LINE(I)))**2
TERRN = TERRN + ERRORP
TERRD = TERRD + ERRORD
WRITE(13,1025) (I-1), LINE(I), ANSB(1), ERRORP
CONTINUE
WRITE(13,*) ' '
ATSERR = (TERRN/TERRD)**(. 5
WRITE(13,1040) ATSERR
WRITE(*,*) 'RMS ERRROR (FOR BISECTION SEGMENT) = ',ATSERR
ENDIF

0
0

DO 120, I = 1, PERND

116

120

1020
1025
1030
1040
1050
1060

Q

aaoaaoaaoaoaaOOaa aaan

-

QLN

WRITE(30,1060) (U(I,J), J =1, PERND)
CONTINUE

FORMAT(1X,13,2X,3(E14. 8,1X,E14. 8,3X),F10.6)
FORMAT(1X,13,2X,4(E14. 8,2X),F10.6)

FORMAT(1X,' RMS ERROR (FOR THE PERIMETER) = ' F12.6)
FORMAT(1X,' RMS ERROR (FOR BISECTION SEGMENT) = ',F12.6)
FORMAT(1X,13,' TOTAL BACKSWEEP ROWS OUT OF ',I3,' COMPLETED')
FORMAT(1X,100(E8. 2,E8. 2,2X))

RETURN
END

SUBROUTINE CSMINV(A,NDIM,N,DETERM,COND, INORM)

INORM - FLAG TO NORMALIZE COLUMNS AND ROWS OF MATRIX A
MATRIX NORMALIZATION BY M.A. MORGAN
APRIL 24,1978

A - MATRIX TO INVERT - INPUT/OUTPUT
NDIM - = INPUT

N - = INPUT
DETERM - DETERMINATE OF A - OUTPUT

COND - CONDITION NUMBER OF A - OUTPUT

INORM -~ INTEGER NORMALIZATION FLAG - INPUT

COMPLEX A(50,50),PIVOT(50),AMAX,T,SWAP,DETERM,U

INTEGER I,J,K,L,IPIVOT(50),INDEX(50,2),IROW,ICOLUM,L1,JROW
INTEGER JCOLUM,N, INORM

REAL TEMP,ALPHA(50),COL(50),ROW(50),AJK, SUMAXA, SUMROW , SUMAXI

IF(NDIM. GT. 50) THEN
WRITE(*,*) ' ERROR IN INVERTION CALL... DIMENSION > 50 '
STOP
ENDIF
IF(N. GT.NDIM) THEN
WRITE(*,*) ' ERROR IN INVERTION CALL... N > MAX DIM. '
STOP
ENDIF
IF(INORM. NE.

1) G
DO3K=1, N

TO 7
COL(K)
DO 1J
AJK ABS(A(J,K))
IF(AJK. GT. COL(K)) COL(K) = AJK
CONTINUE
p0o2J=1, N
A(J,K) = A(J,K)/COL(K)
CONTINUE
ROW NORMALIZING
DO6J=1,
ROW(J)
DO 4 K

0
0.0
1,N
=C

0.0
1, N

=

117

SO &~

10

20

60
80
85

100
105

140

200

260

330

AJK = CABS(A(J,K))
IF(AJK.GT.ROW(J)) ROW(J) = AJK
CONTINUE
DOSK=1, N
A(J,K) = A(J,K)/ROW(J)
CONTINUE :
CONTINUE
DETERM = CMPLX(1.0,0.0)
SUMAXA = 0.0
DO 20J =1, N
ALPHA(J) = 0.
SUMROW = 0.0
D010 I=1, N
ALPHA(J) = ALPHA(J) + A(J,l1)* CONJG(A(J,I))
SUMROW = SUMROW + CABS(A(J,I1))
ALPHA'J) = SQRT(ALPHA(J))
IF(SUMROW. GT. SUMAXA) SUMAXA = SUMROW
IPIVOT(J) = 0
DO 600 I =1, N

0

AMAX = CMPLX(0.0,0.0)
DO 105 J =1, N
IF (IPIVOT(J)~1) 60, 105, 60
DO 100 K =1, N
IF (IPIVOT(K)-1) 80, 100, 740
TEMP = AMAX*CONJG(AMAX) - A(J,K)*CONJG(A(J,K))
IF(TEMP)85,85,100
IROW = J
ICOLUM = K -
AMAX = A(J,K)
CONTINUE
CONTINUE
IPIVOT(ICOLUM) = IPIVOT(ICOLUM) + 1

IF (IROW-ICOLUM) 140, 260, 140
DETERM = -DETERM
DO 200 L=1, N
SWAP = A(IROW,L)
A(CIROW,L) = A(CICOLUM,L)
A(ICOLUM,L) = SWAP
SWAP = ALPHA(IROW)
ALPHA(IROW) = ALPHA(ICOLUM)
ALPHA(ICOLUM) = SWAP
INDEX(I,1) = IROW
INDEX(I1,2) = ICOLUM
PIVOT(I) = A(ICOLUM,ICOLUM)
U = PIVOT(I)
DETERM = DETERM*U
DETERM = DETERM/ALPHA(ICOLUM)
TEMP = PIVOT(I)*CONJG(PIVOT(I)) -
IF(TEMP)330,720,330

A(ICOLUM,ICOLUM) = CMPLX(1.0,0.0)

118

w

350

380
400

450
550
600

620

630

705
710

900
910

950
955

720
730
740

aaoaan

DO 350 L
U=
A(ICOLUM,

L""Ull

1, N
IVOT(I)
) = A(ICOLUM,L)/U
DO 550 L1 = 1, N

IF(L1-ICOLUM) 400, 550, 400

= A(L1,ICOLUM)
A(L1,ICOLUM) = CMPLX(0.0,0.0)
DO 450 L = 1, N
U = A(ICOLUM,L)
A(L1,L) = A(L1,L) - U*T

N+1-1
IF (INDEX(L,1) - INDEX(L,2)) 630, 710, 630
JROW = INDEX(L,1)
JCOLUM = INDEX(L,2)
DO 705 K =1, N
SWAP = A(K,JROVW)
A(K,JROW) = A(K,JCOLUM)
A(K,JCOLUM) = SWAP
CONTINUE
CONTINUE

SUMAXI = 0.0
DO 910 I = 1,
SUMROW =
DO 900 J = 1, N
SUMROW = SUMROW + CABS(A(I,J))
IF(SUMROW. GT. SUMAXI) SUMAXI = SUMROW
CONTINUE
COND = SUMAXA*SUMAXI
IF(INORM. NE. 1) GO TO 955
DO 950 K = 1, N
DO 950 J = 1, N
A(J,K) = A(J,K)/(ROW(K)*COL(J))
CONTINUE
RETURN
WRITE(*,730)
FORMAT(' MATRIX IS SINGULAR')
RETURN
END

N
0.0
=1

SUBROUTINE SAVE(BCOND,ANS,U,OFFSET,PERND,CHARS ,DPER, K,XORG, YORG,
CNRES,MRES,LBIAS,GBIAS,MAXD)

THIS SUBROUTINE SAVES THE ESSENCE OF THE FINITE ELEMENT PROBLEM
TO A DATA FILE CALLED " F3.DAT ". tHIS DATA IS NECESSARY TO
SOLVE THE FIELD FEEDBACK FORMULATION, (F3).

