
CONTRACTOR REPORT BRL-CR-611

BRL
LA STUDY OF THE EFFECTS OF THERMAL SHIELD

TEMPERATURE CHANGES ON GUN TUBE CURVATURE

N

IL B. KINGSBURY
A. V. KALBAG

I-DTIC

J E1989 JUL 0 3 1989

E
AMOVW FM MiI C XNA D-MR3UfON.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

89 6 ZG 329



DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the
originator.

Additional copies of this report may be obtained fran the National Technical
Information Service, U.S. Department of Comierce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not con-
stitute indorsement of any cammercial product.



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Form Apowd
REPORT DOCUMENTATION PAGE oN,No.o."8

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
I APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

BRL-CR-611

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of Delaware (if appikable)

Dept of Mechancial Engineering I
6c. ADDRESS (City, State, end ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Newark, Delaware 19716

I. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Ballistic Research Laboratory SLCBR-IB-M
MeihanA1 and Structures Branc
Sc. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM :PROJECT TASK WORK UNIT
Ballistic Research Laboratory ELEMENT NO. NO. 1L16110 NO. ACCESSION NO.
Aberdeen Proving Ground, MD 21005-5066 2AH43

11. TITLE (Mncude Securft Clauffication)

(U) A STUDY OF THE EFFECTS OF THERMAL SHIELD TEMPERATURE CHANGES ON GUN TUBE CURVATURE

12. PERSONAL AUTHOR(S)
Herbert B. Kingsbury and Ashwin V. Kalbag

13a. TYPE OF REPORT 3b. TIME COVERED 14. DA OF RE (Year, Mont1% Way) 1.PAGE COUNT
CR FROM_ TO______

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and dent t by block number)
FIELD GROUP SUB-GROUP Heat Transfer, Gun Tubes, Thermal Shroud, Initially

Curved Gun Tube, Curved Beam, Accuracy, Jump,Dispersion.T- )
1 STRACT (Continue on revere if cessay and Identify by block number)

The subject of this investigation is the deformation and consequent lack of aim that a
gun tube undergoes as a result of its initial imperfections. By initial imperfections,

we mean the non-straightneSs of the centroidal axis of the gun tube. In reality, the
centroidal axis is a general space curve. For the sake of analysis, however, it is assumed
to be helical in shape. The gun tube is modeled as a rod of linearly elastic material,

= encased in a perfectly straight cylindrical thermal shroud to protect it from non-uniform
temperature changes. The ixteraction between these two elements, namely the shroud and

the gun tube renders the problem of finding the muzzle end displacement of the gun tube

statically indeterminate. ,

Two solutions to the problem are proposed herein, using different approaches. In the

first, a more exact solution for the gun tube end displacement is obtained by formulating
(con't on back)

20. DSTRIUUTION/AVAILA&ILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
3UNCLASSIFIEDUNLIMITED D3 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Are@ Code) 22c. OFFICE SYMBOL
Tom Haug/Bruce Burns 301-278-6132 SLCBR-IB-M

U4 Formi 1473, JON 36 Previous editions are abolte. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



an expression for the complementary strain energy of deformation of the rod and then
employing Castigliano's Second Theorem, or as it is better known, by the method of
minimum complementary strain energy. In the second approach, the differential
equations for the problem formulated by Kingsbury are employed and a general finite
element of variable curvature and torsion is developed. This element is then used
to compute a set of displacements for independent confirmation. The element formulated
may be used to analyze tubes or rods of arbitrarily varying cross-section, curvature
and torsion. The report includes surface plots from a parametric study of the end
displacement as a function of initial curvature and torsion of the gun tube and the
conclusions drawn therefrom. Code for a finite element program that uses the
element developed has been provided for implementation by the reader.



ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Herbert Kingsbury, for his guidance through

the entire span of my research, for his numerous suggestions towards this thesis, and for his

| opatience in times of my intellectual lethargy.

I would like to also thank the U.S. Army Ballistics Research Laboratory,

Aberdeen, Maryland for the financial support I received during the year 1986. 1 am deeply

indebted to all the faculty members of the department that contributed to my education. I

also wish to express my gratitude towards all my friends at the University of Delaware who

have made my stay a pleasant experience.

(Lastly, I would especially like to thank my friend Denise Celestini, whose

unwavering confidence in my abilities helped me see a way through many a passing cloud of

self-doubt.

Aoession r or

NTTIS GRA&I-- -
DTIC TAB
Unannounced
justification

Distribution/_
Availability Codes

Avail and/or
nDiot Special* U.,

il



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ........................................................................ 1

1.1 Defining the Problem ................................................................................ 1
1.2 The Analytical M odel .............................................................................. 2
1.3 M ethods of Solution ................................................................................. . 2

1.3.1 A n Exact Solution ............................................................................ 3
1.3.2 A Finite Element Solution ............................................................... 4

CHAPTER 2 INTERNAL FORCES IN THE HELICAL ROD ................. 5

2.1 Parametric Representation of the Helix: Vector Tangent, Binormal and
Principal Norm al ....................................................................................... 5
2.1.1 Param etric Representation ............................................................. 5
2.1.2 Vector Tangent, Binorrnal and Principal Normal ........................... 7

2.2 Internal Force and Moment Components at a Generic Point ................... 8
2.2.1 Internal Force and Moment ............................................................. 9
2.2.2 Local Components of Internal Force and Moment .......................... 11

CHAPTER 3 THE STRAIN ENERGY OF THE ROD AND ITS END
D ISPLA CEM EN TS ..................................................................... 13

3.1 Strain Energy of the Deformed Helical Rod .............................................. 13
3.1.1 Com ponents of Stress ....................................................................... 13
3.1.2 Strain Energy in Terms of Internal Force and Moment

Com ponents .................................................................................... . 14
3.1.3 Strain Energy in Terms of Applied Force and Moment

Com ponents .................................................................................... . 16
3.2 Displacement of the Free End of the Rod ................................................ 16

3.2.1 Reduction of the General Equations to the Straight Beam Came ..... 21
3.2.2 Reduction to a Circular Arc of Small Curvature in the XY Plane.. 22

CHAPTER 4 IMPOSITION OF COMPATIBILITY CONSTRAINTS.. 25

4.1 A Convenient Coordinate System ............................................................. 25

I iv



V

4.2 Unit Vectors in the Chord System ............................................................ 26
4.3 CG: The Chord-to-Global Transformation Matrix ................................... 28
4.4 Flexibility Matrix in the Chord System .................................................... 29
4.5 Compatibility 1: Shroud with Zero Transverse Stiffness ........................... 30
4.6 Compatibility 2: Shroud with Finite Non-Zero Transverse Stiffness ........ 31

CHAPTER 5 A PARAMETRIC STUDY OF DISPLACEMENT ............ 33

5.1 Introduction .............................................................................................. 33
5.2 The Definition of Curvature and Torsion ................................................. 34
5.3 Compatibility 1: Physical Interpretation .................................................. 36

5.3.1 "In-Plane" Force and Displacements: An Anomaly Explained ....... 37
5.3.2 Out-of-Plane Displacements ........................................................... 39

5.4 Compatibility 2 and its Variations ............................................................ 44
5.4.1 Com patibility 2 ................................................................................ 44
5.4.2 Variations on Compatibility 2 ......................................................... 56

CHAPTER 6 A GENERAL SPACE-CURVED FINITE BEAM
E LE M E N T ..................................................................................... 87

6.1 Introduction .............................................................................................. 87
6.2 The Displacem ent Field ............................................................................ 88

6.2.1 Assumptions of the Formulation .................................................... 88
6.2.2 The Displacement Field: A Polynomial Representation .................. 89
6.2.3 The Shape Function Representation ............................................... 92

6.3 Strain Energy of the Beam Element ......................................................... 93
6.3.1 The Linear Strain Energy Density Function ................................... 93
6.3.2 Strain Energy of the Element .......................................................... 94

6.4 The Element Stiffness Matrix ................................................................... 94
6.4.1 Reduction to the Straight Beam Case ............................................. 96

6.5 A Finite Element Example Solution ......................................................... 99

CHAPTER 7 A COMPARISON OF THE EXACT AND FINITE
ELEMNENT ANALYSES ............................................................ 102

7.1 The Impact of Simplifying Assumptions ................................................... 102
7.2 A Comparison of the Exact and Finite Element Methods ............. 102

CHAPTER 8 CONCLUSIONS ....................... I ................................................... 109

. . . i aiIl i mm l • H i H m m



vi

APPENDIX A
THE COMPLEMENTARY STRAIN ENERGY OF THE
HELICAL ROD .. .............................. 111

APPENDIX B
THE STRAIN ENERGY OF DEFORMATION OF THE
FINITE ELEMENT .............................. 122

APPENDIX C
COMPUTER IMPLEMENTATION OF THE EXACT
SOLUTION .. ................................. 127

APPENDIX D
COMPUTER IMPLEMENTATION OF THE FINITE
ELEMENT METHOD .......................... 137

REFERENCES ............................................. 152

DISTRIBUTION LIST ........................................ 153



LIST OF FIGURES

Figure 2-1: Geometry of the Helical Rod ............................................................ 6

Figure 2-2: Vector Tangent, Binormal and Principal Normal ............................. 8

Figure 2-3: Forces on the Helical Rod .................................................................. 10

Figure 2-4: Free Body Diagram ............................................................................ 10

Figure 3-1: Reduction of the Helical Arc to a Straight Beam .............................. 23

Figure 4-1: The Chord System ............................................................................. 25

Figure 5-1: The 'Plane' Containing the Helical Arc ........................................... 38

Figure 5-2: Compatibility 1: Fy versus Curvature versus Torsion ....................... 40

Figure 5-3: Compatibility 1: U versus Curvature versus Torsion ......................... 41

Figure 5-4: Compatibility 1: V versus Curvature versus Torsion ......................... 42

Figure 5-5: Compatibility 1: 6z versus Curvature versus Torsion ........................ 43

Figure 5-6: Compatibility 1: W versus Curvature versus Torsion ........................ 45

Figure 5-7: Compatibility 1:0 y versus Curvature versus Torsion ....................... 46

Figure 5-8: Compatibility 2: Fx versus Curvature versus Torsion ....................... 47

Figure 5-9: Compatibility 2: Fy versus Curvature versus Torsion ....................... 48

vii



viii

Figure 5-10: Compatibility 2: Fz versus Curvature versus Torsion ....................... 49

Figure 5-11: Compatibility 2: U versus Curvature versus Torsion ......................... 50

Figure 5-12: Compatibility 2: V versus Curvature versus Torsion ......................... 51

Figure 5-13: Compatibility 2: W versus Curvature versus Torsion ........................ 52

Figure 5-14: Compatibility 2: Ox versus Curvature versus Torsion ....................... 53

Figure 6-15: Compatibility 2: 6y versus Curvature versus Torsion ....................... 54

Figure 5-16: Compatibility 2: Oz versus Curvature versus Torsion ........................ 55

Figure 6-17: Compatibility 2. El high: Fx versus Curvature versus Torsion ......... 57

Figure 5-18: Compatibility 2. EA high: Fx versus Curvature versus Torsion ....... 58

Figure 5-19: Compatibility 2. EA low: Fx versus Curvature versus Torsion ......... 59

Figure 6-20: Compatibility 2, El high: Fy versus Curvature versus Torsion ......... 60

Figure 5-21: Compatibility 2, EA high: Fy versus Curvature versus Torsion ....... 61

Figure 5-22: Compatibility 2, EA low: Fy versus Curvature versus Torsion ......... 62

Figure 5-23: Compatibility 2, El high: FZ versus Curvature versus Torsion ......... 63

Figure 5-24: Compatibility 2, EA high: FZ versus Curvature versus Torsion ........ 64

Figure 5-25: Compatibility 2, EA low: Fz versus Curvature versus Torsion ......... 65

Figure 5-26: Compatibility 2, EI high: U versus Curvature versus Torsion ........... 67

Figure 5-27: Compatibility 2, EA high: U versus Curvature versus Torsion ......... 68

Figure 5-28: Compatibility 2, EA low: U versus Curvature versus Torsion ........... 69



ix

Figure 5-29: Compatibility 2, EI high: V versus Curvature versus Torsion ........... 70

Figure 5-30: Compatibility 2, EA high: V versus Curvature versus Torsion ......... 71

Figure 5-31: Compatibility 2, EA low: V versus Curvature versus Torsion ........... 72

Figure 5-32: Compatibility 2. El high: W versus Curvature versus Torsion ........ 73

Figure 5-33: Compatibility 2, EA high: W versus Curvature versus Torsion ........ 74

Figure 5-34: Compatibility 2, EA low: W versus Curvature versus Torsion .......... 75

Figure 5-35: Compatibility 2, El high: 0x versus Curvature versus Torsion .......... 77

Figure 5-36: Compatibility 2, EA high: Ox versus Curvature versus Torsion ........ 78

Figure 5-37: Compatibility 2, EA low: Ox versus Curvature versus Torsion .......... 79

Figure 5-38: Compatibility 2. El high: 6y versus Curvature versus Torsion .......... 80

F
Figure 5-30: Compatibility 2, LA high: 0y versus Curvature versus Torsion ........ 81

Figure 5-40: Compatibility 2, EA low: Oy versus Curvature versus Torsion .......... 82

Figure 5-41: Compatibility 2, EA high: 0 z versus Curvature versus Torsion ......... 83

Figure 5-42: Compatibility 2, BA high: Oz versus Curvature versus Torsion ......... 84

Figure 5-43: Compatibility 2, LA low: Oz versus Curvature versus Torsion ......... 85

Figure 6-1: Degrees of Freedom of the Finite Element ........................................ 90

Figure 6-2: Model of a Gun Tube ......................................................................... 99

•.I. • . iu i I I



ABSTRACT

The subject of this investigation is the deformation and consequent lack of aim

that a gun tube undergoes as a result of its initial imperfections. By initial imperfections,

we mean the non-straightness of the centroidal axis of the gun tube. In reality, the

centroidal axis is a general space curve. For the sake of analysis, however, it is assumed to

be helical in shape. The gun tube is modeled as a rod of linearly elastic material, encased in

a perfectly straight cylindrical thermal shroud to protect it from non-uniform temperature

changes. The interaction between these two elements, namely, the shroud and the gun

tube renders the problem of finding the muzzle end displacement of the gun tube statically

indeterminate.

Two soLdons to the problem are proposed herein, using different approaches. In

the first, a more exact solution for the gun tube end displacement is obtained by

formulating an expression for the complementary strain energy of deformation of the rod

and then employing Castigliano's Second Theorem, or as it is better known, by the method

of minimum complementary strain energy. In the second approach, the differential

equations for the problem formulated by Kingsbury are employed and a general finite

element of variable curvature and torsion is developed. This element is then used to

compute a set of displacements for independent confirmation. The element formulated

may be used to analyze tubes or rods of arbitrarily varying cross-section, curvature and

torsion. The report includes surface plots from a parametric study of the end displacement

as a function of initial curvature and torsion of the gun tube and the conclusions drawn

therefrom. Code for a finite element program that uses the element developed has been

provided for implementation by the reader.
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CHAPTER 1

INTRODUCTION

1.1 Defining the Problem

The work described in the pages to follow is aimed at modeling the imperfections

in the straightness of gun tubes. Gun tubes are often subjected to large variations in

temperature which arise from several sources, for example, heating due to the firing of

rounds of ammunition, cooling due to rainfall or wind, and the effect of field temperature.

For this reason, they are encased in a protective outer cylinder called a thermal shroud,

whose function is to distribute temperature changes uniformly.

The gun tube and its thermal shroud are attached to a common structural base

near the receiver end of the gun and are again structurally connected near the muzzle. The

latter connection allows relative motion of the end of the shroud to be transmitted to and to

be constrained by the enclosed gun tube. Since the temperature changes are distributed

uniformly around any circumference, the shroud does not undergo bending deformations

due to thermal strains but expands or contracts axially.

When the gun tube and shroud assembly is subject to a change in temperature,

say an increase, the shroud undergoes thermal expansion and thus exerts a force on the gun

tube. If the gun tube were to be perfectly straight, this would merely cause it to extend

along its centroidal axis, with no change in its aim. However, in reality, no gun tube is

perfectly straight so that a change in temperature of the shroud may produce not only an

extension of the tube in the direction of its length but also bending deformation, which

affects its aim. We endeavor, then, to find the displacement and rotation of the end of the

gun tube as a function of the imposed temperature change.

I
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1.2 The Analytical Model

The centroidal axis of the gun tube would, in reality, be an arbitrary space curve.

For the purpose of analysis, it is assumed to be helical in shape. It is also assumed that the

cross-section of the helical rod is perfectly circular, so that the effects of out-of-roundness or

twist of the tube are not considered.

The gun tube. then, is modeled as a helical rod of linearly elastic material, with a

constant circular cross-section, which is contained within a thin-walled right circular

cylinder representing the thermal shroud. Both the rod and the cylinder are considered

fixed at one end to a massive common base. The common attachment at the other end of

the rod is such that the relative motion of the end of the cylinder due to thermal strain, can

be imparted to - and is constrained by - the rod at their point of intersection. Two cases of

compatibility of gun tube and shroud end displacements are considered, the first in which

the shroud is assumed to have zero lateral stiffness, and the second in which the shroud has

a finite non-zero lateral stiffness. In the former case, the gun tube end displacements and

rotations are not affected by the transverse rigidity of the cylinder. In both cases, however,

these displacements and rotations are independent of the torsional rigidity of the cylinder.

1.3 Methods of Solution

Two solutions to the problem are proposed herein, using different approaches. In

the first, more exact, solution, the end displacement is obtained by formulating an

expression for the strain energy of deformation of the rod in terms of the components of the

applied force and moment and then employing Castigliano's Second Theorem, or as it is

better known, by the method of minimum complementary strain energy. In the second

approach, the differential equations for the problem formulated by Kingsbury lKingsbury

84i are employed and a general finite element of variable curvature and torsion is

formulated using the variational method. This element is then used to independently

confirm the results of the analytical model.
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1.3.1 An Exact Solution

The required displacements are obtained most easily by employing an energy

method; to be specific, by using Castigliano's Second Theorem which is stated as follows: If

a linearly elastic structure is subjected to a set of loads, the displacement of any load in its

direction is equal to the partial derivative of the complementary strain energy with respect

to that load. In order to use Castigliano's theorem, an expression for the complementary

strain energy of the rod must be formulated. This is done as follows: First, the helix

representing the centroidal axis of the gun tube is parameterized in terms of the arc length

and expressions are obtained for the vector tangent, binormal and principal normal to the

curve at any point along its length. Second, expressions for the internal force and moment

components along the local tangent, binormal and principal normal that result from

applying a force and a moment to the end of the rod are obtained in terms of the applied

force and moment. Thirdly, the complementary strain energy of the rod is written in terms

of the internal force and moment components, and therefore, in terms of the applied force

and moment. The required scalar displacements are finally obtained by differentiating the

complementary strain energy with respect to each component of the applied force and

moment.

Since the problem is statically indeterminate, the applied force is not known but is

found by enforcing the compatibility of gun tube and shroud end displacements. This force

is then used to compute the required displacements. A parametric study of the force and

displacement components is performed in which each component is plotted as a function of

the initial curvature and torsion of the helical rod. This is done for two cases of

compatibility of displacements of the gun tube and the thermal shroud at the muzzle end;

one in which the thermal shroud is assumed to have only axial stiffness and no transverse or

rotational stiffness and the other in which the shroud has a finite non-zero transverse

stiffness. Chapters 2 and 3 present the formulation of the strain energy and equilibrium

equations while Chapter 4 deals with the imposition of compatibility of displacements of

the muzzle ends of the gun tube and the thermal shroud, and consequent resolution of

statical indeterminacy. Chapter 5 contains the above-mentioned parametric study.
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1.3.2 A Finite Element Solution

In Chapter 6, an alteinative solution is presented which involves the development

of a finite beam element whici is permitted to have variable curvature and torsion over its

length. However, the rate of variation of the curvature and torsion is assumed to be

constant in each element. By the use of an assemblage of such finite elements, rods of

arbitrarily varying space curvatures can be analyzed.

The element is formulated using the variational method. The equations of motion

of a space-curved rod have been formulated by Kingsbury [Kingsbury 84] as a set of four

coupled differential equations in four unknown displacements. Every point on the rod has

six degrees of freedom: three translations and three rotations. Two of these are expressed in

terms of the four unknowns appearing in the differential equations.

The development proceeds as follows: First, a polynomial displacement field is

assumed, which satisfies the differential equations exactly in the case in which curvature

and torsion are identically zero, that is, in the case of a straight rod. Next, the constant

coefficients appearing in the assumed polynomials are found in terms of the nodal values of

displacements, and these polynomials are rewritten to yield the shape functions. Then, the

expression for linear strain energy density of the rod developed by Tsay and

Kingsbury Tsay 861 is employed as follows. The displacements and their derivatives

appearing in this expression are substituted with their equivalents in terms of the assumed

displacement field and the strain energy density is integrated over the length of the rod to

yield the strain energy of the rod. Finally, the strain energy is differentiated with respect to

the nodal values of the displacements to obtain the elements of the stiffness matrix.

Lastly, the finite element is used to independently confirm the values for

displacements obtained from the first method. Code for a finite element program has also

been provided in Appendix D for implementation by the reader.



CHAPTER 2

INTERNAL FORCES IN THE HELICAL ROD

2.1 Parametric Representation of the Helix: Vector Tangent, Binormal and

Principal Normal

2.1.1 Parametric Representation

The geometry of the helical rod is shown in Figure 2.1. Its shape is governed by

two parameters: a, which is the length of the circular arc representing the projection of the

helical centroidal axis of the rod on the XY plane, and 0, the angle subtended by this arc at

the origin. The points on the helix can be described in terms of the arc length, a, by a

position vector, r, given by:

r= r(s)=acos()i+-sin ()j+ 69k (2.1)
0 L 0 L L

We also have the following expressions for the first and second derivatives of r

with respect to s:

dr _a in(q) I + Cos ( )J + b k (2.2)
ds L L L L L

r d'r a Cos () _ aO sin )J (2.3)
Ps P- Y -- L

5
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(ii) Ile Helical Arc and the Global Coordinate System

Figure 2-1: Geomnetry of the Helical Rod
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2.1.2 Vector Tangent, Binormal and Principal Normal

These three characteristic vectors of a space curve form what is sometimes referred

to as the trihedral associated with the curve [Sokolnikoff 66!. They are shown in Figure 2.2,

and at any point along the curve, they are given in terms of the derivatives of the position

vector, r, by the following relations:

Tangent r:

- r'(s) (2.4)
Sr '(8)

Binormal ,3:

- r'(.) x r" "(a)
3(.9 = .'(,(2.5)

4Principal Normal v:

L,(,) = ,q) x r(s) (2.8)

Substituting the derivatives in the above expressions, we find the following

expressions for the three unit vectors:

r(,) - - s (T) -cos(T )j + -k (2.7)
L L L L L

I si(-)I- b cos )j + a (2.8)
L L L L L

v(s) =-cos()I- sin -)j (2.9)

The vector tangent, binormal and principal normal form a local coordinate system

which varies with every point on the curve. We assume that the tangent points in the local

.. . ..... . . .. 4 l l n ~ l l l l
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x(s+ds)

Y(S) x = Principal Normal

y = Binormal
z = Tangent

Figure 2-2: Vector Tangent, Binormal and Principal Normal

z or q direction. Therefore, the principal normal and the binormal point in the local x ( )
and y (v7) directions respectively. In the next section, we shall use these three unit vectors

to evaluate the components of the internal force and moment along the directions of the

local C, q and axes.

