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ABSTRACT

The subject of this investigation is the deformation and consequent lack of aim
that a gun tube undergoes as a result of its initial imperfections. By initial imperfections,
we mean the non-straightness of the centroidal axis of the gun tube. In reality, the
centroidal axis is a general space curve. For the sake of analysis, however, it is assumned to
be helical in shape. The gun tube is modeled as a rod of linearly elastic material, encased in
a perfectly straight cylindrical thermal shroud to protect it from non-uniform temperature
changes. The interaction between these two elements, namely, the shroud and the gun
tube renders the problem of finding the muzzle end displacement of the gun tube statically

indeterminate.

Two sol.cions to the problem are proposed herein, using different approaches. In
the first, a more exact solution for the gun tube end displacement is obtained by
formulating an expressioﬁ for the complementary strain energy of deformation of the rod
and then employing Castigliano's Second Theorem, or as it is better known, by the method
of minimum complementary strain energy. In the second approach, the differential
equations for the problem formulated by Kingsbury are employed and a general finite
element of variable curvature and torsion is developed. This element is then used to
compute a set of displacements for independent confirmation. The element formulated
may be used to analyze tubes or rods of arbitrarily varying cross-section, curvature and
torsion. The report includes surface plots from a parametric study of the end displacement
as a function of initial curvature and torsion of the gun tube and the conclusions drawn
therefrom. Code for a finite element program that uses the element developed has been

provided for implementation by the reader.




CHAPTER 1
INTRODUCTION

1.1 Defining the Problem

The work described in the pages to follow is aimed at modeling the imperfections
in the straightness of gun tubes. Gun tubes are often subjected to large variations in
temperature which arise from several sources, for example, heating due to the firing of
rounds of ammunition, cooling due to rainfall or wind, and the effect of field temperature.
For this reason, they are encased in a protective outer cylinder called a thermal shroud,

whose function is to distribute temperature changes uniformly.

The gun tube and its thermal shroud are attached to a common structural base
near the receiver end of the gun and are again structurally connected near the muzzle. The
latter connection allows relative motion of the end of the shroud to be transmitted to and to
be constrained by the enclosed gun tube. Since the temperature changes are distributed
uniformly around any circumference, the shroud does not undergo bending deformations

due to thermal strains but expands or contracts axially.

When the gun tube and shroud assembly is subject to a change in temperature,
say an increase, the shroud undergoes thermal expansion and thus exerts a force on the gun
tube. If the gun tube were to be perfectly straight, this would merely cause it to extend
along its centroidal axis, with no change in its aim. However, in reality, no gun tube is
perfectly straight so that a change in temperature of the shroud may produce not only an
extension of the tube in the direction of its length but also bending deformation, which
affects its aim. We endeavor, then, to find the displacement and rotation of the end of the

gun tube as a function of the imposed temperature change.
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1.2 The Analytical Model

The centroidal axis of the gun tube would, in reality, be an arbitrary space curve.
For the purpose of analysis, it is assumed to be helical in shape. It is also assumed that the

cross-section of the helical rod is perfectly circular, so that the effects of out-of-roundness or

twist of the tube are not considered.

The gun tube. then, is modeled as a helical rod of linearly elastic material, with a
constant circular cross-section, which is contained within a thin-walled right circular
cylinder representing the thermal shroud. Both the rod and the cylinder are considered
fixed at one end to a massive common base. The common attachment at the other end of
the rod is such that the relative motion of the end of the cylipder due to thermal strain, can
be imparted to - and is constrained by - the rod at their point of intersection. Two cases of
compatibility of gun tube and shroud end displacements are considered, the first in which
the shroud is assumed to have zero lateral stiffness, and the second in which the shroud has
a finite non-zero lateral stiffness. In the former case, the gun tube end displacements and
rotations are not affected by the transverse rigidity of the cylinder. In both cases, however,

these displacements and rotations are independent of the torsional rigidity of the cylinder.

1.8 Methods of Solution

Two solutions to the problem are proposed herein, using different approaches. In
the first, more exact, solution, the end displacement is obtained by formulating an
expression for the strain energy of deformation of the rod in terms of the components of the
applied force and moment and then employing Castigliano’s Second Theorem, or as it is
better known, by the method of minimum complementary strain energy. In the second
approach, the differential equations for the problem formulated by Kingsbury [Kingsbury
84] are employed and a general finite element of variable curvature and torsion is
formulated using the variational method. This element is then used to independently
confirm the results of the analytical model.




1.8.1 An Exact Solution

The required displacements are obtained most easily by employing an energy
method; to be specific, by using Castigliano’s Second Theorem which is stated as follows: If
a linearly elastic structure is subjected to a set of loads, the displacement of any load in its
direction is equal to the partial derivative of the complementary strain energy with respect
to that load. In order to use Castigliano’s theorem, an expression for the complementary
strain energy of the rod must be formulated. This is done as follows: First, the helix
representing the centroidal axis of the gun tube is parameterized in terms of the arc length
and expressions are obtained for the vector tangent, binormal and principal normal to the
curve at any point along its length. Second, expressions for the internal force and moment
components along the local tangent, binormal and principal normal that result from
applying a force and a moment to the end of the rod are obtained in terms of the applied
force and moment. Thirdly, the complementary strain energy of the rod is written in terms
of the internal force and moment components, and therefore, in terms of the applied force
and moment. The required scalar displacements are finally obtained by differentiating the
complementary strain energy with respect to each component of the applied force and

moment.

Since the problem is statically indeterminate, the applied force is not known but is
found by enforcing the compatibility of gun tube and shroud end displacements. This force
is then used to compute the required displacements. A parametric study of the force and
displacement components is performed in which each component is plotted as a function of
the initial curvature and torsion of the helical rod. This is done for two cases of
compatibility of displacements of the gun tube and the thermal shroud at the muzzle end;
one in which the thermal shroud is assumed to have only axial stiffness and no transverse or
rotational stiffness and the other in which the shroud has a finite non-zero transverse
stiffness. Chapters 2 and 3 present the formulation of the strain energy and equilibrium
equations while Chapter 4 deals with the imposition of compatibility of displacements of
the muzzle ends of the gun tube and the thermal ‘shroud, and consequent resolution of

statical indeterminacy. Chapter 5 contains the above-mentioned parametric study.
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1.3.2 A Finite Element Solution

In Chapter 6, an alternative solution is presented which involves the development
of a finite beam element whichi is permitted to have variable curvature and torsion over its

length. However, the rate of variation of the curvature and torsion is assumed to be

constant in each element. By the use of an assemblage of such finite elements, rods of

arbitrarily varying space curvatures can be analyzed.

The element is formulated using the variational method. The equations of motion
of a space-curved rod have been formulated by Kingsbury [Kingsbury 84| as a set of four
coupled differential equations in four unknown displacements. Every point on the rod has
six degrees of freedom: three translations and three rotations. Two of these are expressed in

terms of the four unknowns appearing in the differential equations.

The development proceeds as follows: First, a polynomial displacement field is
assumed, which satisfies the differential equations exactly in the case in which curvature
and torsion are identically zero, that is, in the case of a straight rod. Next, the constant
coefficients appearing in the assumed polynomials are found in terms of the nodal values of
displacements, and these polynomials are rewritten to yield the shape functions. Then, the
expression for linear strain energy density of the rod developed by Tsay and
Kingsbury /Tsay 86! is employed as follows. The displacements and their derivatives
appearing in this expression are substituted with their equivalents in terms of the assumed
displacement field and the strain energy density is integrated over the length of the rod to
yield the strain energy of the rod. Finally, the strain energy is differentiated with respect to

the nodal values of the displacements to obtain the elements of the stiffness matrix.

Lastly, the finite element is used to independently confirm the values for
displacements obtained from the first method. Code for a finite element program has also
been provided in Appendix D for implementation by the reader.




CHAPTER 2
INTERNAL FORCES IN THE HELICAL ROD

2.1 Parametric Representation of the Helix: Vector Tangent, Binormal and

Principal Normal
2.1.1 Parametric Representation

The geometry of the helical rod is shown in Figure 2.1. Its shape is governed by
two parameters: a, which is the length of the circular arc representing the projection of the
helical centroidal axis of the rod on the XY plane, and ¢, the angle subtended by this arc at
the origin. The points on the helix can be described in terms of the arc length, s, by a -

position vector, r, given by:
r=r(s) = scos (%’) (¢’)j + —k (2.1

We also have the following expressions for the first and second derivatives of r

with respect to s:

r'=i:=-2' i i+ g (¢’)j+ Sk (2.2)
r’ = %’_, = %‘g os(¢a)i" (¢’)j . (23)




(i) The "Straightened” Helical Arc

Z -

X

(ii) The Helical Arc and the Global Coordinate System

Figure 2-1: Geometry of the Helical Rod
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2.1.2 Vector Tangent, Binormal and Principal Normal

These three characteristic vectors of a space curve form what is sometimes referred
to as the trihedral associated with the curve [Sokolnikoff 66]. They are shown in Figure 2.2,
and at any point along the curve, they are given in terms of the derivatives of the position

vector, r, by the following relations:

Tangent:

) = £ )

G =05 (24)
Binorma.lgz'

ey = T (8)xr (s

3(s) = TO<T ()] (2.5)
Principal Normal v

u(s) = B(s) x r(s) (2.6)

Substituting the derivatives in the above expressions, we find the following

expressions for the three unit vectors:

r_(:,) = —-Esin(%”)i-*—%cos(%’)j-\‘-%k (2.7)
8is) = 2en®i- Leos(®y+ @ |

Ble) = fein(@) Los(d;)j+Lk (2.8)
v(s) = — cos(%’)i- sin(%’)j (2.9)

The vector tangent, binormal and principal normal form a local coordinate system
which varies with every point on the curve. We assume that the tangent points in the local




x(s+ds)

z(s+ds)

y(s) = Principal Normal

Binormal
¢ Tangent

N <
[}

Figure 2-2: Vector Tangent, Binormal and Principal Normal
z or ¢ direction. Therefore, the principal normal and the binormal point in the local x (£)

and y (n) directions respectively. In the next section, we shall use these three unit vectors
to evaluate the components of the internal force and moment along the directions of the

local £, n and ¢ axes.

2.2 Internal Force and Moment Components at a Generic Point -

As mentioned in Chapter 1, the muzzle end of the gun tube is structurally
connected to the thermal shroud in a manner that allows motion of the end of the shield to
be transmitted to and aiso to be constrained by it. Also, the receiver end of the gun and
the shroud are connected to a common massive base. In other words, for our analysis, we
need to find the displacement of the free end of a helical rod, the other end being
cantilevered. Having done this, we may then apply compatibility of displacements of the
shroud and gun tube and find the force that results from their interaction. This
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corresponds to the applied force F in the discussion to follow.
2.2.1 Internal Force and Moment

We now evaluate the internal force and moment components at a generic point.
Figure 2.3 shows the forces acting on the free end of the rod and the corresponding

reactions at the fixed end as represented in the global XYZ system.

The applied force at point B, that is, at s = L, is F given by:

The applied moment at point B is M given by:

M = Myi- Myj+ Mgk (2.11)

The reactions at the fixed end A, that is, at s = 0, are a force Fp, and a moment

M;. Fpis found from force equilibrium as:
Fp = -F = - Fxi-Fyj- F;k (2.12)

M;, is found from moment equilibrium by summing up moments about the point A, and is

given as:

Mp, = -M-AXxTF, where & =r(L)- r(0),
S _Fza . - Fga ., _

de

+ (- Mg+ 5 sin¢+%'(1—cqe¢)]k (2.13)

Consider the free body shown in Figure 2.4. Now, from force equilibrium, we have
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Z
Applied Force
i FxFxi+Fyj+Fzk
|
Applied Moment
M=Mxi+ Myj+M2k
I
Reaction Moment
M=-Mxi-Myj-Mzk Y
- r x Applied F
A L
X
Reaction force
Fe-Fxi-Fyj-Fzk
Figure 2-8: Forces on the Helical Rod
z
Internal Force
F=Fxi+Fyj+Fzk
Reaction Moment 0 rs) - #(0) P
M=-Mxi-Myj-Mzk Y
-t x Applied F *
A Internal Moment
s M = - Reaction M
- { n(s) - 7(0) ] x Internal F
X 7(0) = vector OP '
7(s) = vecior OQ

Reaction force
Fa-Fxi-Fyj-Fzk

Figure 2-4: Free Body Diagram
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the internal force at a generic point P, F,,, in terms of the arc length along the rod, s, as:

Fm(a) = —FR = in‘{'ij+sz (2.14)

Setting the sum of moments about the point A to zero (moment equilibrium), we

find the internal moment at point P, M,,,, to be given as:

Mg (5) = = Mg~ 8x(s) X Fi (o) (2.15)
where A r(s) is the lever arm given by:

Zr(s) = r(s)- r(0) (2.16)

The complete expression for the internal moment acting at the generic point P, in terms of

the arc length, s, is:

My(s) = My~ X2 (L~ 5) ~22% (sing - sin (%) ]

2.2.2 Local Components of Internal Force and Moment

The components of the internal force and moment, Ve, Vo \A and Mg, M, Mf
respectively, may be found by taking the dot product of the vector in question with the unit
vectors in the local £n¢ coordinate system, namely, the vectors ;: F and 1. Therefore, we
have the following scalar equations for the internal force and moment components as

functions of the arc length »:

e(8) = — Fxcos (%’)—Fysin (%’) (2.18)
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Vo(s) = -F—L)ds'm (%—’) - f%écos (%—’) +£§f | (2.19)
V(s) = - Fx as n (¢3 Fya (¢ )+ 4= FZ (2.20)

Me(s) =1~ MX-—FZb(L s)-fff{sincﬁ-sin(-%s)}]cos(%f)

Xo(L- a)+%{cos¢-cos(—%’)}]sin(gg) (2.21)
M,(s) = My~ -F—;?(L— s)-«‘—%‘{sinqb— sin(%’)}l%sin(%’)

- - MY—%—I,(L— s)-f—F—:f{cosdb—cos(%’)}]

~.-ZMZ—%I{simﬁ—sin(%’)}+££f{cos¢-cos(%a)}}% (2.22)

M(s)= = My + 7L (L~ )~ T2 (sing - sin (§)} |7 sin &)

My +Tx° (L )Fz—“{cow—cos(%f)}licos(%f)

+ [ Mz— xa{sxnda sm(¢"}+FYa{cos¢—cos(¢’ L (2.23)

In the following chapter, we find an expression for the complementary strain
energy of the deformed helical rod in terms of the above components of the internal force
and moment acting at a cross-section, and then apply Castigliano’s Second Theorem to find
the displacements at the free end of the helical rod, and thereby, the elements of the

corresponding flexibility matrix.




CHAPTER 3
THE STRAIN ENERGY OF THE ROD AND ITS END DISPLACEMENTS

8.1 Strain Energy of the Deformed Helical Rod
3.1.1 Components of Stress

The components of the internal force and moment at any cross-section are defined
in terms of the local stress components by the following integrals evaluated over the area of

that cross-section:

V€=‘/ degdA
A
V,,:/a,,gdA
A
ng/‘a“dd
A
M€=/T)6“dA

A
M,,:-/ (o dA
A
M‘=/ (€00~ n0g) dA (3.1)
A

Even though we do not have relations for the components of stress, viz. o, o, and L in
terms of the components of the internal force and moment at a croes-section, we assume
relations (analogous to known strength of materials relations) which are such that on
substitution in the defining formulae, they yield identities. The assumed formulae for the

stress components are:

13
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aE = - .’:”‘_l\' -+ _K{
f J, A
oy = M Vs
f J, A4
o = .’_"_A!{ - ib_l'l -+ _Yf (32)
s Tee I A

8.1.2 Strain Energy in Terms of Internal Force and Moment Components

We now derive an expression for the complementary strain energy of the deformed
helical rod in terms of the local components of the internal force and moment acting at a
cross-section. Assuming the material constituting the rod to be linearly elastic, the strain

energy of the rod is:

U = _l/cTodV (3.3)
2 Jy

The stress and strain vectors in the above expression are:

07 = | 0gg Opy Oy Oy Opg O |
€1 = € €y € gy € €g | (34)
As per the assumptions made in the analysis of a general curved and twisted

rod Kingsbury 84, we have:

€¢¢ = €pn = €gn = 0 (3:5)
With these assumptions, the applicable stress-strain relations are:

O = Eeg

Tgs = 2G €g

One = 2G €, (3.6)
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Substituting from equations (3.4), (3.5) and (3.6) into Equation (3.3), we get the following

expression for the complementary strain energy:

_ 171 2 1 2 2
0= (5o v ag [ Coumren av) &1

Since the bar is of constant circular cross-section of area A, we have the following

section properties:

Igg = Ly = 1

Ign =0

/fdA: [r;dAzO (3.8)
A A

Substituting equations (3.2) and (3.8) into Equation (3.7), we arrive at the
following expression for the complementary strain energy of the deformed helix in terms of
the components of the internal force and moment represented in the local coordinate

system:

1 2 2 1 2
U= — M “+M, *)ds _— M. *ds
2E1/L( e M) o )
*J_/(v€2+v2)ds+L/v2da (3.9)
4GA J, 7 2EA J, ¢

It may be noted that the contributions to the shear stress components in
equations (3.2) from the local force components V. and V,, are assumed to be constant over
the cross-section. More accurate results may be obtained by assuming a parabolic

distribution of shear stress instead of an average value.




_
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8.1.3 Strain Energy in Terms of Applied Force and Moment Components

In Chapter 2, we found expressions relating the local (§n¢) components of the
internal force and moment at a cross-section to the global (XYZ) components of the applied
force F and moment M. We now combine those relations, namely, equations (2.18) -
(2.23), with Equation (3.9), which is the expression for the complementary strain energy of
the rod in terms of the components of the internal force and moment at a cross-section.
Integrating the expression so obtained over the length of the rod, L, we find the

complementary strain energy of the deformed rod in terms of the geometrical parameters,

viz. a and ¢, and the XYZ components of the applied force and moment. (Note that b is

not an independent parameter, but is deﬁned in terms of a, as VL! - 02, L being held

constant.) The complete expression for the complementary strain energy of the rod may be
found in Appendix A. We are now equipped to calculate the displacements that occur at
the free end of the rod.

3.2 Displacement of the Free End of the Rod

In this final section, we find expressions for the six scalar displacements (three
translations and three rotations) of the free end of the rod using Castigliano’s Second
Theorem which may be stated briefly as: If a linearly elastic structure is subjected to a set
of loads, then the displacement of a load in its direction is equal to the derivative of the
complementary strain energy of deformation of the structure with respect to that load. We

may write this mathematically as:

avu
Dp = = 3.10
P P (3.10)

Differentiating the complementary strain energy expression of Appendix A with
respect to Fy, Fy, Fz, My, My and My respectively, we obtain the three end translations
AX,0Y,A2Z, and the three end rotations Ay, A8y, Ay as:
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OX = fiyFx+ fiaFy+ fisFz+ f14 Mx + fis My + fie Mz

AY = fo Fx+ o Fy + fi3 Fz+ fog Mx + fos My + fag Mz

AZ = fsy Fx+fsa Fy+ fas Fz+ fag My + fss My + fys Mz

D8y = [y Fx =+ faa Fy+ fas Fz+ foa My + fus My + fi6 M3

Dby = fsr Fx + fsa Fy + fa Fz+ fsu My + fs My + fie M

Dz = for Fx+ foa Fy + fos Fz + foa Mx + fos My + foe Mz (3.11)
where f; represent the elements of the 6 X 6 symmetric flexibility matrix. The

complete expressions for these elements are listed below. For the sake of conciseness, the

following notation is used: ¢ = cos¢,s=sin¢, C=a/L,and S = b/L.