COMPLEX BCOND(100),ANS(100),U(100,100)

REAL OFFSET,MESH(0: 200,5),DPER,K,XORG, YORG,MRES ,MAXD
INTEGER PERND,I,J,NRES,LBIAS,GBIAS

119

CHARACTER*1 CHARS

COMMON/BLK1/MESH

IF((CHARS.EQ. 'M').OR. (CHARS.EQ. 'm')) THEN
RETURN

ENDIF

WRITE(40,%) PERND
WRITE(40,%) OFFSET
WRITE(40,%) DPER

WRITE(40,%)

o]

WRITE(40,*) XORG
WRITE(40,*) YORG
WRITE(40,*) NRES
WRITE(40,*) MRES
WRITE(40,*) LBIAS
WRITE(40,*) GBIAS
WRITE(40,*) MAXD

DO 10, I =1, 4
DO 10, J = 1, PERND
WRITE(40,%*) MESH(J,I)

CONTINUE

DO 20, J = 1, PERND
WRITE(40,*) BCOND(J)

CONTINUE

DO 30, J = 1, PERND
WRITE(40,%) ANS(J)

CONTINUE

DO 40, I = 1, PERND
DO 40, J = 1, PERND

CONTINUE

RETURN
END

WRITE(40,*) U(I,J)

120

APPENDIX D. VARINT CONVERGENCE PROGRAM

TEST OF VARINT CONVERGENCE

COMPLEX F(3,3), ALPHA, BETA, EXACT, CENTER, LEFT, RIGHT, TOP
COMPLEX BOTTOM, SUM, CALC

REAL X(3), Y(3), D, AREA, KR, PI, ERROR

INTEGER I -

OPEN (UNIT = 1, FILE = 'C: MSFORT TEST.DAT', STATUS = 'UNKNOWN')
ALPHA = (1.0,0.0)

BETA = (1.0,0.0)

PI = 4, 0%ATAN(1.0)

aon

D05, I =1, 100

D = 2. 0*PI*FLOAT(I)/100.0
REAL(CSQRT(BETA))
= 0.0

<

~

N

A
waaunn
voouo
[eNa) (e

CALL VARINT(X,Y,F,ALPHA,BETA,AREA)

- EXACT = CMPLX(COS(KR*0.0),SIN(KR*0.0))
CENTER = 4.0%F(1,1)
RIGHT = -2.0%F(1,2)*CMPLX(COS(KR*Y(2)),SIN(KR*Y(2)))
TOP = -2.0%F(1,2)*CMPLX(COS(KR*Y(3)),SIN(KR*Y(3)))
i LEFT = -2.0%F(1,2)*CMPLX(COS(KR*Y(2)),SIN(KR*Y(2)))
BOTTOM = -2.0%F(1,2)*CMPLX(COS(-KR*Y(3)),SIN(-KR¥Y(3)))
SUM = TOP + BOTTOM + LEFT + RIGHT
CALC = SUM/CENTER
ERROR = (CALC-EXACT)/EXACT
WRITE(1,1000) I,D,EXACT,CALC,ERROR
CONTINUE

CLOSE(1)
000 FORMAT(1X,I3,1X,F8.5,1X,2(F8.5,1X,F8.5,1X),E13.6)

Q= O [RY,)

STOP
END

SUBROUTINE VARINT(X,Y,F,ALPHA,BETA,AREA)

GENERATING VARIATIONAL FINITE ELEMENT AREA INTEGRATIONS OF THE
LINEAR BASIS FUNCTION LAGRANGIAN FOR THE HELMHOLTZ EQUATION.
THESE ARE RETURNED IN F(3,3). X(3) AND Y(3) ARE THE WAVENUMBER
NORMALIZED CARTESIAN COORDINATES OF THE TRIANGLE VERTICES.

X = Ko*x, Y = Ko*y ALPHA AND BETA ARE COMPLEX

'
QOO0 OO0

121

QAQAOOOO

MATERIAL PARAMETERS WITHIN THE ELEMENT.

FOR TM INCIDENCE: ALPHA = 1/ur; BETA
FOR TE INCIDENCE: ALPHA = 1/er; BETA

er
ur

OUTPUTS : F(3,3) - FINITE ELEMENT AREA INTEGRATION
AREA - AREA OF A TRIANGLE

COMPLEX ALPHA, BETA, Bl12, F(3,3)
REAL X(3), Y(3), T(3,3), AREA, DET
INTEGER L, K

DET = ABS(X(2)*Y(3) + X(3)*Y(1) + X(1)*Y(2) - X(3)*Y(2) -
CX(1)*Y(3) - X(2)*Y(1))

AREA = ABS(0. 5*DET)

B12 = BETA/12.