2.2 Internal Force and Moment Components at a Generic Point

As mentioned in Chapter 1, the muzzle end of the gun tube is structurally

connected to the thermal shroud in a manner that allows motion of the end of the shield to

be transmitted to and also to be constrained by it. Also, the receiver end of the gun and

the shroud are connected to a common massive base. In other words, for our analysis, we

need to find the displacement of the free end of a helical rod, the other end being

cantilevered. Having done this, we may then apply compatibility of displacements of the

shroud and gun tube and find the force that results from their interaction. This
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corresponds to the applied force F in the discussion to follow.

2.2.1 Internal Force and Moment

We now evaluate the internal force and moment components at a generic point.

Figure 2.3 shows the forces acting on the free end of the rod and the corresponding

reactions at the fixed end as represented in the global XYZ system.

The applied force at point B, that is, at s = L, is F given by:

F = Fxi-Fyj- Fzk (2.10)

The applied moment at point B is M given by:

M = Mxi-Myj±Mzk (2.11)

The reactions at the fixed end A, that is, at s = 0, are a force FR, and a moment

MR. FR is found from force equilibrium as:

FR = -F = -FXi- Fyj -Fzk (2.12)

MR is found from moment equilibrium by summing up moments about the point A, and is

given as:

MR = - M- nx F, where A =r(L)- r(0),

P4. FZa c*
Mx+Fyb--sin ]i- [(My+Fxb+ zL (1- cos4,)]j

+C i t Zhef sinO Fiur 2.4 o)k (2.1)

Consider the free body shown in Figure 2.4. Now, from force equilibrium, we have



10

z
Applied Force

Applied Moment

Reaction Moment

Reaction force
F - - Fx i - Fy j - N k

Figure 2-3: Forces on the Helical Rod

z

Internal Force

Reaction Moment S)-rO P

r x Applied FY

A Internal Moment

x 1(O) - vector OF
Reaction force r(s) - Vector OQ
F - - Fx i - Fy j - Fz It

Figure 2-4: Free Body Diagram
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the internal force at a generic point P, F., in terms of the arc length along the rod, s, as:

Fm(i) = -FR = FXi- -Fyj+FZk (2.14)

Setting the sum of moments about the point A to zero (moment equilibrium), we

find the internal moment at point P, Min, to be given as:

MCs) = -MR-Lr(s) xF,, (a) (2.15)

where - r(s) is the lever arm given by:

ir(3) = r(3)- r(O) (2.16)

The complete expression for the internal moment acting at the generic point P, in terms of

the arc length. 3, is:

L L

* b (L- 3) - F ) a (o c e -3

-(sin-sin( o)) -+ ( cosO-cose(3))!k (2.17)
L 0L L

2.2.2 Local Components of Internal Force and Moment

The components of the internal force and moment, Vf, V,7, V, and Mf, M,

respectively, may be found by taking the dot product of the vector in question with the unit

vectors in the local egf coordinate system, namely, the vectors V',O and r. Therefore, we

have the following scalar equations for the internal force and moment components as

functions of the arc length 3:

VtC(a) = - cos Fysin (2.18)
L L
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-' a Fv ' in 6s - Fb Co (s Fz aL - -) + -  (2.19)

V •(s) = Fxbasi + FYa os F e-3 (b (2.20)
L L L L L

- - MX---Y(L- s) ± {co-c sin s }]in) (.1L 46 L L

M,()= IMX- Fyb( L +Fzas b -s
L L

- - EX _- _ (L - s) 2F{ cos- cos( -)}1bcos-)

£ 4' -

M -f(L-)-in {co )- (cos,)]cos6(82)

L ' L L L

[M F s4-Fs (2.23)

In the following chapter, we find an expression for the compleentary strain

energy of the deformed helical rod in terms of the above components of the internal force
and moment acting at a cross-section, and then apply Castigliano's Second Theorem to find

the displacements at the free end of the helical rod, and thereby, the elements of the

corresponding flexibility matrix.



CHAPTER 3

THE STRAIN ENERGY OF THE ROD AND ITS END DISPLACEMENTS

3.1 Strain Energy of the Deformed Helical Rod

3.1.1 Components of Stress

The components of the internal force and moment at any cross-section are defined

in terms of the local stress components by the following integrals evaluated over the area of

that cross-section:

VC = fA 'c dA

Vp = fA or" dA

Mi= f ° 7dA

fA= A o'1 dA

M. -O f 3.1dA

M'= fA(e,-,.)A(.)

Even though we do not have relations for the components of stress, viz. oe, anc and a , in

terms of the components of the internal force and moment at a cross-section, we assume

relations (analogous to known strength of materials relations) which are such that on

substitution in the defining formulae, they yield identities. The assumed formulae for the

stress components are:

13
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= A

4p A

- C - V (3.2)

3.1.2 Strain Energy in Terms of Internal Force and Moment Components

We now derive an expression for the complementary strain energy of the deformed

helical rod in terms of the local components of the internal force and moment acting at a

cross-section. Assuming the material constituting the rod to be linearly elastic, the strain

energy of the rod is:

U = f dV (3.3)

The stress and strain vectors in the above expression are:

T = (3.4)

As per the assumptions made in the analysis of a general curved and twisted

rod 'Kingsbury 841, we have:

S= co = 0 (3.5)

With these assumptions, the applicable stress-strain relations are:

61 2Gc;

O, € =2G c"; (3.6)
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Substituting from equations (3.4), (3.5) and (3.6) into Equation (3.3), we get the following

expression for the complementary strain energy:

1= I( v IdV + !-{1 ( +-a2 dV) (3.7)

Since the bar is of constant circular cross-section of area A, we have the following

section properties:

fAJdA = fATdA = 0 (3.8)

Substituting equations (3.2) and (3.8) into Equation (3.7), we arrive at the

following expression for the complementary strain energy of the deformed helix in terms of

the components of the internal force and moment represented in the local coordinate

system:

u(Mt 2 M, 2 ) LM 2
( { M7) ds +4-- M di

j (VC 2  V,72 )d + V da (3.9)4GA L 2EA L

It may be noted that the contributions to the shear stres components in

equations (3.2) from the local force components Ve and V, are assumed to be constant over

the cross-section. More accurate results may be obtained by assuming a parabolic

distribution of shear stress instead of an average value.

(
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3.1.3 Strain Energy in Terms of Applied Force and Moment Components

In Chapter 2, we found expressions relating the local (C%) components of the

internal force and moment at a cross-section to the global (XYZ) components of the applied

force F and moment M We now combine those relations, namely, equations (2.18) -

(2.23), with Equation (3.9), which is the expression for the complementary strain energy of

the rod in terms of the components of the internal force and moment at a cross-section.

Integrating the expression so obtained over the length of the rod, L, we find the

complementary strain energy of the deformed rod in terms of the geometrical parameters,

viz. a and o, and the XYZ components of the applied force and moment. (Note that b is

not an independent parameter, but is defined in terms of a, as a, L being held

constant.) The complete expression for the complementary strain energy of the rod may be

found in Appendix A. We are now equipped to calculate the displacements that occur at

the free end of the rod.

3.2 Displacement of the Free End of the Rod

In this final section, we find expressions for the six scalar displacements (three

translations and three rotations) of the free end of the rod using Castigliano's Second

Theorem which may be stated briefly as: If a linearly elastic structure is subjected to a set

of loads, then the displacement of a load in its direction is equal to the derivative of the

complementary strain energy of deformation of the structure with respect to that load. We

may write this mathematically as:

au (3.10)
aP

Differentiating the complementary strain energy expression of Appendix A with

respect to FX, Fy, Fz, Mx, My and MZ respectively, we obtain the three end translations

AX, A Y, AZ, and the three end rotations Aax, Aly, AZ as:
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'= fjjF Yrfi2 Fy+f 3 FZ+f 4 MX+f 5 MY+ieMZ
' y =-f FX A2/2 Fy + f23 FZ + f24 MX + A25 MY + A 6 MZ

f : 21Fx*f/Fy+f 23 Fz+1 Mx+=sMy+=eMz

L .Z = A1 iFx 3s2 Fy +f 3 Fz+ s4 Mx+ 3sMy+ A 6 Mz

/ ' X = A4 FX . 4 2 Fy+ f 4 3 Fz+ 444 MX+ 4 sMy+ 46 MZ

L'y = f5 1 F+f 5 2 Fy - A 3 Fz+ f5 4MX+ f 5 5 My -f 5 6 MZ

AOZ = Al Fx + e2 Fy +fe3 FZ + e 4 MX + es My + 6e z (3.11)

where f4 represent the elements of the 6 x 6 symmetric flexibility matrix. The

complete expressions for these elements are listed below. For the sake of conciseness, the

following notation is used: c = cos 0, s = sin 0, C = alL, and S = b/L.

A12 E I/l= L ( { 6C 4 [3sc- 4.+2 )a2 -0+S'[3 + 2 r 3 - 3.c]

-6C 2S2 [41- 3,c- 0 + S 2 [ +2U 3 +3sc

L1 = S 2 0

24 G Jv -- i-150 - 120, - 2 - 48a - 33se

L 1 4{ 2C4S32 - sc+ 2c-2]1 +S4[f - 2a- )

L8C ( S2 [8-8c- 11 2 +40c+40- 2 ]

2 EA( [
2 ]) + 4!A [.2]) (3.13)

. .. . .. . .. .. ... . . . . . • 4 G A ,,,,-( I
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A13 = (- CS[s[- 2 c1+2C3  2 +2c - 2 -,- 30aI

4 E I( C S 3 [4 - 4 c - 0 - 2 C I )

L-SC,+ LI-Ic] (3.14)

114 L Slo ( a{ c'+2 C2 S,,o +sc- 2alj+S 3 tS-o

L2  c C 2 Sr - 3 (3.15)

f15 k~(.! 'o I s2 -2C 2S[.q 2 ]_+S 3 [02 +a92] )
L 2____f 20 1 (3.16)

2J ( 2 .+ 2 c 2]) (3.17)
ip

2EA G



L3 CS OC-.-251+ +2C 3 S s+ 2sc - 30cI
123 -E - P1 S~ce

LGJ (2? [5.- 50c+4*sc+0 2 9-40

+- S J L CS 1-1(3.19)

f24 L S,[ (2~~s -,o 2, -2 C2 S[- C2 +~2c- 1]

S332 2j})

804

L2 (C -4c+k2a (3.22)

2 1

f2_ = 4 E~~S I -,p-2 [IKj.I3

L ~ ~ E 22GA8[ s (-1
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134 = 2E(I 1 C[s,+CS22c- 2+0})

4G 2 -3 [- 2c+ 2- 0s] (3.24)

Cp

135 = L 2

_ L 2  (c (3.25)
4L2 ( cs - CS] (3.26)

L L2

L C 2 . L C 2

44 = ( ~-~.c .2)+ ± .( [ + C 1) (3.27)

1 - ( (3.28)h6 = (k -. ) (' ']2.+ (l - --c1) (3.29)&5~ 2EI 4GJ --- ](.8

A6 = L- - L )-- ( [S C- (3.29)

= (l+ S2]- 2[sc]) + L C([ eCi) (3.30)AS= EIL n -J 0

A56 = L ! (3.31)

66 = L [C 2 1 + L [$S] (3.32)
E1 2GJ

Equations (3.11) represent the scalar displacements and rotations of the end of the

helical rod, in terms of the XYZ components of the applied force and moment, and the

geometrical parameters defining the helix, namely, a and 0. By making siitable

substitutions, it is possible to reduce them to those of a cantilevered straight beam. This is

demonstrated in the following subsection.
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3.2.1 Reduction of the General Equations to the Straight Beam Case

The equations for the helical arc may be reduced to those for the straight beam in

two equivalent ways: by setting a = 0, which forces 0 to be zero, and alternatively by

letting O approach zero. This is illustrated in Figure 3.1. It is important to realize that we

cannot simply substitute 0 = 0 into the general equations, but must express sinO and coes

as Taylor series about 0 = 0 and then neglect the higher order terms. Both the methods

yield identical results, which are exactly the same as the strength-of-materials deflections

for the straight cantilevered beam. We present below the reduced equations that result

from applying the first method:

LX- FxL3  FxL (333)
3El 2GA

Ay - FL 3 
-FyL (3.34)

3E1 2GA

Z- FzL (3.35)E A

A0 x  _ Fy L 2
2REI (3.36)

_O - FX L 2  (3.37)

2E1

A6 z 0 (3.38)
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3.2.2 Reduction to a Circular Arc of Small Curvature in the XY Plane

The reduction of the general equations to the cae of a circular arc in the XY

plane is accomplished by setting b = 0 or a = L, and expressing sinO and coso4 as Taylor

series about € - 0 and retaining terms upto the order of . We have, then, the following

results:

ILX Fx - -20- 2 +1 L 10 2 L [3

60EV 3EA 6GA

5 F L3  L _L

4- - [- + (3.39)
2 4GA 2EA

LY =Fx 24E 4GA 2EA

(y 2L 3  21 L 2j + L 13- 2] j 3.0-- Fy 15EI'¢2 , 6GA 3EA - (3)

L 3 [ 5 - 21 + L 3  L (5E1 4---"2AL (3.41)LZ =F Z  15EI[- 2 + 40 GJp[ 2  + G

( i_ 6-021 L 22

ox = Fz k- 12EI_ 48GJp (3.42)

,L~y FZ L 2  L 2  (.3= Fg (6E 12 J [* ] (3.43)

Lz= Fx L- 4-4+ 21 + y 3--0 (3.44)

Note that if we now set 0 to zero in the above equations, we obtain the

displacements of a straight cantilever bearn in the XY plane, analogous to those presented

for the case in which a = 0, presented in Section 3.2.1. In the next chapter, we impose two

different conditions of compatibility of displacements of the muzzle ends of the gun tube

and the shroud. We thus obtain the force exerted on the gun tube by the thermal shroud
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z

(i) Reduction to Straight Beam by Setting a -0

z

Y

R2 b

L

xa

(ii) Reduction to Straight Beam by Leting o Approach Zero

Figure 3-1: Reduction of the Helical Arc to a Straight Beam
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due to its expansion, and thereby, the displacement of the end of the gun tube.



CHAPTER 4

IMPOSITION OF COMPATIBILITY CONSTRAINTS

4.1 A Convenient Coordinate System

In chapters 2 and 3, we developed an analytical solution for the displacement at

the end of a helical rod of constant circular cross-section in terms of an applied force and

moment. However, in the actual problem, we do not know, a priori, what the value of the

force exerted on the gun tube by the shroud is. The problem is statically indeterminate.

Hence we must rely on the imposition of compatibility of the displacements of the ends of

the gun tube and the thermal shroud to resolve this indeterminacy.

z

ZZ

ZY

xb

X

Figure 4-1: The Chord System

25
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Note that by varying the parameters a and 0, we can vary the curvature and

torsion of the helical rod. In order to perform a parametric study of the displacement, we

must vary the curvature ic and torsion A of the helical rod, and solve the compatibility

conditions that we impose for each such case to obtain the force acting on the rod, and then

compute the six displacements of the muzzle end. For this purpose, we make the

reasonable assumption that the centroidal axis of the thermal shroud passes through the

two end points A and B of the helical rod, which define a chord between them. This is

shown in Figure 4.1. We therefore define a coordinate system whose Y axis is in the

direction of the vector AB, and whose X axis lies in a plane parallel to the XY plane, so

that if we set b = 0 and let o approach zero, the coordinate system becomes identical to the

global coordinate system. This coordinate system is called the chord system.

The chord system is the coordinate system that we shall use in Chapter 5 for the

parametric studies that compare displacements for different initial curvatures and torsions

of the gun tube, and different axial and bending stiffnesses of the shroud.

4.2 Unit Vectors in the Chord System

Let X Y Z denote the chord system shown in Figure 4.1. The position vectors of

points A and B are:

p (A) =

p(B) = cosi -sin j + bk (4.1)

Therefore, the vector AB is given by:

AB = .(cos - I)I+ - sinj + bk (4.2)

From Equation (4.2), we may write the unit vector along the Y axis as:C
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_ AB _ (cos)- 1) i -+sin Oj + (O)b/a)k(43
J 'AB v 2 ( I-cos) (Ob/a)z 43

Having obtained Jc in terms of , j and k, the unit vectors in the global coordinate

system, we now proceed to obtain i and k. As mentioned in Section 4.1, the X axis isC C C

parallel to the global XY plane. Thus i may be written as:

i = pi- qj - Ok (4.4)

Since ic and jc are mutually perpendicular, their scalar product must be zero, i.e.,

ic. i= 0 (4.5)

That is.

p(cos- 1) - qsin = 0. (4.6)

Since i is a unit vector, we have:
c

p 2_ q 2 = 1 (4.7)

Solving equations (4.6) and (4.7) for p and q, we get

i - sin1i- (1-cosO)j (4.8)
V 2 ( I - cosO )

Having obtained I and jc we may simply write k as:

k = I x ic = (b!a )(-cos ) i - (Ob/a)sin j + 2 (1 - cos 4) k (4.9)C 4(1 os )S 2 + 2(Ob/a)2(1_coso)

Equations (4.3), (4.8) and (4.9) give us the desired unit vectors in the chord

system in terms of the unit vectors in the global XYZ system. From these three equations,

we now derive the chord-to-global transformation matrix, CG, that relates the components

of displacement and force in the chord system to their equivalents in the global system.
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4.3 CG: The Chord-to-Global Transformation Matrix

Consider a generic vector, uc, that is to be transformed from the chord coordinate

system into the global coordinate system. Let s be the matrix whose rows consist of the

coefficients of i j and k unit vectors in equations (4.3), (4.8) and (4.9) respectively. If u is

written as uc = Uxcic -- UycJc - uzck , then substituting for ic, JC and k from the above-

mentioned equations, we get

Uc UX al i l2 3
- 1-1- -

12  13kj

~YC 8211 - 22j- 23k

-Zc . 31 1 S32 j s33 k j (4.10)

Rearranging terms. we get the following:

U = 3 11 Uc -- 821 U 8s31 zc U

-12 UXc - 22 uYC 32Z

- s13 U - -2 ' 33 za 1k (4.11)

Clearly, from Equation (4.11), we see that CG, the chord-to-global transformation matrix

is the transpose of s:

CG = sT (4.12)

Thus, to convert the components of a vector u u u Yc u. , from the chord

system to the global system, we pre-multiply u with CG. The global-to-chord

transformation is achieved by inverting CG. But since the transformation is orthogonal,

GC = CG "' = CGT - S. In Section 2.1, we presented the expressions for the tangent,

binormal and principal normal to a helix, at a generic point along its length, in terms of the

global unit vectors i, j and k. The matrix formed by the coefficients of these unit vectors in

equations (2.7), (2.8) and (2.9) similarly represent the elements of the global-to-tangent

transformation matrix at any point along the helix.
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4.4 Flexibility Matrix in the Chord System

Since the position of the thermal shroud in the chord system is always fixed while

it varies in the global coordinate system with changing curvature and torsion, it is clear

that compatibility of the displacements of the ends of the gun tube and the shroud must be

imposed in the chord system. This means that we must transform the flexibility matrix of

Equation (3.11), which yields displacements in the global system, to one that gives

displacements directly in the chord system.

An important point to note here is the assumption that the angular displacements

uZA8, 0 y. and Oz may be decomposed into components along the coordinate axes and

transformed between different coordinate systems in exactly the manner the translational

displacements are. This is acceptable for small angular displacements as in our case.

Consider a 6 x 6 chord-to-global transformation matrix T, which is block

diagonal, both the 3 x 3 diagonal blocks being equal to CG. Let f and f denote the 6 x 6C

flexibility matrices in the global and chord coordinate systems. Further, let L, F and A

F represent the 6 x I displacement and force vectors in the global and chord systems

respectively. Then we have the following:

z=fF (4.13)

_ f F (4.14)
C C C

A :T -\(4.15)

f= Tf (4.16)
C

Substituting equations (4.15) and (4.16) into Equation (4.13), and pre-multiplying both

sides by T 1 = T T, we get:

/ TTfT F (4.17)
C C



30

Comparing equations (4.14) and (4.17), we get f as:
C

f = TTfT (4.18)

4.5 Compatibility 1: Shroud with Zero Transverse Stiffness

We assume a condition of compatibility of displacements of the thermal shroud

and gun tube ends wherein the shroud has stiffness only in its axial direction. That is, the

shroud has no transverse or rotational stiffness. Thus translational movement is permitted

to the gun tube end freely in the transverse direction, perpendicular to the centroidal axis

of the shroud. As a result, there is no opposing force exerted by the shroud in the

transverse direction. In fact, the only force exerted by the shroud on the gun tube acts

along the Y axis of the chord system. Rotations of the gun tube end are also permittedC

about all three axes in the chord system, and similarly, there are no moments exerted at the

gun tube end.

If F YC is the force exerted on the end of the gun tube, then its displacement in the

direction of the force is given as

L YC(gun tube) = fC22 Fyc (4.19)

where fC22 is the element belonging to the 2nd row and 2nd column of the chord flexibility

matrix. The gun tube, by Newton's Third Law, must in its turn exert an equal but

opposite force on the end of the shroud. Let L., a, Ea, A, and A T be the length, coefficient

of thermal expansion, modulus of elasticity, cross-sectional area and rise in temperature of

the shroud respectively. The displacement of the end of the shroud is composed of two

contributions, namely, the thermal expansion and the contraction due to the opposing axial

force exerted by the gun tube. Thus we have

Fy, L
/2 Y(shoud) = La Z T - E. A, (4.20)
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Compatibility asserts that the displacements in equations (4.19) and (4.20) be equal. Thus

we find the force acting on the end of the gun cube to be

F C - Lo/,AT)' (4.21)

where L,, the length of the shroud, may be easily seen from Figure 2.1 to be

L,= ( I a si 2  
. (4.22)

The six displacements of the end of the gun tube may. now be found by substituting F¥€

into equations (3.11) rewritten with elements of the flexibility matrix in the chord system.

4.6 Compatibility 2: Shroud with Finite Non-Zero Transverse Stiffness

In this section, we consider a different kind of compatibility condition in which we

assume the shroud to have a finite non-zero transverse stiffness. The gun tube end is

permitted both transverse displacements as well as rotations relative to the shroud.

However, since the shroud now has stiffness in the transverse direction, it will exert a

resistance to the transverse displacement of the gun tube end. An equivalent way of

representing such a compatibility relationship is to consider the gun tube end as being

attached to the shroud end through a ball and socket joint.