L3 r
fu = 12}“(—3{60‘ 3sc—4a.+2¢s +0|+ 5430 +267 - 3ac]
+60232[43—3sc—¢j+52[-3¢+2¢3+3sc]})
L® (C s?. 3 )
—15¢ - — 20" + 489~ 33sc]
%Gy, 53 | —15¢ 12432~ 263 + 485~ 33sc
- L_(ngqb_,c;) + _I'_(O2 ¢+sc] +282 )(3.12)
EAN\ ¢ ‘ 4GA\ ¢
e = A ({20437 2pact 2- 2]+ 5407 - o
12 = —E—- zs L 8 L[4 (4 ]‘f‘ s }
+2c’sz[~3s’+2¢a—2c+2]+s’[a’—¢’]})
202
- SICJvV (C¢£ {8-8c-llaz+4¢ac+4¢a-¢2])
2
_ _L_(E_[,zl) ‘ _L__(C_[.J]) (3.13)
2EA\ ¢ 4GA\ ¢
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2571\ 33 S(ds— ¢ 2c]+20%5 (- 2+ 2c~ 22
) 3;
+ C§ l4—4c~¢;,—¢2¢]})
3
- sL (C3S,¢2
GJ, Py ¢+7¢s-—4a’+8c—8])
S CcS,
—EA —tﬁ_ll—c]> +_._L__ cs
2G 4 7[1“’])
N ) (3.14)
4 = —-—(—%{S‘
17\ 5 (¢~ 5] +20%5{g +sc— 2]+ §3|
o Cz . l"-“d’}})
( S" -
SGJP '?72—.‘86—43'?3(#])
L (3.15)
5 = —
4E1((,72{55<152'3’]w-202
Sis?)+83%¢?
, ! ¢ 2
L* (c?s . J}>
AR
fl6 = L2< 1 (3.16)
— {ci-
g1l g2t O 1T emdel- 32[0‘1‘})
N (032r
2GJ, 7"‘”’”"2])
(3.17)
f22 = _L.s_( 1 {604r
12E1\ 33 (¢~ 3sc+20c?]+6C%S% ¢
+ 3sc — ddc]

([~ 36 +203+3sc]+5%[3¢ + 263~ 3sc] } )
C

_ L3 (0ris?
240.1,( Py (- 96~ 2~ Ugc +126s% + 33ac
L (c )
2EA(_J[¢+“]) + L c?
4GA(7{¢_JC]+2S2)(3.18)
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LS

151 ( ;13{ CSigec—s— ¢ 2] +2C38 s+ 2sc— 3¢c]

+ C83 1~ 3s—¢c—92s+49)} )

K]
_ G (g¢_3§[53—5¢c+43c+¢ s—4¢])
P
P (88) - E(S5y)
BA\ o " 2GA\ ¢

2
4%3_1(_1,{ Si-st-0%+20%8 [~ c?+2c- 1]
(4]

SEEERUE

L? (0 S, )
,-—4 4 ~+

8GJ, 62 croliee? ,

L2
4EI

_ L (c’sM_“])
8GJ,\ ¢7

L2
El

2 2
- 2I(lj:J (%[—¢c—¢+2a )
4

(;1,{ 03[¢c—aj+cs’[a—¢}})

5‘:}1(;‘3{ C?[¢ - sc]+ C28? (3¢ + sc - 4s] })

A XA L .2
4GJ(I’[“ 5 “].)J’ﬁ[s] 2G

(3.19)

(3.20)

(;1-2{ S[ac*¢}+2C’SI¢—sc]+$3[¢—scn })

(3.21)

(3.22)

[C?)(3.23)
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L? 1 ,
e = 2_E—‘-I<g-2{0[¢s;-+082[2c—2+¢8}}>
L? c3 >
- - 2c+2- 3.24
4GJ,(?’[ ¢+2- 9] a4
L? 1 :
hs = m<?{0[s—¢c1+052[a—¢c]})
L? c? )
_ - 3.25
4GJ,(37’[¢° ° (5.9
L?( C?s. . L?* [ C?s. A
o B(G) - () e
fia = _£’_<_("_2’—¢.;.,cj-'-2) + _L_(—gj[—¢+ac]) (3.27)
" 2EI\ o' 4GJ\ ¢
fe = (L__E_) (C_z;sz}) (3.28)
* 2EI 4GJ ¢
_ L _ L €S, _
fe = (EI ZGJ) ( ¢ E c]) (3.29)
fis = __é_-(fl-ksz]—gf[sc]) + —L—(gqu-rsc") (3.30)
5 2T\ o 4GJ\ ¢ ' :
- (_L _ L\ (Q_Sf )
fse (201 z1) \ 3 U (8.81)
= Loy L g2 : 2
Jes EI[C]'2GJ[S] (3.32)

Equations (3.11) represent the scalar displacements and rotations of the end of the
helical rod, in terms of the XYZ components of the applied force and moment, and the
geometrical parameters defining the helix, namely, a and ¢. By making suitable
substitutions, it is possible to reduce them to those of a cantilevered straight beam. This is

demonstrated in the following subsection.
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3.2.1 Reduction of the General Equations to the Straight Beam Case

The equations for the helical arc may be reduced to those for the straight beam in
two equivalent ways: by setting ¢ = 0, which forces ¢ to be zero, and alternatively by
letting ¢ approach zero. This is illustrated in Figure 3.1. It is important to realize that we
cannot simply substitute ¢ = 0 into the general equations, but must express sing and cos¢
as Taylor series about ¢ = 0 and then neglect the higher order terms. Both the methods
yield identical results, which are exactly the same as the strength-of-materials deflections
for the straight cantilevered beam. We present below the reduced equations that result

from applying the first method:

3
ax = FxL® | Fxl (3.33)
3EI 2GA
FyL® FyL
Ay = Y - 1Y 3.34
3EI 2GA (3:34)
oz = Fik : (3.35)
EA
FyL?
20 Y 3.36
X 251 (3.36)
FyL?
NGy = X 3.37
Y YT, (3.37)
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3.2.2 Reduction to a Circular Arc of Small Curvature in the XY Plane

The reduction of the general equations to the case of a circular arc in the XY

plane is accomplished by setting b = 0 or a = L, and expressing sin¢ and cos¢ as Taylor

series about ¢ = 0 and retaining terms upto the order of ¢2. We have, then, the following

results:

AX = px( L’ (20- 962 + L [g2) + L (347 )
60EI 3EA' ' 6GA
5L3 L L )
- F 42 g~ L s
Y ( el % T 16a'® T 784 %
LY = Fy ( 5L° . L s L [¢1>
MEl" 4GA ' 2B4 'V
2L . , L 2 L 2 )
- F - o Y1 13—
Y(ISEI¢ scal® | Tagalte
L2 = (-———L3 [ —¢2 + L [¢21 —L )
2\ 15E1 0GJ1," ' 264
._.0=F(L25—2‘- L [¢’l)
X = T2\ 12EI ' %Gy,
L? L? )
6y = F - -
=%y z ( 651" 12GJ,[¢]
L2 Lz
L8, = F ——-4")+F(‘-— )
z x ( Y7o Y 351'%

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

Note that if we now set ¢ to zero in the above equations, we obtain the

displacements of a straight cantilever beam in the XY plane, analogous to those presented

for the case in which a = 0, presented in Section 3.2.1. In the next chapter, we impose two

different conditions of compatibility of displacements of the muzzle ends of the gun tube
and the shroud. We thus obtain the force exerted on the gun tube by the thermal shroud
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X

(i) Reduction to Straight Beam by Setting a = 0

Rl 92

R2 b

(ii) Reduction to Straight Beam by Letting ¢ Approsch Zero

Figure 3-1: Reduction of the Helical Arc to a Straight Beam
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due to its expansion, and thereby, the displacement of the end of the gun tube.




CHAPTER ¢
IMPOSITION OF COMPATIBILITY CONSTRAINTS

4.1 A Convenient Coordinate System

In chapters 2 and 3, we developed an analytical solution for the displacement at
the end of a helical rod of constant circular cross-section in terms of an applied force and
moment. However, in the actual problem, we do not know, a priori, what the value of the
force exerted on the gun tube by the shroud is. The problem is statically indeterminate.
Hence we must rely on the imposition of compatibility of the displacements of the ends of

the gun tube and the thermal shroud to resolve this indeterminacy.

Figure 4-1: The Chord System

25
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Note that by varying the parameters ¢ and ¢, we can vary the curvature and
torsion of the helical rod. In order to perform a parametric study of the displacement, we
must vary the curvature x and torsion A of the helical rod, and solve the compatibility
conditions that we impose for each such case to obtain the force acting on the rod, and then
compute the six displacements of the muzzle end. For this purpose, we make the
reasonable assumption that the centroidal axis of the thermal shroud passes through the
two end points A and B of the helical rod, which define a chord between them. This is
shown in Figure 4.1. We therefore define a coordinate system whose Y axis is in the
direction of the vector X’B, and whose X axis lies in a plane parallel to the XY plane, so
that if we set b = 0 and let ¢ approach zero, the coordinate system becomes identical to the

global coordinate system. This coordinate system is called the chord system.

The chord system is the coordinate system that we shall use in Chapter 5 for the
parametric studies that compare displacements for different initial curvatures and torsions

of the gun tube, and different axial and bending stiffnesses of the shroud.
4.2 Unit Vectors in the Chord System

Let XcYczc denote the chord system shown in Figure 4.1. The position vectors of

points A and B are:

—‘A — g.
p(4) 5!
p(B) = icosqbi-f-gsineﬁj + bk (4.1)

Therefore, the vector ABis given by:

AB = %(cosp-1)1 +§sin¢j + bk (4.2)

e
¢

From Equation (4.2), we may write the unit vector along the Yc axis as:




27
i, = _Z:B _ (cosa;-l)i+sin¢j+ (¢b/2a)k w3)
‘AB vV 2(1-cosg) + (¢b/a)

Having obtained jc in terms of 1, j and k, the unit vectors in the global coordinate
system, we now proceed to obtain ic and kc. As mentioned in Section 4.1, the Xc axis is

parallel to the global XY plane. Thus ic may be written as:

ic =pi~-g¢j+0k (4.4)
Since ic and jc are mutually perpendicular, their scalar product must be zero, i.e.,

i.j =0 (4.5)
That is.

p(coso—1) — gsino = 0. (4.6)
Since ic is a unit vector, we have:

Pl qt=1 (4.7)
Solving equations (4.6) and (4.7) for p and ¢, we get

singi~+ (1-cose)j

= (4.8)
vV 2(1-cosg)
Having obtained ic and jc, we may simply write kc as:
. b/ 1- i- (¢b/a)si +2(1-cosd )k
k =1 xj  (@Ve)(1-coss)i- (6b/a)sing) +2(1-cond)k (g

Va(1-cosp)? + 2(¢b/a)?(1- cosd)

Equations (4.3), (4.8) and (4.9) give us the desired unit vectors in the chord
system in terms of the unit vectors in the global XYZ system. From these three equations,
we now derive the chord-to-global transformation matrix, CG, that yelates the components
of displacement and force in the chord system to their equivalents in the global system.
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4.3 CG: The Chord-to-Global Transformation Matrix

Consider a generic vector, :\: , that is to be transformed from the chord coordinate
system into the global coordinate system. Let s be the matrix whose rows consist of the
coefficients of i, j and k unit vectors in equations (4.3), (4.8) and (4.9) respectively. If ;c' is

writtenasu =u_, i —u_,j — u, k,then substituting for i , j and k from the above-
¢ Ycve Zee ¢’ “c [

i
Xc'e
mentioned equations, we get

= ’ i+ i+
u =y 8 i s e k]
~ Uy S i ad sk
- u, i, os k] (4.10)

Rearranging terms, we get the following:

— . ..
uc = 311 uXc - 321 ch - 331 ch |1
- - + V3

S ¥xe T S Yy T %3 ¥z i)

T gty T YasVye T taslp K (4.11)

Clearly, from Equation {4.11), we see that CG, the chord-to-global transformation matrix

is the transpose of s:

CG =T (4.12)

Thus, to convert the components of a vector u = | Yy, Yy Yz ]T from the chord
system to the global system, we pre-multiply u with CG. The global-to-chord
transformation is achieved by inverting CG. But since the transformation is orthogonal,
GC = CG! = CGT = 5. In Section 2.1, we presented the expressions for the tangent,
binormal and principal normal to a helix, at a generic point along its length, in terms of the
global unit vectors i, j and k. The matrix formed by the coefficients of these unit vectors in
equations (2.7), (2.8) and (2.9) similarly represent the elemeats of the global-to-tangent

transformation matrix at any point along the helix.
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4.4 Flexibility Matrix in the Chord System

Since the position of the thermal shroud in the chord system is always fixed while
it varies in the global coordinate system with changing curvature and torsion, it is clear
that compatibility of the displacements of the ends of the gun tube and the shroud must be
imposed in the chord system. This means that we must transform the flexibility matrix of
Equation (3.11), which yields displacements in the global system, to one that gives

displacements directly in the chord system.

An important point to note here is the assumption that the angular displacements
28y, 20y, and L6, may be decomposed into components along the coordinate axes and
transformed between different coordinate systems in exactly the manner the translational

displacements are. This is acceptable for small angular displacements as in our case.

Consider a 6 X 6 chord-to-global transformation matrix T, which is block

diagonal, both the 3 x 3 diagonal blocks being equal to CG. Let fand fc denote the 6 X 6

{ flexibility matrices in the global and chord coordinate systems. Further, let &, F and Ac,
F_ represent the 6 x 1 displacement and force vectors in the global and chord systems
respectively. Then we have the following:

L = fF (4.13)
N —
L =fF (4.14)
A = TAC (4.15)
f=Tf (4.16)
Substituting equations (4.15) and (4.16) into Equation (4.13), and pre-muitiplying both
. sides by T! = TT, we get:

A = iTTITIF, (4.17)

-
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Comparing equations (4.14) and (4.17), we get fc as:

£ = T'fT (4.18)

4.6 Compatibility 1: Shroud with Zero Transverse Stiffness

We assume a condition of compatibility of displacements of the thermal shroud
and gun tube ends wherein the shroud has stiffness only in its axial direction. That is, the
shroud has no transverse or rotational stiffness. Thus translational movement is permitted
to the gun tube end freely in the transverse direction, perpendicular to the centroidal axis
of the shroud. As a result, there is no opposing force exerted by the shroud in the
transverse direction. In fact, the only force exerted by the shroud on the gun tube acts
along the Yc axis of the chord system. Rotations of the gun tube end are also permitted
about all three axes in the chord system, and similarly, there are no moments exerted at the

gun tube end.

If FYc is the force exerted on the end of the gun tube, then its displacement in the

direction of the force is given as
A Yc(gun tubC) = fc22 ch (4.19)

where fczz is the element belonging to the 2" row and 2™ column of the chord flexibility
matrix. The gun tube, by Newton’s Third Law, must in its turn exert an equal but
opposite force on the end of the shroud. Let L,, a, E,, A, and O T be the length, coefficient
of thermal expansion, modulus of elasticity, cross-sectional area and rise in temperature of
the shroud respectively. The displacement of the end of the shroud is composed of two
contributions, namely, the thermal expansion and the contraction due to the opposing axial
force exerted by the gun tube. Thus we have

F, L,

AY (shroud) = L,aOT - (4.20)

2 A,
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Compatibility asserts that the displacements in equations (4.19) and (4.20) be equal. Thus

we find the force acting on the end of the gun tube to be

LalT

F, = : (4.21)
Ye o a0+ L/(E,A,)
where L, the length of the shroud, may be easily seen from Figure 2.1 to be
. . ) 1
L, = (_g(cos¢“1)_f2+{j—;smqﬂz-hbz)i. (4.22)

The six displacements of the end of the gun tube may. now be found by substituting ch

into equations (3.11) rewritten with elements of the flexibility matrix in the chord system.
4.6 Compatibility 2: Shroud with Finite Non-Zero Transverse Stiffness

In this section, we consider a different kind of compatibility condition in which we
assume the shroud to have a finite non-zero transverse stiffness. The gun tube end is
permitted both transverse displacements as well as rotations relative to the shroud.
However, since the shroud now has stiffness in the transverse direction, it will exert a
resistance to the transverse displacement of the gun tube end. An equivalent way of
representing such a compatibility relationship is to consider the gun tube end as being

attached to the shroud end through a ball and socket joint.

Since the shroud now offers resistance to the transverse motion of the gun tube
end, I"xc and F 7. 8re non-zero. The compatibility of all three components of displacement
of the ends of the gun tube and the shroud must be enforced in order to determine the
forces on the gun tube. Thus, the imposition of compatibility results in a set of three

simultaneous equations in FXc’ FYc and cm, which are presented below:




—7

32
3
F.L

B 3E,I, = fc“ FXc + fc” FYc * fclsFZc

FYL

L]

L‘a LT - = fc" FXc + ft:22 FYc + fc”FZc

8§78

3
F, L,

3E,I, = fcsl FXc - fc” FYc - 'fc33FZc

(4.23)

Here, I, represents the moment of inertia of the cross-section of the shroud. It is worth

noting that if the inertia. J,, of the shroud were to approach zero (which would, in physical

terms, amount to the shroud becoming infinitely flexible), FXc and F 70 which represent the

opposition of the shroud to bending, would also tend to zero, and the above compatibility

conditions would reduce to those of the first case. The next chapter contains parametric

plots showing the variation of the forces and displacements experienced by the end of the

gun tube for different initial curvatures and torsions, for both of the above compatibility

conditions.




CHAPTER &
A PARAMETRIC STUDY OF DISPLACEMENT

6.1 Introduction

Having obtained a closed-form solution for the end displacement of the gun tube
in Chapter 3, and developed equations of compatibility of gun tube and shroud
displacements in Chapter 4, we proceed to perform a parametric study of the force and
displacement experienced by the end of gun tube. The parameters in this study are the
initial curvature and torsion of the gun tube, the kind of compatibility condition imposed,
namely, one of the two kinds discussed in sections 4.5 and 4.6, and the axial and flexural

rigidity of the thermal shroud.

Several plots of force and displacement components in the chord system are
included in this chapter, usually accompanied by discussions regarding their physical
interpretation. These are calculated for a fixed rise in temperature of 100 ° C of the thermal
shroud. The variation of the components of force and displacement with temperature
would, of course, be linear. The gun tube and shroud data assumed in the computations

follow.

Gun Tube:

Length = 5.25m
Inner radius = 0.06 m
Outer radius = 0.10 m

Elasticity modulus = 4.35097 x10° N/m?
Shear modulus = 1.67345 x10° N/m?

33
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Thermal Shroud:

Inner radius = 0.11 m
Outer radius = 0.145 m

Elasticity modulus = 4.35097 x 102 N/m?
Coefficient of thermal expansion = 1.206 x10~% /*C

Each parametric plot is a surface depicting the variation of the particular force or
displacement component, taken in the chord system, for different values of initial curvature
and torsion of the gun tube. It is assumed that the length of the gun tube is a constant.
The length of the thermal shroud is the distance between the two ends of the gun tube, and
therefore varies with the gun tube geometry as given by Equation (4.22). The force and
displacement components are plotted for the normal values of axial rigidity, EA, and
flexural rigidity, EI, of the thermal shroud, and also for high and low EA and EI, the values
being increased and decreased respectively by a factor of a thousand. In the following
section, we define the geometrical parameters employed in the study, namely, the initial
curvature and torsion of the gun tube, in terms of the corresponding geometrical

parameters that define the shape of the helix of Figure 2.1, namely, a and ¢.
6.2 The Definition of Curvature and Torsion

Every space curve of constant curvature and torsion is uniquely and completely
specified by these two quantities, apart from its position in space. While it would be
possible to consider ¢ and ¢, which define the shape of the helix of Figure 2.1, as a
legitimate choice of geometrical parameters for this study, we have chosen to employ the
initial curvature, x, and torsion, A, of the centroidal axis of the gun tube as parameters to
represent its initial shape on account of their generality. We now derive relationships

between these two sets of geometrical parameters.
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The curvature and torsion of a space curve are defined by the following two

Frenet-Serret formulae,

—

Ik k>0 (5.1)
ds
B _ (5.2)
ds

where : B_, and v are the vector tangent, binormal am:i principal normal to the curve, and s
is the arc length. By definition, x and A are zero for a straight line. The cross product
7 X v defines the binormal vector, E: which is the outward normal to the osculating plane.
The torsion, A, measures the rate at which the direction of F changes along the curve.
From equations (2.7), (2.8), (2.9), (5.1) and (5.2), the curvature and torsion of the helix are
found to be:

¢a a
= - 5.3
* T 1 T Rp? (5.3)
¢b ab .
A= - = - 5.4
Lt RL? (5.4)

The parameters a, b, R and L in equations (5.3) and (5.4) are exactly as shown in Figure

2.1. Note that R represents the radius of the cylindrical surface that contains the helix.

Note also that the length of the gun tube, L, is fixed, and bis givenas v L% - a2.

Since we are only concerned with the magnitude of torsion, for the purposes of this

analysis, we rewrite Equation (5.4) as

¢b ab
- - _ 5.5
! = RL? (5.5)

From equations (5.3) and (5.5), we get

; (5.6)

xle

£
A

and thus, we have the following two expressions for a and b in terms of x and A:
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vV K 2_)2
From equations (5.3) and (5.7), we also obtain the following expressions for ¢ and R in

terms of x and A:

¢ = LVi?-2? (5.9)
R =5~ (5.10)
Ke+A

Having obtained the curvature, x, ahd torsion, A, in terms of a. ¢ and constant L,
and also developed reciprocal relationships for a, 4, ¢ and R in terms of x, A and L, we are
equipped to compute the force and displacement components that we seek to plot, given
the values of initial curvature and torsion of the gun tube. This may be done by first
computing a, b, ¢ and R from equations (5.7), (5.8), (5.9) and (5.10) respectively, and L,
from Equation (4.22}, then solving the particular compatibility equations, equations (4.21)
or (4.23) as the case may be, to obtain the applied force components, and lastly,
substituting these scalar forces into equations (3.11) to get the required displacements and

rotations of the gun tube end.
5.3 Compatibility 1: Physical Interpretation

In Compatibility 1, we assume that the shroud has stiffness only in its axial
direction. The shroud is assumed to have zero transverse or rotational stiffness. Since the
gun tube end is free to move in the transverse direction, the only force that acts on it is
directed along the centroidal axis of the shroud.
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5.3.1 "In-Plane” Force and Displacements: An Anomaly Explained

Each point on the curve has an associated osculating plane which is normal to the
binormal vector at that point. The variation of the osculating plane along the curve for the
values of curvature and torsion considered is very small. In other words, the helical arc
described by the centroidal axis of the gun tube, and the chord along which the shroud is
aligned. form a surface that is almost planar. The non-planarity of this surface is measured
in terms of the rate of change of the binormal vector along the arc, A = |dfi7 ds|,and isat a
maximum when the curvature and torsion are equal. .This is illustrated in Figure 5.1, for a
fixed radius, R. It can be proven mathematically that this characteristic is unchanged even

if the radius is allowed to vary along a constant curvature contour.