T(1,1) = (Y(2) - ¥(3))/DET

T(1,2) = (Y(3) ~ Y(1))/DET

T(1,3) = (Y(1) ~ Y(2))/DET

T(2,1) = (X(3) - X(2))/DET

T(2,2) = (X(1) - X(3))/DET

T(2,3) = (X(2) - X(1))/DET

T(3,1) = (X(2)*Y¥(3) - X(3)*Y(2))/DET
T(3,2) = (X(3)*Y(1) - X(1)*Y(3))/DET
T(3,3) = (X(1)*Y(2) - X(2)*Y¥(1))/DET
DO 10, K =1, 3

pomwoL=1, 3
F(X,L) = ALPHA*(T(1,K)*T(1,L) + T(2,K)*T(2,L)) - B12
IF(K.EQ.L) F(X,L) = F(K,L) - Bl12
F(K,L) = AREA*F(K,L)

RETURN
END

122

g OOOOQOaaOOQOOO0OOOOOO000000aC0OO0000Nn

APPENDIX E. FIELD FEEDBACK PROGRAM

FIELD FEEDBACK FORMULATION PROGRAM
WRITTEN BY T.B. WELCH

w/ PROGRAMMING IDEAS FROM PROF M.A. MORGAN

BCOND - BOUNDARY CONDITIONS

OFFSET - OFFSET IN WAVELENGTHS (PERIMETER TO BOUNDARY)

ANS - CALCULATED PSI VALUES ON PERIMETER

DPER - DESIRED PERCENT ERROR SCALE FACTOR FOR GREEN'S
FUNCTION INTEGRAL PATCH STEPPING

LBIAS - BIAS THAT IS ADDED TO THE GFI STEP FOR < 1.0

GBIAS - BIAS THAT IS ADDED TO THE GFI STEP FOR > 1.0

MAXD - MAXIMUM DISTANCE BEYOND WHICH NO CONTRIBUTION IS MADE
TO THE GFI

K - WAVENUMBER

XORG - X ORIGIN

YORG - Y ORIGIN

NRES - NUMBER OF EVENLY SPACED POINTS DESIRED FOR THE FAR

FIELD CALCULATIONS (360/NRES = ANGULAR RESOLUTION)

U « MATRIX THAT RELATES EACH BOUNDARY NODE VALUE TO THE
UNKNOWN PERIMETER NODE VALUE. MULTIPLY U BY A DRIVING
VECTOR (ON BOUNDARY) TO FIND PERIMETER VALUES.

PERND - NUMBER OF PERIMETER NODES
MESH - GEOMETRY ARRAY CONTAINING:

1 - X POSITION OF PERIMETER NODES

2 - Y POSITION OF PERIMETER NODES

3 - X UNIT NORMAL OF PERIMETER NODES

4 - Y UNIT NORMAL OF PERIMETER NODES

5 - X POSITION OF GEOMETRIC CONTOUR NODES

6 - Y POSITION OF GEOMETRIC CONTOUR NODES

7 - X POSITION OF BOUNDARY NODES

8 - Y POSITION OF BOUNDARY NODES
T - MATRIX THAT RELATES PERIMETER VALUES BACK OUT

TO THE BOUNDARY VIA A GREEN'S FUNCTION INTEGRAL

CNVEC - VECTOR OF SCATTERED FIELD BACK ONTO THE BOUNDARY
MRES - MESH RESOLUTION

COMPLEX BCOND(100),ANS(100),U(100,100),T(100,100),CNVEC(100)
REAL OFFSET,MESH(100,8),DPER,K,XORG,YORG,MRES ,MAXD
INTEGER PERND,I,J,NRES,LBIAS,GBIAS

OPEN (UNIT
OPEN (UNIT

'C: MSFORT F3.DAT',STATUS='UNKNOWN')

40, FILE
"C: MSFORT FFPAT. DAT',STATUS='UNKNOWN')

50, FILE

CALL INPUT(BCOND,ANS,U,OFFSET,PERND,MESH,DPER,K,NRES,XORG, YORG,
CMRES,LBIAS,GBIAS ,MAXD) -

CALL TMAT(U,PERND,MESH,T,OFFSET,DPER,BCOND,MRES,LBIAS,GBIAS,MAXD)
CALL CNSOLV(T,BCOND,CNVEC,PERND)

123

aQa

aaann

CALL FFLD(CNVEC,PERND,MESH,U,OFFSET,K,NRES,XORG, YORG)

CLOSE(40)
CLOSE(50)

STOP
END

SUBROUTINE INPUT(BCOND,ANS,U,OFFSET,PERND,MESH,DPER,K,NRES,XORG,
CYORG,MRES,LBIAS,GBIAS,MAXD)

THIS SUBROUTINE READS THE FINITE ELEMENT PROBLEM DATA FROM
THE DATA FILE CALLED " F3.DAT ". THIS DATA IS NECESSARY TO
SOLVE THE FIELD FEEDBACK FORMULATION, (F3).

COMPLEX BCOND(100),ANS(100),U(100,100)
REAL OFFSET,MESH(100,8),DPER,K,XORG,YORG,MRES,MAXD
INTEGER PERND,I,J,NRES,LBIAS,GBIAS

WRITE(*,*) ' READING INPUT DATA '

READ(40,%*) PERND
READ(40,%) OFFSET
READ(40,*) DPER
READ(40,%) K
READ(40,*) XORG
READ(40,*) YORG
READ(40,*) NRES
READ(40,*) MRES
READ(40,%) LBIAS
READ(40,%*) GBIAS
READ(40,*) MAXD

WRITE(6,*) ' NUMBER OF PERIMETER NODES = ',PERND
WRITE(6,*) ' BOUNDARY CONTOUR OFFSET = ' OFFSET
WRITE(6,*) ' DESIRED GFI SCALE FACTOR = ' ,DPER
WRITE(6,*) ' GFI STEP BIAS FOR < 1.0 = ', LBIAS
WRITE(6,*) ' GFI STEP BIAS FOR > 1.0 = ' GBIAS
WRITE(6,*) ' MAX DIST > NO CONTRIBUTION TO GFI = ',6MAXD
WRITE(6,%*) ' WAVENUMBER ="'XK
WRITE(6,*) ' X ORIGIN = ' XORG
WRITE(6,*) ' Y ORIGIN = ',YORG
WRITE(6,*) ' NUMBER OF NODES FOR SIGMA = ' ,NRES
WRITE(6,*) ' REQUESTED MESH RESOLUTION = ' ,MRES

DO 10, I =1, 4
DO 10, J = 1, PERND
READ(40,%*) MESH(J,I)
CONTINUE

DO 20, J = 1, PERND
READ(40,%*) BCOND(J)
CONTINUE

DO 30, J = 1, PERND

124

an

[oNoNoNoNsRoNoNoNoN)

READ(40,%) ANS(J)
CONTINUE

DO 40, I = 1, PERND
DO 40, J = 1, PERND
READ(40,*) U(I,J)
CONTINUE

DO 50, I = 1, PERND
MESH(I,5) = MESH(I,1) + MESH(I,3)*OFFSET/2.0
MESH(I,6) = MESH(I,2) + MESH(I,4)*OFFSET/2.0

MESH(I,7) = MESH(I,1) + MESH(I,3)*OFFSET
MESH(I1,8) = MESH(I,2) + MESH(I,4)*QOFFSET
CONTINUE
RETURN

END

SUBROUTINE TMAT(U,PERND,MESH,T,OFFSET,DPER,BCOND,MRES,LBIAS,GBIAS,
CMAXD)

THIS SUBROUTINE CALCULATES THE GREEN'S FUNCTION INTEGRAL

(FOR A SINGLE BASIS FUNCTION BOUNDARY CONDITION) GEOMETRIC
PERIMETER WITH RESPECT TO EACH OF THE OFFSET BOUNDARY NODES.