Since the shroud now offers resistance to the transverse motion of the gun tube

end, FxC and FZC are non-zero. The compatibility of all three components of displacement

of the ends of the gun tube and the shroud must be enforced in order to determine the

forces on the gun tube. Thus, the imposition of compatibility results in a set of three

simultaneous equations in Fx, F, and Fz, which are presented below:

,=,,,.,,.,, ,,, ,C A m . m |
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F,c L,-E = f- I Fx + f,12 F y + f1 3 F2

EA,

- E FLa r31 Fx -f32 Fy, t fe3sFz, (4.23)

3 E, Is c

Here, I, represents the moment of inertia of the cross-section of the shroud. It is worth

noting that if the inertia. I, of the shroud were to approach zero (which would, in physical

terms, amount to the shroud becoming infinitely flexible), Fxc and F,, which represent the

opposition of the shroud to bending, would also tend to zero, and the above compatibility

conditions would reduce to those of the first case. The next chapter contains parametric

plots showing the variation of the forces and displacements experienced by the end of the

gun tube for different initial curvatures and torsions, for both of the above compatibility

conditions.



CHAPTER 6

A PARAMETRIC STUDY OF DISPLACEMENT

5.1 Introduction

Having obtained a closed-form solution for the end displacement of the gun tube

in Chapter 3, and developed equations of compatibility of gun tube and shroud

displacements in Chapter 4, we proceed to perform a parametric study of the force and

displacement experienced by the end of gun tube. The parameters in this study are the

initial curvature and torsion of the gun tube, the kind of compatibility condition imposed,

namely, one of the two kinds discussed in sections 4.5 and 4.6, and the axial and flexural

rigidity of the thermal shroud.

Several plots of force and displacement components in the chord system are

included in this chapter, usually accompanied by discussions regarding their physical

interpretation. These are calculated for a fixed rise in temperature of 100 * C of the thermal

shroud. The variation of the components of force and displacement with temperature

would, of course, be linear. The gun tube and shroud data assumed in the computations

follow.

Gun Tube:

Length = 5.25 m
Inner radius = 0.06 m
Outer radius = 0.10 m

Elasticity modulus = 4.35097 x 10 9 N/m

Shear modulus = 1.67345 x 10 9 N/rn2

33
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Thermal Shroud:

Inner radius = 0.11 m
Outer radius = 0.145 m
Elasticity modulus = 4.35097 X 10 9 N/m 2

Coefficient of thermal expansion = 1.206 X 10- / C

Each parametric plot is a surface depicting the variation of the particular force or

displacement component, taken in the chord system, for different values of initial curvature

and torsion of the gun tube. It is assumed that the length of the gun tube is a constant.

The length of the thermal shroud is the distance between the two ends of the gun tube, and

therefore varies with the gun tube geometry as given by Equation (4.22). The force and

displacement components are plotted for the normal values of axial rigidity, EA, and

flexural rigidity, EI, of the thermal shroud, and also for high and low EA and EI, the values

being increased and decreased respectively by a factor of a thousand. In the following

section, we define the geometrical parameters employed in the study, namely, the initial

curvature and torsion of the gun tube, in terms of the corresponding geometrical

parameters that define the shape of the helix of Figure 2.1, namely, a and 4.

5.2 The Definition of Curvature and Torsion

Every space curve of constant curvature and torsion is uniquely and completely

specified by these two quantities, apart from its position in space. While it would be

possible to consider a and 0, which define the shape of the helix of Figure 2.1, as a

legitimate choice of geometrical parameters for this study, we have chosen to employ the

initial curvature, ic, and torsion, A, of the centroidal axis of the gun tube as parameters to

represent its initial shape on account of their generality. We now derive relationships

between these two sets of geometrical parameters.
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The curvature and torsion of a space curve are defined by the following two

Frenet-Serret formulae,

dr --
Ts IC, K > 0 (5.1)ds-

d. A (5.2)
ds

where r, and v are the vector tangent, binormal and principal normal to the curve, and a

is the arc length. By definition, r. and A are zero for a straight line. The cross product

r x v defines the binormal vector, 9, which is the outward normal to the osculating plane.

The torsion, A, measures the rate at which the direction of 3 changes along the curve.

From equations (2.7), (2.8), (2.9), (5.1) and (5.2), the curvature and torsion of the helix are

found to be:

Oa a2  ()T' JRL 2 53

A ob ab (5.4)

The parameters a, b, R and L in equations (5.3) and (5.4) are exactly as shown in Figure

2.1. Note that R represents the radius of the cylindrical surface that contains the helix.

Note also that the length of the gun tube, L, is fixed, and b is given as V/L 2 --a 2

Since we are only concerned with the magnitude of torsion, for the purposes of this

analysis, we rewrite Equation (5.4) as

A - b_ ab (5.5)

From equations (5.3) and (5.5), we get

'C _(5.6)

A bt

and thus, we have the following two expressions for a and b in terms of i and A:
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a L (5.7)
V~ 2_A2

SAL
- AL2 (5.8)

V -A

From equations (5.3) and (5.7), we also obtain the following expressions for q and R in

terms of K and A:

= L \ 2 -A 2  (5.9)

R K r (5.10)

Having obtained the curvature, K, and torsion, A, in terms of a. 0 and constant L,

and also developed reciprocal relationships for a, 6, 0 and R in terms of K, A and L, we are

equipped to compute the force and displacement components that we seek to plot, given

the values of initial curvature and torsion of the gun tube. This may be done by first

computing a, b, 0 and R from equations (5.7), (5.8), (5.9) and (5.10) respectively, and L,

from Equation (4.22), then solving the particular compatibility equations, equations (4.21)

or (4.23) as the case may be, to obtain the applied force components, and lastly,

substituting these scalar forces into equations (3.11) to get the required displacements and

rotations of the gun tube end.

5.3 Compatibility 1: Physical Interpretation

In Compatibility 1, we assume that the shroud has stiffness only in its axial

direction. The shroud is assumed to have zero transverse or rotational stiffness. Since the

gun tube end is free to move in the transverse direction, the only force that acts on it is

directed along the centroidal axis of the shroud.
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5.3.1 "In-Plane" Force and Displacements: An Anomaly Explained

Each point on the curve has an associated osculating plane which is normal to the

binormal vector at that point. The variation of the osculating plane along the curve for the

values of curvature and torsion considered is very small. In other words, the helical arc

described by the centroidal axis of the gun tube, and the chord along which the shroud is

aligned, form a surface that is almost planar. The non-planarity of this surface is measured

in terms of the rate of change of the binorrnal vector along the arc, A = Id/ds 1, and is at a

maximum when the curvature and torsion are equal. This is illustrated in Figure 5.1, for a

fixed radius. R. It can be proven mathematically that this characteristic is unchanged even

if the radius is allowed to vary along a constant curvature contour.

This surface is almost identical to the XCY C plane in the chord system of Figure

4.1. The forces and displacements in the XC Y plane, namely, FXc, Fyc, Mzc, and U,, Vc,

and OZ,. may be regarded as being in the plane of the curve and will be referred to in the

following discussion as the "in-plane" forces and displacements. Since all the forces and

displacements we refer to are in the chord system, we will drop the "chord" subscript for

convenience.

Fx and FZ are identically zero due to the fact that the shroud offers no resistance

to the motion of the gun tube end in the transverse direction. Figure 5.2 shows a plot of

Fy. Note that F, decreases as the curvature increases, whereas it is virtually unaffected by

torsion. The decrease of Fy with increase in curvature is consistent with experience with

rods with plane curvature. The apparent independence of Fy on torsion is somewhat

surprising at first sight, since both curvature and torsion may be thought of as representing

deviations from straightness. At a physical level, this may be rationalized by saying that

the helical arc representing the centroidal curve of the gun tube is an almost circular arc in

the XCY plane whose curvature is held fixed (along a constant curvature contour). Thus

increasing torsion only increases the deviation of the curve from the X Y plane upto a

maximum at ic = A. As A grows greater than ic, the curve approaches a straight line, since

b becomes much greater than a. This leads us to expect an increase in Fy with increasing

. ...... . . - -I~mmm m m m m m m mm m m
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torsion. This is borne out by the numbers generated for the plot of Figure 5.2. The

increase in Fy is more apparent for low values of curvature than for high values, because

when the curvature is small, Fy is very close to the limiting value for a straight rod.

The behavior observed for F¥ also occurs in the plots of U, V and 6z (figures 5.3 -

5.5), namely, they do not show an appreciable variation with torsion along lines of constant

curvature. The same argument holds, namely, the torsion changes the deviation of the

helical arc from the X.Y. plane but the curve is essentially circular, has the same curvature

and is almost contained in the XCY plane, so that the displacements are virtually

unaffected by a variation of torsion. Note that 0Z is always negative; this demonstrates that

the helical rod "unwinds" as it is stretched.

The U and 9z displacements show a maximum along lines of constant torsion.

This is a result of the imposition of compatibility and may be explained as follows: Initially,

the curvature lends the rod an added flexibility as a result of which the displacements

increase. However, as curvature increases, the force developed due to the interaction

between the shroud and the gun tube, Fy, decreases monotonically. A point is reached

when the decrease in the force overtakes the increase in flexibility.

5.3.2 Out-of-Plane Displacements

The W, OX and 0y displacements of figures 5.6 - 5.7 (6x is negligibly small and has

not been shown), on the other hand, represent motions of the end of the gun tube in a

direction perpendicular to the X Y plane. These are therefore termed as the "out-of-

plane" displacements. Ox remains essentially zero for all values of the applied force. Since

the applied force is in the XCY plane, and the helical arc is also essentially confined to this

plane, we naturally expect that the out-of-plane displacements will be smaller in

magnitude. This is seen to be the case. These displacements show peaks in the region

defined by r = A. This is because when r = A, the rod departs from the plane the most. In

the plot of W however, the peak is off the r = A line of symmetry. This may be attributed

to the imposition of compatibility as explained in Section 5.2.1.

'mm ~ m mn ~ m 
m m m

[Il[now



AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /a to 1.OE-1 /aY (Torsion) I unit - Tor x 10.0 (Log) 0, 1.OE-4 lA to 1.0E-1 /mZ (Dependent Varlable I unit - 13440.0000 N 5190.7310 N to 61442.1406 N

plotted for a temp.
rise of 100 deg. C)

FORCEY

r

TOR

VJ

CUR

Compatibility 1: Fy (Chord) vs Cur vs Tor

Figure 5-2: Compatibility 1: Fy versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /m to I.OE-1 /m
Y (Torsion) 1 unit - Tor x 10.0 (Log) 0. 1.OE-4 /I to 1.OE-1 /a
Z (Dependent Variable I unit - 0.0420 m 0.0006 M to 0.0990 0

plotted for a temp.
rise of 100 dog. C)

U

CUR

TOR

Compatibility 1: U vs Cur vs Tor

Figure 5-3: Compatibility 1: U versus Curvature versus Torsion
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AXIS SCALE RANGEX (CurvatureJ I unit - Cur x IO.O (Log) 1.0E-4 /m to I.OE-1 /mY (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /m to 1.OE-i /mZ (Dependent Variable I unit - 0.0024 m 0.0037 m to 0.0060 m
plotted for a temp.
rise of 100 deg. C)

\V
TOR

CUR

Compatibility 1: V vs Cur vs Tor

Figure 5-4: Compatibility 1: V versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) i unit - Cur x 10.0 (Log) I.OE-4 /m to i.OE-I I
Y (Torsion) I unit - Tor x .O0 (Log) 0. i.OE-4 /a to L.OE-I i
Z (Dependent Variable I unit - 0.4800 deg -2.1629 deg to -0.0142 deg

plotted for a temp.
rise of 100 deg. C)

THETAZ

TOR

Compatibility 1: Thetaz vs Cur vs Tor

Figure 5-6: Compatibility I: O2 versus Curvature versus Torsion
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Note that in Compatibility 1, the displacement is dominated by U, that is, the U

component of displacement is of the largest magnitude. This is because V is constrained

due to the axial rigidity of the shroud, and W is small because it is an out-of-plane

displacement.

Note also that the anomalous behavior with respect to torsion is largely due to the

fact that the displacement components plotted are in the chord system. In other words, if

the XY plane of the system, in which the displacements are described, were not to almost

contain the helical curve, there would no longer be any sense in which a displacement could

be considered to be in-plane or out-of-plane, and the effects of these two kinds of motions

would be fused.

5.4 Compatibility 2 and its Variations

In Compatibility 1, we assumed that the shroud is infinitely flexible in the

transverse direction. Compatibility 2, on the other hand, is a condition wherein the shroud

is assumed to have a finite non-zero transverse stiffness. This gives rise to two additional

components of force exerted on the gun tube at its end, namely, FX and Fz.

5.4.1 Compatibility 2

The shape of the plots of the different force and displacement quantities against

curvature and torsion is unchanged by the change of the compatibility condition. In other

words, the in-plane forces and displacements, FX, Fy and U, V, 8g of figures 5.8, 5.9 and

5.11, 5.12, 5.16 respectively show the same lack of variation with torsion along lines of

constant curvature. In addition, U (and the corresponding force of resistance Fx) and 6Z

show the same maxima along constant torsion contours. As explained earlier, these are due

to the imposition of compatibility. The out-of-plane displacements W, OX , and 1y also
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AXIS SCALE RANGEX (Curvature) I unit - Cur x 10.0 (Log) i.OE-4 /a to 1.OE-1 /pY (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 /a to 1.OE-I /xZ (Dependent Variable I unit - 0.0020 0 0.0000 . to 0.0017 a
plotted for a temp.
rise of 100 deg. C)

TOR

CUR

Compatibility 1: W vs Cur vs Tor

Figure 5-6: Compatibility 1: W versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 ILog) 1.OE-4 /a to 1.OE-I /a

Y (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 /U to I.OE-I /a

Z (Dependent Variable I unit - 0.0030 deg -0.0039 deg to 0.0000 dog

plotted for a temp. THETAY
rise of 100 deg. C)

CURTO

Compatibility : Thetay vs Cur vs Tor

Figure 5-7: Compatibility 1: ey versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) I.OE-4 /m to 1.OE-I /m
Y (Torsion) i unit - Tor x 10.0 (Log) 0. 1.OE-4 /m to 1.OE-1 /M
Z (Dependent Variable I unit - 400.0000 N -657.4645 N to -3.0925 N

plotted for a temp. FORCEX
rise of 100 deg. C

CUR \

TOR

Compatibility 2: Fx vs Cur vs Tor

Figure 5-8: Compatibility 2: FX versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) i.OE-4 /m to 1.OE-i /M
Y (Torsion) 1 unit - Tor x 10.0 (Log) 0. 1.OE-4 / to i.OE-i /a
Z (Dependent Variable I unit - 13440.0000 N 9294.3164 N to 61442.4570 N

plotted for a temp.
rise of 100 dig. C)

FORCEY

TOR

Compatibility 2: Fy vs Cur vs Tor

Figure 5-9: Compatibility 2: Fy versus Curvature versus Torsion
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AXIS SCALE RANGE
x (curvature) I unit - Cur x 10.0 (Log) i.OE-4 /m to I.OE-I /m
Y (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 /m to 1.OE-I /m
Z (Dependent variable I unit a 11.0000 N -1i.4691 N to 0.0000 N

plotted for a temp. FORCEZ
rise of 100 deg. C)

NIN

CUR

Compatibility 2: Fz vs Cur vs Tor

Figure 5-10: Compatibility 2: Fz versus Curvature versus Torsion
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AXIS SCALE RANGEX (Curvature) I unit Cur x 10.0 (Log) 1.OE-4 /a to 1.OE-1 /mY (Torsion) 1 unit - Tor x 10.0 (Log) 0. 1.OE-4 /a to 1.OE-t ImZ (Dependent Variable I unit - 0.0200 M 0.0001 M to 0.0312 a
plotted for a temp.
rise of 100 deg. C)

U

CUR

' TOR

Compatibility 2: U vs Cur vs Tor

Figure 6-11: Compatibility 2: U versus Curvature versus Torsion



AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /M to I.OE-1 Im
Y (Torsion) i unit a Tor x 10.0 (Log) 0. I.OE-4 /s to 1.OE-1 /m
Z (Dependent Variable I unit - 0.0024 a 0.0037 m to 0.0059 a

plotted for a temp.
rise of 100 deg. CQ

TOR

CUR

Compatibility 2: V vs Cur vs Tor

Figure 5-12: Compatibility 2: V versus Curvature versus Torsion
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AXIS SCALE RANGEX (Curvature) i unit - Cur x 10.0 (Log) I.OE-4 /M to 1.0E-1 /mY (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /m to 1.OE-I Im
Z (Dependent Variable I unit - 0.0005 m 0.0000 m to 0.0005 M

Plotted for a temp.
rise of 100 deq. Qi

w

TOR

, 1

CUR

Compatibility 2: W vs Cur vs Tor

Figure -13: Compatibility 2: W versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /a to 1.OE-I /m
Y (Torsion) I unit - Tor x 10.0 (Log) 0. .OE-4 /m to 1.OE-1 /m
Z (Dependent Variable I unit - 0.0200 deg -0.0305 dog to 0.0000 deg

plotted for a temp.
rise of 100 deg. C) THETAX

TOR

Compatibility 2: Thetax vs Cur vs Tor

Figure 5-14: Compatibility 2: Ox versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 0.O (Log) I.OE-4 /a to 1.OE-1 /.
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /m to I.OE-I /a
Z (Dependent Variable I unit - 0.0100 deg -0.0075 deg to 0.0000 deg

plotted for a temp.
rise of 100 deg. C) THETAY

CUR

" "TOR

Compatibility 2: Thetay vs Cur vs Tor

Figure 5-15: Compatibility 2: Gy versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /I to 1.OE-t /M
Y (Torsion) I unit - Tor x tO.0 (Log) 0. 1.OE-4 /m to 1.OE-1 /P
Z (Dependent Variable I unit - 0.4800 dog -1.2650 dog to -0.0060 dog

plotted for a temp.
rise of 100 deg. C)

CUR
THETAZ

TOR

Compatibility 2: Thetaz vs Cur vs Tor

Figure 5-16: Compatibility 2: Oz versus Curvature versus Torsion
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imitate those of Compatibility 1; they show peaks in the region where ic =A.

The forces FX and Fz arise out of the resistance of the thermal shroud to the U

and W displacements of the gun tube. Thus, their plots imitate those of U and W, with a

reversal of sign. Note that FZ is much smaller than Fx in magnitude. This is because the

out-of-plane W displacement component is correspondingly smaller in magnitude than the

in-plane U displacement, and as a result, the resistance offered by the shroud to W is also

lesser. The U and W displacements decrease significantly in magnitude in comparison with

those of Compatibility 1. as expected, due to the restraining forces FX and Fz respectively.

Thus. we find that in Compatibility 2, V is the dominating displacement component. The

behavior of the OX rotation represents the straightening of the helical arc of Figure 5.1 and

the consequent reduction of its deviation from the XCY plane. Thus Ox remains always

negative.

5.4.2 Variations on Compatibility 2

We now study the effect of variations of the axial and flexural rigidity of the

shroud on the forces and displacements that the gun tube experiences. If either of the axial

(EA) or transverse (El) stiffnesses of the thermal shroud is increased, as expected, the force

acting on the gun tube increases. If the shroud is made more axially stiff, that is, if EA is

increased, the Fy component of force increases more significantly than the FX and FZ

components. The reverse is true of the case in which the shroud is stiffened laterally by

increasing El. This is evident from figures 5.17, 5.18, 5.20, 5.21, 5.23 and 5.24.

Comparing figures 5.9 and 5.20, we see that the increase in Fy due to lateral

stiffening is more significant for the larger values of curvature. For small values of

curvature, this increase is insignificant. This is because when the curvature is small, the

displacement of the gun tube end is primarily along the Y direction so that the increased

El has no bearing on the resistance offered by the shroud to the motion of the gun tube

end. Thus Fy is unaffected by increased El for small curvature. On the other hand, for



57

AXIS SCALE RANGE
X ICurvature) I unit - Cur x 10.0 (Log) 1.OE-4 /m to 1.OE-I /I
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 Im to I.OE-I /M
Z (Dependent Variable I unit - 700.0000 N -997.0753 N to -4.0013 N

plotted for a temp.
rise of 100 aeg. C) FORCEX

CUR

TOR

Compatibility 2, EI high: Fx vs Cur vs Tor

Figure 5-17: Compatibility 2, El high: Fx versus Curvature versus Torsion
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AXIS SCALE RAN6E
X (Curvature) I unit - Cur x 10.0 (Log) 1.0E-4 /a to 1.OE-1 /I
Y (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 I/ to I.OE-i /a
Z (Dependent Variable I unit - 700.0000 N -860.6519 N to -5.3063 N

plotted for a temp.
rise of 100 deg. C) FORCEX

CUR

TOR

Compatibility 2, EA high: Fx vs Cur vs Tor

Figure 6-18: Compatibility 2, EA high: Fx versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /m to 1.OE-1 As
Y (Torsion) I unit - Tor x 10.0 (Log) 0. i.OE-4 /M to 1.OE-i In
Z (Dependent Variable I unit - 3.0000 N -6.4165 N to -0.0064 N

plotted for a temp. FORCEX
rise of 100 deg. C

CUR

TOR

Compatibility 2, EA low: Fx vs Cur vs Tor

Figure 5-19: Compatibility 2, EA low: FX versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) I.OE-4 /M to 1.OE-1 /m
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /m to 1.OE-1 /m
Z (Dependent Variable I unit - 13440.0000 N 12057.1531 N to 61442.5508 N

plotted for a temp.
rise of 100 deg. C)

FORCEY

CUR

Compatibility 2. El high: Fy vs Cur vs Tor

Figure 5-20: Compatibility 2, El high: Fy versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) f.OE-4 /s to i.OE-1 /a
Y (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 /m to i.OE-1 /a
Z (Dependent Variable I unit - 21000.0000 N 9920.3818 N to 105426.0156 N

plotted for a temp.
rise of 100 deg. C)

FORCEY

TOR

CUR

Compatibility 2, EA high: Fy vs Cur vs Tor

Figure 5-21: Compatibility 2, EA high: Fy versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) I.OE-4 / to t.OE-1 /a
Y (Torsion) I unit - Tor x 10.0 (Log) 0. j.OE-4 /m to 1.OE-1 /m
Z (Dependent variable I unit - 30.0000 N 133.6712 N to 135.4133 N

plotted for a temp.
rise of 100 deg. C) FORCEY

CUR

TOR

Compatibility 2, EA low: Fy vs Cur vs Tor

Figure 5-22: Compatibility 2, EA low: Fy versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) i unit - Cur x 10.0 (Log) 1.OE-4 /. to I.OE-1 /m
Y (Torsion) I unit - Tor x 10.0 (LOD) 0. I.OE-4 /M to 1.OE-1 /m
Z (Dependent Variable I unit - 12.0000 N -17.3472 N to 0.0000 N

plotted for a temp.
rise of 100 deg. C) FORCEZ

TOR

Compatibility 2, El high: Fz vs Cur vs Tor

Figure 6-23: Compatibility 2, El high: FZ versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /a to i.OE-I /a
Y (Torsion) I unit - Tor x 10.0 fLog) 0. 1.OE-4 /m to 1.OE-I /m
Z (Dependent Variable I unit - 12.0000 N -15.0358 N to 0.0000 N

plotted for a temp.
rise of 100 deg. C) FORCEZ

CUR

TOR

Compatibility 2, EA high: Fz vs Cur vs Tor

Figure 5-24: Compatibility 2, EA high: Fz versus Curvature versus Torsion



65

AXIS SCALE RANGE
X (Curvature) j unit -Cur x 10.0 fLog) 1.OE-4 /a to I.OE-I /a
Y (Torsion) I unit -Tor x 10.0 (Log) 0. 1.OE-4 /m to I.OE-I /M
Z (Dependent Variable i unit - 0.0800 N -0.1096 N to 0.0000 N

plotted for a temp. FORCEZ
rise of 100 deg. C)

" TOR

Compatibility 2, EA low: Fz vs Cur vs Tor

Figure 5-25: Compatibility 2, EA low: F2 versus Curvature versus Torsion
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large curvatures, the gun tube end experiences lateral motion to which the shroud, due to

its increased El, offers increased resistance. Thus the overall resistance increases and so

does Fy. Referring to Figure 5.21, we see that the increase in FP due to axial stiffening is

felt most for small values of curvature. A converse reasoning may be used to explain this

situation.