This surface is almost identical to the chc plane in the chord system of Figure
4.1. The forces and displacements in the X Y_plane, namely, Fy,, Fy, Mg, and U, V,,
and 67,. may be regarded as being in the plane of the curve and will be referred to in the
following discussion as the ”in-plane” forces and displacements. Since all the forces and
displacements we refer to are in the chord system, we will drop the "chord” subscript for

convenience.

Fy and Fj are identically zero due to the fact that the shroud offers no resistance
to the motion of the gun tube end in the transverse direction. Figure 5.2 shows a plot of
Fy. Note that F'y decreases as the curvature increases, whereas it is virtually unaffected by
torsion. The decrease of Fy with increase in curvature is consistent with experience with
rods with plane curvature. The apparent independence of Fy on torsion is somewhat
surprising at first sight, since both curvature and torsion may be thought of as representing
deviations from straightness. At a physical level, this may be rationalized by saying that
the helical arc representing the centroidal curve of the gun tube is an almost circular arc in
the X Y _plane whose curvature is held fixed (along a constant curvaturé contour). Thus
increasing torsion only increases the deviation of the curve from l;he chc plane upto a
maximum at x = A. As )\ grows greater than x, the curve approaches a straight line, since

b becomes much greater than a. This leads us to expect an increase in Fy with increasing
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torsion. This is borne out by the numbers generated for the plot of Figure 5.2. The
increase in Fy is more apparent for low values of curvature than for high values, because

when the curvature is small, Fy is very close to the limiting value for a straight rod.

The behavior observed for F'y also occurs in the plots of U, V and 6, (figures 5.3 -
5.5), namely, they do not show an appreciable variation with torsion along lines of constant
curvature. The same argument holds, namely, the torsion changes the deviation of the
helical arc from the chc plane but the curve is essentially circular, has the same curvature
and is almost contained in the chc plane, so that the displacements are virtually
unaffected by a variation of torsion. Note that 6 is always negative; this demonstrates that

the helical rod "unwinds” as it is stretched.

The U and @, displacements show a maximum along lines of constant torsion.
This is a result of the imposition of compatibility and may be explained as follows: Initially,
the curvature lends the rod an added flexibility as a result of which the displacements
increase. However, as curvature increases, the force developed due to the interaction
between the shroud and the gun tube, Fy, decr;zases monotonically. A point is reached

when the decrease in the force overtakes the increase in flexibility.
5.3.2 Out-of-Plane Displacements

The W, 8y and @y displacements of figures 5.6 - 5.7 (0 is negligibly small and has
not been shown), on the other hand, represent motions of the end of the gun tube in a
direction perpendicular to the chc plane. These are therefore termed as the "out-of-
plane” displacements. 6y remains essentially zero for all values of the applied force. Since
the applied force is in the chc plane, and the helical arc is also essentially confined to this
plane, we naturally expect that the out-of-plane displacements will be smaller in
magnitude. This is seen to be the case. These displacements show peaks in the region
defined by £ = A. This is because when x = A, the rod departs from the plane the most. In
the plot of W however, the peak is off the x = A line of symmetry. This may be attributed

to the imposition of compatibility as explained in Section 5.2.1.
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Figure 5-3: Compatibility 1: U versus Curvature versus Torsion
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Figure 5-4: Compatibility 1: V versus Curvature versus Torsion
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Figure 6-6: Compatibility 1: @, versus Curvature versus Torsion




Note that in Compatibility 1, the displacement is dominated by U, that is, the U
component of displacement is of the largest magnitude. This is because V is constrained
due to the axial rigidity of the shroud, and W is small because it is an out-of-plane

displacement.

Note also that the anomalous behavior with respect to torsion is largely due to the
fact that the displacement components plotted are in the chord system. In other words, if
the XY plane of the system, in which the displacements are described, were not to almost
contain the helical curve, there would no longer be any sense in which a displacement could
be considered to be in-plane or out-of-plane, and the eﬂ'ectg of these two kinds of motions

would be fused.
5.4 Compatibility 2 and its Variations

In Compatibility 1, we assumed that the shroud is infinitely flexible in the
transverse direction. Compatibility 2, on the other hand, is a condition wherein the shroud
is assumed to have a finite non-zero transverse stiffness. This gives rise to two additional

components of force exerted on the gun tube at its end, namely, Fy and Fj.
5.4.1 Compatibility 2

The shape of the plots of the different force and displacement quantities against
curvature and torsion is unchanged by the change of the compatibility condition. In other
words, the in-plane forces and displacements, Fy, Fy and U, V, 87 of figures 5.8, 5.9 and
5.11, 5.12, 5.16 respectively show the same lack of variation with torsion along lines of
constant curvature. In addition, U (and the corresponding force of resistance Fy) and 6,
show the same maxima along constant torsion contours. As explained earlier, these are due

to the imposition of compatibility. The out-of-plane displacements W, 8y, and @y also
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Figure 5-8: Compatibility 2: Fy versus Curvature versus Torsion
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Figure 5-10: Compatibility 2: F; versus Curvature versus Torsion
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Figure 8-11: Compatibility 2: U versus Curvature versus Torsion
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Figure 8-12: Compatibility 2: V versus Curvature versus Torsion
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Figure 5-14: Compatibility 2: @y versus Curvature versus Torsion
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Figure 8-16: Compatibility 2: 6 y versus Curvature versus Torsion
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Figure 5-16: Compatibility 2: 8; versus Curvature versus Torsion
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imitate those of Compatibility 1; they show peaks in the region where x = A.

The forces Fy and Fy arise out of the resistance of the thermal shroud to the U
and W displacements of the gun tube. Thus, their plots imitate those of U and W, with a

reversal of sign. Note that Fz is much smaller than F)- in magnitude. This is because the
out-of-plane W displacement component is correspondingly smaller in magnitude than the
in-plane U displacement, and as a result, the resistance offered by the shroud to W is also
lesser. The U and W displacements decrease significantly in magnitude in comparison with
those of Compatibility 1. as expected, due to the restraining forces Fy and F respectively.
Thus, we find that in Compatibility 2, V is the dominating displacement component. The
behavior of the 8y rotation represents the straightening of the helical arc of Figure 5.1 and
the consequent reduction of its deviation from the XcYc pia.ne. Thus 6y remains always

negative.
5.4.2 Variations on Compatibility 2

We now study the effect of variations of the axial and flexural rigidity of the
shroud on the forces and displacements that the gun tube experiences. If either of the axial
(EA) or transverse (EI) stifinesses of the thermal shroud is increased, as expected, the force
acting on the gun tube increases. If the shroud is made more axially stiff, that is, if EA is
increased, the Fy component of force increases more significantly than the Fy and Fy
components. The reverse is true of the case in which the shroud is stiffened laterally by
increasing E1. This is evident from figures 5.17, 5.18, 5.20, 5.21, 5.23 and 5.24.

Comparing figures 5.9 and 5.20, we see that the increase in Fy due to latera.l.
stiffening is more significant for the larger values of curvature. For small values of
curvature, this increase is insignificant. This is because when the curvature is small, the
displacement of the gun tube end is primarily along the Yc direction so that the increased
ET has no bearing on the resistance offered by the shroud to the motion of the gun tube
end. Thus Fy is unaffected by increased EI for small curvature. On the other hand, for
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Figure 5-17: Compatibility 2, EI high: Fy versus Curvature versus Torsion
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Figure 5-18: Compatibility 2, EA high: Fy versus Curvature versus Torsion
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Figure 6-19: Compatibility 2, EA low: Fy versus Curvature versus Torsion
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Figure 8-20: Compatibility 2, EI high: Fy versus Curvature versus Torsion
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2 (Dependent Variable {1 unit = 30.0000 N 133.6712 N to 435.4433 N

plotted for s temp.
rise of 100 deg. C)
FORCEY

TOA

Compatibility 2, EA low: Fy vs Cur vs Tor

Figure 6-22: Compatibility 2, EA low: Fy versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) {4 unit = Cur x 10.0 (Log) 1.0E-4 /m to $.0E-1 /m
Y {Torsion) 1 unit = Jor x 40.0 (Log) O, 4.0E-4 /m to 4.0E~1 /m
2 [Oependent Variable 1 unit = 42.0000 N -47.3472 N to 0.0000 N
plotted for a temp.
rise of 300 deg. C) FORCEZ

Compatibility 2, EI high: Fz vs Cur vs Tor

Figure 5-23: Compatibility 2, EI high: Fj versus Curvature versus Torsion
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AXIS SCALE RANGE
X {(Curvature) 1 unit = Cur x 10.0 {Log) 1.0E~4 /m to 1.0E~-{ /m
Y (Torsion) {1 unit = Tor x 40.0 {Log) 0. 1.0E~4 /m to 4.0E-4 /m
Z (Dependent Variasble 1 unit = 12.0000 N -45.0358 N to 0.0000 N

plotted for a temp.
rise of 100 deg. C)
FORCEZ

CuR

Compatibility 2, EA high: Fz vs Cur vs Tor

Figure 5-24: Compatibility 2, EA high: Fjz versus Curvature versus Torsion
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SCALE

1 unit = Cur x 10.0 (Log)
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0.0000 N
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Figure 5-25: Compatibility 2, EA low: Fj versus Curvature versus Torsion
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large curvatures, the gun tube end experiences lateral motion to which the shroud, due to
its increased EI, offers increased resistance. Thus the overall resistance increases and so
does Fy. Referring to Figure 5.21, we see that the increase in Fy due to axial stiffening is
felt most for small values of curvature. A converse reasoning may be used to explain this

situation.

If the EA of the shroud is decreased, which amounts to making it more easily
extensible, F'y becomes almost constant at approximately 135.0 N. This is explained in
terms of equations (4.23) as follows: As the EA of the shroud is decreased, we expect that
the force Fy decreases. This means that the displacements also decrease, resulting in lower
values of Fy and F; For the purpose of this argument, therefore, we replace the
compatibility equations (4.23) with Equation (4.21). Now, if EA is decreased, it is clear
from Equation (4.21) that the L,/(E,A,) term dominates the denominator, so that Fy is
approximately constant and equal to E,4,a2 T, which for the assumed data, evaluates to
147.1 N. The difference, of course, is due to the fact that we cannot reduce equations (4.23)
to Equation (4.21). since Fy and F  are non-zero in reality. Note from figures 5.19 and 5.25
that Fy and F; are indeed greatly reduced in magnitude as supposed in the above

argument.

Another point worth noting is that the graphs of Fy and F; do not show the
maxima along constant torsion contours as for previous compatibility conditions. Recall
that in Compatibility 1, we explained the maxima in the U and 8 plots as representing the
meeting point of two conflicting tendencies, the increase in flexibility of the rod with
increasing curvature, and the decrease in force resulting from the solution of Equation
(4.21). Here. however, the force Fy is almost constaat, so that these maxima are obviously

out of the question.

If, on the other hand, we decrease the EI of the shroud, Compatibility 2 reduces,
in the limit, to Compatibility i, since the shroud becomes more flexible and offers negligible
resistance to the lateral motion of the end of the gun tube. The plots for low EI have not

been included for precisely this reason.
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AXI1S SCALE RANGE
X {Curvature) 1 unit = Cur x 10.0 (Log) 4.0E-4 /m to $.0E-4 /m
Y {Torsion) 4 unit = Tor x 10.0 (Log) 0, ¢{.0E-4 /m to 4.0E-1 /m
2 (Dependent Vvariable 1 unit = 0.0000 m 0.0000 m to 0.0000 m

plotted for a temp.
rise of 400 deg. C)

TOR

Compatibility 2, EI high: U vs Cur vs Tor

Figure 8-26: Compatibility 2, EI high: U versus Curvature versus Torsion
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AX1S SCALE RANGE
X (Curvature) 4 unit = Cur x 40.0 (Log) 4.0E-4 /m to 1.0E-1 /m
Y (Torsion) ' 4 unit = Tor x 10.0 {Log) O, 4.0E~4 /m to 1.0E-4 /m
2 (Dependent variable i unit = 0.0200 m 0.0003 = to 0.0409 »

plotted for a temp.
rise of 100 deg. C}
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TO0R

Compatibility 2, EA high: U vs Cur vs Tor

Figure 5-27: Compatibility 2, EA high: U versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) 4 unit = Cur x 40.0 (Log) 4.0E-4 /m to 1.0E-% /m
. Y (Torsion) t unit = Tor x 10.0 {Log) O, 21.0E~4 /m to ¢.0E-% /&
Z (Dependent variable { unit = 0.0004 m 0.0000 & to 0.0004 m

plotted for a temp.
rise of 400 deg. C)

CUR

Compatibility 2, EA low: U vs Cur vs Tor

Figure 5-28: Compatibility 2, EA low: U versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) 4 unit = Cur x 10.0 (Log) 4.0E~4 /m to 1.0E-1 /m
Y (Torsion) 1 unit = Tor x 40.0 (Log) O, 1.0E-4 /m to 1.0E-1 /m
Z (Dependent Varisble 1 unit = 0.0024 m 0.0037 m to 0.0057 m

plotted for a temp.
rise of 400 deg. C)

CuR

Compatibility 2, EI high: V vs Cur vs Tor

Figure 5-29: Compatibility 2, EI high: V versus Curvature versus Torsion
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AXIS SCALE ‘ RANGE
X {Curvature) 1 unit = Cur x 40.0 (Log) 4.0E-4 /m to 1.0E-% /m
Y (Torsion) 1 unit = Tor x 10.0 (Log) O, 1.0E~4 /m to 1.0E-1 /m
Z |Dependent Variable 1 unit = 0.0024 m 0.0063 m to 0.0063 m

plotted for a temp.

rise of 100 deg. C}

v
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Compatibility 2, EA high: V vs CSur vs Tor

Figure 5-30: Compatibility 2, EA high: V versus Curvature versus Torsion
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AX1S SCALE RANGE
X (Curvature) 1 unit = Cur x 10.0 (Log) 1.0E-4 /m to 4.0E-% /m )
Y (Torsion) 4 unit = Tor x 10.0 (Log) O, 1.0E-4 /m to §.0E-1 /m
Z (Dependent varishble 1 unit = 0.0000 m 0.0000 m to 0.0004{ m

plotted for a temp.
rise of 100 deg. C)

CUR

Compatibility 2, EA low: V vs Cur vs Tor

Figure 6-81: Compatibility 2, EA low: V versus Curvature versus Torsion
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AX1S SCALE RANGE

X (Curvature] 1 unit = Cur x 10.0 (Log) 1.0E-4 /m to 4.0E~1 /m
Y (Torsion) 1 unit = Tor x 40.0 (Log) O, 4.0E~4 /m to $.0E-4 /m
Z {Dependent Variable 1 unit = 0.0000 m 0.0000 m to 0.0000 m

plotted for a temp.
rise of 400 deg. C)
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Compatibility 2, EI high: W vs Cur vs Tor

Figure 6-32: Compatibility 2, ET high: W versus Curvature versus Torsion
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AX1S

SCALE RANGE
X (Curvature) {1 unit = Cur x 10.0 {Log) 1.0E~4 /m to 1.0E-4 /m
Y (Torsion) 1 unit = Tor x 30.0 (Log) O. 4.0E-4 /m to 4.0E-1 /n
12 (Dependent varisble {1 unit =

0.0005 m 0.0000 m to 0.0007 m
plotted for a temp.

rise of 100 deg. C)

TOR

Compatibility 2, EA high: W vs Cur vs Tor

Figure 6-88: Compatibility 2, EA high: W versus Curvature versus Torsion
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X {(Curvature) 1 unit = Cur x 10.0 (Log) ¢.0E-4 /m to 1.0E-1 /m
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Figure 5-84: Compatibility 2, EA low: W versus Curvature versus Torsion
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We observe from figure 5.26 and 5.32 that when the EJ of the shroud is increased,

the transverse displacements, U and W, decrease considerably, although there is no change
in the shape of the plots as compared to those of Compatibility 2. The V displacement
shown in Figure 5.29 decreases, for increased EI, noticeably for higher values of curvature,
from 0.0059 m in Compatibility 2 (Figure 5.12), to 0.0057 m in the present case, since Fy

increases for higher values of curvature as explained earlier.

If EA of the shroud is increased, the V displacement attains an almost constant
value of 0.0063 m. This is shown in Figure 5.30. This is because the shroud has now

become almost infinitely rigid as compared to the gun tube. Thus the curvature and

torsion of the gun tube are irrelevant. The magnitude of V is, in the limit, simply equal to
the expansion of the thermal shroud, that is, Lo T. The transverse displacements U and
W increase from their values in Compatibility 2. This may be attributed to the enormous

increase in the force exerted by the shroud on the gun tube.

If the EA of the shroud is decreased, we find that the maxima along lines of
constant torsion seen in the plots of U and W, and the inflexion point in the plots of V
disappear. This is due to the fact that the force exerted by the shroud on the gun tube is
almost a constant, as can be seen from Figure 5.22. All of the above displacements decrease
considerably in magnitude, mainly due to the fact that the force exerted by the shroud on

the gun tube is very small.

The rotations 8y, 8y, and 6 are the angular displacements of the tangent to the
centroidal axis of the gun tube. These therefore represent the straightening of the helical
arc as it is extended. The plots of 6y, 0y, and 8 of figures 5.35 - 5.43 are generally similar
to those of Compatibility 2. If either of the EI or EA of the shroud is increased, all of the
rotations increase since the gun tube tends to straighten to a greater extent, on account of
the shroud’s increased stiffness. If the EA of the shroud decreases, then the maxima of the
plots of 8y and 65 that occur in the region x = A, disappear. This is because the force

exerted on the gun tube by the shroud approaches a constant value.
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AXI1S SCALE RANGE
X (Curvature) 1 unit = Cur x 10.0 (Log) 4.0E-4 /m to 1.0E-{ /m
Y (Torsion) 1 unit = Tor x 10.0 (Log) O. 4.0E-4 /m to 1.0E-1 /m
Z (Dependent Variable 1 unit = 0.0250 deg  -0.0461 deg to 0.0000 cdeg
plotteda for a temp.
rise of 400 deg. C) THETAX

CuR

TOR

Compatibility 2. EI high: Thetax vs Cur vs Tor

Figure 5-85: Compatibility 2, EI high: 6y versus Curvature versus Torsion
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AX1S SCALE RANGE
X {(Curvature) 1 unit = Cur x $0.0 (Log) §.0E-4 /m to 4.0E-% /m
Y (Torsion) 1 unit = Tor x 40.0 (Log} O, 21.0E-4 /m to 4.0E-1 /a
Z (Dependent Variable 1 unit = 0.0250 deg  ~0.0399 deg to 0.0000 deg
plotted for & temp.

rise of 100 deg. C) THETAX
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TOR

Compatibility 2, EA high: Thetax vs Cur vs Tor

Figure 5-36: Compatibility 2, E4 high: @ versus Curvature versus Torsion
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AXI1S SCALE
X (Curvature) { unit = Cur x 10.0 (Log)
Y {Torsion) 1 unit = Tor x 40.0 (Log)
Z [Dependent Varisble 1 unit = 0.0002 deg
plotted for 8 temp.
rise of 100 deg. C) THETAX

RANGE

$1.0E-4 /& to 1.0E~1 /m

0. 4.0E-4 /m to 1.0E-1 /n
~0.0003 deg to 0.0000 deg

T0R

Compatibility 2, EA low: Thetax vs Cur vs Tor

Figure 5-37: Compatibility 2. EA low: 8y versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) 1 unit = Cur x 10.0 (Log) 4.0E-4 /m to 4.0E-41 /m
Y (Torsion) 1 unit = Tor x 10.0 (Log) 0. $.0E-4 /m to 41.0E-1 /m
Z (Dependent Variable 1 unit = 0.0090 deg ~0.0099 deg to 0.0000 deg
plotted for a temp.
rise of 100 deg. C) THETAY

Cdmpatibility 2, EI high: Thetay vs Cur vs Tor

Figure 5-38: Compatibility 2, ET high: @y versus Curvature versus Torsion
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AXIS SCALE RANGE
X [Curvature) 1 unit = Cur x 10.0 (Log) 4.0E-4 /m to $.0E~1 /m
Y (Torsion) 1 unit = Tor x 30.0 (Log) 0. 4.0E-4 /m to 1.0E-1 /m
Z (Dependent Variable 1 unit = 0.0100 deg -~0.0080 deg to 0.0000 deg

plotted for s temp.

rise of 400 deg. C) THETAY

Compatibility 2, EA high: Thetay vs Cur vs Tor

Figure 6-39: Compatibility 2, EA high: 8y versus Curvature versus Torsion
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Y (Torsion) 1 unit = Tor x 40.0 (Log) O, 4.0E~4 /m to 4.0E-1 /a
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plotted for a temp.
rise of 100 deg. C) THETAY

CUR

TOR
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. Figure 5-40: Compatibility 2, EA low: 6y versus Curvature versus Torsion
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AXIS SCALE RANGE
X (Curvature) {1 unit = Cur x 10.0 (Log) 4.0E~4 /m to 1.0E~¢ /m
Y (Torsion) 1 unit = Tor x 10.0 (Log) O, $.0E-4 /m to $.0E-1 /&
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Compatibility 2, EI high: Thetaz vs Cur vs Tor

Figure 5-41: Compatibility 2, ET high: 8, versus Curvature versus Torsion
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AXIS SCALE RANGE
X {(Curvature) 1 unit = Cur x 10.0 (Log) 1.0E-4 /o to 4.0E~{ /m
Y (Torsion} funit = Tor x 10.0 (Log) 0, 1.0E~4 /m to 4.0E-4 /m
Z (Dependgent Variable t unit = 0.4800 deg ~1.6577 deg to  -0.0102 deg
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Compatibility 2, EA high: Thetaz vs Cur vs Tor

Figure 8-42: Compatibility 2, EA high: 0 z versus Curvature versus Torsion
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Figure 6-43: Compatibility 2, EA low: §; versus Curvature versus Torsion
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The following chapter contains the formulation of a general space-curved finite
element which is later used to independently confirm the values of the more exact

displacements found from the first method of solution.