THE INTEGRATION IS REPEATED UNTIL EACH BOUNDARY CONDITION HAS BEEN
INDIVIDUALLY APPLIED AND INTEGRATED WITH RESPECT TO EACH OFFSET
BOUNDARY NODE. THESE VALUES ARE RETURNED IN THE " T " MATRIX

FOR USE IN THE FIELD FEEDBACK FORMULATION. THE MATRIX IS
ORGANIZED, T m,n.

COMPLEX U(100,100),T(100,100),PVEC(100),PDVEC(100)

COMPLEX J,HORP1,HORP2,H1RP1,SUM,TEMP(100),BCOND(100)

COMPLEX H1RP2,PSI,PSIRP,INTEGRAL,DPSIC

REAL RMRP,NORM11,NORM12,DOT,DPER,DISTM,MAXD

REAL OFFSET,MESH(100,8),DIST,R,DZ,DL,MRES

INTEGER I,M,N,NN,STEP,FN,SN,PERND,MM,STEPMX,STEPMN, LBIAS,GBIAS
OPEN (UNIT = 2, FILE = 'C: MSFORT TMAT.DAT',STATUS = 'UNKNOWN')

J = (0.0,1.0)
STEPMX = INT(DPER¥*(-48.0*QFFSET + 17.2) + LBIAS)
STEPMN = INT(DPER + GBIAS)

WRITE(*,*) ' LOADING T MATRIX '
WRITE(*,*) ' MAXIMUM STEP = ',STEPMX,', MINIMUM STEP = ',STEPMN
WRITE(*,*) ' MAXIMUM DISTANCE FOR ANY CONTRIBUTION = ',MAXD
DO 40, M = 1, PERND
DO 5, I = 1, PERND
IF(M.EQ. I) THEN
PVEC(I) = (1.0 + U(I,M))/2.0
PDVEC(I) = (1.0 - U(I,M))/OFFSET

ELSE
PVEC(I) = U(I,M)/2.0
PDVEC(I) = ~-U(I,M)/OFFSET
125

aan

aa o a aoaa

ENDIF

CONTINUE

DO 30, N = 1, PERND

WRITE(*,1000) M, N, PERND
SUM = (0.0,0.0)
DO 20, NN = 1, PERND
FN = NN
IF(NN. EQ. PERND) THEN
SN = 1
ELSE
SN = NN + 1
ENDIF
DIST = SQRT((MESH(FN,5)-MESH(SN,S5))**2+(MESH(FN,6)
-MESH(SN,6))**2)
INTEGRAL = (0.0,0.0)

DIST™ = SQRT((MESH(N,7)-MESH(FN,5))**2+(MESH(N,8)-MESH(FN,6))**2)

R = MESH(SN,5) - MESH(FN,S5)
DZ = MESH(SN,6) - MESH(FN,6)
DL = SQRT(R**2 + DZ2**2)
NORM11 = -DZ/DL

NORM12 = R/DL

IF(DISTM. GT. MAXD) THEN

GOTO

20

ELSEIF(DISTM. LE. 1. 0) THEN

STEP
ELSE

STEP
ENDIF

= STEPMX

STEPMN

IF(STEP.LT.1) STEP = 1

DO 10, I = 1, STEP+1

IF(I.

EQ. 1) THEN

RMRP = SQRT((MESH(N,7)-(MESH(FN,5)+0. 25*(MESH(SN,5)-
MESH(FN,5))/FLOAT(STEP)))**2+(MESH(N,8)-(MESH(FN, 6)+

0. 25*%(MESH(SN,6)-MESH(FN, 6)) /FLOAT(STEP)))**2)

DPSIC = PDVEC(FN) + 0.25%(PDVEC(SN)-PDVEC(FN))/STEP
PSIRP = PVEC(FN) + 0. 25*%(PVEC(SN)-PVEC(FN))/STEP

DOT = (NORM11*(MESH(N,7) - (MESH(FN,5)+0.25*(MESH(SN,5)-
MESH(FN,5))/3STEP))+(NORM12*(MESH(N,8)-(MESH(FN,6)+0. 25%*
(MESH(SN,6)-MESH(FN,6))/STEP))))/RMRP

ELSEIF(I.EQ. STEP+1) THEN

RMRP = SQRT((MESH(N,7)-(MESH(FN,5)+(FLOAT(STEP)-0. 25)%*(

MESH(SN,5)-MESH(FN,5))/FLOAT(STEP)))**2+(MESH(N, 8)~(MESH
(FN, 6)+(FLOAT(STEP)-0. 25)*(MESH(SN, 6) -MESH(FN, 6)) /FLOAT

(STEP)))¥**2)

DPSIC=PDVEC(FN)+(FLOAT(STEP)-0. 25)*(PDVEC(SN)-PDVEC(FN))
/(STEP)

PSIRP = PVEC(FN)+(FLOAT(STEP)-0. 25)*(PVEC(SN)-PVEC(FN))/
(STEP)

DOT = (NORM11#*(MESH(N,7)-(MESH(FN,S5)+(FLOAT(STEP)-0. 25)%*
(MESH(SN,5)~MESH(FN,5))/STEP))+(NORM12*(MESH(N,8)-(MESH

(FN,6)+(FLOAT(STEP)-0. 25)*(MESH(SN,6) -MESH(FN,6)) /STEP)

126

—j

20

30
40

60
1000

aa

oo NoNe NN

c)))/RMRP
ELSE
RMRP = SQRT((MESH(N,7)-(MESH(FN,S5)+FLOAT(I-1)*(MESH(SN,
c 5)-MESH(FN,S))/FLOAT(STEP)))**2+(MESH(N,8)-(MESH(FN,6)+
C FLOAT(I1-1)*(MESH(SN,6)-MESH(FN,6))/FLOAT(STEP)))**2)