If the EA of the shroud is decreased, which amounts to making it more easily

extensible, Fy becomes almost constant at approximately 135.0 N. This is explained in

terms of equations (4.23) as follows: As the EA of the shroud is decreased, we expect that

the force Fy decreases. This means that the displacements also decrease, resulting in lower

values of FX and FZ. For the purpose of this argument, therefore, we replace the

compatibility equations (4.23) with Equation (4.21). Now, if EA is decreased, it is clear

from Equation (4.21) that the L./(EAa) term dominates the denominator, so that Fy is

approximately constant and equal to E5Aao T, which for the assumed data, evaluates to

147.1 N. The difference, of course, is due to the fact that we cannot reduce equations (4.23)

to Equation (4.21), since FX and Fz are non-zero in reality. Note from figures 5.19 and 5.25

that FX and Fz are indeed greatly reduced in magnitude as supposed in the above

argument.

Another point worth noting is that the graphs of Fx and Fz do not show the

maxima along constant torsion contours as for previous compatibility conditions. Recall

that in Compatibility 1, we explained the maxima in the U and OZ plots as representing the

meeting point of two conflicting tendencies, the increase in flexibility of the rod with

increasing curvature, and the decrease in force resulting from the solution of Equation

(4.21). Here. however, the force Fy is almost constant, so that these maxima are obviously

out of the question.

If, on the other hand, we decrease the E1 of the shroud, Compatibility 2 reduces,

in the limit, to Compatibility i, since the shroud becomes more flexible and offers negligible

resistance to the lateral motion of the end of the gun tube. The plots for low BI have not

been included for precisely this reason.

(
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.0E-4 /m to 1.OE-1 I
Y (Torsion) I unit = Tor x 10.0 (Log) 0. 1.OE-4 /m to 1.OE-I /m
Z (Dependent Variable I unit = 0.0000 M 0.0000 M to 0.0000 m

plotted for a temp.
rise of 100 deg. C)

U

CUR

TOR

Compatibility 2. El high: U vs Cur vs Tor

Figure 6-26: Compatibility 2, El high: U versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) 1 unit - Cur x 10.0 (Log) 1.OE-4 /a to 1.OE-1 /m
Y (Torsion) I unit - Tor x 10.0 (Log) 0. i.OE-4 /m to 1.OE-t Im
Z (Dependent Variab2e i unit - 0.0200 m 0.0003 a to 0.0409 a

plotted for a temp.
rise of 100 deg. C)

U

CUR

TOR

Compatibility 2, EA high: U vs Cur vs Tor

Figure 5-27: Compatibility 2, EA high: U versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.O (Log) .OE-4 /a to i.OE-1 /I
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /M to 1.OE-1 /M
Z (Oeperident Variable I unit - 0.0001 m 0.0000 M to 0.0004 m

plotted for a temp.
rise of 100 deg. C)

U

TOR

CUR

Compatibility 2, EA low: U vs Cur vs Tor

Figure 5-28: Compatibility 2, EA low: U versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /. to I.OE-I /M
Y (Torsion) I unit -Tor x 10.0 (Log) 0. I.OE-4 /m to 1.OE-I /M
Z (Dependent Variable I unit - 0.0024 m 0.0037 m to 0.0057 m

Plotted for a temp.
rise of 100 deg. C)

TOR

CUR

Compatibility 2. El high: V vs Cur VS Tor

Figure 5-29: Compatibility 2, El high: V versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) I.OE-4 / to 1.OE-1 /a
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /M to 1.OE-1 /P
Z (Dependent Variable I unit - 0.0024a 0.0053 P to 0.0053m

plotted for a temp.
rise of 100 deg. C1

V

TOR

CUR

Compatibility 2, EA high: V vs Cur vs Tor

Figure 5-30: Compatibility 2, EA high: V versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit a Cur x 10.0 (Log) 1.OE-4 /m to i.OE-1 Im
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /P to 1.OE-I /m
Z (Dependent Variable I unit - 0.0000 M 0.0000 M to 0.0001 M

plotted for a temp.
rise of 100 deg. C)

TOR

CUR

Compatibility 2, EA low: V vs Cur vs Tor

Figure 6-31: Compatibility 2, EA low: Vversus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) I.OE-4 Im to I.OE-I /a
Y (Torsion) I unit -Tar x 10.0 (Log) 0. I.OE-4 /m to 1.OE-I /m
Z (Dependent variable i unit - 0.0000 mf 0.0000 M to 0.0000 m

plotted for a temp.
rise of 100 deg. C)

TOR

CUR

Compatibility 2, El high: W vs Cur vs Tor

Figure 5-32: Compatibility 2, El high- W versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /Im to I.OE-1 /a
Y (Torslon) I unit - Tor x 10.0 (Log) 0. I.OE-4 /i to 1.OE-1 /a
Z (Dependent Variable I unit a 0.0005 m 0.0000 m to 0.0007 m

plotted for a temp.
rise of 100 dog. C

TOR

CUR

Compatibility 2, EA high: W vs Cur vs Tor

Figure 5-33: Compatibility 2, EA high: W versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /a to 1.OE-1 /a
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /m to 1.OE-1 /I
Z (Dependent variable I unit - 0.0000 0 0.0000 a to 0.0000 a

plotted for a temp.
rise of 100 deg. C)

TOR

CUR

Compatibility 2. EA low: W vs Cur vs Tor

Figure 5-34: Compatibility 2, EA low: W versus Curvature versus Torsion
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We observe from figure 5.26 and 5.32 that when the El of the shroud is increased,

the transverse displacements, U and W, decrease considerably, although there is no change

in the shape of the plots as compared to those of Compatibility 2. The V displacement

shown in Figure 5.29 decreases, for increased El, noticeably for higher values of curvature,

from 0.0059 m in Compatibility 2 (Figure 5.12), to 0.0057 m in the present case, since Fy

increases for higher values of curvature as explained earlier.

If EA of the shroud is increased, the V displacement attains an almost constant

value of 0.0063 m. This is shown in Figure 5.30. This is because the shroud has now

become almost infinitely rigid as compared to the gun tube. Thus the curvature and

torsion of the gun tube are irrelevant. The magnitude of V is, in the limit, simply equal to

the expansion of the thermal shroud, that is, Lpa T. The transverse displacements U and

W increase from their values in Compatibility 2. This may be attributed to the enormous

increase in the force exerted by the shroud on the gun tube.

If the EA of the shroud is decreased, we find that the maxima along lines of

constant torsion seen in the plots of U and W, and the inflexion point in the plots of V

disappear. This is due to the fact that the force exerted by the shroud on the gun tube is

almost a constant, as can be seen from Figure 5.22. All of the above displacements decrease

considerably in magnitude, mainly due to the fact that the force exerted by the shroud on

the gun tube is very small.

The rotations OX, Oy, and Oz are the angular displacements of the tangent to the

centroidal axis of the gun tube. These therefore represent the straightening of the helical

arc as it is extended. The plots of Ox, Oy, and Oz of figures 5.35 - 5.43 are generally similar

to those of Compatibility 2. If either of the El or EA of the shroud is increased, all of the

rotations increase since the gun tube tends to straighten to a greater extent, on account of

the shroud's increased stiffness. If the BA of the shroud decreases, then the maxima of the

plots of OX and OZ that occur in the region ic = A, disappear. This is because the force

exerted on the gun tube by the shroud approaches a constant value.



77

AXIS SCALE RANGE
X (Curvature) 1 unit - Cur x 10.0 (Log) 1.OE-4 /m to 1.OE-t /a
Y (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 Im to I.OE-I Im
Z (Dependent Variable I unit = 0.0250 deg -0.0461 deg to 0.0000 deg

plotted for a temp. THETAX
rise of 100 deg. C)

CUR

TOR

Compatibility 2, El high: Thetax vs Cur vs Tor

Figure 6-35: Compatibility 2, El high: eX versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 I to I.OE-i /a
Y (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 /m to 1.OE-i /a
Z (Dependent Variable I unit - 0.0250 dog -0.0399 deg to 0.0000 dog

plotted for a temp.
rise of 100 deg. C) THETAX

CUR

\ TOR

Compatibility 2, EA high: Thetax vs Cur vs Tor

Figure 5-36: Compatibility 2, EA high: Ox versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /a to 1.OE-1 /M
Y (Torsion) I unit - Tor x 10.0 (Log) 0. t.OE-4 /a to I.OE-1 /a
Z (Dependent Variable I unit - 0.0002 dog -0.0003 dog to 0.0000 dog

plotted for a temp. THETAX
rise of 100 deg. C)

CUR

TOR

Compatibility 2, EA low: Thetax vs Cur vs Tor

Figure 5-37: Compatibility 2. EA low: OX versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 Im to .OE-i /A
Y (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 /m to j.OE-I /m
Z (Dependent Variable I unit - 0.0090 deg -0.0099 deg to 0.0000 deg

plotted for a temp.
rise of 100 deg. C) THETAY

TOR

Compatibility 2, EI high: Thetay vs Cur vs Tor

Figure 5-38: Compatibility 2, El high: ey versus Curvature versus Torsion



81

AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) i.OE-4 /M to 1.OE-I /M
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /s to 1.OE-I /m
Z (Dependent Variable 1 unit - 0.0100 dig -0.0080 dig to 0.0000 dog

plotted for a temp.
rise of 100 deg. C) THETAY

CUR

\ TOR

Compatibility 2, EA high: Thetay vs Cur vs Tor

Figure 5-39: Compatibility 2, EA high: e y versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 A. to 1.OE-I Am
Y (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /m to 1.OE-I /a
Z (Dependent Variable I unit - 0.0001 deg -0.0001 dog to 0.0000 dog

platted for a temp.
rise of 100 deg. C) THETAY

CUR

TOR

Compatibility 2, EA low: Thetay vs Cur vs Tor

Figure 5-40: Compatibility 2, EA low: 9y versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /m to I.OE-1 Im
Y (Torsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 /m to I.OE-1 Is
Z (Oependent Variable I unit w 0.4800 deg -0.846 deg to -0.0036 deg

plotted for a temp.
rise of 100 deg. C) CUR

THETAZ

TOR

Compatibility 2, EI high: Thetaz vs Cur vs Tor

Figure 5-41: Compatibility 2, El high: OZ versus Curvature versus Torsion
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AXIS SCALE RANGEX (Curvature) I unit - Cur x 10.0 (Log) 1.OE-4 /a to 1.OE-1 /aY (Torsion) I unit - Tor x 10.0 (Log) 0. 1.OE-4 /3 to i.OE-1 /mZ (Dependent variable I unit - 0.4800 deg -1.6577 deg to -0.0102 deg
plotted for a temp.
rise of 100 deg. C)

CUR

/HE

TOR

Compatibility 2, EA high: Thetaz vs Cur vs Tor

Figure 5-42: Compatibility 2, EA high: OZ versus Curvature versus Torsion
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AXIS SCALE RANSE
X ICurvature) I unit - Cur x 10.0 (Log) I.OE-4 /I to I.OE-1 /a
Y (orsion) I unit - Tor x 10.0 (Log) 0. I.OE-4 /a to 1.OE-1 /I
Z (Dependent Variable I unit - 0.0100 deg -0.0140 dog to 0.0000 deg

plotted for a temp.
rise of 100 deg. C) THETAZ

TOR

Compability 2. EA low: Thetaz vs Cur vs Tor

Figure 5-43: Compatibility 2, EA low: OZ versus Curvature versus Torsion
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The following chapter contains the formulation of a general space-curved finite

element which is later used to independently confirm the values of the more exact

displacements found from the first method of solution.



CHAPTER 6

A GENERAL SPACE-CURVED FINITE BEAM ELEMENT

6.1 Introduction

In the previous chapters, we formulated and performed a parametric study of an

exact solution to the problem of finding the displacements of the end of the gun tube. In

the present chapter, we present an alternative approach: the development of a general

space-curved finite beam element within which variable curvature and torsion are

permitted. By the use of an assemblage of such elements, we may model a rod of arbitrarily

varying cross-section. and curvature and torsion.

The element is derived by employing the variational method. The formulation

assumes the expression for the deformation strain energy density of a curved beam, whose

centroidal axis is an arbitrary space curve of variable torsion and curvature, obtained by

Tsay and Kingsbury. [Tsay 86i This expression is derived from the linearized strain-

displacement relations due to Kingsbury Kingsbury 841, which assume that cross-sections

remain plane and normal to the centroidal curve under deformation.

The most important feature of this element is its generality. The element stiffness

matrix obtained is valid for any beam element whose centroidal axis is a curve with a

constant rate of change of curvature and torsion throughout its length and also a constant

shape of cross-section. In the following chapter, we shall present a comparison between the

exact and the finite element solutions.

87
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6.2 The Displacement Field

6.2.1 Assumptions of the Formulation

The differential equations describing the motion of space-curved beams have been

formulated by Kingsbury in terms of the displacement components u, v, w and 0 which

represent four of the six unknown displacements or degrees of freedom permitted to any

point on the beam. Exact solution of these four differential equations is made difficult by

the fact that they are involve coupling in the above four variables due to the introduction of

torsion. u, v and w are translational displacements of the centroid of a generic cross-section

in the directions of the local principal normal, binormal and tangent respectively, and 4

represents the angular displacement of any point of the cross-section about the local

tangent. These four displacement quantities vary along the length of the beam; this may be

expressed as

v U(z),

0 0(Z) (6.1)

where z is the arc length measured along the space-curved beam. The remaining two

angular displacements are derived rKingsbury 841 from u(z), v(z) and to(z), according to the

equations below, which follow from the neglect of transverse shear deformation:

O - - - A U (6.2)

a = - Av+ r. (6.3)

The second assumption made is that angular displacements are small and hence may be

transformed from one coordinate system to another the same way as translational

displacements are.
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6.2.2 The Displacement Field: A Polynomial Representation

Consider the finite element shown in Figure 6.1. Each node of the element has six

degrees of freedom, three translational and three rotational. The element, therefore, has

twelve degrees of freedom in all. As stated in the foregoing section, the four displacements

in terms of which the differential equations are formulated are functions of the independent

variable z. the arc length along the beam.

Noting that the highest orders of derivatives of these displacements, u, v. w and 4'

appearing in the four coupled differential equations of Kingsbury are four, four, two and

two respectively, we adopt the following polynomial representation of the displacement

field:

u(z) = a- a2z- a3 z - a 4z
3

v(z) = b- b2z- b3 z 2 " b4z 3

w(z) = cl - c2Z

o(z) = - d2z (6.4)

The reader may note that the total number of undetermined constants in the above

equations is the same as the number of element degrees of freedom to be specified, that is,

twelve. It may be mentioned here that the above displacement field satisfies the differential

equations of Kingsbury exactly in the case that curvature Pc and torsion A (and their

derivatives) are identically zero, in other words, in the straight beam case. It does not,

however, satisfy the differential equations for the space-curved beam. However, in

consideration of the fact that we are dealing with small curvatures and torsions

representing the imperfections in the straightness of gun tubes, this assumption appears to

be reasonable.



o2

x(O), U1

C -v if

or - Z) W1 U2

y(L), v2

y(O) vI x= Principal Normal
y = Binormal
z = Tangent

Figure 6-1: Degrees of Freedom of the Finite Element

Having chosen polynornials to describe the displacements, we now seek to obtain

the shape functions for the displacement field. To achieve this, we must first determine the

unknown constants introduced in equations (6.4). These constants are expressed in terms

of the values of the element d.o.f. (degrees of freedom), which are specified. Differentiating

equations (6.4)a and (6.4)b, we have:

U, ( =du = a2 + 2a 3z +a 4rZ2

v(z) = du= b2 + 2bz + 3b4z2 (6.5)
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Let ul, v, wl, w l, V1 ", 01, and U12, W2, 2, u2 , V'2 ', 02 be the values of the element d.o.f, at

the two nodes given by z = 0 and z = I respectively. Evaluating equations (6.4) and (6.5) at

the two nodes, setting them equal to the known values of the d.o.f, and inverting the

relationships, we arrive at the following expressions for the constants:

a, = u1

a2 = U1

a3  3(2- U ) -- (2u, 1 U2 ')

2 ( , - 2) ("," - 2 )
a4  -- 112

b, = v,

b2  vI "

b3=3(v 2 - v1) - (2v1 ' -v 2 ')
02  1

b4 _2 (v - v2) (vl - 21)

1 -W 1

d2 =( 1

( 2 - € i) (6.6)
I

(€
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6.2.3 The Shape Function Representation

Having determined the unknown constants in terms of the known nodal values of

the displacements, we may now write the shape functions for the assumed displacement

field. Substituting equations (6.6) into equations (6.4) and rearranging the terms, we

obtain the shape functions for the displacements u and v to be the following cubic

polynomials in z.

3z 2  2z 3

(z) -- iy -i-

2z 2  z 3

L2 (z) = z -z

32
_2z

3

L3(z) = 3 - 2Z3

2 3

L4(Z )  - Z- - (6.7)

We also obtain the following linear shape functions for displacements wo and 0:

NI1(z) = i-z

I

N12(Z) Z (6.8)

Combining the shape functions of equations (6.7) and (6.8) with the nodal values

of the displacements, we obtain the following expressions for the four displacements:

U(Z)3z2 + 2z 3  2z2 z 3
2  1 71

+ U2 _-2Z3) U2 + (- z2+ Z3) U3,

, .. i i I I I II I
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V(z) 3z 2 +2Z3 ) V, i 2z2 +z .

3z 2  2z $  z
z 2z 3 V2 + Z2 _4_ Z3) V2

W(Z) = ( Z) I- (Z) W
I I

O() = ( - ) '61 (Z) 02 (6.9)

Having obtained the displacements as interpolations of their nodal values in terms

of the arc length z, we are now in a position to get an expression for the strain energy of

deformation of the beam element in terms of the nodal values of the displacements. This is

accomplished in the following section.

6.3 Strain Energy of the Beam Element

6.3.1 The Linear Strain Energy Density Function

The expression for the linear strain energy density (strain energy per unit arc

length) of the deformed beam, as obtained by Tsay and Kingsbury 'Tsay 861, is:

F =II{E (=)2 (uA') 2 - (u'A) 2

2 2 2

- U'AA' - u''Kc0- uA',c - u'A Pc -+ GI + u(V')i
2

(__ (AK)22 (+ (PC i2
-' (A - 2 uAKOt' - 0- + )

2 2 2 2

+u.A'c' +uw'A'c- uv(A') 2 - ui'AA' +uu"A' +u'wAi"

+
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- v. 'K- v'AK,- u"KO 1, +, GI' ,V'W 3 +, WAK 3 +W 2 ,

- V ',% 2 -4- ,'V'n 2 _ ,\ K _ U ,V { K) s -  Vk ,c " o '+UU 2

-U IC& -UK A 2 ~ 0 9

-IVf E ('') + (WA) K) (t') 2 + WK2

2 2 2 2 2

-U 'V'A- U''VA'-U"C'-U"W''C-4--VV'A,\'-V'w,\AK'

w2 4

-V U V - ,w'i' - u'c'K + Uiw'K K' I + G _w -vc
2

3 2 IA 2  ) 2  2- (U',K)2
2 2

- U \K- (0,,) 2 p~~)2
2 2

-A { EY-L 2 _ u W~ uK ) (6.10)
2 2

6.3.2 Strain Energy of the Element

Substituting equations (6.9) into Equation (6.10), the strain energy density

function, and integrating the result over the length of the element I, we arrive at the

expression for its strain energy of deformation. This expression, however, is presented in

Appendix B. owing to its length.

6.4 The Element Stiffness Matrix

Next, we apply Castigliano's First Theorem to the strain energy expression. The

theorem states that if a linearly elastic structure is subjected to a displacement, the load in

its direction that causes the displacement is equal to the partial derivative of the strain

energy of deformation of the structure with respect to that displacement. We, therefore,

differentiate the strain energy with respect to the nodal values of displacements which

appear in the expression and thus obtain the components of the internal force and moment

acting on the ends of the element in their respective local coordinate systems specified by
the tangent, binormal and principal normal at those points.
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The coefficients of the nodal values of displacements appearing in the expressions

for nodal forces and moments obtained by differentiating the strain energy are in fact the

elements of the element stiffness matrix K. The relationship between the nodal forces and

the noea displacements in terms of the element stiffness matrix K is:

F = KA (6.11)

where, F is the internal force vector given by

F = Viz1 VYlI Vz1 Mz I Myl Mzl Vz2 VY2 Vz2 MZ 2 M 2 Mz2 T (6.12)

and I is the nodal displacement vector given by

U1 V'1 W1 0 %,0 U2 V2 w2 a 2 2a 2 T (6.13)

The a and a values in the nodal displacement vector are as given by equations

(6.2) and (6.3). Since we are interested in displacements occurring for small values of

curvature r. and torsion A, we drop the last term from Equation (6.2) and the last two

terms from Equation (6.3). thereby getting the simpler results

_ a_ au
Ca = - a and Q = (6.14)az az

The above relationships hold exactly for the case of the straight beam, and are, therefore,

consistent with the shape functions assumed for the element.

Note that this simplification results in an uncoupling of displacements, thereby

rendering the problem more amenable to solution. We now have ai = - Vi ",wl = Ui ",

o2 = - v2 ' and a.2 = u2', as per Equation (6.14), so that the moments Mzl, Myp, Mz2

and MY2 are obtained by applying Castigliano's First Theorem as follows:

8U
49V1
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au

Mz2 = au
aV2"

MY2 = (6.15)aU2'

The term U appearing in the above equations is the strain energy of deformation of the

element.

The 12 x 12 element stiffness matrix is symmetric, as expected. The expressions

for the elements of the stiffness matrix in terms of the geometrical parameters defining the

element, r., ,'. A, A', 1, cross-sectional properties I, I, I , A, and material properties E

and G, are provided in Appendix D, which contains a finite element program used to

compare the displacements obtained by using the general space-curved beam element with

thoze of the exact solution presented in previous chapters.