.

1




CHAPTER 6
A GENERAL SPACE-CURVED FINITE BEAM ELEMENT

6.1 Introduction

In the previous chapters, we formulated and performed a parametric study of an
exact solution to the problem of finding the displacements of the end of the gun tube. In
the present chapter, we present an alternative approach: the development of a general
space-curved finite beam element within which variable curvature and torsion are
permitted. By the use of an assemblage of such elements, we may model a rod of arbitrarily

varying cross-section. and curvature and torsion.

The element is derived by employing the variational method. The formulation
assumes the expression for the deformation strain energy density of a curved beam, whose
centroidal axis is an arbitrary space curve of variable torsion and curvature, obtained by
Tsay and Kingsbury. [Tsay 86] This expression is derived from the linearized strain-
displacement relations due to Kingsbury {Kingsbury 84], which assume that cross-sections

remain plane and normal to the centroidal curve under deformation.

The most important feature of this element is its generality. The element stiffness
matrix obtained is valid for any beam element whose centroidal axis is a curve with a
constant rate of change of curvature and torsion throughout its length and also a constant
shape of cross-section. In the following chapter, we shall present a comparison between the

exact and the finite element solutions.
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6.2 The Displacement Field

6.2.1 Assumptions of the Formulation

The differential equations describing the motion of space-curved beams have been
formulated by Kingsbury in terms of the displacement components u, v, w and ¢ which
represent four of the six unknown displacements or degrees of freedom permitted to any
point on the beam. Exact solution of these four differential equations is made difficult by
the fact that they are involve coupling in the above four variables due to the introduction of
torsion. u, vand w are translational displacements of the centroid of a generic cross-section
in the directions of the local principal normal, binormal and tangent respectively, and ¢
represents the angular displacement of any point of the cross-section about the local

tangent. These four displacement quantities vary along the length of the béam; this may be

expressed as
v = u(z)
v = v(2)
w = w(z)
¢ = of2) (6.1)

where z is the arc length measured along the space-curved beam. The remaining two
angular displacements are derived Kingsbury 84| from u(z), v(z) and w(2), according to the

equations below, which follow from the neglect of transverse shear deformation:

Jv
- - A 6.2
dz ¥ (62)

o, = 3—:—4\04-&1» (6.3)

The second assumption made is that angular displacements are small and hence may be
transformed from one coordinate system to another the same way as translational

displacements are.
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6.2.2 The Displacement Field: A Polynomial Representation

Consider the finite element shown in Figure 6.1. Each node of the element has six
degrees of freedom, three translational and three rotational. The element, therefore, has
twelve degrees of freedom in all. As stated in the foregoing section, the four displacements

in terms of which the differential equations are formulated are functions of the independent

variable z, the arc length along the beam.

Noting that the highest orders of derivatives of these displacements, u, v. w and ¢
appearing in the four coupled differential equations of Kingsbury are four, four, two and

two respectively, we adopt the following polynomial representation of the displacement
field:

u(2) = ) — 62— agz? ~ g,2°

o(2) = by = byz~ byz? = b23

w(z) = ¢; ~ ¢y

o(z) = dy ~ dyz (6.4)

The reader may note that the total number of undetermined constants in the above
equations is the same as the number of element degrees of freedom to be specified, that is,
twelve. It may be mentioned here that the above displacement field satisfies the differential
equations of Kingsbury ezactly in the case that curvature x and torsion A (and their
derivatives) are identically zero, in other words, in the straight beam case. It does not,
however, satisfy the differential equations for the space-curved beam. However, in
- consideration of the fact that we are dealing with small curvatures and torsions
representing the imperfections in the straightness of gun tubes, this assumption appears to

- be reasonable.
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Figure 6-1: Degrees of Freedom of the Finite Element

Having chosen polynomials to describe the displacements, we now seek to obtain
the shape functions for the displacement field. To achieve this, we must first determine the
unknown constants introduced in equations (6.4). These constants are expressed in terms
of the values of the element d.o.f. (degrees of freedom), which are specified. Differentiating
equations (6.4)a and (6.4)b, we have:

u’(2) =g oy + 2897+ 3a,2°
dz

v'(2) = % = by + 2byz + 3b,2? ) (6.5)
z
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Let u;, vy, wy, u; ", vy, @y, and ug, vy, Wy, 43", V3, @4 be the values of the element d.o.f. at
the two nodes given by z = 0 and z = I respectively. Evaluating equations (6.4) and (6.5) at
the two nodes, setting them equal to the known values of the d.o.f. and inverting the

relationships, we arrive at the following expressions for the constants:

4 =%

BETTE 1
2 w) (v —u)
4= 3 77

l l
by =1
b,-—vl

3(vp— v 2u, ~ v

by = (”21 ) - 2y 2)

l l
ho=2m-t) (v <)
4T3 )

l {
GG =
c2=(w2‘l‘"1)
d, =0,
dy =82~ ¢1) - ¢1) (66)
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6.2.3 The Shape Function Representation

Having determined the unknown constants in terms of the known nodal values of

the displacements, we may now write the shape functions for the assumed displacement
field. Substituting equations (6.6) into equations (6.4) and rearranging the terms, we
obtain the shape functions for the displacements u and v to be the following cubic

polynomials in =

322 223
Ll(2)=l——lzi—""—13—
222 23
L =z- = -
9(2) =2 I 2
2 3
z 2
Lys) =y -
I i
2 3
L =-Z+5 6.7)

We also obtain the following linear shape functions for displacements w and ¢:

Na#) =7 (6.8)

Combining the shape functions of equations (6.7) and (6.8) with the nodal values

of the displacements, we obtain the following expressions for the four displacements:

37 2.3 22 3
W) = (1-Tr+T5)m + (=T +H)w

32 2.3 L .
+ (71"73')“2 + (*%*‘p)"z




) b9 (6.9)

Having obtained the displacements as interpolations of their nodal values in terms
of the arc length z, we are now in a position to get an expression for the strain energy of
deformation of the beam element in terms.of the nodal values of the displacements. This is

accomplished in the following section.

6.3 Strain Energy of the Beam Element

6.3.1 The Linear Strain Energy Density Function

The expression for the linear strain energy density (strain energy per unit arc

length) of the deformed beam, as obtained by Tsay and Kingsbury {Tsay 86}, is:

~uv A +u'v A

R i L L0 N U
= 2 2 2

e} 2
+uu'/\/\'—v"pc¢—u/\'n¢—u'An¢]-+-G[(li)—+uv'z\n2
2 2 2 2
(A0 s e @07, 08 (8)? )
2 2 2 2

-f'Iw {E{v”wﬂ’+'}’lw'n-ﬂ””A'—v’v"A"’u"v"

~v'o'x~

Fuwd’x +uw A x—uo(A) - uo AN Fuu A +uwAk’

+u AR w AN ~uw oA+ uu A wKK'¢-— w'lc’¢
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~vAko-vAkd-u kd ]+ Glowrd+uwrnd+uwnle
_ . 1 R | . - 2_ . . 2
VAR +u VR -0 Akp—uv(AR) - vAkd +uu'Ak

~u'ko —uxilel}

(e N )P (we)? (w'n)?
W 2 2 2 2
—uwvA-uw YA s Rk ~uT UK+ oA v wAk’
2.4

—v'w')‘:c—vw/\'n'-vw’z\'x-Q-ww'n:rc’]~+—G[w'C -vwik?

2 ’ Y
*u'wxs—w)‘n%-*--(v—'\x—)-—u'vz\nz—v'\zmp-o-%

22 2 R

~A {E{(‘”) —uw'n+(“_")_3} (6.10)

2 2

6.3.2 Strain Energy of the Element

Substituting equations (6.9) into Equation (6.10), the strain energy density
function, and integrating the result over the length of the element I, we arrive at the
expression for its strain energy of deformation. This expression, however, is presented in

Appendix B. owing to its length.

6.4 The Element Stiffness Matrix

Next, we apply Castigliano’s First Theorem to the strain energy expression. The
theorem states that if a linearly elastic structure is subjected to a displacement, the load in
its direction that causes the displacement is equal to the partial derivative of the strain
energy of deformation of the structure with respect to that displacement. We, therefore,
differentiate the strain energy with respect to the nodal values of displacements which
appear in the expression and thus obtain the components of the internal force and moment
acting on the ends of the element in their respective local coordinate systems specified by
the tangent, binormal and principal normal at those points.
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The coefficients of the nodal values of displacements appearing in the expressions
for nodal forces and moments obtained by differentiating the strain energy are in fact the
elements of the element stiffness matrix K. The relationship between the nodal forces and

the noda! displacements in terms of the element stiffness matrix K is:
F = K& (6.11)

where, F is the internal force vector given by

F = Vi, Vy, Vz; Mz, My, Mz; Vz, Vy, Vzy Mz, My, Mz, T, (6.12)

and . is the nodal displacement vector given by
A _ : . T
L= U v W 0y 0y 0 Uy Vg Wy QppQyy By . (6.13)

The o and a values in the nodal displacement vector are as given by equations
(6.2) and (6.3). Since we are interested in displacements occurring for small values of
curvature x and torsion A, we drop the last term from Equation (6.2) and the last two

terms from Equation (6.3). thereby getting the simpler results

and  a, = (6.14)

o = _ Ov
v dz

: 3z
The above relationships hold ezactly for the case of the straight beam, and are, therefore,

consistent with the shape functions assumed for the element.

Note that this simplification results in an uncoupling of displacements, thereby
rendering the problem more amenable to solution. We now haveay = ~v;', a0, = 4,
ayp = ~ vy  and a3 = u,y’, as per Equation (6.14), so that the moments Mz,, My,, Mz,
and My, are obtained by applying Castigliano’s First Theorem as follows:

aU

le =T —
avl
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ouU
My, = —/=—
Y1 6ul'
MI2 = - iU_
6‘02
My = 22 (6.15)
Ug

The term U appearing in the above equations is the strain energy of deformation of the

element.

The 12 x 12 element stiffness matrix is symmetric, as expected. The expressions
for the elements of the stiffness matrix in terms of the geometrical parameters defining the
element. k, k", A, A ', [, cross-sectional prdperties I.. I,y, Iw , A, and material properties E
and G, are provided in Appendix D, which contains a finite element program used to
compare the displacements obtained by using the general space-curved beam element with

those of the exact solution presented in previous chapters.
6.4.1 Reduction to the Straight Beam Case

In this subsection, we present a check on the element stiffness matrix obtained
earlier for the case of the straight beam element. For the straight beam, we have zero
torsion and curvature. Substituting these values into the expressions found for the
elements of the stiffness matrix, we obtain the following results which agree with the
standard straight beam element matrix |Zienkiewicz 77.. (Only the non-zero upper

triangular elements are listed row-wise, since the matrix is symmetric.)

K(11) = - K1.7) = lz_.ﬁlw

K(12) = - K(18) = 1_2_1?,-15'

K(1.4) = K(110) = ~ ﬁ%’a
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K(15) = K(1.11) =§_’f2£a

K(22) = - K(28) = l?T”;’_n

K(24) = K(2.10) = - %’5

K(25) = K(2.11) = ﬁil';;l_zy
K@27) =- ifr’_zy

K(4.4) = 2 K(4.10) = _4.El I,
K(45) = 2K(4.11) = ~ _4E11§y

6E1

K1) =- 23w
K(48) = - 9_%’3
K(55) = 2K(5.11) = i_EI_’w
K(57) = - 9_%1_,,
K(58) =~ 9%’3

K(5.10) = - LEILu

K(66) = - K(6,12) = .CLIBE'_IW_)
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K(.7) = 1_2_1?5.&:/
K(18) = ﬁl‘%{a
K(1,10) = 9%5
K(1.11) = ~ ’L’f,’w
K(88) = ‘iﬁé
K(8.10) = ‘iff,’ﬂ
K(8.11) = - E%’ﬂ
K(99) = 5[_‘
K(10,10) = iE%
K(10,11) = - i’%v
K(11.11) = 4_”;&::
K(12,12) = 9.(_4:{‘__%_) (6.16)
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6.6 A Finite Element Example Solution

In this section. we present the results obtained by using the finite element
program of Appendix D for the displacements of the end of the gun tube, whose model is
shown in Figure 6.2. The gun tube is modeled as a cantilevered beam with three elements.
Note that compatibility of displacements of the ends of the gun tube and the shroud is not
enforced but we use as an approximation, the value of the force found for the exact
solution. for the corresponding values of initial curvature and torsion. The shroud is
removed. but the approximate shroud force is applied to the gun tube in a direction parallel

to the chord joining the ends of the gun tube.

Fixed End Eree End

7//////‘///////,/I//I////////////I//I//I/II//II/” I
‘ ,/////////////// L LALLM L cm cm

- | 3
J

L
175m 1w 15m

4

Element} Element 2 Element 3

Figure 6-2: Model of a Gun Tube

It must be brought to attention that the global stiffness equation whoee solution is
implemented by the finite element program is formulated in the chord coordinate system.
Since the element stiffness matrix is developed in the local tangent system, we miake use of
the transformations of Section 4.3 in obtaining the stiffness matrix in the chord system.
This, although not a necessity, facilitates the comparison between the displacements found

from the exact and the finite element solutions which is presented in the following chapter.
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The solution of the global stiffness equation in the chord system, F = KO,

proceeds as follows: We first partition the global force and displacement vectors into blocks
of known (denoted by the subscript a) and unknown (denoted by the subscript )
quantities, and rearrange the stiffness matrix accordingly. Thus the global equation may be

written as:

F Ky K A

8 — 88 ba

(72) - (Kua x) (AZ ) (6.17)
Now, since one end of the gun tube is held fixed, the known displacements &, are zero.

Thus the unknown displacements and forces (reactions) may be obtained from Equation
(6.17) as:

.:‘.3 = l‘an—l F

=3

F3 = Kg, K, "' F, (6.18)

The general finite element allows for variation of the curvature and torsion along
its length. In the present example, however, this facility is not used. Data and results for

this example follow.

Global Data:

Number of elements = 3
Lengthof guntube = 525m

Curvaturex = 1.0 x 10™* perm
Torsion A = 1.0 x 1073 perm
Rate of change of curvaturex’ =
Rate of change of torsion A’

ot

0

Modulus of elasticity E = 4.35097 x 10° N/m?
Shear modulus G = 1.67345 x 10°N /m2

Force exerted by thermal
shroud along the chord FYc = 61441952 N
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Elemental Data:
Length of each element = 1.7 m
Cross-section of element 1:
Innerradius = 0.06m = 6cm
Quterradius = 0.14m = l4cm
Cross-sections of elements 2 and 3:
Innerradius = 0.06m = 6cm
Outer radius = 0.10m = 10cm

Results:

Computed Reactions at the Fixed End in the Chord System:

F, = 7409 107° N
F. = -61441.952N
Ye
F. = 1964 x10°°'N
Ze
M. = -7409 X 10" *N-m
Xe
M, = -1954 x 10°% N-m
M, = -4439 x 107 N-m

End Displacement of the Gun Tube in the Chord System:

AX = 5984 x10 *m
AY = 2950 x10%m
AZ = 1510x10°%m
L0y = 3.712 x 107 ° deg
D8y = 3.266 x 107 ° deg
N8y = —1.146 x 1077 deg

Note that the applied force acts along the chord and so passes through the point
at which the gun tube is encastred. Thus the moments generated at the fixed end must be
zero; so should the reactions in directions perpendicular to the chord. This is borne out by
the computed reactions at the fixed end shown above, of course, with some error. In the

next chapter, we shall present a comparison of the exact and finite element solutions.




CHAPTER 7
A COMPARISON OF THE EXACT AND FINITE ELEMENT ANALYSES

7.1 The Impact of Simplifying Assumptions

Recall that the displacement field that we assumed for the finite element
formulation of Chapter 6 satisfied the differential equations of Kingsbury [Kingsbury 84]
only in the case of the straight beam. In other words, if we were to substitute these
displacements and their derivatives into the differential equations, we would expect a non-
zero residual. This implies a certain inherent inaccuracy in the finite element, and we
naturally expect that the element will show a greater accuracy for the smaller values of

curvature and torsion.

It must also be noted that the simplification of Equation (6.14) would affect the

accuracy of all the displacements, particularly w, «, and a,

7.2 A Comparison of the Exact and Finite Element Methods

Presented, in this section, are some of the displacements obtained by the exact
method under the first compatibility condition described in Section 4.5, and the
corresponding displacements obtained using the general beam element of Chapter 6, for a
few selected values of initial curvature and torsion of the gun tube. These displacements
were computed using the programs given in appendices C and D respectively.

The applied forces used in the finite element program were supplied from the

output of the program for generating the exact solutions, in which compatibility conditions
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were enforced. The gun tube and shroud data assumed for the comparison were the same

as those given in Chapter 5, and for ease of reference, they are presented below:

Gun Tube:

Length = 5.25 m
Inner radius = 0.06 m

Outer radius = 0.10 m

Elasticity modulus = 4.35097 x 10° N/m?
Shear modulus = 1.67345 x 10° N/m?

Thermal Shroud:

Inner radius = 0.11 m
Outer radius = 0.145 m
Temperature rise = 100 °C

Elasticity modulus = 4.35097 x 10® N/m?
Coefficient of thermal expansion = 1.206 x10 ™% /°C

The finite element analysis of the gun tube was performed with a 3-element and a
10-element model to verify the expected increase in the accuracy of the solution against the
exact solution. Five different cases of initial curvature and torsion are presented in this
chapter with conclusions about the results inserted at suitable junctures. Note that the
exact reactions at the fixed end of the gun tube consist of only one equal but opposite force
~Fy,. Since the force due to the shroud acts along the chord itself, no reaction moments

are produced at the fixed end.

CASE I:

=1.0x10"*/m
A=00/m

Applied force in the chord system, ch = 61441.9292446 N

Computed Reactions in the Chord System, in N and N-m:

3 Elements 10 Elements
F,  —5.2988725x10~ n 7.2120088 x 10~ 13
F, - 61441.9292446 - 61441.9292446
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F, 0.0 0.0
[
M, 0.0 0.0
M, 0.0 0.0
M,  —1.4694506 x 10-4 -1.3903836 x 10 ~°

Displacements in the Chord System, in m and deg:

Exact Solution 3 Elements 10 Elements
AX 6525015210 -4 6.5387099 x 104 6.5387628 x 10~ *
AY 36873859 %10 -3 3.6873662 <103 3.6873663 x 103
Lz 0.0 0.0 0.0
L8y, 0.0 0.0 0.0
L8y, 0.0 0.0 0.0
58,  —1.4272158 X102 -1.4293170 x 10~ 2 -1.4203262 x 10~ 2

CASE 2:

k=10x10"2'm
A=0.0,m

Applied force in the chord system, F Ye = 35426.4228976 N

Computed Reactions in the Chord System, ir. N and N-m:

3 Elements 10 Elements

F, =~ -44158832x10 -2 - 4.4949355 x 103
F, - 55426.4279317 - 55426.4204723
F, 0.0 0.0

{4
M 0.0 0.0

Xe
M, 0.0 0.0
M - 121.4720064 - 12.4268252

Displacements in the Chord System, in m and deg:

Exact Solution 3 Elements 10 Elements
AX_ 5897507810 -2 5.4112829 x 102 5.8475782 <102
AY, ~ 3.9458062x 10 -3 3.9069921 x 103 3.9410363 x 103
AZ 0.0 0.0 0.0
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L8y, 0.0 0.0 0.0
Ly, 0.0 0.0 0.0
L8y, - 1.2873947 - 1.2035964 ~1.2799743

From the above figures for cases 1 and 2, we observe that the finite element

method yields very accurate values of displacements, for zero torsion, when the curvature is

small. As mentioned following the finite element example of the previous chapter, an
indication of the accuracy of the solution is the accuracy of the computed reactions. We
expect that the only non-zero reaction at the fixed end of the gun tube is an opposite force

to that exerted by the thermal shroud.