DPSIC=PDVEC(FN)+(1-1)*(PDVEC(SN)-PDVEC(FN))/(STEP)
PSIRP = PVEC(FN)+(I-1)*(PVEC(SN)-PVEC(FN))/(STEP)
DOT = (NORM11*(MESH(N,7)-(MESH(FN,S5)+(1-1)*(MESH(SN,5)~

c MESH(FN,5))/STEP)) +(NORM12¥#(MESH(N,8)-(MESH(FN,6)+(1-1)*
c (MESH(SN,6)-MESH(FN,6))/STEP))))/RMRP

ENDIF
CALL HAN1(CMPLX(RMRP,0.0),HORP1,H1RP1)
IF((I.EQ.1).0R.(I.EQ.STEP+1)) THEN

PSI = (J/4.0)*(HORP1*DPSIC - PSIRP*DOT*H1RP1)/2

ELSE
PSI = (J/4.0)*(HORP1*DPSIC - PSIRP*DOT*H1RP1)
ENDIF
INTEGRAL = INTEGRAL + PSI*DIST/STEP
CONTINUE
SUM = SUM + INTEGRAL
CONTINUE
T(N,M) = SUM
CONTINUE
CONTINUE

DO 55, I = 1, PERND
TEMP(I) = (0.0,0.0)
PO 50, M = 1, PERND
TEMP(I) = TEMP(I) + T(I,M)*BCOND(M)
CONTINUE
WRITE(2,*) (T(I,MM), MM = 1, PERND)
CONTINUE

DO 60, I = 1, PERND
WRITE(2,%*) I, TEMP(I)
CONTINUE
FORMAT(1X,'COLUMN ',I3,', ROW ',I3,' OUT OF ',I3)
CLOSE(2)
RETURN
END
SUBROUTINE CNSOLV(T,BCOND,CNVEC,PERND)
THIS SUBROUTINE CALCULATES THE C VECTOR BY SOLVING:

-1
Cn =[I - T] * BOUNDARY CONDITIONS (INCIDENT FIELDS)

COMPLEX BCOND(100),T(100,100),TEMP(100),CNVEC(100), DETERM
REAL COND, DMAG

127

10

aaOaaQa aon

INTEGER PERND,I,J,K,L,INORM,NMAX

INORM = 0O
NMAX = 100

DO 10, I = 1, PERND
DO 10, J = 1, PERND
IF(I.EQ.J) THEN
T(1,J) =1 - T(1,J)
ELSE
T(I,J)
ENDIF

=T(1,J)

CONTINUE
WRITE(*,*) 'INVERTING THE [I - T} MATRIX

CALL CSMINV(T,NMAX,PERND,DETERM,COND, INORM)

DMAG = CABS(DETERM)

WRITE(*,*) ' DETERMINANT = ', DMAG

WRITE(*,*) ' CONDITION NUMBER = ', COND

WRITE(*,*) ' MULTIPLING MATRICES TO FORM THE SCATTERED FIELDS '

DO 30, I = 1, PERND
CNVEC(I) = (0.0,0.0)
DO 30, J =1, PERND
CNVEC(I) = CNVEC(I) + T(I,J)*BCOND(J)
CONTINUE

RETURN
END

SUBROUTINE FFLD(CNVEC,PERND,MESH,U,OFFSET,K,NRES,XORG,YORG)

THIS SUBROUTINE CALCULATES THE FAR FIELDS DUE TO THE OFFSET
BOUNDARY SCATTERED FIELDS AND THE PERIMETER SCATTERED FIELDS.
ADDITIONAL GREEN'S FUNCTION INTEGRALS ARE ACCOMPLISHED.

COMPLEX CNVEC(100),U(100,100),J,PSISP(100),TEMP,PSI,DPSI
COMPLEX DPSISP(100),INTEGRAL,DPSIM(100,100),PSIM(100,100)

REAL MESH(100,8),0FFSET,K,DOT,DOT1,PI,ARES,XORG,YORG,DIST,SIGMA
REAL R,DZ,DL,NORM11,NORM12

INTEGER PERND,I,M,N,L,NRES,FN,SN,STEP,II

WRITE(*,*) ' CALCULATING THE SCATTERED FIELDS'
J = (0.0,1.0)

PI = &4, O*ATAN(1.0)

ARES = 2. 0*PI/FLOAT(NRES)

STEP = 5

Imon e

Do 5,
D

1, PERND
I =1, PERND
IF(M.EQ.I) THEN
PSIM(I,M) = (1.0 + U(I,M))/2.0
DPSIM(I,M) = (1.0 - U(I,M))/OFFSET
ELSE

M
0

(V. I}

’

128

aQaaOo

aQaaaon

PSIM(I,M) = U(I,M)/2.0
DPSIM(I,M) = -U(I,M)/OFFSET
ENDIF
CONTINUE

DO 10, I = 1, PERND
PSISP(I) = (0.0,0.0)
DPSISP(I) = (0.0,0.0)
DO 10, L = 1, PERND
PSISP(I) = PSISP(I) + PSIM(I,L)*CNVEC(L)
DPSISP(I) = DPSISP(I) + DPSIM(I,L)*CNVEC(L)
CONTINUE

DO 30, I = 0, NRES~1
WRITE(6,1000) I+1, NRES
INTEGRAL = (0.0,0.0)
DO 20, N =1, PERND
FN =N
IF(N. EQ. PERND) THEN
SN =1
ELSE
SN=N+1
ENDIF
R = MESH(SN,5) - MESH(FN,5)
DZ = MESH(SN,6) - MESH(FN,6)
DL = SQRT(R*¥*2 4+ DZ¥*2)
NORM11 = -DZ/DL
NORM12 = R/DL
DO 15, II = 1, STEP+1
DIST = SQRT((MESH(FN,5)-MESH(SN,5))**2+(MESH(FN,6)-
MESH(SN,6))**2)
IF(II.EQ.1) THEN
PSI = PSISP(FN)+0. 25*(PSISP(SN)-PSISP(FN))/
FLOAT(STEP)
DPSI = DPSISP(FN)+0. 25*(DPSISP(SN)-DPSISP
(FN))/FLOAT(STEP)
DOT = NORM11*SIN(I*ARES) + NORM12*COS(I*ARES)
DOT1 = (MESH(FN,5)+0. 25*(MESH(SN,5)-MESH(FN,
5))/FLOAT(STEP)-XORG)*SIN(I*ARES) + (MESH(FN,6)+
0. 25*(MESH(SN, 6)-MESH(FN,6))/FLOAT(STEP) -
YORG)*COS(I*ARES)
ELSEIF(II.EQ. STEP+1) THEN
PSI = PSISP(FN)+(FLOAT(STEP)-0. 25)*(PSISP(SN)-
PSISP(FN))/FLOAT(STEP)
DPSI = DPSISP(FN)+(FLOAT(STEP)-0.25)*(DPSISP(SN}-
DPSISP(FN))/FLOAT(STEP)
DOT = NORM11*SIN(I*ARES) + NORM12*COS(I*ARES)
DOT1 = (MESH(FN,5)+(FLOAT(STEP)-0. 25)*(MESH(SN,5)-
MESH(FN,5))/FLOAT(STEP)-XORG)*SIN(I*ARES) + (MESH(
FN,6)+(FLOAT(STEP)-0. 25)*(MESH(SN,6)-MESH(FN,6))/
FLOAT(STEP) -YORG)*COS(I*ARES)
ELSE
PSI = PSISP(FN)+FLOAT(II-1)*(PSISP(SN)-PSISP(FN))/
FLOAT(STEP)
DPSI = DPSISP(FN)+FLOAT(II-1)*(DPSISP(SN)-DPSISP
(FN))/FLOAT(STEP)