6.4.1 Reduction to the Straight Beam Case

In this subsection, we present a check on the element stiffness matrix obtained

earlier for the case of the straight beam element. For the straight beam, we have zero

torsion and curvature. Substituting these values into the expressions found for the

elements of the stiffness matrix, we obtain the following results which agree with the

standard straight beam element matrix [Zienkiewicz 771. (Only the non-zero upper

triangular elements are listed row-wise, since the matrix is symmetric.)

K(I,) = - K(1,7) =12E ?13

K(1,2) = - K(1,8) =12 E

K(1,4) = K(1,10)- 6E

......~ ~~~~~~~~M: ..-.. am nnn6mm SI
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K(1,5) K(1.11) 6E

/K(2,2) = - K(2,8) 12 E I=

K(2,4) = K(2,10) = - 6 E1

K(2,5) =K(2.11) = 6El

K(2,7) = - 12EI

K(3,3) = - K(3.9) EA
I

K(4.4) = 2 K(4.10) 4 E.I

K(4,5) = 2 K(4,11) - 4E1Y

6 E1
6E1K(4,7) = -

K(4,8) = - 6E1

5-K(5.5) = 2 K(5,1 1)6E-  4 E 10

K(5,7) = - 6 E 1=

K(5,10) - -
K

/((6,6)=- K(612)- G I+
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K(7,7) 12E I

13

K(7.8) =12 El

K(7,10) = 6E

K(7,11) - 6EI

K(8.8) = -- El-

K(8.10) 6EI6Er

K(8,1 1) = -

K(9,9) = IA
I

K(10,10) 4 El=

K(10,11) = -

K (1 2 ,1 2 ) 

( .6 )

1
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6.5 A Finite Element Example Solution

In this section. we present the results obtained by using the finite element

program of Appendix D for the displacements of the end of the gun tube, whose model is

shown in Figure 6.2. The gun tube is modeled as a cantilevered beam with three elements.

Note that compatibility of displacements of the ends of the gun tube and the shroud is not

enforced but we use as an approximation, the value of the force found for the exact

solution. for the corresponding values of initial curvature and torsion. The shroud is

removed, but the approximate shroud force is applied to the gun tube in a direction parallel

to the chord joining the ends of the gun tube.

Fixed End Free End

StI I

1.75m 1.75m 1.75m

Elemen 1 Element 2 Elemen 3

Figure 6-2: Model of a Gun Tube

It must be brought to attention that the global stiffness equation whose solution is

implemented by the finite element program is formulated in the chord coordinate system.

Since the element stiffness matrix is developed in the local tangent system, we niake use of

the transformations of Section 4.3 in obtaining the stiffnm matrix in the chord system.

This, although not a necessity, facilitates the comparison between the displacements found

from the exact and the finite element solutions which is presented in the following chapter.

(
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The solution of the global stiffness equation in the chord system, F = KA,

proceeds as follows: We first partition the global force and displacement vectors into blocks

of known (denoted by the subscript a) and unknown (denoted by the subscript d)

quantities, and rearrange the stiffness matrix accordingly. Thus the global equation may be

written as:

(F~) = a ( Ka, A) (6.17T)

Now, since one end of the gun tube is held fixed, the known displacements Z, are zero.

Thus the unknown displacements and forces (reactions) may be obtained from Equation

(6.17) as:

= K. - ' F,

= Ka. H Fa (6.18)

The general finite element allows for variation of the curvature and torsion along

its length. In the present example, however, this facility is not used. Data and results for

this example follow.

Global Data:

Number of elements = 3
Length of gun tube = 5.25 m

Curvature K = 1.0 x 10-4 per m
Torsion A = 1.0 x 10-3 per m
Rate of change of curvature K' = 0
Rate of change of torsion A' = 0

Modulus of elasticity E = 4.35097 x 109 N/m 2

Shear modulus G = 1.67345 x 109 N/m

Force exerted by thermal
shroud along the chord F Yc = 61441.952 N



101

Elemental Data:

Length of each element = 1.75 m

Cross-section of element 1:
Inner radius = 0.06 m = 6 cm
Outer radius = 0.14m = 14cm

Cross-sections of elements 2 and 3:
Inner radius = 0.06 m = 6 cm
Outer radius = 0.10 m = 10 cm

Results:

Computed Reactions at the Fixed End in the Chord System:

F xc = 7.409 x 10 5 N

Fy c = -61441.952 N

F ZC = 1.964x10- 7 N

MXC = -7.409 x 10- 2N-m

Myc = -1.954 x 10-S N-m

M Ze= - 4.439 x 10-4 N-m

End Displacement of the Gun Tube in the Chord System:

L X = 5.984 x 10-4m
L Y= 2.950 x 10- 3 m
L Z = 1.510 x 10-6 m

LUx = 3.712 x 10- deg

,AY = 3.266 x 10- deg

AUz = -1.146 x 10-2 deg

Note that the applied force acts along the chord and so passes through the point

at which the gun tube is encastred. Thus the moments generated at the fixed end must be

zero; so should the reactions in directions perpendicular to the chord. This is borne out by

the computed reactions at the fixed end shown above, of course, with some error. In the

next chapter, we shall present a comparison of the exact and finite element solutions.



CHAPTER 7

A COMPARISON OF THE EXACT AND FINITE ELEMENT ANALYSES

7.1 The Impact of Simplifying Assumptions

Recall that the displacement field that we assumed for the finite element

formulation of Chapter 6 satisfied the differential equations of Kingsbury [Kingsbury 841
only in the case of the straight beam. In other words, if we were to substitute these

displacements and their derivatives into the differential equations, we would expect a non-

zero residual. This implies a certain inherent inaccuracy in the finite element, and we

naturally expect that the element will show a greater accuracy for the smaller values of

curvature and torsion.

It must also be noted that the simplification of Equation (6.14) would affect the

accuracy of all the displacements, particularly w, a. and a.

7.2 A Comparison of the Exact and Finite Element Methods

Presented, in this section, are some of the displacements obtained by the exact

method under the first compatibility condition described in Section 4.5, and the

corresponding displacements obtained using the general beam element of Chapter 6, for a

few selected values of initial curvature and torsion of the gun tube. These displacements

were computed using the programs given in appendices C and D respectively.

The applied forces used in the finite element program were supplied from the

output of the program for generating the exact solutions, in which compatibility conditions

102



103

were enforced. The gun tube and shroud data assumed for the comparison were the same

as those given in Chapter 5, and for ease of reference, they are presented below:

Gun Tube:

Length = 5.25 m
Inner radius - 0.06 m
Outer radius = 0.10 m
Elasticity modulus = 4.35097 x 10 9 N/m 2

Shear modulus = 1.67345 X 0 9 N/mrn

Thermal Shroud:

Inner radius 0.11 m
Outer radius 0.145 m
Temperature rise = 100 C
Elasticity modulus = 4.35097 x 10 9 N/m 2

Coefficient of thermal expansion = 1.206 x 10- / C

The finite element analysis of the gun tube was performed with a 3-element and a

10-element model to verify the expected increase in the accuracy of the solution against the

exact solution. Five different cases of initial curvature and torsion are presented in this

chapter with conclusions about the results inserted at suitable junctures. Note that the

exact reactions at the fixed end of the gun tube consist of only one equal but opposite force

-Fyc. Since the force due to the shroud acts along the chord itself, no reaction moments

are produced at the fixed end.

CASE 1:

= 1.0X10- 4 in

A = 0.0 /m

Applied force in the chord system, FYC = 61441.9292446 N

Computed Reactions in the Chord System, in N and N-m:

3 Elements 10 Elements

F - 5.2988725 x 10 - 7.2120088 x 10 -

FYC -61441.9292446 -61441.9292446
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Fz, 0.0 0.0
Mx 0.0 0.0
M 0.0 0.0

MZ, - 1.4694506 x 10-4 - 1.3903836 X 10

Displacements in the Chord System, in m and deg:

Exact Solution 3 Elements 10 Elements

LIX 6.5259152 x 10- 4  6.5387099 x 10 - 4  6.5387628 x 10- 4

C

Y Y 3.6873859 X 10-3 3.6873662 x 10 -  3.6873663 x 10-3
C

AZ 0.0 0.0 0.0
C

1Oxc 0.0 0.0 0.0
L0 yc 0.0 0.0 0.0

LOZc - 1.4272158 x 10 - 2 - 1.4293170 x 10 -2 -1.4293262 x 10-2

CASE 2:

= 1.0 X 10- 2 /M
A = 0.0 im

Applied force in the chord system, F., = 55426.4228976 N

Computed Reactions in the Chord System, in N and N-m:

3 Elements 10 Elements

FX, -4.4158832 X 10- 2  -4.4949355 x 10- 3

FYc -55426.4279317 -55426.4294723

Fzc 0.0 0.0
Mx, 0.0 0.0

MyC 0.0 0.0
Mz -121.4720064 - 12.4268252

Displacements in the Chord System, in in and deg:

Exact Solution 3 Elements 10 Elements

AX 5.8975078 x 10-2 5.4112829 x 10-2 5.8475782 x 10 -
C

A Y 3.9458062 x I0 - 3 3.9069921 X 10 - 3 3.9410363 X 10 -3
C

A z 0.0 0.0 0.0

4.€
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4exc 0.0 0.0 0.0
Z YC 0.0 0.0 0.0
.Z'Oc - 1.2873947 - 1.2035964 - 1.2799743

From the above figures for cases 1 and 2, we observe that the finite element

method yields very accurate values of displacements, for zero torsion, when the curvature is

small. As mentioned following the finite element example of the previous chapter, an

indication of the accuracy of the solution is the accuracy of the computed reactions. We

expect that the only non-zero reaction at the fixed end of the gun tube is an opposite force

to that exerted by the thermal shroud.

With this in mind, it is easy to see that in the second case, the accuracy of the

solutions is not as good as the first. However, the error in the moment MZC, whose value

should be zero, is still not very large considering the enormous magnitude of the applied

force. Note that in Case 1. the 10-element model produces slightly more accurate reactions

than the 3-element model. There is also not much improvement in displacement values

from the 3-element model to the 10-element model. This lack of improvement may be

attributed to the inaccuracy of the element itself, inherent in the approximate displacement

field assumed in its derivation. In Case 2, however, the improvement is much more visible.

CASE 3:

K = 1.0 X 10-4 /m
A =1.0 >, 10-4 /m

Applied force in the chord system, Fy. = 61441.9460865 N

Computed Reactions in the Chord System, in N and N-m:

3 Elements 10 Elements

F 7.4089804 x 10- 7  7.4090253 x 10- 7

Fyc -61441.9460865 -61441.9460865

F Ze 2.6942000 x 10 - '0  2.6942148 x 10- 10

MXC - 7.4090486 x 10- -7.4090355 x 10 - 3



106

MYC - 7.4802397 x 10- - 7.4802703 X 10-7

MZ, - 1.4889072 X 10-4 -1.5849468 x 10-

Displacements in the Chord System, in m and deg:

Exact Solution 3 Elements 10 Elements

L X 6.5390314 x 10- 4  6.5387117 x 10- 4  6.5387646 X 10- 4

C

L Y 3.6873852 x 10- 3 3.6873672 x 10-3 3.6873674 x 10-3
C

Z 1.1735696 x 10 -' 1.4904136 x 10-7 1.4875948 x 10-7

z\xc 8.6536987 x 10-10 3.7464527 x 10 - 3.7464405 x 10- 6

.Syc - 4.6529785 x 10-11 2.3128574 x 10 - 2.3147083 x 10- 9

L Ozc - 1.4272162 x 10 -2 -1.4293173 x 10-2 -1.4293266 x 10-2

It is important to observe in Case 3 that even though the reactions have been

computed very accurately (as compared to Case 2, for example), the displacements LZ,

!xc, 10 yc which are "out-of-plane" in the sense of Section 5.2 show fairly large errors for

both the 3-element and the 10-element models. This is because the introduction of torsion

results in a coupling of displacements which is not accounted for in the finite element

model. Thus the finite element solution is unresponsive, in terms of its accuracy with

regard to these displacements, to an increase in the number of elements.

The assumptions that we made in Chapter 6 yield simplified forms of

displacements as given by Equation (6.14). Clearly, in the original forms of equations (6.2)

and (6.3), the displacements show coupling. However, withcut this simplification, it would

be difficult to obtain the constant coefficients of the assumed displacement field in terms of

the nodal values of displacement, since the differential equations of Kingsbury [Kingsbury

841 are set up in terms of four displacements, while the element has six degrees of freedom

per node. In other words, in order to obtain a finite element that accounts for coupling, we

would have to impose coupled nodal value conditions, which is clearly a non-trivial matter.

.. ........... . . .I=m ,~ ~ mm m m m m m
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CASE 4:

= 1.0 X10- 'M
A=1.0x10- 4 "M

Applied force in the chord system, F = 55426.4229645 N

Computed Reactions in the Chord System, in N and N-m:

3 Elements 10 Elements

F xc - 4.4092066 x 10 - - 4.4281777 x 10

F yc  - 55426.4280001 - 55426.4295408

Fz, 5.0363461 x 10 - 6.5771379 x 10-

Mxc -0.6805012 -0.6694404

M YC - 6.4613788 x 10-3 - 6.7159999 x 10 -3

Mzc -121.4721685 -12.4269992

Displacements in the Chord System, in m and deg:

Exact Solution 3 Elements 10 Elements

AX 5.8975078 x 10 - 5.4112830 x 10-2 5.8475781 x 10- 2
C

A y 3.9458062 x 10- 3 3.9069922 x 10- 3 3.9410363 x 10- 3
c

AZ 1.0319861 x 10 -  1.4945806 x 10-  1.3573915 x 10-

C

Aexc 4.2030041 X 10-17 3.4914457 x 10-4 3.3897723 X 10-4

A0y, -4.1399281 x 10- 7  2.0471505 x 10 -  2.0838240 x 10 -
Aezc -1.2873947 -1.2035963 -1.2799743

CASE 5:

= 1.0 X 10-4 /m
A = 1.0 X 10-2 /m

Applied force in the chord system, Fyc = 61441.9525214 N

Computed Reactions in the Chord System, in N and N-m:

3 Elements 10 Elements

FXc 7.4058016 x 10 -3 7.4058016 x 10- 3
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F C  - 61441.9525233 -61441.9525233

FZe 1.9445444 X 10- 1.9445444 x 10- 4

Mx, -0.7405821 - 0.7405804

MYc - 7.4658299 x 10 - - 7.4650474 x 10 5

Mz,: -1.9591481 x 10- 2 - 1.9458587 x 10- 2

Displacements in the Chord System, in m and deg:

Exact Solution 3 Elements 10 Elements

LAX 6.5383257 Y 10 - 4  6.5382582 x 10 - 4  6.5383147 X 10- 4

C

L Y 3.6873849 x 10- 3.6873676 x 10- 3 3.6873678 x 10-
C

Z 1.1442295 x 10 e 1.4901627 x 10- 1.4873416 x 10 s
C

A6Xc 5.5909964 x 10 3.7456808 x 10-4 3.7456666 Y 10 -4

Loyc -4.5889408 - 10- 9  2.3109602 Y 10- 7  2.3127627 × 10 - 7

'L6z -1.4271180k 10-2 -1.4286921 X 10-2 - 1.4287038 x 10-2

Comparing cases 3 and 5, we see that an increase in the torsion has very little

effect on the accuracy of finite element solution. On the other hand, comparing cases 3 and

4, we see that increasing the curvature of the gun tube reduces the accuracy of the solution.

This is consistent with the intuitive notion that when the curvature is small, the effect of

torsion is to twist the beam about its centroidal axis without changing its geometry

significantly.

Note that even though the displacements /Z, LOX, and LOy, which correspond

to W, a. and a. are inaccurate, their values are at least an order of magnitude smaller than

the other "in-plane" displacements and so the error becomes less severe. In the next and

final chapter, we present the conclusions of this investigation.

(



CHAPTER 8

CONCLUSIONS

In chapters 2 through 4, we presented an exact solution to the problem of finding

the displacement of the end of the gun tube in terms of the imposed temperature change

that causes the thermal shroud to expand. In Chapter 5, we performed a parametric study

of the exact solution by plotting the components of force and displacement against different

initial curvatures and torsions of the gun tube for different axial and flexural rigidities of

the thermal shroud.

A brief summary of the conclusions of the parametric study follows. It was found

that for a constant curvature, increasing the torsion of the gun tube had very little effect on

the in-plane force and displacement components, while it caused an increase in the out-of-

plane force and displacement components. It was observed that for high and low EA,

displacements were minimal. For high El, the increased lateral resistance to bending

prevented large lateral displacements of the gun tube. However, this did not alleviate the

problem of relatively large angular displacements. For low EJ. the compatibility condition

2 reduced to condition 1, which yielded fairly large displacements. Thus, it appears that it

would be most advantageous to have a thermal shroud with a low EA for the following

reasons: Firstly, the displacements are smallest in this case. Secondly, the forces are also

small. This second reason makes the low BA case preferable to the high EA case since it

not only reduces displacements but also the forces on the connection between the gun tube

and the shroud. It would be easier to construct an axially flexible shroud than one which is

rigid; in addition, the gun tube-shroud joint could be designed for lesser loads. This would

lead to a saving of material.
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An alternative method of solution employing a general space-curved finite element

was developed in Chapter 6. In the preceding section, we compared the two proposed

solutions. The finite element solution yielded fairly accurate results as compared to the

exact solution. However, despite its relative inaccuracy, the flexibility of the finite element

approach makes it highly attractive. The particular advantages referred to are the fact that

variable curvature and torsion can be accomodated within an element, and also the

numerous possibilities afforded in modeling a structure with an assemblage of different

elements. One such example was provided in Chapter 6, in which the cross-sections of

different pieces of the gun tube were of different sizes. Thus it would be possible to model a

variety of highly complex structures, provided that the curvature and torsion of the

elements would be small.



APPENDIX A

THE COMPLEMENTARY STRAIN ENERGY OF THE HELICAL ROD

The complete expression for the strain energy of deformation, U, of the helical rod,

expressed in terms of the XYZ components of applied force and moment, is as follows:
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APPENDIX B

THE STRAIN4' ENERGY OF DEFORMATION OF THE FINITE ELEMENT

The strain energy of deformation of the space-curved finite element is a function of

the nodal values of displacement, namely,

U = U( U1 I iIU 'IV i U2, '1 V 2  U '2 ' U2V2 

The complete expression for the strain energy is,

U = a3*C1*w2**2+1*w1*w2+1*wl**2)/3.O-a2g*((3*1**2*v2p-21*1
*v2-2*1**2*vlp-9*1*v1) *w2+(2*1**2*v2p-9*1*v2-3*1**2*vlp-21*1*vI
) *wl)/60.0+a30*(C l*v2p+6*v2-1*vlp-6*vl)*w2+C-l*v2p+6*v2+1*vlp-6
*vl)*wl)/12.O+a35*(C1*v2p-v2.vl)*w24.(v2-1*vlp-v1)*wl)/l-a25*((3
*1**2*u2p-21*1*u2-2*1**2*ulp-9*1*ul) *w2+ C2*l**2*u~2p-9*1*u2-3*l*
*2*ulp-21*1*ul)*wl)/8O.O+a26*C(1*u2p+6*u2-1*ulp-6*u1)*w2.(-1*u2

p+6*u211*ulp-8*ul)*wl)/12.O+a33*CC1*u2p-u24ul)*w2*(u2-1*ulp-ul)
*w1)/1+a4g*CC2*1*p2+1*pl)*w2+(1*p2+2*1*pl)*wl)/6.04a38*(w2-wl)*

C1*w2+1*wl)/1/2.O+a51*(p2-pl)*C1*w241*wl)/1/2.O+a7*(w2-wl)**2/1
-a31*(l**2*vu2p-*1*v2-1**2*vlp6*1*vl)*(w2-vl)/1/12.04a36*(v2p-
vlp)*(w2-wl)/.ia32* (v2-vl)*Cw2-wl)/l-a27*(1**2*u2p-8*1*u2-1**2*

ulp-6*1*ul)* (w2-wl)/1/12.O+a34*(u2p-ulp)*(w2-wl)/l+a28*(u2-ul)*
(w2-wl)/1.a50* C1*p24*pl)*C2-wl)/1/2 .0+a2*(2*1**3*v2p**2+(-22*
1**2*v2-3*1**3*vlp- 13*1**2*vl )*v2p*78*1*v2**2.(13*1**2*vlp.54*1
*v1) *v242*1**3*vlp**2+22*1**2*vl*vlp+78*1*vl**2)/210.O+a1O* (4*1
**2*v2p**2+(-12*1*v2+4*1**2*vlp.12*1*vl) *v2p.12*v2**2. (-12*1*vI

p-24*vl )*v2+4*1**2*vlp**2+12*1*vl*vlpel2*vl**2)/l**3.a8* C2*1**2
*v2p**2+C-3*1*v2-1**2*vlp+3*1*v1&)*..2p+18*v2?**2&( -3*l*vlp-36*v1)
*v2+2*1**2*vlp**2+3*1*vl*vlp+18*v1**2)/1/15 .O-al8*(2*1**2*v2p**
2+C-18*1*v2-1**2*vlp43*1*vl)*v2p.18*v2**2+(-3*1*vlp-38*vl)*v2+2
*1**2*vlp**2+18*1*vl*vlp.18*vl**2)/1/15 .04a19* (v2p*s2/2 .O-vlp**
2/2.O)+all*( (4*1**3*u2p-22*1**2*u2-3*1**3*ulp-13*1**2*ul)*v2p4(

-22*1**2*u2p.158*1*u2+13*1**2*ulp+54*1*u1)*v2. (-3*1**3*u2p+13*1
**2*u2+4*1**3*ulp22*1**2*al) *vlp4(-13*1**2*u2p+54*1*u2+22*1**2
*ulp*156*1*ul)*vl)/420.O+a20*( (4*l**2*u2p-3*1*u2-l**2*ulp+S*l*u

1)*v2p+C-3*1*u2p+36*u2-3*1*ialp-36*ul)*v2.(-1**2*u2p-3*1*u2+4*1*
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*2*ulp+3*1*ul) *vlp+(3*1*u2p-36*u2+3*1*ulp.38*ul)*vl)/1/30.0-a22
*( (4*1**2*u2p-3*1*u2-1**2*ulpe3*1*ul)*v2p4C-33*1*u2p+38*u2-3*1*

ulp-36*ul) *v2+C-1**2*u2p-3*1*u2+4*1**2*ulp+3*1*ul)*vlp4(3*1*u2p
-38*u2+33*1*ulp+36*ul)*vl)/1/30.0*a37*( (4*1**2*u2p-6*1*u2+2*1**
2*ulp+6*1*ul) *v2p+ C-6*l*u2p4.12*u2-6*l*ulp- 12*ul )*v2, (2*1**2*u2p
-6*1*u2+4*1**2*ulp+6*1*ul) *Vlp. (6*l*u4-12*ii2.8*l*ulp+l2*ul) *vl
)/l**3-a2l* C(4*1**2*u2p-33*1*u2-1**2*ulp.3*1*ul) *v2p4(-3*1*z2p.
36*u2-3*1*ulp-36*u1 )*v2+(-1**2*u2p-3*l*u2+4*1**2*ulp+33*1*ul) *v
lp+(3*1*u2p-36*u2+3*1*ulp+36*ul)*v1)/1/30.0+a23*C C1*u2p+2*u2-1*
ulp-2*ul)*v2p+C2*ulp-2*u2p)*v2+C1*u2p-2*u2-1*ulp+2*ul)*vlp.(2*u
2p-2*ulp) *vl)/1/2 .04t24*( (l*u2p-2*u2+1*ulp.2*ul)*v2p.(2*u2p-2*u
lp)*v2+C-l*u2p+2*u2.1*ulp-2*ul)*vlp+(2*ulp-2*u2p)*vl)/1/2.0+al3
*( C6*1*u2-1**2*ulp-6*1*ul)*v2p+(-6*1*u2p+30*u2+6*1*ulp+30*ul) *v