With this in mind, it is easy to see that in the second case, the accuracy of the
solutions is not as good as the first. However, the error in the moment M 2 whose value
should be zero, is still not very large considering the enormous magnitude of the applied
force. Note that in Case 1. the 10-element model produces slightly more accurate reactions
than the 3-element model. There is also not much improvement in displacement values
from the 3-element model to the 10-element model. This lack of improvement may be
attributed to the inaccuracy of the element itself, inherent in the approximate displacement

field assumed in its derivation. In Case 2, however, the improvement is much more visible.

CASE 3:

k=10x10"%/m
A=10x10"%/m

Applied force in the chord system, ch = 61441.9460865 N

Computed Reactions in the Chord System, in N and N-m:

3 Elements 10 Elements
F,, 7.4089804 x 107 7.4090253 X 10~ 7
F, - 61441.9460865 - 61441.9460865
F, 2.6942000 x 10~ 10 26942148 x 10~ 10
M, 74090486 x 10 -3 ~7.4090355 x 10 3
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M, —7.4802397 107 ~17.4802703 x 107
M,  -14889072x10~ ¢ —1.5840468 x 105

Displacements in the Chord System, in m and deg:

Exact Solution 3 Elements 10 Elements
] AX 6.5300314x107¢ 6.5387117x10 ¢ 6.5387646 < 10 4
LY — 36873852x107° 3.6873672x 103 3.6873674 X103
) Az 11735696 x10° 1.4904136 x 107 14875948 x 107
DOy, 86536087 x 1010 3.7464527 x 108 3.7464405 x 10 ~°
50y, —4.6520785x 101! 2.3128574 x 10~ ° 2.3147083 x 10 ~°
NGy —1.4272162x1072 -1.4203173x10 "2 - 1.4293266 x 10 2

It is important to observe in Case 3 that even though the reactions have been
computed very accurately (as compared to Case 2, for example), the displacements AZC,
Ay, L0y, which are "out-of-plane” in the sense of Section 5.2 show fairly large errors for
both the 3-element and the 10-element models. This is because the introduction of torsion
results in a coupling of displacements which is not accounted for in the finite element
model. Thus the finite element solution is unresponsive, in terms of its accuracy with

regard to these displacements, to an increase in the number of elements.

The assumptions that we made in Chapter 6 yield simplified forms of
displacements as given by Equation (6.14). Clearly, in the original forms of equations (6.2)
and (6.3), the displacements show coupling. However, withcut this simplification, it would
be difficult to obtain the constant coefficients of the assumed displacement field in terms of
the nodal values of displacement, since the differential equations of Kingsbury [Kingsbury
84 are set up in terms of four displacements, while the element has six degrees of freedom
per node. In other words, in order to obtain a finite element that accounts for coupling, we
would have to impose coupled nodal value conditions, which is clearly a non-trivial matter.
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CASE 4:

x=10%x10"2/m
A=10x10"*'m

Applied force in the chord system, FYc = 55426.4229645 N

Computed Reactions in the Chord System, in N and N-m:

3 Elements 10 Elements
F, ~ —44092066x10~? ~4.4281777x 103
F, - 55426.4280001 —55426.4205408
F, 5.0363461 x 10 ~° 6.5771379x 103
M, -0.6805012 -0.6694404
M,  -64613788x10"° ~6.7159999 x 10~ 3
M, - 121.4721685 - 12.4269992

Displacements in the Chord System, in m and deg:

Exact Solution

3 Elements

AX, 58075078 %1077 5.4112830 x 102
Ay~ 3.9458062x10° 3.9069922 x 103
AZ  1.0319861x10"° 1.4945806 x 10~ 5
Ay, 4.2030041 x 10~ V7 3.4914457x 104
NGy, —4.1399281x10~7 2.0471505 x 105
Ay, - 1.2873947 ~1.2035963
CASE 5:

x=10x10"*/m
A=10x10"2/m

Applied force in the chord system, FYc = 61441.9525214 N
Computed Reactions in the Chord System, in N and N-m:
3 Elements 10 Elements

F, 7.4058016 x 103 7.4058016 x 103

10 Elements

5.8475781 x 10~ 2
3.9410363 x 103
1.3573915 x 10~ %

3.3807723 x10 4

2.0838240 x 10 ~ ¢
~1.2799743
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F, - 61441.9525233 ~61441.9525233
F, 1.9445444 x 10 4 1.9445444 x 104
M, -0.7405821 -0.7405804
M,  -74658299x 10" 5 ~17.4650474 x 105
M,  -19591481x10~? ~1.9458587 x 102

Displacements in the Chord System, in m and deg:

Exact Solution 3 Elements 10 Elements
AX ~ 6.5383257x10° 4 6.5382582 x 104 6.5383147 x10 ¢
LAY~ 3.6873849x10 -3 3.6873676 x 103 3.6873678 x10 3
AZ 11442295 x107° 1.4901627 x 10 ~° 1.4873416 x 10 ~°
DOy, 5.5909964 x 10~ 16 3.7456808 x 10 4 3.7456666 x 10~ *
DGy, —4.5889408 x 10~ ° 2.3100602 x 107 2.3127627 x10 7
Ny —1.4271180x 1072 -1.4286921x10°2  -1.4287038 x 102

Comparing cases 3 and 5, we see that an increase in the torsion has very little
effect on the accuracy of finite element solution. On the other hand, comparing cases 3 and
4, we see that increasing the curvature of the gun tube reduces the accuracy of the solution.
This is consistent with the intuitive notion that when the curvature is small, the effect of
torsion is to twist the beam about its centroidal axis without changing its geometry

significantly.

Note that even though the displacements AZC, L0y, and A@y, which correspond
to w, a, and a, are inaccurate, their values are at least an order of magnitude smaller than
the other ”in-plane” displacements and so the error becomes less severe. In the next and

final chapter, we present the conclusions of this investigation.




CHAPTER 8
CONCLUSIONS

In chapters 2 through 4, we presented an exact solution to the problem of finding
the displacement of the end of the gun tube in terms of the imposed temperature change
that causes the thermal shroud to expand. In Chapter 5, we performed a parametcric study
of the exact solution by plotting the components of force and displacement against different
initial curvatures and torsions of the gun tube for different axial and flexural rigidities of
the thermal shroud.

A brief summary of the conclusions of the parametric study follows. It was found
that for a constant curvature. increasing the torsion of the gun tube had very little effect on
the in-plane force and displacement components, while it caused an increase in the out-of-
plane force and displacement components. It was observed that for high and low EA,
displacements were minimal. For high EI, the increased lateral resistance to bending
prevented large lateral displacements of the gun tube. However, this did not alleviate the
problem of relatively large angular displacements. For low EI, the compatibility condition
2 reduced to condition 1, which yielded fairly large displacements. Thus, it appears that it
would be most advantageous to have a thermal shroud with a low EA for the following
reasons: Firstly, the displacements are smallest in this case. Secondly, the forces are also
small. This second reason makes the low EA case preferable to the high EA case since it
not only reduces displacements but also the forces on the connection between the gun tube
and the shroud. It would be easier to construct an axially flexible shroud than one which is
rigid; in addition, the gun tube-shroud joint could be designed for lesser loads. This would

lead to a saving of material.
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An alternative method of solution employing a general space-curved finite element
was developed in Chapter 6. In the preceding section, we compared the two proposed
solutions. The finite element solution yielded fairly accurate results as compared to the
exact solution. However, despite its relative inaccuracy, the flexibility of the finite element
approach makes it highly attractive. The particular advantages referred to are the fact that
variable curvature and torsion can be accomodated within an element, and also the
numerous possibilities afforded in modeling a structure with an assemblage of different

elements. One such example was provided in Chapter 6, in which the cross-sections of

different pieces of the gun tube were of different sizes. Thus it would be possible to model a
variety of highly complex structures, provided that the curvature and torsion of the

elements would be small.




APPENDIX A
THE COMPLEMENTARY STRAIN ENERGY OF THE HELICAL ROD

The complete expression for the strain energy of deformation, U, of the helical rod,

expressed in terms of the XYZ components of applied force and moment, is as follows:
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APPENDIX B
THE STRAIN ENERGY OF DEFORMATION OF THE FINITE ELEMENT

The strain energy of deformation of the space-curved finite element is a function of

the nodal values of displacement, namely,

U= Ulv o wnu' v " 0,0, 0,0,67,9,9,).

The complete expression for the strain energy is,

U = a3 (Llaw2kx2+1xwl*w2+1xwlx*2)/3,0-220%* ((3*1**2*v2p-21%]
*y2=2% 1 *x2%v1p-9x1xv1) w2+ (21 x*x2%v2p-9* 1 kv2-3k L**2%vip-21x1*v1
)*w1)/60.0+a30% ((1xv2p+6xv2-1*v1p-6+vl) *w2+ (-1*v2p+6*v2+1xvip-6
*v1)*w1)/12.0+a35* ((1xv2p-v2+v1) *w2+(v2-1*vip-v1)*wl1)/1-826*((3
#1xx2%u2p=-21*1%u2-2%1*x*2*ulp-9x1*ul) *w2+ (2% 1**24u2p-9*1+u2-3*1x
*2%ulp-21*1xul)*w1)/60.0+a26* ((1*u2p+6+u2-l+ulp-6+ui)*w2+(-1+u2
p+6*u2+1*ulp-6+ul)=w1)/12.0+a33* ((1*u2p-u2+ul)*w2+(u2-1i*uip-ul)
*w1)/1+a49* ((2+1xp2+1xp1) xw2+ (1*p2+2x1*p1)*w1) /6 .0+a38%(w2-w1) *
(1xw2+1*w1)/1/2.0+a61*(p2-p1) *(1*w2+1*w1)/1/2.0+a7+(w2-w1)**2/1
~a31* (1**2%v2p-6%1xv2-1%*2+vip-6*1+v1) *(w2-w1)/1/12.0+a36+(v2p-
vip)*(w2-w1)/1+a32%(v2-v1)*(w2-w1)/1-a27*(1**2+u2p-6x1*u2-1**2*
ulp-6*1%ul)*(w2-w1)/1/12.0+a34*(u2p-ulp)*(w2-w1)/1+a28+(u2-ul)=*
(W2-w1)/1+250% (1*xp2+1*p1)*(w2-w1)/1/2.0482# (2% 1**3+v2p**2+ (~22x
1ok Qxy2-3%1**3*v1p-13*1%*2%V1) xv2p+ 784 L*v2%*2+ (131 ¥*x2*v1p+54*1
*V1) *Vv24 2% LaIHv]p* ¥ 2422 1 k¥ kv v p+78* 1 #v1%+2) /210.0+a10% (4%1
xx2uy2pax2+ (- 12%1¥Vv244* 14+ 2+ v1p+1 2% 1% V1) *v2p+12xv2x* 2+ (-12+1*v]
P-24%v1)*v2+4x1**xxvip**2+12%1*v1*Vip+12*v1%%2) /1 x%3+a6+ (2% 1**2
*V2p**2+ (=31 xv2-1+%2xvip+3*1#v]) ¥ 2p+184v2ux2+ (-2x1xvip-36+v1)
*V2+42% L * % 2#v Dk 2+3%x1*v1xvip+18+v1#%2) /1/15.0-218% (2+1 %+ 2+v2p*+
2+4(-18%1*v2-1%*25v1p+351%v]) ¥v2p+184v2+x2+(-3+1*vip-36+v1) *v2+2
*1*%24vip**2418%14vi*xvip+18+v1+%2)/1/15.0+a10+* (v2p**2/2.0-vip**
2/2.0)+a11%( (4*1%*3+u2p-22+15*2%u2-3x1+x3ulp-13+1%+2sul ) «v2p+(
=22%1%*2*u2p+156+1+u2+13+1%*2+uip+64*1+ul) *v2+ (-3+1+*x3+u2p+13+1
*x2#u2+4%x1**xJ*ulp+22x1%+2*ul) *vip+ (-1351%*+u2p+b4*1#u2+422+1#*2
*uip+166*1+ul)*v1)/420.0+a20% ( (4*1**2+u2p-3*1*u2-1+*2*ulp+3*1l*y
1) *v2p+ (- 31 +u2p+36+u2-3+1+ulp-36+u1) +v2+ (-1*+2%u2p-3*1+u2+4+1x
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x2+ulp+3%1+ul) *vip+ (3+1+u2p-36+u2+3+1+ulp+36+ul)+v1)/1/30.0-222
*((4x1**2%u2p-3%1*u2~1**2%xulp+3*1*ul) *v2p+(-33+1*u2p+36+u2-3«1+
ulp-36+ul) xv2+ (-1x*2%u2p-3+1%u2+4*1**+2+ulp+3*1*ul) *vip+(3+1+u2p
-36*u2+33%x1*ulp+36+ul)*v1)/1/30.0+a37*((4*1**2%u2p-G#1*u2+2*+1*+
2xulp+6x1*ul) *v2p+(-6*1*u2p+12*u2-6*1*ulp-12*ul) *v2+(2*1**2*u2p
~Bx1*u2+4*1*k*x2*xulp+6x1*ul) *vip+(6*+1*xu2p-12*u2+6+1*ulp+12+ul) *vi
)/1%%3-221% ((4*1%*2%u2p-33*1*u2-1**2+ulp+3*1*ul) *v2p+(-3*1+u2p+
36+u2-3«1*ulp-36*ul) *v2+(-1x*2*u2p-3+1*u+4*1+*2+uip+33*+1*xul) *v
1p+(3*1*u2p-36+u2+3*1+uip+36*ul)*v1)/1/30.0+a23+*((1*u2p+2*u2-1+*
ulp-2*ul)*v2p+(2*ulp-2+u2p) *v2+(1l*u2p-2+u2-1lrulp+2+ul) *vip+(2*y
2p-2*ulp)*v1)/1/2.0+a24*((1+u2p-2*u2+1*ulp+2+*ul) *v2p+(2+u2p-2*u
1p) *v2+(-1*xu2p+2*u2-1*uip-2+ul) *vip+(2+*ulp-2+u2p) *v1) /1/2.0+a13
*((6x1*u2-1*%2*ulp-6+1*ul) xv2p+(-6+1*u2p+30*u2+6+1+ulp+30«ul) *v
2+ (1**2xu2p-6*1*u2+8x1*ul) *vip+(6*1xu2p-30*u2-6+1*uip-30*ui)*vi
)/60.0-a12x ((6*1*u2-1**2+ulp~6*1*ul)*v2p+(-6+1+u2p-30*u2+6%1*ul
p+30%ul) *v2+ (1x*2%u2p-6+1*u2+6x1*ul) *vip+(6+1*u2p-30*u2-6+1*ulp
+30%u1)*v1)/60.0-244* ((3+1¥+2+p2+2%1x*2%p1) *v2p+ (-21*1*p2-9*1+p
1) #v2+ (-2x1#x2%p2-3*1%*2%p1) *vip+ (-9*1#p2-21%1+p1) +v1) /60.0+a45
*((1%p2-1%p1)*v2p+(Bxp2+6xp1) *v2+ (1xp1-1*p2) ¥vip+(-6+p2-6+pl) *v
1)/12.0+2a48* (1*p2*v2p+(p1-p2) *v2-1*pl*vip+(p2-p1) *v1) /1-a46+*(p2
“p1) *(1x*2%v2p-6*Lxv2-1++2xv1p-6%1%v1)/1/12.0+a17* (v2x*2-v1%*2)
/2.0+a47x(p2-p1) *(v2-v1) /1+a1* (2% 1**3¥u2p**2+ (-22*1 % *2%u2-3* 1+
3*ulp-13*1**2¥xul) xu2p+78*1*u2**2+(13%1+x2%ulp+54*1*ul) *u2+2*1*x
3*ulp**2422%1*#*2¥xul*ulp+78*1*ul**2)/210.0+a9% (4+1»*2+up**2+ (-1
2+1#u2+4*1 %2501 p+12%1+ul) +u2p+12+u2*+2+ (-12+1+ulp-24*ul) *u2+d*
lxx2%u]lp**2+412%14ul*ulp+12¥ul#%2) /14%3+ab* (241 **»2*u2p**2+ ( -3+ 1 *
u2-1%%2*%ulp+3*1*ul) xu2p+18+u2**2+(-3x1*xulp-36+ul) *u2+2*1**2*ulp
x%x243%1*ul*ulp+18+u1*+2) /1/16.0-a15% (21 #*24u2p*+2+ (~18+1+u2-1+
*2xulp+3x1*ul) *u2p+18*u2**2+(-3*%1*ulp-36+ul) +u2+2*1xx2*ulp**2+1
8x1l*ul*ulp+1B8xul**2)/1/15.0+a16%(u2p*+2/2.0-ulp+**2/2.0) -a39+((3
*1H#24p242% 14 424p1) #u2p+ (~ 214 1#p2-9* 1#p1) #u2+ (- 2+ 1##2+p2-3+ 1442
*pl)*ulp+(-9*1%p2-21%1*p1)*ul)/60.0+a40*((1*p2-1*p1)xu2p+(6+p2+
6+p1)*u2+(1*p1~1%p2) xulp+(-6*p2-6+p1)*ul)/12.0+ad3*(1*xp2*u2p+(p
1-p2) *u2-1*pl*ulp+(p2-p1)*ul)/1-a41*(p2-p1) *«(1**2*u2p-6+1*u2-1+
*2*xulp-6+1%ul)/1/12.0+a14* (u2+*2-ul**2) /2.0+a42*(p2-p1)*(u2-u1)
/1+ad* (1*p2*+*2+1*pl*p2+1*p1*%2)/3.0+a8+ (p2-p1) **2/1

where ul = u,ulp = u, ‘s P = @, etc., and the coefficients a,a depend

0 8
on geometric and material properties of the element, such as the length of the element, 1,
the moments of inertia of its cross-section, ixx, iyy and ixy, the curvature, k (kappa), the
rate of change of curvature of the element, kp (kappa prime), the torsion, la (lambda), the

rate of change of torsion, lap (lambda prime), and modulus of elasticity e, 2nd finally, shear
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modulus g. These coefficients are listed below:

al

a2 =

a3 =

a4 =

ab =

a6 =

a7 =

a8 =

a9 =

alo

ail

al12

al3

ald

alb

alé

al7

als

al9

a20

a2l

a22

(ex (ixx=lap**2+axkx*2) +g*ixxxk**2*1a**2) /2.0
iyy*(exlap**2+gxk**2+1la**2)/2.0
iyy*(exkp*x2+g*k**4)/2.0
(1% (gxlax*2+exk**2) +gxiyy*laxx2) /2.0
(exixx*lax*2+g*iyy*k**2)/2.0
(exiyy*la*«2+g=ixexk**2)/2.0
ex(iyy*kx*2+a)/2.0
g*(iyy+ixx) /2.0
exiyy/2.0
ex1xx/2.0
-ixy* (exlap**2+gxkxx2%lax*2)
~exixy*laxlap-g*iyy*xk**2*la
grixxxk**2x1la-exixyxlaxlap
exixxxlaxlap+gxixyxk**2*la
exixy=lap
exixy*la
exiyy*xlaxlap-grixy*k«x2+la
~exixy~lap
-exixy*la
1xy* (grk**2-e*xla**2)
e*ixx+lap

-e*iyyxlap




a23

a24

a2b

a2é

a27

a28

a29

a30

a31

a32

a33

a34

a35

a36

a37

a38

a39

240

a4l

a42

ad3

a44

a4b
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exixxxla

~exiyy*la

ixy* (exkp*lap+g*k+**3+*1la)
exixy*kp*la+g*iyyxk**3
exixy*k*lap-axexk
exixyxk*la

-iyy* (e*kp*lap+g*k**3*la)
grixy*k+*3-exiyy*kp*la
-exiyy*k=lap

-exiyyxk*la

exiyy*kp

axiyy*k

e*ixy*kp

exixyxk

exixy

e*x1yy*k*kp
gxixy*kxla**2-exixcrk*lap
griyy*k*la-exixx*k*la
g*xixx*xk*la

g*ixy*k

-exixy*k
exixy*k+lap-g*iyy*k=lax*2

ixy*(g*k*la+exk*la)
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ad6 = -gxixyxk*la
a47 = grixxxk
248 = -e*xixx*k

ad9 = griyyxk+*2xla-exixy*k+kp

° ab0

-exixy*k**2

abl = grixyxk**2
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APPENDIX C
COMPUTER IMPLEMENTATION OF THE EXACT SOLUTION

THIS PROGRAM COMPUTES DISPLACEMENTS AT THE END OF THE GUN TUBE
DUE TO THE FORCE EXERTED BY THE EXPANSION OF THE THERMAL SHROUD
FOR VARYING INITIAL CURVATURE AND TORSION OF THE GUN TUBE.