129

DOT = NORM11*SIN(I*ARES) + NORM12*COS(I*ARES)

DOT1 = (MESH(FN,S)+FLOAT(I1I-1)*(MESH(SN,5)-MESH(FN,
5))/FLOAT(STEP)-XORG)*SIN(I*ARES) + (MESH(FN,6)+
FLOAT(II-1)*(MESH(SN,6)-MESH(FN,6))/FLOAT(STEP)~

15
20

aooaaa aa

aaOn

aaQn

aan

YORG)*COS(I*ARES)
ENDIF
IF((II.EQ.1).0R. (II.EQ.STEP+1)) THEN

TEMP=(J*DPSI+DOT*PSI)*(EXP(J*DOT1))*DIST/(2. 0%

C STEP)
ELSE
TEMP=(J*DPSI+DOT*PSI) *(EXP(J*DOT1))*DIST/
c (STEP)
ENDIF
INTEGRAL = INTEGRAL + TEMP
CONTINUE
CONTINUE
SIGMA = ((CABS(INTEGRAL))**2.0)/(4. 0*K)
WRITE(50,1010) I+1, (I*ARES*180.0/PI), SIGMA
CONTINUE

WRITE(6,%) '
WRITE(6,%) ' <<< FIELD PATTERN STORED IN FFPAT.DAT >>> '
WRITE(6,*) ' '

FORMAT(1X, ' INTEGRAL ',I3,', OUT OF ',I3,"' COMPLETED')
FORMAT(1X,13,2X,F6. 2,2X,E14. 8)

RETURN
END

SUBROUTINE HAN1(Z,HO,H1)

Computing Hankel Functions for n=0,1 with

Complex Argument, 2. Direct Power Series Method for
CABS(Z) .LE. 5 and Hankel's Asymptotic Formula for
CABS(2) .GT. 5. Written 11/6/87 by M.A. Morgan

INTEGER M,M2

REAL C(34),DM,F(34),G0,P(34),Pi,P2

COMPLEX Z,22,23,24,J0,J1,Y0,Y1,AM,CL,P0,P1,Q0,Q1
COMPLEX EO,E1,X0,X1,HO,H1,j

PI=3. 1415927

P2=2.0/PI

§=(0.,1.)

IF(CABS(Z).1E.5.0) THEN

Direct Power Series Method
GO= 1.78072

22=0. 5%Z
CL=CLOG(G0*22)

Computing F(m) =m! and P(m) =1+ 1/2 +1/3 +..,.+ 1/m

F(1)=1.0

130

P(1)=1.0
DO 11 M=2,34
F(M)=M*F(M-1)
P(M)=P(M-1)+1. 0/M
1 CONTINUE

Computing Power Series Coefficients

AN

DM=-1.0
DO 22 M=1,34
C(M)=DM/(F(M)*F(M))
DM=-DM
2 CONTINUE

Computing JO and J1

aaoan

Jo=(1.,0.)
J1=(0.,0.)
M=0

33 =M+1
M2=2+*M
AM=C(M)*(22%*M2)
JO=J0+AM
J1=J1-M*AM
IF((CABS(AM).GT. 1. 0E-10). AND. (M. LT. 34)) GO TO 33
J1=J1/22

c

C Computing Y0 and Y1

c

M=0
Y0=CL*Jo
Y1=22%CL*J1-0. 5%J0
A M=M+1
M2=2%M
AM=C(M)*P(M)*(Z2%*M2)
Y0=Y0-AM
Y1=Y1+M*AM
IF((CABS(AM).GT. 1. 0E-10). AND. (M. LT. 34)) GO TO 44
YO=P2*Y0
Y1=P2*Y1/22
HO=JO- j*Y0
H1=J1-3*Y1
RETURN
ELSE

C Hankel' Asymptotic Formula (Abram. & Stegun p. 364

22=7*Z

23=2%22

Z4=7*73

P0=1.0-.0703125/22+. 1121521/24
Q0=-.125/72+.0732422/23
P1=1.0+.1171875/Z22~. 1441956/24
Ql=.375/2-.10253906/23

X0=(2-. 25*%PI)

X1=(Z-. 75%PI)

131

Qaaaoaoaaooaoaaoaaa oo

awN

EO=CEXP(- j*X0)

E1=CEXP(- }*X1)

AM=CSQRT(P2/2)

HO=AM#(PO~ §*Q0)*EO

H1=AM*(P1-j*Q1)*E1
ENDIF

RETURN

END

SUBROUTINE CSMINV(A,NDIM,N,DETERM,COND, INORM)

INORM - FLAG TO NORMALIZE COLUMNS AND ROWS OF MATRIX A

MATRIX NORMALIZATION BY M.A. MORGAN
APRIL 24,1978

A - MATRIX TO INVERT - INPUT/OUTPUT
NDIM - - INPUT

N - - INPUT
DETERM - DETERMINATE OF A - OUTPUT

COND - CONDITION NUMBER OF A - OUTPUT
INORM ~ INTEGER NORMALIZATION FLAG ~ INPUT

COMPLEX A(100,100),PIVOT(100),AMAX,T,SWAP,DETERM,U

INTEGER I,J,K,L,IPIVOT(100),INDEX(100,2),IROW,ICOLUM,L1,JROW
INTEGER JCOLUM,N, INORM

REAL TEMP,ALPHA(100),COL(100),ROW(100),AJK,SUMAXA, SUMROW,SUMAXI

IF(NDIM. GT. 100) THEN
WRITE(*,*) ' ERROR IN INVERTION CALL... DIMENSION > 100 '
STOP

ENDIF

IF(N. GT.NDIM) THEN
WRITE(*,*) ' ERROR IN INVERTION CALL... N > MAX DIM. '