2+C1**2*~u2p-6*1*u2+8*1*ul)*vlp+(6*1*u2p-30*u2-6*1*ulp-30*u)*vi
)/60.0-a12*((6*1*u2-1**2*ulp-6*1*ial)*v2p4(-6*1*u2p-30*u246*1*uI
p430*ul )*v2. C1**2*u2p-6*1*u2*6*1*u1)*vlp+(6*1*u2p-30*u2-6*1*ulp
*30*ul )*vl )/60. Q-a44*(( 3*1**2*p2+2*1**2*pl) *v2p+ C-21 *l*p2-9*1*p
1)*v2+( -2*J**2*p2-3*1**2*pl)*vlp+C-9*1*p2-2i*1*pl) *vl)/60 .04a45
*(1*p2-1*pl)*v2p4C6*p2+6*pl)*v2+C1*pl-l*p2)*vlp+C-6*p2.8*pl)*v

1)/12.0+a48*C1*p2*v2p+Cpl-p2)*v2-1*pl*vlp4(p2-pl)*vl)/l.a48*(p2
-pl)*C1**2*v2p-6*1*v2-1**2*vlp-6*1*vl)/1/12 .0+al7*Cv2**2-vl**2)
/2.0+a47*Cp2-pl)*Cv2-vl)/l+al*(2*1**3*u2p**24C-22*1**2*u2-3*1**
3*ulp-13*1**2*ul )*u2p*78*1*u2**2+(13*1**2*ulp.54*1*ul) *u2+2*1**
3*ulp**2+22*1**2*ul*ulp+78*1*ul**2)/210.0+a9*(4*1**2*u2p**2+ C-I
2*1*u2+4*1**2*ulp1.12*1*ul)*u2p+12*u2**2.C-12*1*ulp-24*ul)*u2+4*
1**2*ulp**2+12*1*u1*ulp+12*al**2)/l**3+a5* C2*1**2*u2p**2.C-3*1*
u2-1**2*ulp+3*1*ul) *u2p*18*u2**2+(-3*1*ulp-36*ul)*u2+2*1**2*ulp
**2+3*1*ul*ulp+18*ul**2)/1/15 .0-a15* (2*1**2*u2p**2+C-18*l*u2-1*

*2*ulp.3*l*u ) *u2p+18*u2**2. C3*1kulp-36*ul) *u2+2*l**2*ulp**2+1
8*1*ul*ulp+18*ul**2)/1/15.0+alG*(u2p**2/2.0-ulp**2/2 .0) -a39*( (3
*l**2*p2+2*1**2*pl) *u2pe(-21*1*p2-9*1*pl)*u2+(-2*1**2*p2-3*1**2
*pl) *ulp4(-9*1*p2-21*1*pl)*ui)/80.0+a40*C(1l*p2-1*pl)*u2p.(8*p2+

6*pl) *u2+(l*p1-l*p2)*ulp+C-6*p2-6*p1)*u1)/12.0+a43*(l*p2*u2p+(p
1-p2)*u2-1*pl*ulp+Cp2-pl)*ul)/1-a4l* (p2-pl)*C1**2*u2p-6*l*u2-1*
*2*ulp-6*1*ul) /1/12 .0.a14* Cu2**2-ul**2)/2 .0+a42*(p2-pl)*(u2-ul)

/1+a4* C1*p2**2+1*p1*p241*pl**2)/3.O+a8*(p2-pl)**2/1

where ul = u1, ulp = UIt', p = 0, etc., and the coefficients a 1, a2, ' 5 depend

on geometric and material properties of the element, such as the length of the element, 1,

the moments of inertia of its cross-section, ixx, iyy and ixy, the curvature, k (kappa), the

rate of change of curvature of the element, kp (kappa prime), the torsion, I& (lambda), the

rate of change of torsion, lap (lambda prime), and modulus of elasticity e, and finally, shear
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modulus g. These coefficients are listed below:

al =(e* (ixxc~lap**2+a*k**2)+g*ixo*k**2*la**2)/2.0

a2 = iyy*(e*lap**2+g*k**2*la**2)/2 .0

a3 = iyy*(e*kp**2+g*k**4)/2.0

a4 = (ixo*(gla**2.e*k**2)+g*iy-y*la**2)/2 .0

a= (e*ixc*la**2+g*iyy*k**2)/2.0

a8 = Ce*iyy*la*.'2+g*ixcc*k**2)/2.0

a7 = e*Ciyy*k**2+a)/2.0

a8 = g*(iyy+ixcc)/2.0

ag = e*iyy/2.0

alO = e*ixcc/2.0

all = -ixy*(e*lap**2+g*k**.2*la**2)

a12 = -e*ixy~~1a*lap-g*iyy*k*#2*la

a13 =g*ixoc*k**2*la...*ixy*la*lap

a14 = e*ixcc*la*lap+g*ixy*k**~2*la

a15 = e*ixy*lap

a16 = e*ixy*la

a17 = e*iyy*la*lap-g*ixy*k**2*la

a18 = -e*ixy*lap

a19 z eiyl

a20 a ixy*Cg*k**2-e*la**2)

a2l = *ixac*lap

a22 = -e*iyy*lap
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a23 a e*jicc*la

a24 = -e*iyy*la

a25 = ixy*(e*kp*lap+g*k**3*1&)

a26 = e*ixy*kp*la+g*iyy*k**3

a27 = e*ixy*k*1ap-a*e*k

a28 =e*ixy*k*la

a29 = -iyy*(e*lcp*lap~g*k**3*la)

a30 = g~ixy*1c**3-e*iyy*kp*la

a3l = -e*iyy*k*1ap

a32 = -e*iyy*k*la

a33 = e*1.yy*kp

a34 = 9*iyy*k

a36 = **icy*lcp

a36 = e*ixy*k

a37 = e*ixy

a38 = e*iyy*k*lcp

a39 z g*ixy*k*la**2-**ixcc*k*lap

a40 = g*iyy*k*3.a-e*ixoc*k*la

sal = g*ixcc*k*la

a42 z g*ixy*k

a43 a -e*ixy*k

a44 a **ixy*k*lap-g*iyy*k*la**2

a46 z ixy*(g*k*la..*k*la)
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a46 = -g*ixy*k*la

a47 = g*ixcc*k

a48 = -e*ixcc*k

&49 = g*iyy*lc**2*la-e*ixy*k*kp

aS0 = -e*ixy*k**2

a5l = g*ixy*k**2



APPENDIX C

COMPUTER IMPLEMENTATION OF THE EXACT SOLUTION

C......................................................................

C
C THIS PROGRAM COMPUTES DISPLACEMENTS AT THE END OF THE GUN TUBE
C DUE TO THE FORCE EXERTED BY THE EXPANSION OF THE THERMAL SHROUD
C FOR VARYING INITIAL CURVATURE AND TORSION OF THE GUN TUBE.

C
C

INTEGER KOUT1, KOUNT2, KOUNT3, KOUNT4, IA, IDGT, IER
REAL*8 ELAST, G, AC. AS. IXX, JP, ALPHA. TMPR, L, PI, CUR, TOR
REAL*8 RATIO, A, B, P. R, Cl, SI, C, S, EI, GJ, EA, GA
REAL*8 DENOMI, DENOM2, DENOM3, LS. CVAL, TVAL
REAL*8 DISTI, DIST2. DISTANCE
REAL*8 RAD1, RAD2, RAD3, RAD4, ISHROUD, EASHROUD, EISHROUD

C
C DOUBLE PRECISION CONSTANTS ABBREVIATED FOR USE IN THE COMPUTATION
C OF FLEXIBILITY MATRIX ELEMENTS
C

REAL*8 TO, TR, FO, FI, SI, SE, ET, NI, TE, EV, TW. FF, SX, TF
REAL*8 TT, FE. ST, NS, ONE. ZERO, START. FACTOR

C
C ARRAYS USED:
C F FLEXIBILITY MATRIX IN GLOBAL COORDINATE SYSTEM
C FBAR FLEXIBILITY MATRIX IN CHORD SYSTEM
C COMPAT MATRIX USED TO SOLVE COMPATIBILITY EQUATIONS
C INVCOMPAT INVERSE OF COMPAT
C FORCE3 FORCE VECTOR IN COMPATIBILITY EQUATIONS
C RHS RIGHT HAND SIDE OF COMPATIBILITY EQUATIONS
C DELTABAR, DELTA, DELTATAN
C DISPLACEMENTS IN CHORD, GLOBAL AND TANGENT SYSTEMS
C FORCEBAR, FORCE, FORCETAN
C FORCES IN CHORD. GLOBAL AND TANGENT SYSTEMS
C CG CHORD TO GLOBAL TRANSFORMATION MATRIX
C GC GLOBAL TO CHORD TRANSFORMATION MATRIX
C TG TANGENT TO GLOBAL TRANSFORMATION MATRIX

(127
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C GT GLOBAL TO TANGENT TRANSFORMATION 1MATRIX
C TC TANGENT TO CHORD TRANSFORMATION MATRIX
C TE106 TEM4PORARY STORAGE
C WKAREA USED BY IMSL INVERSION ROUTINE
C

REAL*8 F(6.6), FBARC6,G), COMPAT(3,3). INVCOMPAT(3.3)
REAL*8 DELTABAR(6,1). DELTA(6.1). DELTATAN(8,I
REAL*8 FORCEBAR(6,1). FORCEC6.1). FORCETWN6.l). FORCE3(3.l)
REAL*8 CGC6.6), TGC6,6). CT(6,6). GC(6,8). GT(6.6)
REAL*8 TENP6C6.6), RHS(3.1). WKAREA(500)

C
DATA ELAST/4.35O97D9/
DATA Gil .67345D9/
DATA RADi, RAD2, RAD3, RAD4/6.OD-2. 1.0D-1. l.lD-I. 1.46D-l/
DATA ALPHA/I .206D-5/
DATA TMPR/l.0D2/
DATA L/5.25D0/

C
C DATA FOR CONSTANTS
C

DATA TO.TR.FOFISI ,SE/2.ODO,3.ODO.4.ODO.5.ODO,6.ODO,7.ODO/
DATA ET,lI.TE.EVTWFF/8.ODO,9.ODO,1O.ODO,ll.ODO,12.ODO,15.ODO/
DATA SX,TF.TT.FE,ST/16.ODO.24.ODO,33.ODO,48.ODQ,72.ODO/
DATA NSONE,ZERtO,START/Q8.ODO,1.ODO,O.ODO,l.OD-4/

C
C OPEN OUTPUT FILES
C

OPENCUNIITl12,FILE='dlxbar.dat' .STATUS='NEW')
OPENI(UU-IT=l3.FILE=Idelybar.dat' ,STATUS'INEW')

OPEN(UNIIT=14 .FILE 'delzbar.dat',.STATUS='NEW')
OPEN CUNITl5 ,FILE 'thexbxr.dat' ,STATUS'INEW')
OPENCUNITlO ,FILE= 'theybax.dat' ,STATUS 'NEW')
OPEUI(UNITl17,FILE='thezbar.dat' ,STATUS'NEW')

OPEN(UNITx34 .FILEZ 'forcoxbar.dat' ,STATUS'INEW')
OPEN(UNITl18,FILE'Iforceybar.dat' ,STATUS*'NEW')
OPEI (UNIT=37 ,FILE 'iorcezbar.dat' ,STATUS'INEW')
OPEI(UNIT33,FILE='distance.dat' ,STATUS'INEW')

C
C ASSIGN VALUES OF PI AND FACTOR (FOR MULTIPLYING CURVATURE)
C

PI DATAN(ONE)*FO
FACTOR - DSQRT(DSQRT(DSQRT(DSQRT(TE))))

C
C COMPUTE SECTION PROPERTIES OF GUN TUBE AND THERMAL SHROUD
C



129

C GUIN TUBE:
C

AC = PI*CRAD2**2-R.ADI**2)
IX= PI*(RAD2**4-RAD1**4)/FO

JP z TO*IXX
El = ELAST*IXX
GJ = G*JP
EA = ELAST*AC
GA = G*AC

C
C THERMAL SHROUD:
C

AS = PI*(RAD4**2-RAD3**2)
ISHROUD =PI*CR.AD4**4-RAD3**4)/FO
EISHROUD =ELAST*ISHROUD
EASHROUD =ELAST*AS

C
C INTITIALIZE TOR AND TVAL
C

TOR =ZERO
TVAL =ZERO

C
C LOOP TO COMPUTE DISPLACEMENTS FOR VARYING CURVATURES AND TORSIONS
C

DO 100 KOUNT3 = 1, 50
CUR =START
CVAL =ONE

IF (KOUNT3.EQ.2) THEN
TOR =START

TVAL =ONE
ElNDIF
DO 200 KOUIIT4 = 1.* 49

C
C COMPUTE HELIX GEOMETRY FROM CUR AND TOR AND INITIALIZE ARRAYS
C

RATIO - TOR/CUR
A = L/DSQRT(ONE.RATIO**2)
B z DSQRTCL**2-A**2)

51 = B/L
R a Cl**2/CUR
P z A/Rt
C = DCOS(P)
S DSINCP)
LS zDSQRT(C R*C-R) **2, (R*S) **2.3**2)
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C
C INITIALIZE TRANSFORMATION MATRICES TO ZEROES
C

DO 101 KOUNT1 = 1, 6
DO 101 KOUNT2 = 1, 6

CG(KOUNT1, KOUNT2) = ZERO

TG(KOUNT1, KOUNT2) = ZERO
CT(KOUNT1, KOUNT2) = ZERO
GC(KOUNT1. KOUNT2) = ZERO
GT(KOUNTI, KOUNT2) = ZERO

101 CONTINUE
C
C INITIALIZE FORCE VECTORS IN ALL 3 COORDINATE SYSTEMS TO ZEROES
C

DO 102 KOUTIT1 = 1, 6
FORCEBAR(KOU-TI, 1) = ZERO
FORCE(KOUNT1, 1) = ZERO
FORCETAN(KOUNlT1. 1) = ZERO

102 CONTINUE
C
C COMPUTE ALL 6 TRANSFORMATION MATRICES
C FIRST, ASSIGN ELEMENTS OF CG (CHORD TO GLOBAL TRANSFORMATION MATRIX)
C

DENOMI = DSQRT(TO*(ONE-C))
DENOM2 = DSQRT(TO*(ONE-C)+(P*B/A)**2)
DENOM3 = DENOMI*DENOM2
CG(1,1) = S/DENOMI
CG(1.2) = (C-ONE)/DENOM2
CG(1.3) = (ONE-C)*(P*B/A)/DENOM3
CG(2.1) = (ONE-C)/DENOMI
CG(2,2) = S/DENOM2
CG(2,3) = -(S*P*B/A)/DEJOM3
CG(3.1) = ZERO

CG(3.2) = (P*B/A)/DENOM2
CG(3,3) = TO*(ONE-C)/DENOM3
DO 103 KOUNTI = 1. 3
DO 103 KOUNT2 = 1. 3

CG(KOUNTI+3, KOUNT2+3) z CG(KOUNT1. KOUNT2)
103 CONTINUE

C
C ASSIGN ELEMENTS OF TG (TANGENT TO GLOBAL TRANSFORMATION MATRIX)
C

TG(1.1) = -C
TG(1,2) * SI*S
TG(1.3) * -CI*S
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TG (2, 1) = -S
TG(2,2) = -S1*C
TG(2,3) = C1*C
TGC3.1) - ZERO
TG(3.2) a Cl
TGC3,3) = Si
DO 104 KOUNTI = 1, 3
DO 104 KOUNT2 = 1. 3

TG(KOUNTl+3, KOUNT2+3) =TG(ICOUNT1. KOUNT2)
104 CONJTIUJE

C
C INVERT CG TO GET GC (GLOBAL TO CHORD TRANSFORMATION MATRIX)
C AIM TG TO GET GT (GLOBAL TO TANGENT TRANSFORMATION MATRIX)
C

DO 105 KOUNTI = 1, 6
DO 105 KOUNT2 = 1, 6

TEMPOCKOUNTI. KOUNT2) =CG(KOUNT1, KOUNT2)
105 CONTINUE

IDGT = 0
IA = 6
KOUNTI = 6
CALL LINIV1FCTEMP6.KOUNT1 ,IA.GC ,IDGT.,WKAREA, lEft)

DO 106 KOUNTI = 1. 6
DO 106 KOUNT2 x 1. 6

TEMP6(KOUNT1, KOUNT2) a TG(KOUNT1. KOUNT2)
106 CONTINUE

IDGT z 0
IA = 6
KOtINTI = 6
CALL LINV1F(TEMP6.KOUNT1,IA.GTIDGTWCAREA.IER)

C
C COMPUTE CT (CHORD TO TANGENT TRANSFORMATION MATRIX) =GT *CG

C
KOUNTI a 6
CALL MULMATXCGT. CG. CT, KOUNTI. KOUNTI. KOUNTi)

C
C ASSIGN ELEMENTS OF F MATRIX
C

F(X x1 L**3/(TW*El)*(SI*CI**4*(7Th*8*C-F*.T*P.S**2.P)
I *S1**4* (TR*PTG*P**3-TR*S*C) eSI*CI**2*Sl**2* (F0*5-
2 TR*S*C-P).S1**2*(-TR*P.T0*P**3TR*8*C))/P**3

3 -L**3/(TF*GJ) *C1**2*Sl**2/P**3*(-FF*P-TW*P*S**2
4 -TD*P**3+FE*S-TT*S*C)
5 *L/(TO*EA)*C1**2*(P-S*C)/P + L/(FO*GA)*(C1**2*(P.
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6 S*C)/P.TO*Sl**2)

F(1 .2) =L**3/CFO*EI)*(TO*Cl**4*(TR*S**2-TO*P*S*C.TO*C-TG).
1 Sl**4*(P**2-S**2)+TO*Cl**2*Sl**2* (-Th*S**2.TO*P*S
2 -TO*C.TO) +S1 **2* CS**2-P**2) )/P**3
3 -L**3/ (ET*GJ) *Cl**2*SI**2* (ET-ET*C-EV*S**2,FO*P*S*C
4 *FO*P*S-P**2)/P**3
5 -L/(TO*EA)*Cl**2*S**2/P +L/(FO*GA)*Cl**2*S**2/P

i(I.3) L**3/(FO*EI)*(C*S1*P*CS-P*C)+TO*C1**3*Si*C-TO+TO*C
1 -TO*S**2.TR*P*S).C1*Sl**3* (FO-FO*C-P*S-P**2*C) )/P**3
2 -L**3/ CET*GJ) *C1**3*Sl* (P**2*C+sE*P*S-FO*S**2.ET*C-
3 Efl/P**3-L/EA*C1*S1* (ONE-C)/P+L/(TO*GA)*C1*S1* (ONE-
4 C)/P

FC1,4) =L**2/CFO*EI)*(S1*(P-S*C).TO*Cl**2*S1*(PS*C.TO*S).
1 Sl**3*(S*C-P) )/P**2

2 -L**2/(ET*GJ)*Cl**2*S1*(S*C-FO*S.TR*P)/P**2

FC1.5) L**2/(FO*EI)*(Sl*CP**2-S**2).TO*CI**2*S1*S**2.SI**3
I *P*+*2)P*
2 -L**2/(ET*GJ) *C1**2*S1*CS**2-P**2)/P**2

FC1,6) =L**2/EI*(Cl**3*CONE-C-P*S).C1*S1**2*(C-ONE))/P**2
1 -L**2/(TO*GJ)*Cl*S1**2*(P*S.TO*C-TO)/P**2

F(2.2) =L**3/(TW*EI)*(SI*CI**4*CP-TR*S*C.TO*P*C**2)+SI*
1 C1**2*S1**2* CP+TR*S*C-FO*P*C)+S1**4*(-TR*P+TO*P**3.