INTEGER KOUNT1, KOUNT2, KOUNT3, KOUNT4, IA, IDGT, IER

REAL*8 ELAST, G, AC, AS, IXX, JP, ALPHA, TMPR, L. PI, CUR, TOR
REAL*8 RATIO, A, B, P, R, C1, S1, C, S, EI, GJ, EA, GA

REAL*8 DENOM1, DENOM2, DENOM3, LS, CVAL, TVAL

REAL+8 DIST1, DIST2, DISTANCE

REAL*8 RAD1, RAD2, RAD3, RAD4, ISHROUD, EASHROUD, EISHROUD

DOUBLE PRECISION CONSTANTS ABBREVIATED FOR USE IN THE COMPUTATION
OF FLEXIBILITY MATRIX ELEMENTS

REAL*8 TO, TR, FO, FI, SI, SE, ET, NI, TE, EV, TW, FF, SX, TF
REAL+8 TT, FE, ST, NS, ONE, ZERO, START, FACTOR

ARRAYS USED:

F FLEXIBILITY MATRIX IN GLOBAL COORDINATE SYSTEM
FBAR FLEXIBILITY MATRIX IN CHORD SYSTEM

COMPAT MATRIX USED TO SOLVE COMPATIBILITY EQUATIONS
INVCOMPAT INVERSE OF COMPAT

FORCE3 FORCE VECTOR IN COMPATIBILITY EQUATIONS

RHS RIGHT HAND SIDE OF COMPATIBILITY EQUATIONS

DELTABAR, DELTA, DELTATAN

DISPLACEMENTS IN CHORD, GLOBAL AND TANGENT SYSTEMS
FORCEBAR, FORCE, FORCETAN

FORCES IN CHORD, GLOBAL AND TANGENT SYSTEMS

CG CHORD TO GLOBAL TRANSFORMATION MATRIX

GC GLOBAL TO CHORD TRANSFORMATION MATRIX

TG TANGENT TO GLOBAL TRANSFORMATION MATRIX
127
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GLOBAL TO TANGENT TRANSFORMATION MATRIX
TANGENT TO CHORD TRANSFORMATION MATRIX

TEMPE TEMPORARY STORAGE
WKAREA USED BY IMSL INVERSION ROUTINE

REAL*8 F(6,6), FBAR(6,8), COMPAT(3,3), INVCOMPAT(3,3)

REAL*8 DELTABAR(6,1), DELTA(6,1), DELTATAN(S,1)

REAL*8 FORCEBAR(6,1), FORCE(6,1), FORCETAN(6,1), FORCE3(3,1)
REAL*8 CG(6,8), TG(6,8), CT(6,8), GC(6,8), GT(8,6)

REAL+8 TEMP6(6,68), RHS(3,1), WKAREA(500)

DATA
DATA
DATA
DATA
DATA
DATA

Q

DATA

DATA
DATA
DATA
DATA

QQ

OPElN

ELAST/4.35097D9/

G/1.67345D9/

RAD1, RAD2, RAD3, RAD4/6.0D-2, 1.0D-1, 1.1D-1, 1.45D-1/
ALPHA/1.206D-5/

TMPR/1.0D2/

L/5.25D0/

FOR CONSTANTS
T0,TR,FO,FI,S1,SE/2.0D0,3.0D0,4.0D0,5.0D0,6.0D0,7.0DO/
ET,.NI,TE.EV,TW,FF/8.0D0,9.0D0,10.0D0,11.0D0,12.0D0,15.0D0/
sX,TF,TT,FE,ST/16.0D0,24.0D0,33.0D0,48.0D0,72.0D0/
NS,ONE,ZERO,START/96.0D0,1.000,0.0D0,1.0D-4/

OUTPUT FILES

OPEN(UNIT=12,FILE="'delxbar.dat’®,STATUS="NEW’)
OPEN(UNIT=13,FILE="delybar.dat’,STATUS="NEW’)
OPEN(UNIT=14,FILE="'delzbar.dat’,STATUS="NEW’)
OPEN(UNIT=15,FILE="thexbar.dat’,STATUS='NEW')
OPEN(UNIT=16 ,FILE="theybar.dat’,STATUS="NEW’)
OPEN(UNIT=17,FILE=’thezbar.dat’,STATUS='NEW')
QOPEN(UNIT=34,FILE='forcexbar.dat’,STATUS='NEW')
OPEN(UNIT=18 ,FILE='forceybar.dat’,STATUS='NEW’)
OPEN(UNIT=37 ,FILE=’forcezbar.dat’ ,STATUS=’NEW’)
OPEN(UNIT=33,FILE='distance.dat’,STATUS="NEW®)

OO

PI =

ASSIGN VALUES OF PI AND FACTOR (FOR MULTIPLYING CURVATURE)

DATAN (ONE) *FO

FACTOR = DSQRT(DSQRT(DSQRT(DSQRT(TE))))

Q0

COMPUTE SECTION PROPERTIES OF GUN TUBE AND THERMAL SHROUD
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GUN TUBE:

AC = PIx(RAD2¥*2~RAD1%%2)
IXX = PI*(RAD2**4-RAD1**4)/FO

JP = TO*IXX

EI = ELAST*IXX
GJ = G*JP

EA = ELAST*AC
GA = G*AC

THERMAL SHROUD:

AS = PI*(RAD4#**2-RAD3%%2)

ISHROUD = PI*(RAD4**4-RAD3+*4)/FO
EISHROUD = ELAST*ISHROUD

EASHROUD = ELAST=AS

INITIALIZE TOR AND TVAL

TOR = ZERO
TVAL = ZERO

LOOP TO COMPUTE DISPLACEMENTS FOR VARYING CURVATURES AND TORSIONS

DO 100 KQUNT3 = 1, 50

CUR = START

CVAL = ONE

IF (KOUNT3.EQ.2) THEN
TOR = START
TVAL = ONE

ENDIF

DO 200 KOUNT4 = 1, 49

COMPUTE HELIX GEOMETRY FROM CUR AND TOR AND INITIALIZE ARRAYS

RATIO = TOR/CUR

A = L/DSQRT(ONE+RATIO**2)

B = DSQRT(L**2-A*%2)

Cl1 = A/L

S1 = B/L

R = C1xx2/CUR

P=A/R

C = DCOS(P)

S = DSIN(P)

LS = DSQRT((R*C-R)**2+(R*S)**2+Bx*2)
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INITIALIZE TRANSFORMATION MATRICES TO ZEROES

DO 101 KOUNT1 = 1, &
DO 101 KOUNT2 = 1, €

CG(KOUNTt, KOUNT2) = ZERO
TG(KOUNT1, KOUNT2) = ZERO
CT(KOUNT1, KOUNT2) = ZERO
GC(KOUNT1, KOUNT2) = ZERO
GT(KOUNT1, KOUNT2) = ZERO

CONTINUE
INITIALIZE FORCE VECTORS IN ALL 3 COORDINATE SYSTEMS TO ZEROES

DO 102 KOUNT1 = 1, 6
FORCEBAR (KOUNT1, 1) = ZERD
FORCE(KOUNTL, 1) = ZERO
FORCETAN(KOUNT1, 1) = ZERO
CONTINUVE

COMPUTE ALL 6 TRANSFORMATION MATRICES
FIRST, ASSIGN ELEMENTS OF CG (CHORD TO GLOBAL TRANSFORMATION MATRIX)

DENOM1i = DSQRT(TO*(ONE-C))

DENQOM2 = DSQRT(TO*(ONE-C)+(P*B/A)**2)
DENOM3 = DENOM1*DENOM2

CG(1,1) = S/DENOM1

CG(1,2) = (C-ONE)/DENOM2

CG(1,3) = (ONE-C)*(P*B/A)/DENOM3
€G(2,1) = (ONE-C)/DENOM1

CG(2,2) = S/DENOM2
€G(2,3) = -(S*P*B/A)/DENOM3
€G(3,1) = ZERO
€G(3,2) = (P+B/A)/DENOM2
€G(3,3) = TO*=(ONE-C)/DENOM3
DO 103 KOUNT: = 1, 3
DO 103 KOUNT2 = 1, 3
CG(KOUNT1+3, KOUNT2+3) = CG(KOUNT1, KOUNT2)
CONTINUE

ASSIGN ELEMENTS OF TG (TANGENT TO GLOBAL TRANSFORMATION MATRIX)
TG(1,1) = -C

T6(1,2) = S1*§
T6(1,3) = -CixS
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T6(2,1) = -8
T6(2,2) = -s1xC
TG(2,3) = Ci1xC
TG(3,1) = ZERO
T6(3,2) = C1
76(3,3) = 81
DO 104 KOUNT1 = 1, 3
DO 104 KOUNT2 = 1, 3

TG(KOUNT1+3, KOUNT2+3) = TG(KOUNT1, KOUNT2)
CONTINUE

INVERT CG TO GET GC (GLOBAL TO CHORD TRANSFORMATION MATRIX)
AND TG TO GET GT (GLOBAL TO TANGENT TRANSFORMATION MATRIX)

DO 106 KOUNTL = 1, 6
DO 1056 KOUNT2 = 1, 6
TEMP6 (KOUNT1, KOUNT2) = CG(KOUNT1, KOUNT2)
CONTINUE ’
IDGT = O
IA=6
KOUNTL = 6
CALL LINV1F(TEMPS6,KOUNT1,IA,GC,IDGT,.WKAREA, IER)

DO 10€ KOUNT1 = 1, &
DO 106 KOUNT2 = 1, 6
TEMP6(KOUNT1, KOUNT2) = TG(KOUNT1, KOUNT2)
CONTINUE
IDGT = 0
IA =6
KOUNT1 = 6

CALL LINV1F(TEMPS,KOUNT1,IA,GT,IDGT,WKAREA, IER)
COMPUTE CT (CHORD TO TANGENT TRANSFORMATION MATRIX) = GT * CG

KOUNT1 = 6
CALL MULMATX(GT, CG, CT, KOUNT1, KOUNT1, KOUNT1)

ASSIGN ELEMENTS OF F MATRIX

F(1,1) = L#*3/(TW*EI)*(SI*C1%+4%(TR*S§%C-FO*S+T0*P*8**x2+P)
+81%%4+* (TR¥P+TO*P**3-TR*8*C) +SI*+C1%x2+S1 %24 (FO*S-
TR*S*C-P) +S1%%2% (-TR*P+TO*P**3+TR+8+C) ) /P**3
=L#%3/(TF*GJ) xC1%*2%S1%+2/P%%3% (~-FF+P-TW*P*S»+2
~TO*P*#»3+FE*S-TT*8*C)
+L/(TO*EA) *C1%%2% (P-S*C) /P + L/(FO*GA)*(C1#»2+(P+

N H WN -




F(1,2)

AW -

F(1,3)

S W N -

F(1,4)
1
2

F(1,5)
1
2

F(2,2)

D& WD -

F(2,3)

& W N -

F(2,4)
1
2
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$%C) /P+T0*S1*%2)

L**3/(FO*EI) * (TO*C1*x*4* (TR*S**2-TO+P*S*C+T0«C-T0) +
Slax4x (Pxx2-Sx%2) +TO*C1#* kS %#2* ( -TR*S*x2+TO*P*S
~TO*C+T0O) +S1 %% 2% (S*%2-P%%x2) ) /P**3

~Lx*3/(ET*GJ) *C1*%2%851%%2% (ET-ET*C-EV«S*%x2+FO*P*S*C
+FO*PxS~P*%2) /P**3

-L/(TO*EA) *C1%*2%S*%2/P + L/(FO*GA)*C1+*2%S*%x2/P

L*x3/(FO*EI)*(C1%S1%P*(S-P*C)+TO*C1%+3x3 ix (-TO+TO*C

~TO*S**2+TR*P*S) +C1%S1**3% (FO-FO*xC-P*S-P**2%C) ) /P**3
~L**3/(ET*GJ) *C1%*3%S1% (P**2+C+SE+«P*S-FO*S**2+ET*C-

ET)/P**3-L/EA*C1%S1* (ONE-C) /P+L/(TO*GA) *C1*S1* (ONE-

c)/p

L**2/(FO*EI) * (S1%(P-S*C) +TO*C1%x2%S1% (P+S*C-TO*S)+
S1#¥3%(S*C-P)) /P**2
~L**2/(ET*GJ) *C1%%2xS1* (S*C-FO*S+TR*P) /P**2

L*%2/(FO*EI)* (S1x(Px*x2-8%%2) +TOxC1*#*2%S1 #S¥*2+S1%%3
* (P*%248%%2) ) /P*%2
=L#*2/(ET*GJ) *C1*%2%81 % (S**2-P*%x2) /P**2

L*x2/EI*(C1**3%(ONE-C-P*S)+C1*S1%%2%(C-ONE) ) /P#%2
~L¥*2/(T0*GJ) +C1*S1%%2* (P+S+TO*C-TD) /P*2

L*x3/(TWHEI) * (SI*C1xx4* (P-TR*S*C+TO*P*Cx%2) +SI*
C1#%2%81%*2% (P+TR*S*C-FO*P*C) +S1%%4* (-TR*P+TO%xP**=3+
TR*S#C) +S1%%2% (TR*P+TO*P**3~TR*S*C) ) /P**3
“L**3/(TF*GJ) %C1 %2481 4% 2% (~NI*P-TO*#P*+3 -TF+PxC+TW*
PxS#%24TT*S*C) /P**3

+L/(TO*EA) *C1#%2% (P+S*C) /P + L/(FO*GA)*(Cl**2%(P-S
*C) /P+TO*S1%%2)

L*%3/(FO*EI)*(C1+S1%(P*C-S-Px*2%S)+TO*C1x*3xS1 % (S+
TO*S*C-TR*P*C)+Cl*81**3*(-TR*S-P*C-P**2*S*FO*P))/
Pxx3

-L**3/(ET*GJ)) *C1%%3xS1 % (FI*S-FI*«P*C+FO*S*C+P*%x2+§
-FO*P) /P*+3 + L/EA*C1%S1*S/P - L/(TO*GA)*C1+81+S/P

L*%2/(FO*EI)*(S1%(~S*#2-P%%2) +TO*C1**2%S1* (-C*»2+T0
*C-0NE) +S1%#3% (S*x2-P%%2)) /Px*2
=L*#2/(ET*GJ) #C1#*2%81% (~FO+FO*C+S**2+Px%2) /P*%2

- F(2,8) = L**2/(FO*EI)*(-S1+TO*C1*%2%851481%%3) % {P-S*C)/Px*2
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1 -L*x2/(ET*GJ) *C1%*2+S1* (P-S*C) /P**2

F(2,8) = L*x*2/EI*(C1**3%(P*xC-8)+C1+S1%*2+(S-P))/P*%2
1 -L*%2/ (TO*GJ) *C1%S1 **2% (-P*C-P+TO*S) /P**2

F(3,3) = L**x3/(TO*EI)*(C1%*2% (P-S*xC)+CL%#2%S1**2% (TR*P+8%C-

1 FOxS)) /P*x3
-L**3/(FO%GJ) *C1**4* (FO*S-TR*P~S*C) /P**3

3 +L/EA*S1%x2 + L/(TO*GA)*C1*%2

F(3,4) = L**2/(TO*EI)*(C1*P*S+C1%S1%%2% (TO*C-TO+P*S) ) /P**2
1 ~L**2/(FO*GJ)*C1**3% (-TO*C+TO-P*S) /P**2

F(3,5) = L*x2/(TO*EI)*(C1+C1*S1%x2)*(S-P*C)/P*x2
1 ~L*x2/(FO*GJ) *C1**x3% (P*C-8) /P*%*2

F(3,8) = L**2x(ONE/EI-ONE/(TO*GJ))*C1%%2%S1%(S-P)/P**2

F(4,4) = L/(TO*EI*P)*x(S*xCxC1%*2+P*(ONE+S1%%2))
1 -L*C1*%2/ (FO%GJ*P) % (S*C-P)

F(4,8) = (L/(TO*EI)-L/(F0*GJ))*(C1**2%S**2/P)

F(4,8) = (L/EI-L/(T0*GJ))*(C1*S1x(ONE-C)/P)
F(5,5) = L/(TO*EI*P)*(-C1%%2*S*C+P* (ONE+S1%%2))
1 -L/ (FO*GJ*P) = (C1**2%(-SxC-P))

F(5,8) = (L/(TO*GJ)-L/EI)*(C1%S1*S/P)

F(6,6) = LxC1%*2/EI+L*S1*+2/(T0*GJ)
DO 108 KQUNT1 = 2, 6
DO 108 KOUNT2 = 1, KOUNT1-1
F(KOUNT1, KOUNT2) = F(KOUNT2, KOUNT1)
108 CONTINUE

PRE & POSTMULTIPLY ORIGINAL F WITH GC & CG RESPECTIVELY TO
OBTAIN THE TRANSFORMED FLEXIBILITY MATRIX, FBAR, IN THE CHORD SYSTEM

KOUNT1 = 6

CALL MULMATX(GC,F,TEMP6,KOUNT1,KOUNT1,KOUNT1)
KOUNT1 = 6

CALL MULMATX(TEMP6,CG,FBAR,KOUNT1 ,KOUNT1,KOUNT1)
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APPLY COMPATIBILITY OF DISPLACEMENTS TO FIND FORCES EXERTED ON
GUN TUBE DUE TO EXPANSION OF SHROUD

COMPATIBILITY IS EXPRESSED AS A SET OF 3 SIMULTANEOUS EQUATIONS
IN THE 3 FORCE COMPONENTS, FXBAR, FYBAR, FZBAR

COMPAT(1,1) = FBAR(1,1)+LS*x3/(TR*EISHROUD)

COMPAT(1,2) = FBAR(1,2)

COMPAT(:,3) = FBAR(1,3)

COMPAT(2,1) = FBAR(2,1)

COMPAT(2,2) = FBAR(2,2)+LS/(EASHROUD)
COMPAT(2,3) = FBAR(2,3)

COMPAT(3,1) = FBAR(3,1)

COMPAT(3,2) = FBAR(3,2)

COMPAT(3,3) = FBAR(3,3)+LS*+3/(TR+*EISHROUD)

RHS(1,1) = ZERO
RHS(2,1) = LS+ALPHA*TMPR
RHS(3,1) = ZERO

IDGT = O

IA=3

KOUNTL = 3

CALL LINV1F(COMPAT,KOUNT1,IA,INVCOMPAT,IDGT,WKAREA,IER)

KOUNT? = 3
KomiT2 = 1
CALL MULMATX(INVCOMPAT,RHS,FORCE3,KOUNT1,KOUNT1,KOUNT2)

DO 110 KOUNT1 = 1, 3
FORCEBAR(KOUNT1,1) = FORCE3(KOUNT1,1)
CONTINUE

OBTAIN DISPLACEMENTS VECTOR AS DELTABAR = FBAR * FORCEBAR

KOUNT1 = 6
KOUNT2 = 1
CALL MULMATX(FBAR,FORCEBAR,DELTABAR,KOUNT1,KOUNT1,KOUNT2)

CONVERT DISPLACEMENTS AND FORCES INTO DIFFERENT SYSTEMS

KOUNT1 = 6

KOUNT2 = 1 .
CALL MULMATX(CG,FORCEBAR,FORCE,KOUNT1,KOUNT1 ,KOUNT2)
CALL MULMATX(CT,FORCEBAR,FORCETAN,KOUNT{ ,KOUNT1 ,KOUNT2)
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CALL MULMATX(CG,DELTABAR,DELTA,KOUNT1,KOUNT1 ,KOUNT2)
CALL MULMATX(CT,DELTABAR,DELTATAN,KOUNT1 ,KOUNT1,KOUNT2)

CONVERT ANGULAR DISPLACEMENTS INTO DEGREES

DO 109 KOUNT1 = 4, 6
DELTABAR(KOUNT1,1) = DELTABAR(KOUNT1,1)*1.8D2/PI
DELTA(KOUNT1,1) = DELTA(KOUNT1,1)*1.8D2/PI
DELTATAN(KOUNT1,1) = DELTATAN(KOUNT1,1)*1.8D2/PI
CONTINUE
DISTANCE = DSQRT(DELTABAR(1,1)**2 + DELTABAR(2,1)**2 +
DELTABAR(3,1)*%2)