STOP
ENDIF
IF(INORM.NE. 1) GO TO 7
DO 3 K=1, N

COL(K) = 0.0

Do 1J=1,N

AJK = CABS(A(J,K))
IF(AJK. GT. COL(K)) COL(K)
CONTINUE
DO 2J
A(J,K)
CONTINUE
ROW NORMALIZING

AJK

1, N
A(J,K)/COL(K)

DO 4K=1, N
AJK = CABS(A(J,K))
IF(AJK.GT.ROW(J)) ROW(J)
CONTINUE

AJK

132

Non

10

20

60
80
85

100
105

140

200

260

330

350

DO 5 K N
A =
CONTINUE
CONTINUE
DETERM = CMPLX(1.0,0.0)
SUMAXA = 0.0
DO20J =1, N
ALPHA(J) = 0.0
SUMROW = 0.0
DO10I=1,N
ALPHA(J) = ALPHA(J) + A(J,I)* CONJG(A(J,I))
SUMROW = SUMROW + CABS(A(J,I))
ALPHA(J) = 3QRT(ALPHA(J))
IF(SUMROW. GT. SUMAXA) SUMAXA = SUMROW
IPIVOT(J) = 0
DO 600 I =1, N

= 1’
(J,K) = A(J,K)/ROW(J)

AMAX = CMPLX(0.0,0.0)
DO 105 J =1, N
IF (IPIVOT(J)-1) 60, 105, 60
DO 100 K= 1, N
IF (IPIVOT(K)-1) 80, 100, 740
TEMP = AMAX*CONJG(AMAX) - A(J,K)*CONJG(A(J,K))
IF(TEMP)85,85,100
IROW = J
ICOLUM = K
AMAX = A(J,K)
CONTINUE
CONTINUE
IPIVOT(ICOLUM) = IPIVOT(ICOLUM) + 1

IF (IROW-ICOLUM) 140, 260, 140
DETERM = -DETERM
DO 200 L=1, N
SWAP = A(IROW,L)
A(IROW,L) = A(ICOLUM,L)
A(ICOLUM,L) = SWAP
SWAP = ALPHA(IROW)
ALPHA(IROW) = ALPHA(ICOLUM)
ALPHA(ICOLUM) = SWAP
INDEX(I,1) = IROW
INDEX(I,2) = ICOLUM
PIVOT(1) = A(ICOLUM,ICOLUM)
U = PIVOT(I)
DETERM = DETERM*U
DETERM = DETERM/ALPHA(ICOLUM)
TEMP = PIVOT(I)*CONJG(PIVOT(I))
IF(TEMP)330,720,330

A(ICOLUM,ICOLUM) = CMPLX(1.0,0.0)
DO 350 L =1, N

U = PIVOT(I)
A(ICOLUM,L) = A(ICOLUM,L)/U

133

380
400

450
550
600

620

630

705
710

900
910

950
955

720
730
740

DO 550 L1 = 1, N
IF(L1-ICOLUM) 400, 550, 400
T = A(L1,ICOLUM)
A(L1,ICOLUM) = CMPLX(0.0,0.0)
DO 450 L =1, N
U = A(ICOLUM,L)
A(L1,L) = A(L1,L) - UT
CONTINUE
CONTINUE

DO 710 I =1, N
L=N+1-1
IF (INDEX(L,1) - INDEX(L,2)) 630, 710, 630
JROW = INDEX(L,1)
JCOLUM = INDEX(L,2)
DO 705 K= 1, N
SWAP = A(K,JROW)
A(K,JROW) = A(K,JCOLUM)
A(K,JCOLUM) = SWAP
CONTINUE
CONTINUE
SUMAXI = 0.0
DO %10 I =1,
SUMROW =
DO 900 J N
SUMROW = SUMROW + CABS(A(I,J))
IF(SUMROW. GT. SUMAXI) SUMAXI = SUMROW
CONTINUE
COND = SUMAXA*SUMAXI
IF(INORM. NE. 1) GO TO 955
DO 950 K =1, N
DO 950 J = 1, N
A(J,K) = A(J,K)/(ROW(K)*COL(J))
CONTINUE
RETURN
WRITE(*,730)
FORMAT(' MATRIX IS SINGULAR')
RETURN
END

N
0.0
=1,

134

APPENDIX F. DIELECTRIC CYLINDER SCATTERING PROGRAM

¢ CCcceceececcececceecceeccececceecceecceccceeccecccecceeccecccececececceccecce
PLANEWAVE SCATTERING BY A DIELECTRIC CYLINDER
E - WAVE (TM CASE)
H - WAVE (TE CASE)

CCccceccececcececceeccececceeccecccceccceccceccccecccceccececceccccecceccceccce

aaaaaaaaan
aaoaaaa

COMPLEX GAMMA(O:200,2),SIGMA(2),ER,MU,KR,YR,ZR
COMPLEX*16 JA(O:200),DJA(0:200),KRRA

COMPLEX*16 J(0:200),DJ(0: 200)

REAL*8 Y(0:200),DY(0:200),YA(0: 200) ,DYA(0O: 200),JB(0: 200)
REAL*8 DJB(O:200),RA,KORA

REAL KO,PI,SIGMAN(2),A,B

INTEGER I,II,MODE,ARES,N

OPEN(3,FILE='C: MSFORT DECTEM.DAT')
PI = 3.1415927

WRITE(*,*) 'PERMITTIVITY FORMAT IS " a + jb, " '
WRITE(*,*) 'Enter Dielectric Constant (REAL PART, a) '
READ(%,%) A
WRITE(*,*) 'Enter Dielectric Constant (IMAGINARY PART, b) '
READ(%*,*) B

. ER = CMPLX(A,B)

WRITE(?*,*) 'PERMEABILITY FORMAT IS " a + jb, "'

WRITE(*,*) 'Enter Permeability Constant (REAL PART, a) '
READ(*,%) A

WRITE(*,*) 'Enter Permeability Constant (IMAGINARY PART, b) '
READ(*,*) B

MU = CMPLX(A,B)

WRITE(*,*) 'Enter the wave number (ko) '
READ(*,*) KO

WRITE(*,*) 'Enter Cylinder Radius (IN WAVENUMBER UNITS) '
WRITE(*,%*) 'WARNING: Do Not Enter Zero ! '
READ(*,*) KORA

CSQRT(MU*ER)
CSQRT(ER/MU)
CSQRT(MU/ER)
KORA/KO
= KR*RA

)
~
nuwnu

-

- WRITE(*,*) 'Enter No. of Modes: !
READ(*,*) MODE
WRITE(*,*) 'Enter the angular resolution
- READ(*,%*) ARES

135

WRITE(3,*) 'Cylinder Scattering vs. angle'
WRITE(3,110? ER,MU,RA,MODE,K0,KRRA
WRITE(3,*) !