2 TR*S*C) +S1**2* CTR*PTO*P**3-TR*S*C)) /P**3
3 -L**3/(TF*GJ)*Cl**2*Sl**2*(-NI*P-TO*P**3-TF*P*C+TW*
4 P*S**2.TT*S*C)/P**3
5 +L/(TO*EA)*C1**2*(P+S*C)/p + L/(FO*GA)*(Cl**2*(P-S
6 *C)/P.TO*S1**2)

F(2 .3) =L**3/(FO*El)*(Cl*S1*(P*C-S-P**2*S)+TO*Cl**3*Sl*(S,
1 TO*S*C-TR*P*C)+C1*S1**3*(-TR*S-P*C-P**2*S+FO*P) )/

2 P**3
3 -L**3/(ET*GJ)*C1**3*S1*(FI*S-FI*P*CFO*S*C*P**2*S
4 -FO*P)/P**3 + L/EA*ci*81*S/P - L/(TO*GA)*C1*S1*S/P

F(2.4) - L**2/(FO*EI)*(S1*(-S**2-P**2),TO*C1**2*S1*(-C**2,TO
I *C-ONE).S1**3*(S**2-P**2) )/P**2
2 -L**2/(ET*GJ)*Cl**2*S1*(-FO.FO*C+*2.P**2)/P**2

F(2,6) -L**2/(FO*EI)*(-SI.TO*C1**2*S1.S1**3)*(PF-S*C)/P**2
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1 -L**2/(ET*GJ)*C1**2*Sl*(P-S*C)/P**2

F(2,6) = L**2/EI*C**3*CP*C.-S)+C1*S1**2*CS-P))/P**2
1 -L**2/(TO*GJ)*C1*SI**2*(-P*C-P+TO*S)/P**2

F(3 .3) = L**3/(TO*EI)*(Ci**2*(P-S*C)+C1**2*S1**2*(TR*P.S*C-
1 FO*S))/P**3
2 -L**3/(FO*GJ)*C1**4*(FO*S-TR*P-S*C)/P**3
3 +L/EA*S1**2 + L/CTO*GA)*Cl**2

F(3.4) = L**2/CTO*EI)*(C1*P*S.C1*S1**2*(TO*C-TOP*S))/P**2
1 -L**2/(FO*GJ) *Cl**3* (-TO*C4TO-P*S)/P**2

F(3,5) = L**2/CTO*EI)*(C+C1*Sl**2)*(S-P*C)/P**2

1 -L**2/(FO*GJ)*Cl**3*(P*C-S)/P**2

F(3.6) = L**2*CONE/EI-ONTE/CTO*GJ))*C1**2*S1*(S-P)/P**2

F(4,4) = L/(TO*EI*P)*CS*C*Cl**2+P*(ONE.Sl**2))

1 -L*C1**2/(FO*GJ*P)*CS*C-P)

F(4.5) = CL/(TO*EI)-L/CFO*GJ))*C**2*S**2/P)

F(4.6) = (L/EI-L/(TO*GJ))*(CC*Sl*CONE-C)/P)

FC5,5) =L/(TO*EI*P)*(-C1**2*S*C+P*CONE+S1**2))
1 -L/(FO*GJ*P)*(C**2*(-S*C-P))

F(5 .6) =(L/(TO*GJ) -L/EI)*(C*S1*S/P)

F(6,6) =L*Cl**2/EI+L*Sl**2/(TO*GJ)

DO 108 KOUNTI = 2, 6
DO 108 KOUNT2 z 1, KOUNTI-1

F(KOUNT1. KOUNT2) = F(KOUNT2, KOUNTi)
108 CONTINUE

C
C PRE & POSTMULTIPLY ORIGINAL F WITH GC & CG RESPECTIVELY TO
C OBTAIN THE TRANSFORMED FLEXIBILITY MATRIX. FEAR. IN THE CHORD SYSTEM
C

KOUNTIa 6
CALL MULXATX(GC.F.TEMP6,KOUNTI ,KOUNTI ,KOUNT1)
KOUNTIa 6
CALL MULMATX(TEMPOCGFBARKOUNT1 ,KOUNT1 SKOUNTI)

C
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C APPLY COMPATIBILITY OF DISPLACEMENTS TO FIND FORCES EXERTED ON
C GUN TUBE DUE TO EXPANSION OF SHROUD
C
C COMPATIBILITY IS EXPRESSED AS A SET OF 3 SIMULTANEOUS EQUATIONS
C IN THE 3 FORCE COMPOHEN TS, FXBAR, FYBAR, FZBAR
C

COMPAT(1.1) =FBAR(1,1)+LS**3/(TR*EISHROUD)
COMPATCI.2) = FBAR(1,2)
COMPAT(I,3) - FBAR(1,3)
COMPATC2.1) a FBARC2,1)
COMPAT(2,2) aFBAR(2,2)+LS/(EASHROUD)
COMPATC2.3) a FBAR(2,3)
COMPATC3.1) - FBARC3,1)
COMPATC3,2) =FBARC3.2)
COMPAT(3.3) =FBARC3.3).LS**3/CTR*EISHROUD)

RHS(1.1) a ZERO
RHSC2,1) = LS*ALPHA*TMPR
RHS(3.1) aZERO

IDGT = 0
IA = 3
KOUNT1 a 3
CALL LINVlF(COMPATKOUWT1,IA. INVCOMPAT, IDGTWKAREA, IER)

KOUIIT1 = 3
KOUNT2 = I

CALL MULMATX(CINVCOMPAT ,RHS ,FORCE3 .KOUNT1 ,KOUNT1 ,KOUNT2)

DO 110 KOUNTi a 1, 3
FORCEBAR(KOUNT1,1) =FORCE3(OUNT1,1

110 CONTINUE
C
C OBTAIN DISPLACEMENTS VECTOR AS DELTABAR, z FBAR * FORCEBAR
C

KOUNTI a8
KOUNTT2 z 1
CALL MULMATX (FBAR.,FORCEBAR ,DELTABAR ,KOUNT1 ,KOUNT1 ,KOUNT2)

C
C CONVERT DISPLACEMENTS AND FORCES INTO DIFFERENT SYSTEM4S
C

KOUNT1 = 6
KOUNT2 a I
CALL MULXATX (CG, FORCEBAR ,FORCE ,KOUNT1 .KOUNT1 .KOMMT)
CALL MULM4ATX (CT. FORCEBAR ,FORCETAN ,KQUNT1 ,KOUNTI ,KOUNT2)
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CALL MULMATX(CG ,DELTABARDELTA .KOUNT1,,KOUNT1 ,KOUNT2)
* ~CALL MULMATX (CT ,DELTABAR SDELTATAN .KOUNT1 .KOUNT1 .KOUNT2)

C
C CONVERT ANGULAR DISPLACEMENTS INTO DEGREES
C

DO 109 KOUNT1 = 4, 6
DELTABAR(KOUNT1 .1) =a DELTABAR(KOUNT1 .1) *1. D2/PI
DELTACKOINTI .1) = DELTA(KOtrnT1 , )*1 .8D2/PI
DELTATAN(KOUNT1 .1) = DELTATAN(KOUNT1 1) *1. 8D2/PI

109 CONTINUE
DISTANCE = DSQRT(DELTABAR(1,1)**2 + DELTABAR(2.1)**2 +
1 DELTABARC3,1)**2)
DIST1 = DSQRTCDELTA(1,1)**2 + DELTAC2,1)**2+

1 DELTA(3,1)**2)
DIST2 = DSQRTCDELTATANC1.1)**2 + DELTATANC2.1)**2+

1 DELTATAN(3.1)**2)
C
C WRITE THE RESULTS IN THE OUTPUT FILES OPENED.
C

WRITE12.*) CVAL. TVAL, DELTABAR(1.1)
WRITEC13.*) CVAL, TVkL. DELTABAR(2,1)
WRITEC14,*) CVAL, TVAL, DELTABAR(3.1)
WRITEC1S,*) CVAL. TVAL, DELTABAR(4.1)
WRITE(i8,*) CVAL, TVAL, DELTABARC5,1)

*WRITE(17.*) CVAL, TVAL. DELTABAR(8,1)
WRITEC34.*) CVAL. TVAL, FORCEBARC1,1)
',RlITECI8,*) CVAL. TVAL. FORCEBAR(2.1)
WRITEC37,*) CVAL, TVAL, FORCEBAR(3.1)
WRITE(33.*) CVAL, TVAL, DISTANCE

C
C START OVER WITH NEW CUR AND TOR VALUES
C

CUR CIJR*FACTOR
CVAL =CVAL + 6.26D-2

200 CONTINUE
TOR UTOR*FACTOR

VAL VAL + 6.26D-2
100 CONTINUE

STOP
END

C
C MUL?4ATX SUBROUTINE BEGINS
C

SUBROUTINE MULMATX(4AT1 ,MAT2,MAT3,LI ,L2,L3)
INTEGER Ll, L2. L3, KNTI, KNT2. KNT3
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REAL*8 MATI(LI,L2), MAT2(L2,L3), MAT3(L1,L3)
DO 111 KNT1 = 1. Li
DO 111 KNT2 = 1, L3

IAT3(KNT1,KNT2) = O.ODO
DO 112 KNT3 = 1. L2

MAT3(KNT1 ,KNT2) = MAT3(KNT1,KNT2)+4AT1(KNT1.KNT3)*

1 MAT2(KNT3,KNT2)
112 CONTINUE
111 CONTINUE

RETURN
END

C
C END OF PROGRAM
C
C.... ...................................................



APPENDIX D

COMPUTER IMPLEMENTATION OF THE FINITE ELEMENT METHOD

C....................................................................

C
C DECLARATIONS
C
C_

C
C

INTEGER I. IA. IDT, IER. J. NELEM. NI, NJ. NK

REAL*8 K. KP, LA, LAP, A. IXX, IYY, IXY, E. G
REAL*8 AA. BB. RATIO, P. PP, R, S, C. SI, Cl. L, LTUBE
REAL*8 DENIOMi, DENOM2. DENOM3. PI. RINNER, ROUTER

C
REAL*8 XO. XI. X2. X3, X4, XS. X6, X7, Xg, XlO. X11
REAL*8 X12, X13, X15, X20, X30. X35. X60. X70, X105
REAL*8 X140. X180. X210. X420

C
C ARRAYS USED:
C
C CG CHORD TO GLOBAL TRANSFORMATION MATRIX
C GC GLOBAL TO CHORD TRANSFORMATION MATRIX
C TG TANGENT TO GLOBAL TRANSFORMATION MATRIX
C TC TANGENT TO CHORD TRANSFORMATION MATRIX
C TCINV INVERSE OF TC
C TRANS GLOBAL TC MATRIX
C TRANSINV INVERSE OF GLOBAL TC MATRIX
C ELSTIF ELEMENT STIFFNESS MATRIX
C GLSTIF GLOBAL STIFFNESS MATRIX
C CHDSTF GLOBAL STIFFNESS MATRIX IN CHORD SYSTEM
C REDFLEX REDUCED FLEXIBILITY MATRIX
C FKNOWN GLOBAL FORCE VECTOR IN CHORD SYSTEM
C DELCHD GLOBAL DISPLACEMENT VECTOR IN CHORD SYSTEM
C

REAL*8 CG(3.3). GC(3,3). TG(3,3). TC(3,3). TCINV(3.3)
REAL*8 TRANS(24.24). TRANSINV(24.24). ELSTIF(12.12)

1r 137
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REAL*8 GLSTIF(24.24). CIDSTF(24,24). REDFLEX(18,18)
REAL*8 WKAREA(100), TEMP61(6.1), TEMP18(18.18), TEMP24(24.24)
RE.AL*8 FKNOWN(18,1), DELCHD(18,1), CHECK(18.18)
REAL*8 KBETAALPHA (6,18)

C
C DOUBLE PRECISION CONSTANTS USED IN STIFFNESS MATRIX DEFINITION
C

DATA XO,X1,X2,X3.X4/O.ODO,1.ODO,2.ODO,3.ODO,4.ODO/
DATA XSX6,X7,X9,X9O/5.ODO.6.ODO,7.ODO,9.ODO,1.OD1/
DATA Xll,X12,X13,XIS.X20/l.1D1,1.2DI,1.3D1, .SD1,2.OD1/
DATA X30.X35,X60,X70.XlO/3.ODI.3.5D1.6.OD1.7.ODI,1.05D2/
DATA X140.X1SO.X210,X420/1.4D2,1.8D2.2:ID2,4.2D2/

C
OPFN(UNIT=11 .FILE= 'femdata', STATUS='OLD')
OPEI(UNIT=12.FILE='femoutput', STATUS='NEW')

C
C ASSIGN VALUE OF PI USING THE FACT THAT TAN(PI/4) = 1
C

PI = DATAII(X1)*X4
C
C
C
C (I) READ MATERIAL AND GEOMETRIC PROPERTIES OF EACH ELEMENT
C (II) COMPUTE ELEMENT STIFFNESS MATRIX
C (III) ADD THE CONTRIBUTION OF THE ELEMENT TO THE GLOBAL
C STIFFNESS MATRIX
C
C THIS ASSUMES CONNECTIVITY INFORMATION, I .E., THE ELEMENTS ARE
C CONNECTED TO EACH OTHER END TO END IN THE ORDER GIVEN
C
C_

C
C
C READ GEOMETRICAL AND MATERIAL PROPERTIES
C

READ(11,.*) NELEM, K, KP, LA, LAP, E, G. LTUBE
C
C COMPUTE GEOMETRICAL PARAMETERS OF THE HELIX
C

RATIO - LA/K
AA = LTUBE/DSQRT(Xi + RATIO**2)
BB m DSQRT(LTUBE**2 - AA**2)
Cl - AA/LTUBE
$1 = BB/LTUBE
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R = Cl**2/K
P = AA/R
C = DCOS (P)
S = DSIN(P)

C
C ASSIGN VALUES TO CG (CHORD TO GLOBAL TRANSFORMATION MATRIX)
C

DEINOMI = DSQRT(X2*(XI-C))
DENOM2 = DSQRT(X2*(XI-C) +CP*BB/AA)**2)
DENOM3 = DENOMI*DENOM2
CG(l.1) = S/DENOM1
CGC1.2) = CC-Xl)IDE11OM2
CG(1,3) = (XI-C)*(P*BB/AA)/DENOM3
CG(2.1) = CX1-C)/DENOM1
CG(2,2) = S/DEIOM2
CG(2,3) = -(S*P*BB/AA)/DENOM3
CG(3.1) = XO
CG(3,2) =(P*BB/AA)/DE11OM2
CG(3,3) = X2*CXI-C)/DEITOM3

C
C INVERT CG TO OBTAIN GC (GLOBAL TO CHORD TRANSFORMATION MATRIX)
C

IDGI = 0
IA =3
111 3
CALL LIIUVlF(CG. NI, IA, GC, IDGT, WKAREA. IER)

C
C INITIALIZE ELEMVENT ANM GLOBAL STIFFNESS MATRICES, TRANSFORMATION
C MATRICES,* GLOBAL FORCE VECTOR, CONNECTIVES I AND J. AND ANGLE PP
C SUBTEINDED BY ARC AT GLOBAL ORIGIN
C

DO 100 11I = 1, 12
DO 100 113 = 1, 12

ELSTIFOIIINJ) = XO
100 CONTINUE

DO 101 11I = 1, 6*CNELEM+1)
DO 101 NJ = 1, 6*CNELEM.1)

GLSTIFCNI,NJ) =XO

TRANSCNI,NJ) =XO

TRANSINVCNINJ) = XO
101 CONTINUE

DO 102 NI z 1, 8*NELEM
FKNOWNCNI,1) = X0

102 CONT:NUE

I
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j r-0
PP 2 X0

C
C READ APPLIED FORCES AND MOMENTS
C

REWD(11,*) CFKNOWN(6*CNELEM-1)+NI,1). NI =1, 8)
C
C FOR EACH ELEMENT. DO THE FOLLOWING:
C

DO 200 NK = 1, NELEM

READ(11,*) RINNER, ROUTER, L

A = PI*(ROUTER**2-RINNIER**2)
IXX = PI*(ROUTER**4-RINNER**4)/X4
IYY = IXX
IXY = XO

ELSTIF(1 .1) = X13*L*(E*CIXX*LAP**2+A*K**2),G*IXX*K**2*LA**2)/X35
1 +X12*( (E*IXX*LA**2.G*IYY*K**2)IX2-E*IXY*LAP)/CXS*L)-E*IXX*LA
2 *LAP-G*IXY*K**2*LA+X12*E*IYY/L**3

ELSTIFC1 .2) = (-X13)*IXY*L*(E*LAP**2+G*K**2*LA**2)/X36-(-X2*E*
1 IXY*LA*LAP-G*IYY*K**2*LA.G*IXX*K**2*UA)/X2,(-X6) *(-E*Iyy*1JAP.
2 E*IXX*LAP-IXY*(G*K**2-E*LA**2) )/CX5*L)+X12*E*IXY/L**3

ELSTIF(1 .3) = X7*IXY*L*(E*KP*LAP+G*K**3*LA)/X20- (E*IXY*K*LAPeE*
1 IXY*KP*LA.G*IYY*K**3-A*E*K) /X2.(E*IXY*K*LA-E*IYY*KP)/L

ELSTIFC1 .4) = Xl1*IXY*L**2*CE*LAP**2.G*K**2*LA**2)/X210- CE*IYY*
1 LAP-X11*E*IXX*LAP+IXY* (G*K**2-E*LA**2) )/IO-L*(G*IYY*K**2*LA
2 +G*IXX*K**2*LA)/XIO- (E*IYY*LA+E*IXX*LA)/L-X6*E*IXY/L**2

ELSTIFC1 .5) = X11*L**2*(E*(IXX*LAP**2+A*K**2).G*IXX*K**2*LA**2)
1 /X210+( (E*IXX*LA**2+G*IYY*K**2)/X2-X8*E*IXY*LAP)/X5.X8*E*IYY
2 /L**2

ELSTIFC1 .6) a X7*L*(G*IXY*K*LA**2-E*IXX*IC*LAP)/X20-(G*IYY*K*LA,
1 G*IXX*K*LA-E*IXX*K*LA)/X2.(G*IXY*K+E*IXY*K)/L

ELSTIF(1 .7) a X9*L*(E*(IXX*LAP**2.A*K**2).G*IXX*K**2*LA**2)/X70.
I X12*(E*IXY*LAP- (E*IXX*LA**24G*IYY*K**2)/x2)/(X5*L) -X12*E*Iyy/
2 L**3

ELSTIF(1 .8) a (-Xg)*IXY*L*(E*LkP**2+G*K**2*LA**2)/X70+Xe*(-E*IYY
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1 *LAP+E*IXX*LAP-IXY*(G*K**2-E*IA**2) )/CXS*L)+(G*IYY*K**2*LAG*

2 IXX*K**2*LA)/X2-X12*E*IXY/L**3

ELSTIFC1 .9) = X3*IXY*L*(E*KP*LAP+G*K**3*LA)/X20,(E*IXY*K*LAP-E*
1 IXY*KP*LA-G*IYY*K**3-A*E*K)/X2+(E*IYY*KP-E*IXY*K*LA)/L

ELSTIF(1 .10) = C-Xl3)*IXY*L**2*(E*LAP**2+G*K**2*LA**2)/X420- (E*
1 IYY*LAP-E*IXX*LAP+IXY* CG*K**2-E*LA**2) )/XIO-L* (-G*IY*K**2*L.
2 -G*IXX*K**2*LA)/Xl0- (-E*IYY*LA-E*IXX*LA)/L-X6*E*IXY/L**2

ELSTIF(1.11) = (-X13)*L**2*(E*CIXX*LAP**2.A*K**2),G*IXX*K**2*
1 LA**2)/X420.( (E*IXX*LA**2.G*IYY*K**2)/X2-E*IXY*LAP)/XSX6*E
2 *IYY/L**2

ELSTIFC1 .12) = X3*L*(G*IXY*K*LA**2-E*IXX*K*LAP)/X20.(-G*IYY*K*LA
1 .G*IXX*.K*LA.E*IXX*K*LA)/X2+ C-G*IXY*K-E*IXY*K)/L

ELSTIF(2 .2) = X13*IYY*L*CE*LAP**2.G*K**2*LA**2)/X36+X12* CE*IXY*
1 LAP+CE*IYY*LA**2+G*IXX*K**2)/X2)/(XB*L) -E*IYY*LA*LAP+G*IXY*
2 K**2*LA+X12*E*IXX/L*.3

ELSTIF(2 .3) = (-X7)*IYY*L*(E*KP*LAP.G*K*.*3*LA)/X20- (-E*IYY*K*LAP
1 -E*IYY*KP*LA+G*IXY*~K.*3)/X2+(-E*IYY*K*LA-E*IXY*KP)/L

ELSTIF(2 .4) = (-X1I)*IYY*L**2* CE*LAP**2.G*K**2*LA**2)/X210- (X6*E*
1 IXY*LAP+CE*IYY*LA**2+G*IXX*K**2) /X2)/X5-XO*E*IXX/L**2

ELSTIFC2,5) = C-Xll)*IXY*L**2*CE*LAP**2.G*K**2*LA**2)/X210.(X11*E
1 *IYY*LAP-E*IXX*LAP4IXY*CG*K**2-E*LA**2) )/X1O.L*(-G*IYY*K**2*LA
2 -G*IXX*K**2*LA) /X10+ -E*IYY*LA-E*IXX*LA)/L.16*E*IXY/L**2

ELSTIF(2 .6) m X7*L*CE*IXY*K*LAP-G*IYY*K*LA**2)/X20- CIXY*(G*K*LA+
1 E*K*LA) -G*IXY*K*LA)/X2,CG*IXX*K+E*IXX*K)/L

ELSTIF(2,7) - (-XQ)*IXY*L*(E*LAP**2+G*IC**2*LA**2)/X70.X6*(-E*IYY
1 *LAP.E*IXX*WA-IXY*(G*K**2-E*U**2) )/(X5*L)+(-G*IYY*1C**2*LA-G
2 *IXX*K**2*JA)/X2..X12*E*IXY/L**3

ELSTIF (2.8) aX9*IYY*L* CE*LAP**2.G*K**2*LA**2) /X70.X12* (-E*I](y.
1 LAP- (E*IYY*LA**2.G*IXX*K**2)/X2)/(X5*L) -X12*E*IXX/L**3

ELSTIF(2 .9) - (-X3)*IY*L*(E*KP*LAP.G*K**3*LA)/X20.(-E*ITT*K*LAP
1 *E*IYY*KP*LA-G*IXY*K**3) /X2+(E*IYT*K*LA.E*IXY*KP) IL

ELSTIF(2,10) x X13*IYY*L**2*(E*LAP**2,G*K**2*LA**2)/X420- CE*IXY*
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1 LAP.(E*IYY*LA**2+G*IXX*K**2)/X2)/X5-XG*E*IXX/L**2

ELSTIF(2,11) = X13*IXY*L**2*CE*LAP**2.G*K**2*LA**2)/X420.(E*IYY*
I LAP-E*IXX*LAP+IXY*CG*K**2-E*LA**2) )/XIO.L*(G*IYY*K**2*LA+G*IXX
2 *K**2*LA)/XIO+(E*IYY*LA+E*IXX*LA)/L+X8*E*IXY/L**2

ELSTIFC2 *12) = X3*L*(E*IXY*K*LAP-G*IYY*K*LA**2)/x20.(-IXY*(G*K*
1 LA.E*K*LA) -G*IXY*J*U)/x2.(-G*IUX*K-E*IXX*K)/L

ELSTIFC3 .3) = IYY*(E*KP**2.G*K**4)*L/X3.E*(IYY*K**2.A)/L-E*IYY*K
1 *KP

ELSTIF (3.4) = IYY*L**2* (E*KP*LAP+G*K**3*LA) /X20-L* (E*IYY*K*LAP-E*
1 IYY*KP*LA+G*IXY*K**3)/X12-E*IXY*K/L+E*IXY*CP

ELSTIFC3 .5) = IXY*L**2*CE*KP*LAP+G*K**3*LA)/X20+L*(-E*IXY*K*LAP+E
1 *IXY*KP*LA+G*IYY*K**3+A*E*K)/Xl2.E*IYY*K/L-E*IYY*cP

ELSTIF(3 .6) = L*CG*IYY*K**2*LA-E*IXY*K*KP)/X3- CG*IXY*K**2-E*IXY*
1 K**2)/X2

ELSTIFC3 .7) = X3*IXY*L*CE*KP*LAP+G*K**3*LA)/X20.(-E*IXY*K*LAP.E*
1 IXY*KP*LA.G*IYY*K**3+A*E*K) /X2.(E*IYY*KP-E*IXY*K*LA)/L

ELSTIFC3,8) = (-X3)*IYY*L*(E*KP*LAP.C*K**3*LA)/X20.CE*IYY*K*LAP-
1 E*IYY*KP*LA.G*IXY*K**3)/X2+(E*IYY*K*LA+E*IXY*KP)/L

ELSTIFC3 .9) =IYY*(E*KP**2.G*K**4)*L/X6-E*(IYY*K**2.A)/L

ELSTIF(3,1O) =-IYY*L**2*CE*KP*LAP+G*K**3*LA)/X30-L*C-E*IYY*K*LAP
I +E*IYY*KP*LA-G*IXY*K**3)/X12+E*IXY*K/L

ELSTIFC3 .11) = -IXY*L**2* (E*KP*LAP+G*K**3*LA)/X30,L*(E*IXY*K*LAP-
1 E*IXY*KP*LA-G*IYY*K**3-A*E*K)/X12-E*IYY*K/L

ELSTIF(3,12) =L*(G*IYY*K**2*LA-E*IXY*K*KP)/X6+(G*IXY*K**2+E*IXT*
1 K**2)/X2

ELSTIF(4 .4) IYY*L .*3* (E*LAP**2+G*K**2*LA**2)/XI05,14*L*(E*Ifl*
1 LAP' (E*IYY*LA**2,G*IXX*K**2)/X2) /X15.E*IXY*LA.X4*E*Zfl/L