DIST1 = DSQRT(DELTA(1,1)**2 + DELTA(2,1)**2 +
DELTA(3,1)*x2)
DIST2 = DSQRT(DELTATAN(1,1)*%2 + DELTATAN(2,1)%x2 +

DELTATAN(3,1)**2)
WRITE THE RESULTS IN THE OUTPUT FILES OPENED

WRITE(12,*) CVAL, TVAL, DELTABAR(1,1)
WRITE(13,*) CVAL, TVAL, DELTABAR(2.1)
WRITE(14,*) CVAL, TVAL, DELTABAR(3.1)
WRITE(15,+) CVAL, TVAL, DELTABAR(4,1)
WRITE(16,*) CVAL, TVAL, DELTABAR(5,1)
WRITE(17,*) CVAL, TVAL, DELTABAR(S8,1)
WRITE(34,*) CVAL, TVAL, FORCEBAR(1,1)
WRITE(18,*) CVAL, TVAL, FORCEBAR(2,1)
WRITE(37,*) CVAL, TVAL, FORCEBAR(3,1)
WRITE(33,*) CVAL, TVAL, DISTANCE

START OVER WITH NEW CUR AND TOR VALUES

CUR = CUR*FACTOR

CVAL = CVAL + €.25D-2
CONTINUE

TOR = TOR*FACTOR

TVAL = TVAL + 6.25D-2
CONTINUE

STOP

END

MULMATX SUBROUTINE BEGINS

SUBROUTINE MULMATX(MAT1,MAT2,MAT3,L1,L2,L3)
INTEGER L1, L2, L3, KNT1, KNT2, KNT3




“ﬁ

136
REAL*8 MAT1(L1,L2), MAT2(L2,L3), MAT3(Li,L3)
DO 111 KNT1 = 1, L1
DO 111 KNT2 = 1, L3

MAT3(KNT1,KNT2) = 0.0DO
DO 112 KNT3 = 1, L2
MAT3(KNT1,KNT2) = MAT3(KNT1,KNT2)+MAT1 (KNT1 ,KNT3)+*
1 MAT2(KNT3,KNT2)
112 CONTINUE
111 CONTINUE
RETURN
END

END OF PROGRAM

O OO0




APPENDIX D
COMPUTER IMPLEMENTATION OF THE FINITE ELEMENT METHOD

e e e e e —————————— -

c

c DECLARATIONS

C

C.. ———— - _—

C

c h
INTEGER I, IA, IDGT, IER, J, NELEM, NI, NJ, NK
REAL*8 K, KP, LA, LAP, A, IXX, IYY, IXY, E, G
REAL*8 AA, BB, RATIO, P, PP, R, S, C, S1, C1, L, LTUBE
REAL«8 DENOM1, DENOM2, DENOM3, PI, RINNER, ROUTER

C
REAL+8 X0, X1, X2, X3, X4, X5, X6, X7, X9, X10, Xii
REAL+8 X12, X13, X185, X20, X30, X35, X80, X70, X105
REAL*8 X140, X180, X210, X420

c

c ARRAYS USED:

c

c CG CHORD TO GLOBAL TRANSFORMATION MATRIX

c GC GLOBAL TO CHORD TRANSFORMATION MATRIX

C TG TANGENT TO GLOBAL TRANSFORMATION MATRIX

C TC TANGENT TO CHORD TRANSFORMATION MATRIX

C TCINV INVERSE OF TC

c TRANS GLOBAL TC MATRIX

c TRANSINV INVERSE OF GLOBAL TC MATRIX

c ELSTIF ELEMENT STIFFNESS MATRIX

(o GLSTIF GLOBAL STIFFNESS MATRIX

c CHDSTF GLOBAL STIFFNESS MATRIX IN CHORD SYSTEM

C REDFLEX REDUCED FLEXIBILITY MATRIX

c FKNOWN GLOBAL FORCE VECTOR IN CHORD SYSTEM

c DELCHD GLOBAL DISPLACEMENT VECTOR IN CHORD SYSTEM

c

REAL*8 CG(3,3), 6C(3,3), TG6(3,3), TC(3,3), TCINV(3,3)
REAL+8 TRANS(24,24), TRANSINV(24,24), ELSTIF(12,12)
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REAL*8 GLSTIF(24,24), CHDSTF(24,24), REDFLEX(18,18)

REAL*8 WKAREA(100), TEMP61(6,1), TEMP18(18,18), TEMP24(24.24)
REAL»8 FKNOWN(18,1), DELCHD(18,1), CHECK(18,18)

REAL*8 KBETAALPHA(6,18)

DOUBLE PRECISION CONSTANTS USED IN STIFFNESS MATRIX DEFINITION

DATA X0,X1,X2,X3,X4/0.0D0,1.0D0,2.0D0,3.0D0,4.0D0/

DATA X5,X6,X7,X9,X10/5.0D0,6.0D0,7.0D0,9.0D0,1.0D1/

DATA X11,X12,X13,X156,X20/1.1D1,1.2D1,1.3D1,1.5D1,2.0D1/
DATA X30,X35,X60,X70,X106/3.0D1,3.5D1,6.0D1,7.0D1,1.06D2/
DATA X140,X180,X210,X420/1.4D2,1.8D2,2:1D2,4.2D2/

OPEN(UNIT=11,FILE="femdata’ ,STATUS="0LD")
OPEN(UNIT=12,FILE="femoutput’,STATUS="NEW’)

ASSIGHN VALUE OF PI USING THE FACT THAT TAN(PI/4) = 1

PI = DATAN(X1)*X4

QOO OO0 0OAQa

Q A OO0

aaQ

(D READ MATERIAL AND GEOMETRIC PROPERTIES OF EACH ELEMENT

(1n COMPUTE ELEMENT STIFFNESS MATRIX

(III) ADD THE CONTRIBUTION OF THE ELEMENT TO THE GLOBAL
STIFFNESS MATRIX

THIS ASSUMES CONNECTIVITY INFORMATION, I.E., THE ELEMENTS ARE
CONNECTED TO EACH OTHER END TO END IN THE ORDER GIVEN

READ GEOMETRICAL AND MATERIAL PROPERTIES
READ(11,*) NELEM, K, KP, LA, LAP, E, G, LTUBE
COMPUTE GEOMETRICAL PARAMETERS OF THE HELIX
RATIO = LA/K

AA = LTUBE/DSQRT(X1 + RATIO*%2)

BB = DSQRT(LTUBE+*2 - AA##2)
C1 = AA/LTUBE

. §1 = BB/LTUBE
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R = C1%x2/K
P = AA/R
C = DCOS(P)
S = DSIN(P)
ASSIGN VALUES TO CG (CHORD TO GLOBAL TRANSFORMATION MATRIX)
DENOMi = DSQRT(X2x(X1-C))
DENOM2 = DSQRT(X2*(X1-C) + (P+BB/AA)**2)
DENOM3 = DENOM1*+DENOM2
CG(1,1) = S/DENOM1
CG(1,2) = (C-X1)/DENOM2
CG(1,3) = (X1-C)=(P+BB/AA)/DENOM3
€6(2,1) = (X1-C)/DENOM1
CG(2,2) = S/DENOM2
€G(2,3) = -(S+P=BB/AA)/DENOM3
CG(3,1) = X0
CG(3,2) = (P=BB/AA)/DENOM2
€G(3,3) = X2=(X1-C)/DENOM3
INVERT CG TO OBTAIN GC (GLOBAL TGO CHORD TRANSFORMATION MATRIX)
IDGT = O
IA=3
NI =3
CALL LINVIF(CG, NI, IA, GC, IDGT, WKAREA, IER)

INITIALIZE ELEMENT AND GLOBAL STIFFNESS MATRICES, TRANSFORMATION

MATRICES, GLOBAL FORCE VECTOR, CONNECTIVES I AND J, AND ANGLE PP

SUBTENDED BY ARC AT GLOBAL ORIGIN

DO 100 NI = 1, 12

DO 100 I1J = 1, 12
ELSTIF(NI.NJ) = X0

CONTINUE

DO 101 NI = 1, 6%(NELEM+1)

DO 101 NJ = 1, 6*(NELEM+1)

GLSTIF(NI,NJ) = X0

TRANS(NI,NJ) = XO

TRANSINV(NI,NJ) = X0
CONTINUE

DO 102

NI = 1, G@+NELEM

FKNOWN(NI,1) = X0
CONTINUE

I=20
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1

140

J=0
PP = XO

READ APPLIED FORCES AND MOMENTS
READ(11,x) (FKNOWN(6+(NELEM-1)+NI,1), NI = 1, 6)
FOR EACH ELEMENT, DO THE FOLLOWING:
DO 200 MK = 1, NELEM
READ(11,*) RINNER, ROUTER, L

A = PI*(ROUTER**2-RINNER**2)

IXX = PI=(ROUTER**4-RINNER**4)/X4
IYy = IXX
IXY = X0

ELSTIF(1,1) = X13xLx(E*(IXX*LAP*%*2+AxK**2) +G*IXX+K**2+LA**2) /X35
+X12% ((E*IXX*LA%**2+G*IYY*K**2) /X2-E*IXY*LAP)/ (X6+L) -ExIXX*LA

2 *LAP-G*IXY*Kxx2+xLA+X12*%E*IYY/L**3

1
2

1

1
2

1
2

1

1
2

ELSTIF(1,2) = (-X13)*IXY*L*(E«LAP**2+G*+K**2+*LA**2) /X36- (-X2+E«
IXY+LA*LAP-G*IYY*K#%2xLA+G*IXX*K+*2+LA) /X24(-X6) * (-E+IYY*LAP+
E*IXX*LAP-IXY*(G*K**2-E+LA*%2))/(X5*L) +X12+E*IXY/L**3

ELSTIF(1,3) = X7*IXY*L*(ExKP*LAP+G*K**3*LA)/X20- (ExIXY+K+LAP+E*
IXY«KP*LA+G*IYY*K#*3-A*E*K) /X2+ (E*IXY*K*LA-E*IYY*KP) /L

ELSTIF(1,4) = X11*IXY*L#*2*(ExLAP**24G*K**2+LA%*2)/X210- (E*IYY*
LAP-X11*E*IXX*LAP+IXY* (G*K*%2-ExLA**2))/X10-L*(G*IYY*K**2+LA
+G*IXX*K**2+LA) /X10- (E*IYY*LA+E+IXX*LA) /L-XG+E*IXY/L**2

ELSTIF(1,5) = X11%L*#2% (Ex(IXX*LAP**2+AxK*#2) +G+IXX*K**x2+LA%*2)
/X210+ ((ExIXX*LA**2+G*xIYY*K*%2) /X2-X6+E+«IXY*LAP) /XE+X6+ExIYY
[L#x2

ELSTIF(1,8) = X7*L*(G*IXY*K*LA**2~E*IXX*K*LAP)/X20-(G*IYY+K+LA+
G*IXX*K*LA-E*IXX*K*LA)/X2+4(G*IXY*K+E+«IXY*K)/L

ELSTIF(1,7) = XOxLx(Ex(IXX*LAP**2+AxK**2) +GCxIXX*#K*#2+LA**2) /XT70+
X12% (E*IXY*LAP- (E#IXX*LA**2+G*IYY*K**2)/X2)/(X5%L) -X12+E+1YY/
L**3 ' .

ELSTIF(1,8) = (-X9)*IXY*L*(ExLAP**2+G*xK**2xLA*%2)/XT70+X8*(-ExIYY
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1 *LAP+E*IXX*LAP-IXY*(G*K**2-E+#LA%*%2))/(X6%L)+(G+IYY*K#*24xLA+G*
2 IXX*K*%x2*%LA)/X2-X12*%E*IXY/L**3

ELSTIF(1,9) = X3*IXY*L*(ExKP*LAP+G*K+#3*LA)/X20+(E«IXY*K+«LAP-E*
1 IXY*KP*LA-G*IYY*K**3-AxE*K)/X2+(E+«IYY*KP-E*IXY*K*LA)/L

ELSTIF(1,10) = (-X13)*IXY*L#**2%(E*LAP**2+G+K+*2+LA**2)/X420- (E*
1 IYY*LAP-ExIXX*LAP+IXY*(G*K#*2-ExLA%%2))/X10-L*(-G+IYY*K**2+LA
- 2 =G+IXXxK**2*LA)/X10- (-E*IYY*LA-E*IXX*LA)/L-X6*E*IXY/L**2

ELSTIF(1,11) = (~X13)*L#+*2%(Ex (IXX*LAP**2+A%K*%2) +G# I XX*K**2%
v 1 LA%%2) /X420+ ((ExIXX*LA%*2+G*IYY*K#%*2) /X2-ExIXY*LAP)/X5+X6*E
2 *TYY/L**2

ELSTIF(1,12) = X3#L*(G*IXY*K*LA**2-E*IXX*K*LAP)/X20+(-G*IYY*K*LA
1 +GxIXX*K«LA+E+*IXX*KxLA)/X2+(-G*IXY*K-E*IXY*K)/L

ELSTIF(2,2) = X13*IYV*L*(E*LAP**24GxK**2*LA%**2)/X36+X12% (ExIXY*
1 LAP+(E*IYY*LA**2+4G*xIXX*K**2)/X2)/(X6%L) -E*IYY*LA*LAP+G*IXY=*
2 Kxx2%LA+X12+E*IXX/L#**3

ELSTIF(2,3) = (-X7)*IYY*L*(E*KP*LAP+G*K**3*LA)/X20- (-E*IYY*K*LAP
1 -ExIVY*KP*LA+G*IXY*Kx*3)/X2+(-E+*IYY*K«LA-ExIXY+KP)/L

ELSTIF(2,4) = (-X11)*IYY*L#x2% (E#LAP**2+G*K**2*LA**2)/X210- (X6*E*
1 IXY*LAP+(E*IYY*LA**24G*IXX*K**2)/X2)/X5-X6%E*+IXX/L*%2

ELSTIF(2,5) = (~X11)*IXY*L**2% (ExLAP**2+G*K**x2xLA**2)/X210+(X11*E
1 *IYY*LAP-E*IXX*LAP+IXY* (GrK**2-ExLA%%2))/X10+L*(-G*IYY*K*%2xLA
2 ~GxIXX*xK**2*LA) /X104 (~E*IYY*LA-E*IXX*LA) /L+X6*E*IXY/L*%2

ELSTIF(2.6) = X7xL*{(E+xIXY*K*LAP-G*IYY*K*LA*%2)/X20~(IXY*(G*K*LA+
1 E«K+LA)-G*IXY*K*LA)/X2+(G*IXX*K+E+IXX*K)/L

ELSTIF(2,7) = (-X9)*IXY*L*(E«LAP**24G*K**2+LA%*2)/XT70+X6*(-E*IYY
1 *LAP+E*IXX*LAP-IXY*(G*K**2-ExLA*%2))/(X5*L)+(-G*IYY*K**2«LA-G
2 *IXX*Kx%2xLA)/X2-X12*E*IXY/L**3

ELSTIF(2,8) = X9*x1YY+L+*(E+LAP**2+GxK**2¢«LA*%2)/X70+X12* (-E+IXY*
1 LAP- (E*IYY*LA**2+4G*IXX*K**2)/X2)/(X6*L) -X12+#E*IXX/L**3

N ELSTIF(2,9) = (-X3)*IYY*L#(E+KP*LAP+G*K#*3«LA)/X20+(-E+*IYY*K«LAP
1 +E*IYY*KP*LA-G*IXY#K*%3)/X2+(E*IYY+K*LA+E*IXY+KP)/L

ELSTIF(2,10) = X13+IYY*L**2%(E*LAP**2+G*K**2+LA%%2)/X420- (ExIXY*
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1 LAP+(ExIYY*LA**2+G*IXX*K**2)/X2) /XE-XG*ExIXX/L*%2

ELSTIF(2,11) = X13*IXY*L*%2%(E*LAP**2+4G*K**2*LA**2)/X420+ (E«IYY=
1 LAP-E*IXX*LAP+IXY*(G*K**2-E*LA*¥2))/X10+L*(G*IYY*K**2+LA+G*IXX
2 *Kx*2xLA)/X10+(E+*IYY*LA+E*IXX*LA) /L+XG*+E*IXY/L#%2

ELSTIF(2,12) = X3+L*(E*IXY*K*LAP-G*IYY*K#LA*%2)/X20+(-IXY*(G*+K*
1 LA+E*K+LA)-G+IXY*K+LA)/X2+(-G*IXX*K-E*IXX*K)/L

ELSTIF(3,3) = IYY*(E*KP#%2+4G*K**4)+*L/X3+E*(IYY*K**2+A)/L-E+IYY*K
1 +KP

ELSTIF(3,4) = IYY*L**2%(E+KP*LAP+G*K+**3*LA)/X20-L*(E*IYY*K*LAP-E*
1 IVY*KP*LA+G*IXY*K**3)/X12-E*IXY*K/L+E*IXY+KP

~ ELSTIF(3,5) = IXY*Lx*2%(ExKP*LAP+G*K**3*LA)/X204L*(-E«IXY*K*LAP+E
1 *IXY*KP*LA+G*IYY*K+*3+A*ExK) /X12+E*IYY*K/L~E*IYY*KP

ELSTIF(3,8) = L*(G*IYY*K#**2%LA-E*IXY*K*KP)/X3~ (G*IXY*K**2-E*xIXYx*
1 Kx%2)/X2

ELSTIF(3,7) = X3*xIXY*L*(ExKP*LAP+G*K**3*LA)/X20+(-E*IXY*K+LAP+E*
1 IXY*KP*LA+G*IYY*Kx*3+A*E*K)/X2+ (E*IYY*KP-E*IXY*K*LA)/L

ELSTIF(3,8) = (-X3)#*IYY*L*(ExKP+LAP+C*K+*3%LA)/X20+(E*IYY*+K+LAP-
1 ExIYY+KP*LA+G*IXY*K#%3)/X2+(E+IYY*K*xLA+E+IXY*KP)/L

ELSTIF(3,9) = IYY*(E+«KP**2+G*K**4)*L/X6-E+(IYY*K*++2+A)/L

ELSTIF(3,10) = -IYY*L*%2* (ExKP*LAP+G*K**3%LA)/X30-L* (-E*IYY*K+LAP
1 +E«IYY*KP*LA-G*IXY*K%*3)/X12+E+IXY*K/L

ELSTIF(3,11) = -~IXY*L#*%2%(E*KP*LAP+G*K**3+LA)/X30+L* (E«IXY*K*LAP-
1 E*IXY*KP*LA-G*IYY*K%*3-A*ExK)/X12-E*IYY*K/L

ELSTIF(3,12) = L*(GxIYY*K%*2*LA-ExIXY*K+KP)/X6+(G*IXY*K**2+E*IXY*
1 K=*x2)/X2

ELSTIF(4,4) = IYY+L .%3%(E+LAP**2+GxK**2«LA%*2) /X106+X4*L*(E*xIXY*
1 LAP+(ExIYY*LA**2+G*IXX%K%%2)/X2) /X15+E*IXY*LA+X4+E*«1XX/L

ELSTIF(4,5) = IXY*L**3%(ExLAP**2+G*K+*2«LA**2)/X106+(-X2)*L*(E*
1 IYY*LAP-E*IXX#LAP+IXY* (G*xK*#2-ExLA*%2))/X16+ (E*IXX*LA-E*IYY*
2 LA)/X2-X4*E*IXY/L

P




143

ELSTIF(4,8) = -L**2%(E+*IXY*K*LAP-G*IYY*K*LA%*2)/X20-L*(IXY* (G*K*
1 LA+ExK=LA)+G*IXY*K+LA)/X12-ExIXX+K

ELSTIF(4,7) = X13*IXYxL##2% (E4LAP*#24G*K+*2xLA*%2) /X420~ (-E«IYY*
1 LAP+E*IXX*LAP-IXY*(G*K%*2-E*LA*%2))/X10-L*(-G*IYY*K+*2+LA-G*
2 IXX*K%%2%LA)/X10-(-ExIYY*LA-E*IXX*LA)/L+X6*E+IXY/L#%2

ELSTIF(4,8) = (-X13)*IYY*L#%2% (ExLAP**2+G*K**2+LA**2)/X420- (-E*
1 IXY*LAP-(ExIYY*LA*%24G*xIXX*K%%2)/X2)/XE+X6+E*IXX/L**2

ELSTIF(4,9) = IYYxLxx2%(E«KP*LAP+G*K**3*LA)/X30-L*(-E*IYY*K+LAP+E
1 *IYY«KP*LA-G*IXY*K**3)/X12+E*IXY*K/L

ELSTIF(4,10) = -IYY#L#%3*(ExLAP**2+G*K+*2+LA*%2)/X140+L*(-E*IXY*
1 LAP-(E*IYY*LA**2+GxIXX*K*%2)/X2)/X16+X2*«E*1XX/L

ELSTIF(4,11) = -IXY*L#x3%(ExLAP**24G*K**2+%LA%*2)/X140-L*(-ExIYY*
1 LAP+E*IXX*LAP-IXY*(G*K**2-E*LA*%2))/X30-L**2% (GxIYY*K#*2+xLA+G*
2 IXXxK+*%2xLA)/X60~(ExIYY*LA+E*IXX*LA)/X2-X2*E+IXY/L