CALL BES(MODE,KORA,JB,Y,DJB,DY)

CALL DCBJNS (DCMPLX(KORA,O. 0D+00),MODE,J,DJ)
CALL DCBJINS ((KRRA*KO),MODE,JA,DJA)
WRITE(*,*) ' RETURNED FROM FINAL BESSEL CALL'

CALCULATING GAMMAs

anan

DO 10, N = 0, MODE
GAMMA(N, 1) = (JA(N)*DJ(N)-YR*DJA(N)*J(N))/(JA(N)*CMPLX(DJ(N)
c ,=DY(N)) =~ YR*DJA(N)*CMPLX(J(N),-Y(N)))
GAMMA(N,2) = (JA(N)*DJ(N)-ZR*DJA(N)*J(N))/(JA(N)*CHMPLX(DJI(N)
c ,=DY(N)) - ZR*DJA(N)*CMPLX(J(N),-Y(N)))
WRITE(*,1000) N,GAMMA(N,1),GAMMA(N,2)
0 CONTINUE

CALCULATING SIGMAs

[»NoNe N

DO 30, I = 180, -180, -ARES
DO 40, II =1, 2
SIGMACII) = (0.0,0.0)
DO 20, N = 1, MODE
SIGMA(II) = SIGMA(II)+2. 0*GAMMA(N,II)*COS(N*PI*1/180.0)
20 CONTINUE
SIGMA(IT) = SIGMA(II) + GAMMA(O,II)
SIGMAN(II) = ((4.0/KO)*(CABS(SIGMA(II)))¥**2)
40 CONTINUE
WRITE(3,120) I, SIGMAN(1), SIGMAN(2)
30 CONTINUE

c
c
110 FORMAT(1X, 'Ex = ',F6.4,1X,F6.4,/,
C' Mu = ',F6.4,1X F6.4,/,
C' RADIUS (METERs) = ',F8.5,/,
C' MAX MODE = ',13,/,
C' Ko = ' FB 3,/
C' KxRa = ! F8 5,1X,F8.5)

120 FORMAT(1X,14,2(3X,E14.4))
1000 FORMAT(1X,I3,1X,2(E12.4,1X,E12.4,4X))

STOP
END

136

APPENDIX G. SOFTWARE SOURCES

. DISSPLA

Integrated Software Systems Corporation
10505 Sorrento Valley Road

San Diego, CA 92121

. CURVE-DIGITIZER

West Coast Consultants

4202 Genesee Avenue, Suite 309
San Diego, CA 92117

. Microseft FORTRAN
16011 NE 36th Way
BOX 97017

Redmond, WA 98073

. Microway NDP FORTRAN
POB 79
Kingston, MA 02364

. Prof. M.A. Morgan, Code 62Mw
Naval Postgraduate School
Monterey, CA 93943

. LT T.B. Welch 111
c'o T.B. Welch Jr.
1318 Walthour Road
Savannah, GA 31410

137

10.

LIST OF REFERENCES

Mittra, R. (Editor), Computer Techniques in Electromagnetics, Pergamon Press, New
York, NY, 1973.

Welch, B.A., Concept Evaluation: Field Feedback Compuiation of Electromagnetic
Scattering, Master’s Thesis, Naval Postgraduate School, Monterey, CA, June 1980.

Morgan, M.A. and Welch, B.A., "Field Feedback Formulation for Electromagnetic

Scattering”, IEEE Transactions in Antennas and Propagation, December 1986.

Morgan, M.A., Unpublished notes, Naval Postgraduate School, Monterey, CA,
dated 2 April 1988.

Morgan, M.A., Unpublished notes, Naval Postgraduate School, Monterey, CA,
dated 13 April 1988.

Morgan, M.A., Unpublished notes, Naval Postgraduate School, Monterey, CA,
dated 26 May 1988.

Morgan, M.A., Unpublished notes, Naval Postgraduate School, Monterey, CA,
dated 9 January 1989

Morgan, M.A., Unpublished notes, Naval Postgraduate School, Monterey, CA,
dated 20 May 1988

Morgan, M.A. Unpublished notes, Naval Postgraduate School, Monterey, CA,
dated 3 February 1989

Richmond, J.H., "Scattering by a Dielectric Cylinder of Arbitrary Cross-Section”,
IEEE Transanction on Antennas and Propagation, May 1965

138

11. Richmond, J.H. "TE - Wave Scattering by a Dielectric Cylinder of Arbitrary
Cross-Section”, IEEE Transactions on Antennas and Propagation, July 1966

139

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-3002

Professor John P. Powers, Chairman

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

Professor Michael A. Morgan

Code 62 Mw

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterev, CA 93943-5000

Professor Ramakrishna Janaswamy

Code 62 Js

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

Professor Richard W. Adler

Code 62 Ab

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

Dr. Arthur Jordan

Code 1114SE

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Dr. Bill Pala

Code 5316

Naval Research Laboratory

4555 Overlook Avenue, South West
Washington, DC 20375

140

No. Copies
2

10

10.

1.

12.

13.

14.

15.

Mr. Peter Hoag

Code 25D

Office of Naval Technology
800 North Quincy Street
Arlington, VA 22217

Mr. Charles Heber

AST Office

Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Mr. Daniel Carpenter

TRW Military Electronics and Aviation Division
One Rancho Carmel

San Diego, CA 92128

Dr. David Lewis

AST Office

Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Mr. Joseph Mosko
Code 35203

Naval Weapons Center
China Lake, CA 93353

Ms. Pamela Overfelt
Code 3814

Naval Weapons Center
China Lake, CA 93355

LT Thaddeus B. Welch 11

1318 Walthour Road
Savannah, GA 31410

141