ELSTIF (4.* ) - IXY*L**3* (E*LAP**2.G*K**2*LA**2) /X106.(-12) *L* (E*
I IYY*LAP-E* IXX*LAP. IXY* (G*K**2-E*LA**2) ) /115,(E*III*LA-E. ITT*
2 LA) /X2-X4*E*IXY/L
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ELSTIF(4 .8) =-L**2*(E*IXY*K*LAP-G*IYY*K*LA**2)/X20-L*(IXY* CG*K*
1 LA+E*K*LA)+G*IXY*K*A) /X12-E*IXX*K

ELSTIF(4 .7) = X13*IXY*L**2*(E*LAP**2+G*K**2*LA**2)/X420- (-E*IYY*
1 LAP+E*IXX*LAP- IXY* CG*K**2-E*LA**2) )/X1O-L*(C-G*IYY*K**2*LA-G*
2 IXX*K**2*LA)/XlO- (-E*ITY*LA-E*IXX*LA)/L.XG*E*IXY/L**2

ELSTIF(4 .8) = (-X13)*IYY*L**2*(E*LAP**2+G*K**2*LA**2)/X420-(-E*
1 IXY*LAP- (E*IYY*LA**2,G*IXX*K**2)/X2)/X5.16*E*IXX/L**2

ELSTIFC4 .9) = IYY*L**2*(E*KP*LAP+G*K**3*LA)/X30-L*(-E*IYY*K*LAP+E
I *IYY*KP*LA-G*IXY*K**13)/X12+E*IXY*K/L

ELSTIF(4.1O) = -IYY*L**3*CE*LAP**2.G*K**2*LA**2)/X140,L*(-E*IXY*
1 LAP- CE*IYY*LA**2.G*IXX*K**2)/X2)/Xl5,X2*E*IXX/L

ELSTIF(4.11) = -IXY*L**3*CE*LAP**2.G*K**2*LA**2)/X140-L*(-E*IYY*
1 LAP+E*IXX*LAP-IXY*CG*K**2-E*LA**2) )/X30-L**2*(G*IYY*K**2*LA+G*
2 IXX*K**2"*LA)/X6O- (E*IYY*LA.E*IXX*LA)/X2-X2*E*IXY/L

ELSTIF(4,12) = -L**2*(E*IXY*K*LAP-G*IYY*K*LA**2)/X30-L*(-IXY*CG*K
1 *LA+E*K*LA) -G*iXY*K*'LA)fXl2

ELSTIF(5 .5) = L**3*(E* CIXX*LAP**2+A*K**2)+G*IXX*K**2*LA**2)/XI05.
1 X4*L* ((E*IXX*LA**2.G*IYY*Kc**2)/X2-E*IXY*LAP)/Xl5.E*IXY*LA+X4*
2 E*IYY/L

ELSTIFCS .8) = L**2*(G*IXY*K*LA**2-E*IXX*K*LAP)/X20,L*CG*IYY*K*LA-
1 G* IXX*K*LA-E* IXX*K*A) /X12.E* IXY*K

ELSTIF(5 .7) =X13*L**2*(E*(IXX*LAP**2.A*K**2)+G*IXX*K**2*LA**2)/
1 X420.(E*IXY*LAP- (E*IXX*LA**2+G*IYY*K**2)/X2)/X5-X8*E*IYY/L**2

ELSTIFCS .8) = (-Xl3)*IXY*L**2*(E*LAP**2+G*K**2*LA**2)/X420.(-E*
I IYY*LAP.E*IXX*LAP-IXY* CG*K**2-E*LA**2) )/XIO+L*(G*IYY*JC**2*LA
2 ,G* :,;X*K**2*LA)/XIO4(E*IYY*LA+E*IXX*L)/L-X8*E*IXY/L**2

ELSTIF (6.9) - IXY*L**2* (E*KP*LAP+G*K**3*A) /X304L* (E*IXY*K*LAP-E*
1 IXY*KP*LA-G*IYY*K**3-A*E*K)/X12-E*IYK/L

ELSTr]F(5,10) z -IXY*L**3*(E*LAP**2.G*K**2*LA**2)/Xl40-L*(-E*IYY*
1 LAPE*IXX*LAP-IXY* (G*K**2-E*LA**2) )/X30-L**2*(-G*IYY'K**2*LA-
2 G*IXX*K**2*LA)/XGO- (-E*IYY*LA-E*IXX*L)/12-X2*E*IXY/L

ELSTIF(5 .11) = -L**3*(E*(IXX*LAP**2+A*K**2),G*IXX*K**2*LA**2)/X140
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1 *L*(E*IXY*LAP- (E*IXX*LA**2.G*IYY*K**2)/X2)/XI5.12*E*IYY/L

ELSTIF(5.12) a L**2*(G*IXY*K*LA**2-E*IXX*K*LAP)/X30+L*(-G*IYY*K*

I LA+G*IXX*K*LA+E*IXX*C*L) /Xl2

ELSTIF(6.6) = L*CIX*(G*LA**2+E*K**2)+G*IYY*LA**2)/X3.G*(IYY+IXX)
1 /L

ELSTIF(6.7) = X3*L* (G*IXY*K*LA*I*2-E*IXX*K*LAP)/X20+(G*IYY*K*LA-G
1 *IXX*K*LA-E*IXX*K*A) /X2,(-G*IXY*K-E*IXY*K)/L

ELSTIF (6.8) = X3*L* (E*IXY*K*LAP-G*IYY*X*LA**2)/X20.(IXY*(G*K*LA.
1 E*K*LA) .G*IXY.KK*LA) /X2+ (-G*IXX*K-E*IXX*K) IL

ELSTIFC6 .9) =L* CG*IYY*K**2*LA-E*IXY*K*KP)/X6+C-G*IXY*K**2-E*IXY*
1 K**2)/X2

ELSTIF(8. 10) =L**2*(E-.IXY*K*LAP-G*IYY*K*LA**2)IX30-L*(-IXY*(G*K*
1 LA.E*K*LA) -G*IXY*K*LA)/X12

ELSTIFC8, 11) = L*C-G*IYY*K*LA.G*IXX*K*LA+E*IXX*K*LA)/X12-L**2*(G*
I IXY*K*LA**2-E*IXX*K*LAP)/X30

ELSTIF(6, 12) =L*(IXX*(G*LA**2.E*K**2).G*IYY*LA**2)/X6-G*CIyYYIXX
1 )/L

ELSTIF(7 .7) =X13*L*CE*CIIX*LAP**2.A*eK**2),G*IXX*K**2*LA**2)/X35
1 +X12*( (E*IXX*LA**2+G*IYY*K**2)/X2-E*IXY*LAP)/(XS*L),E*IXX*LA
2 *LAP.G*IXY*K**2*LA.Xl2*E*IYY/L**3

ELSTIFC7 .8) v (-X13)*IXY*L*(E*LAP**2+G*K**2*LA**2)/X35.(-X2*E*IXY
1 *LA*LAP -G*IYY*K**2*LA.G*IXX*K**2*A) /X2+X6* (E*IYY*LAP-E*IXX*
2 LAP.IXY*(G*K**2-E*LA**2) )/(XS*L)+X12*E*IXY/L**3

ELSTIF(7 .9) = X7*IXY*L*(E*KP*LAP.G*K**3*LA)/X20.(E*IXY*K*LAP.E*
1 IXY*KP*LA.G*IYY*K**3-A*E*K)/X2.(E*IXY*K*LA-E*IYY*cP)/L

ELSTIF(7, 10) - C-X11)*IXY*L**2*(E*LAP**2+G*K**2*LA**2)/X210-(-E*
1 IYY*LAP.X11*E*III*LAP-IXY*(G*K**2-E*LA**2) )/I1-L*(G*ITY*K**2
2 *U.+G* IXX*K**2*A) /X10- (E*IYT*LA.E* IU*A) /L4.16*E* IXY/L**2

ELSTIF(7 .11) - (-X11)*L**2*(E*(rxx*LAp**2.A*IC**2).G*IXX*K**2*
1 LA**2)/X210.(X6*E*IXY*LAP- (E*IXX*LA**2.G*IYY*K**2)/X2)/X5-X6*E
2 *IYY/L**2
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ELSTIF(7 .12) = X7*L*(G*IXY*K*LA**2-E*IXX*K*LAP)/x20.(G*I~Y*K*LA,
1 G*IXX*K*LA-E*IXX*K*LA)/X2+(G*IXY*K+E*IXY*K)/L

ELSTIFC8,8) = X13*IYY*L*(E*LAP**2+G*K**2*LA**2)/X35+X12*(E*IXY*
1 LAP+ (E*IYY*L.**2+G*IXX*K**2)/X2)/(XS*L).E*IYY*LA*LAP-G*IXY*
2 K**2*LA.X12*E*IXX/L**3

ELSTIF(8.9) = C-X7)*IYY*L*(E*KP*LAP.G*K**3*LA)/X2.(-E*IYY*C*LAP
1 -E*IYY*IP*LAG*IXY*K**3)/X2+(-E*IYY*K*LA-E*IXY*KP)/L

ELSTIF(8.10) =X11*IYY*L**2*CE*LAP**2*G*K**2*LA**2)/X21Q0 (-X8*E*
1 IXY*LAP- (E*IYY*LA**2.G*IXX*K**2)/X2) /X5.Xe*E*IXX/L**2

ELSTIF(8.11) =X11*IXY*L**2*(E*LAP**2.G*K**2*LA**2)/X210,C-Xll*E*
1 IYY*LAP.E*IXX*LAP-IXY* CG*K**2-E*LA**2) )/XlO+L* C-G*IYY*K**2*LA-
2 G*IXX*K**2*LA) /X10. (-E*IYY*LA-E*IXX*LA)/L-Xe*E*IXY/L**2

ELSTIFC8 .12) = X7*L*(E*IXY*K*LAP-G*IYY*K*LA**2)/X20.(Ixy*(G*K*LA
1 .E*K*LA) -G*IXY*K*LA)/X2.CG*IXX*K.E*IXX*K)/L

ELSTIF(9,9) =IYY*CE*KP**2.G*K**4)*L/X3.E*(IYY*K**2+A)/LE*IYY*K*
1 KP

ELSTIF(9. 10) =-IYY*L**2*(E*KP*LAP+G*K**3*U)/X20-L*CE*IYY*K*LAP-
1 E*IYY*KP*LA+G*IXY*K**3)/X12-E*IXY*K/L-E*IXY*KP

ELSTIF(9, 11) = -IXY*L**2* CE*KP*LAP+G*K**3*LA)/X20*L*(-E*IXY*K*LAP
1 .E*IXY*KP*~LAG*IYY*K**3.A*E*K)/X12,E*IYY*K/LE*IYY*KP

ELSTIFC9. 12) =L* CG*IYY*K**2*LA-E*IXY*K*KP)/X3,CG*IXY*K**2-E*IXY*
1 K**2)/X2

EL.STIF(1O.10) =IYY*L**3* (E*LAP**2,G*K**2*IU**2)/X1O5.X4*L* (E*
1 IXY*LAP, CE*IYY*LA**2+G*IXX*K**2)/X2)/X15-E*IXY*LA.X4*E*IXX/L

ELSTIFC10, 11) = IXY*L**3*(E*LAP**2+G*K**2*LA**2)/XI05+(-X2)*L*(E
1 *IYY*LAP-E*IXX*Wk+IXY*(G*K**2-E*U**2) )/X15- (E*IXX*LA-E*IYY*
2 LUj/X2-X4*E*IXY/L

ELSTIF(1O, 12) a L**2*(E*IXY*K*LAP-G*IYY*K*LA**2)/X20-L*(IXT*(G*K*
1 LA.E*K*LA)+G*IXY*K*LA) /X12.E*IXX*K

ELSTIF(11 .11) a L**3*(E*(IUX*LAP**2,A*K**2),G*IXX*K**2*LA**2)/
I X105+X4*L*( (E*IXX*U**2G*IYY*K**2)fX2-E*IXYLA)/XI+E*IXY*
2 LA.X4*E*IYY/L
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ELSTIF(11 ,12) = "L**2*(G*IXY*K*LA**2-E*IXX*K*LAP)/X20+L*(G*IYY*K*

1 LA-G*IXX*K*LA-E*IXX*K*LA)/XI2-E*IXY*K

ELSTIF(12.12) = L*(IXX*(G*LA**2+E*K**2)+G*IYY*LA**2)/X3+G*(IYY+

I IXX)/L
C
C ASSIGN REMAINING ELEMENTS IN SYMMETRIC FASHION
C

DO 300 NI = 2, 12
DO 300 NJ = 1, NI-i

ELSTIF(NI.NJ) = ELSTIF(NJ.NI)
300 CONTINUE

C
C COMPUTE GLOBAL STIFFNESS MATRIX (IN THE TANGENT SYSTEM)
C

DO 301 NI = 1, 12
DO 301 NJ = 1. 12

GLSTIF(I+NIJ+NJ) = GLSTIF(I+NI.J NJ) + ELSTIF(NINJ)
301 COITINUE

C
C ASSIGN VALUES TO TG (TANGENT TO GLOBAL TRANSFORMATION MATRIX)
C EVALUATED FOR NODE# 1 OF THE ELEMIT
C

TG(1,1) = -DCOS(PP)
TG(1.2) = S1*DSIN(PP)
TG(1.3) = -Cl*DSIN(PP)
TG(2.1) = -DSIN(PP)
TG(2.2) = -SIDCOS(PP)
TG(2.3) = CI*DCOS(PP)
TG(3.1) = XO
TG(3.2) = Ci
TG(3.3) = S1

C
C COMPUTE TC (TANGENT TO CHORD TRANSFORMATION MATRIX) FOR
C NODE# I OF THE ELEMENT
C

NI = 3
CALL MULMATX(GC, TG. TC. NI, NI, NI)

C
C FILL IN CORRESPONDING ELEMENTS OF TRANS
C

DO 302 NI a 1. 3
DO 302 NJ a 1, 3

TRANS(I+NI.J+NJ) - TRANS(I+NI.J+NJ) + TC(NI.NJ)
TRANS(I+NI+3.J+NJ+3) a TRANS(I+NI+3,J+NJ+3) * TC(NI.NJ)
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302 CONTINUE
C
C INVERT TC TO OBTAIN TCINV FOR NODE# 1 OF THE ELEMENT
C

IDGT = 0
IA = 3
NI = 3
CALL LINVIF(TC, NI, IA, TCINV, IDGT, WCAREA, IER)

C
C FILL IN CORRESPONDING ELEMENTS OF TRANSINV
C

DO 303 NI = 1, 3
DO 303 NJ = 1, 3

TRANSINV(I+NI.J+NJ) = TRANSINV(I+NI,J+NJ) + TCINV(NINJ)
TRANSIV(I+NI+3,J+NJ+3) = TRANSINV(I+NI+3.J+NJ+3)

+ TCINV(NI,NJ)
303 CONTINUE

C
C COMPUTE PP FOR IODE# 2 OF THE ELEMENT
C

PP = PP + P*L/LTUBE

C
C ASSIGN VALUES TO TG (TANGENT TO GLOBAL TRANSFORMATION MATRIX)
C EVALUATED FOR NODE# I OF THE ELEMENT
C

TG(11) = -DCOS(PP)
TG(1,2) = S1*DSIN(PP)
TG(1.3) = -CI*DSIN(PP)
TG(2.1) = -DSIN(PP)
TG(2.2) = -SI*DCOS(PP)
TG(2,3) = C1*DCOS(PP)

TG(3,1) = XO
TG(3,2) = Cl
TG(3.3) = SI

C
C COMPUTE TC (TANGENT TO CHORD TRANSFORMATION MATRIX) FOR
C NODE# 2 OF THE ELEMENT
C

NI = 3
CALL MULMATX(GC. TG, TC, NI. NI. NI)

C
C FILL IN CORRESPONDING ELEMENTS OF TRANS
C

DO 304 NI a 1, 3
DO 304 NJ z 1, 3
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TRAIIS(I.NI.6,J.NJ.6) - TRANS(I.NI+.6JNJ'4) +TC(NI,NJ)
TRANS(I+NI+9,J.NJ,9) z TRANS(I.NI.9,J.NJ.9) +TC(NI.NJ)

304 CONTINUE

C
C l~lERT TC TO OBTAIN TCINV FOR NODES 2 OF THE ELEMENT
C

IDGT = 0
IA a 3
NI = 3
CALL LINV1FCTC. NI, IA. TCINV. IDGT, WKAREA, IEft)

C
C FILL IN CORRESPONDING ELEMENTS OF TR.ANSINV
C

DO 305 NI = 1, 3
DO 305 NlJ = 1, 3

TRA14SINV(I+NI.8 ,J+NJ.6) = TRANSINV(I+NI+.J.NJ.6)
1 + TCINV(NI.NJ)

TRANSINV( I+NI+9, J4NJ+g) - TRANSINV( I+NI.9 .J+NJ+g)
1 + TC'INV(NI.NJ)

305 CONTINUE

C
C INCREMENT CONNECTIVES I AND J BY DOF/NODE =6

C
I = I1+6

J = J+6
C
C LOOP BACK
C

200 CONTINUE
C
C OBTAIN CHDSTF, GLOBAL STIFFNESS MATRIX IN THE CHORD SYSTEM, AS:
C CHDSTI' = TRANS * GLSTIF * TRANS INV
C

NI - 6*CNELEM.1)
CALL ?4ULMATX(TRANS, GLSTIF. TEMP24, NI. NI, NI)
NI - 6*CNELEM+1)
CALL MULM4ATX(TEMP24. TRANSINV, CHDSTF. NI, NI. NI)

C
C OBTAIN REDFLEX. A SUDMATRIX OF THE GLOBAL FLEXIBILITY
C MATRIX BY INVERTING A SUDMATRIX OF CHDSTF OF DIMENSIONS
C 6*NELEM x S*NELEM, I.E., WHICH EXCLUDES ELEMENTS
C CORRESPONDING TO THE FIRST NODE WHOSE DISPLACEMNT ARE
C KNOWNTO BE ZERO
C

DO 210 NI a 7, 6*(NELEM.1)
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DO 210 NJ a 7. 6*(NELEM.1)
TEMPI8(NI-8.NJ-6) =CHDSTP(NI.NJ)

210 CONTINUE
IDGT = 0
IA = 6*NELEM
NI = 6*NELEM
CALL LINVIF(TEMPIS. NI. IA, REDFLEX. IDGT, WKAREA, IEft)
DO 900 NI = 7. 6*CNELEM+1)
DO 900 NJ = 7. 6*(NELEM+1)

TEMPIO(NI-6,NJ-6) = CHDSTPCNI.NJ)
900 CONTINUE

NI = 6*NELEM

CALL MULMATX(REDFLEX.TEMP18,CHECK.NI,NI.NI)
C
C OBTAIN DISPLACEMENTS DELCHW REDFLEX * FKNOWN IN CHORD SYSTEM
C

NI = 6*NELEM
NJ = 1
CALL MLUATX(REDFLEX. FKHOWN, DELCD, NI, NI. NJ)

C
C COMPUTE REACTIONS FROM THE ABOVE DISPLACEMENTS
C

DO 903 NI = 1. 6
DO 903 NJ = 7. 6*CNELEM.1)

KBETAALPHA (NI .IJ-6) = ClfDSTF(Nl ,NJ)

903 CONTINUE
NI =6

NJ = -NELEM
NK =1

CALL MIJLMATX(KBETAALPHA .DELCIW .TEMP61 .NI .NJ .NK)
C
C WRITE COMPUTED REACTIONS IN CHORD SYSTEM TO FILE "FEMOUTPUT"
C

WRITE(12,*)
WRITEC12.*) 'COMPUTED REACTIONS IN CHORD SYSTEM'
WRITE(12,*)
WRITE(12,*) CTEMP61(NI,1). NI = 1. 6)
WRITEC12 ,*)

C
C CONVERT RADIANS INTO DEGREES
C

DO 212 NI z 1. MELEM.
DO 212 NJ a 1. 3

DELCHDC(8*NI-NJ.1) .1) a DELCHD((6*NI-NJ.1) .1)*Xl80/PI
212 CONTINUE
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C
C WRITE CHECK TO FILE "FEMOUTPUT"
C
C WRITE(12,*) 'FLEX CHECK:'

C DO 901NI =1, *NELEm

C WRITE(12.*) (CHECKCNI.NJ). NJ = 1. 6*NELEM)
C 901 CONTINUE
C
C WRITE END DISPLACEMENT TO FILE 11FEMOUTPUT"
C

WRITEC12.*)

WRITE(12,*) 'END DISPLACEMENT IN CHORD-SYSTEM:'

WRITE(12,*)
WRITE(12,*) 'Delx = ',DELCHD(e*(NELEM-l).1,j). 'a'

WRITE(12,*) 'Dely ' DELCHD(6*(NELEM-1)+2,1), 'a'

WRITEC12.*) 'Dolz ' DELCHD(6*(NELEM-1).3,1). 'a'

WRITEC12.*) 'Thex ' DELCHD(6*(NELEM-1).4.1), 'deg'
WRITE(12.*') 'They ' DELCHD(6*(NELEM-1)+5,1), 'deg'

C WRITE(12.") 'Thez ' DELCHDC6*CNELEM-i)+6,1), 'dog'

C WRITE GLOBAL STIFFNESS MATRIX INTO FILE "FEMOUTPUT",
C
C WRITE(12.*)
C WRITE(12.*) 'GLSTIF:'
C WRITE(12.*)
C DO 214 NI a 1, 6*CNELEM+1)
C WRITEC12.*) CINT(GLSTIFCNI,NJ)), NJ = 1. 6*(NELEM41))

C 214 CONTINUE
C
C WRITE FKNOWN * GLOBAL FORCE VECTOR TO FILE "FEMOUTPUT1"

C
WRITE(12.*)
WRITEC12,*) 'FKNOWN VECTOR:'
WRITE(12,*)

WRITECI2,*) (FKNOWN(NI,1), NI =1. 6*NELEM)
C

STOP
END

C
C ?4ULMATX SUBROUTINE BEGINS
C

SUBROUTINE MTJLMATX(MAT1 ,MAT2,MAT3,L1 .L2.LS)
INTEGER Ll. L., L., KNYI. KNT2. !CNT3

REAL*S MATI(L1.L2). MAT2CL2,L3), 1AT3(Ll.L3)
DO 10 KNTI 1, Li



DO 10 KNT2 =1, L3

MAT3CKNT1,KNT2) = 0.ODO
DO 11 KNT3 = 1, L2

MAT3CKNT1 .KNT2) = MAT3(KNTI ,KNT2)+I4ATI(KNT1 .KNT3)*
1 MAT2(KNT3,KNT2)

11 CONTINUE
10 CONTINUE

RETURN
END

C
C END OF PROGRAM4
C..............................................................---
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