ELSTIF(4,12) = -L*#2+(E#IXY*K*LAP-G*IYY*K*xLA**2)/X30-L*(-IXY*(G*K
1 =LA+ExK*LA)-G*IXY*K*LA)/X12

ELSTIF(5,5) = Lxx3%(Ex(IXX*LAP**24A*K%%2)+G*IXX*K**2+LA**2)/X105+
1 X4xLx ((E*IXX*LA*%2+4G*IYY*K*%2)/X2-E+IXY+LAP)/X15-E+IXY*LA+X4*
2 ExIYY/L

ELSTIF(5,8) = L**2%(G*xIXY*xK*LA**2-E*IXX*K*LAP)/X20+L* (G*IYY*K*LA-
1 GxIXX#«K*LA-E*IXX*K*LA)/X12+E+IXY*K

ELSTIF(5,7) = X13*xL%x2x (Ex(IXX*LAP**2+A*K*%2) +G*IXX*K*x2xLA%*2) /
1 X420+ (ExIXY*LAP- (E*IXX*LA**2+GxIYY*K*%2) /X2) /X6-X6*E*xIYY/L**2

ELSTIF(5,8) = (-X13)*IXY*L*%2% (ExLAP**2+G*K**2xLA%**2)/X420+(-E*
1 IYY*LAP+E*IXX*LAP-IXY* (G*K**2-E+LA**2) ) /X10+L* (G*IYY*K**2«LA
2 G L XAK*%2%LA) /X104 (ExIYY*LA+E*IXX*LA) /L-X6G*E*IXY/L**2

ELSTIF(6,9) = IXY*L**2%(E*KP*LAP+G*K**3%LA)/X30+L* (E*IXY*K*LAP-E*
1 IXY*KP*LA-G*IYY+*K**3-A*E+K)/X12-ExIYY*K/L

ELSTIF(5,10) = -IXY*L*%3%(ExLAP*%2+G*Kx*2xLA%*%2)/X140-L*(-ExIYY*
1 LAP+E*IXX*LAP-IXY*(G#K**2-E*LA*%2))/X30-L**2%(-GxIYY*K**Q+LA-
2  GxIXX*K#%2+LA)/X60-(-E+IYY*LA-E*IXX*LA)/X2-X2+E*IXY/L

ELSTIF(5,11) = -L#*3%(E*(IXX*LAP**2+A*xK*%2)+G*IXX*K**x2*LA**2) /X140
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1 +L*(E*IXY*LAP- (E*IXX+*LA*x*2+4GxIYY*K*%2)/X2)/X15+X2*E*1YY/L

ELSTIF(5,12) = L**2%(G*IXY*K*LA**2-ExIXX+K*LAP)/X30+L* (-G*IYY*Kx
1 LA+G+IXX*K+LA+E+IXX*K+LA)/X12

ELSTIF(6,6) = L*(IXX*(G*LA**2+E+K#+2)+G*IYY*LA*%2)/X3+G*(IYY+IXX)
1 /L

ELSTIF(6,7) = X3*Lx (G*IXY*K*LA%%2-ExIXX*K+*LAP)/X20+(G*IYY*K*LA-G
1 *IXX*K*LA-E*IXX*K*LA)/X2+(-G*IXY*K-E*IXY*K)/L

ELSTIF(6,8) = X3*L*(E*xIXY*K*LAP-G*IYYxK*LA%%2)/X20+(IXY*(G*K*LA+
1 ExK*LA) +G+IXY*K*LA)/X2+(-G*IXX*K-E*IXX*K) /L

ELSTIF(6,9) = L*(G*IYY*K#%2+LA-ExIXY*K+KP)/X6+(-G*IXY*K**2-E*IXY*
1 Kxx2)/X2

ELSTIF(6,10) = L**2*(E*IXY*K*LAP-G*IYY*K*LA**z)/xso-L*(-IXY*(G*K*
1 LA+ExK*LA) -G*IXY*K*LA)/X12 ’

ELSTIF(6,11) = L*(-G*IYY*K*LA+G*IXX*K+LA+E*IXX*K*LA)/X12-L**2%(G*
1 IXY*K*LA**2-E*IXX*K*LAP)/X30

ELSTIF(G.IZ)Y= L (IXX* (G*LA%%2+ExK*%2) +G*IYY*LA**2) /X6-G* (IYY+IXX
1 /L '

ELSTIF(7,7) = X13sL*(Ex (IXX*LAP**x2+AxK*%2)+GHxIXX*K**2xLA**2) /X35
1 +X12% ((E*IXX*LA**2+G*IYY*K**2) /X2-E*IXY*LAP) / (X5*L) +ExIXX*LA
2  *LAP+G*IXY*Kx*2xLA+X12*E*IYY/L**3

ELSTIF(7.8) = (-X13)*IXY*L*(E*LAP**2+G*K**2xLA%%2)/X35+(-X2*E*xIXY
1 *LA*LAP-G*IYY+K*%2*LA+G*IXX*K*%2%LA) /X2+X6* (ExIYY*LAP-E*IXX*
2  LAP+IXY*(G*K**2-ExLA#*%2))/(XB*L)+X12«E*IXY/L**3

ELSTIF(7,9) = X7*IXY*L*(E*KP*LAP+G*K+*3%LA)/X20+(ExIXY*K+LAP+E«
1 IXY*KP*LA+G*IYY*K*%3-A*E+K)/X2+ (E+IXY*K+LA-E*IYY*KP)/L

ELSTIF(7,10) = (~X11)*IXY*L**2%(ExLAP**2+G#K#*2xLA%%2)/X210-(-E#
1 IVYV*LAP+X11*ExIXX*LAP-IXY* (GK**2-E+LA%**2))/X10-L*(G*IYY*K%x*2
2 *LA+G*IXX*K**2+LA)/X10- (E*IYY*LA+E*IXX*LA) /L+X6+E*IXY/L**2

ELSTIF(7.11) = (-X11)*L##%2%(E% (IXX#LAP*%24A«K#%2) +G+IXX#K*%2%
1 LA*%2) /X210+ (X6+E«IXY*LAP~ (E+IXX*LA**2+G*IYY*K*+2)/X2)/XB5-X6+E
2 *IYY/L%+2
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ELSTIF(7,12) = X7*L*(G*xIXY*K*LA**2-E*IXX*K*LAP)/X20+(G*IYY+K*LA+
1 G*IXX*K+LA-E*IXX*K*LA)/X2+(G*IXY*K+E*IXY*K)/L

ELSTIF(8,8) = X13+IYY*L*(E+*LAP**2+4G*K»%2+LA%%2)/X36+X12*(E+IXY*
1 LAP+(E*IYY*LA#%2+4G*xIXX*K%%2)/X2)/(X6+L) +E«IYY*LA*LAP-G*IXY*
2 K**2xLA+X12*ExIXX/L**3

ELSTIF(8,9) = (-X7)*IYY*L*(ExKP*LAP+G*K¥%3%LA)/X20+(-E+IYY*K«LAP
1 -ExIYY*KP*LA+G*IXY*K**3)/X2+(-ExIYY*K*LA-E*xIXY*KP)/L

ELSTIF(8,10) = X11*IYY*L**2% (E*LAP**2+G*K**2«LA%*2)/X210- (-X6*E*
- 1 IXY*LAP- (ExIYY*LA**2+G*IXX*K%*2)/X2)/X6+X6*E+IXX/L**2

ELSTIF(8,11) = X11*IXY*L*#*2%(ExLAP**2+G*K**2%LA**2)/X210+(-X11+E*
1 IYY*LAP+E=«IXX*LAP-IXY*(G#K%*2-ExLA%%2))/X104L*(-G*IYY*K**2xLA-
2 G*IXX#K%%2+LA) /X104 (-E*IYY*LA-E*IXX*LA)/L-X6+E*IXY/L**2

ELSTIF(8,12) = X7*Lx(ExIXY*K*%LAP-G*IYY*K*LA*%2)/X20+(IXY*(G*K*LA
1 +E+K*LA)-G+IXY*K*LA)/X2+(G*IXX*K+E*IXX*K)/L

ELSTIF(9,9) = IYY*(ExKP**2+GxK+%4)*L/X3+E*(IYY*K**2+A) /L+E+IYY*K+

1 KP
: ELSTIF(9,10) = -IYY*L**2%(E+KP*LAP+G*K**3%LA)/X20-L*(E*IYY*K*LAP-
{ 1 ExIYY+KP*LA+G*IXY*K**3)/X12-E*IXY*K/L-E*IXY*KP

ELSTIF(9,11) = -IXY*L*%2%(E+KP*LAP+G*K**3+LA)/X20+L*(-ExIXY*K*LAP
1 +ExIXY*KP*LA+G*IYY*K**3+A«E*K)/X12+E*IYY*K/L+E*IYY*KP

ELSTIF(9,12) = L*(GxIYY*K**2%LA-E*IXY*K*KP)/X3+ (G*IXY*xK**2-E*IXYx*
1 Kxx2)/X2

ELSTIF(10,10) = IYY#Lk*3% (EXLAP**2+G*K**2%LA**2)/X106+X4*L* (E*
1 IXY*LAP+(E+IYY*LA%%2+G*xIXX*K*%2)/X2)/X15-E*IXY*LA+X4+E*IXX/L

ELSTIF(10,11) = IXY*L**3% (ExLAP**2+G*K**2*LA**2)/X106+(-X2)*L*(E
1 *IYY+LAP-ExIXX*LAP+IXY* (G*K*%2-E«LA%*2))/X16- (E*IXX*LA-E*IYY*
2  LA)/X2-X4*E+IXY/L

ELSTIF(10,12) = L#**2%(E*IXY*K*LAP-G*IYY*Kx*LA**2)/X20-L*(IXY*(G*K*
1 LA+E*K*LA)+G*IXY*K+LA)/X12+E*IXX*K

ELSTIF(11,11) = L#%3%(E*(IXX*LAP#*2+A*K#*#2) 4G+ IXX#X+22¢LA%*2)/
1 X105+X4#L* ((ExIXX*LA**2+G*xIYY+K*%*2) /X2-E*IXY+LAP) /X15+E*IXY*
2  LA+X4+«ExIYY/L
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ELSTIF(11,12) = -L**2%(G*IXY*K*LA**2-E*IXX*K*LAP)/X20+L*(G*IYY*K»
1 LA-G*IXX*K*LA-E+*IXX*K#LA)/X12-E+*IXY*K

ELSTIF(12,12) = L*(IXX%x(G*LA%**2+E*xK**2)+G*IYY«LA%*2) /X3+G*(IYY+

1 IXX)/L

c
c ASSIGN REMAINING ELEMENTS IN SYMMETRIC FASHION
c

DO 300 NI = 2, 12

DO 300 NJ = 1, NI-t

ELSTIF(NI,NJ) = ELSTIF(NJ,NI)
300 CONTINUE

C
c COMPUTE GLOBAL STIFFNESS MATRIX (IN THE TANGENT SYSTEM)
c

DO 301 NI = 1, 12
DO 301 NJ = 1, 12
GLSTIF(I+NI,J+NJ) = GLSTIF(I+NI,lJ+NJ) + ELSTIF(NI,NJ)
301 CONTINUE

c
c ASSIGN VALUES TO TG (TANGENT TO GLOBAL TRANSFORMATION MATRIX)
c EVALUATED FOR NODE# 1 OF THE ELEMENT
c
T6(1,1) = -DCOS(PP)
TG(1,2) = S1*DSIN(PP)
T6(1,3) = -Ci*DSIN(PP)
TG(2,1) = -DSIN(PP)
T6(2,2) = -S1+DCOS(PP)
TG(2,3) = C1*DCOS(PP)
TG(3,1) = X0
T6(3,2) = C1
T6(3,3) = 81
c
c COMPUTE TC (TANGENT TO CHORD TRANSFORMATION MATRIX) FOR
c NODE# 1 OF THE ELEMENT
c
NI =3
CALL MULMATX(GC, TG, TC, NI, NI, NI)
c
C FILL IN CORRESPONDING ELEMENTS OF TRANS
c

DO 302 NI = 1, 3

DO 302 NJ = 1, 3 : :
TRANS(I+NI,J+NJ) = TRANS(I+NI,J+NJ) + TC(NI,NJ)
TRANS(I+NI+3,J+NJ+3) = TRANS(I+NI+3,J+NJ+3) + TC(NI,NJ)
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CONTINUE

INVERT TC TO OBTAIN TCINV FOR NODE# 1 OF THE ELEMENT

IDGT
IA =
NI =
CALL LINVIF(TC, NI, IA, TCINV, IDGT, WKAREA, IER)

0

w W N

FILL IN CORRESPONDING ELEMENTS OF TRANSINV

DO 303 NI =1, 3
DO 303 NJ =1, 3
TRANSINV(I+NI,J+NJ) = TRANSINV(I+NI,J+NJ) + TCINV(NI,NJ)
TRANSINV(I+NI+3,J+NJ+3) = TRANSINV(I+NI+3,J+NJ+3)
+ TCINV(NI,NJ)
CONTINUE

COMPUTE PP FOR NODE# 2 OF THE ELEMENT
PP = PP + PxL/LTUBE

ASSIGN VALUES TO TG (TANGENT TO GLOBAL TRANSFORMATION MATRIX)
EVALUATED FOR NODE# i1 OF THE ELEMENT

TG(1,1) = -DCOS(PP)
TG(1,2) = S1«DSIN(PP)
TG(1,3) = -C1+DSIN(PP)

T6(2,1) = -DSIN(PP)
TG(2,2) = -S1+DCOS(PP)
TG(2,3) = C1+DCIS(PP)
TG(3,1) = X0

T6(3,2) = C1

T6(3,3) = st

COMPUTE TC (TANGENT TO CHORD TRANSFORMATION MATRIX) FOR
NODE# 2 OF THE ELEMENT

NI =3
CALL MULMATX(GC, TG, TC, NI, NI, NI)

FILL IN CORRESPONDING ELEMENTS OF TRANS

DO 304 NI = 1, 3
DO 304 NJ =1, 3
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TRANS(I+NI+6,J+NJ+6) = TRANS(I+NI+8,J+NJ+8) + TC(NI,NJ)
TRANS(I+NI+9,J+NJ+9) = TRANS(I+NI+Q,J+NJ+9) + TC(NI,NJ)

CONTINUE

ZNVERT TC TO OBTAIN TCINV FOR NODE# 2 OF THE ELEMENT

IDGT = 0
IA =3
NI =3

CALL LINVIF(TC, NI, IA, TCINV, IDGT, WKAREA, IER)
FILL IN CORRESPONDING ELEMENTS OF TRANSINV

DO 305 NI = 1, 3
DO 305 NJ =1, 3
TRANSINV(I+NI+6,J+NJ+6) = TRANSINV(I+NI+8,J+NJ+6)
+ TCINV(NI,NJ)
TRANSINV(I+NI+9,J+NJ+9) = TRANSINV(I+NI+9,J+NJ+9)
+ TCINV(NI.NJ)

305 CONTINUE
INCREMENT CONNECTIVES I AND J BY DOF/NODE = 6
I=1+6
J=J+6
LOOP BACK
200 CONTINUE
OBTAIN CHDSTF, GLOBAL STIFFNESS MATRIX IN THE CHORD SYSTEM, AS:
CHDSTF = TRANS * GLSTIF * TRANSINV
NI = 6+(NELEM+1)
CALL MULMATX(TRANS, GLSTIF, TEMP24, NI, NI, NI)
NI = @+(NELEM+1)
CALL MULMATX(TEMP24, TRANSINV, CHDSTF, NI, NI, NI)
OBTAIN REDFLEX, A SUBMATRIX OF THE GLOBAL FLEXIBILITY
MATRIX BY INVERTING A SUBMATRIX OF CHDSTF OF DIMENSIONS
6+NELEM x 6+NELEM, I.E., WHICH EXCLUDES ELEMENTS
CORRESPONDING TO THE FIRST NODE WHOSE DISPLACEMENTS ARE
KNOWN TO BE ZERO

DO 210 NI = 7, 6+(NELEM+1)
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DO 210 NJ = 7, 6*(NELEM+1)
TEMP18(NI-8,NJ-6) = CHDSTF(NI,NJ)
210 CONTINUE
IDGT = 0
IA = 6+NELEM
N1 = 6*NELEM
CALL LINVIF(TEMP18, NI, IA, REDFLEX, IDGT, WKAREA, IER)
DO 900 NI = 7, 6x(NELEM+1)
DO 900 NJ = 7, €x(NELEM+1)
TEMP18(NI-6,NJ-6) = CHDSTF(NI,NJ)
900 CONTINUVE
NI = 6+«NELEM
CALL MULMATX(REDFLEX,TEMP18,CHECK,NI,NI,NI)

OBTAIN DISPLACEMENTS DELCHD = REDFLEX * FKNOWN IN CHORD SYSTEM

NI = 6+«NELEM
NI =1
CALL MULMATX(REDFLEX, FKNOWN, DELCHD, NI, NI, NJ)

COMPUTE REACTIONS FROM THE ABOVE DISPLACEMENTS

DO 903 NI = 1, 6
DO 903 NJ = 7, 6+(NELEM+1)
KBETAALPHA(NI,NJ-6) = CHDSTF(NI,NJ)
903 CONTIMNUE

NI =6
NJ = €=NELEM
NK = 1

CALL MULMATX(KBETAALPHA ,DELCHD,TEMP61,NI,NJ,NK)
WRITE COMPUTED REACTIONS IN CHORD SYSTEM TO FILE "FEMOUTPUT"

WRITE(12,%)

WRITE(12,*) ’COMPUTED REACTIONS IN CHORD SYSTEM®
WRITE(12,*)

WRITE(12,*) (TEMP61(NI,1), NI = 1, @)
WRITE(12,%)

CONVERT RADIANS INTO DEGREES

DO 212 NI = 1, NELEM
DO 212 NJ = 1, 3
DELCHD ((6+NI-NJ+1),1) = DELCHD((6+*NI-NJ+1),1)*X180/PI
212 CONTINUE
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WRITE CHECK TO FILE "FEMOUTPUT"

WRITE(12,*) 'FLEX CHECK:'
DO 901 NI = 1, 6+*NELEM
WRITE(12,*) (CHECK(NI,NJ), NJ = 1, 6+NELEM)
901 CONTINUE

WRITE END DISPLACEMENT TO FILE "FEMOUTPUT"

OO O00aa0n

WRITE(12,%)
WRITE(12,*) ’END DISPLACEMENT IN CHORD SYSTEM:'’
WRITE(12,*)

WRITE(12,*) ’Delx
WRITE(12,*) 'Dely
WRITE(12,*) 'Delz
WRITE(12,*) 'Thex
WRITE(12,*) ’They

*, DELCHD(6*(NELEM-1)+1,1), °'m’
', DELCHD(6+(NELEM-1)+2,1), ’'m’
*, DELCHD(6*(NELEM-1)+3,1), ’'m’
, DELCHD(6* (NELEM-1)+4,1), 'deg’
', DELCHD(6+(NELEM-1)+6,1), 'deg’

now 0 B n N

WRITE(12,*) 'Thez = ', DELCHD(6+(NELEM-1)+6,1), ’'deg’
c
c WRITE GLOBAL STIFFNESS MATRIX INTO FILE "FEMOUTPUT"
(¢
c WRITE(12,%)
c WRITE(12,*) ’GLSTIF:’
c WRITE(12,*)
c DO 214 NI = 1, 6*(NELEM+1)
c WRITE(12,*) (INT(GLSTIF(NI,NJ)), NJ = 1, 6+(NELEM+1))
C 214 CONTINUE
C
c WRITE FKNOWN, GLOBAL FORCE VECTOR TG FILE "FEMOUTPUT"
c
WRITE(12,%)
WRITE(12,*) 'FKNOWN VECTOR:’
WRITE(12,%)
WRITE(12,+) (FKNOWN(NI,1), NI = i, 6«NELEM)
c
STOP
END
c
c MULMATX SUBROUTINE BEGINS
c

SUBROUTINE MULMATX(MAT1,MAT2,MAT3,L1,L2,L3)

INTEGER L1, L2, L3, KNT1, KNT2, KNT3

REAL+8 MAT1(L1,L2), MAT2(L2,L3), MAT3(L1,L3)
- DO 10 KNTL = 1, L1
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DO 10 KNT2 = 1, L3
MAT3(KNT1,KNT2) = 0.0DO
DO 11 KNT3 = 1, L2
MAT3(KNT1,KNT2) = MAT3(KNT1,KNT2)+MAT1(KNT1,KNT3)*

1 MAT2(KNT3,KNT2)

CONTINUE
CONTINUE
RETURN
END

END OF PROGRAM
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